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Plate 1
Presentation of the group B of the Novikov—Boone theorem
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Plate 2
Sufficiency of Boone’s lemma
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Plate 3

Presentation of the group .@6 of the Higman imbedding theorem
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Plate 4
Proof of Lemma 12.26; % ¢ is finitely related
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Preface to the Fourth Edition

Group Theory is a vast subject and, in this Introduction (as well as in the
earlier editions), I have tried to select important and representative theorems
and to organize them in a coherent way. Proofs must be clear, and examples
should illustrate theorems and also explain the presence of restrictive hypo-
theses. I also believe that some history should be given so that one can
understand the origin of problems and the context in which the subject
developed.

Just as each of the earlier editions differs from the previous one in a signifi-
cant way, the present (fourth) edition is genuinely different from the third.
Indeed, this is already apparent in the Table of Contents. The book now
‘begins with the unique factorization of permutations into disjoint cycles and
the parity of permutations; only then is the idea of group introduced. This is
consistent with the history of Group Theory, for these first results on permu-
tations can be found in an 1815 paper by Cauchy, whereas groups of permu-
tations were not'introduced until 1831 (by Galois). But even if history were
otherwise, I feel that it is usually good pedagogy to introduce a general
notion only after becoming comfortable with an important special case. I
have also added several new sections, and I have subtracted the chapter on
Homological Algebra (although the section on Hom functors and character
groups has been retained) and the section on Grothendieck groups.

The format of the book has been changed a bit: almost all exercises now
occur at ends of sections, so as not to interrupt the exposition. There are
several notational changes from earlier editions: I now write H < G instead
of H < G to denote “H is a subgroup of G”; the dihedral group of order
2n is now denoted by D,, instead of by D,; the trivial group is denoted by 1
instead of by {1}; in the discussion of simple linear groups, I now distinguish
elementary transvections from more general transvections; 1 speak of the



viii Preface to the Fourth Edition

Sfundamental group of an abstract simplicial complex instead of its edgepath
group.

Here is a list of some other changes from earlier editions.

Chapter 3. The cycle index of a permutation group is given to facilitate use
of Burnside’s counting lemma in coloring problems; a brief account of mo-
tions in the plane introduces bilinear forms and symmetry groups; the affine
group is introduced, and it is shown how affine invariants can be used to
prove theorems in plane geometry.

Chapter 4. The number of subgroups of order p* in a finite group is counted
mod p; two proofs of the Sylow theorems are given, one due to Wielandt.

Chapter 5. Assuming Burnside’s p*q” theorem, we prove P. Hall’s theorem
that groups having p-complements are solvable; we give Ornstein’s proof
of Schur’s theorem that G/Z(G) finite implies G’ finite.

Chapter 6. There are several proofs of the basis theorem, one due to
Schenkman; there is a new section on operator groups.

Chapter 7. An explicit formula is given for every outer automorphism of
Ss; stabilizers of normal series are shown to be nilpotent; the discussion of
the wreath product has been expanded, and it is motivated by computing the
automorphism group of a certain graph; the theorem of Gaschiitz on comple-
ments of normal p-subgroups is proved; a second proof of Schur’s theorem
on finiteness of G’ is given, using the transfer; there is a section on projective
representations, the Schur multiplier (as a cohomology group), and covers;
there is a section on derivations and H*, and derivations are used to give
another proof (due to Gruenberg and Wehrfritz) of the Schur—Zassenhaus
lemma. (Had I written a new chapter entitled Cohomology of Groups, I
would have felt obliged to discuss more homological algebra than is appro-
priate here.)

Chapter 8. There is a new section on the classical groups.

Chapter 9. An imbedding of Sg into the Mathieu group M,, is used to
construct an outer automorphism of Sg.

Chapter 10. Finitely generated abelian groups are treated before divisible
groups.

Chapter 11. There is a section on coset enumeration; the Schur multiplier
is shown to be a homology group via Hopf’s formula; the number of genera-
tors of the Schur multiplier is bounded in terms of presentations; universal
central extensions of perfect groups are constructed; the proof of Britton’s
lemma has been redone, after Schupp, so that it is now derived from the
normal form theorem for amalgams.

Chapter 12. Cancellation diagrams are presented before giving the difficult
portion of the proof of the undecidability of the word problem,

In addition to my continuing gratitude to those who helped with the first
three editions, I thank Karl Gruenberg, Bruce Reznick, Derek Robinson,
Paul Schupp, Armond Spencer, John Walter, and Paul Gies for their help on
this volume.

Urbana, lllinois Joseph J. Rotman
1994



From Preface to the Third Edition

Quand jai voulu me restreindre, je suis tombé dans 'obscurité;
Jai préféré passer pour un peu bavard.

i H. POINCARE, Analysis situs,
Journal de I'Ecole Polytechnique, 1895, pp. 1-121.

Although permutations had been studied earlier, the theory of groups really
began with Galois (1811-1832) who demonstrated that polynomials are best
understood by examining certain groups of permutations of their roots. Since
that time, groups have arisen in almost every branch of mathematics. Even in
this introductory text we shall see connections with number theory, combina-
torics, geometry, topology, and logic.

By the end of the nineteenth century, there were two main streams of group
theory: topological groups (especially Lie groups) and finite groups. In this
century, a third stream has joined the other two: infinite (discrete) groups.
It is customary, nowadays, to approach our subject by two paths: “pure”
group theory (for want of a better name) and representation theory. This
book is an introduction to “pure” (discrete) group theory, both finite and
infinite.

We assume that the reader knows the rudiments of modern algebra, by
which we mean that matrices and finite-dimensional vector spaces are
friends, while groups, rings, fields, and their homomorphisms are only ac-
quaintances. A familiarity with elementary set theory is also assumed, but
some appendices are at the back of the book so that readers may see whether
my notation agrees with theirs.

I am fortunate in having attended lectures on group theory given by I.
Kaplansky, S. Mac Lane, and M. Suzuki. Their influence is evident through-
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out in many elegant ideas and proofs. I am happy to thank once again those
who helped me (directly and indirectly) with the first two editions: K.I. Appel,
M. Barr, W.W. Boone, J.L. Britton, G. Brown, D. Collins, C. Jockusch,
T. McLaughlin, C.F. Miller, ITI. H. Paley, P. Schupp, F.D. Veldkamp, and
C.R.B. Wright. It is a pleasure to thank the following who helped with the
present edition: K.I. Appel, W.W. Boone, E.C. Dade, F. Haimo, L. McCulloh,
P.M. Neumann, E. Rips, A. Spencer, and J. Walter. I particularly thank
F. Hoffman, who read my manuscript, for his valuable comments and
suggestions.
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To the Reader

Exercises in a text generally have two functions: to reinforce the reader’s
grasp of the material and to provide puzzles whose solutions give a certain
pleasure. Here, the exercises have a third function: to enable the reader to
discover important facts, examples, and counterexamples. The serious reader
should attempt all the exercises (many are not difficult), for subsequent proofs
may depend on them; the casual reader should regard the exercises as part of
the text proper.






CHAPTER 1

Groups and Homomorphisms

Generalizations of the quadratic formula for cubic and quartic polynomials
were discovered in the sixteenth century, and one of the major mathematical
problems thereafter was to find analogous formulas for the roots of polyno-
mials of higher degree; all attempts failed. By the middle of the eighteenth
century, it was realized that permutations of the roots of a polynomial f(x)
were important; for example, it was known that the coefficients of f(x) are
“symmetric functions” of its roots. In 1770, J.-L. Lagrange used permutations
to analyze the formulas giving the roots of cubics and quartics,! but he
could not fully develop this insight because he viewed permutations only as
rearrangements, and not as bijections that can be composed (see below).
Composition of permutations does appear in work of P. Ruffini and of P.
Abbati about 1800; in 1815, A.L. Cauchy established the calculus of permuta-
tions, and this viewpoint was used by N.H. Abel in his proof (1824) that there
exist quintic polynomials for which there is no generalization of the qua-

! One says that a polynomial (or a rational function) f of u variables is r-valued if, by permuting
the variables in all possible ways, one obtains exactly r distinct polynomials. For exam-
ple, f(x;,x,, X3) = x; + X, + x5 is a 1-valued function, while g(x,, x,, x3) = X;x, + x5 is a
3-valued function.

To cach polynomial f(x) of degree u, Lagrange associated a polynomial, called its resolvent,
and a rational function of y variables. We quote Wussing (1984, English translation, p. 78): “This
connection between the degree of the resolvent and the number of values of a rational function
leads Lagrange ... to consider the number of values that can be taken on by a rational
function of p variables. His conclusion is that the number in question is always a divisor of
ul.... Lagrange saw the ‘metaphysics’ of the procedures for the solution of algebraic equations
by radicals in this connection between the degree of the resolvent and the valuedness of rational
functions. His discovery was the starting point of the subsequent development due to Ruffini,
Abel, Cauchy, and Galois.... It is remarkable to see in Lagrange’s work the germ, in admittedly
rudimentary form, of the group concept.” (See Examples 3.3 and 3.3 as well as Exercise 3.38.)
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dratic formula. In 1830, E. Galois (only 19 years old at the time) invented
groups, associated to each polynomial a group of permutations of its roots,
and proved that there is a formula for the roots if and only if the group of
permutations has a special property. In one great theorem, Galois founded
group theory and used it to solve one of the outstanding problems of his day.

Permutations

Definition. If X is a nonempty set, a permutation of X is a bijection a: X — X.
We denote the set of all permutations of X by Sy.

In the important special case when X = {1, 2, ..., n}, we write S, instead of
Sy. Note that |S,| = n!, where | Y| denotes the number of elements in a set Y.

In Lagrange’s day, a permutation of X = {1,2,..., n} was viewed as a
rearrangement; that is, as a list i,,1,,...,i, with no repetitions of all
the elements of X. Given a rearrangement iy, i,, ..., i,, define a function
a: X — X by a(j) = i;for all j € X. This function « is an injection because the
list has no repetitions; it is a surjection because all of the elements of X
appear on the list. Thus, every rearrangement gives a bijection. Conversely,
any bijection « can be denoted by two rows:

_ 1 2 ... n
“Z\al a2 ... an)

and the bottom row is a rearrangement of {1,2,...,n}. Thus, the two
versions of permutation, rearrangement and bijection, are equivalent. The
advantage of the new viewpoint is that two permutations in Sy can be
“multiplied,” for the composite of two bijections is again a bijection. For

1 123
example, o = (3 ; ?) and f = <2 3 1) are permutations of {1, 2, 3}. The

123 . . .
product of is ( 21 3>; we compute this product® by first applying f and
then o:

af(l) = a(B(1)) = @) = 2,
«B(2) = 2(f(2) = a3) = 1,
- af(3) = a(f@3)) = (1) =3.

3
Note that fo = (1 i 2), so that aff # o

2 We warn the reader that some authors compute this product in the reverse order: first o and
then B. These authors will write functions on the right: instead of f(x), they write (x)f (see
footnote 4 in this chapter).
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EXERCISES

1.1. The identity function 1, on a set X is a permutation, and we usually denote it by
1. Prove that la = a = «1 for every permutation « € Sy.

1.2. For each a € Sy, prove that there is 8 € Sy with aff = 1 = fa (Hint. Let § be the
inverse function of the bijection a).

1.3. For all o, f, y € S, prove that a(fy) = (¢f)y. Indeed, if X, Y, Z, W are sets and
f[:X—>Y,9: Y- Z,and h: Z — W are functions, then h(gf) = (hg)f. (Hint: Recall
that two functions f, g: A — B are equal if and only if, for all a € A, one has

f(@)=4(a))

Cycles

The two-rowed notation for permutations is not only cumbersome but, as we
shall see, it also disguises important features of special permutations. There-
fore, we shall introduce a better notation.

Definition. If x € X and « € Sy, then « fixes x if a(x) = x and « moves x if
a(x) # x.

Definition. Let i,, i,, ..., i, be distinct integers between 1 and n. If « € S, fixes
the remaining n — r integers and if

0‘(il) = i27 O‘(iz) = i3> e o((ir—l) = in 0((ir) = il:
then o is an #-cpcle; one also says that « is a cycle of length r. Denote o by
(g iy 0 4)

Every 1-cycle fixes every element of X, and so all 1-cycles are equal iz the
identity. A 2-cycle, which merely interchanges a pair of elements, is called a
transposition.

Draw a circle with i,1i,,...,i, arranged at equal distances around the
circumference; one may picture the r-cycle o = (i; i, --- i,) as a rotation
taking i, into i,, i, into iy, etc., and i, into i;. Indeed, this is the origin of the
term cycle, from the Greek word xdxloo for circle; see Figure 1.1.

‘Here are some examples:

12
2

4 .
l>=(1 23 4y,

5

3):(1 5342

G

Ll 25
_— R HW W
BN [AC T W

AN
(NS
w N

2) =(123)@B)=(@1 2 3).
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QU'UNE FONCTION PEUT ACQUERIR, ETC. 19

. Lo A .
Nous observerons d'abord que, si dans la substitution < ’ > forméc
e/

par denx permnutations prises a volonté dans la suite
An An As e Aw

les denx termes A, A, renferment des indices correspondants quifoient
respectivement égaux, on pourra, sans inconvénient, supprimer les
mémes indices pour ne conserver que ceux des indices correspondants
(ui sont respectivement inégaux. Ainsi, par exemple, si lon fait n =5,

les deux substitutions
1.2.3.4.5 7 1.2.3 0\
et )
2.3.1.4.5 /) 2.3.1
seront ¢quivalentes entre elles. Je dirai qu’une substitution aura été
réduite 4 sa plus simple expression lorsqu’on aura supprimé, dans les
deux termes, tous les indices correspondants égaux.
Soient aintenant «, B, ¥, ..., {, n plusicurs des indices 1, 2,3, ..., n

A

i

en nombre égal & p, et supposons que la substitution ( ‘ ) réduite
£

sa plus simple expression prenne la forme
< « By ..o >
)
B8y 46 ...om o,
en sorte que, pour déduire le second terme du premier, il suffise de

ranger en cercle, ou plutot en polygone régulier, les indices «, 8, v,
N , - .
%, ..., ,  de la maniére suivante :

etde remplacer ensuite chaque indice par eelui qui, e premier, vient
prendre sa place lorsqu’on fait tourner d’orient en occident le polygone

A. Cauchy, Mémoire sur le nombre des valeurs qu’une fonction peut acquérir,
lorsqu’on y permute de toutes les maniéres possibles les quantités qu’elle renferme, J.
de I'Ecole Poly XV1I Cahier, tome X (1815), pp. 1-28.

From: Oeuvres Completes d'Augustin Cauchy, 11 Serie, Tome I, Gauthier-Villars,
Paris, 1905.

Figure 1.1
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Multiplication is easy when one uses the cycle notation. For example, let
us compute y = «f, where o = (1 2) and f=(1 3 4 2 5). Since multiplica-
tion is composition of functions, (1) = « o f(1) = a(f(1)) = «(3) = 3; Next,
y(3) = a(B(3)) = a(4) = 4, and y(4) = a(S(4)) = a(2) = 1. Having returned to
1, we now seek y(2), because 2 is the smallest integer for which y has not yet
been evaluated. We end up with

(12)(13425=( 342 5).

The cycles on the right are disjoint as defined below.

Definition. Two permutations o, f§ € Sy are disjoint if every x moved by one is
fixed by the other. In symbols, if a(x) # x, then f(x) = x and if f(y) # y, then
a(y) = y (of course, it is possible that there is z € X with a(z) = z = (2)). A
family of permutations a,, «,, ..., a,, is disjoint if each pair of them is disjoint.

EXERCISES

14. Prove that 12 ---r—17r) = 23 -r1) = 3412 = --- =
(r 1 --- r —1). Conclude that there are exactly r such notations for this r-cycle.

1.5. If 1 < r < n, then there are (1/r)[n(n — 1)...(n — r + 1)] r-cycles in §,,.

1.6. Prove the cancellation law for permutations: if either aff = ay or fa = ya, then
B=7.

1.7. Leta = (iy iy '-- i,)and f = (j; j, -** j,). Prove that « and f are disjoint if and
only if {iy, izy ..., i} N {j1sJas-- s Js} = &

1.8. If « and B are disjoint permutations, then af = fu; that is, « and f commute.

1.9. If o, f € S, are disjoint and aff = 1, thena =1 = j.

1.10. If &, B € S, are disjoint, prove that (xf)* = a*B* for all k > 0. Is this true if « and
B are not disjoint? (Define a® = 1, «' = o, and, if k > 2, define a* to be the
composite of a with itself k times.)

1.11. Show that a power of a cycle need not be a cycle.

1.12. (i) Leta=(ig iy ... i,—y) be an r-cycle. For every j, k = 0, prove that o*(i;) =
iy4; if subscripts are read modulo r.
(ii) Prove that if a is an r-cycle, then a” = 1, but that «* 5 1 for every positive
integer k < r.
“ (1) o = B, f,... B, 1s a product of disjoint ri-cycles f;, then the smallest posi-
tive integer [ with o’ = 1 is the least common multiple of {r,, r,, ..., 7, }.

1.13. (i) A permutation « € S, is regular if either o has no fixed points and it is the
product of disjoint cycles of the same length or « = 1. Prove that « is
regular if and only if « is a power of an n-cycle f; that is, « = ™ for
some m. (Hint: if a = (aja,...a,)(byb,... b,)...(zy24...2,), where there are
mletters a, b, ..., z, thenlet § = (ayb,...zia,b,...24...a,b, ... 2,).)

(i) If « is an n-cycle, then «* is a product of (n, k) disjoint cycles, each of length
n/(n, k). (Recall that (n, k) denotes the ged of n and k.)
(ili) If p is a prime, then every power of a p-cycle is either a p-cycle or 1.
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1.14, (i) Let « = By in S,, where  and y are disjoint. If # moves i, then a*(i) = B*(i)
for all k > 0.
(i) Let « and B be cycles in S, (we do not assume that they have the same
length). If there is i; moved by both « and f and if «*(i,) = f*(i,) for all
positive integers k, then o« = .

Factorization into Disjoint Cycles

123456789
641253897
Now «(1) = 6, and so « begins (1 6; as a(6) = 3, « continues (1 6 3; since
a(3) = 1, the parentheses close, and « begins (1 6 3). The smallest integer not
having appeared is 2; write (1 6 3)(2, and then (1 6 3)(2 4; continuing in
this way, we ultimately arrive at the factorization (which is a product of
disjoint cycles)

Let us factor o = < > into a product of disjoint cycles.

a=(1 6 3)2 4(S)(7 8 9).

Theorem 1.1. Every permutation a € S, is either a cycle or a product of disjoint
cycles.

Proof. The proof is by induction on the number k of points moved by o. The
base step k = 0 is true, for then « is the identity, which is a 1-cycle. If k > 0,
let i, be a point moved by «. Define i, = a(i,), iy = a(iy), ..., iy = (i),
where r is the smallest integer for which i,,, € {i{, i, i3, ..., i,} (the list iy, i,,
iy, ..., 1, ... cannot go on forever without a repetition because there are only
n possible values). We claim that a(i,) = i;. Otherwise, a(i,) = i; for some
Jj = 2; but «(i;_,) = i;, and this contradicts the hypothesis that « is an injec-
tion. Let o be the r-cycle (i; i, i3 - i,). If r = n, then « is the cycle o. If
r < nand Y consists of the remaining n — r points, then «(Y) = Y and o fixes
the points in Y. Now a{{i,, is, ..., i,} = a|{iy, i5,..., i.}. If o is the permuta-
tion with «'| Y = «|Y and which fixes {i, i,, ..., i}, then o and & are disjoint
and o = oa’. Since o’ moves fewer points than does «, the inductive hypothe-
sis shows that o', and hence «, is a product of disjoint cycles. &

One often suppresses all 1-cycles, if any, from this factorization of o, for
1-cycles equal the identity permutation. On the other hand, it is sometimes
convenient to display all of them.

Definition. A complete factorization of a permutation « is a factorization of o
as a product of disjoint cycles which contains one 1-cycle (i) for every i fixed
by a.

In a complete factorization of a permutation o, every i between 1 and n
occurs in exactly one of the cycles.
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Theorem 1.2. Let o € S, and let « = B, ..., be a complete factorization into
disjoint cycles. This factorization is unique except for the order in which the
factors occur.

Proof. Disjoint cycles commute, by Exercise 1.8, so that the order of the
factors in a complete factorization is not uniquely determined; however, we
shall see that the factors themselves are uniquely determined. Since there is
exactly one 1-cycle (i) for every i fixed by a, it suffices to prove uniqueness of
the cycles of length at least 2. Suppose « = y,...7, is a second complete
factorization into disjoint cycles. If §, moves i,, then (i,) = a*(i,) for all k,
by Exercise 1.14(i). Now some y; must move i,; since disjoint cycles commute,
we may assume that y; = y,. But y%(i,) = a*(i;) for all k, and so Exercise
1.14(ii) gives B, = y,. The cancellation law, Exercise 1.6, gives f,...5_; =
Y1 ... Y1, and the proof is completed by an induction on max{s, t}. &

EXERCISES

1.15. Let a be the permutation of {1, 2, ..., 9} defined by a(i) = 10 —i. Write « as a
product of disjoint cycles.

1.16. Let p be a prime and let « € §,,. If «” = 1, then either @ = 1, « is a p-cycle, or a is
a product of disjoint p-cycles. In particular, if «? = 1, then either & = 1, ¢ is a
transposition, or o is a product of disjoint transpositions.

1.17. How many « € S, are there with a? = 1? (Hint. (i j)=(j i) and (i j)(k I) =
(k DG j).)

1.18. Give an example of permutations «, f§, and y in S5 with « commuting with j,
with f# commuting with y, but with « not commuting with y.

