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Hadamard matrices

Jacques Salomon Hadamard

1865 – 1963 

Hadamard was interested in finding the

maximal determinant of square matrices with

entries from the unit disc.

He showed (Bull. Sciences Math. 1893) that

this maximal determinant, nn/2, was achieved

by matrices X = [xij]n×n with entries 1 which

satisfied the equality of the inequality:

or   X X T = In

3
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Hadamard matrices

A square matrix with elements 1 and size n, whose 

distinct row vectors are orthogonal is an 

Hadamard matrix of order n.

H1 H2 H4

n = 1         n = 2                          n = 4

Basic properties of Hadamard matrices:

a)    H H T = n In b)   |det H| = nn/2 c)    H H T = H TH  

Jacques Salomon Hadamard

1865 – 1963 

4
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The Hadamard conjecture

Furthermore, Hadamard observed that such

matrices could exist only if n was 1, 2, or a

multiple of 4.

This observation has formed the basis of one of

the greatest unsolved mathematical problems.

The Hadamard Conjecture 

There is a Hadamard matrix of order n for 

any natural number n multiple of 4.
Jacques Salomon Hadamard

1865 – 1963 

5

Despite the efforts of several mathematicians, Hadamard’s observation remains

unproven, even though it is widely believed that it is true.
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Sylvester-Hadamard matrices

James Joseph Sylvester

1814 – 1897 

However, such matrices were first studied by

Sylvester (Phil. Mag. 1867) who observed that if

H is an Hadamard-type matrix, then

is also an Hadamard-type matrix.

The matrices of order 2k constructed using

Sylvester’s construction are usually referred to as

Sylvester-Hadamard matrices.

Lemma (Sylvester 1867)

There is an Hadamard-type matrix of order 2k for all natural numbers k.

6
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Visualization of Sylvester-Hadamard matrices 

H1 H2 H4 H8 H16 H32

=     1

=  – 1

1 1 2,3,...H H H ,n n n− == 

7
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Hadamard’s matrices

Sylvester's construction (1867) yields Hadamard matrices of order 1, 2, 4, 8, 16,

32, etc. Hadamard matrices of orders 12 and 20 were subsequently constructed by

Hadamard in 1893.

8

12 × 12 Hadamard matrix 20 × 20 Hadamard matrix 

White square  =   1

Gray square   =  –1



DR. DIMITRIOS CHRISTOU

Construction of Hadamard matrices

Different construction techniques of Hadamard matrices have been developed

for a wide variety of applications:

❖ Sylvester’s technique (1867)

❖ Paley’s technique (1933)

❖ Williamson’s technique (1944) 

❖ Ahmed & Rao’s technique (1975) 

❖ Henderson’s technique (1978)

❖ Golay’s technique (1982)

❖ Lee & Kaveh’s technique (1986)

…and others
428 × 428 Hadamard matrix

H. Kharaghani and B. Tayfeh-Rezaie, 2005

9
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In 1933, Raymond Paley discovered a construction that

produces a Hadamard matrix of order q + 1 when q is any

prime power that is congruent to (3 mod 4) and that

produces a Hadamard matrix of order 2(q+1) when q is a

prime power that is congruent to (1 mod 4).

His method uses finite fields.

The Hadamard conjecture should probably be attributed

to Paley.

Raymond Paley

1907– 1933 

The smallest order that cannot be constructed by a combination of Sylvester's and

Paley's methods is 92. An Hadamard matrix of this order was found using a

computer by Baumert, Golomb, and Hall in 1962 at JPL. They used a construction,

due to Williamson, that has yielded many additional orders.

Construction of Hadamard matrices
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Construction of Hadamard matrices

Facts for Hadamard matrices:

✓ In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their

construction of an Hadamard matrix of order 428. As a result, the smallest

order for which no Hadamard matrix is presently known is 668.

✓ As of 2008, there are 12 multiples of 4 less than or equal to 2000 for which no

Hadamard matrix of that order is known. They are:

668, 716, 892, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, and 1964.

