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The growth factor of a Hadamard matrix of order 16 is 16
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SUMMARY

In 1968 Cryer conjectured that the growth factor of an n×n Hadamard matrix is n. In 1988 Day and
Peterson proved this only for the Hadamard–Sylvester class. In 1995 Edelman and Mascarenhas proved
that the growth factor of a Hadamard matrix of order 12 is 12. In the present paper we demonstrate the
pivot structures of a Hadamard matrix of order 16 and prove for the first time that its growth factor is 16.
The study is divided in two parts: we calculate pivots from the beginning and pivots from the end of
the pivot pattern. For the first part we develop counting techniques based on symbolic manipulation for
specifying the existence or non-existence of specific submatrices inside the first rows of a Hadamard
matrix, and so we can calculate values of principal minors. For the second part we exploit sophisticated
numerical techniques that facilitate the computations of all possible (n− j)×(n− j) minors of Hadamard
matrices for various values of j . The pivot patterns are obtained by utilizing appropriately the fact that the
pivots appearing after the application of Gaussian elimination on a completely pivoted matrix are given
as quotients of principal minors of the matrix. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traditionally, backward error analysis for Gaussian elimination (GE), see e.g. [1, 2], on a matrix
A=(a(1)

i j ) is expressed in terms of the growth factor

g(n, A)= maxi, j,k |a(k)
i j |

maxi, j |a(1)
i j |
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which involves all the elements a(k)
i j ,k=1,2, . . . ,n, that occur during the elimination. Matrices with

the property that no row and column interchanges are needed during GE with complete pivoting
are called completely pivoted (CP) or feasible. In other words, at each step of the elimination the
element of largest magnitude (the ‘pivot’) is located at the top left position of every submatrix, as
it appears during the process. For a CP matrix A we have

g(n, A)= max{p1, p2, . . . , pn}
|a(1)

11 |
where p1, p2, . . . , pn are the pivots of A.

A Hadamard matrix H of order n is a matrix with elements ±1 satisfying the orthogonality
relation

HHT=HTH =nIn

From this definition it clearly follows that way that every two distinct rows or columns of a
Hadamard matrix are orthogonal, i.e. their inner product is zero. It can be proved [3] that if H is a
Hadamard matrix of order n then n=1,2 or n≡0 (mod4). However it is still an open conjecture
whether Hadamard matrices exist for every n being a multiple of 4. For further information on
Hadamard matrices, the reader can consult [4–7].

Two matrices are said to be Hadamard equivalent or H-equivalent if one can be obtained from
the other by a sequence of the operations:

1. interchange any pair of rows and/or columns;
2. multiply any row and/or column through by −1.

In [8] Tornheim proved that g(n,H)�n for a CP n×n Hadamard matrix H . In [9] Cryer
conjectured that ‘g(n, A)�n, with equality iff A is a Hadamard matrix’. Day and Peterson [10]
proved the equality only for the Hadamard–Sylvester class. They provided some experimental
results for pivot patterns of 16×16 Hadamard matrices and conjectured that the fourth pivot from
the end is n/4, which was shown to be false in [11] with an appropriate counterexample. In 1991
Gould discovered a 13×13 matrix for which the growth factor is 13.0205 [12], [2, p. 170]. Thus the
first part of Cryer’s conjecture was shown to be false. The second part of the conjecture concerning
the growth factor of Hadamard matrices still remains open. In [13] Edelman and Mascarenhas
proved that the growth factor of a Hadamard matrix of order 12 is 12 by demonstrating its unique
pivot pattern.

As it is already stated in [13], it appears very difficult to prove that g(16,H16)=16. In this work
we take a small step toward proving the Hadamard part of Cryer’s conjecture by demonstrating all
34 possible pivot patterns for a Hadamard matrix of order 16 (denoted by H16). A major difficulty
arises in the study of this problem because H -equivalence operations do not preserve pivots, i.e.
the pivot pattern is not invariant under H -equivalence, and many pivot patterns can be observed.
So, H -equivalent matrices do not necessarily have the same pivot pattern. Although Hadamard
matrix problems might sound seemingly easy, they are non-trivial, because, for example, for the
case of proving the pivot structures of H16, a naive computer exhaustive search performing all
possible H -equivalence operations would require (16!)2(216)2≈1036 trials. Additionally, the pivot
pattern of each one of these matrices should be computed with application of GE. Furthermore,
the existence of relatively small Hadamard matrices (n=668) is still not known [6].
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It is known [14] that if GE with complete pivoting is applied to Hadamard matrices of order 16,
over 30 different pivot patterns are attained, by contrast with Hadamard matrices of order 12, which
yield only one pivot pattern [13]. Equivalent Hadamard matrices of order 16 can be classified with
respect to the H -equivalence into five classes of equivalence I, . . . ,V, see [7, 15]. Classes IV and V
are one another’s transpose, and so they are identical for GE with complete pivoting, since a matrix
is CP iff its transpose is CP, in which case both give the same pivot pattern, see [10]. Extensive
experiments revealed 34 possible pivot patterns for Hadamard matrices of order 16, though not
all patterns appeared for each equivalence class. The numerical experiments were designed as
follows. 200 000 H -equivalent Hadamard matrices of order 16 have been randomly generated for
each equivalence class, i.e. starting from one representative matrix of each of the five equivalence
classes, random H -equivalent matrices to it were created by performing arbitrary sequences of
H -equivalence operations and finally GE with complete pivoting was applied to them.
The challenge of our work lies in proving theoretically that every possible H16 can have one of

these 34 pivot patterns only, in the sense of H -equivalence, which actually means to show that an
arbitrary matrix H16 being H -equivalent to a representative of the five equivalence classes will
have definitely one of these 34 pivot patterns. Then, since the maximum pivot appearing is 16, we
are able to state that the growth factor for H16 is equal to 16 and the growth conjecture for H16
is now proved.

The paper is organized as follows. In Section 2 we present the algorithm Exist, which is used for
proving the existence or non-existence of some matrices within the first few rows of a Hadamard
matrix. This idea leads to calculating pivots from the beginning of the pivot structure of H16.
In Section 3 we describe the algorithm Minors, which is developed for calculating all possible
(n− j)×(n− j) minors of Hadamard matrices, and furthermore it is useful for finding pivots just
before the last. The ninth pivot is proved separately, and after the pivot patterns are specified, the
growth factor is given. Finally, Section 4 outlines the results of this work and highlights further
possibilities. The appendices at the end aim at offering a better insight and understanding on the
algorithms and ideas used in this work.

Notations. Throughout this paper the elements of a (1,−1) matrix will be denoted by (+,−).
In and Jn stand for the identity matrix of order n and the matrix with ones of order n, respectively,
and if the indices are omitted, the general form of these matrices is meant. We assume, without
loss of generality, that the first entry of a row and a column of a Hadamard matrix is always +1
(normalized form of a Hadamard matrix), because this can be achieved with the H -equivalence
operation of multiplying by −1 and leaves unaffected the basic properties of the initial matrix.
Wherever ‘determinant’ or ‘minor’ is mentioned in this work, we mean its magnitude, i.e. the
absolute value. We write A( j) for the absolute value of the determinant of the j× j principal
submatrix in the upper left corner of a matrix A. An m×n matrix having all its entries equal to x ∈R

will be denoted by xm×n . The notation (�−�)I+�J for describing briefly a matrix of the form⎡
⎢⎢⎢⎢⎢⎣

� � . . . �

� � . . . �

...
. . .

� � . . . �

⎤
⎥⎥⎥⎥⎥⎦

will be frequently used. If it is necessary to specify the order n of such a matrix X =(�−�)I +�J ,
then it will be denoted by Xn×n ≡(�−�)In+�Jn . So, for instance, X2×2=[�

�
�
� ].
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Let yT
�+1

be the vectors containing the binary representation of each integer �+2 j−1 for

�=0, . . . ,2 j−1−1. Replace all zero entries of yT
�+1

by −1 and define the j×1 vectors uk =
y
2 j−1−k+1

, k=1, . . . ,2 j−1. We write Uj for all the matrices with j rows and the appropriate
number of columns, in which uk occurs uk times. In other words, Uj is the matrix containing all
possible 2 j−1 columns of size j with elements ±1 starting with +1. So,

Uj =

u1︷ ︸︸ ︷+·· ·+
u2︷ ︸︸ ︷+·· ·+ · · ·

u2 j−1−1︷ ︸︸ ︷+·· ·+
u2 j−1︷ ︸︸ ︷+·· ·+

+·· ·+ +·· ·+ · · · −· · ·− −·· ·−
. . . . . . .