Even and Odd Permutations
There is another factorization of permutations that is useful.
Theorem 1.3. Every permutation o € S, is a product of transpositions.

Proof. By Theorem 1.1, it suffices to factor cycles, and

A2...0=(1n1r—1..12).

Every permutation can thus be realized as a sequence of interchanges.
Such a factorization is not as nice as the factorization into disjoint cycles.
First of all, the transpositions occurring need not commute: (1 3)(1 2) =
(1 2 3)and (1 2)(1 3) =(1 3 2); second, neither the factors nor the number
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of factors are uniquely determined; for example,
123)=( 3)(1 2)=(2 3)(1 3)
=(1 3)@ 2)(1 2)(1 4)
=(1 3)@ 2)(1 2)(1 492 3)(2 3).

Is there any uniqueness at all in such a factorization? We now prove that the
parity of the number of factors is the same for all factorizations of a permuta-
tion o: that is, the number of transpositions is always even (as suggested by
the above factorizations of « = (1 2 3)) or is always odd.

Definition. A permutation o € S is even if it is a product of an even number of
transpositions; otherwise, o is odd.

It is easy to see that « = (1 2 3) is even, for there is a factorization
o = (1 3)(1 2)into two transpositions. On the other hand, we do not know
whether there are any odd permutations o at all; if « is a product of an
odd number of transpositions, perhaps it also has another factorization as a
product of an even number of transpositions. The definition of odd permuta-
tion a, after all, says that there is no factorization of « into an even number of
transpositions.

Lemma 1.4. If k, [ > 0, then
@bac, ...c,bdy...d)=(@cy ...c)bd;...d)
and

@blacy ...c)bdy ...d)y=(acy ... c, bdy ...d)

Proof. The left side sends ar>c o cy; i cip oy if L < k; ¢ b a;
b—d,—dy; dj—d; v d;y, if j <I; dy—a—b. Similar evaluation of the
right side shows that both permutations are equal. For the second equation,
just multiply both sides of the first equation by (a b) on the left.

Definition. If « € S, and & = f,... f, is a complete factorization into disjoint
cycles, then signum o is defined by

sgn(e) = (— 1"

By Theorem 12, sgn is a well defined function (see Appendix ITI). If tis a
transposition, then it moves two numbers, say, i and j, and fixes each of the
n — 2 other numbers; therefore, t = (n —2)+ 1 =n — 1, and so

sgn(r) = (~ 1y = —1.

Lemma 1.5. If f € S, and < is a transposition, then

sgn(zf) = —sgn(p).
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Proof. Let t = (a b) and let § =y, - -y, be a complete factorization of f into
disjoint cycles (there is one 1-cycle for each i fixed by f, and every number
between 1 and n occurs in a unique y). If a and b occur in the same v, say, in
yi.theny, =(a ¢y ... ¢, b dy ... d),wherek > 0and ! > 0. By Lemma 1.4,

wy=(@c )b d o d),

and so 78 = (ty,)y,-... ¥, is a complete factorization with an extra cycle (zy,
splits into two disjoint cycles). Therefore, sgn(zf) = (—1)*"**1) = —sgn(p).
The other possibility is that a and b occur in different cycles, say, y, =
(@cy ...¢)and y, = (b dy ... d;), where k > 0 and [ > 0. But now =
(Ty172)¥3--- %, and Lemma 1.4 gives

iy, =(@c ¢ bdy o dy.

Therefore, the complete factorization of 78 has one fewer cycle than does f3,
and so sgn(tf) = (— 14D = —sgn(f). @

Theorem 1.6. For all «, B € S,,
sgn(af) = sgn(«) sgn(p).

Proof. Assume that a € S, is given and that « = 7...7,, is a factorization of
o into transpositions with m minimal. We prove, by induction on m, that
sgn(of) = sgn(o) sgn(P) for every f e S,. The base step is precisely Lemma
1.5. If m > 1, then the factorization t,...t,, is also minimal: if 7,...7,, =
01 ...0, with each o; a transposition and g < m — 1, then the factorization
® = 7,0y ...0, violates the minimality of m. Therefore,

sgn(af) = sgn(z, - 7,,f) = —sgn(r,-7,B) (Lemma 1.5)
= —sgn(t, - 1,) sgn(f) (by induction)
= sgn(t, - 1,,) sgn(p) (by Lemma 1.5)
= sgn(o) sgn(p). ™
Theorem 1.7.

(i) A permutation ae S, is even if and only if sgn(a) = 1.
(ii) A permutation o is odd if and only if it is a product of an odd number of
~ transpositions.

Proof. (i) We have seen that sgn(r) = — 1 for every transposition 7. Therefore,
“ifa = 7,...7,is a factorization of a into transpositions, then Theorem 1.6 gives
sgn{a) = sgn(z,)...sgn(r,) = (—1)% Thus, sgn(x) = 1 if and only if g is even.
If « is even, then there exists a factorization with g even, and so sgn{a) = 1.
Conversely, if 1 = sgn(a) = (— 1)%, then g is even and hence « is even.

(ii) If « is odd, then it has no factorization into an even number of transpo-
sitions, and so it must be a product of an odd number of them. Conversely, if
o =1,...7T, with g odd, then sgn(x) = (—1)? = —I; by (i), « is not even, and
hence a is odd.
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EXERCISES

1.19. Show that an r-cycle is an even permutation if and only if r is odd.

123456789>

1.20. Compute sgn(e) for o = (9 87654321

1.21. Show that S, has the same number of even permutations as of odd permuta-
tions. (Hint. If = (1 2), consider the function f: S, — S, defined by f(«) = 7o)

1.22. Let a, B e S,. If « and B have the same parity, then «f is even; if o and 8 have
distinct parity, then af is odd.

Semigroups
We are now going to abstract certain features of Sy.

Definition. A (binary) operation on a nonempty set G is a function
u:G x G- G.

An operation u assigns to each ordered pair (a, b) of elements of G a third
element of G, namely, u(a, b). In practice, u is regarded as a “multiplication”
of elements of G, and, instead of u(a, b), more suggestive notations are used,
such as ab,a + b, aob, or axb. In this first chapter, we shall use the star
notation a*b.

It is quite possible that a*b and b+a are distinct elements of G. For
example, we have already seen that (1 2)(1 3) (1 3)(1 2)in G = S,.

The Law of Substitution (if a = a’ and b = b’, thena*b = a’« b’) is just the
statement that u is a well defined function: since (a, b) = (a’, b’), it follows that
u(a, b) = p(a’, b’); thatis,ax b = a’ b’

One cannot develop a theory in this rarefied atmosphere; conditions on the
operation are needed to obtain interesting results (and to capture the essence
of composition in Sy). How can we multiply three elements of G? Given (not
necessarily distinct) elements a,, a,, a5 € G, the expression a, * a, * a; is am-
biguous. Since we can * only two elements of G at a time, there is a choice:
form a, * a, first, and then = this new element of G with a; to get (a, * a,) * a,;
or, form a, *(a, * a;). In general, these two elements of G may be different.
For example, let G = Z, the set of all integers (positive, negative, and zero),
and let the operation be subtraction: axb = a — b; any choice of integers
a, b, ¢ with ¢ 5 0 gives an example with (@ — b) —c #£a ~ (b — ¢).

Definition. An operation = on a set G is associative if
(axb)sc=ax(bx*c)

foreverya, b, ce G.
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Exercise 1.3 shows that multiplication in Sy is associative. Associativity
allows one to multiply every ordered triple of elements in G unambiguously;
parentheses are unnecessary, and there is no confusion in writing a * b *¢. If
we are confronted by four elements of G, or, more generally, by a finite
number of elements of G, must we postulate more intricate associativity
axioms to avoid parentheses?

Consider the elements of G that can be obtained from an expression
a, *a, % - *a, Choose two adjacent a’s, multiply them, and obtain an ex-
pression with only n — 1 factors in it: the product just formed and n — 2
original factors. In this new expression, choose two adjacent factors (either an
original pair or an original g; adjacent to the new product from the first step)
and multiply them. Repeat this procedure until there is an expression with
only two factors; multiply them and obtain an element of G. Let us illustrate
this process with the expression a*bxc+d. We may first multiply axb,
arriving at (a*b)*c#*d, an expression with three factors, namely, a=b, c,
and d. Now choose either the pair ¢, d or the pair a*b, c; in either case,
multiply the chosen pair, and obtain the shorter expressions (a * b) * (c *d) or
[(a*b)*c]*d. Each of these last two expressions involves only two factors
which can be multiplied to give an element of G. Other ways to evaluate the
original expression begin by forming b ¢ or c+d as the first step. It is not
obvious whether all the elements arising from a given expression are equal.

Definition. An expression a, *a, x--** a, needs no parentheses if, no matter
what choices of multiplications of adjacent factors are made, the resulting
elements of G are all equal.

Theorem 1.8 (Generalized Associativity). If * is an associative operation on a
set G, then every expression a, * a, =+ = a, needs no parentheses.

Proof. The proofis by induction on n > 3. The base step n = 3 holds because
* is associative . If n > 3, consider two elements obtained from an expression
a, = a,* - *a, after two series of choices:

(1) (@ * xa)*(a * - *a, and (ay %4 ay) % (ajeq *" % a,)

(the choices yield a sequence of shorter expressions, and the parentheses
indicate ultimate expressions of length 2). We may assume that i < j. Since
each of the four expressions in parentheses has fewer than n factors, the
inductive hypothesis says that each of them needs no parentheses. If i = j, it
follows that the two products in (1) are equal. If i < j, then rewrite the first
expression as

2 (@ # - #a) ([ * % a]# [a, -+ a,])
and rewrite the second expression as

(3) ([a1*"'*ai]*[ai+1*"'*aj])*(ajﬂ*"'*an)-



12 1. Groups and Homomorphisms

By induction, each of the expressions a, *****a;, a;,; %> *a;, and a;,, ***" *a,
yield (uniquely defined) elements 4, B, and C of G, respectively. Since (2) is
the expression A *(B« C) and (3) is the expression (A4 * B)  C, associativity
says that both these expressions give the same element of G.

Definition. A semigroup (G, #) is a nonempty set G equipped with an associa-
tive operation .

Usually, one says “Let G be a semigroup ...,” displaying the set G, but
tacitly assuming that the operation * is known. The reader must realize,
however, that there are many possible operations on a set making it a semi-
group. For example, the set of all positive integers is a semigroup under
either of the operations of ordinary addition or ordinary multiplication.

Definition. Let G be a semigroup and let a € G. Define a' = a and, for
n > 1, define a**! = a*a".

Corollary 1.9. Let G be a semigroup, let a € G, and let m and n be positive
integers. Then a” *a” = a™™" = a"xa™ and (a™)" = a™ = (a")".

Proof. Both sides of the first (or second) equations arise from an expression
having m + n (or mn) factors all equal to a. But these expressions need no
parentheses, by Theorem 1.8. [3

The notation a” obviously comes from the special case when * is multipli-
cation; a” = aa...a (n times). When the operation is denoted by +, it is more
natural to denoteaxa*---*a=a+ a+ - + a by na. In this additive nota-
tion, Corollary 1.9 becomes ma + na = (m + n)a and (mn)a = m(na).

Groups

The most important semigroups are groups.

Definition. A group is a semigroup G containing an element e such that:

(i) exa=a=axeforallacG;
(i1) for every a € G, there is an element b € G with

axb=e=bxa.
Exercises 1.1, 1.2, and 1.3 show that Sy is a group with composition as

operation; it is called the symmetric gronp on X. When X = {1,2,...,n},
then Sy is denoted by S, and it is called the symumetric group on n letters.
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Definition. A pair of elements a and b in a semigroup commutes if axb =
bxa. A group (or a semigroup) is abefian if every pair of its elements
commutes.

It is easy to see, for all n > 3, that S, is not abelian.

There are many interesting examples of groups; we mention only a few
of them now.

The set Z of all integers (positive, negative, and zero) is an abelian group
with ordinary addition as operation: axb = a + b;e =0; —a + a = 0. Some
other additive abelian groups are the rational numbers @, the real numbers
R, and the complex numbers C. Indeed, every ring is an additive abelian
group (it is only a semigroup with 1 under multiplication).

Recall that if n>2 and a and b are integers, then a=bmodn
(pronounced: a is congruent to b modulo »n) means that n is a divisor of a — b.
Denote the congruence class of an integer a mod n by [a]; that is,

[a] ={beZ: b= amodn}
={a+ kn: ke Z}.

The set Z, of all the congruence classes mod n is called the integers modulo
n; it is an abelian group when equipped with the operation: [a] + [b] =
[a + b]; here e = [0] and [ —a] + [a] = [0] (Z, is even a commutative ring
when “one” is [ 1] and multiplication is defined by [a][b] = [ab]). The reader
should prove that these operations are well defined: if {a'] = [a] and [b'] =
[b], that is, if @’ = a mod n and b’ = b mod n, then [a' + b'] = [a + b] and
[a'b’] = [ab].

If k is a field, then the set of all # X n nonsingular matrices with entries in
k is a group, denoted by GL(n, k), called the general linear group: here the
operation is matrix multiplication, e is the identity matrix E, and if A~ is the
inverse of the matrix 4, then AA™ = E = A7' 4. 1f n > 2, then GL(n, k) is not
abelian; if n = 1, then GL(J, k) is abelian: it is the multiplicative group k* of
all the nonzero elements in k.

If R is an associative ring (we insist that R has an element 1), then an
element u is a uni? in R if there exists v € R with uv = 1 = pu. If a is a unit, so
that ab = 1 = ba for some b € R, then it is easy to see that ua is also a unit in
R (with inverse bv) and that U(R), the group of units in R, is a multiplicative
group. If R is a field k, then U(k) = k*. If R is the ring of all n x n matrices
over a field k, then U(R) = GL(n, k).

Theorem 1.18. If G is a group, there is a unique element e withexa =a =ax*e
Jor all a € G. Moreover, for each a € G, there is a unique b € G witha*b = e =
bxa.

Proof. Suppose that e’*a=a = a=*¢e’ for all ae G. In particular, if a =e,
then e’ * e = e. On the other hand, the defining property of e gives ¢’ xe = ¢/,
andsoe =e.
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Suppose that axc=e=c#*a. Then c=cxe=cx*(a*b)=(cxa)xb=
exb = b, as desired.

As a result of the uniqueness assertions of the theorem, we may now give
names to e and to b. We call e the identity of G and, if axb = ¢ = b g, then

we call b the inverse of a and denote it by a™*.

Corollary 1.11. If G is a group and a € G, then

(@Y t=a

Proof. By definition, (a™*)™" is that element g € G witha Y xg =e =g a™".
But ais such an element, and so the uniqueness gives g = a.

Definition. If G is a group and a € G, define the powers of a as follows: if n is
a positive integer, then a” is defined as in any semigroup; define a° = ¢; define
a" = (a—l)n‘

Even though the list of axioms defining a group is short, it is worthwhile
to make it even shorter so it will be as easy as possible to verify that a
particular example is, in fact, a group.

Theorem 1.12. If G is a semigroup with an element e such that:

(") exa=aforallae G;and
(ii") for each a € G there is an element b € G with b+ a = e, then G is a group.

Proof. We claim that if x + x = x in G, then x = e. There is an element y € G
with yxx =e, and y*(xxx) = y*x = e. On the other hand, y*(x*x) =
(y#x)*x = exx = x. Therefore, x = e.

If b+ a = e, let us show that asb = e. Now (ax b)*(a*b) = a=[(b=a)+b]
=ax[exb] = axb, and so our claim gives a* b = e. (Observe that we have
used associativity for an expression having four factors.)

If a € G, we must show that axe = a. Choose be G with bxa=e=axbh
(using our just finished calculation). Then axe = ax(bxa)=(a*b)xa =
exa = a,as desired. &

EXERCISES

1.23. If G is a group and ay, a,, ..., a, € G, then

(agxay*--xa) ' =a; wal = xall.
Conclude that if n > 0, then (a™!)" = (a”)"%.

124. Let a4, a,, ..., q, be elements of an abelian semigroup. If by, b,,..., b, is a
rearrangement of the a;, then

agxay*- xa, =byxbyx--xb,
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1.25.

1.26.
1.27.

1.28.

1.29.

1.30.

Let a and b lie in a semigroup G. If a and b commute, then (a*b)" = a"* b" for
every n > 1; if G is a group, then this equation holds for every n € Z.

A group in which x? = e for every x must be abelian.

(i) Let G be a finite abelian group containing no elements a e with a> = e.
Evaluate a; *a, % - *a,, where a,, a,, ..., a, is a list with no repetitions, of
all the elements of G.

(i)) Prove Wilson’s theorem: If p is prime, then

(p—1!'=—-1 modp.
(Hint. The nonzero elements of Z, form a multiplicative group.)

@) o= 2...r—1r),thenal=(Fr—1..21).

123456789
ii) Find the i f .
(i) Find the inverse o (641253897>

Show that a: Z,; — Z, ,, defined by a(x) = 4x* — 3x7, is a permutation of Z,,,
and write it as a product of disjoint cycles. What is the parity of «? What isa™'?

Let G be a group, let ae G, and let m, ne Z be (possibly negative) integers.
ProVe that a"l*a” = alll+ll — all* a"l a’I]d (a"l)ﬂ — am’l = (all)lfl'

. Let G be a group, let ae G, and let m and n be relatively prime integers. If

a™ = e, show that there exists b € G with a = b". (Hint. There are integers s and
t with 1 = sm + tn.)

1.32 (Cancellation Laws). In a group G, either of the equations axb = ax¢ and

1.33.

1.34.

1.35.

1.36.

1.37.

bxa=c+aimpliesb = c.

Let G bea group and leta € G.

(i) For each a € G, prove that the functions L,: G — G, defined by x+—a=*x
(called left translation by a), and R,: G — G, defined by x> x » a™* (called
right translation by a), are bijections.

(i) Forall a,b € G, prove that L,,, = L, o L,and R,,, = R, o R,,.

(ili) For all a and b, prove that L, o R, = R, o L,.

Let G denote the multiplicative group of positive rationals. What is the identity
of G? If a € G, what is its inverse?

Let n be a positive integer and let G be the multiplicative group of all nth roots
of unity; that is, G consists of all complex numbers of the form ™", where
ke Z. What is the identity of G? If a € G, what is its inverse? How many
elements does G have?

Prove that the following four permutations form a group V (which is called the
4-group):
Lo 1234 (1324 (14923

Let R = R U {o0}, and define 1/0 = oo, /o0 =0, co/oo =1, and 1 — o0 =
o = o0 — 1. Show that the six functions R — R, given by x, 1/x, 1 — x,
1/(1 — x), x/(x — 1), (x — 1)/x, form a group with composition as operation.
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Homomorphisms

Let G be a finite group with n elements ay, a,, ..., a,. A multiplication table
for G is the n x n matrix with i, j entry a;* a;:

G ‘ a, a, a,

a Ay *a, Ay *dy agxa,
a, a; *a, as *ad, a,*xa,
ay ap¥a, A, * ay a, x a,

Informally, we say that we “know” a finite group G if we can write a multipli-
cation table for it. Notice that we say “a” multiplication table and not “the”
multiplication table, for a table depends on the particular ordering a,, a,, ...,
a, of the elements of G. (One may also speak of multiplication tables of
infinite groups, but in this case, of course, the matrices are infinite.) It is
customary to list the identity e first so that the first row (and first column)
display the elements in the order they occur on a chosen list.

Let us now consider two almost trivial examples of groups. Let G be the
group whose elements are the numbers 1 and — 1, with operation multiplica-
tion; let H be the additive group Z,. Compare multiplication tables of these
two groups:

[0y | fo1 [1]
(ol

It is quite clear that G and H are distinct groups; on the other hand, it is
equally clear that there is no significant difference between them. Let us make
this idea precise.

Definition. Let (G, *) and (H, o) be groups.® A function f:G—-H is a
homomorphism if, for all a, b € G,

fla=b) = fla) o f(b).

An isomorphism is a homomorphism that is also a bijection. We say that G is
isomorphic to H, denoted by G = H, if there exists an isomorphism f: G — H.

The two-element groups G and H, whose multiplication tables are given
above, are isomorphic: define f: G — H by f(1) = [0] and f(—1) = [1].

3 This definition also applies to semigroups.
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Let f: G —» H be an isomorphism, and let a,, a,, ..., a, be a list, with no
repetitions, of all the elements of G. Since f is a bijection, every element of H
occurs exactly once on the list f(a,), f(a,), ..., f(a,), and so this list can be
used to form a multiplication table for H. That f is a homomorphism, that is,
Sla;*a;) = fla;) o f(a;), says that if we superimpose the multiplication table
of G onto that of H, then the tables “match.” In this sense, isomorphic groups
G and H have the “same” multiplication tables. Informally, one regards G
and H as being essentially the same, the only distinction being that G is
written in English and H is written in French; an isomorphism f is a
dictionary which translates one to the other.

Two basic problems occurring in mathematics are: classification of all
systems of a given type (e.g., groups, semigroups, vector spaces, topological
spaces); classification of all the “maps” or transformations from one such
system into another. By a classification of systems, we mean a way to distin-
guish different systems or, what is the same thing, a way to tell when two
systems are essentially the same (isomorphic). For example, finite-dimen-
sional vector spaces over a field k are classified by the theorem that two such
are isomorphic if and only if they have the same dimension. One can even
classify all the maps (linear transformations) between vector spaces; they give
rise to similarity classes of matrices which are classified by canonical forms.
The same two problems arise in Group Theory: when are two groups
isomorphic; describe all the homomorphisms from one group to another.
Both of these problems are impossibly hard, but partial answers are known
and are very useful.

Theorem 1.13. Let f: (G, *) - (G, o) be a homomorphism.

(1) f(e) = e', where €' is the identity in G'.
(i) If a € G, then f(a™!) = fla)™.
(i) If ae G and n e Z, then f(a") = f(a)".

