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 ANNALS OF MATHEMATICS

 Vol. 50, No. 2, April, 1949

 AN ELEMENTARY PROOF OF THE PRIME-NUMBER THEOREM

 ATLE SELBERG

 (Received October 14, 1948)

 1. Introduction

 In this paper will be given a new proof of the prime-number theorem, which is

 elementary in the sense that it uses practically no analysis, except the simplest
 properties of the logarithm.

 We shall prove the prime-number theorem in the form

 (1.1) .lim =1(x) 1
 Z__00 X

 where for x > 0, tQ(x) is defined as usual by

 (1.2) #(X) = E logp,

 p denoting the primes.
 The basic new thing in the proof is a certain assymptotic formula (2.8),

 which may be written

 (1.3) t(x) log x + log pa () =2x log x + O(x).

 From this formula there are several ways to deduce the prime-number theorem.
 The way I present ??2-4 of this paper, is chosen because it seems at the present
 to be the most direct and most elementary way.1 But for completeness it has
 to be mentioned that this was not my first proof. The original proof was in
 fact rather different, and made use of the following result by P. Erdos, that

 for an arbitrary, positive fixed number 6, there exist a K(a) > 0 and an xo = x(a)
 such that for x > xo, there are more than

 K(a) Xlog x

 primes in the interval from x to x + Ax.
 My first proof then ran as follows: Introducing the notations

 lim. t() = a, fim,() -A
 - x x;

 one can easily deduce from (1.3), using the well-known result

 (1.4) E log P = log x + 0(1),
 ,<? X

 1 Because it avoids the concept of lower and upper limit. It is in fact easy to modify
 the proof in a few places so as to avoid the concept of limit at all, of course (1.1) would
 then have to be stated differently.
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 306 ATLE SELBERG

 that

 (1.5) a+ A = 2.

 Next, taking a large x, with

 (x) ax + o(x),

 one can deduce from (1.3) in the modified form

 (1.6) (d(x) -ax) log x + E log p ( () -A x= 0(),

 that, for a fixed positive number 6, one has

 (1.7) s6 (p > (A _ )x

 except for an exceptional set of primes ? x with

 log P O(lo_ X).

 Also one easily deduces that there exists an x' in the range -V1 < x' < x, wit

 6 (x') = Ax' + o(x').

 Again from (1.6) with a and A interchanged, and x' instead of x, one deduces the

 (1.8) * (J;) < (a + 6) -,

 except for an exceptional set of primes ? x' with

 lop a

 From Erd6s' result it is then possible to show that one can chose primes p and p'
 not belonging to any of the exceptional sets, with

 x< x/ < (l + a) x.
 P P P

 Then we get from (1.7) and (1.8) that

 (A- O < < (mu) < (a+6) X < (a+ X

 so that

 A < (a + 6)(1 + 6).

 or making 6 tend to zero

 A a.
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 THE PRIME-NUMBER THEOREM 307

 Hence since also A ? a and a + A = 2 we have a = A = 1, which proves our
 theorem.

 Erd6s' result was obtained without knowledge of my work, except that it is
 based on my formula (2.8); and after I had the other parts of the above proof.
 His proof contains ideas related to those in the above proof, at which related

 ideas he had arrived independently.
 The method can be applied also to more general problems. For instance

 one can prove some theorems proved by analytical means by Beurling, but
 the results are not quite as sharp as Beurlings.2 Also one can prove the prime-
 number theorem for arithmetic progressions, one has then to use in addition ideas
 and results from my previous paper on Dirichlets theorem.

 Of known results we use frequently besides (1.4) also its consequence

 (1.9) t (x) = 0(x).

 Throughout the paper p, q and r denote prime numbers. A(n) denotes
 M6bius' number-theoretic function, r(n) denotes the number of divisors of n.
 The letter c will be used to denote absolute constants, and K to denote absolute
 positive constants. Some of the more trivial estimations are not carried out
 but left to the reader.

 2. Proof of the basic formulas

 We write, when x is a positive number and d a positive integer,

 (2.1) Xd = kd.. = jut(d) log d'

 and if n is a positive integer,

 (2.2) On = =n,= = Ed/n Xd
 Then we have

 flog2 x, for n=1,

 (2.3) - Jlog p log X2/p, for n = pa, a >1 (2*3) On )2logplogq, forn = paql, a > > 1,
 LO, for all other n.

 The first three of these statements follow readily from (2.2) and (2.1), the
 fourth is easily proved by induction. Clearly it is enough to consider n square-

 free, then ifn = PlP2 * Pk ,

 On,, = On/rPi,z - On1Pkl/Pk

 From this the remaining part of (2.3) follows.

