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Hadamard matrices

Hadamard was interested in finding the
maximal determinant of square matrices with
entries from the unit disc.

He showed (Bull. Sciences Math. 1893) that
this maximal determinant, n*2, was achieved
by matrices X = [x,],., with entries +1 which
satisfied the equality of the inequality:

Jacques Salomon Hadamard

n I
2 2 _
|detX| EHZMEH 1865 — 1963

i=1 j=1

or XXTZIn
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Hadamard matrices
4

A square matrix with elements +1 and size n, whose
distinct row vectors are orthogonal is an
Hadamard matrix of order n.

n=1 n=>2 n=4
H-| H2 H4
1 1 1 1
1] [ 11 ] 1 -1 1 -1
I -1 1 I -1 -1 Jacques Salomon Hadamard
1 -1 -1 1] 1865 — 1963

Basic properties of Hadamard matrices:

a) HH'=nl, b) |det H| = n"? ) HHT =H'H
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The Hadamard conjecture
T

Furthermore, Hadamard observed that such
matrices could exist only if » was 1, 2, or a
multiple of 4.

This observation has formed the basis of one of
the greatest unsolved mathematical problems.

There is a Hadamard matrix of order n for

: Jacques Salomon Hadamard
any natural number n multiple of 4. 1865 — 1963

Despite the efforts of several mathematicians, Hadamard’s observation remains
unproven, even though it is widely believed that it is true.
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Sylvester-Hadamard matrices
N

However, such matrices were first studied by
Sylvester (Phil. Mag. 1867) who observed that if
H 1s an Hadamard-type matrix, then

]

1s also an Hadamard-type matrix.

The matrices of order 2* constructed using
Sylvester’s construction are usually referred to as James Joseph Sylvester
Sylvester-Hadamard matrices. 1814 —-1897

There is an Hadamard-type matrix of order 2* for all natural numbers k.
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Visualization of Sylvester-Hadamard matrices




Hadamard’s matrices
N

Sylvester's construction (1867) yields Hadamard matrices of order 1, 2, 4, 8, 16,
32, etc. Hadamard matrices of orders 12 and 20 were subsequently constructed by
Hadamard in 1893.

12 X 12 Hadamard matrix 20 X 20 Hadamard matrix

White square = 1
Gray square = —
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Construction of Hadamard matrices

Different construction techniques of Hadamard matrices have been developed
for a wide variety of applications:

** Sylvester’s technique (1867)

¢ Paley’s technique (1933)

»» Williamson’s technique (1944)

¢ Ahmed & Rao’s technique (1975)
¢ Henderson’s technique (1978)

»* Golay’s technique (1982)

¢ Lee & Kaveh’s technique (1986)

428 X 428 Hadamard matrix
...and others H. Kharaghani and B. Tayfeh-Rezaie, 2005



Construction of Hadamard matrices
10

In 1933, Raymond Paley discovered a construction that
produces a Hadamard matrix of order g + 1 when ¢ is any
prime power that 1s congruent to (3 mod 4) and that
produces a Hadamard matrix of order 2(¢g+1) when ¢ is a
prime power that is congruent to (1 mod 4).

His method uses finite fields.

The Hadamard conjecture should probably be attributed
to Paley.

Raymond Paley
1907- 1933

The smallest order that cannot be constructed by a combination of Sylvester's and
Paley's methods 1s 92. An Hadamard matrix of this order was found using a
computer by Baumert, Golomb, and Hall in 1962 at JPL. They used a construction,
due to Williamson, that has yielded many additional orders.
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Construction of Hadamard matrices
T

Facts for Hadamard matrices:

v' In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their
construction of an Hadamard matrix of order 428. As a result, the smallest
order for which no Hadamard matrix is presently known is 668.

v As of 2008, there are 12 multiples of 4 less than or equal to 2000 for which no
Hadamard matrix of that order 1s known. They are:

668, 716, 892, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, and 1964.

v Every Hadamard matrix of order n > 4 contains a submatrix equivalent to:

(1111
v' For any ordern, Hy € H,, and H,, € H,,, . 111 —

11— -
1-—1
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Applications of Hadamard matrices
e

O Signal processing, Coding and Cryptography
= Design of experiments
= (Object recognition
= (Coding of digital signals (CDMA telecommunications)

L Spectral analysis or signal separation
= Mass spectroscopy
= Polymer chemistry
= Signal and information processing
=  Geophysics
= Acoustics
= Nuclear medicine and nuclear physics

( Other novel applications
Digital logic design, pattern recognition, data compression,
magnetic resonance imaging, neuroscience and quantum computing
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Hadamard equivalence and D-optimal designs
I .,

Definition 1 (H-equivalence). We call two Hadamard matrices Hadamard

equivalent or H-equivalent if one can be obtained from the other by a sequence
of the operations:

i) interchange any pair of rows and/or columns,
it) multiply any row and/or column through by-1.

Definition 2. A k x k (£1)-matriz with mazimum determinant (in magnitude)
15 called a D-optimal design of order k and is denoted Dy. We also denote its

determinant by dy, = |det(Dy,)|. If the first row and the first column of Dy, consists
of all 1’s is said to be a normalized form.
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Hadamard equivalence and D-optimal designs

Random (#1)-matrices have determinants of moderate value, that vary
unpredictably. Structured matrices (similar to a Hadamard-like design) have a
significantly higher determinant, indicating better spread and orthogonality
among 1ts Tows.

Random +1 Matrix Structured +1 Matrix
Determinant = 0.0 Determinant = -32.0
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Hadamard equivalence and D-optimal designs
I .,

A D-optimal design of order £ multiple of 4 1s a Hadamard matrix of the same order,
k

i.e., D, £ Hy, .Therefore, it achieves the maximum determinant value d;, = kz.

11111111
111 —-1———
(1111 11 -1-1-—-—
Di= |7 "] di=16  Ds=| 177771 1|, ds=4006
1——1 1-1—-—-1-1
) ] l——11--1
1-——111—
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Hadamard equivalence and D-optimal designs

A D-optimal design is a design that maximizes the determinant of the information

matrix X7 X, where X is the design matrix.

Maximizing the determinant leads to minimizing the generalized variance of the
estimated regression coefficients. Thus, the estimates will be as precise as possible,

given the constraints of the design.

11111°
1-1——

Ds={11-——

1——1-—

-1___1-
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ds = 48, dg = 160, dy = 576

1111111
11——-11
1-1--11
1——11-1
1-—-—111 —
111 -1 —-—

1111~




Minors of (£1)-matrices
N

Lemma (Day & Peterson, 1988)
1 1
Let A be an n>xn matrix with elements *1. 2 0,2
It holds that: 3 0, 4
a) detA is an integer and 2" divides detA 4 0,8,16
b) when n <6, the only possible values for detA 5 0, 16, 32, 48
are the following, and they do all occur: 6 0,32 64 96 128, 160

If M,,, denotes the absolute value of an m X m minor of a (£1)-matrix of order
n > m, then M,,, = p 2™ 1, where p is either a positive integer, or zero.

Definition 3. The spectrum of the determinant function for (£1)-matrices is
defined to be the set of values taken by p = 21~ | det(R)| as the matriz R ranges
over all m x m (£1)-matrices. We denote this by spec(m).
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Spectrum of the determinant function
e P

Confirmed spectrum spec{m}

1

m

maxp =p = 2(%)2

A
—

Form = 8, maxp = 2 - 2* = 32

QDMﬂmmhwwHS

0, 40], 42, [44, 45], 48, 56

0, 102], [104, 105], 108, 110, 112, [116, 117], 120, 125, 128, 144

0, 268], [270, 276], [278, 280], [282, 286], 288, 291, [294, 297], 304, 312, 315, 320
0, 2172], [2174, 2185], [2187, 2196], [2199, 2202], 2205, 2208, 2210, 2211,