Proof. () Applying f to the equation e=cexe gives f(e)= flexe)=
f(e) o f(e). Now multiply each side of the equation by f{(e)™ to obtain ¢’ =
1o

. (ii) Applying f to the equations a*a™ = e =a ' *a gives f(a)* f(a™*) =
e’ = f(a™')* f(a). It follows from Theorem 1.10, the uniqueness of the inverse,
that f(a™') = f(a)™.

(iii) An easy induction proves f(a") = f(a)" for all n > 0, and then f(a™") =

fl@™y) = fa™'y = fla™.

Here are some examples. Theorem 1.6 shows that sgn: S, - {+1} is a
homomorphism; the function v: Z — Z,,, defined by v(a) = [a], is a homo-
morphism; if k* denotes the multiplicative group of nonzero elements of a
field k, then determinant is a homomorphism det: GL(n, k) — k.
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EXERCISES

1.38.

1.39.

1.40.

1.41.

1.42.

1.43.

1.44.

1.45.

1.46.

1.47.

(i) Write a multiplication table for S;.
(i) Show that S, is isomorphic to the group of Exercise 1.37. (Hint. The ele-
ments in the latter group permute {0, 1, co}.)

Let f: X = Y be a bijection between sets X and Y. Show that a+>foao f*
is an isomorphism Sy — Sy.

Isomorphic groups have the same number of elements. Prove that the converse
is false by showing that Z, is not isomorphic to the 4-group V defined in
Exercise 1.36.

If isomorphic groups are regarded as being the same, prove, for each positive
integer n, that there are only finitely many distinct groups with exactly n
elements.

Let G = {xy, ..., x,} be a set equipped with an operation *, let 4 = [a;;] be its |
multiplication table (i.e., a; = x;* x;), and assume that G has a (two-sided) iden-
tity e (that is, ex x = x = x * e for all x € G).

(i) Show that * is commutative if and only if 4 is a symmetric matrix.

(i) Show that every element x € G has a (two-sided) inverse (i.e., there is x' € G
with x *x' = e = x’* x) if and only if the multiplication table A is a Latin
square; that is, no x € G is repeated in any row or column (equivalently,
every row and every column of 4 is a permutation of G.)

(iii) Assume that e = x, so that the first row of A has a,; = x;. Show that the
first column of A has a;; = x;* for all i if and only if a;; = e for all i.

(iv) With the multiplication table as in (iii), show that # is associative if and only

if a;a; = ay for all i, j, k.

@) If f: G- H and g: H —» K are homomorphisms, then so is the composite
gof:G-K.
(ii) If f: G- H is an isomorphism, then its inverse f™': H—» G is also an
isomorphism.
(iii) If % is a class of groups, show that the relation of isomorphism is an equiva-
lence relation on &.

Let G be a group, let X be a set, and let f: G — X be a bijection. Show that there
is a unique operation on X so that X is a group and f is an isomorphism.

If k is a field, denote the columns of the n x n identity matrix E by &, ..., &,. A
permutation matrix P over k is a matrix obtained from E by permuting its
columns; that is, the columns of P are &, ..., &, for some « € S,. Prove that the
set of all permutation matrices over k is a group isomorphic to S,. (Hint. The
inverse of P is its transpose P!, which is also a permutation matrix.)

Let T denote the circle group: the multiplicative group of all complex numbers
of absolute value 1. For a fixed real number y, show that f;: R —T, given
by f,(x) = e”%, is a homomorphism. (The functions f, are the only continuous
homomorphisms R — T.)

If a is a fixed element of a group G, define y,: G — G by y,(x) = axx*a™' (y, is
called conjugation by a).
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(i) Prove that y, is an isomorphism.
(i) If @, b € G, prove that y,p, = V4up.*

1.48. If G denotes the multiplicative group of all complex nth roots of unity (see
Exercise 1.35), then G = Z,,.

1.49. Describe all the homomorphisms from Z,, to itself. Which of these are
isomorphisms?

1.50. (i) Prove that a group G is abelian if and only if the function f: G — G, defined
by f(a) = a™, is a homomorphism.

(i) Let f: G — G be an isomorphism from a finite group G to itself. If f has no
nontrivial fixed points (i.e., f(x) = x implies x = e) and if f o f is the identity
function, then f(x) = x™* for all x € G and G is abelian. (Hint. Prove that
every element of G has the form x* f(x)™!.)

1.51 (Kaplansky). An element a in a ring R has a left quasi-inverse if there exists an
element b € R with a + b — ba = 0. Prove that if every element in a ring R
except 1 has a left quasi-inverse, then R is a division ring. (Hint. Show that
R — {1} is a group under the operationao b =a + b — ba)

1.52. (i) If G is the multiplicative group of all positive real numbers, show that
log: G — (R, +) is an isomorphism. (Hint: Find a function inverse to log.)
(ii) Let G be the additive group of Z[x] (all polynomials with integer coeffi-
cients) and let H be the multiplicative group of all positive rational numbers.
Prove that G =~ H. (Hint. Use the Fundamental Theorem of Arithmetic.)

Having solved Exercise 1.52, the reader may wish to reconsider the ques-
tion when one “knows” a group. It may seem reasonable that one knows a
group if one knows its multiplication table. But addition tables of Z[x] and
of H are certainly well known (as are those of the multiplicative group of
positive reals and the additive group of all reals), and it was probably a
surprise that these groups are essentially the same. As an alternative answer
to the question, we suggest that a group G is “known” if it can be determined,
given any other group H, whether or not G and H are isomorphic.

# 1t is easy to see that 5,: G — G, defined by 6,(x) = a™! * x * g, is also an isomorphism; however,
6,0, = 6y ... Since we denote the value of a function f by f(x), that is, the symbol f is on the left,
the isomorphisms y, are more natural for us than the &,. On the other hand, if one denotes J,(x)
by x° then one has put the function symbol on the right, and the §, are more convenient:
x*® = (x", Indeed, many group theorists nowadays put all their function symbols on the right!



CHAPTER 2

The Isomorphism Theorems

We now drop the * notation for the operation in a group. Henceforth, we
shall write ab instead of a * b, and we shall denote the identity element by 1
instead of by e.

Subgroups

Definition. A nonempty subset S of a group G is a subgroup of G if se G
implies s™* € G and s, t € G imply st € G.

If X is a subset of a group G, we write X < G; if X is a subgroup of G, we
write X < G.

Theorem 2.1. If S < G (i.e., if S is a subgroup of G), then S is a group in its own
right.

Proof. The hypothesis “s, t € § imply st € §” shows that S is equipped with
an operation (if u: G x G — G is the given multiplication in G, then its restric-
tion u|S x S has its image contained in S). Since S is nonempty, it contains
an element, say, s, and the definition of subgroup says that s™! € S; hence,
1 = ss7! € S. Finally, the operation on § is associative because a(bc) = (ab)c
for every a, b, ce G implies, in partlcular that a(bc) = (ab)c for every
a,b,ceS. @

Verifying associativity is the most tedious part of showing that a given set
G equipped with a multiplication is actually a group. Therefore, if G is given
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as a subset of a group G*, then it is much simpler to show that G is a
subgroup of G* than to verify all the group axioms for G. For example, the
four permutations of the 4-group V form a group because they constitute a
subgroup of Sy.

Theorem 2.2. A subset S of a group G is a subgroup if and only if 1€ S and
s,teSimplyst™teSs.

Proof. Ifse S, then Is™' =s1eS,and if s, t € S, then s(t ™)' = st € S. The
converse is also easy.

Definition. If G is a group and a € G, then the cyclic subgroup generated by a,
denoted by <a), is the set of all the powers of a. A group G is called cyclic if
there is a € G with G = {a); that is, G consists of all the powers of a.

It is plain that {(a) is, indeed, a subgroup of G. Notice that different ele-
ments can generate the same cyclic subgroup. For example, {a) = {a™').

Definition. If G is a group and a € G, then the order of a is |{a)|, the number
of elements in {a).

Theorem 2.3. If G is a group and a € G has finite order m, then m is the smallest
positive integer such that a™ = 1.

Proof. If a =1, then m = 1. If a # 1, there is an integer k > 1 so that 1, a,
a2, ...,a* " are distinct elements of G while a* = a' for some i with 0 <i <
k — 1. We claim that a* =1 =4° If a* = a' for some i > 1, then k —i <
k — 1 and a** = 1, contradicting the original list 1, a, %, ..., a*~* having no
repetitions. It follows that k is the smallest positive integer with a* = 1.

It now suffices to prove that k = m; that is, that {a) = {1, a,4% ..., a*"'}.
Clearly <a) > {1, a,a%, ..., a*"*}. For the reverse inclusion, let a’ be a power
of a. By the division algorithm, [ = gk + r, where 0 <r < k. Hence, a' =
a®*" = q%q" = ¢ (because a* = 1), and so a' = a"e {1, a4, 4%, ..., a*"1}.

If @ € S, is written as a product of disjoint cycles, say, « = f, ... f,, where f,
is an ri-cycle for every i, then Exercise 1.12(iii) shows that the order of « is
lem{ry, ..., 1}

Corollary 2.4. If G is a finite group, then a nonempty subset S of G is a
subgroup if and only if s,t € S imply st € S.

Proof. Necessity is obvious. For sufficiency, we must show that s € § im-
plies s™! € S. It follows easily by induction that S contains all the powers of s.
Since G is finite, s has finite order, say, m. Therefore, | =s™ € S and s™* =

smle s,
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ExaMPLE 2.1. If G is a group, then G itself and {1} are always subgroups (we
shall henceforth denote the subgroup {1} by 1). Any subgroup H other than
G is called proper, and we denote this by H < G; the subgroup 1 is often
called the rtrivial subgroup.

ExaMPLE 2.2. Let f: G > H be a homomorphism, and define
kernel f = {ae G: f(a) =1}

and
image f = {he€ H: h = f(a) for some a € G}.

Then K = kernel f is a subgroup of G and image f is a subgroup of H. To see
that K < G, note first that f(1) = 1, so that 1€ K. Also, if s, t € K, then
f(s)=1= f(¢), and so f(st™") = f(s)f() ' = 1; hence st™' € K,and so K is a
subgroup of G. It is equally easy to see that image f is a subgroup of H.

Notation. We usually write ker f instead of kernel f and im f instead of
image f.

We have been using multiplicative notation, but it is worth writing the
definition of subgroup in additive notation as well. If G is an additive group,
then a nonempty subset S of G is a subgroup of G if s € S implies —s € S and
s, te S imply s + t € S. Theorem 2.2 says that S is a subgroup if and only if
OeSands, teSimplys—teS.

Theorem 2.5. The intersection of any family of subgroups of a group G is
again a subgroup of G.

Proof. Let {S;: i € I} be a family of subgroups of G. Now 1 € §; for every i, and
sole()S.1Ifa be (S, then a, be S forevery i, and so ab™ € for every
i;hence,ab™ € [)S;,and ()5, <G. @

Corvollary 2.6. If X is a subset of a group G, then there is a smallest subgroup
H of G containing X ; that is, if X < Sand S < G, then H < 8S.

Proof. There are subgroups of G containing X; for example, G itself contains
X; define H as the intersection of all the subgroups of G which contain X.
Note that H is a subgroup, by Theorem 2.5,and X <« H.If § < Gand X < §,
then S is one of the subgroups of G being intersected to form H; hence,
H < S, and so H is the smallest such subgroup.

Definition. If X is a subset of a group G, then the smallest subgroup of G
containing X, denoted by (X ), is called the subgroup generated by X. One
also says that X generates (X ).

In particular, if H and K are subgroups of G, then the subgroup {H u K)
is denoted by H v K.
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If X consists of a single element a, then (X ) = <{a), the cyclic subgroup
generated by a. If X is a finite set, say, X = {ay, a,, ..., a,} then we write
(XY =Kay, ay,...,a,) instead of (XD = ({a, a,,..., a,}>.

Here is a description of the elements in (X .

Definition. If X is a nonempty subset of a group G, then a word on X is an
element w € G of the form

w=Xx{'x52... x",

where x;€ X, e, = +1,andn > 1.

Theorem 2.7. Let X be a subset of a group G. If X = (F, then {X>=1,if X
is nonempty, then (X is the set of all the words on X.

Proof. If X = (J, then the subgroup 1 = {1} contains X, and so (X) = 1. If
X is nonempty, let W denote the set of all the words on X. It is easy to see
that W is a subgroup of G containing X: 1 = x7'x, € W; the inverse of a
word is a word; the product of two words is a word. Since {X ) is the smallest
subgroup containing X, we have (X) < W. The reverse inclusion also holds,
for every subgroup H containing X must contain every word on X. There-
fore, W < H, and W is the smallest subgroup containing X.

EXERCISES

2.1. Show that A,, the set of all even permutations in S,, is a subgroup with n!/2
elements. (4, is called the alternating group on n letters.) (Hint. Exercise 1.21.)

2.2. If k is a field, show that SL(n, k), the set of all n x n matrices over k having
determinant 1, is a subgroup of GL(n, k). (SL(n, k) is called the special kinear
group over k.)

2.3. The set theoretic union of two subgroups is a subgroup if and only if one is
contained in the other. Is this true if we replace “two subgroups” by “three
subgroups™?

2.4. Let § be a proper subgroup of G. If G — § is the complement of S, prove that
{G—8)=0G.

2.5. Let f: G —» H and g: G — H be homomorphisms, and let
' K ={aeG: f(a) = g(a)}.
Must K be a subgroup of G?

2.6. Suppose that X is a nonempty subset of a set Y. Show that Sy can be imbedded in
Sy; that is, Sy is isomorphic to a subgroup of Sy.
)
2.7. If n> 2, then A, is generated by all the 3-cycles. (Hint. (if)( jk) = (ijk) and (ij) (k) =
(k) (jkI).)
2.8. Imbed S, as a subgroup of 4,,.,, but show, for n > 2, that S, cannot be imbedded
in An+1 .
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29. (i) Prove that S, can be generated by (1 2), (1 3),...,(1 n).
(ii) Prove that S, can be generated by (1 2),(2 3),...,(f i+ 1),...,(n — L, n).
(i) Prove that S, can be generated by the two elements (1 2)and (1 2 ... n).
(iv) Prove that S, cannot be generated by (1 3) and (1 2 3 4). (Thus, S, can be
generated by a transposition and a 4-cycle, but not every choice of transpo-
sition and 4-cycle gives a generating set.)

Lagrange’s Theorem

Definition. If S is a subgroup of G and if t € G, then a right coset of S in G is
the subset of G
St={st:se S}

(a left coset is tS = {ts: s € S}). One calls t a representative of St (and also
of tS).

ExaMpLE 2.3. Let G be the additive group of the plane R?: the elements of G
are vectors (x, y), and addition is given by the “parallelogram law™: (x, y) +
(x',y)=(x+ x', y + y'). Aline £ through the origin is the set of all scalar
multiples of some nonzero vector v = (xg, yo); that is, £ = {rv: r e R}. It is
casy to see that £ is a subgroup of G. If u = (g, b) is a vector, then the coset
u + £ is easily seen to be the line parallel to £ which contains u.

ExAMPLE 2.4. If G is the additive group Z of all integers, if S is the set of all
multiples of an integer n (S = {n), the cyclic subgroup generated by n), and if
aeZ, thenthecoseta + S = {a + gn: g€ Z} = {k € Z: k = a mod n}; that is,
the coset a + (n) is precisely the congruence class [a] of @ mod n.

ExAMPLE 2.5. Let G = S;and let H = {z) = {1, t}, where t = (1 2). The right
cosets of H in G are

H={L<; H(123)={123Q23)}
H(132)={132),Q1 3)}
The left cosets of H in G are
H={l; (123H={123)( 3}
(1 32H={132),2 3}

Notice that distinct right cosets are disjoint (as are distinct left cosets), just as
in the example of parallel lines. Notice also that right cosets and left cosets
can be distinct; for example, (1 2 3)H = H(1 2 3); indeed, (1 2 3)H is not
equal to any right coset of H in G.

A right coset St has many representatives; every element of the form st
for se S is a representative of St. The next lemma gives a criterion for
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determining whether two right cosets of S are the same when a representative
of each is known.

Lemma 2.8.If S < G, then Sa = Sb if and only if ab™! € S (aS = bS if and only
if b laes)

Proof. If Sa = Sb, then a = 1a € Sa = Sb, and so there is s € S with g = sb;
hence, ab™! = s € S. Conversely, assume that ab™! = ¢ € §; hence, a = gb.
To prove that Sa = Sb, we prove two inclusions. If x € Sa, then x = sa for
some s € S, and so x = sob € Sb; similarly, if y € Sb, then y = s'b for some
s'eS,and y = s'6"'a e Sa. Therefore, Sa = Sbh.

Theorem 2.9. If S < G, then any two right (or any two left) cosets of S in G are
either identical or disjoint.

Proof. We show that if there exists an element x € San Sb, then Sa = Sh.
Such an x has the form sb = x = ta, where s,t € S. Hence, ab™! =t"1s €S,
and so the lemma gives Sa = Sb.

Theorem 2.9 may be paraphrased to say that the right cosets of a subgroup
S comprise a partition of G (each such coset is nonempty, and G is their
disjoint union). This being true, there must be an equivalence relation on G
lurking somewhere in the background: it is given, for a,be G, by a=b if
ab™! € S, and its equivalence classes are the right cosets of S.

Theorem 2.10. If S < G, then the number of right cosets of S in G is equal to
the number of left cosets of S in G.

Proof. We give a bijection f: # — %, where # is the family of right cosets of
Sin G and & is the family of left cosets. If Sa € £, your first guess is to define
f(Sa) = a8, but this does not work. Your second guess is to define f(Sa) =
a~'S, and this does work. It must be verified that f is well defined; that is, if
Sa = Sb, then a™'S = b™' S (this is why the first guess is incorrect). It is rou-
tine to prove that f is a bijection. [

Definition. If S < G, then the index of S in G, denoted by [G:S], is the
number of right cosets of S in G.

Theorem 2.10 shows that there is no need to define a right index and a left
index, for the number of right cosets is equal to the number of left cosets.

It is a remarkable theorem of P. Hall (1935) that in a finite group G, one
can always (as above) choose a common system of representatives for the right
and left cosets of a subgroup S; if [G : §] = n, there exist elements ¢,, ..., ¢, €
G so that t,S,...,t,S is the family of all left cosets and St,, ..., St, is the
family of all right cosets.
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Definition. If G is a group, then the order of G, denoted by |G|, is the number
of elements in G.

The next theorem was inspired by work of Lagrange (1770), but it was
probably first proved by Galois.

Theorem 2.11 (Lagrange). If G is a finite group and S < G, then |S| divides | G|
and [G: 8] =|G|/|S].

Proof. By Theorem 2.9, G is partitioned into its right cosets
G=St,uSt,u---uUSt,,

and so |G| = Y 1, |St;|. But it is easy to see that f;: S — St,, defined by fi(s) =
st;, is a bijection, and so |St;| = |S| for all i. Thus |G| = n|S|, where n =
[G:S].

Corollary 2.12. If G is a finite group and a € G. Then the order of a divides | G|.

Proof. By definition, the order of a is |{a)|, and so the result follows at once
from Lagrange’s theorem. &

Definition. A group G has exponent nif x" = 1 for all x € G.

Remark. Some people use the term “exponent” to mean the smallest possible
nsuch that x” = 1 for all x € G. For us, the 4-group V has exponent 4 as well
as exponent 2.

Lagrange’s theorem shows that a finite group G of order n has exponent n.

Corollary 2.13. If p is a prime and |G| = p, then G is a cyclic group.

Proof. Take ae G with a 5 1, Then the cyclic subgroup <a) has more than
one element (it contains g and 1), and its order |<{a)| > 1 is a divisor of p.
Since p is prime, |{a)| = p =G|, and so {a) = G. 1

Corollary 2.14 (Fermat). If p is a prime and a is an integer, then a? = a mod p.

Proof. Let G = U(Z,), the multiplicative group of nonzero elements of Z;
since p is prime, Z,, is a field and G is a group of order p — 1.

Recall that for integers a and b, one has a = b mod p if and only if [a] =
[b1inZ,. If ae Z and [a] = [0] in Z,,, then it is clear that [a]? = [0] = [a].
If [a] # [0], then [a] € G and so [a]?* = [1], by Corollary 2.12; multiplying
by [a] now gives the desired result.
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EXERCISES

2.10. If G is a finite group and K < H < G, then
[G:K]=[G:H][H:K].
2.11. Let a € G have order n = mk, where m, k > 1. Prove that a* has order m.

2.12. (i) Prove that every group G of order 4 is isomorphic to either Z, or the
4-group V.
(ii) If G is a group with |G| < 5, then G is abelian.
2.13. I a e G has order n and k is an integer with a* = 1, then n divides k. Indeed,
{k € Z: a* = 1} consists of all the multiplies of n.

2.14. If a € G has finite order and f: G — H is a homomorphism, then the order of
f(a) divides the order of a.

2.15. Prove that a group G of even order has an odd number of elements of order 2
(in particular, it has at least one such element). (Hint. If a € G does not have
order 2, thena # a™1)

2.16. If H < G has index 2, then a® € H forevery a e G.

217. (i) Ifa, b e Gcommute and if a™ = 1 = b", then (ab)* = 1, where k = lem {m, n}.
(The order of ab may be smaller than k; for example, take b = a™1.) Con-
clude that if a and b have finite order, then ab also has finite order.

(i) Let G = GL(2, Q) and let 4, B € G be given by

a=|? 1 nd B o 1

= al = .
1 0 -1 -1

Show that A* = E = B3, but that 4B has infinite order.