 2 A. BEURLING: Analyse de la loi asymptotique de la distribution des nombres premiers

 gneralisks, Acta Math., vol. 68, pp. 255-291 (1937).
 3 These Annals this issue, pp. 237-304.
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 308 ATLE SELBERG

 Now consider the expression

 Xd F1=x OZ Xd) On = d Xd E I'd + d [ ]
 (2.4) zn! n<z din d<z d dx d_

 =X E A(d) og2 Z + o j u2 )=xE(d) lo2 X + O(X). d<z d d \dx d d oz d d

 This on the other hand is equal to, by (2.3),

 2

 ORn -log2x + E log p log -
 n<x Pa<X P

 + 2 log p logq= log2p
 VcaqB?x p<:
 v<q

 (2.5) + E logplogq+O (1log p log)
 pq ?z \p~z P1

 +0( Z og2x) +O( E logplogq)
 jpa < paq< z
 x>l a>1

 + log2x = log2p+ + logp logq + O(x).
 <X Vpq~z

 The remainder term being obtained by use of (1.4) and (1.9). Hence from
 (2.4) and (2.5),

 (2.6) E log2 p + E log p log q = x 2L?(dQ) log2 x + O(x).
 (2.6) pq<_ dz d d

 It remains now to estimate the sum on the right-hand-side. To this purpose
 we need the formulas

 (2.7) = log z + c1 + 0(Z-*),

 and

 (2.7) = og2 Z + c2 log z + C3 + O(Z )

 where the c's are absolute constants, (2.7) is well known, and (2.7') may be
 easily derived by partial summation from the well-known result

 >T(v) = zlogz+c4z+0(A/).

 From (2.7) and (2.7') we get

 log2 z = 2 2 (G) + c5 I + C6 + O(z1).
 p:z X V w'VXV

This content downloaded from 
�������������88.197.44.31 on Sun, 13 Feb 2022 14:21:20 UTC�������������� 

All use subject to https://about.jstor.org/terms



 THE PRIME-NUMBER THEOREM 309

 By taking here z = x/d, we get

 1, ,ud 2 X = 2 E jAxd) , r(v) +C5 iAg(d) E
 d?xd d d<z d a xld V d~z d v~xld V

 + c6 Z ,8(d) + O(x Z dt4) = 2 Z /(d)T(v)
 d~x d d~z dv-z< dv

 + c6 E 1d) + C6 E ) + 0(1) dax dv dz_ d

 =2 n d r + c5 Z (d)

 + 0(1) = 2 j - + c5 + 0(1) = 2 logx + 0(1).

 Weused here that Ed/n ,(d) r(n/d) = 1, and the well-known d <z (,u(d))/d = 0(1).
 Now (2.6) yields

 (2.8) E log2 p + E log p log q = 2x log x + O(x).
 pz pqz

 This formula may also be written in the form given in the introduction

 (2.9) t6(x) log x + Z log p 6 - = 2x log x + O(x),

 by noticing that

 Z log2 p = t(x) log x + O(x).
 vZ

 By partial summation we get from (2.8)

 (2.10) E log p+ E log p log q 2x + 0 (x)
 V:5.x VQ_: log pq log x

 This gives

 E log p log q = I log p E log q = 2x z log P
 Pq_$ Pz q~zIp P-z P

 -E logp E q gllogrg 0 E log \
 pE~z: qr~z/p log qr V dp (1+log-))

 = 2x log x - E log qlogr (f) + O(x log log x).
 qr~z log qr \qr/

 Inserting this for the second term in (2.8) we get

 (2.11) t,(x) log x = E log p log q 6 ( - ) + O(x log log x).
 V.< log pq \pq/
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 310 ATLE SELBERG

 Writing now

 6(x) = x + R(x) , (2.9) easily gives

 (2.12) R(x) log x = -Z log p R ( + O(x),
 posx p

 and (2.11) yields in the same manner

 (2.13) R(x) logx lo p log qR + O(x log log x),
 ,~log pq \pq/

 since

 lo1g lo1g q =~ log x + O(logO log x),
 x pq log pq

 which follows by partial summation from

 E log P log q = log2 x + O(log x),
 vq < pq

 which again follows easily from (1.4).
 The (2.12) and (2.13) yield

 2 j R(x) I logzx S E log p RI-)

 + E log p log q |R (X) + O(x log log x).
 vq< log pq \pq

 From this, by partial summation,

 2 j R(x) I log x < pE n log p + E log Pq }

 { R - + R) }+O(x log logx),

 or by (2.10)

 2 R(x)I logz 2 2n{R(n) - (n l)|

 +0 1 log n - ) + O(x log log x)

 =2 I R ) + (Xlog log x),
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 THE PRIME-NUMBER THEOREM 311

 or

 (2.14) IR(x)I < 1 Ei| R(?) +0( loglogX x)
 log X n? \l \logx /

 which is the result we will use in the following.4

 3. Some properties of R(x)

 From (1.4) we get by partial summation that

 E 6(n) = log x + 0(1),
 n~x fl2

 or

 z R(n) 0(1).