. . . . . . .

+·· ·+ +·· ·+ · · · −· · ·− −·· ·−
+·· ·+ −·· ·− · · · +· · ·+ −·· ·−

=

u1 u2 . . . u2 j−1−1 u2 j−1

+ + ·· · + +
+ + ·· · − −
...

...
...

...

+ + ·· · − −
+ − ·· · + −

Example 1

U3=

u1 u2 u3 u4

+ + + +
+ + − −
+ − + −

, U4=

u1 u2 u3 u4 u5 u6 u7 u8

+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+ − + − + − + −

The matrix Uj is important in this study because it depicts a general form for the first j rows of
a normalized Hadamard matrix.

Preliminary results. The following lemma, which gives a useful relation between pivots and
minors and a characteristic property for CP matrices, is essential for the ideas developed in this
work.

Lemma 1 (Cryer [9], Grantmacher [16, p.26], Kravvaritis et al. [17])
Let A be a CP matrix.

(i) The magnitude of the pivots appearing after application of GE operations on A is given by

p j = A( j)

A( j−1)
, j =1,2, . . . ,n, A(0)=1 (1)

(ii) The maximum j× j leading principal minor of A, when the first j−1 rows and columns
are fixed, is A( j).

Therefore it is clear that the calculation of minors is important in order to study pivot structures,
and moreover the growth problem for CP Hadamard matrices.

Remark 1
In this work we deal only with CP Hadamard matrices of order 16. Hence, we can exploit (1) for
calculating pivots. However it is important to emphasize that the results are valid for every H16 if
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GE with complete pivoting is applied. Indeed, if a matrix isn’t initially CP, the row and column
operations of GE with complete pivoting bring it always in CP form, hence we can deal, without
loss of generality, only with CP H16 matrices. In other words, it is totally equivalent to apply GE
with complete pivoting to a matrix and to apply GE operations on a CP matrix.

Remark 2
The second part of Lemma 1 assures that the maximum j× j minor appears in the upper left j× j
corner of a CP matrix, when its upper left ( j−1)×( j−1) corner is fixed. So, if the existence of
a matrix with maximal determinant is proved for a CP H16, we can indeed assume that it always
appears in the upper left corner. It is important to stress that the maximum minor of a CP matrix
A of order j appears as A( j), i.e. in the upper left j× j corner of A, only if the first j−1 rows
and columns of A are fixed. This is not necessarily the maximum j× j minor of A, but only the
maximum j× j minor of A when its first j−1 rows and columns are fixed.

We give the following Lemma 2, which specifies the possible number of columns for the first
j rows of a Hadamard matrix. This result is used in 2.1 and 3.1 in order to establish bounds for
the parameters in the solutions of the systems, which represent columns of H16. It is useful for
obtaining constraints on the number of columns of a Hadamard matrix, and moreover for limiting
the calculations in the algorithms. The proof of Lemma 2 is given in Appendix A.1.

Lemma 2
For the first j rows, j�3, of a normalized Hadamard matrix H of order n, n>3, and for all the
2 j−1 possible columns u1, . . . ,u2 j−1 of Uj , we have

0�ui�
n

4
for i=1, . . . ,2 j−1

We provide also some useful formulas for two matrices with special structure.

Lemma 3
Let A=(k−�)Iv +�Jv , where k,� are integers. Then,

det A=[k+(v−1)�](k−�)v−1 (2)

and for k �=�,−(v−1)�, A is non-singular with

A−1= 1

k2+(v−2)k�−(v−1)�2
{[k+(v−1)�]Iv −�Jv} (3)

Equation (2) can be proved straightforwardly by appropriate row operations. Equation (3) is
a special case of the Sherman–Morrison formula [1, p. 239], which computes the inverse of a
rank-one-correction of a non-singular matrix B as

(B−uvT)−1= B−1+ B−1uvTB−1

1−vTB−1u
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where u,v are vectors and vTB−1u �=1. Indeed, (3) occurs for B=(�−�)Iv and u=−�[1 1 . . . 1]T
and v=[1 1 . . . 1]T.
Lemma 4 (Schur determinant formula [18, p. 21])
Let B=

[
B1
B3

B2
B4

]
, B1 non-singular. Then

det B=det B1 ·det(B4−B3B
−1
1 B2) (4)

2. PIVOTS FROM THE BEGINNING

In order to apply formula (1) for evaluating the pivots, we must determine the values of the
principal minors H16( j) of a CP H16. This can be achieved if for various values of j we specify all
possible j× j matrices that can appear as upper left corner of the H16 and then directly compute
the value of their determinant.

2.1. An algorithm specifying the existence of submatrices in Hadamard matrices

The following algorithm specifies whether a set of k×k matrices Ai always exists or not among
all possible columns that can appear in the first k rows of a Hadamard matrix of order n, or
equivalently in its upper left corner (this can be done with column interchanges leading to H -
equivalent matrices). The main idea of the algorithm is to form the linear system that results (i)
from summing all possible columns of length k with elements ±1 starting with +1 (namely, the
total number of columns of the matrix Uk must be equal to the order n) and (ii) from the property
that every two distinct rows of a Hadamard matrix are mutually orthogonal. The system is solved
(the parameters, if there are any, are bounded with the help of Lemma 2) and it is determined
whether the columns, which constitute the matrices under investigation Ai , always appear among
the solutions. If they appear, we state that the matrices Ai always exist within the first k rows of
a Hadamard matrix of order n, otherwise not.

Algorithm Exist

Step 1: Read the k×k matrices Ai
Step 2: Create the matrix Uk

Uk=

u1 u2 . . . u2k−1−1 u2k−1

+ + . . . + +
+ + . . . − −
...

...
...

...

+ + . . . − −
+ − . . . + −

Step 3:
Procedure Solve

Form the system of 1+(
k
2 ) equations and 2k−1 variables, which results from

counting the columns and the orthogonality of every two distinct rows of Uk
Solve the system for all ui , i=1, . . . ,2k−1

For j =1, . . . ,2k−1−1−(
k
2 )

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 16:715–743
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For all the parameters u p j =0, . . . ,n/4
If u1�1 and ui�0, i=2, . . . ,2k−1 and ui integers, i=1, . . . ,2k−1

If all columns of some Ai appear in every solution
(the corresponding ui are all �1)
the matrices Ai can always exist among all possible columns that can appear
in the first k rows of a Hadamard matrix of order n

End If
Else there are no acceptable solutions
End If

End
End

End{of Procedure Solve}
End{of Algorithm}

An implementation of the algorithm can be found in Appendix A.2. It is important to stress
that algorithm Exist is used for three purposes in this work. First, it is used for proving the
existence or non-existence of a set of CP j× j matrices among the first j rows of H16, so that
the H16( j) minors can be computed and relation (1) can be exploited for calculating pivots from
the beginning. Furthermore, algorithm Exist is used for specifying the existence of j× j matrices
among j rows of H16 (independently of the CP property), which will be used as input matrices M
in algorithm Minors, developed later in Section 3, and finally, algorithm Exist is used for rejecting
the occurrence of matrices within H16, which have embedded inside them submatrices with specific
determinants. This idea can be understood better in view of the argument for rejecting quotients
in the proof of Proposition 2.

2.2. The first eight pivots

We aim at deriving the first eight pivots by specifying the possible matrices that always exist in an
H16. The matrices appearing occur as extensions of matrices of smaller orders that are proved to
always exist. The idea with the extensions, which is used repeatedly in the proof of Proposition 1,
is presented for first time in [19] and is described there in detail for skew and symmetric conference
matrices. From all possible extended matrices, only the CP matrices come into question because
it is known that the upper left principal submatrix of a CP matrix is always CP.