✓ Every Hadamard matrix of order 𝑛 > 4 contains a submatrix equivalent to:

✓ For any order n, 𝑯𝟒 ∈ 𝑯𝒏 and 𝑯𝒏 ∈ 𝑯𝟐𝒏 .

11
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Applications of Hadamard matrices

❑ Signal processing, Coding and Cryptography

▪ Design of experiments

▪ Object recognition

▪ Coding of digital signals (CDMA telecommunications)

❑ Spectral analysis or signal separation

▪ Mass spectroscopy

▪ Polymer chemistry 

▪ Signal and information processing

▪ Geophysics

▪ Acoustics

▪ Nuclear medicine and nuclear physics

❑ Other novel applications

Digital logic design, pattern recognition, data compression, 

magnetic resonance imaging, neuroscience and quantum computing

12
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Hadamard equivalence and D-optimal designs
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Hadamard equivalence and D-optimal designs

Random (±1)-matrices have determinants of moderate value, that vary

unpredictably. Structured matrices (similar to a Hadamard-like design) have a

significantly higher determinant, indicating better spread and orthogonality

among its rows.
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Hadamard equivalence and D-optimal designs

A D-optimal design of order k multiple of 4 is a Hadamard matrix of the same order, 

i.e., 𝑫𝒌 ≜ 𝑯𝒌 .Therefore, it achieves the maximum determinant value 𝒅𝒌 = 𝒌
𝒌

𝟐.
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Hadamard equivalence and D-optimal designs

A D-optimal design is a design that maximizes the determinant of the information

matrix 𝑋𝑇𝑋, where 𝑋 is the design matrix.

Maximizing the determinant leads to minimizing the generalized variance of the

estimated regression coefficients. Thus, the estimates will be as precise as possible,

given the constraints of the design.
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Lemma (Day & Peterson, 1988)

Let A be an n×n matrix with elements ±1. 

It holds that:

a) detA is an integer and 2n–1 divides detA

b) when n ≤ 6, the only possible values for detA

are the following, and they do all occur:

n detA

1 1

2 0, 2

3 0, 4

4 0, 8, 16

5 0, 16, 32, 48

6 0, 32, 64, 96, 128, 160

17

Minors of (±1)-matrices

If 𝑀𝑚 denotes the absolute value of an 𝑚 × 𝑚 minor of a (±1)-matrix of order 

𝑛 ≥ 𝑚, then 𝑴𝒎 = 𝒑 𝟐𝒎−𝟏, where 𝑝 is either a positive integer, or zero.
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Spectrum of the determinant function

max 𝑝 = Ƹ𝑝 = 2
𝑚

4

𝑚
2

For 𝑚 = 8, max 𝑝 = 2 ⋅ 24 = 32
𝑀8 = 𝐻8 = 32 ⋅ 27 = 4096
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Spectrum of the determinant function

Bounds for the maximum determinant 𝑑𝑛

of all  n × n  (±1)-matrices.

𝑑𝑛 ≥ 𝑝 2𝑛−1

| det 𝐻𝑛| = 𝑛
𝑛
2

(Orrick and Solomon, 2010)

Example:

• 𝑑26 = 2412 ⋅ 50 = 612 ⋅ 25 ⋅ 225

• 𝑑28 = 2814 = 28
28

2
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Proposition (Williamson 1944, Szӧllősi 2010)

Let Mk the absolute value of a k×k minor of the Hadamard matrix Hn of order n,

where Hk,n denotes the k×k submatrix of Hn .

Then, there is a one-to-one correspondence between the minors of size k and n-k

described by the equation:

2

n
k

n k kM n M
−

− =

Minors of Hadamard matrices

The current approach is based on the analysis of the result derived from the next

proposition by simply using calculus techniques.

20

The above result readily applies to D-optimal designs of order n > 1.

,detk k nM H=
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Minors of Hadamard matrices

21
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Embedded Hadamard matrices

Theorem (Cohn, 1965)

If an Hn+m exists and n > m, then no n-rowed minor is an Hn .

Theorem (Brent & Osborn, 2013)

Let Hn be an Hadamard matrix of order n having a Hadamard submatrix M of

order m < n. Then, 𝑚 ≤
𝑛

2
.