2214, 2218], [2220, 2226], 2228, 2229, 2230, 2232, 2233, 2235, 2238, 2240, 2241,
2243, 2245], 2247, 2248, 2250, 2253, 2256, [2258, 2260], 2262, 2264, 2265, 2267,
2268, 2271, 2272, 2274, 2277, 2280, 2283, 2286, 2288, 2292, 2295, 2296, 2304,
2307, 2312, 2313, 2316, 2319, 2320, 2322, 2325, 2328, 2331, 2334, 2336, 2340,
2343, 2344, 2349, 2352, 2355, 2360, 2361, 2367, 2368, 2370, 2373, 2376, 2385,
2394, 2400, 2403, 2406, 2421, 2430, 2432, 2439, 2457, 2472, 2484, 2496, 2511,
2520, 2538, 2560, 2583, 2592, 2619, 2646, 2673, 2835, 2916, 3159, 3645
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Spectrum of the determinant function

n d, n dn

1 1 26 2412 . 50

2 2 27 > 226 .6 . 546
3 4 28 2814

4 42 29 > 2% 712,320
5 4%.3 30 2811 . 58

6 4% .10 31 > 230,713 784
7 2.9 32 280

8 8* 33 > 23281 441
9 2% .28 34 > 233815 . 9256
10 8%.18 35 > 231,815 .1064
11 2165 36 3618

12 128 37 236 . 917 . 72

13 125.5 38 368 .74

14 12 .26 39 > 2% 917 . 1440
15 2!4.3%.105 40 40%°

16 168 41 40 .9

17 167 - 80 42 4070 . 82

18 16° - 34 43 > 22,101 . 1890
19 218 .45.833 44 4422

20 2010 45 >21 . 112 .89
21 20° - 116 46 447 .90

22 221 .5%.100 47 > 246118 . 3037500
23 > 222.56. 42411 48 48%

24 2412 49 > 218 .19% .96
25 2412 .7 50 48% . 98

Bounds for the maximum determinant d,,
of all n x n (£l)-matrices.

n
| detH,,| = n2
d,=p2"1

Example:
e dye =24'2.50 = 612 .25 225

28
* d28 = 2814 = 282

(Orrick and Solomon, 2010)
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Minors of Hadamard matrices
N

The current approach is based on the analysis of the result derived from the next
proposition by simply using calculus techniques.

Proposition (Williamson 1944, Szollosi 2010)
Let M, the absolute value of a k*k minor of the Hadamard matrix H, of order n,

M, =‘detHk’n

where H, , denotes the kxk submatrix of H, .

Then, there is a one-to-one correspondence between the minors of size k and n-k
described by the equation:

n

"
M, ,=n* M,

n

The above result readily applies to D-optimal designs of order n > 1.
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Minors of Hadamard matrices

S
AB]

Proof. We consider an orthogonal n x n matrix U of the form U = [ CD

where A is a k£ x k orthogonal matrix and D is a (n — k) x (n — k) orthogonal
matrix for 1 < k& < n. Then,

T T
UU" =1, and U—leT:[A ¢ ]

B' D'

Consequently, det(U) = 1 and by the orthogonality property we have
det(D) = det(D").

Using Jacobi’s determinant identity for U, it follows:

det(A) = det(U) - det(D ") = 1-det(D) = det(D)
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Embedded Hadamard matrices
T |

Theorem (Cohn, 1965)

Ifan H,,,, exists and n > m, then no n-rowed minor is an H,, .

m

Example: n = 20 and m = 8, then H,, 1s not embedded in H,

Theorem (Brent & Osborn, 2013)

Let H, be an Hadamard matrix of order n having a Hadamard submatrix M of

order m < n. Then, m <

NS

Example: n = 20 and m = §, then H, is embedded in H,,
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Embedded Hadamard matrices and D-optimal designs

Problem motivation
I e

Problem 1:

Can an Hadamard matrix (D-optimal design) of order n — 4 or n — 8 exist

embedded in an Hadamard matrix of order n, for n = 4t with integer t >2 ?
HeH, , H,eH, , H,eH,, ,..., H_ ,€H, ?
H,eH, , H,eH, , HyeH, ,..., H eH, e

Problem 2 (Generalization)
Can an Hadamard matrix (D-optimal design) of order n — k exist embedded in an

Hadamard matrix of order n, for n =4t and k=4r with0<2r<t¢?