Proposition 1
If GE with complete pivoting is performed on an H16 the first eight pivots are

Pivot Values

p1 1
p2 2
p3 2
p4 4
p5 2,3
p6 4, 8

3 ,
10
3

p7 2,4, 8
10/3 ,

16
5 , 18

5

p8 4, 9
2 ,5,6,8
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Proof
It is already proved that the first four pivots of every Hadamard matrix are 1, 2, 2 and 4 [10]. In
Appendix A.2 we see that

A=

⎡
⎢⎢⎢⎢⎣

+ + + +
+ − + −
+ + − −
+ − − +

⎤
⎥⎥⎥⎥⎦

is the only CP matrix, which can always exist among all possible columns that can appear in
the first four rows. A attains the maximum determinant for ±1 matrices of order 4, which is 16.
Hence, from Lemma 1(ii) we have

H16(4)=det A=16

From now on, the following procedure will be adopted throughout the rest of the proof in order
to obtain the probable existing j× j submatrices inside an H16 occurring as extensions from
( j−1)×( j−1) matrices that are already proved to exist always inside H16.

Extension procedure

1. Extension of the ( j−1)×( j−1) existing matrices to all possible normalized ±1 j× j
matrices;

2. From all possible extensions only the CP ones are kept;
3. The CP extensions are separated into classes according to the values of determinants

appearing;
4. The set M j with the matrices that can always exist among the first j rows of H16 is kept. In

order to createM j , we examine the extensions with the maximum determinant. If they always
exist, we denote them as M j ; otherwise, we proceed with the second maximum determinant
value appearing. If the matrices with the two largest determinant values always exist, we
denote them as M j ; otherwise, we proceed with the third maximum value appearing, and
so on.

According to this procedure, we extend the matrix A to all possible 5×5 matrices of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+ + + + +
+ − + − ∗
+ + − − ∗
+ − − + ∗
+ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where the elements ∗ can be ±1. From these 27=128 possible 5×5 matrices, only the 52 CP
matrices with determinants 48 and 32 given in Appendix A.2, denoted by M5, and tested with
algorithm Exist can always exist among all possible columns that can appear in the first five
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rows, and furthermore in the upper left corner of a CP H16. Since the 52 matrices M5 with
determinants 48 and 32 always exist among the rows of H16, from Lemma 1(ii) we derive that

H16(5)=32 or 48

Applying formula (1) yields

p5= H16(5)

H16(4)
= 32

16
or

48

16
=2 or 3

In the next step we extended the 52 matrices M5 to all possible 6×6 matrices of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
∗

B ∗
∗
∗

+ ∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the elements ∗ can be ±1 and B is a matrix from the set M5. For each of the 52 matrices B
we obtain 29=512 possible extensions. Again, by using algorithm Exist with a procedure similar
to Appendix A.2, but for k=6 and with input all the resulting 52×512=26624 matrices this time,
we conclude that only the 836 CP matrices of order 6 of the set M6 can always exist in the upper
left corner of a CP H16, where

M6 = {672 matrices with det=128 obtained from matrices of order 5 with det=32,

124 matrices with det=128 obtained from matrices of order 5 with det=48,

40 matrices with det=160 obtained from matrices of order 5 with det=48}
These results are presented briefly in Table I. So, from Lemma 1(ii) we have

H16(6)=128 or 160

and from (1) we get

p6= H16(6)

H16(5)
= 128

32
or

128

48
or

160

48
=4 or

8

3
or
10

3

Table I. Determinants of the possible existing 6×6
matrices (d6) inside an H16 and of the corresponding

embedded 5×5 submatrices (d5).

d6 d5

128 32
128 48
160 48
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In the same manner we proceed with the calculation of the seventh pivot, which will be obviously
more strenuous from a computational point of view.

We extended the 836 matrices of M6 to all possible 7×7 matrices of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
∗
∗

C ∗
∗
∗

+ ∗ ∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the elements ∗ can be ±1 and C is a matrix from the set M6. For each of the 836 matrices
C we obtain 211=2048 possible extensions. As before, by using algorithm Exist with a procedure
similar to Appendix A.2, but for k=7 and with input all the resulting 836×2048=1712128
matrices this time, we conclude that only the 40 993 CP matrices of order 7 of the set M7 can
exist in the upper left corner of a CP H16, where

M7 = {9140 matrices with det=256 obtained from matrices of order 6 with det=128,

10586 matrices with det=512 obtained from matrices of order 6 with det=128,

7294 matrices with det=384 obtained from matrices of order 6 with det=160,

8916 matrices with det=512 obtained from matrices of order 6 with det=160,

4683 matrices with det=576 obtained from matrices of order 6 with det=160}
The results are summarized in Table II. Hence, Lemma 1(ii) implies

H16(7)=256 or 384 or 512 or 576

and from (1) we get

p7 = H16(7)

H16(6)
= 256

128
or

512

128
or

384

160
or

512

160
or

576

160

= 2 or 4 or
8

10/3
or

16

5
or

18

5

Table II. Determinants of the possible existing 7×7
matrices (d7) inside an H16 and of the corresponding

embedded 6×6 submatrices (d6).

d7 d6

256 128
512 128
384 160
512 160
576 160
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Table III. Determinants of the possible existing 8×8
matrices (d8) inside an H16 and of the corresponding

embedded 7×7 submatrices (d7).

d8 d7

1024 256
1536 256
2048 256
2048 512
2304 512
2560 512
3072 512
4096 512
1536 384
2304 384
3072 384
2304 576

Following the familiar extension procedure, the setM8 is created similarly (consisting of 10 074 231
CP matrices out of 40993×213=335814656 possible extensions of the 7×7 matrices), and the
results are summarized in Table III. We conclude that

H16(8)=1024 or 1536 or 2048 or 2304 or 2560 or 3072 or 4096

As before, by considering the appropriate quotients, we obtain

p8=4 or 9
2 or 5 or 6 or 8

�

Remark 3
We explained previously that the pivot pattern is not an invariant of the equivalence class; in other
words, it is possible that H -equivalent matrices can yield different pivot patterns. If the pivot pattern
was invariant under H -equivalence, then we could work only with one matrix representing H -
equivalent matrices of the same order and determinant and we wouldn’t have to examine all of them.
If we used only one matrix representing H -equivalent matrices of same order and determinant,
the set M5 would have 19 matrices, M6 would have 333 matrices, etc. and the searches needed
would be significantly less, but in this manner we would obtain insufficient results, as we wouldn’t
be able to prove the existence of pivot patterns that already appeared in the experiments. Thus, it
is absolutely necessary to deal with all the matrices given in the proof of Proposition 1.

3. PIVOTS FROM THE END

In this section we give an algorithm for calculating all possible (n− j)×(n− j)minors of Hadamard
matrices of order n for various values of j . The results of the algorithm will be substituted
appropriately in relationship (1) and give the last eight pivots.
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3.1. An algorithm computing (n− j)×(n− j) minors of Hadamard matrices

In general it is difficult to obtain analytical formulas for minors of various orders for a given
arbitrary matrix. For Hadamard matrices such computations are possible due to their specific
properties. The first known effort for calculating minors of Hadamard matrices was accomplished
in [20] for the n−1, n−2 and n−3 minors in a totally different manner than the one presented
here. In [21], a method for evaluating all possible (n− j)×(n− j) minors of Hadamard matrices
was developed theoretically, which could be generalized as an algorithm. In the present paper this
technique was appropriately modified in order to work more effectively and to deal better with the
particular problem. For the sake of better understanding we present the proposed strategy not as a
pseudocode, but in a theoretical descriptive context as follows. Vj stands for all possible columns
of length j with entries ±1, like Uj , but we choose another letter to show that the matrices Uj
and Vj are not necessarily the same.