2.18. Prove that every subgroup of a cyclic group is cyclic. (Hint. Use the division
algorithm.)

2.19. Prove that two cyclic groups are isomorphic if and only if they have the same
order.

Definition. The Euler p-function is defined as follows:

p(l)=1 ifn>1, then @(n)=|{k:1<k<nand(k n)=1}|

2.20. If G = <a) is cyclic of order n, then a* is also a generator of G if and only if
(k, n) = 1. Conclude that the number of generators of G is ¢(n).

2.21. (i) Let G = {a) have order rs, where (r, s) = 1. Show that there are unique
b, c € G with b of order r, ¢ of order s, and a = bc.
(i) Use part (i) to prove that if (r, s} = 1, then @(rs) = @)@ (s).
222. (i) If p is prime, then @(p*) = p* — p*~! = p"(1 — 1/p).
(ii) If the distinct prime divisors of n are py, ..., p,, then
o) =n(l —1/py)...(1 — 1/p,).
2.23 (Ealer). If (r, s) = 1, then s*® = 1 mod r. (Hint. The order of the group of units
U(z,)is o(n)
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Cyclic Groups

Lemma 2.15. If G is a cyclic group of order n, then there exists a unique
subgroup of order d for every divisor d of n.

Proof. If G = {a), then {a") is a subgroup of order d, by Exercise 2.11.
Assume that S = (b) is a subgroup of order d (S must be cyclic, by Exercise
2.18). Now b? = 1; moreover, b = a™ for some m. By Exercise 2.13, md = nk
for some integer k, and b = a" = (a"?)*. Therefore, <b) < (a"*), and this
inclusion is equality because both subgroups have order d.

Theorem 2.16. If n is a positive integer, then

n=7y o),

dn

where the sum is over all divisors d of nwith 1 < d <n.

Proof. If C is a cyclic subgroup of a group G, let gen(C) denote the set of all
its generators. It is clear that G is the disjoint union

G = Jgen(C),

where C ranges over all the cyclic subgroups of G. We have just seen, when
G is cyclic of order n, that there is a unique cyclic subgroup C, of order d for
every divisor d of n. Therefore, n = |G| =Y 4, |gen(C))|. In Exercise 2.20,
however, we saw that |gen(C,)| = ¢(d); the result follows.

We now characterize finite cyclic groups.

Theorem 2.17. A group G of order nis cyclic if and only if, for each divisor d of
n, there is at most one cyclic subgroup of G having order d.

Proof. If G is cyclic, then the result is Lemma 2.15. For the converse, recall
from the previous proof that G is the disjoint union () gen(C), where C
ranges over all the cyclic subgroups of G. Hence, n = |G| =) |gen(C)| <
Y aw @(d) = n, by Theorem 2.16. We conclude that G must have a cyclic sub-
group of order d for every divisor d of n; in particular, G has a cyclic sub-
group of order d = n, and so G is cyclic. &

Observe that the condition in Theorem 2.17 is satisfied if, for every divisor
d of n, there are at most d solutions x € G of the equation x* = 1 (two cyclic
subgroups of order d would contain more than d solutions).

Theorem 2.18.

() If Fis a field and if G is a finite subgroup of F*, the multiplicative group
of nonzero elements of F, then G is cyclic.
(1) If Fis a finite field, then its multiplicative group F* is cyclic.
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Proof. If |G| = n and if a € G satisfies a? = 1, where d|n, then a is a rootin F
of the polynomial x? — 1 € F[x]. Since a polynomial of degree d over a field
has at most d roots, our observation above shows that the hypothesis of
Theorem 2.17 is satisfied. Statement (ii) follows at once from (i).

When F is finite, the proof does not construct a generator of F*. Indeed,
no algorithm is known which displays a generator of Z for all primes p.

Theorem 2.19. Let p be a prime. A group G of order p" is cyclic if and only if it
is an abelian group having a unique subgroup of order p.

Proof. Necessity follows at once from Lemma 2.15. For the converse, let
ae G have largest order, say p* (it follows that g?* =1 for all g€ G). Of
course, the unique subgroup H of order p is a subgroup of {a). If (a> is a
proper subgroup of G, then there is x € G with x ¢ {a) but with x? e {a); let
xP=qa". If k=1, then x? =1 and x € H < {a), a contradiction; we may,
therefore, assume that k > 1. Now

1= ),Cpk _ (xp)pk—l _ a,pk-—i’

so that I = pm for some integer m, by Exercise 2.13. Hence, x? = a™, and so

1 = x"?a". Since G is abelian, x ?a™ = (x'a™)?, and so x *a™ € H < {a).

This gives x € {a), a contradiction. Therefore, G = {a) and hence is cyclic.
o

EXERCISE

2.24. Let G = (A, B) < GL(2, C), where

0 i 01
=00 wme m=| 0 o)

Show that G is a nonabelian group (so G is not cyclic) of order 8 having a unique
subgroup of Qrdcr 2. (See Theorem 4.22.)

Normal Subgroups

This brief section introduces the fundamental notion of normal subgroups.
We begin with a construction which generalizes that of cosets.

Definition. If S and T are nonempty subsets of a group G, then

ST={st:seSand e T}

If S <G, te G, and T = {t}, then ST is the right coset St. Notice that the
family of all the nonempty subsets of G is a semigroup under this operation:
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if S, T, and U are nonempty subsets of G, then (ST)U = S(TU), for either side
consists of all the elements of G of the form (st)u = s(tu) withs e S, t € T, and
ueU.

Theorem 2.20 (Preduct Formula). If S and T are subgroups of a finite group
G, then
|ST||S~T| =|S||T|

Remark. The subset ST need not be a subgroup.

Proof. Define a function ¢: S x T — ST by (s, t)+— st. Since ¢ is a surjection,
it suffices to show that if x € ST, then |¢~!(x)| = |S~ T|. We show that
¢~ (x) = {(sd,d"'t): d € S~ T}. It is clear that ¢! (x) contains the right side.
For the reverse inclusion, let (s, t), (s, 7)€ @ 1(x); that is, s,0€S,t,7€ T,
and st = x = ot. Thus, s o =tt ' e SN T;letd = s~'¢ = tr7! denote their
common value. Then ¢ = s(s™¢) = sd and d™'t = tt™'t = 1, as desired.

There is one kind of subgroup that is especially interesting because it is
intimately related to homomorphisms.

Definition. A subgroup K < G is a normal subgroup, denoted by K < G, if
gKg™!' = K foreveryge G.

If K < G and there are inclusions gKg~! < K for every g € G, then K <1 G:
replacing g by g™, we have the inclusion g7'Kg < K, and this gives the
reverse inclusion K < gKg™'.

The kernel K of a homomorphism f: G — H is a normal subgroup: if
ae K, then f(a) = 1;if g € G, then f(gag™) = f(g)f(a)f(9)™" = f(g)f(9)™" =
1, and so gag~! € K. Hence, gKg™* < K for all g€ G, and so K <1 G. Con-
versely, we shall see later that every normal subgroup is the kernel of some
homomorphism.

In Example 2.5, we saw that if H is the cyclic subgroup of S, generated by
the transposition T = (1 2), then there are right cosets of H which are not left
cosets. When K is normal, then every left coset of K in G is a right coset.
Indeed, a subgroup K of G is normal in G if and only if Kg = gK for every
g € G, for associativity of the multiplication of nonempty subsets gives K =
(Kg)g™! =gKg™. In terms of elements, this says that there is a partial
commutativity when K <1 G: if g € G and k € K, then there exists k' € K with
ak = k'a. It may not be true that g commutes with every element of K. For
example, the reader should check that the cyclic subgroup K of S; generated
by the 3-cycle (1 2 3)is a normal subgroup. It follows that (1 2)K = K(1 2)
even though (1 2) does not commute with (1 2 3).

Normal subgroups are also related to conjugations y,: G — G, where
74(%) = axa™! (see Exercise 2.34 below).
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Definition. If x € G, then a conjugate of x in G is an element of the form axa™!
for some a € G; equivalently, x and y are conjugate if y = y,(x) for some
aeG.

For example, if k is a field, then matrices 4 and B in GL(n, k) are conjugate
if and only if they are similar.

EXERCISES

2.25. If S is a subgroup of G, then SS = S; conversely, show that if S is a finite
nonempty subset of G with SS = S, then S is a subgroup. Give an example to
show that the converse may be false when S is infinite.

2.26. Let {S;: i € I} be a family of subgroups of a group G, let {S;t;: i € I} be a family
of right cosets, and let D = [} S;. Prove that either [ S;t; = & or [} Sit; = Dg
for some g.

2.27. If S and T are (not necessarily distinct) subgroups of G, then an (S-T)-double
coset is a subset of G of the form SgT, where g € G. Prove that the family of all
(S-T)-double cosets partitions G. (Hint. Define an equivalence relation on G by
a=bifb =satforsomeseSandteT)

2.28. Let S, T < G, where G is a finite group, and suppose that G is the disjoint union

i=1

Prove that [G: T]=Y",[S:Sng;Ty;']. (Note that Lagrange’s theorem is
the special case of this when T = 1)
2.29 (i) (H. B. Mamn). Let G be a finite group, and let S and T be (not necessarily
distinct) nonempty subsets. Prove that either G = ST or |G| = |S| + |T).
(i) Prove that every element in a finite field F is a sum of two squares.

2.30. IfS<Gand [G:S]=2,then S < G.

2.31. If G is abelian, then every subgroup of G is normal. The converse is false: show
that the group of order 8 in Exercise 2.24 (the quaternions) is a counterexample.

2.32. If H < G, then H <1 G ifand onlyif, forall x, y € G, xy € H if and only if yx € H.
233. If K <H<Gand K <G, then K < H.

2.34. A subgroup S of G is normal if and only if s € S implies that every conjugate of
sis also in S. Conclude that if § < G, then S <1 G if and only if y(S) < S for every
conjugation y.

2.35. Prove that SL(n, k) < GL(n, k) for every n > 1 and every field k.
2.36. Prove that 4, < S, for every n.

2.37. (i) The intersection of any family of normal subgroups of a group G is itself a
normal subgroup of G. Conclude that if X is a subset of G, then there is a
smallest normal subgroup of G which contains X it is called the normal
subgroup generated by X (or the normal closure of X; it is often denoted by

X9,
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(i) If X = ¢, then (X% = 1. If X # ¢, then (X )¢ is the set of all words on
the conjugates of elements in X.
(iif) I gxg™' € X for all x & X and g € G, then {(X> = (X)° < G.

2.38. If H and K are normal subgroups of G, then H v K < G.

2.39. Prove that if a normal subgroup H of G has index n, then g" € H for all g € G.
Give an example to show this may be false when H is not normal.

Quotient Groups

The construction of the quotient group (or factor group) G/N in the next
theorem is of fundamental importance.

We have already seen that if X and Y are nonempty subsets of a group G,
then their product

XY={xy:xeXand ye Y}

defines an associative operation on the family of all nonempty subsets of G.
If H is a subgroup of G, then the family of all right cosets of H in G need not
be closed under this operation. In Example 2.5, we looked at the right cosets
of H = {(1 2})in S,. The product of right cosets

H(1 2 3)HA 3 2)={(1 2 3),(1 3 2,2 3),13)}

is not a right coset of H, for it has four elements while right cosets of H have
two elements. In the proof of the next theorem, we shall see that if H is a
normal subgroup, then the product of two right cosets of H is also a right
coset of H.

Theorem 2.21. If N < G, then the cosets of N in G form a group, denoted by
G/N, of order [G: N].

Proof. To define a group, one needs a set and an operation. The set here is
the family of all cosets of N in G (notice that we need not bother with the
adjectives “left” and “right” because N is a normal subgroup). As operation,
we propose the multiplication of nonempty subsets of G defined earlier. We
have already observed that this operation is associative. Now

NaNb = Na(a 'Na)b (because N is normal)
= N(aa™*)Nab = NNab = Nab (because N < G).

Thus, NaNb = Nab, and so the product of two cosets is a coset. We let the
reader prove that the identity is the coset N = N1 and that the inverse of Na
is N(a™*). This group is denoted by G/N, and the definition of index gives
|G/N|=[G:N].
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Corollary 2.22. If N <1 G, then the natural map (i.e., the function v.: G - G/N
defined by v(a) = Na) is a surjective homomorphism with kernel N.

Proof. The equation v(a)v(b) = v(ab) is just the formula NaNb = Nab; hence,
v is a homomorphism. If Na € G/N, then Na = v(a), and so v is surjective.
Finally, v(a) = Na = N ifand only ifa € N, by Lemma 2.8, so that N = ker v.

¢

We have now shown that every normal subgroup is the kernel of some
homomorphism. Different homomorphisms can have the same kernel. For
example, if a=(1 2) and b = (1 3), then y,, y,: S; = S;3 are distinct and
kery, =1 =kery,.

The quotient group construction is a generalization of the construction of
Z, from Z. Recall that if n is a fixed integer, then [a], the congruence class of
amod n, is the coset a + {n). Now {(n) <1 Z, because Z is abelian, and the
quotient group Z/{n) has elements all cosets a + {n), where a € Z, and oper-
ation (a + {n)) + (b + (n)) = a + b + (n); in congruence class notation,
[a] + [b] = [a + b]. Therefore, the quotient group Z/{n) is equal to Z,,, the
group of integers modulo n. An arbitrary quotient group G/N is often called
G mod N because of this example.

Definition. If a, b € G, the commutator' of a and b, denoted by [a, b], is
[a,b] = aba™'h7".

The commutator subgroup (or derived subgroup) of G, denoted by G/, is the
subgroup of G generated by all the commutators.

We shall see, in Exercise 2.43 below, that the subset of all commutators
need not be a subgroup (the product of two commutators need not be a
commutator).

Theorem 2.23. The commutator subgroup G’ is a normal subgroup of G. More-
over, if H <1 G, then G/H is abelian if and only if G’ < H.

Proof. If f: G — G is a homomorphism, then f(G') < G’ because f([a, b]) =
[ fa, fb]. It follows from Exercise 2.34 that G’ < G.

Let H <1 G. If G/H is abelian, then HaHb = HbHa for all a, b € G; that is,
Hab = Hba, and so ab(ba)™ = aba™'b™! = [a, b] € H. By Corollary 2.6, G’ <
H. Conversely, suppose that G' < H. For every a, be G, ab(ba)™ = [a,b] €
G’ < H, and so Hab = Hba; that is, G/H is abelian.

! Those who write conjugates as b~ab write commutators as a~*b™'ab.
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EXERCISES

2.40.

241.

242

2.43.

Let H < G, let v: G —» G/H be the natural map, and let X < G be a subset such
that v(X) generates G/H. Prove that G = (H U X).

Let G be a finite group of odd order, and let x be the product of all the elements
of G in some order. Prove that x € G'.

(P. Yff). For any group G, show that G’ is the subset of all “long commutators™:
G' ={a,a,...a,a7'a;"...a; 1 a;e Gand n > 2}.
(Hint (P.M. Weichsel).
(aba™*b™Y)(cdc™'d ™) = a(ba™ )b c(de™)d " ta~ @b~ )b (cd 71)d.)

The fact that the set of all commutators in a group need not be a subgroup is an
old result; the following example is due to P.J. Cassidy (1979).
(i) Let k[x, y] denote the ring of all polynomials in two variables over a field
k, and let k[x] and k[ y] denote the subrings of all polynomials in x and in
, respectively. Define G to be the set of all matrices of the form

1 flx) hix,y)
A=10 1 gy |,
0 0 1

where f(x) € k[x], g(y) € k[y], and h(x, y) € k[x, y]. Prove that G is a
multiplicative group and that G’ consists of all those matrices for which
S(x) =0=g(y). (Hint. If A is denoted by (f, g, h), then (f, g, H)(f', g’, ') =
(f+/.9+g h+W + fg'). M h=h(x,y) =} a;x'y/, then

(O, 07 h) = H [(aijx s O’ 0)’ (O) st O)])

(i) If (0, 0, h) is a commutator, then there are polynomials f(x), f'(x) € k[x]
and g(y), g'(y) € k[y] with h(x, y) = f(x)g'(y) — " (x)g(»)-

(iif) Show that h(x, y) = x* + xy + y* does not possess a decomposition as
in part (i), and conclude that (0, 0, h) € G’ is not a commutator. (Hint. If
Sx) =Y bx'and f'(x) = Y ¢;x/, then there are equations

bog'(y) — cog(y) = y*
big'(y) — c19(») =y,
byg'(y) — c29(y) = 1.

Considering k[x, y] as a vector space over k, one obtains the contradiction
that the independent set {1, y, y*} is in the subspace spanned by {g, g'}.)

Remark. With a little ring theory, one can modify this construction to
give a finite example. If k = Z,, and k[x, y] is replaced by its quotient ring
k[x, y1/I, where I is the ideal generated by {x>, y3, x?y, xy?}, then the cor-
responding group G has order p*2. Using the computer language CAYLEY
(now called MAGMA), I found that the smallest group in which the prod-
uct of two commutators is not a commutator has order 96. There are
exactly two such groups: in CAYLEY notation, they are library g96n197
and library g96n201; in each of these groups, the commutator subgroup has
order 32 while there are only 29 commutators.
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There is an explicit example in [Carmichael, p. 39] of a group G < §,,
(generated by eight permutations) with |G| = 256, |G'| = 16, and with a
specific element of G’ which is not a commutator.

The Isomorphism Theorems

There are three theorems, formulated by E. Noether, describing the relation-
ship between quotient groups, normal subgroups, and homomorphisms. A
testimony to the elementary character of these theorems is that analogues of
them are true for most types of algebraic systems, e.g., groups, semigroups,
rings, vector spaces, modules, operator groups.

Theorem 2.24 (First Isomorphism Theorem). Let f: G — H be a homomor-
phism with kernel K. Then K is a normal subgroup of G and G/K = im f.

Proof. We have already noted that K <1 G. Define ¢: G/K — H by

¢(Ka) = f(a).

To see that ¢ is well defined, assume that Ka = Kb; that is, ab™ € K. Then
1= f(ab™) = f(a)f(b)"", and f(a) = f(b); it follows that ¢(Ka) = ¢(Kb), as
desired. Now ¢ is a homomorphism:

@(KaKb) = ¢(Kab) = f(ab) = f(a)f(b) = ¢(Ka)p(Kb).

It is plain that im ¢ = im f. Finally, we show that ¢ is an injection. If ¢(Ka) =
o(Kb), then f(a) = f(b); hence f(ab™') =1, ab™ € K, and Ka = Kb (note
that ¢ being an injection is the converse of ¢ being well defined). We have
shown that ¢ is an isomorphism.

It follows that there is no significant difference between a quotient group
and a homomorphic image.
If v: G —» G/Kis the natural map, then the following “commutative dia-
gram” (i.e., f = ¢ o v) with surjection v and injection ¢ describes the theorem:
f

G——— H

N A
G/K

It is easy to describe ¢ !:im f — G/K: if x € im f, then there exists a e G
with f(a) = x, and ¢~!(x) = Ka. The reader should check that ¢~ is well
defined; that is, if f(b) = x, then Ka = Kb.

Given a homomorphism f, one must always salivate, like Pavlov’s dog, by
asking for its kernel and image; once these are known, there is a normal
subgroup and f can be converted into an isomorphism. Let us illustrate this
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by solving Exercise 2.19: If G = {g) and H = {h) are cyclic groups of order
n, then G =~ H. Define a homomorphism f: Z — G by f(k) = g*. 1t is easy to
see that f is a surjection, while Exercise 2.13 shows that ker f = {(n). The first
isomorphism theorem gives Z/<{n) =~ G. Similarly, Z/<{n)> ~ H,and so G =~ H.
Since Z/{ny = Z,, every cyclic group of order n is isomorphic to Z,.

Lemma 2.25. If S and T are subgroups of G and if one of them is normal, then
ST=Sv T=TS.

Proof. Recall that ST is just the set of all products of the form sz, where s S
and t € T; hence ST and TS are subsets of S v T containing S T. If ST and
TS are subgroups, then the reverse inclusion will follow from Corollary 2.6.
Assume that T <1 G. If 5,¢, and s,t, € ST, then

(5110)(5222) 7" = syty25 53"
= 5y(s3's2) 185753
=5.5;'3
= (515" )t € ST,

where 13 = 5,(t,1;')s3' € T because T < G. Therefore, ST =S v T. A simi-
lar proof shows that TS is a subgroup,andso TS=8S v T = ST.

Suppose that § < H < G are subgroups with § < G. Then § < H and the
quotient H/S is defined; it is the subgroup of G/S consisting of all those cosets
Sh with he H. In particular, if S <G and T is any subgroup of G, then
S < ST < G and ST/S is the subgroup of G/S consisting of all those cosets
Sst, where st € ST. Since Sst = St, it follows that ST/S consists precisely of all
those cosets of S having a representative in T.

Recall the product formula (Theorem 2.20): If S, T < G, then |ST||SNT| =
|S||T); equivalently, |T|/|S~T|=|ST|/|S]. This suggests the following
theorem.

Theorem 2.26 (Second Isomorphism Theorem). Let N and T be subgroups of
G with N normal. Then N n T is normal in T and T/(N n T) =~ NT/N.

Remark. The following diagram is a mnemonic for this theorem:

SN
N



Correspondence Theorem 37

Proof. Let v: G — G/N be the natural map, and let v' = v|T, the restriction of
v to T Since v’ is a homomorphism whose kernel is N n T, Theorem 2.24
gives NNT < Tand T/(N n T) = im v'. Our remarks above show that im v/
is just the family of all those cosets of N having a representative in T} that is,
im v’ consists of all the cosets in NT/N.

Theorem 2.27 (Third Isomorphism Theorem). Let K < H < G, where both K
and H are normal subgroups of G. Then H/K is a normal subgroup of G/K and

(G/K)/(H/K) = G/H.