22

Example: n = 20 and m = 8, then H20 is not embedded in H28

Example: n = 20 and m = 8, then H8 is embedded in H20
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Problem 1:

Can an Hadamard matrix (D-optimal design) of order n – 4 or n – 8 exist

embedded in an Hadamard matrix of order n, for n = 4t with integer t > 2 ?

8 12 12 16 16 20 4, , , , n nH H H H H H H H−   

Embedded Hadamard matrices and D-optimal designs

Problem motivation
23

Problem 2 (Generalization)

Can an Hadamard matrix (D-optimal design) of order n – k exist embedded in an

Hadamard matrix of order n, for n = 4t and k = 4r with 0 < 2r < t ?

What are the characteristics of such an embedding property?

12 20 16 24 20 28 8, , , , n nH H H H H H H H−   
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Research problem 1:

Can an Hadamard matrix of order n – 4 be embedded in the Hadamard matrix of

order n, for n = 4t with integer t > 2?

24

Why integer t > 2 ?

Because 

✓ for t = 1, n – 8 = 0

✓ for t = 2, n = 8 and  n – 4 = 4.  So, we have               which is true.
4 8H H

Is Hn-4 embedded in Hn?

8 12 12 16 16 20 4, , , , n nH H H H H H H H−   
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Is Hn-4 embedded in Hn?

25

( ) ( )
( )( )

( )

Using
Calculus4

32
4

ln 2 ln
det 2 1 , where

2 1 2 1

n

n

t
H n f t f t f t

t t t

−

−

−
=   − − = =

− − −

For  any integer t > 2 it can be proved that:

( ) ( )

( )( )

1 0

ln 2
0

2 1 2

f t f t

t t

 − − 

 −


− −

❑ Case I : For n = 4t with integer t > 2 and M4 = 8 = 23.

( ) ( )

Using
Calculus4

42
4det 2 1 0

n

nH n f t f t
−

− =   − − =

❑ Case II : For n = 4t with integer t > 2 and M4 = 16 = 24.

Argument

is invalid

Argument

is invalid
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Is Hn-4 embedded in Hn?

26

Result 1

For every n = 4t with integer t > 2,

Therefore, a Hadamard matrix of order n – 4 cannot be embedded in an

Hadamard matrix of order n > 4.

4
2

4 4det
n

nH n M
−

−  

4n nH H− 
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Research problem 1:

Can an Hadamard matrix of order n – 8 be embedded in the Hadamard matrix of

order n, for n = 4t with integer t > 4?

12 20 16 24 20 28 8, , , , n nH H H H H H H H−   

27

Why integer t > 4 ?

Because 

✓ for t = 1 and t = 2, n – 8 ≤ 0

✓ for t = 3, n = 12 and n – 8 = 4.  So, we have                which is true.

✓ for t = 4, n = 16 and n – 8 = 8.  So, we have                which is true.

4 12H H

8 16H H

Is Hn-8 embedded in Hn?
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4
2 4

48
7 42

8

2
det 2 2

n t
tn t

n

t
H n p p t

t

=
−

−

−

− 
=    =  

 

If n = 4t with integer t > 4 and M8 = p·27 , then we investigate the existence of a

Hadamard matrix of order n – 8 embedded in an Hadamard matrix of order n

considering the following relation:

Is Hn-8 embedded in Hn?

28

It is known that M8 = p·27 ( Lemma Day & Peterson, 1988 ) and for the 8×8 case it

has been confirmed that the possible existing values for the integer p are (Orrick &

Solomon, 2010)
1, 2,…, 18, 20, 24, and 32
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There are no integer values for t > 4 and p > 0 satisfying the above equation.

Is Hn-8 embedded in Hn?

29

The above result can be proved by studying the properties of the function p(t),

but a proof based on number theory is also available.

The equation holds for the following pairs of integer values:

( t, p ) = ( 3, 18 )  and ( t, p ) = ( 4, 32 )

which correspond to the known cases and , respectively.