Algorithm Minors

Step 1. In order to calculate all possible (n− j)×(n− j) minors of a Hadamard matrix H of
order n, we consider it in the form [

M Uj

Vj D

]

All possible matrices M are specified with algorithm Exist. Our intention is to write down for
every possible j× j corner M the values appearing for the determinant of D, which is the required
minor.

Step 2. For every M we solve a system of 1+(
j
2 ) equations with 2 j−1 unknowns the numbers

of columns of Uj , resulting from the order of H and from the orthogonality of its first j rows.

Step 3. If j >3, there exist parameters in the solution. So, we use as upper bound for them the
value n/4 (given by Lemma 1), which gives all possible values for the parameters, and lets them
attain all the values 0, . . . ,n/4.

Step 4. In the following, for all acceptable solutions (i.e. u1�1, ui�0, i=2, . . . ,2 j−1, and ui
integers, i=1, . . . ,2 j−1) we calculate DTD taking into account HTH =nIn and write the result as

DTD≡
[
E1 F1

FT
1 G1

]

where E1=nIu1 − j Ju1 . Owing to the clustering of same columns in Uj , DTD and all the interme-
diate matrices Gk−FT

k E−1
k Fk , k=1, . . . ,2 j−1−1 will appear in block form with diagonal blocks

of known orders ui ×ui , i=k+1, . . . ,2 j−1, and due to the orthogonality of H , all blocks will be
of the form (a−b)I +bJ , for various a,b. If some ui =0, the respective matrices vanish, see also
Appendix A.3, case j =5. We compute initially

G1−FT
1 E−1

1 F1≡
[
E2 F2

FT
2 G2

]

where E2 is of order u2×u2. Then, according to (4), detDTD=detE1 ·det(G1−FT
1 E−1

1 F1)=
detE1 ·detE2 ·det(G2−FT

2 E−1
2 F2). From (2) we calculate detE1 and detE2 and we proceed with
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calculating G2−FT
2 E−1

2 F2 with the help of (3). So we aim at deriving detDTD by consecutive
applications of formula (4), with the help of (2) and (3).

Step 5. For k=2, . . . ,2 j−1−1 we compute the sequence of matrices

Gk−FT
k E−1

k Fk ≡
[
Ek+1 Fk+1

FT
k+1 Gk+1

]

where each Ek is of order uk×uk . The determinants of Ek are stored. The last matrix of the
sequence

G2 j−1−1−FT
2 j−1−1E

−1
2 j−1−1

F2 j−1−1=E2 j−1

consists of one block of dimension u2 j−1 ×u2 j−1 and its determinant is evaluated directly with (2).

Step 6. The required absolute value of the determinant is computed from the formulas

detDTD :=
2 j−1∏
i=1

det Ei , |detD|=
√
detDTD

Remarks on the algorithm. In order to standardize a technique for calculating all possible
(n− j)×(n− j) minors of the H16, j =1, . . . ,7, and to facilitate the computations we assume,
without loss of generality, a pattern for the first j rows, in which the same columns are clustered
in Uj . This assumption is done indeed without loss of generality because, if the first j rows
don’t appear in the suggested form, we can make this form appear by interchanging appropriately
columns and by multiplying columns by −1. Then, for every possible upper left j× j corner, we
calculate the determinant of the lower right (n− j)×(n− j) submatrix. The fact that we examine
all possible upper left j× j corners guarantees that with this technique we calculate every possible
(n− j)×(n− j) minors of H16 and that we do not miss out any values that appear.

Theoretically, the proposed algorithm can work for every value of n and j . Algorithm Minors is
implemented symbolically and this guarantees its precision. We note that the algorithm occurred as
an effort to standardize the algebraic calculations done initially by hand (with the help of (2), (4) and
(3)) for computing (n− j)×(n− j)minors of Hadamard matrices, as it was easy to observe that they
follow a predictable, standard procedure, which seemed challenging to develop from an algorithmic
point of view. The algorithm is designed in such a way that the special structure and properties
of every matrix appearing are taken into account. So, all necessary matrix multiplications and
inversions and determinant evaluations are not performed explicitly but in an efficient manner and
the total computational cost remains at relatively low levels. More information on the algorithm’s
theoretical background, implementation on the computer and complexity properties is available
from the authors on request. Appendix A.3 is intended to throw more light on all the aspects
discussed of the algorithm Minors.

For the needs of this study, we applied algorithm Minors for n=16 and for j =1, . . . ,7. The
results obtained from the numerical experiments performed with algorithm Minors are subject to
the formulas presented in Table IV.

3.2. The last eight pivots

The last seven pivots of the H16 will be calculated with careful combination of the results of
algorithm Minors and Equation (1), after the non-appearing quotients have been rejected with the
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Table IV. Values of minors of orders n−1, . . . ,n−7 for Hadamard matrices of order n=16.

Order Values of minors

n−1 nn/2−1

n−2 0, 2nn/2−2

n−3 0, 4nn/2−3

n−4 0, 8nn/2−4, 16nn/2−4

n−5 0, 16nn/2−5, 32nn/2−5, 48nn/2−5

n−6 0, 32nn/2−6, 64nn/2−6, 96nn/2−6, 128nn/2−6, 160nn/2−6

n−7 0, 64nn/2−7, 128nn/2−7, 192nn/2−7, 256nn/2−7, 320nn/2−7

384nn/2−7, 448nn/2−7, 512nn/2−7, 576nn/2−7

help of the algorithm Exist. The ninth pivot will be computed separately by the property that the
product of the pivots is equal to the determinant of the initial matrix.

Proposition 2
If GE with complete pivoting is performed on an H16, the last seven pivots are

Pivot Values

p10 4, 16
8/5 ,5,8

p11 4, 16
10/3 ,6,8

p12 8, 16
3

p13 4, 8
p14 8
p15 8
p16 16

Proof
It is known [22] that when GE is applied on a CP Hadamard matrix of order n, the last four
pivots in backward order are n, n/2, n/2, n/4 or n/2. Particularly, for n=16 we have the values
p16=16, p15=8, p14=8 and p13=4 or 8.
With application of the algorithm Minors, we succeeded in computing the (16− j)×(16− j)

minors, j=4, . . . ,7, of the H16, which are already presented in Table IV. If we substitute these
results appropriately in formula (1), we obtain the values of the pivots p12, p11 and p10. Thus,
we have

p12= H16(12)

H16(11)
= 16 ·164

32 ·163 or
16 ·164
48 ·163 or

8 ·164
16 ·163 or

16 ·164
16 ·163 or

8 ·164
32 ·163 or

8 ·164
48 ·163

The three last quotients will be excluded using the following argument. First, we observe that,
for instance, for the fifth quotient, the value of the n−4 minor 8 ·164 appears if we use a 4×4
matrix M with determinant 8 in the algorithm Minors and the value 32 ·163 for the n−5 minor
appears if we use a 5×5 M with determinant 32. With this logic we create the set M′

5 of 5×5
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matrices, where we note

M′
5 = {1777 matrices with det=16 obtained from matrices of order 4 with det=16,

256 matrices with det=32 obtained from matrices of order 4 with det=8,

16 matrices with det=48 obtained from matrices of order 4 with det=8}
We find with the algorithm Exist that the matrices of M′

5 do not always exist in an H16 and we
can reject the quotients (16 ·164)/(16 ·163), (8 ·164)/(32 ·163) and (8 ·164)/(48 ·163). So,

p12=8 or 16
3

After rejecting the non-feasible quotients for p11 with the use of the same argument, we have

p11= H16(11)

H16(10)
= 16 ·163

64 ·162 or
32 ·163
128 ·162 or

48 ·163
128 ·162 or

48 ·163
160 ·162 =4 or 6 or

16

10/3

According to the above-described argument for excluding quotients for p12 and p11, we obtain

p10 = H16(10)

H16(9)
= 64 ·162

128 ·16 or
64 ·162
256 ·16 or

128 ·162
256 ·16 or

128 ·162
512 ·16 or

160 ·162
512 ·16 or

160 ·162
576 ·16

= 4 or
16

18/5
or 5 or 8

So, we have proved all the values appearing of the pivots of the H16, except for the ninth pivot.
It remains to calculate this value and to show how the concrete pivot patterns of the H16 are
obtained. For this purpose, we need to observe the origin of each of the minor values that appear.