Proof. Again we let the first isomorphism theorem do the dirty work. Define
f:G/K — G/H by f(Ka) = Ha (this “enlargement of coset” map f is well
defined because K < H). The reader may check easily that f is a surjection
with kernel H/K.

Imagine trying to prove the third isomorphism theorem directly; the ele-
ments of (G/K)/(H/K) are cosets whose representatives are cosets!

EXERCISES
2.44. Prove that a homomorphism f: G — H is an injection if and only if ker f = 1.

2.45. (i) Show that the 4-group V is a normal subgroup of S,. (We shall do this more
efficiently in the next chapter.)

(i) If K = {(1 2)(3 4)), show that K <V but that K is not a normal subgroup

of S,. Conclude that normality need not be transitive; that is, K < H and
H <1 G need not imply K < G.

2.46. Let N < G and let f/: G — H be a homomorphism whose kernel contains N.
Show that f induces a homomorphism f,: G/N — H by [, (Na) = f(a).

247. If S, T < G, then ST is a subgroup of G if and only if ST = TS.

2.48 (Modular Law). Let 4, B, and C be subgroups of G with A <B. If AnC =

B~ C and AC = BC (we do not assume that either AC or BC is a subgroup),
then A = B. .

249 (Dedekind Law). Let H, K, and L be subgroups of G with H < L. Then
HK nL = H(K n L) (we do not assume that either HK or H(K n L) is a sub-
group).

2.50. Let f: G— G* be a homomorphism and let S* be a subgroup of G*. Then
F7HS*) = {x € G: f(x) e S*} is a subgroup of G containing ker /.

Correspondence Theorem

The theorem in this section should be called the fourth isomorphism theo-
rem. Let X and X* be sets. A function f: X — X* induces a “forward
motion” and a “backward motion” between subsets of X and subsets of X*.
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The forward motion assigns to each subset S < X the subset f(S)=
{f(s): s € S} of X*; the backward motion assigns to each subset S* of X* the
subset /71(S*) = {x € X: f(x) € S*} of X. Moreover, if f is a surjection, these
motions define a bijection between all the subsets of X* and certain subsets
of X. The following theorem is the group-theoretic version of this.

Theorem 2.28 (Correspondence Theorem). Let K <1 G and let v: G —~ G/K be
the natural map. Then S + v(S) = S/K is a bijection from the family of all
those subgroups S of G which contain K to the family of all the subgroups
of G/K.

Moreover, if we denote S/K by S*, then:

() T<Sifandonlyif T* < S* andthen [S:T] = [S*: T*]; and
(i) T < Sif and only if T* < S*, and then S/T =~ S*/T*.

Remark. A mnemonic diagram for this theorem is:

G

S/K = §*

S G/K

RN

T

e
\T/K =T*

/

Proof. We show first that § +— S/K is an injection: if S and T are subgroups
containing K, and if S/K = T/K, then S = T. To see this, let s € S; since
S/K = T/K, there exists t € T with Ks = Kt. Hence, s = kt for some ke K <
T and s € T. The reverse inclusion is proved similarly. To see that the corre-
spondence S — S/K is a surjection, we must show that if 4 < G/K, then
there is a subgroup S of G containing X with A = S/K. By Exercise 2.50,
S =v7!(A) s a subgroup of G containing K; moreover, that v is a surjection?
implies that S/K = v(S) = vww™!(4) = A. ,
It is plain that if K < T < S, then T/K < S/K. To prove that [S: T] =
[S*: T*], it suffices to show that there is a bijection from the family of all
cosets of the form Ts, where s € S, to the family of all cosets T*s* where
s* € S*. The reader may check that o, defined by a: Ts — T*v(s), is such a

i
N

1

2Iff: X > X*isafunctionand A < X*, then ff ~}(A4) c A;if fis a surjection, then ff ~1(4) = A.
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bijection. (If G is finite, then we may prove [S: T] = [S*: T*] as follows:
[S*:T*]=|8*/T* = |S/K|/| T/K]
= (ISI/IKDAITI/IK]) = |S|/|T] = [S: T])

If T <S8, then the third isomorphism theorem gives T/K < S/K and
(S/K)(T/K) = S/K; that is, T* < §* and S*/T* = S/T. It remains to
show that if T* < S* then T <S. The reader may verify that T =
ker uvo: S — S*/T*, where vy = v|S and p: S* — §*/T* is the natural map.

[}

EXERCISES

2.51. If G’ < H < G, where G' is the commutator subgroup of G, then H <1 G and
G/H is abelian.

2.52. Give an example to show that if H < G, then G need not contain a subgroup
isomorphic to G/H.

2.53. Prove that the circle group T is isomorphic to R/Z.

254, (i) Let HLK < G.If(|H|,|K|)=1,then HhNK = 1.
(ii) Let G be a finite group, and let H be a normal subgroup with (|H|, [G: H]) =
1. Prove that H is the unique such subgroup in G. (Hint: If K is another
such subgroup, what happens to K in G/H?)

2.55 (Zassenhaus). Let G be a finite group such that, for some fixed integer n > 1,
(xy)* =x"y"forall x y € G.1f G[n] = {ze G: z" = 1} and G" = {x": x € G}, then
both G[n] and G” are normal subgroups of G and |G"| = [G : G[n]].

2.56. A subgroup H < G is a maximal normal subgroup of G if there is no normal
subgroup N of G with H < N < G. Prove that H is a maximal normal subgroup
of G if and only if G/H has no normal subgroups (other than itself and 1).

Definition. A group G # 1 is simple if it has no normal subgroups other than
G and 1.

We may restate Exercise 2.56: H is a maximal normal subgroup of G if and
only if G/H is simple.

2.57. An abelian group is simple if and only if it is finite and of prime order.

2.58. Let M be a maximal subgroup of G; that is, there is no subgroup S with M <
S < G. Prove that if M <1 G, then [G : M] is finite and equal to a prime

2.59 (Schur). Let f: G — H be a homomorphism that does not send every element of
G into 1.If G is simple, then f must be an injection.
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Direct Products

Definition. If H and K are groups, then their direct product, denoted by
H x K, is the group with elements all ordered pairs (h, k), where h e H and
k € K, and with operation

(h, K)(h', k') = (hi', KI').

It is easy to check that H x K is a group: the identity is (1, 1); the inverse
(h, k)™ is (b7, k™!). Notice that neither H nor K is a subgroup of H x K, but
H x K does contain isomorphic replicas of each, namely, H x 1 = {(h, 1):
heH}and 1 x K = {(1, k): ke K}.

EXERCISES

2.60. (i) Show that (h, 1)e H x 1 and (1, k) e 1 x K commute.
(ii) H x 1and 1 x K are normal subgroups of H x K.
i) (Hx 1)n(1 x Ky=1and (H x 1)(1 x K)=H x K.

2.61. H x K is abelian if and only if both H and K are abelian.

2.62. (i) Provethat Zg = Z, x Z,.
(i) If (m,n)=1, then Z,,=7Z, x Z,. (Hint. Use the Chinese Remainder
Theorem).

2.63. If pis a prime, prove that Z , £ Z, x Z,,.

2.64. Let u: G x G — G be the operation on a group G; that s, y(a, b) = ab. If G x G
is regarded as the direct product, prove that u is a homomorphism if and only
if G is abelian.

2.65. Let 4 be an abelian group, and let a: H — A4 and f: K — 4 be homomorphisms.
Prove that there exists a unique homomorphism y: H x K — A4 with y(h, 1) =
a(h) for all h € H and y(1, k) = B(k) for all k € K. Show that this may be false if
A is not abelian.

We now take another point of view. It is easy to multiply two polynomials
together; it is harder to factor a given polynomial. We have just seen how to
multiply two groups together; can one factor a given group?

Theorem 2.29. Let G be a group with normal subgroups H and K. If HK =G
and HNK =1, then G ~ H x K.

Proof. If a € G, then a = hk for some h € H and k € K (because G = HK). We
claim that & and k are uniquely determined by a. If a = h k, for h, € H and
k, e K, then hk = h k, and h™*h, = kk;' e Hn K = 1; hence h = h, and
k=k,.

Define f: G — H x K by f(a) = (h, k), where a = hk. Is f a homomorphism?
If a = hk and a’ = h'kK/, then aa’ = hkh'k’ which is not in the proper form
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for evaluating f. Were it true that kh' = h'k, however, then we could eval-
uate f(aa’). Consider the commutator h'kh'*k™!. Now (h'kh’"')k™! € K (for
h'kh'~! € K because K is normal), and, similarly, h'(kh'~*k™!) € H (because H
is normal); therefore, h'kh'*k™' e HN K =1 and h’ and k commute. The
reader can now check that f is a homomorphism and a bijection; that is, f is
an isomorphism.

We pause to give an example showing that all the hypotheses in Theorem
2.29 are necessary. Let G = S5, H = {(1 2 3)),and K = {(1 2)).Itiseasy to
see that HK = G and H n K = 1; moreover, H < G but K is not a normal
subgroup. The direct product H x K = Z5 x Z, is abelian, and so the non-
abelian group G = S, is not isomorphic to H x K.

Theorem 2.30. If A< Hand B< K, then A x B< H x K and
(H x K)/(A x B) =~ (H/A) x (K/B).

Proof. The homomorphism ¢: H x K — (H/A) x (K/B), defined by ¢(h, k) =
(Ah, Bk), is surjective and ker ¢ = 4 x B. The first isomorphism theorem
now gives the result. H

It follows, in particular, that if N < H, then N x 1 < H x K.
Corollary 2.31. If G = H x K, then G/(H x 1) = K.

There are two versions of the direct product H x K: the external version,
whose elements are ordered pairs and which contains isomorphic copies of
H and K (namely, H x 1 and 1 x K); the interral version which does contain
H and K as normal subgroups and in which HK = G and Hn K = 1. By
Theorem 2.29, the two versions are isomorphic. In the future, we shall not
distinguish between external and internal; in almost all cases, however,
our point of view is internal. For example, we shall write Corollary 2.31 as
(H x K)/H = K.

EXERCISES

2.66. Prove that V= Z, x Z,.

2.67. Show that it is possible for a group G to contain three distinct normal sub-
groups H, K, and L such that G= H x L = K x L; thatis, HL = G = KL and
HnL=1=KnL.(Hint: Try G=V).

2.68. Prove that an abelian group G of order p?, where p is a prime, is either cyclic or
isomorphic to Z, x Z,. (We shall see in Corollary 4.5 that every group of order
p? must be abelian).

2.69. Let G be a group with normal subgroups H and K. Prove that HK = G and
H N K = 1if and only if each a € G has a unique expression of the form a = hk,
where he Hand k e K.
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2.70.

2.71.

2.72.

2.73.

2.74.

2.75.

2.76.

2.77.
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If N <« H x K, then either N is abelian or N intersects one of the factors H or
K nontrivially.

Give an example of an abelian group H x K which contains a nontrivial sub-
group N such that Nn H =1 = N n K. Conclude that it is possible that N <
H x K and N # (N A H) x (N K).

Let G be a group having a simple subgroup H of index 2. Prove that either H is
the unique proper normal subgroup of G or that G contains a normal subgroup
K of order 2 with G = H x K. (Hint. Use the second isomorphism theorem.)

Let 0 denote the trivial homomorphism which sends every element to the iden-
tity. Prove that G ~ H x K if and only if there exist homomorphisms

HLYG6A5K and KA5G3H
with gi = 14 (the identity function on H), pj=1x, pi=0, gj=0, and
(fog)(®)(jop)(x)=xforallxeG.

The operation of direct product is commutative and associative in the following
sense: for groups H, K, and L,

HxK=KxH and Hx(KxLy~(HxK) x L.
Conclude that the notations H; x --- x H, and H',L, H; are unambiguous.

Let G be a group having normal subgroups Hy, ..., H,.

i) If G=<Ui-y HY and, for all j, 1=Hn\J.;H), then Gz
H, x--xH,

(i) If each a € G has a unique expression of the form a = h,...h,, where each
h;e H,then G~ H, x --- X H,.

Let Hy,...,H, be normal subgroups of a group G, and define

@: G- G/H,; x - x G/H, by o(x) =(H,x, ..., H,x).

(i) Prove thatkero = H,n* " N H,.

(ii) If each H; has finite index in G and if (|G/H;|, | G/H;|) = 1 for all i # j, then ¢
is a surjection and

n
[G:Hyn--nH,]=]]I|G/H|.
i=1

Let V be an n-dimensional vector space over a field F. Prove that, as abelian
groups, V= F; x --- X F,, where F; = F for all i.

Definition. If p is a prime, then an elementary abelian p-group is a finite group
G isomorphicto Z, x +** x Z,.

2.78.

Prove that every abelian group G of prime exponent p is elementary abelian,
that G is a vector space over Z,, and that every homomorphism ¢: G- G is a
linear transformation.



CHAPTER 3

Symmetric Groups and G-Sets

The definition of group arose from fundamental properties of the symmetric
group S,. But there is another important feature of S,: its elements are func-
tions acting on some underlying set, and this aspect is not explicit in our
presentation so far. The notion of G-set is the appropriate abstraction of this
idea.

Conjugates

In this section we study conjugates and conjugacy classes for arbitrary groups;
in the next section, we consider the special case of symmetric groups.

Lemma 3.1. If G is a group, then the relation “y is a conjugate of x in G,” that
is, y = gxg~* for some g € G, is an equivalence relation.

Proof. Routine.

Definition. If G is a group, then the equivalence class of a € G under the
relation “y is a conjugate of x in G” is called the conjugacy class of a; it is
denoted by a®.

Of course, the conjugacy class a€ is the set of all the conjugates of a in G.
Exercise 2.45(i) can be rephrased: a subgroup is normal if and only if it is a
(disjoint) union of conjugacy classes. If a and b are conjugate in G, say, b =
gag™*, then there is an isomorphism y: G — G, namely, conjugation by g,
with y(a) = b. It follows that all the elements in the same conjugacy class have
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the same order. In particular, for any two elements x, y € G, the elements xy
and yx have the same order.

If a € G is the sole resident of its conjugacy class, then a = gag™ for all
g € G, that is, a commutes with every element of G.

Definition. The center of a group G, denoted by Z(G), is the set of all a e G
that commute with every element of G.

It is easy to check that Z(G) is 2 normal abelian subgroup of G.
The following subgroup is introduced to count the number of elements in
a conjugacy class.

Definition. If a € G, then the centralizer of a in G, denoted by Cg(a), is the set
of all x € G which commute with a.

It is immediate that C;(a) is a subgroup of G.

Theorem 3.2. If a € G, the number of conjugates of a is equal to the index of
its centralizer:
la®l = [G: Cg(a)],

and this number is a divisor of |G| when G is finite.

Proof. Denote the family of all left cosets of C = C;z(a) in G by G/C, and
define f: a® - G/C by f(gag™) = gC. Now f is well defined: if gag™* = hah™*
for some h e G, then h™'gag™'h = a and h™'g commutes with a; thatis, 1™ g €
C, and so hC = gC. The function f is an injection: if gC = f(gag™) =
f(kak™') = kC for some ke G, then k*ge C, k~'g commutes with a,
k™'gag™'k = a, and gag™! = kak™!; the function f is a surjection: if g € G,
then gC = f(gag™). Therefore, f is a bijection and [a|=|G/C|=
[G:Cgla)]. When G is finite, Lagrange’s theorem applies. &

One may conjugate subgroups as well as elements.

Definition. If H < G and g € G, then the conjugate gHg™ is {ghg™: he H}.
The conjugate gHg™! is often denoted by H?.

The conjugate gHg ™" is a subgroup of G isomorphic to H: if y,: G- G is
conjugation by g, then y,|H is an isomorphism from H to gHg ™.

Note that a subgroup H is a normal subgroup if and only if it has only one
conjugate.

Definition. If H < G, then the normalizer of H in G, denoted by Ng(H), is
Ng(H) = {ae G:aHa™' = H}.



Conjugates 45

It is immediate that N (H) is a subgroup of G. Notice that H < N;(H);
indeed, Ng(H) is the largest subgroup of G in which H is normal.

Theorem 3.3. If H < G, then the number c of conjugates of H in G is equal to
the index of its normalizer: ¢ = [G: Ng(H)], and c divides |G| when G is finite.
Moreover, aHa™ = bHb™" if and only if b™'a € Ng(H).

Proof. Let [H] denote the family of all the conjugates of H, and let G/N
denote the family of all left cosets of N = Ng(H) in G. Define f: [H} - G/N
by f(aHa™') = aN. Now f is well defined: if aHa™ = bHb™! for some b € G,
then b™'aHa'b = H and b 'a normalizes H; that is, b™'ae N, and so
bN = aN. The function f is an injection: if aN = f(aHa™) = f(cHc™') =
¢N for some c € G, then ¢ 'a e N, ¢™'a normalizes H, ¢ 'aHa 'c = H, and
aHa™ = cHc™!; the function f is a surjection: if a € G, then aN = f(aHa™).
Therefore, f is a bijection and |[H]| = |G/N| = [G: Ng;(H)]. When G is finite,
Lagrange’s theorem applies.

The strong similarity of Theorems 3.2 and 3.3 will be explained when we
introduce G-sets.

EXERCISES

3.1. (i) A group G is centerless if Z(G) = 1. Prove that S, is centerless if n > 3.
(i) Prove that 4, is centerless.

3.2. Ifa €S, is an n-cycle, then its centralizer is (o).
3.3. Prove that if G is not abelian, then G/Z(G) is not cyclic.

34. (i) A finite group G with exactly two conjugacy classes has order 2.

(i) Let G be a group containing an element of finite order n > 1 and exactly two
conjugacy classes. Prove that |G| = 2. (Hint. There is a prime p with a? = 1
for all ae G. If p is odd and a € G, then a? = xax™! for some x, and so
a® = x*ax"*forall k > 1.

(There are examples of infinite groups G with no elements of finite order which

do have exactly two conjugacy classes.)

3.5. Prove that Z(G, x --* x G,) = Z(G;) x '+ x Z(G,).

3.6.. (i) Prove, for every a, x € G, that Cg(axa™) = aCg(x)a™".
(i) Prove thatif H < G and h € H, then Cy(h) = Cs(h)n H.

3.7. Let G be a finite group, let H be a normal subgroup of prime index, and let
x € H satisfy Cy(x) < Cg(x). If y € H is conjugate to x in G, then y is conjugate
to xin H.

38. If a,, ..., a, is a list of (not necessarily distinct) elements of a group G, then, for
alli, a;...a,a;...a;_, is conjugate to a, ... qa,.

3.9. (i) Prove that Ng(aHa™!) = aNg(H)a .
(i) If H < K < G, then Nx(H) = Ng(H)n K.
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(iti) If H, K < G, prove that Ng(H) n Ng(K) < Ng(H n K). Give an example in
which the inclusion is proper.

3.10. If f: G — H is surjective and 4 < Z(G), then f(4) < Z(H).

3.11. If H < G, then Ng(H) < {ae G:aHa™ < H}; when H is finite, then there is
equality. (There are examples of infinite subgroups H < G with aHa™* < H for
some a € G).

Definition. An n x n matrix M = [in;;] over a field K is monomial if there is

o € S, and (not necessarily distinct) nonzero elements x4, ..., x, € K such that
= 4% if j = a(i),
Y |0 otherwise.

Monomial matrices thus have only one nonzero entry in any row or col-
umn. Of course, a monomial matrix in which each x; = 1 is a permutation
matrix over K. (This definition will be generalized when we discuss wreath
products.)

3.12. (i) Let k be a field. If G = GL(n, k) and T is the subgroup of G of all diagonal
matrices, then Ng(T) consists of all the monomial matrices over k.
(i) Prove that Ng(T)/T = S,.

3.13. (i) If H is a proper subgroup of G, then G is not the union of all the conjugates

of H.
(ii) If G is a finite group with conjugacy classes Cy, ..., C,, and if g; € C;, then
G={gi, > Gn>-

Symmetric Groups

Definition. Two permutations «, § € S, have the same cycle structure if their
complete factorizations into disjoint cycles have the same number of r-cycles
for each r.

Lemma 3.4. If «, ff €8S,, then afa™ is the permutation with the same cycle
structure as f which is obtained by applying « to the symbols in p.

Exampre 3.1 If f=(13)247) and a=(2 5 6)(1 4 3), then afa"! =
(01 a3)(@2 a4 aTy=(4 1)(5 3 7).

Proof. Let 7 be the permutation defined in the lemma. If B fixes a symbol i,
then = fixes «(i), for a(i) resides in a 1-cycle; but afa™!(a(i)) = af(i) = a(i),
and so afa™! fixes a(i) as well. Assume that f moves i; say, B(i) = j. Let the
complete factorization of 8 be

B="1pa (o ij )y,



Symmetric Groups 47

If a(i) = k and «(j)=1 then n: k — L But afo"t: k> i j> I and so
afat (k) = n(k). Therefore, = and afo~! agree on all symbols of the form
Ik = a(i); since « is a surjection, it follows that = = afa™?.

Theorem 3.5. Permutations «, f§ € S, are conjugate if and only if they have the
same cycle structure.

Proof. The lemma shows that conjugate permutations do have the same cycle
structure. For the converse, define y € S, as follows: place the complete fac-
torization of « over that of 8 so that cycles of the same length correspond,
and let y be the function sending the top to the bottom. For example, if

then y(i) = k, y(j) = I, etc. Notice that y is a permutation, for every i between
1 and n occurs exactly once in a complete factorization. The lemma gives
yay~! = B, and so « and B are conjugate.

ExampLE 3.2. If
a=(2 3 1)@ 5)(6),

B=(62)3 D),

123456

theny:(z 56314
example, the 3-cycle in « could also be written (1 2 3), and the “downward”

permutation is now y = (1 5)(2 6 4 3). The multiplicity of choices for y is
explained by Theorem 3.2.