What are the characteristics of such an embedding property?
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Is H, _, embedded in H,?

Research problem 1:

Can an Hadamard matrix of order n — 4 be embedded in the Hadamard matrix of
order n, for n = 4t with integer t > 2?

H,eH, , H,eH, , H,eH, ,..., H ,eH

n

Why integer ¢ > 2 ?
Because

v fort=1,n—-8=0

v fort=2,n=8 and n—4=4. So, we have H, € H, which is true.
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Is H, _, embedded in H,?
N

O Casel: Forn =4t with integer > 2 and M, =8 = 23,

Using
n_y Calculus —In?2 Int
detHd, |=n*> 2° < t—1)—f(t) = , wh t)=—o
det - = M =10= 30y iy e 0=
(f(t—l)—f(t)>0
: : Argument
For any integer ¢ > 2 it can be proved that: _1n2 is invalid
0
20-1)(-2)

O Casell : Forn =4t with integer >2 and M, = 16 = 24,

Using
n Calculus Argument

detH, ,|= VER IR f(t-1)-f(z) = 0 isinvalid
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Is H, _, embedded in H,?
N

Result 1

For every n = 4¢ with integer ¢ > 2,
P4
detH, ,| # n* -M,

Therefore, a Hadamard matrix of order » — 4 cannot be embedded in an

Hadamard matrix of order n > 4.

Hn—4 %H

n
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Is H ¢, embedded in H,?

= 000

Research problem 1:

Can an Hadamard matrix of order n — 8 be embedded in the Hadamard matrix of
order n, for n = 4t with integer t > 4?

H,eH, , HeeH, , HyeHy ,..., H, el

Why integer ¢ > 4 ?
Because

v fort=landt=2,n—-8<0
v fort=3,n=12and n—8 =4. So, we have H, € H, which is true.
v fort=4,n=16and n—8=28. So, we have H, € H,, which is true.



Is H ¢, embedded in H,?
N

It is known that Mg = p-27 ( Lemma Day & Peterson, 1988 ) and for the 8x8 case it
has been confirmed that the possible existing values for the integer p are (Orrick &

Solomon, 201 0)

1,2,..., 18, 20, 24, and 32

If n = 4¢ with integer ¢ > 4 and Mg = p-27 , then we investigate the existence of a
Hadamard matrix of order » — 8 embedded in an Hadamard matrix of order =»
considering the following relation:

n=4t

g - >4 A t—2 2t-4
detH, ¢|=n*> -p-2" < p=2 —
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Is H ¢, embedded in H,?
N

2t—4
The equation p = 2t" (Tj holds for the following pairs of integer values:

(p)=(3,18) and (¢, p)=(4,32)
which correspond to the known cases H, € H,, and H, € H, , respectively.

However,

The above result can be proved by studying the properties of the function p(?),
but a proof based on number theory is also available.
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Is H ¢, embedded in H,?
T

Result 2

For every n = 4t with integer ¢ > 4,

n

detH, | # n? -M,

Therefore, a Hadamard matrix of order n — 8 cannot be embedded in an

Hadamard matrix of order n > 16.

Hn—8 an
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Generalization
N

Results
v’ For every order n = 4t with integer t >2, it holds H, , ¢ H
v’ For every order n = 4t with integer t > 4, it holds H & H

Research problem 2:
Is 1t possible that
H —k & Hn

n

for every order n and integer k, such that n =4¢ and k=4r with r>0 and

t>2r ?
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Is H , embedded in H,?
T

k
Given a positive integer k, it is known that M, <k2 and M, = p2*~.