Proposition 3
If GE with complete pivoting is performed on an H16, the ninth pivot can have the values 2, 8

3 ,
16
5 , 4,

9
2 or 16

3 .

Proof
We show how one value is obtained, since the rest can be handled similarly. For this purpose we
need to derive first a particular pivot structure. The first four pivots are always 1, 2, 2 and 4. For
the fifth pivot there were proved two values, 2 and 3. We consider one of them as the fifth pivot for
this example, e.g. p5=2. In this case, it can be stated that the 5×5 matrix, which gave this value,
has determinant equal to 32, as it can be seen in the procedure for calculating p5 in the proof of
Proposition 1. In a similar manner we observe that the corresponding 6×6 minor will be 128 and
the resulting value for the sixth pivot is p6=4. Similarly, the corresponding 7×7 determinant will
attain two values in this case, 256 and 512. For this example, we carry out the demonstration by
choosing the value 512, for which the resulting seventh pivot is p7=4. The corresponding 8×8
determinant will attain five values in this case, 2048, 2304, 2560, 3072 and 4096. We carry out
the demonstration for the value 4096 and the resulting pivot value is p8=8.

Next we will demonstrate the seven last pivots for these specific eight first pivots, and eventually
the ninth pivot. The three last pivots can only be 16, 8 and 8. The fourth pivot from the end can
be 4 or 8. These values are obtained with H16(12)=16 ·164 or 8 ·164, respectively. We continue
this example by choosing the value p13=4. As it can be seen from the computations for p12 in
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Proposition 2, we might have as fifth pivot from the end the values 8 and 16
3 . For this example we

choose to go on with p12=8. Similarly, we can have as sixth and seventh pivots from the end the
values 4 and 4, respectively. The ninth pivot will be calculated as follows:

detH16=
16∏
i=1

pi ⇒ p9= detH16∏16
i=1,i �=9 pi

= 168

1 ·2 ·2 ·4 ·2 ·4 ·4 ·8 ·4 ·4 ·8 ·4 ·8 ·8 ·16 =2

So, we have demonstrated the tenth possible pivot pattern given in Appendix A.4. Similarly we
can derive the rest of the values of the Proposition and furthermore the 34 different pivot patterns
of Appendix A.4. �

Remark 4
It becomes clear that in order to calculate the ninth pivot with the determinant property, one has
to derive a complete pivot sequence of H16. So, as a collateral result of the proof of Proposition 3
we have the exact pivot structures of the H16, which are given in Appendix A.4.

Theorem 1
If GE with complete pivoting is performed on an H16, the growth factor of H16 is 16.

Proof
The result follows easily from Propositions 1–3 and from the definition of the growth factor for
CP matrices given in the introduction. �

The results of this work can be also summarized in Table V, where the last eight pivots are
given as functions of n.

Table V. The appearing pivots for Hadamard matrices of order n=16.

Pivot Values

p1 1
p2 2
p3 2
p4 4
p5 2,3
p6 4, 83 ,

10
3

p7 2,4, 8
10/3 ,

16
5 , 185

p8 4, 92 ,5,6,8

pn−7
n
8 ,

n
6 ,

n
5 ,

n
4 ,

n
32/9 ,

n
3

pn−6
n
4 ,

n
8/5 ,

n
16/5 ,

n
2

pn−5
n
4 ,

n
8/3 ,

n
2 ,

n
10/3

pn−4
n
3 ,

n
2

pn−3
n
4 ,

n
2

pn−2
n
2

pn−1
n
2

pn n
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4. CONCLUSIONS AND FURTHER WORK

With the use of sophisticated numerical techniques we demonstrated the pivot patterns of H16,
which until now were observed only experimentally. In this manner we proved that the growth
factor of any H16 is equal to 16, and thus an open problem is solved. For this purpose, we split the
work into two tasks: specification of the existence of k×k matrices inside H16, which led to the
computation of pivots from the beginning of the pivot pattern, and calculation of (n− j)×(n− j)
minors, which led to the computation of pivots from the end.

The methods presented in this work can be used as the basis for calculating the pivot pattern of
Hadamard matrices of higher orders, such as H20, H24, etc. The complexity of such problems points
out the need for developing algorithms that can implement very effectively the ideas introduced in
this work, or other, more elaborate ideas. For instance, a question toward this direction is: Is there
a reliable criterion for reducing the total amount of matrices M used as input for the algorithm
Minors, so that no values, which should appear, are skipped? The reduction of the number of
matrices occurring with the extension procedure in the proof of Proposition 1 is a matter of
concern, too. Another observation, which could lead to a computational improvement, is the fact
that all acceptable solutions of the linear systems of algorithm Exist, k�5, are always obtained for
the parameter values 0, . . . ,n/8, as in Appendix A.2, case k=5. Hence, there arises the obvious
question whether there is a more precise upper bound for the possible columns in the first rows
of a Hadamard matrix than the one given in Lemma 2.

Furthermore, it would be interesting to classify theoretically the pivot patterns of the H16 with
respect to the five equivalence classes, as it is discussed in Appendix A.4, and also to explain the
occurrence of the value 8 as fourth pivot from the end only for matrices from the Hadamard–
Sylvester class. Finally, the parallel implementation of the two independent tasks for calculating
pivots simultaneously from the beginning and from the end, which would limit significantly the
computational time needed by the algorithms, is under investigation, too.

APPENDIX A

A.1. Proof of Lemma 2

Proof
If we consider separately the first three rows from the first j rows of the enunciation, we observe
for the 2 j−1 possible columns ui , i=1, . . . ,2 j−1, that

u1(1 :3) = ·· ·=u 1
4 2

j−1(1 :3)=(+,+,+)T

u 1
4 2

j−1+1(1 :3) = ·· ·=u 2
4 2

j−1(1 :3)=(+,+,−)T

u 2
4 2

j−1+1(1 :3) = ·· ·=u 3
4 2

j−1(1 :3)=(+,−,+)T

u 3
4 2

j−1+1(1 :3) = ·· ·=u2 j−1(1 :3)=(+,−,−)T

where ui (1 :3) denotes the first three entries (as in Matlab notation) of the column ui of Uj . This
observation accrues easily from a combinatorial counting and can be verified with the matrices
U3, U4 and U5 given in this paper.
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It is known [21, Lemma 1] that for every triple of rows of any Hadamard matrix of order
n>3, there are precisely (under H -equivalence) n/4 columns, which are (+,+,+)T, (+,+,−)T,
(+,−,+)T and (+,−,−)T.

Hence, we obtain

u1+·· ·+u(1/4)2 j−1 = n

4

u(1/4)2 j−1+1+·· ·+u(2/4)2 j−1 = n

4

u(2/4)2 j−1+1+·· ·+u(3/4)2 j−1 = n

4

u(3/4)2 j−1+1+·· ·+u2 j−1 = n

4
The result follows straightforwardly from these relations by taking into account that ui�0, since
ui denote number of columns. �

A.2. Implementation of algorithm Exist

We would like to note that algorithm Exist is mainly designed for working with a set of matrices
with a special property as input and is executed in order to decide whether all the matrices treated
as a set can exist inside a Hadamard matrix or not. We developed this idea with the set of matrices
because, with the exception of the matrix A in the following application for k=4, it is never
possible that a matrix exists among all solutions for all feasible values of parameters. On the
contrary, it seems more sensible to apply this idea for a group of matrices with some property. For
instance, the matrices M5 of the application for k=5 are extensions of the 4×4 matrix A to CP
5×5 matrices with absolute determinant 32 or 48. For the purpose of this work it is not reasonable
to examine the existence properties of each one of them, but to handle them as a set and to ensure
the existence of one such matrix always inside H16. This idea is further justified by the technique
used in the proof of Proposition 1. So, in order to prove that a set of matrices always exists, wemust
showthat at leastoneof thematricesof the set appears ineveryacceptable solutionof the linear system.