> = (1 2 5)(3 6 4). Notice that y is not unique; for

Corollary 3.6. 4 subgroup H of S, is a normal subgroup if and only if, whenever
o € H, then every [ having the same cycle structure as a also lies in H.

Proof. By Exercise 2.34, H <1 S, if and only if H contains every conjugate of
its elements.

The solution of Exercise 2.45(i), which states that V < §,, follows from the
fact that V contains all products of disjoint transpositions.

If 1<r<n, then Exercise 1.5 shows that there are exactly
A/ry[n@ — 1)+ (n — r + 1)] distinct r-cycles in S,. This formula can be used
to compute the number of permutations having any given cycle structure if
one is careful about factorizations with several factors of the same length. For
example, the number of permutations in S, of the form (a b)(c d) is

@ x 3)/2 x (2x 1)/2]=3,

the factor 4 occurring so that we do not count (a b)(c d) = (¢ d)(a b) twice.
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Ss
Cycle Structure  Number Order  Parity
0 1 1 Even
(12) 6=(4 x 3)2 2 0dd
(123) 8=(4 x3x2)3 3 Even
(1234) 6 = 41/4 4 0dd
1/4x3 2x1
(12)(34) 3=5Q7—x—75 2 Even
24 =41
Table 3.1

Let us now examine S, using Table 3.1. The 12 elements of A, are eight
3-cycles, three products of disjoint transpositions, and the identity. These ele-
ments are the 4-group V together with

123y (132 (2 3 4y (2 4 3y
(341 (31 4y 412 421

We can now see that the converse of Lagrange’s theorem is false.
Theorem 3.7. A, is a group of order 12 having no subgroup of order 6.

Proof (T.-L. Sheu). If such a subgroup H exists, then it has index 2, and so
Exercise 2.16 gives a® € H for every a € A,. If o is a 3-cycle, however, then
o = a* = («?)?, and this gives 8 elements in H, a contradiction. [

EXERCISES

3.14. (i) Ifthe conjugacy class of x € G is {ay, ..., 4, }, then the conjugacy class of x™*

is {a7t, ..., ag*}.
(i) If o € S,, then « is conjugate to a™*.

3.15. A, is the only subgroup of S, having order 12.

Definition. If n is a positive integer, then a partition of r is a sequence of
integers 1 < iy <i, < <i, with) i;=n '

3.16. Show that the number of conjugacy classes in S, is the number of partitions of n.

3.17. ¥ n < m, then A, can be imbedded in A,, (as all even permutations fixing {n + 1,

ce,my)).
3.18. Verify the entries in Table 3.2.
3.19. Verify the entries in Table 3.3.



Ss

Cycle Structure Number Order  Parity
1) 1 1 Even
(12) 10 = (5 x 4)/2 2 Odd
(123) 20 = (5 x 4 x 3)/3 3 Even
(1234) 30=(5x4 x 3 x2)4 4  0dd
(12345) 24 = 515 5 Even
1 4 2
(12)(34) 5= ~<5_X__ NERs ) 2 Even
2\ 2
Sx4x3 2x1
(123)(45) 20 = —>f_3_x_ x 22 6  Odd
120 = 5!
As
Cycle Structure  Number Order  Parity
(1) 1 1 Even
(123) 20 3 Even
(12345) 24 5 Even
(12)(34) 15 2 Even
60
Table 3.2
Ss
Cycle Structure  Number Order  Parity
c, () 1 1 Even
C, (12) 15 2 Odd
C;  (123) 40 3 Even
C, (1234) 90 4 Odd
Cs (12345) 144 5 Even
Cs  (123456) 120 6 0dd
c, (1234 45 2 Even
Cs  (12)(345) 120 6 0dd
Co (12)(3456) 90 4 Even
Cyio - (12)(34)(56) 15 2 Odd
C,, (123)(456) 40 3 Even
720 = 6!
Ag
Cycle Structure  Number Order Parity
) 1 1 Even
(123) 40 3 Even
(12345) 144 5 Even
(12)(34) 45 2 Even
(12)(3456) 90 4 Even
(123)(456) 40 3 Even
360

Table 3.3
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The Simplicity of A4,

We are going to prove that A4, is simple for all n > 5. The alternating group
A, is not simple, for it contains a normal subgroup, namely, V.

Lemma 3.8. A5 is simple.

Proof. (i) All 3-cycles are conjugate in As. (We know that this is true in S, but
now we are allowed to conjugate only by even permutations.)

If, for example, « = (1 2 3), then the odd permutation (4 5) commutes
with a. Since A5 has index 2 in Ss, it is 2 normal subgroup of prime index, and
so Exercise 3.7 says that o has the same number of conjugates in A5 as it does
in S5 because Cy,(¢) < Cs,(®).

(i) All products of disjoint transpositions are conjugate in As.

If, for example, « = (1 2)(3 4), then the odd permutation (1 2) commutes
with «. Since A5 has index 2 in Ss, Exercise 3.7 says that a has the same
number of conjugates in 4 as it does in S;.

(iii) There are two conjugacy classes of 5-cycles in As, each of which has 12
elements.

In S5, « = (1 2 3 4 5) has 24 conjugates, so that Cg_(x) has 5 elements;
these must be the powers of «. By Exercise 3.2, C, («) has order 5, hence,
index 60/5 = 12.

We have now surveyed all the conjugacy classes occurring in 4. Since
every normal subgroup H is a union of conjugacy classes, |H| is a sum of 1
and certain of the numbers: 12, 12, 15, and 20. It is easily checked that no
such sum is a proper divisor of 60, so that |[H| = 60 and A4; is simple. @

Lemma 3.9. Let H <t A, where n > 5. If H contains a 3-cycle, then H = A,

Proof. We show that (1 2 3)and (i j k) are conjugate in A, (and thus that all
3-cycles are conjugate in A4,). If these cycles are not disjoint, then each fixes
all the symbols outside of {1, 2, 3, i, j}, say, and the two 3-cycles lie in 4*, the
group of all even permutations on these 5 symbols. Of course, A* = A4, and,
as in part (i) of the previous proof, (1 2 3) and (i j k) are conjugate in A*; a
fortiori, they are conjugate in A,. If the cycles are disjoint, then we have just
seen that (1 2 3) is conjugate to (3 j k) and that (3 j k) is conjugate to
(i j k), sothat (1 2 3)is conjugate to (i j k) in this case as well.

A normal subgroup H containing a 3-cycle « must contain every conjugate
of a; as all 3-cycles are conjugate, H contains every 3-cycle. But Exercise 2.7
shows that 4, is generated by the 3-cycles, and so H = 4,,.
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Lemma 3.10. A, is simple.

Proof. Let H # 1 be a normal subgroup of A, and let o € H be distinct from
1. If o fixes some i, define

F={fedspl)=1}

Now F~ A; and a e HNF. But Hn F < F, by the second isomorphism
theorem, so that F simple and HNF # 1 give HNF = F; that is, F < H.
Therefore, H contains a 3-cycle, H = A4 (by the lemma), and we are done.
We may now assume that no « € H with o ¢ 1 fixesany i, for 1 <i<6. A
glance at Table 3.3 shows that the cycle structure of « is either (1 2)(3 4 5 6)
or (1 2 3)(4 5 6). In the first case, a® € H, «® # 1, and o? fixes 1 (and 2), a
contradiction. In the second case, H contains a(fa~!87'), where f = (2 3 4),
and it is easily checked that this element is not the identity and it fixes 1, a
contradiction. Therefore, no such normal subgroup H can exist.

Theorem 3.11. 4, is simple for all n > 5.

Proof. Let n > 5 and let H = 1 be a normal subgroup of 4,. If f e H and
B # 1, then there is an i with f(i) = j s i. If o is a 3-cycle fixing i and moving
Jj, then o and B do not commute: fa(i) = (i) = j and af(i) = a(j) # j; there-
fore, their commutator is not the identity. Furthermore, a(fa~*f7*) lies in the
normal subgroup H, and, by Lemma 3.4, it is a product of two 3-cycles
(B t)B™"; thus it moves at most 6 symbols, say, iy, ..., ig. If F = {y € A,
y fixes the other symbols}, then F = A, and afa™'f™ e H F < F. Since 4,4
is simple, H N F = F and F < H. Therefore H contains a 3-cycle, H = A4, (by
Lemma 3.9), and the proof is complete. E

EXERCISES
3.20. Show that A5, a group of order 60, has no subgroup of order 30.
3.21. If n # 4, prove that A4, is the only proper nontrivial normal subgroup of S,.

3.22. If G < §, contains an odd permutation, then |G| is even and exactly half the
elements of G are odd permutations.

323. If X = {1,2,...} is the set of all positive integers, then the infinite alternating
group A, is the subgroup of Sy generated by all the 3-cycles. Prove that 4, is
an infinite simple group. (Hint. Adapt the proof of Theorem 3.11.)

Some Representation Theorems

A valuable technique in studying a group is to represent it in terms of some-
thing familiar and concrete. After all, an abstract group is a cloud; it is a
capital letter G. If the elements of G happen to be permutations or matrices,
however, we may be able to obtain results by using this extra information. In
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this section we give some elementary theorems on representations; that is, on
homomorphisms into familiar groups.

The first such theorem was proved by Cayley; it shows that the study of
subgroups of symmetric groups is no less general than the study of all groups.

Theorem 3.12 (Cayley, 1878). Every group G can be imbedded as a subgroup of
S¢- In particular, if |G| = n, then G can be imbedded in S,

Proof. Recall Exercise 1.33: for each a € G, left translation L,: G — G, defined
by x + ax, is a bijection; that is, L, € S¢. The theorem is proved if the func-
tion L: G — Sg, given by a — L, is an injection and a homomorphism, for
then G~ im L. If a # b, then L,(1) = a # b = L,(1), and so L, s L,. Finally,
we show that L, = L, o L,. If x € G, then L ,(x) = (ab)x, while (L, o L,)(x) =
L,(Ly(x)) = L,(bx) = a(bx); associativity shows that these are the same. [

Definition. The homomorphism L: G — S, given by a — L, is called the left
regular representation of G.

The reason for this name is that each L, is a regular permutation, as we
shall see in Exercise 3.29 below.

Corollary 3.13. If k is a field and G is a finite group of order n, then G can be
imbedded in GL(n, k).

Proof. The group P(n, k) of all n x n permutation matrices is a subgroup of
GL(n, k) that is isomorphic to S, (see Exercise 1.45). Now apply Cayley’s
theorem to imbed G into P(n, k).

The left regular representation gives another way to view associativity.
Assume that G is a set equipped with an operation * such that there is an
identity e (that is, exa = a = ax e for all a € G) and each element a € G has a
(two-sided) inverse a’ (i.e., a*a’ = e = a’*a). Then, for each a € G, the func-
tion L,: G — G, defined by L,(x) = a=*x, is a permutation of G with inverse
L,.. If « is associative, then G is a group and Cayley’s theorem shows that the
function L: G — S;, defined by ar— L,, is a homomorphism; hence, im L is a
subgroup of S;. Conversely, if im L is a subgroup of Sg, then = is associative.
For if L,o L, eim L, there is ce G with L,o L, = L,. Thus, L, o L,(x) =
L.(x) for all x € G; that is, a*(b*x) = c*x for all x € G. But if x = ¢, then
a+xb =c¢, and so cxx = (a*b)=x. This observation can be used as follows.
Assume that G = {x,,..., x,} is a set equipped with an operation *, and
assume that its multiplication table [a;;] is a Latin square, where a;; = x; * x;.
Each row of the table is a permutation of G, and so * is associative (and G is
a group) if the composite of every two rows of the table is again a row of the
table. This test for associativity, however, is roughly as complicated as that in
Exercise 1.42; both require about n* computations.
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We now generalize Cayley’s theorem.

Theorem 3.14. If H< G and [G:H] = n, then there is a homomorphism
p: G— S, withker p < H.

Proof. If a € G and X is the family of all the left cosets of H in G, define a
function p,: X — X by gH + agH for all g € G. It is easy to check that each
Pa 1s a permutation of X (its inverse is p,-1) and that a — p, is a homomor-
phism p: G - Sy = §,. If a € ker p, then agH = gH for all g € G; in particular,
aH = H, and so a € H; therefore, ker p < H.

Definition. The homomorphism p in Theorem 3.14 is called the representa-
tion of G on the cosets of H.

When H = 1, Theorem 3.14 specializes to Cayley’s theorem.

Corollary 3.15. 4 simple group G which contains a subgroup H of index n can
be imbedded in S,

Proof. There is a homomorphism p: G — S, with ker p < H < G. Since G is
simple, ker p = 1, and so p is an injection.

Corollary 3.16. An infinite simple group G has no proper subgroups of finite
index.

Corollary 3.15 provides a substantial improvement over Cayley’s theorem,
at least for simple groups. For example, if G =~ A5, then Cayley’s theorem
imbeds G in Sgo. But G has a subgroup H = A4, of order 12 and index
60/12 = 5, and so Corollary 3.15 says ihat G can be imbedded in S;.

Theorem 3.17. Let H < G and let X be the family of all the conjugates of H in
G. There is a homomorphism \r: G — Sy with ker y < Ng(H).

Proof. If a € G, define y,: X - X by Y, (gHg ™) = agHg™*a™'. If b € G, then

Yall(gHg ™) = Y (bgHg™'b™") = abgHg 'b™'a™" = Y1, (gHg™").

We conclude that ), has inverse ,-., so that ¥, e Sy and ¥: G — Sy is a
homomorphism.

Ifa € ker y, then agHg 'a™ = gHg ™! for all g € G. In particular, aHa™! =
H, and so a € Ng(H); hence ker yy < Ng(H).

Definition. The homomorphism i of Theorem 3.17 is called the representa-
tion of G on the conjugates of H.
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EXERCISES

3.24.

3.25.
3.26.

3.27.

3.28.

3.29.

3.30.

332
3.33.

3.34.

3.35

Let a € G, where G is finite. If @" has m conjugates and a has k conjugates, then
mlk. (Hint. Cg4(a) < Cg(a™).)

Show that S, has no subgroup of index t for 2 <t < n.

(@) If p is the representation of a group G on the cosets of a subgroup H, then
ker p = [V, xHx™*. Conclude that if H <t G, then ker p = H.

(ii) If ¥ is the representation of a group G on the conjugates of a subgroup H,
then ker ¢ = (¢ xNg(H)x ™.

The right regular representation of a group G is the function R: G — S defined

by a — R,, where R (x) = xa™..

(i) Show that R is an injective homomorphism. (Hint. See Exercises 1.33 and
1.47.) (This exercise is the reason why R, is defined as right multiplication by
a’! and not by a.)

(ii) If L and R are, respectively, the left and right regular representations of S5,
prove that im L and im R are conjugate subgroups of Sg.

If p is prime and 7, o € S, are a transposition and a p-cycle, respectively, show
that S, = (7, a). (See Exercise 2.9(iii).)

If G is a finite group and a € G, then L, is a regular permutation of G. (Hint. If
L, = B,...B, is the complete factorization of L, and if g is a symbol occurring
in some f;, then the set of all symbols in f; is the right coset {a)g.)

(i) Let G be a group of order 2™k, where k is odd. Prove that if G contains an
element of order 2™, then the set of all elements of odd order in G is a
(normal) subgroup of G. (Hint. Consider G as permutations via Cayley’s
theorem, and show that it contains an odd permutation.)

(i) Show that a finite simple group of even order must have order divisible
by 4.

(i) (Poincaré). If H and K are subgroups of G having finite index, then H n K
also has finite index in G. (Hint. Show that [G: HN K] < [G: H][G:K])
(ii) If H has finite index in G, then the intersection of all the conjugates of H is
a normal subgroup of G having finite index.
(i) f([G:H],[G:K])=1,then [G: HN K] =[G: H][G:K].

Prove that A, has no subgroup of prime index.

Let G be a finite group containing a subgroup H of index p, where p is the
smallest prime divisor of |G|. Prove that H is a normal subgroup of G.

Let G be an infinite simple group.
(i) Every x € G with x s 1 has infinitely many conjugates.
(ii) Every proper subgroup H # 1 has infinitely many conjugates.

(Eilenberg—Moore). (i) If H < G, then there exists a group L and distinct homo-
morphisms f, g: G — L with f|H # g|H.(Hint. Let L = Sy, where X denotes the
family of all the left cosets of H in G together with an additional element co. If
a e G, define f, € Sy by f,(00) = o0 and f,(bH) = abH; define g: G — Sy by g =
y o f, where y: Sy — Sy is conjugation by the transposition which interchanges
H and «.)
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(i) If A and G are groups, then a homomorphism h: 4 — G is a surjection if and
only if it is right cancellable: for every group L and every pair of homomor-
phisms f, g: G — L, the equation fo h = g o himplies f = g.

G-Sets

The elements of symmetric groups are functions; here is the appropriate
abstraction of this property.

Definition. If X is a set and G is a group, then X is a G-set if there is a function
a: G x X — X (called an action),' denoted by a: (g, x) — gx, such that:

(i) Ix =xforall x e X; and
(1) g(hx) = (gh)x for all g, h € G and x € X.

One also says that G acts on X. If | X| = n, then n is called the degree of the
G-set X.

For example, if G < Sy, then a: G x X — X is evaluation: a(o, x) = g(x);
using the notation of the definition, one often writes ox instead of a(x).

The first result is that G-sets are just another way of looking at permuta-
tion representations.

Theorem 3.18. If X is a G-set with action «, then there is a homomorphism
&: G — Sy given by &(g): x — gx = a(g, x). Conversely, every homomorphism
@: G — Sy defines an action, namely, gx = @(g)x, which makes X into a G-set.

Proof. If X is a G-set, g € G, and x € X, then
a(g™ha(g) x > dgT)(gx) = g7 (g%) = (97 g)x = 1x = x;

it follows that each d(g) is a permutation of X with inverse &(g~'). That & is
a homomorphism is immediate from (ii) of the definition of G-set. The con-
verse is also routine.

The first mathematicians who studied group-theoretic problems, e.g.,
Lagrange, were concerned with the question: What happens to the poly-
nomial g(x, ..., x,) if one permutes the variables? More precisely, if o € §

n>

! In this definition, the elements of G act on the left. There is a “right” version of G-set that is
sometimes convenient. Define a right action o': G x X — X, denoted by (g, x) +— xg, to be a
function such that:

(i) x1 = xforall xe X; and
(ii) x(gh) = (xg)hforallg,he G and x € X.

It is easy to see that every right G-set gives rise to a (left) G-set if one defines a: G x X — X by
(g, x) = xg~! = '(g7", x).
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define
ga(xl’ ""xn) = g('xdl’ cees Xan)s

given g, how many distinct polynomials g° are there? If g° = g forallc € S,
then g is called a symmetric function. If a polynomial f(x) = Y 7, a;x’ has
roots ry, ..., I, then each of the coefficients g; of f(x) =a, [[i=o (x — r;)isa
symmetric function of ry, ..., r,. Other interesting functions of the roots may
not be symmetric. For example, the discriminant of f(x) is defined to be the
number d?, where d = [ [;<; (r; — r)). I D(x4, ..., x,) = [ [i<; (x; — x;), then it
is easy to see, for every o € S, that D? = £ D (for all i < j, either x; — x; or
X; — x; = —(x; — x;) occurs as a factor of D). Indeed, D is an alternating
Junction of the roots: D = D if and only if o € 4,. This suggests a slight
change in viewpoint. Given g(x,, ..., X,), find

L(g)={o€eS8, g° =g}

this is precisely what Lagrange did (see Examples 3.3 and 3.3’ below). It is
easy to see that #(g) < S,; moreover, g is symmetric if and only if #(g) = S,
while /(D) = 4,. Modern mathematicians are concerned with this same type
of problem. If X is a G-set, then the set of all f: X — X such that f(ox) = f(x)
for all x e X and all ¢ € G is usually valuable in analyzing X.

ExampLE 3.3. If k is a field, then S, acts on k[x,, ..., x,] by gg = g°, where
ga(xl, e xn) = g(xr;b sy xan)’

ExaMPLE 3.4. Every group G acts on itself by conjugation.

ExaMpLE 3.5. Every group G acts on the family of all its subgroups by conju-
gation.

There are two fundamental aspects of a G-set.

Definition. If X is a G-set and x € X, then the G-orbit of x is
O(x)={gx:ge G} = X.
One often denotes the orbit ¢(x) by Gx. Usually, we will say orbit instead
of G-orbit. The orbits of X form a partition; indeed, the relation x = y de-

fined by “y = gx for some g e G” is an equivalence relation whose equiva-
lence classes are the orbits.

Definition. If X is a G-set and x € X, then the stabilizer of x, denoted by G,,
is the subgroup
G.={geGgx=x} <G

Let us see the orbits and stabilizers in the G-sets above.

ExampLE 3.3". Let X = k[x,,...,x,] and G = S,. If ge k[x,, ..., x,], then
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0(g) is the set of distinct polynomials of the form g7, and G, = ¥(g) =
{6eG=S8,9°=g}
Given g, Lagrange defined
g*(xl’ [ERE] ‘xn) = H (x - ga(xl’ B xn));

ceS,

he then defined the resolvent i(g) of g to be the polynomial obtained from g*
by removing redundant factors. If r is the degree of A(g), then Lagrange
claimed that r = n!/|%(g)| (Abbati (1803) proved this claim). This formula is
the reason Lagrange’s theorem is so-called; Lagrange’s theorem for sub-
groups of arbitrary finite groups was probably first proved by Galois.

ExampPLE 3.4". If G acts on itself by conjugation and x € G, then ()(x) is the
conjugacy class of x and G, = Cg(x).

ExampLE 3.5 If G acts by conjugation on the family of all its subgroups and
it H < G, then O(H) = {all the conjugates of H} and Gy = Ng(H).

Theorem 3.19. If X is a G-set and x € X, then

10(x)| = [G:G,].