Therefore, if k= 4r, where r > 0, the maximum value of the integer p, denoted by p

1s given by L

. k\2 )
=2l —| =2r
& (4)

For n=4¢, k =4r for integers r >0 and ¢>r it holds:

n 2(t-r)
Zk —
detH, ,|=n*> -p-2" < p=2¢ (tTrj

A necessary condition for the general embedding problem is the following:
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Is H , embedded in H,?
T

Let 9=;=%=E. Since n >k, then 0<f<1 and 0<1-6<1. Hence,
n
f—7r 2(t=r) Claflsglrllf(lgls
p<p & 22‘”(—} L2 o (1—9)1n(1—6’)—6?1n6?£0
4

Studying the sign of the real function
h(é’) = (1 — H)In(l — 6?) —60Ino

provides very important information about the behavior of p for the various values
of the integers n and £ when n > £.
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Is H , embedded in H,?
&

h(0)

) H, ,¢H, J
0101

(1-0)In(1-6) - 0o

n=2k
0.05- o n=2k & h(0)=0 < p=p
| BT H,eH,, J
T2 0s \os  os e
~0.05-
~0.10-

But for what values of p is true?
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Is H , embedded in H,?

Embeddability of Hadamard matrices H, , for 4 <k <20 and 8 <n <40.

Order k=4 k=38 k=12 k=16 k=20
n= 8 | Hy € Hg

n=12 | Hs ¢ Hia | |H4 € H1o

n=106 |Hys ¢ Hig| |Hs € Hig| | Hy € Hig

n=20 |Hig & Hao| |Hi2 & Hao| | Hs € Hoo| | Hy € Hao

n=24 |Hoy & Hoy| |Hi6 € Hou| |H12 € Hoy| | Hg € Hou| | Hy € Hoy
n =28 |Hoy & Hasg| |Hoo & Hog| |Hie & Has| |Hi2 € Hag| | Hs € Hoag
n =232 |Hyg & Hsy| |Hay & Hap| |Hyo & H3a| |Hig € Hao| | Hio € Hsy
n =236 |Hss & Hss| |Has & Hsg| |Hoa & Hss| |Hao & Hss| | Hi6 € Hse
n=40 | Hzg ?’f Hyo| |H32 ?’f Hyo| |Has ¢ Hyo| |Has ¢ Hyo| | H2o € Hyo
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Is H , embedded in H,?

Embeddability of Hadamard matrices H, , for 4 <k <20 and 8 <n <40.

Order k=4 k=38 k=12 k=16 k=20
n= 8 | Hy € Hg

n=12 | Hs ¢ His || H4 € Hyo

n=106 |Hys ¢ Hig || Hs € Hig Hy€ Hig

n=20 |Hyg¢ Hyo Hiza & Hy ||Hs € Hoyo  Hy € Hyg

n=24 |Hoy ¢ Hyy Hig¢ Hou ||Hio€ Hyy Hge Hoy Hyc€ Hoy
n=28 |Hoy & Haos Hoo & Hos Hig & Hos ||H12 € Hog  Hg € Hoag
n=232 |Hyg & H3y Hoy & Hazp Hyy ¢ Hso ||Hig € Hya Hyp € Ha
n=236 |Hss & Hsg Hos & Hsg Hos & Hss Hao & Hss || His € Hse
n=40 | Hzg ¢ Hyo Hso ¢ Hyo Hos ¢ Hyy Hoy ¢ Hyo || H2o € Hyo
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When 1s H, , embedded in H?
N

Proposition:

The discrete function

n—=k

k —
n\z [n—%k 2 n n=2S8.12.16....
— J— _< 7 b 1
P(n,k) 2(4) ( - ) for 2_k<n and{ k=812,

provides the values for the parameter p which satisfies the equations:

n ﬂ_k
|det Hy—p| =n2 "M or |det H,,_j| = o(n—k)—1 (g) i p
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Conclusions on Hadamard embeddability
I