We demonstrate the application of algorithm Exist for k=4,5 and n=16.
k=4:
Step 1: We want to establish whether the matrix

A=

⎡
⎢⎢⎢⎣

+ + + +
+ − + −
+ + − −
+ − − +

⎤
⎥⎥⎥⎦=[u1 u6 u4 u7]

always exists in the upper left 4×4 corner of a Hadamard matrix of order 16.
Step 2:

U4=

u1 u2 u3 u4 u5 u6 u7 u8
+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+ − + − + − + −
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Step 3: The system of seven equations and eight variables, which results from counting of columns
and the orthogonality of every two distinct rows of U4, is

u1+u2+u3+u4+u5+u6+u7+u8 = n

u1+u2+u3+u4−u5−u6−u7−u8 = 0

u1+u2−u3−u4+u5+u6−u7−u8 = 0

u1+u2−u3−u4−u5−u6+u7+u8 = 0

u1−u2+u3−u4+u5−u6+u7−u8 = 0

u1−u2+u3−u4−u5+u6−u7+u8 = 0

u1−u2−u3+u4+u5−u6−u7+u8 = 0

The solution is

u1 = 4−u8

u2 = u8

u3 = u8

u4 = 4−u8

u5 = u8

u6 = 4−u8

u7 = 4−u8

u8 = u8

According to Lemma 2, u8 is allowed to take the values 0, 1, 2, 3, 4.

For u8=0 we have (u1,u2,u3,u4,u5,u6,u7,u8)=(4,0,0,4,0,4,4,0).
For u8=1 we have (u1,u2,u3,u4,u5,u6,u7,u8)=(3,1,1,3,1,3,3,1).
For u8=2 we have (u1,u2,u3,u4,u5,u6,u7,u8)=(2,2,2,2,2,2,2,2).
For u8=3 we have (u1,u2,u3,u4,u5,u6,u7,u8)=(1,3,3,1,3,1,1,3).
For u8=4 we have (u1,u2,u3,u4,u5,u6,u7,u8)=(0,4,4,0,4,0,0,4).

The solution for u8=4 is not accepted because we assume without loss of generality that the
matrix is normalized, so that we always have u1�1. In the remainder of the solutions we always
see that u1,u4,u6,u7�1; hence, we can conclude that A always exists in the upper left corner of
a Hadamard matrix of order 16. Precisely, it is the only CP 4×4 matrix that can exist there.
k=5:
The matrices of this example occurred as extensions of the 4×4 matrix A to 5×5 ±1 matrices;
they are CP and have determinants 32 and 48; according to the idea described in more detail in
Section 2.2 in the proof of Proposition 1.
Step 1: We want to establish whether the matrices

M5 = {[u1 u15 u8 u14 u13], [u1 u15 u8 u12 u13], [u1 u15 u8 u14 u12], [u1 u15 u8 u12 u14],
[u1 u15 u7 u14 u13], [u1 u15 u7 u14 u12], [u1 u15 u7 u12 u14], [u1 u15 u8 u14 u11],
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[u1 u15 u8 u12 u11], [u1 u15 u8 u12 u10], [u1 u15 u7 u14 u11], [u1 u15 u7 u12 u11],
[u1 u15 u7 u14 u9], [u1 u11 u8 u14 u13], [u1 u11 u8 u14 u12], [u1 u11 u8 u12 u14],
[u1 u11 u7 u12 u16], [u1 u11 u7 u14 u12], [u1 u11 u7 u12 u14], [u1 u11 u8 u14 u15],
[u1 u11 u8 u12 u15], [u1 u11 u8 u14 u10], [u1 u11 u8 u12 u10], [u1 u11 u7 u14 u15],
[u1 u11 u7 u12 u15], [u1 u11 u7 u12 u10], [u1 u15 u8 u14 u7], [u1 u15 u8 u12 u7],
[u1 u15 u8 u12 u6], [u1 u15 u7 u14 u8], [u1 u15 u7 u12 u8], [u1 u15 u7 u14 u6],
[u1 u15 u7 u12 u6], [u1 u15 u8 u12 u3], [u1 u15 u8 u14 u2], [u1 u15 u8 u12 u2],
[u1 u15 u7 u14 u4], [u1 u15 u7 u14 u2], [u1 u15 u7 u12 u2], [u1 u11 u8 u14 u7],
[u1 u11 u8 u12 u7], [u1 u11 u8 u14 u5], [u1 u11 u7 u14 u8], [u1 u11 u7 u12 u8],
[u1 u11 u7 u12 u6], [u1 u11 u8 u14 u4], [u1 u11 u8 u14 u2], [u1 u11 u8 u12 u2],
[u1 u11 u7 u14 u4], [u1 u11 u7 u12 u4], [u1 u11 u7 u14 u2], [u1 u11 u7 u12 u2]}

always exist in the upper left 5×5 corner of a Hadamard matrix of order 16, where the vector ui
denotes the i th column of U5 in this example.
Step 2

U5=

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16

+ + + + + + + + + + + + + + + +
+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + − − − + −
+ + − − + + − − + + − + − + − −
+ − + − + − + − + − + + + − − −

Step 3
The system of 11 equations and 16 variables, which results from counting of columns and the
orthogonality of every two distinct rows, is

u1+u2+u3+u4+u5+u6+u7+u8+u9+u10+u11+u12+u13+u14+u15+u16 = 16

u1+u2+u3+u4+u5+u6+u7+u8−u9−u10−u11−u12−u13−u14−u15−u16 = 0

u1+u2+u3+u4−u5−u6−u7−u8+u9+u10+u11−u12−u13−u14+u15−u16 = 0

u1+u2−u3−u4+u5+u6−u7−u8+u9+u10−u11+u12−u13+u14−u15−u16 = 0

u1−u2+u3−u4+u5−u6+u7−u8+u9−u10+u11+u12+u13−u14−u15−u16 = 0

u1+u2+u3+u4−u5−u6−u7−u8−u9−u10−u11+u12+u13+u14−u15+u16 = 0
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u1+u2−u3−u4+u5+u6−u7−u8−u9−u10+u11−u12+u13−u14+u15+u16 = 0

u1−u2+u3−u4+u5−u6+u7−u8−u9+u10−u11−u12−u13+u14+u15+u16 = 0

u1+u2−u3−u4−u5−u6+u7+u8+u9+u10−u11−u12+u13−u14−u15+u16 = 0

u1−u2+u3−u4−u5+u6−u7+u8+u9−u10+u11−u12−u13+u14−u15+u16 = 0

u1−u2−u3+u4+u5−u6−u7+u8+u9−u10−u11+u12−u13−u14+u15+u16 = 0

The solution is

u1 = 8−u8−u12−u14−u15−3u16

u2 = u8−4+2u16+u14+u12

u3 = u8+u12−4+2u16+u15

u4 = −u8−u12+4−u16

u5 = u8−4+2u16+u14+u15

u6 = −u8+4−u16−u14

u7 = −u8+4−u16−u15

u8 = u8

u9 = u12−4+2u16+u15+u14

u10 = −u12+4−u16−u14

u11 = −u12+4−u16−u15

u12 = u12

u13 = 4−u16−u14−u15

u14 = u14

u15 = u15

u16 = u16

The parameters can have the values 0, . . . ,4. For all acceptable solutions we give

(u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,u13,u14,u15,u16)

and the respective values for the parameters of the solution.