Proof. If x € X, let G/G,, denote the family of all left cosets of G, in G. Define
f:0(x) > G/G, by f(ax) = aG,. Now f is well defined: if ax = bx for some
be G, thenb™'ax = x, b lae G, and aG, = bG,. The function f is an injec-
tion: if aG, = f(ax) = f(cx) = ¢G, for some c € G, then c'a € G,, ¢ 'ax = x,

and ax = cx; the function f is a surjection: if a € G, then aG, = f(ax). There-
fore, f is a bijection and |0(x)| = |G/G,| =[G : G,].

Corollary 3.20. If a finite group G acts on a set X, then the number of elements
in any orbit is a divisor of |G|.
Corollary 3.21.

(i) If G is a finite group and x € G, then the number of conjugates of x in G is
[G:Cs(¥)]

@) If Gisa finite group and H < G, then the number of conjugates of H in G
is [G: Ng(H)].

Proof. Use Examples 3.4’ and 3.5". [l

We have now explained the similarity of the proofs of Theorems 3.2 and
33.

EXERCISES
3.36. If D(xy, ..., x,) = [ Ti<; (x; — x;), prove that #(D) = {s €S,: D" = D} = A,.

3.37. Let X be a G-set, let x, y € X, and let y = gx for some g € G. Prove that G, =
9G.g7!; conclude that |G| =G|
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3.38 (Abbati). If k is a field, g € k[x,,...,x,], and o €§,, write g7(x,,..., x,) =
9(Xo1» .+ 5 Xzm)» as in Example 3.3. Show that, for any given g, the number of
distinct polynomials of the form g? is a divisor of n!. (Hint. Theorem 3.19.)

3.39. If G < S, then G acts on X = {1, ..., n}. In particular, (&) acts on X for every
« € S,. If the complete factorization of « into disjoint cycles is o = f; ..., and if
i is a symbol appearing in §;, then (i) = {a*(i): k € Z} consists of all the symbols
appearing in ;. (Compare Exercise 3.29.)

3.40. Cayley’s theorem shows that every group G acts on itself via left translations.
Show that there is just one orbit (if x € G, then G = {gx: g € G}) and that G, = 1
for every x € G.

Definition. A G-set X is transitive if it has only one orbit; that is, for every
x, y € X, there exists 0 € G with y = ox.

3.41. If X is a G-set, then each of its orbits is a transitive G-set.

3.42. If H < G, then G acts transitively on the set of all left cosets of H (Theorem 3.14)
and G acts transitively on the set of all conjugates of H (Theorem 3.17).

3.43. (i) IfX = {x,,..., x,} is a transitive G-set and H = G,,, then there are elements
J1,---» g, in G with g;x, = x; such that g, H, ..., g,H are the distinct left
cosets of H in G.
(ii) The stabilizer H acts on X, and the number of H-orbits of X is the number
of (H-H)-double cosets in G.

3.44. Let X be a G-set with action a: G x X — X, and let & G — Sy send g € G into
the permutation x — gx.
() If K = ker &, then X is a (G/K)-set if one defines

(gK)x = gx.

(i) If X is a transitive G-set, then X is a transitive (G/K)-set.
(iii) If X is a transitive G-set, then |ker & < |G|/|X|. (Hint. If x € X, then
|0(x)| =[G:G,] <[G:keri].)

Counting Orbits
Let us call a G-set X finite if both X and G are finite.
Theorem 3.22 (Burnside’s Lemma?). If X is a finite G-set and N is the number

2 What is nowadays called Burnside’s lemma was proved by Frobenius (1887), as Burnside
himself wrote in the first edition (1897) of his book. This is another example (we have already
mentioned Lagrange’s theorem) of a name of a theorem that is only a name; usually “Smith’s
theorem” was discovered by Smith, but this is not always the case. It is futile to try to set things
right, however, for trying to change common usage would be as successful as spelling reform.
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of G-orbits of X, then
N = (1/1G]) ZG F(z)-

where, for t € G, F(1) is the number of x € X fixed by 1.

Proof. In the sum ) .. F(1), each x € X is counted | G,| times (for G, consists
of all those t € G which fix x). If x and y lie in the same orbit, then Exercise
3.37 gives |G,| = |G|, and so the [G: G,] elements constituting the orbit of
x are, in the above sum, collectively counted [G: G, ]|G,| = |G| times. Each
orbit thus contributes |G| to the sum, and s0 Y .. F(z) = N|G|.

Corollary 3.23. If X is a finite transitive G-set with |X| > 1, then there exists
7 € G having no fixed points.

Proof. Since X is transitive, the number N of orbits of X is 1, and so Burnside’s
lemma gives

= (1/161) ZG F().

Now F(1) = | X| > 1; if F(z) > 0 for every T € G, then the right hand side is
too large.

Burnside’s lemma is quite useful in solving certain combinatorial problems.
Given g distinct colors, how many striped flags are there having n stripes (of
equal width)? Clearly the two flags below are the same (just turn over the top
flag and put its right end at the left).

P T O S
R O P P

2 -1 .
Let t € S, be the permutation ! " ™). 11 %" is the set of all n-
nn—1... 2 1
tuples ¢ = (¢, ..., ¢,), where each ¢; is any of the g colors, then the cyclic group
G = {z) acts on 4" if we define z¢ = (¢, ..., ¢,) = (c,, ..., €1). Since both ¢

and tc give the same flag, a flag corresponds to a G-orbit, and so the number
of flags is the number N of orbits. By Burnside’s lemma, it suffices to compute
F(1) and F(z). Now F(1) = |4"| = q". An n-tuple (cy, ..., c,) is fixed by 7 if
and only if it is a “palindrome™ ¢; = ¢,; ¢, = ¢,_; etc. If n = 2k, then 7 =
Im2n=1)...(k k+1);ifn=2k+ 1,thent=(1 n)(2 n—1)...(k kK +2).
It follows that F(t) = g/ *V/2] where [(n + 1)/2] denotes the greatest integer
in (n + 1)/2. The number of flags is thus

N — _é_(qn + q[(n+1)/2]).
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Let us make the notion of coloring more precise.

Definition. If G < Sy, where X = {1, ..., n}, and if ¢ is a set of colors, then ¢”
is a G-set if we define t(cy, ..., ¢,) = (i1, ---> €y) forall T € G. If |€| = g, then
an orbit of ¥" is called a (g, G)-coloring of X.

Lemma 3.24. Let € be a set of q colors, and let G < Sy =~ S,. If 1€ G, then
F(z) = "9, where t(t) is the number of cycles occurring in the complete factori-
zation of 1.

Proof. Since t(cy, ..., ¢,) = (C;15 -5 Cq) = (Cy, - .., ¢,), WE see that ¢ ; = ¢; for
all i, and so i has the same color as i. It follows that t% has the same color
as i, for all k; that is, all i in the {(t)-orbit of X have the same color. But
Exercise 3.39 shows that if the complete factorization of 7 is T = ;... B,
and if i occurs in f;, then the set of symbols occurring in f; is the {(z)-orbit
containing i. Since there are #(z) orbits and g colors, there are g"® n-tuples
fixed by 7 in its action on %".

Definition. If the complete factorization of 7 € S, has e,(r) > 0 r-cycles, then
the index of T is

ind(z) — x5O0, xgn
If G < S,, then the cycle index of G is the polynomial

Pg(x4, ..., x,) = (1/|G]) ZG ind(r) e Q[ x4, ..., x, ]

For example, let us consider all possible blue and white flags having nine
stripes. Here | X| =9 and G = (1) < S,, where 1 = (1 9)(2 8)(3 7)(4 6)(5).
Now, ind(1) = x}, ind(z) = x, x, and the cycle index of G = (z) = {1, 7} is

Pe(xy, ..., Xg) = 5(x§ + x,x3);

Corollary 3.25. If | X| = n and G < S,, then the number of (q, G)-colorings of
X is Pg(q, ---,q).

Proof. By Burnside’s lemma for the G-set 4", the number of (g, G)—co]orings
of X is

(1naGh ZG F(z).
By Lemma 3.24, this number is
(116 ZG q'®,

where t(t) is the number of cycles in the complete factorization of z. On the
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other hand,
Pg(xy,...,x,) =(1/IG]) Z‘b ind(t)

= (1/IG)) Z x;n(t)x;’z(t)_“xen(t)
1eG

n

and so
Po(g,.... @) = (/|G]) T go@rest e
1eG

= (1/G) ¥ 4.
teG

In 1937, Polya pushed this technique further. Burnside’s lemma allows one
to compute the number of blue and white flags having nine stripes; there are
264 of them. How many of these flags have four blue stripes and five white
stripes?

Theorem (Polya, 1937). Let G < Sy, where | X| = n, let |¢| = q, and, for each
i> 1, define o, =c{ + -+ ci. Then the number of (g, G)-colorings of X
with f, elements of color c,, for every r, is the coefficient of c¢] ’czfz...cqf 1 in

PG(Uls “eny 0',1).

The proof of Polya’s theorem can be found in combinatorics books (e.g.,
see Biggs (1989), Discrete Mathematics). Let us solve the flag problem posed
above; we seek the coefficient of b*w? in

Pg(ay, ..., 05) = H(b + w)° + (b + w)(b? + w?)*).

A short exercise with the binomial theorem shows that the coefficient of b*w>
is 66.

EXERCISES

3.45. If G is a finite group and c is the number of conjugacy classes in G, then
¢ =(1/G]) ZG ICs(D)l.

3.46. (i) Let p be a prime and let X be a finite G-set, where |G} = p" and | X] is not
divisible by p. Prove that there exists x € X with tx = x for all7 € G.
(ii) Let V be a d-dimensional vector space over Z,, and let G < GL(d, Z,) have
order p”. Prove that there is a nonzero vector v € V with tv = vforallt € G.

3.47. If there are g colors available, prove that there are
%(qnz + 2q[(n2 +3)/4] + q[(n2 +1)/2])

distinct n x n colored chessboards. (Hint. The set X consists of all n x n arrays,
and the group G is a cyclic group (), where 7 is a rotation by 90°. Show that ¢
is product of disjoint 4-cycles.)
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n=4

Figure 3.1

3.48. If there are g colors available, prove that there are
(1/n) :Ll“, @(n/d)q*

colored roulette wheels having n congruent compartments, each a circular sec-
tor (in the formula, ¢ is the Euler ¢-function and the summation ranges over all
divisors d of n with 1 <d < n). (Hint. The group G = (z) acts on n-tuples,
where t(cy, €5, ..., Cp) = (Cy» €15 C25 -+ +» Cy—y ). Use Corollary 3.25 and Theorem
2.15.)

Figure 3.2
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Some Geometry

The familiar enclidean n-space is the vector space R" consisting of all n-tuples
of real numbers together with an inner (or dot) product. If ¢; is the vector
having ith coordinate 1 and all other coordinates 0, then the standard basis is
{e1, ..., &). A vector x = (x,,..., x,) has the unique expression x =Y ; x;&;,
and if y = (yy, ..., y.), then the inner product (x, y) is defined to be the num-
ber Y ; X ;.

A subset {uy,...,u,} of R" is called an orthonormal basis if (u;, u;) = &;;;
that is, (u;, u;) = 1 for all i and (u;, 4;) = O when i # j (it is easy to see that an
orthonormal basis is a basis, for it is a linearly independent subset of R"
having n elements). The standard basis is an orthonormal basis. If {u,, ..., u,}
is an orthonormal basis and if x = ) ; x;u;, then (x, x) = (3; X;u;, ). ; x;u5) =
3o xexu, ) =Y xE I x = (x4, ..., x,) € R", define | x| = /) ; x? (thus,

[xl? = (x, x)), and define the distance between x and y to be || x — y|.

Definition. A motion is a distance-preserving function T: R" — R"; that is,
|Tx — Ty|| = ||x — y| for all x, y e R".

It is plain that if w € R”, then the function T,,: R" — R", defined by T,,(x) =
x + w for all x e R", is a motion (T, is called translation by w). Of course,
T,,(0) = w, so that T, is not a linear transformation if w % 0.

Definition. A linear transformation S: R" — R" is orthogonal if || Sx| = | x|
for all x € R™.
Lemma 3.26.

(i) A linear transformation S: R" — R" is orthogonal if and only if {Seq,...,
Se, } is an orthonormal basis (where {¢,, ..., &,} is the standard basis).
(i) Every orthogonal transformation S is a motion.

Proof. (i) Assume that S is orthogonal. If x = ), x;¢;and y = ), y;&;, then
lx + 2 = lIxl? = llyl* =2 Z Xy = 2(x, y).

In particular,
ISx + Syl — ISx]I* — ISyll* = 2(Sx, Sy).

Since ||x + || = |S(x + »)|? = |ISx + Sy||?, we have (Sx, Sy) = (x, y) for all
x, y. In particular,
5ij = (&, 3j) = (Se;, ng)’

so that {Se,, ..., Sg,} is an orthonormal basis.
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Conversely, if x = Y ; x;¢;, then Sx = Y ; x;S¢,,

i%i»

|8x)% = (Sx, Sx) = Zx (Ss,,Se)—Zx (ETER
i,j
and S is orthogonal.
(i) If x=3,x¢e and y =7y, then [Sx — Sy|*=|S(x — y)|* =
||Zx (o — }’i)SﬁiHZ = Zi (i — )’i)z =|x- J’“z-

Notice that every orthogonal transformation (as is every motion) is an
injection, for if x # y, then 0 # [|x — y|| = |Sx — Sy| and Sx # Sy, since S is
a linear transformation on R" with nullity 0, it follows that S is invertible. It
is easy to see that if § is orthogonal, then so is S7*.

Lemma 3.27. Every motion S: R" — R" fixing the origin is a linear transforma-
tion, hence is orthogonal.

Proof. We begin by showing that a motion T fixing 0 and each of the elements
in the standard basis must be the identity. If x = (x4, ..., x,), denote Tx by
(y15 > yu)- Since TO =0, | Tx|| = | Tx — TO|| = |Ix — 0I| x| gives

i+ dyi=xt 4o+l
Butalso [|[Tx — &,|| = || Tx — Te,|| = ||x — &, gives
=12+ i+ =0 = D X3+ x]

Subtracting gives 2y, — 1 = 2x, — 1, and y, = x,. A similar argument gives
y; = x; for all i, so that Tx = x.

Assume now that Tg; = u; fori=1,..., n, and let S: R" — R" be the linear
transformation with Se; = u; for all i. Now TS™! is a motion (being the com-
posite of two motions) that fixes the standard basis and 0,and so T = S.

Theorem 3.28.

(i) The set O(n, R) of all motions S: R" — R" fixing the origin is a subgroup of
GL(n, R) (called the real orthogonal group).

(i) Every motion T: R" — R" is the composite of a translation and an orthogonal
transformation, and the set M (n, R) of all motions is a group (called the real
group of motions).

Proof. (i) Routine, using the lemma.

(ii) Let T be a motion, and let T(0) = w. If S is translation by —w (i.e.,
Sx = x — wfor all x), then ST is a motion fixing 0, hence is orthogonal, hence
is a bijection; therefore, T'= S™!(ST) is a bijection. The reader may now
show that the inverse of a motion is a motion, and that the composite of
motions is a motion. &

Theorem 3.29. 4 function T: R" — R" fixing the origin is a motion if and only
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if it preserves inner products:

(Tx, Ty) =(x, ) forall x,yeR"

Proof. If x, y e R",
lx + ylI2 = (xc + p, x + y) = %I + 2(x, y) + | y]I*
Similarly, since T is linear (by Lemma 3.27),
ITCe + I = (T(x + y), TCx + y))
=(Tx + Ty, Tx + Ty)
= I Tx|? + 2(Tx, Ty) + | Ty|%

By hypothesis, [|x + y|*> = | T(x + y)I%, IxI> = | Tx||*, and |y|I* = | Ty|?,
so that 2(x, y) = 2(Tx, Ty) and (x, y} = (Tx, Ty).
Conversely, if T preserves inner products, then

lx—ylI* =@ —y,x—y)=(Tx — Ty, Tx — Ty) = | Tx — Ty||*

for all x, y € R". Therefore, T preserves distance, hence is a motion.

The geometric interpretation of this theorem is that every motion fixing
the origin preserves angles, for (x, y) = || x| y|l cos 6, where 6 is the angle
between x and y. Of course, all motions preserve lines and planes; they are,
after all, linear. For example, given a line £ = {y + rx: r € R} (where x and y
are fixed vectors) and a motion T,,S (where T, is translation by w and S is
orthogonal), then T,,8(¢) = {T,,(Sy + rSx): re R} = {(w + Sy) + rSx: r e R}
is also a line.

Definition. A matrix A € GL(n, R) is orthogonal if AA* = E, where A' denotes
the transpose of A.

Denote the ith row of 4 by a;. Since the i, j entry of 44" is (a;, g;), it follows
that {a,, ..., a,} is.an orthonormal basis of R". If T is an orthogonal transfor-
mation with T¢; = a, for all i, then the matrix of T relative to the standard
basis is an orthogonal matrix. It follows that O(n, R) is isomorphic to the
multiplicative group of all n x n orthogonal matrices.

Since det A' = det A4, it follows that if 4 is orthogonal, then (det 4)? = 1,
andsodet 4 = + 1.

Definition. A motion T fixing the origin is called a rotation (or is orientation-
preserving) if det T = 1. The set of all rotations form a subgroup SO(n, R) <
O(n, R), called the rotation group. A motion fixing the origin is called orienta-
tion-reversing if det T = — 1.

Of course, [O(n, R): SO(n, R)] = 2.



66 3. Symmetric Groups and G-Sets

Here are some examples of orientation-reversing motions. It is a standard
result of linear algebra that if W is any subspace of R* and W = {ve V:
(v, w) = Ofor all w e W}, then dim W+ = n — dim W. A hyperplane H in R" is
a translate of a subspace W of dimension n — 1: H = W + v, for some vector
vo. If H is a hyperplane through the origin (that is, H = W is a subspace of
dimension n — 1), then dim H* = 1, and so there is a nonzero vector a with
(a, h) = 0 for all h € H; multiplying by a scalar if necessary, we may assume
that a is a unit vector.

If / is a line in the plane, then the reflection in £ is the motion p: R? - R?
which fixes every point on ¢ and which interchanges all points x and x’
equidistant from ¢ (as illustrated in Figure 3.3; thus, £ behaves as a mirror).
More generally, define the reflection in a hyperplane H as the motion that
fixes every point of H and that interchanges points equidistant from H. If p
is to be a linear transformation, then H must be a line through the origin, for
the only points fixed by p lie on H.

Figure 3.3

Theorem 3.30. Every reflection p in a hyperplane H through the origin is
orientation-reversing.

Proof. Choose a unit vector a e R" with (h,a) =0 for all he H. Define
o R"> R" by p'(x) = x — 2(x, a)a for all xe R". If x € H, then (x,a) =0,
x — 2(x, a)a = x, and p’ fixes x; if x ¢ H, then x = h + ra, where h € H and
reR Now (x,a)=(h+ra,a)=r and x—2(x,a)a=h—ra; hence,
p'(h + ra) = h — ra, so that p’ interchanges pairs of vectors equidistant from
H and fixes H pointwise. Hence, p’ = p.

If {hy,...,h,_,} is a basis of H, then {hy,...,h,_y,a} is a basis of R".
Relative to the latter basis, the matrix of p is diagonal with diagonal entries
1,1,...,1, —1; therefore, det p = —1 and p is orientation-reversing.
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Let us now consider the case n = 2. If we identify R? with the complex
numbers C, then perpendicular unit vectors u; and u, have the form u, = e
and u, = €'%, where ¢ = 6 + n/2. It follows that if

4 a b
e d
is an orthogonal matrix, then its columns are the real and imaginary parts of
Ae, and Ae,. Therefore, either

_[cos® —sin(@+mn/2)] [cosf —sin6]
“lsin@  cos(@+m2)| |sin®  cosf|

and det 4 =1 (so that A corresponds to rotation about the origin by the
angle 0) or

A [cos 6 —sin(@ — 7/2) | |:cos 6 sinf]

sin@  cos(@—n/2)| |sin® —cosf

and det 4 = — 1 (so that 4 corresponds to reflection in the line £ through the
origin having slope tan 6), In particular, the matrix

=[5 1]

corresponds to the motion (x, y) > (x, —y) which is the reflection in the
X-axis.

With this background, we now pose the following problem. Let A be a
figure in the plane having its center of gravity at the origin. Define

F(A) = {S e O, R): S(A) = A}.

Of course, S(A) = {x € R%: x = S(y) for some y e A}. If A is a triangle with
vertices a, b, and ¢ and if S is a motion, then S(A) is also a triangle, say, with
vertices Sa, Sb, and Sc; if S € $(A), then S permutes X = {a, b, c}. It follows
that &(A) acts on X: there is a homomorphism /: #(A) — Sy, namely, S +—
S|X, the restriction of S to X. Now ¢ is an injection, for a linear transforma-
tion on R? is determined by its values on an independent set of two vectors. It
follows that #(A) is a finite group; indeed, #(A) is isomorphic to a subgroup
of S;. If A is an equilateral triangle, then ¥ (A) =~ S, (see Exercise 3.58 below);
if A is only an isosceles triangle, then S(A) = Z,: if A is not even isosceles,
then &(A) = 1. The group &(A) thus “measures” the amount of symmetry
present in A: bigger groups arise from “more symmetric” triangles. A circle A
with center at the origin is very symmetric, for #(A) is an infinite group (for
every 0, it contains rotation about the origin by the angle 6). One calls &(A)
the symmetry group of the figure A.

Theorem 3.31. If A is a regular polygon with n vertices, then F(A) is a group of
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order 2n which is generated by two elements S and T such that

St=1, T? =1, and TST =S~ L.