Theorem : An Hadamard matriz of order n — k cannot be embedded in an
Hadamard matriz of order n for any positive integers n and k multiples of 4
when k < 5. That is

Conjecture : Consider a Hadamard matrix H,,. If Hﬁk) is a k x k submatrix
of Hy,, where n > 8 and k > 4 are integers multiples of 4 such that 5 <k < n,
and | det Hf,.(lk)| = p2k—1 with p = P(n, k), then an Hadamard matrix of order
n — k may exist embedded in the Hadamard matrix of order n, i.e.,

Hy p€Hy, 4<-<k<n

VRIS
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Example l: H8 - H28

n =28, k=20, and p = P(28,20) = 3764768

H,y (2" Paley type)

Argument: If p = 3764768 exists in the
spectrum, meaning that /,4 has a 20 x 20

submatrix with minor:

|det HS2”| = 3764768 - 219 = 1973822685184

then it may H; exist embedded in H .

N. J. A. Sloane. A library of Hadamard matrices. http:/ /neilsloane.com /hadamard /index.html



Example l: H8 - H28

20 .
H §8 ) submatrix of H n =28, k =20, and p = P(28,20) = 3764768
Hgm = |a;;] of Hag where
i €{1,2,3,4,5,6,7.8,9,10,11,12,13,14, 15,16, 17, 19, 23, 27},
- j€{1,2,3,4,5,7,9,11,13,14. 15,16, 17, 19, 20, 22, 23, 24, 26, 27}
|det HS2") | = 3764768 - 219 = 1973822685184

Hy € Hy i €{1,2,3,4,5,6,16,17},
|| A= [at-j—] of Hog where
j €{4,6,9,14,15,19, 21, 26}

23_2{]
9 =
| det A] = 2(28-20)-1. (I’S) - 3764768 = 4096 = | det Hg|
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Example 2: H12 - H28

n =28, k=16, and p = P(28,16) = 71442

H,y (2" Paley type)

Argument: If p = 71442 exists in the
spectrum, meaning that //,; has a 16 < 16

submatrix with minor:

|det HSY | = 71442 - 2'% = 2341011456

then it may H |, exist embedded in H.

N. J. A. Sloane. A library of Hadamard matrices. http:/ /neilsloane.com /hadamard /index.html



Example 2: H12 - H28
a2

16 .
Hgg ) submatrix of H n =28, k=16, and p = P(28,16) = 71442

L Hg(élgﬁ] = |a;;] of Hog where

n

1 €{1,2,3,4,6,8,9,11,15,16,17, 18, 20, 22,23, 25},
7 €{1,2,3,4,6,8,9,11,15,16,17, 18, 20, 22,23, 25}

| det HSLY | = 71442 - 215 = 2341011456

H, e H,

i€{1,2,3,4,8,11,15,16,17, 18, 22, 25},
A = [aij;] of Hag where
j €{1,2,3,4,8,11,15,16, 17, 18,22, 25}

28 n
‘ 9]\ T —16
| det A| = 2(28-16)-1. (IB) . 71442 = 2985984 = | det H1o|
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Is D, embedded in H,?

T
h(6)=(1-6)In(1-0)—0Ino

(@) r 4r k
0.10- t 4 n
n=2k t r 0 Result
0.05-
3 2 0.67 | Ds ¢ Hi2
. I o /j"l_ﬂr 4 3 0.75  |D12 € Hie
02 04 6 5 3 0.60 |[D12 ¢ Hao
o) 5 4 0.80 |D1s € H2o
6 4 0.67 |Dis & Hoa
0,10+
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Is D, embedded in H,?
e

Theorem: = For positive integers n, k multiples of 4 such that 4 < k < n, a
D-optimal design D). of order k cannot exist embedded in a Hadamard matriz of
order n when n < 2k. That is

D, ¢ H,, forn <2k and n,k =0 (mod4)

Conjecture: Consider a Hadamard matrix H,,. If Dy is a k x k D-optimal
design, where n > 8 and k > 4 are integers multiples of 4 such that £ < n, then
Dy may exist embedded in H,, when n > 2k.