(2,0,0,2,0,2,2,0,0,2,2,0,2,0,0,2), u8 = 0, u12=0, u14=0, u15=0, u16=2

(1,0,1,2,1,2,1,0,1,2,1,0,1,0,1,2), u8 = 0, u12=0, u14=0, u15=1, u16=2

(1,1,0,2,1,1,2,0,1,1,2,0,1,1,0,2), u8 = 0, u12=0, u14=1, u15=0, u16=2

(1,1,1,1,0,2,2,0,1,1,1,1,2,0,0,2), u8 = 0, u12=1, u14=0, u15=0, u16=2
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(2,0,0,2,0,2,2,0,1,1,1,1,1,1,1,1), u8 = 0, u12=1, u14=1, u15=1, u16=1

(1,0,1,2,1,2,1,0,2,1,0,1,0,1,2,1), u8 = 0, u12=1, u14=1, u15=2, u16=1

(1,1,0,2,1,1,2,0,2,0,1,1,0,2,1,1), u8 = 0, u12=1, u14=2, u15=1, u16=1

(1,1,1,1,0,2,2,0,2,0,0,2,1,1,1,1), u8 = 0, u12=2, u14=1, u15=1, u16=1

(2,0,0,2,0,2,2,0,2,0,0,2,0,2,2,0), u8 = 0, u12=2, u14=2, u15=2, u16=0

(1,1,1,1,1,1,1,1,0,2,2,0,2,0,0,2), u8 = 1, u12=0, u14=0, u15=0, u16=2

(2,0,0,2,1,1,1,1,0,2,2,0,1,1,1,1), u8 = 1, u12=0, u14=1, u15=1, u16=1

(1,0,1,2,2,1,0,1,1,2,1,0,0,1,2,1), u8 = 1, u12=0, u14=1, u15=2, u16=1

(1,1,0,2,2,0,1,1,1,1,2,0,0,2,1,1), u8 = 1, u12=0, u14=2, u15=1, u16=1

(2,0,1,1,0,2,1,1,0,2,1,1,2,0,1,1), u8 = 1, u12=1, u14=0, u15=1, u16=1

(1,0,2,1,1,2,0,1,1,2,0,1,1,0,2,1), u8 = 1, u12=1, u14=0, u15=2, u16=1

(2,1,0,1,0,1,2,1,0,1,2,1,2,1,0,1), u8 = 1, u12=1, u14=1, u15=0, u16=1

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), u8 = 1, u12=1, u14=1, u15=1, u16=1

(1,2,0,1,1,0,2,1,1,0,2,1,1,2,0,1), u8 = 1, u12=1, u14=2, u15=0, u16=1

(2,0,0,2,1,1,1,1,1,1,1,1,0,2,2,0), u8 = 1, u12=1, u14=2, u15=2, u16=0

(1,1,2,0,0,2,1,1,1,1,0,2,2,0,1,1), u8 = 1, u12=2, u14=0, u15=1, u16=1

(1,2,1,0,0,1,2,1,1,0,1,2,2,1,0,1), u8 = 1, u12=2, u14=1, u15=0, u16=1

(2,0,1,1,0,2,1,1,1,1,0,2,1,1,2,0), u8 = 1, u12=2, u14=1, u15=2, u16=0

(2,1,0,1,0,1,2,1,1,0,1,2,1,2,1,0), u8 = 1, u12=2, u14=2, u15=1, u16=0

(1,1,1,1,1,1,1,1,2,0,0,2,0,2,2,0), u8 = 1, u12=2, u14=2, u15=2, u16=0

(1,1,1,1,2,0,0,2,0,2,2,0,1,1,1,1), u8 = 2, u12=0, u14=1, u15=1, u16=1

(2,0,0,2,2,0,0,2,0,2,2,0,0,2,2,0), u8 = 2, u12=0, u14=2, u15=2, u16=0

(1,1,2,0,1,1,0,2,0,2,1,1,2,0,1,1), u8 = 2, u12=1, u14=0, u15=1, u16=1

(1,2,1,0,1,0,1,2,0,1,2,1,2,1,0,1), u8 = 2, u12=1, u14=1, u15=0, u16=1

(2,0,1,1,1,1,0,2,0,2,1,1,1,1,2,0), u8 = 2, u12=1, u14=1, u15=2, u16=0

(2,1,0,1,1,0,1,2,0,1,2,1,1,2,1,0), u8 = 2, u12=1, u14=2, u15=1, u16=0

(1,1,1,1,2,0,0,2,1,1,1,1,0,2,2,0), u8 = 2, u12=1, u14=2, u15=2, u16=0

(2,0,2,0,0,2,0,2,0,2,0,2,2,0,2,0), u8 = 2, u12=2, u14=0, u15=2, u16=0

(2,1,1,0,0,1,1,2,0,1,1,2,2,1,1,0), u8 = 2, u12=2, u14=1, u15=1, u16=0

(1,1,2,0,1,1,0,2,1,1,0,2,1,1,2,0), u8 = 2, u12=2, u14=1, u15=2, u16=0

(2,2,0,0,0,0,2,2,0,0,2,2,2,2,0,0), u8 = 2, u12=2, u14=2, u15=0, u16=0

(1,2,1,0,1,0,1,2,1,0,1,2,1,2,1,0), u8 = 2, u12=2, u14=2, u15=1, u16=0
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In each of the solutions that arise we see that the columns of at least one of the required matrices
of the set M5 are �1; hence, we can conclude that these matrices can always exist in the upper
left corner of a Hadamard matrix of order 16.

A.3. Implementation of algorithm Minors

We present an application of algorithm Minors for j =3,5 and n=16.
j=3:
We suppose initially that the following matrix (or an H -equivalent to it) appears in the upper left
3×3 corner of an H16, which can be easily proved with algorithm Exist:

M=
⎡
⎢⎣

+ + +
+ − −
+ + −

⎤
⎥⎦

The system of four equations and four unknowns, which results from counting of columns and the
orthogonality of every two distinct rows of the matrix [MU3], is

u+v+x+ y = n−3

u+v−x− y = 1

u−v+x− y = −1

u−v−x+ y = −1

The solution is

u = x= y= n

4
−1

v = n

4
By denoting with D the remaining matrix after deleting the first three rows and columns of the

initial Hadamard matrix, we have

DTD≡
[
E1u×u F1

FT
1 G1

]

where

E1=nI −3J, F1=[−1u×v −1u×x 1u×y] and G1=

⎡
⎢⎢⎣

E1v×v 1v×x −1v×y

1x×v E1x×x −1x×y

−1y×v −1y×x E1y×y

⎤
⎥⎥⎦

From now on we give the successive intermediate results provided by the algorithm. We have
detE1u×u = 1

4 ·(n+12)n(n−8)/4 and the calculations described previously in Section 3.1 give

G1−FT
1 E−1

1u×u
F1≡

[
E2v×v F2

FT
2 G2

]
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where

E2 = n2+8n−32

n+12
I − 4(n+8)

n+12
J, F2= 16

n+12
[1v×x −1v×y] and

G2 =

⎡
⎢⎢⎢⎣

E2x×x − 16

n+12 x×y

− 16

n+12 y×x
E2y×y

⎤
⎥⎥⎥⎦ , detE2v×v = 4nn/4

n+12

G2−FT
2 E−1

2v×v
F2 ≡

[
E3x×x F3

FT
3 G3

]

where E3=(n−4)I −4J , F3=[0y×y] and G3=E3y×y , detE3x×x =4n(n−8)/4,

G3−FT
3 E−1

3x×x
F3≡E4y×y =nIy−4Jy

detE4y×y =4n(n−8)/4. Finally, detDTD=detE1u×u ·detE2v×v ·detE3x×x ·detE4y×y =16nn−6. So

|detD|=√
detDTD=4n(n/2)−3=4194304, which corresponds to the non-zero value of the n−3

minors for a Hadamard matrix of order 16.
j =5:
Next we provide the application of algorithm Minors for j =5 and n=16. For brevity, we will
show the algorithm’s implementation only for one 5×5 matrix. Let

M=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+ + + + +
+ − + − −
+ + − − −
+ − − + +
+ − − + −

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The system of 11 equations and 16 variables, which results from counting of columns and
the orthogonality of every two distinct rows of the matrix [M U5], is the same with the one in
Appendix A.2, case k=4, Step 3, but with the right-hand side [11,1,1,−1,1,−1,1,−1,1,−1,−3]T.