However,

2 4

4 2
2

t
t

p t
t

−
− 

=  
 

4 12H H 8 16H H
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Is Hn-8 embedded in Hn?

30

Result 2

For every n = 4t with integer t > 4,

Therefore, a Hadamard matrix of order n – 8 cannot be embedded in an

Hadamard matrix of order n > 16.

8
2

8 8det
n

nH n M
−

−  

8n nH H− 
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Generalization

31

Results

✓ For every order n = 4t with integer t > 2, it holds

✓ For every order n = 4t with integer t > 4, it holds

Research problem 2:

Is it possible that

for every order n and integer k, such that n = 4t and k = 4r with r > 0 and

t > 2r ?

n k nH H− 

8n nH H− 

4n nH H− 
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Is Hn-k embedded in Hn?

32

Given a positive integer k, it is known that
12 and 2 .

k

k

k kM k M p − =

Therefore, if  k = 4r , where r > 0, the maximum value of the integer p, denoted by 

is given by  

2
2ˆ 2 2

4

k

rk
p r

 
= = 

 

( )2

1 22det 2 2

t rn
k

k r

n k

t r
H n p p t

t

−
−

−

−

− 
=    =  

 

For n = 4t , k = 4r for integers r > 0 and t > r it holds:

A necessary condition for the general embedding problem is the following: 

ˆp p

p̂



DR. DIMITRIOS CHRISTOU

Is Hn-k embedded in Hn?

33

4
Let . Since , then 0 1 and 0 1 1. Hence,

4

r r
n k

t t

k

n
 = = =     − 

( )

( ) ( )

Using
2

Calculus
2 2ˆ 2 2 1 ln 1 ln 0

t r

r rt r
p p t r

t
   

−
− 

    − − −  
 

Studying the sign of the real function

provides very important information about the behavior of p for the various values

of the integers n and k when n > k.

( ) ( ) ( )1 ln 1 lnh     = − − −
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Is Hn-k embedded in Hn?

34

( ) ( ) ( )1 ln 1 lnh     = − − −
( )

( )

( )

2

ˆ2 0

ˆ2 0

But for what values of  is tru

ˆ2

e?

0

nn k

k k

nn k

n k h p p

n k h p p

n k h

p

p p

H H

H H

H H







−

−

•     

• =  =  =

•     






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Is Hn-k embedded in Hn?

35

Embeddability of Hadamard matrices Hn-k for  4 ≤ k ≤ 20  and  8 ≤ n ≤ 40.
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Is Hn-k embedded in Hn?

36

Embeddability of Hadamard matrices Hn-k for  4 ≤ k ≤ 20  and  8 ≤ n ≤ 40.
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The discrete function

provides the values for the parameter p which satisfies the equations:

or

When is Hn-k embedded in Hn?

Proposition:
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Conclusions on Hadamard embeddability
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Example 1:  𝐻8 ∈ 𝐻28

39

H28 (2nd Paley type)

N. J. A. Sloane. A library of Hadamard matrices. http://neilsloane.com/hadamard/index.html

Argument: If p = 3764768 exists in the

spectrum, meaning that H28 has a 20 × 20

submatrix with minor:

then it may H8 exist embedded in H28.

=     1

=  – 1



DR. DIMITRIOS CHRISTOU

40

Example 1:  𝐻8 ∈ 𝐻28

( )20

28 28H submatrix of H

8 28H H
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H28 (2nd Paley type)

N. J. A. Sloane. A library of Hadamard matrices. http://neilsloane.com/hadamard/index.html

Example 2:  𝐻12 ∈ 𝐻28

Argument: If p = 71442 exists in the

spectrum, meaning that H28 has a 16 × 16

submatrix with minor:

then it may H12 exist embedded in H28.

=     1

=  – 1
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( )16

28 28H submatrix of H

12 28H H

Example 2:  𝐻12 ∈ 𝐻28
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Is Dk embedded in Hn?

