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1 Introduction

An Hadamard matrix is a type of square (−1, 1)-matrix, whose rows are pairwise orthogo-
nal.Two Hadamard matricesH andK are said to be said Hadamard equivalent or H-equivalent
if there exist (−1, 0, 1)-monomial matrices A,B with K = AHB. Hadamard matrices of order
n have determinant n

n

2 . Whenever a determinant or minor is mentioned in this note, we just
mean its absolute value. Sharpe [1] observed that all the (n − 1) × (n − 1) minors of an
Hadamard matrix of order n are zero or n

n

2
−1, and that all (n− 2)× (n− 2) minors are zero

or 2n
n

2
−2, and that all (n− 3)× (n− 3) minors are zero or 4n

n

2
−3. The authors in [2,3] give

an algorithm for computing (n − j) × (n − j)(j = 1, 2, . . .) minors of Hadamard matrices of
order n. The authors in [3] give the following open problem.

Conjecture 1. The n− 8 minors of Hadamard matrics of order n ≥ 8 can take the possible
values

k · 27 · n(n/2)−8, k = 1, 2, . . . , 32.

Based upon the formulae of all possible values of (n− j)× (n− j) minors of an Hadamard
matrices of order n presented in this note, the above conjecture is true.

2 Main results

We write

Hn =

[

Mk B

C Mn−k

]

for the Hadamard matrix of order n, and Mk is the k order leading principal sub-matrix of
Hn.

Theorem 2. Let Hn =

[

Mk B

C Mn−k

]

be an Hadamard matrix of order n where Mk is the

k order leading principal sub-matrix of Hn. Then

det(Mn−k) = n
n

2
−kdet(Mk)
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for 1 < k < n.

Proof. Consider that
Hn · (n−1Hn) = In.

This implies that

[

Mk B

C Mn−k

]

·

[

n−1MT
k n−1CT

n−1BT n−1MT
n−k

]

=

[

Ik

In−k

]

.

Thus, MkC
T +BMT

n−k = 0. Now consider that

[

Mk B

In−k

]

·

[

n−1MT
k n−1CT

n−1BT n−1MT
n−k

]

=

[

Ik

n−1BT n−1MT
n−k

]

.

By taking determinants, we have

det(Mk)det(n
−1Hn) = det(n−1Mn−k).

Thus,
det(Mn−k) = n

n

2
−kdet(Mk).

det(Mn−k) = n
n

2 det(
1

n
Mk).

The next following result is straightforward from linear algebra.

Lemma 3. Let Ak be an integer (−1, 1)-matrix of order k. Then there exists an integer

(0, 1)-matrix Ak−1 of order k − 1

det(Ak) = 2k−1det(Ak−1).

For a (0, 1)-matrix of order k, the largest possible determinants βk for k = 1, 2, . . .. Eric
W.Weisstein of Wolfram Research, Inc., computed the sequence β1 = 1, β2 = 1, β3 = 2, β4 =
3, β5 = 5, β6 = 9, β7 = 32, β8 = 56, β9 = 144, β10 = 320, β11 = 1458, β12 = 3645, β13 = 9477,
see [4] for more.

The next result follows directly from Lemma 3.

Corollary 4. Let Hn =

[

Mk B

C Mn−k

]

be an Hadamard matrix of order n where Mk is the

k order leading principal sub-matrix of Hn. Then

det(Mn−k) = n
n

2
−kdet(Mk) = n

n

2
−k2k−1det(Mk−1)

where Mk−1 is a (0, 1)-matrix of order k − 1.
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The next result tries to answer Conjecture 1.

Theorem 5. Let Mn−k be an (n − k) × (n − k) minor of an Hadamard matrix of order n
with n > k > 1. If βk be the largest possible determinants of a (0, 1)-matrix of order k, then

det(Mn−k) ∈ {m · 2k−1 · n
n

2
−k |m = 0, 1, 2, . . . , βk−1}.

Proof. It follows directly from Corollary 4 and the definition of βk−1 that

det(Mn−k) = n
n

2
−kdet(Mk) = 2k−1 · n

n

2
−k · det(Mk−1) ≤ 2k−1 · n

n

2
−k · βk−1.

Example 6. Consider β7 = 32. we know that the n − 8 minors of Hadamard matrices of
order n ≫ 8 can take the possible values

m · 27 · n(n/2)−8,m = 0, 1, 2, . . . , 32.

Therefore, Conjecture 1 in [3] is true. The next table presents all possible (n−k)×(n−k)
minors of an Hadamard matrix of order n > 13 for k = 1, 2, · · · , 13.

order Values of minors

n− 8 0, 1 · 27 · n(n/2)−8, 2 · 27 · n(n/2)−8, · · · , 32 · 27 · n(n/2)−8

n− 9 0, 1 · 28 · n(n/2)−9, 2 · 28 · n(n/2)−9, · · · , 56 · 28 · n(n/2)−9

n− 10 0, 1 · 29 · n(n/2)−10, 2 · 29 · n(n/2)−10, · · · , 144 · 29 · n(n/2)−10

n− 11 0, 1 · 210 · n(n/2)−11, 2 · 210 · n(n/2)−11, · · · , 320 · 210 · n(n/2)−11

n− 12 0, 1 · 211 · n(n/2)−12, 2 · 211 · n(n/2)−12, · · · , 1458 · 211 · n(n/2)−12

n− 13 0, 1 · 212 · n(n/2)−13, 2 · 212 · n(n/2)−13, · · · , 9477 · 212 · n(n/2)−13

3 An application

A D-optional design of order n is a (−1, 1)-matrix having maximum determinant. Throughout
this note we write Hn for a Hadmard matrix of order n and Dj for D-optional design of order
j. The notation Dj ∈ Hn means that Dj is embedded in some Hn with j < n. The authors
in [5] show that every Hadamard matrix of order ≥ 4 contains a sub-matrix equivalent to















1 1 1 1

1 − 1 −

1 1 − −

1 − − 1















.

Theorem 7. If
det(Dk)

det(Dn−k)
> n

n

2
−k with k > n

2 , then Dk /∈ Hn.
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Proof. If Dk ∈ Hn, with without loss of generality we suppose that

Hn =

[

An−k B

C Dk

]

,

then
det(Dk) = n

n

2
−kdet(An−k)

by Theorem 2. It implies that

det(Dk) ≤ n
n

2
−kdet(Dn−k).

Thus,
det(Dk)

det(Dn−k)
≤ n

n

2
−k.

Example 8. Consider

det(D5) = 48, det(D3) = 4,

det(D6) = 160, det(D2) = 2

det(D7) = 576, det(D1) = 1.

We have

det(D5)

det(D3)
= 12 > 84−3 = 8,

det(D6)

det(D2)
= 80 > 84−2 = 64,

det(D7)

det(D1)
= 576 > 84−1 = 512.

It follows from Theorem 7 that D5,D6,D7 /∈ H8 which are presented in Lemmas 1,2 and 3
in [6].
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