 This means there exists an absolute positive constant K1, so that for all x > 4
 and x' > x,

 (3.1) E () < K1.

 Accordingly we have, if R(n) does not change its sign between x and x', that
 there is a y in the interval x < y ? x', so that

 (3.2) < K221.

 19xi

 This is easily seen to hold true if R(n) changes the sign also.'
 Thus for an arbitrary fixed positive a < 1 and x > 4, there will exist a y

 in the interval x _ y 5 e K2/6 x, with

 (3.3) (R(y) <6y.

 From (2.10) we see that for y < y',

 0 < E log p ? 2(y' - y) + ? Y

 from which follows that

 R(y') - R(y) y' - y + o (I'Y,)

 4 Apparently we have here lost something in the order of the remainder-term compared
 to (2.8). Actually we could instead of (2.14) have used the inequality

 IR(x) I 5 1 2 1: Lo n IR (n + ? (lga
 which can be proved in a similar way.

 5 Because there will then be a I R(y) I < log y.
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 312 ATLE SELBERG

 Hence, if y/2 ? y' < 2y, y > 4,

 R(y') -R(y) y' - y + o y

 or

 I R(y') I _ R(y) 1 + I y'- y) + O (l'y,).

 Now consider an interval (x, eK2I x), according to (3.3) there exists a y
 in this interval with

 I R(y) I < by.

 Thus for any y' in the interval y/2 ? y' < 2 y, we have

 I R(y') I _ by + IY - y I + K3l ' R~~~y') ~~~log x'
 or

 R(y') < 26 + 1 I + l3

 Hence if x > e "'/ and e~812) ? y'/y S we get

 R(y') 2+(e812-1+_45 I~ < 25 + (e21) + 3 < 43.

 Thus for x > e K/8 the interval (x, e K2/ZX) will always contain a sub-interval
 (yi, e8/2y1), such that J R(z) J < 48z if z belongs to this sub-interval.

 4. Proof of the prime-number theorem

 We are now going to prove the
 THEOREM.

 limx = 1.
 Zx-*oo X

 Obviously this is equivalent to

 (4.1) lim =() 0.
 _-*oO x

 We know that for x > 1,

 (4.2) j R(x) I < K4x.

 Now assume that for some positive number a < 8,

 (4.3) j R(x) I < ax,

 holds for all x > x0. Taking 5 = a/8, we have according to the preceding
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 THE PRIME-NUMBER THEOREM 313

 section (since we may assume that xo > eK3I8), that all intervals of the type
 (x, eK2/8X) with x > xo, contain an interval (y, e812y) such that

 (4.4) | R(z) I < az/2,

 for y < z ? e6/2y.
 The inequality (2.14) then gives, using (4.2),

 iR(x) I <! lo x E R (n + ? (+Ixc
 <K4-X '< z N 0 Rx\ oxx

 log1x (Ixo)<n~zxn log1x n?(z 0o) n x n \/log x)X

 writing now p = eK2/8, we get further, using (4.3) and (4.4),

 R~)I<ax > l ax
 i R(x) < log X n?(zlxo) n 2 log x ?<?<(log (zx z0)/logp)

 __ = ax- y,<n!zy~e(8-2) n (\/log x) 2 log x ifv (log (xzlo) logp) 2
 p-<yr~v a2

 VAnalog x 4 log p + (

 a ~~x + 0( Jx< a(13of~)
 ( 256K2) V ? log x) < t( 300K )2

 for x > xi. Since the iteration-process
 ( 2

 an+1 = an 1 - 1 _

 obviously converges to zero if we start for instance with a, = 4 (one sees easily
 that then an < K5/V/n), this proves (4.1) and thus our theorem.

 FINAL REMARK. As one sees we have actually never used the full force of

 (2.8) in the proof, we could just as well have used it with the remainder term
 o(x log x) instead of O(x). It is not necessary to use the full force of (1.4)
 either, if we have here the remainder-term o(log x) but in addition knowing that

 t~(x) > Kx for x > 1 and some positive constant K, we can still prove the
 theorem. However, we have then to make some change in the arguments of ?3.

 THE INSTITUTE FOR ADVANCED STUDY
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