The solution is

u1 = 4−u8−u12−u14−u15−3u16

u2 = u8−1+2u16+u14+u12

u3 = u8+u12−2+2u16+u15

u4 = −u8−u12+2−u16

u5 = u8−2+2u16+u14+u15

u6 = −u8+2−u16−u14
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u7 = −u8+3−u16−u15

u8 = u8

u9 = u12−2+2u16+u15+u14

u10 = −u12+2−u16−u14

u11 = −u12+3−u16−u15

u12 = u12

u13 = 2−u16−u14−u15

u14 = u14

u15 = u15

u16 = u16

According to Lemma 2, the parameters u8, u12, u14, u15, u16 can take the values 0, 1, 2, 3, 4. We
present as an example only the case (u8,u12,u14,u15,u16)=(0,0,0,0,1), since the rest of them
can be handled absolutely similarly. In this case

(u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,u13,u14,u15,u16)

=(1,1,0,1,0,1,2,0,0,1,2,0,1,0,0,1)

By denoting with D the remaining matrix after deleting the first five rows and columns of the
initial Hadamard matrix, we have

DTD≡
[
E1u1×u1

F1

FT
1 G1

]

where E1=nI −5J , F1=[−3u2 −1u4 −1u6 −1u7 −1u10 −1u11 −1u133u16] and

G1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1 3 3 1 3 1 1 1

E1 1 1 1 1 3 1

E1 1 1 3 1 1

E1 3 1 1 1

E1 1 1 1

E1 1 1

E1 1

E1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the sake of better presentation we introduce d standing for −d , d=1,3, and we omit the
subscripts of ±1,±3 in G1, which actually represent blocks with these elements of appropriate
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size, and of the diagonal blocks E1, which are of orders u2×u2,u4×u4, . . . ,u16×u16, respectively.
The same holds for the next matrices E2, . . . ,E16. The lower triangular part of G1 is symmetric
to the upper triangular.

We have

detE1u1×u1
=n−5 and G1−FT

1 E−1
1u1×u1

F1≡
[
E2 F2

FT
2 G2

]

From now on, all the intermediate matrices appearing are obtained according to the method of
Section 3.1 and it is sensible not to give all of them analytically. For all the remaining steps, the
algorithm gives

detE2 = (n−2)(n−8)

n−5
, detE4= (n−4)(n2−11n+12)

(n−8)(n−2)
, detE6= (n−4)(n2−12n+8)

n2−11n+12

detE7 = n2(n−12)(n−10)

n2−12n+8
, detE10= n2−15n+20

n−10
, detE11= (n−12)(n2−17n+36)n2

(n2−15n+20)(n−4)

detE13 = (n−8)(n2−18n+48)n

(n−4)(n2−17+36)
and detE16= n(n−8)(n−15)

(n2−18n+48)

Finally,

detDTD=
16∏

i=1,ui �=0
detEi =n6(n−12)2(n−8)2(n−15)=17179869184

So |detD|=√
detDTD=131072 is the required value for the minor of order n−5 for a

Hadamard matrix of order 16, if the matrix M was used as upper left corner and for the specific
values of parameters. We mention that this resulting value is subject to the formula 32n(n/2)−5.
The algorithm proceeds in an absolutely similar manner with the other parameter values, and also
with the other possible matrices M .

A.4. The pivot patterns of the H16

If GE with complete pivoting is applied to Hadamard matrices of order 16, the 34 different pivot
patterns of Table AI are obtained, as is proved with Propositions 1–3.

According to the experiments performed, the pivot patterns can be classified with respect to the
five equivalence classes as they are given in [22]. It is important to stress again that H -equivalent
matrices do not have necessarily the same pivot pattern and non-H -equivalent matrices can have
the same pivot pattern. For instance, the last pivot pattern of Table AI corresponds to matrices
from the equivalence classes III and IV/V.

We observe that the value 8 as fourth pivot from the end occurs only in one pivot pattern,
and particularly for matrices from the I-Class, according to the experiments. It is interesting to
study this issue and to find out whether the construction properties of the I-Class can explain this
exceptional case.

Another open problem is to classify theoretically the pivot patterns appearing in the appropriate
equivalence classes. This research would require more information on the properties of the classes,
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Table AI. The 34 pivot patterns of H16.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

1 2 2 4 2 4 4 4 4 4 4 8 4 8 8 16

1 2 2 4 2 4 4 4 4 4 6 16
3 4 8 8 16

1 2 2 4 2 4 4 4 4 5 16/(10/3) 16
3 4 8 8 16

1 2 2 4 2 4 4 4 9
2 16/(18/5) 16/(10/3) 16

3 4 8 8 16

1 2 2 4 2 4 4 9
2 4 16/(18/5) 16/(10/3) 16

3 4 8 8 16

1 2 2 4 2 4 4 5 16
5 4 4 8 4 8 8 16

1 2 2 4 2 4 4 5 16
5 4 6 16

3 4 8 8 16

1 2 2 4 2 4 4 5 16
5 5 16/(10/3) 16

3 4 8 8 16

1 2 2 4 2 4 4 6 8
3 4 4 8 4 8 8 16

1 2 2 4 2 4 4 6 8
3 4 6 16

3 4 8 8 16

1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16
1 2 2 4 3 8

3 2 4 4 4 4 8 8 8 8 16

1 2 2 4 3 8
3 2 4 4 4 8 8 4 8 8 16

1 2 2 4 3 8
3 2 4 4 8 4 8 4 8 8 16

1 2 2 4 3 8
3 2 4 4 8 6 16

3 4 8 8 16

1 2 2 4 3 8
3 4 4 4 4 4 8 4 8 8 16

1 2 2 4 3 8
3 4 4 4 4 6 16

3 4 8 8 16

1 2 2 4 3 8
3 4 4 4 5 16/(10/3) 16

3 4 8 8 16

1 2 2 4 3 8
3 4 4 9

2 16/(18/5) 16/(10/3) 16
3 4 8 8 16

1 2 2 4 3 8
3 4 5 16

5 4 4 8 4 8 8 16

1 2 2 4 3 8
3 4 5 16

5 4 6 16
3 4 8 8 16

1 2 2 4 3 8
3 4 5 16

5 5 16/(10/3) 16
3 4 8 8 16

1 2 2 4 3 8
3 4 6 8

3 4 4 8 4 8 8 16

1 2 2 4 3 8
3 4 6 8

3 4 6 16
3 4 8 8 16

1 2 2 4 3 10
3 8/(10/3) 4 16

3 4 4 8 4 8 8 16

1 2 2 4 3 10
3 8/(10/3) 4 16

3 4 6 16
3 4 8 8 16

1 2 2 4 3 10
3 8/(10/3) 4 16

3 5 16/(10/3) 16
3 4 8 8 16

1 2 2 4 3 10
3

16
5 4 4 4 4 8 4 8 8 16

1 2 2 4 3 10
3

16
5 4 4 4 6 16

3 4 8 8 16

1 2 2 4 3 10
3

16
5 4 4 5 16/(10/3) 16

3 4 8 8 16

1 2 2 4 3 10
3

16
5 5 16

5 4 4 8 4 8 8 16

1 2 2 4 3 10
3

16
5 5 16

5 4 6 16
3 4 8 8 16

1 2 2 4 3 10
3

16
5 5 16

5 5 16/(10/3) 16
3 4 8 8 16

1 2 2 4 3 10
3

18
5 4 4 16/(18/5) 16/(10/3) 16

3 4 8 8 16
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see [7, 15]. For example, the following reasoning could be a motivation for such an effort. We
observe [22] that the value 10

3 for the sixth pivot does not appear in the I-Class of equivalence.
Looking closely at the proof of Proposition 1, we see that this value corresponds to H16(6)=160.
Hence, in order to prove the non-occurrence of p6= 10

3 in I-Class, it is equivalent to show that a
6×6 submatrix with determinant 160 cannot exist inside a matrix of this class. The 6×6 ±1 matrix
attaining the maximum determinant value 160 is called the D-optimal design of order 6 (D6).

We know that a representative H16 matrix of the I-Class, which is also called Sylvester equiva-
lence class (HS

16), is created according to the construction

H16=
[
H8 H8

H8 −H8

]

where H8 is the Hadamard matrix of order 8. It must be shown that D6 /∈HS
16. Hence, the result

would be that pivot patterns with p6= 10
3 are not obtained from HS

16.
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