44

( ) ( ) ( )1 ln 1 lnh     = − − −

( )
4

0,1
4

r r k

t t n
 = = = 
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Conjecture:

Theorem:

Is Dk embedded in Hn?
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Embedding D-optimal designs of order k > 4

46

Let us consider a D-optimal design 𝐷𝑘 of order k > 4. If it can exist embedded 

in an Hadamard matrix of order n > k, then:

This equation holds if 𝑝𝑛−𝑘 ∈ 𝑠𝑝𝑒𝑐{𝑚}. For positive integers n, k such that

4 < 𝑘 < 𝑛, we denote the computed value of 𝑝𝑛−𝑘 as 𝑝∗ and form the

following equation:

[ Eq. (20) ]
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Is Dk embedded in Hn?
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Is Dk embedded in Hn?
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Is Dk embedded in Hn?
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Embedding D-optimal designs 

of order 𝑛 − 1 or 𝑛 + 1
50

An intriguing direction for further investigation is the potential existence of

Hadamard matrices embedded within higher-order D-optimal designs.

Understanding such embeddings could reveal deeper structural properties and

symmetries in optimal design theory.

Lemma 2 . For n = 2, 3, . . . , 7, if an n × n maximal-determinant (±1)-matrix 

is 𝐷𝑛, then a 𝐷𝑛−1 must be embedded in it, i.e. 𝐷𝑛−1 ∈ 𝐷𝑛.

• A. Edelman and W. Mascarenhas. On the complete pivoting conjecture for a 

Hadamard matrix of order 12. Linear Multilinear Algebra, 38(3):181–187, 1995.

• J. Williamson. Determinants whose elements are 0 and 1. Am. Math. Mon., 

56(8):427–434, 1946.

Immediate results: 𝐻4 ∈ 𝐷5 , 𝐷5 ∈ 𝐷6 , 𝐷6 ∈ 𝐷7
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Embedding D-optimal designs 

of order 𝑛 − 1 or 𝑛 + 1

( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 4 , 4 8 , 8 20

12 36 , 16 64 , 20 80 , 24 112 , 28 140

40 244 , 44 280 , 48 324 , 5

. .   . . . , 1977

. . , 1977

.   

2 364 , 80 704 , 8

7

4

. , 19

6

8

75

K W Schmidt and E T H Wang

M R Best

N Farmakis and S Kounias

  

    

     

= = =

= = = = =

= = = = = =
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In 1987, Farmakis and Kounias studied the problem of maximizing the excess

of H, trying to find a σ (m) for all Hadamard matrices H of a specific order m.

They focused on finding a Hadamard matrix of order m so that the

determinant of the (m + 1) × (m + 1) matrix R is maximized.

Then, the determinant of R was proved to be equal to

where 𝑒 is a row-vector of 1’s of size m and 𝑒⊤𝐻𝑒 is the excess of H.

Embedding D-optimal designs 

of order 𝑛 − 1 or 𝑛 + 1

[ Eq. (23) ]
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Embedding D-optimal designs 

of order 𝑛 − 1 or 𝑛 + 1



DR. DIMITRIOS CHRISTOU

54

Embedding D-optimal designs 

of order 𝑛 − 1 or 𝑛 + 1
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Embedding D-optimal designs 

of order 𝑛 − 1 or 𝑛 + 1

Research problem:

Construct the D-optimal designs 𝐷10, 𝐷11, 𝐷14, and 𝐷15 and search for 

submatrices that may satisfy the following embedding relations:

a) 𝐷9 ∈ 𝐷10 and 𝐷10 ∈ 𝐷11

b) 𝐷13 ∈ 𝐷14 and 𝐷14 ∈ 𝐷15

If such submatrices exist, determine: 

• how many arise for each case, 

• the size of their determinant,

• the parameter p associated with their determinant.

𝑑9 = 58 ⋅ 28

𝑑10 = 144 ⋅ 29

𝑑11 = 320 ⋅ 210

𝑑13 = 3645 ⋅ 212

𝑑14 = 9477 ⋅ 213

𝑑15 = 25515 ⋅ 215

𝑑17 = 327680 ⋅ 216

𝑑18 = 1114212 ⋅ 217

𝑑19 = 3411968 ⋅ 218



Thank you

for your attention
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