Dy e H,, ford<k< g and n, k = 0 (mod4)
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Embedding D-optimal designs of order £ > 4
I I,

Let us consider a D-optimal design D;, of order k£ > 4. If 1t can exist embedded
in an Hadamard matrix of order n > £, then:

n—2k

M, =n 2 dp <

n—2k
L 2n—k—l —n 2 D 2?{:—1 o

Pn—

n—2k

k—2 ~
Pk =2 "n"2 pp

This equation holds if p,,_; € spec{m}. For positive integers n, k such that
4 < k <n, we denote the computed value of p,,_, as p* and form the
following equation:

vn

n—2k
pr= (7) Pk [ Eq. (20) ]
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Is D, embedded in H,?
T

nlk| pr m=n—k| p* |p* €spec{m}| Result

8|5 3 3 1.5 NO Ds ¢ Hg
8|6 5 2 1.25 NO D¢ ¢ Hg
8|7 9 1 1.125 NO D~ ¢ Hg
12| 5 3 7 9 YES Ds € Hia
12| 6 5 6 5 YES De € Hi2
127 9 5) 3 YES D7 € Hyo
12| 8| 32 4 3.5556 NO Dg ¢ Hy»
12|9| 56 3 [2.0741 NO Do ¢ His
12110 144 2 1.7778 NO Do ¢ Hio
12|11 320 1 1.3169 NO Diy ¢ His
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Is D, embedded in H,?
N

nlk| pr m=n—k| p* |p* €spec{m}| Result

16| 5 3 11 192 YES Ds € Hig
16| 6 5 10 80 YES Ds € Hig
16| 7 9 9 36 YES D7 € His
16| 8 32 8 32 YES Dg € Hig
16|9| 56 7 14 NO Dy ¢ His
16[10| 144 6 9 NO Dio ¢ Hie
16[{11| 320 5 5 NO Dy ¢ His
16(12| 1458 4 5.6953 NO D> ¢ His
16{13| 3645 3 3.5596 NO D13 ¢ Hie
16(14| 9477 2 2.3137 NO D14 ¢ Hig
16{15| 25515 1 1.5573 NO D15 ¢ Hie
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Is D, embedded in H,?

nlk| pr m=n—k| p* |p* €spec{m}| Result

2017 9 13 1125 YES D7 € Hag
2018 32 12 800 YES Dy € Hag
2019 56 11 280 YES Dy € Hag
20(10] 144 10 144 YES Dio € Hop
20|11 320 9 64 NO Dy ¢ Ha
20112| 1458 8 58.32 NO D12 ¢ Hoo
20(13| 3645 7 29.16 NO D13 ¢ Hag
20(14| 9477 6 15.163 NO D14 ¢ Hao
20(15] 25515 5] 8.1648 NO D15 ¢ Hag
20({16| 131070 4 8.3886 NO Dis ¢ Hao
20|17| 327680 3 4.1943 NO D17 ¢ Hag
20(18({1114100 2 2.8521 NO Dis ¢ Hag
20({19(3412000 1 1.7469 NO Dig ¢ Hag
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Embedding D-optimal designs

ofordern—1orn+1
o0

An mtriguing direction for further investigation is the potential existence of
Hadamard matrices embedded within higher-order D-optimal designs.

Understanding such embeddings could reveal deeper structural properties and
symmetries in optimal design theory.

Lemma?2. Forn=2,3,...,7, if an n X n maximal-determinant (£1)-matrix
is Dy, then a D,,_1 must be embedded in it, i.e. D,,_q1 € D,,.

A. Edelman and W. Mascarenhas. On the complete pivoting conjecture for a
Hadamard matrix of order 12. Linear Multilinear Algebra, 38(3):181-187, 1995.

J. Williamson. Determinants whose elements are O and 1. Am. Math. Mon.,

56(8):427—434, 1946.

Immediate results: H, € D5, Ds € Dg, Dg € D,
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Embedding D-optimal designs
ofordern—1orn+1
S

Definition 4. If H is a Hadamard matrix of order m, then the sum of all its
entries is called excess of H and is denoted by o(H). The maximal excess of
Hadamard matrices of order m is denoted by o(m).

0'(2):4 , 0'(4)=8 , 0'(8):20
(K. W.Schmidt and E. T. H. Wang, 1977)

0'(12)=36 , 0'(16)=64 , 0'(20)=80 , 0'(24):112 , 0'(28):140
(M.R. Best, 1977)

0'(40) =244 , 0'(44) =280, 0(48) =324, 0'(52) =364, 0(80) =704, 0(84) =756
(N. Farmakis and S. Kounias, 1987)
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Embedding D-optimal designs

ofordern—1orn+1
os2

In 1987, Farmakis and Kounias studied the problem of maximizing the excess
of H, trying to find a ¢ (m) for all Hadamard matrices H of a specific order m.
They focused on finding a Hadamard matrix of order m so that the
determinant of the (m + 1) x (m + 1) matrix R is maximized.

1 —el
=l

Then, the determinant of R was proved to be equal to
det(R) =m2 ~!(m +e' He) [Eq. 23) ]

where e is a row-vector of 1°s of size m and e " He is the excess of H.
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Embedding D-optimal designs

ofordern—1orn+1
I

Proposition 2. A D-optimal design of order n = 9 or 17 has a Hadamard
matriz of order n — 1 embedded in it, i.e.,

Hg € Dg and Hig € Dq7.

Proof. For n =9, we know that
dy = 56 - 27! = 56 - 256 = 14336.
det(R) = 8271(8 4+ o(8)) = 8% - 28 = 512 - 28 = 14336.

Similarly, for n = 17, di7 = 327680 - 216 = 21474836480

det(R) = 162 ~1(16 + o(16)) = 167 - 80 = 21474836480.
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Embedding D-optimal designs
ofordern—1orn+1

n ||Result for n — 1| Proof || n [Result for n — 1| Proof
4 D3 e Hy Lemma 2{| 5 Hy € D5 Lemma 2
6 Ds € Dg Lemma 2| 7 Dg € D7 Lemma 2
8 D7 ¢ Hyg Eq. (20) || 9 Hg € Dy Prop. 2
10 Dg ? D1 N/A |11 D10 ? D11 N/A
12 D11 ¢ Hio Eq. (20) || 13 His ¢ D3 Eq. (23)
14 D137 Dyy N/A |15 D147 Dss N/A
16 Dis ¢ Hie Eq. (20) || 17 H.¢ € D17 Prop. 2
18 Di7 7?7 Dig N/A |19 Dis ? Do N/A
20 D19 ¢ Hoo Eq. (20) || 21 Hoo ¢ Doy Eq. (23)
22 D21 7 Doo N/A |23 Dso 7 Dos N/A
24 Ds3 ¢ Haa Eq. (20) || 25 Hsy ¢ Das Eq. (23)
26 Ds5 7 Dag N/A |27 Dsg 7 Doy N/A
28 Do7 ¢ Hosg Eq. (20) |29 Hsg & Dog Eq. (23)
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Embedding D-optimal designs

ofordern—1orn+1
s |

Research problem:

Construct the D-optimal designs D;y, D11, D14, and D5 and search for
submatrices that may satisfy the following embedding relations:

a) Dg € D1y and D1 € D4 39 =—5f4.42829
10 = '
di; = 320210

b) Dy3 € Dy4 and Dy4 € D;5 dy; = 3645 - 212

d14_ - 94‘77 . 213

If such submatrices exist, determine: d,s = 25515 - 215

* how many arise for each case, d,, = 327680 - 216
* the size of their determinant, dig = 1114212 - 2V7
 the parameter p associated with their determinant. dig = 3411968 - 218
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