Proof. We may assume that the origin is the center of gravity of A and that
one vertex of A lies on the x-axis. Observe that #(A) is finite: as in the
example of triangles, it can be imbedded in the group of all permutatons of
the vertices. Now each S € &(A) also permutes the edges of A; indeed, regu-
larity (that is, all edges having the same length) implies that &(A) acts transi-
tively on the n edges. Since the stabilizer of an edge has order 2 (the endpoints
can be interchanged), Theorem 3.19 gives [(A)| = 2n. If S is rotation by
(360/n)° and T is reflection in the x-axis, then it is easy to check that S(A) =
{8, T) and that S and T satisfy the displayed relations.

Definition. The dikedral group® D,,, for 2n > 4, is a group of order 2n which
is generated by two elements s and ¢ such that

s"=1, =1, and tst = 571,

Note that D,, is not abelian for all n > 3, while D, is the 4-group V.
The next result explains the ubiquity of dihedral groups.

Theorem 3.32. If G is a finite group and if a, b € G have order 2, then {a, b) =~
D,, for some n.

Proof. Since G is finite, the element ab has finite order n, say. If s = ab, then
asa = a(ab)a = ba = (ab)™* = 57, because both a and b have order 2.

It remains to show that [{a, b)| = 2n (of course, [{a, b>| = 2m for some m,
but it is not obvious that m = n). We claim that as’ # 1 for all i > 0. Other-
wise, choose i > 0 minimal with as’ = 1. Now i 0 (for a # 1) and i 1 (lest
1 = as = aab = b), so that i > 2. But 1 = as’ = aabs’*™! = bs'™!; conjugating
by b gives 1 =s""'b = s'"2abb = s'"2a, and conjugating by a now gives
as'”? = 1, contradicting the minimal choice of i. It follows that as’ # s/ for all
i, j; hence {a, b) contains the disjoint union {s) U a{s), and so [{a, b)| =
|<a, s)| = 2n. For the reverse inequality, it suffices to show that

H={ds"0<j<2,0<i<n}

is a subgroup. Using Corollary 2.4, one need check only four cases: as’as* =
sTis*=s*""e H; as’s* =as'** € H; s's* =5'"" € H; s'as* = a(as’a)s* = s~is* =

s*7'e H.

Elements of order 2 arise often enough to merit a name; they are called
involutions.

3 In earlier editions, I denoted D,, by D,.
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Let Q be a figure in R3 with its center of gravity at the origin, and define
F() ={S e O3, Ry S(Q) =Q}.

If Q = X, is the regular solid having n (congruent) faces, each of which has k
edges, then #(,) acts transitively on the set of n faces of X, (this is essentially
the definition of regularity), while the stabilizer of a face f (which is a regular
k-gon) consists of the k rotations of f about its center. By Theorem 3.19,
&(Z,) has order nk.

It is a classical result that there are only five regular solids: the tetrahedron
X, with 4 triangular faces; the cube X4 with 6 square faces; the octahedron 4
with 8 triangular faces; the dodecahedron X, with 12 pentagonal faces; the
icosahedron X, with 20 triangular faces. The rotation groups of these solids
thus have orders 12, 24, 24, 60, and 60, respectively.

These considerations suggest investigation of the finite subgroups of the
orthogonal groups O(n, R). It can be shown that the finite subgroups of
O(2, R) are isomorphic to either D,, or Z,, and that the finite subgroups of
O(3, R) are isomorphic to either D,,, Z,,, A,, Sy, or As.

ns

EXERCISES
3.49. Prove that D, =@ V and Dg = S;.
3.50. Prove that Dy, ~ S5 x Z,.

3.51. Let G be a transitive subgroup of S,.
(i) f m =[G: G n V], then m|6.
(i) fm=6,then G = S,;ifm=3,then G= A,;ifm = 1,then G =V;if m = 2,
then either G = Z, or G = Dy.

3.52. (i) (von Dyck (1882)). Prove that #(Z,) = 4, and that ¥(Xs) = S, = F(Xs).
(Hint. A, = {s,t), where s2 =13 =(st)® = 1; S, = (s, 1), where s =3 =
(s)*=1)

(i) (Hamilton (1856)). Prove that S (,,) = A5 = P (Xy0). (Hint. As = (s, 1),
where s = £ = (st)° = 1)

(Because of this exercise, 4, is also called the tetrahedral group, S, is also called

the octahedral group, and A is also called the icosahedral group.)

3.53. Let Tr(n, R) denote the set of all the translations of R". Show that Tr(n, R) is an
“abelian normal subgroup of the group of motions M(n, R), and M(n, R)/Tr(n, R)
~ O(n, R).

3.54. It can be shown that every S € SO(3, R) has 1 as an eigenvalue (there is thus a
nonzero vector v with Sv = v). Using this, show that the matrix of S (relative to
a suitable basis of R3) is
1 0 0
0 cosf —sind
0 sinff cosf

3.55. Prove that the circle group T is isomorphic to SO(2, R).
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3.56. Let @ = ™" be a primitive nth root of unity. Show that the matrices

w 0 01
= d B =

generate a subgroup of GL(2, C) isomorphic to D,,.
3.57. What is the center Z(D,,)? (Hint. Every element of D has a factorization s't’.)

3.58. If A is an equilateral triangle in R? with its center of gravity at the origin, show
that #(A) is generated by

-3 V3 [t o
A_[ﬁ/Z _%] and B—-[O _I:I.

3.59. How many bracelets are there having n beads each of which can be painted any
one of g colors? (Hint. Use Corollary 3.25; D,,, is the group that is acting.)

We now show how one can use groups to prove geometric theorems.

Recall that if u, v € R?, then the line segment with endpoints u and v, de-
noted by [u, v], consists of all vectors tu + (1 — t)v, where 0 < ¢t < 1. Ifu, 0o, w
are the vertices of a triangle A, then we will denote A by [u, v, w].

Definition. If v, ..., v, € R?, then a convex combination of v, ..., v, is a linear
combination y ¢;v;, where all ; > Oand ) ¢, = 1.

Lemma 3.33. If A = {vy, v,, 03] is a triangle, then A consists of all the convex
combinations of vy, v,, Us.

Proof. Denote the set of all convex combinations of v,, v,, v3 by C. We first
show that C < A. Let ¢ = t,;v, + £,0, + t3v; belong to C. If t; = 1, then
c=vyeA Ity #1,then g =t /(1 —t3)v, + t,/(1 — t3)v, is a convex com-
bination of v, and v,, hence lies on the line segment [v,, v,] = A. Finally,
c=(1 —t3)q + tyv; € A, for it is a convex combination of 4 and v,, and
hence it lies on the line segment joining these two points (which is wholly
inside of A).

For the reverse inclusion, take J € A. It is clear that C contains the perime-
ter of A (such points lie on line segments, which consist of convex com-
binations of two vertices). If § is an interior point, then it lies on a line
segment [u, w], where u and w lie on the perimeter (indeed, it lies on many
such segments). Thus, d =tu + (1 — t)w for some 0 <t < 1. Write u=
80y + ty0, + tyvy and w = 5,0, + S,, + S3v3, where t; >0, 5; >0 and

Liti=1=33, s.Itsuffices to show that 6 = t(} t;0,) + (1 — (3 sw)) =
Y, [tt;0,+(1 —t)s;]v; is a convex combination of vy, v,, vs. But t£,+(1—1)s; 2
0, because each of its terms is nonnegative, while Y [tt; + (1 — t)s;] =

)+ (1—-0s)=t+(1—-0=1

Definition. A function ¢: R? — R? is an affine map if there is a nonsingular



Some Geometry 71

linear transformation A: R? — R? and a vector z € R? such that, for all v € R?,
@) = A(v) + z.

The set of all affine maps under composition, denoted by Aff(2, R), is called
the affine group of the plane.

Lemma 3.34. Let ¢ be an affine map.

(i) @ preserves all convex combinations.
(i) @ preserves line segments: for all u, v, ([u, v]) = Lou, ev].

(ili) The point tu + (1 — t)v, for 0 <t < 1, is called the t-point of [u, v]. If z is
the t-point of [u, v}, where O < t < 1, then @z is the t-point of [pu, pv]. In
particular, ¢ preserves midpoints of line segments.

(iv) @ preserves triangles: if A = [u, v, w] is a triangle, then @(A) is the triangle
Lou, pv, pw].

Proof. (i) Let ox = Ax + z, where 1 is a nonsingular linear transformation
and z e R%. If ), t,v; is a convex combination, then

(i) -ryn
=/lzi:t,»vi +(Zti)z

= ti(Av) + (Z ti>z
=) tldv; + 2) = Y tip(v)-

(ii) Immediate from (i), for [u, v] is the set of all convex combinations of u
and v.

(iii) Immediate from (i).

(iv) Immediate from (i) and Lemma 3.33.

Lemma 3.35. Points u, v, w in R? are collinear if and only if {u — w, v — w} is
a linearly dependent set.

Proof. Suppose that u, v, w lie on a line Z, and let ¢ consist of all vectors of the
form ry + z, where r € R and y, z € R2. There are thus numbers r; with u =
ry+z y=ryy+z and w=r;3y+ z. Therefore, u —w=(r; —r;)y and
v — w = (r, — r3)y form a linearly dependent set.

Conversely, suppose that u — w = r(v — w), where r € R. It is easily seen
that u, v, w all lie on the line £ consisting of all vectors of the form t(v—w)+w,
where t € R.

Lemma 3.36. If A = [u, v, w] and A’ = [u', v’, w'], are triangles, then there is
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an affine map ¢ with ou=u', v ="', and ew = w'. Thus, Aff(2, R) acts
transitively on the family of all triangles in R,

Proof. The vertices u, v, w of a triangle are not collinear, so that the vectors
u — w and v — w form a linearly independent set, hence comprise a basis of
R?; similarly, {u’ — w', v' — w'} is also a basis of R?. There thus exists a
nonsingular linear transformation A with A(u — w) = u’ — w’ and (v — w) =
v’ — w'. If z =w’ — A(w), then define ¢ by

P(x) = A0 + W' — Aw) = Ax — w) + .

It is easy to see that ¢ is an affine map which carries u, v, w to v, v’, w',
respectively. It follows from Lemma 3.33 that p(A) = A'.

Theorem 3.37. For every triangle A, the medians meet in a common point which
is a 2-point on each of the medians.

Proof. 1t is easy to see that the theorem is true in the special case of an
equilateral triangle. E. By Lemma 3.36, there exists an affine map ¢ with
¢©(E) = A. By Lemma 3.34, ¢ preserves collinearity, medians and %-points.

The reader is invited to prove other geometric theorems in this spirit, using
the (easily established) fact that affine maps preserve parallel lines as well as
conic sections (in particular, every ellipse is of the form ¢(A), where A is the
unit circle, for these are the only bounded (compact) conic sections).

F. Klein’s Erlangen Program (1872) uses groups to classify different geome-
tries on the plane (or more general spaces). If G < Sg., then a property P of a
figure A in R? is an invariant of G if @(A) has property P for all ¢ € G. For
example, invariants of the group M (2, R) of all motions include collinearity,
length, angle, and area; the corresponding geometry is the usual geometry of
Euclid. Invariants of Aff(2, R) include collinearity, triangles, line segments,
and z-points of line segments, parallelism, conic sections; the corresponding
geometry is called affine geometry. Other groups may give other geometries.
For example, if G is the group of all homeomorphisms of the plane, then
invariants include connectedness, compactness, and dimensionality; the cor-
responding geometry is called topology.



CHAPTER 4

The Sylow Theorems

p-Groups

The order of a group G has consequences for its structure. A rough rule of
thumb is that the more complicated the prime factorization of |G|, the more
complicated the group. In particular, the fewer the number of distinct prime
factors in |G|, the more tractible it is. We now study the “local” case when
only one prime divides |G|.

Definition. If p is a prime, then a p-group is a group in which every element
has order a power of p.

Corollary 4.3 below gives a simple characterization of finite p-groups.

Lemma 4.1. If G is a finite abelian group whose order is divisible by a prime p,
then G contains an element of order p.

Proof. Write |G| = pm, where m > 1. We proceed by induction on m after
noting that the base step is clearly true. For the inductive step, choose x € G
of order t > 1. If pit, then Exercise 2.11 shows that x*? has order p, and the
lemma is proved. We may, therefore, assume that the order of x is not divisi-
ble by p. Since G is abelian, (x) is a normal subgroup of G, and G/{x) is an
abelian group of order |G|/t = pmj/t. Since p[t, we must have m/t <m an
integer. By induction, G/{x) contains an element y* of order p. But the
natural map v: G — G/{x) is a surjection, and so there is y € G with v(y) =
y*. By Exercise 2.14, the order of y is a multiple of p, and we have returned to
the first case. E
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We now remove the hypothesis that G is abelian.

Theorem 4.2 (Cauchy, 1845). If G is a finite group whose order is divisible by
a prime p, then G contains an element of order p.

Proof. Recall Theorem 3.2. If x € G, then the number of conjugates of x is
[G: Cy(x)], where C4(x) is the centralizer of x in G. If x ¢ Z(G), then its
conjugacy class has more than one element, and so |Cg(x)| < |G|. If p||C4(x)|
for such a noncentral x, we are done, by induction. Therefore, we may assume
that pf|Cs(x)| for all noncentral x in G. Better, since |G| = [G : Cg(x)]|Cs(x)),
we may assume that p|[G: Cg(x)] (using Euclid’s lemma, which applies be-
cause p is prime).

Partition G into its conjugacy classes and count (recall that Z(G) consists
of all the elements of G whose conjugacy class has just one element):

(%) IGI =1Z(G)] + 2, [G: Cglx)],

where one x; is selected from each conjugacy class with more than one ele-
ment. Since |G| and all [G: C4(x;)] are divisible by p, it follows that | Z(G)| is
divisible by p. But Z(G) is abelian, and so it contains an element of order p,
by the lemma.

Definition. Equation (x) above is called the class equation of the finite
group G.

Here is a second proof of Cauchy’s theorem, due to J.H. McKay, which
avoids the class equation. Assume that p is a prime and that G is a finite
group. Define

X ={(ay....a,)eG x -~ x G:aja,...a,=1}.

Note that | X| = |G|, for having chosen the first p — 1 coordinates arbi-
trarily, we must set a, = (a;a,...a,_,)"". Now X is a Z,-set, where ge Z,
acts by cyclically permuting the coordinates (since a;...a,a, ...q;_, is a con-
jugate of a,a, ... a,, the product of the permuted coordinates is also equal to
1). By Corollary 3.21, each orbit of X has either 1 or p elements. An orbit with
just one element is a p-tuple having all its coordinates equal, say, a; = a for
all i; in other words, such orbits correspond to elements a € G with a” = 1.
Clearly (1,..., 1) is such an orbit; were this the only such orbit, then we
would have
IXI=1GP™ =1 +kp

for some integer k > 0; that is, |G{" ' = 1 mod p. If p divides |G|, however,
this is a contradiction, and so we conclude that G must have an element of
order p. (As A. Mann remarked to me, if | G| is not divisible by p, then we have
proved Fermat’s theorem.)
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Corollary 4.3. A finite group G is a p-group if and only if |G| is a power of p.

Proof. 1f |G| = p™, then Lagrange’s theorem shows that G is a p-group. Con-
versely, assume that there is a prime ¢ # p which divides |G|. By Cauchy’s
theorem, G contains an element of order g, and this contradicts G being a
p-group. H

Theorem 4.4. If G # 1 is a finite p-group, then its center Z(G) # 1.

Proof. Consider the class equation
1G] = 1Z(G)] + ¥ [G: Co(x)].

Each Cg(x;) is a proper subgroup of G, for x; ¢ Z(G). By Corollary 4.3,
[G: Cg(x;)] is a power of p (since |G| is). Thus, p divides each [G: C4(x;)],
and so p divides | Z(G)|. E

If G is a finite simple p-group, then G = Z(G) and G is abelian; therefore, G
must be cyclic of order p. Theorem 4.4 is false for infinite p-groups.

Corollary 4.5. If p is a prime, then every group G of order p* is abelian.

Proof. If G is not abelian, then Z(G) < G; since 1 # Z(G), we must have
|Z(G)| = p. The quotient group G/Z(G) is defined, since Z(G) < G, and it is
cyclic, because |G/Z(G)| = p; this contradicts Exercise 3.3. @

Theorem 4.6. Let G be a finite p-group.

(i) If H is a proper subgroup of G, then H < Ng(H).
(ii) Every maximal subgroup of G is normal and has index p.

Proof. (i) If H < G, then Ng(H) = G and the theorem is true. If X is the set of
all th@ conjugates of H, then we may assume that |X|=[G: Ng(H)] # 1.
No?f:G/acts on X by conjugation and, since G is a p-group, every orbit of X
has size a power of p. As { H} is an orbit of size 1, there must be at least p — 1
other orbits of size 1. Thus there is at least one conjugate gHg™ # H with
{gHg™'} also an orbit of size 1. Now agHg *a™ = gHg™* for all a € H, and
50 g tag e Ng(H) for all a € H. But gHg™ # H gives at least one a € H with
g 'ag ¢ H, and so H < N,(H).
(i) If H is a maximal subgroup of G, then H < Ng(H) implies that Ng(H) =
G;thatis, H < G. By Exercise 2.58,[G: H] =p. E

Lemma 4.7. If G is a finite p-group and r, is the number of subgroups of G
having order p, then r; = 1 mod p.

Proof. Let us first count the number of elements of order p. Since Z(G) is
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abelian, all its elements of order p together with 1 form a subgroup H whose
order is a power of p; hence the number of central elements of order p is
|{H|— 1= —1mod p. If xe G is of order p and not central, then its con-
jugacy class x¢ consists of several elements of order p; that is, |x%| > 1 is an
“honest” power of p, by Theorem 3.2. It follows that the number of elements
in G of order p is congruent to —1 mod p; say, there are mp — 1 such ele-
ments. Since the intersection of any distinct pair of subgroups of order p is
trivial, the number of elements of order pisr (p — 1). Butr,(p — 1) = mp — 1
implies r; = 1 mod p.

Theorem 4.8. If G is a finite p-group and r, is the number of subgroups of G
having order p*, then r, = 1 mod p.

Proof. Let H be a subgroup of order p®, and let K, ..., K, be the subgroups
of G of order p**! which contain it; we claim that @ = 1 mod p. Every sub-
group of G which normalizes H is contained in N = Ng(H); in particular,
each K; lies in N, for Lemma 4.6(ii) shows that H <1 K; for all j. By the
Correspondence Theorem, the number of subgroups of order p in N/H is
equal to the number of subgroups of N containing H which have order p**!.
By the lemma, a = 1 mod p.

Now let K be a subgroup of order p***, and let H,, ..., H, be its subgroups
of order p*; we claim that b = 1 mod p. By the lemma, H; <1 K for all i. Since,
H,H, = K (for the H; are maximal subgroups of K), the product formula
(Theorem 2.20) gives {D{ = p*~!, where D = H; n H,, and [K : D] = p*. By
Corollary 4.5, the group K/D is abelian; moreover, K/D is generated by two
subgroups of order p, namely, H,;/D for i = 1, 2, and so it is not cyclic. By
Exercise 2.68, K/D =~ Z, x Z,. Therefore, K/D has p® — 1 elements of order
p and hence has p + 1 = (p?> — 1)/(p — 1) subgroups of order p. The Corre-
spondence Theorem gives p + I subgroups of K of order p® containing D.
Suppose there is some H; with D £ H;. Let E = H, n Hj; as above, there is a
new list of p + 1 subgroups of K of order p* containing E, one of which is H,.
Indeed, H, = ED is the only subgroup on both lists. Therefore, there are p
new subgroups and 1 + 2p subgroups counted so far. If some H, has not yet
been listed, repeat this procedure beginning with H, n H, to obtain p new
subgroups. Eventually, all the H; will be listed, and so the number of them is
b =1+ mp for some m. Hence, b = 1 mod p.

Let H,, ..., H, be all the subgroups of G of order p*, and let K, ..., K,
be all the subgroups of order p***. For each H,, let there be g, subgroups of

order p**! containing H;; for each K ;» let there be b; subgroups of order p*
contained in K.
Now

Ts+y

PEESNE

for either sum counts each K; with multiplicity the number of H’s it contains.
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Since a; = 1 mod p for all i and b; = 1 mod p for all j, it follows that r, =
r.+; Mmod p. Lemma 4.7 now gives the result, for r, = 1 mod p.

Each term in the class equation of a finite group G is a divisor of |G|, so
that multiplying by |G|™ gives an equation of the form 1 =Y ;(1/i;) with
each i; a positive integer; moreover, |G| is the largest §; occurring in this
expression.

Lemma 4.9 (Landau, 1903). Given n> 0 and g € Q, there are only finitely
many n-tuples (iy, ..., i,) of positive integers such that q = Y}, (1/i;).

Proof. We do an induction on n; the base step n = 1 is obviously true. Since
there are only n! permutations of n objects, it suffices to prove that there are
only finitely many n-tuples (i, ..., i,) with i; < i, <--- < i, which satisfy the
equation g = ) 7, (1/i;). For any such n-tuple, we have i; < n/g, for

q=1/i; + -+ i, < Uiy + - + i, = n/i,.

But for each positive integer k < n/g, induction gives only finitely many
(n — 1)-typles (i, ..., i,) of positive integers with ¢ — (1/k) = 31, (1/i;). This
completes the proof, for there are only finitely many such k.

Theorem 4.10. For every n > 1, there are only finitely many finite groups
having exactly n conjugacy classes.

Proof. Assume that G is a finite group having exactly n conjugacy classes. If
|Z(G)} = m, then the class equation is

I61=1Z@G)1+ 3 [G:Calx)]
j=m
Ifi;=|Glfor 1 <j<mandi; = |G|/[[G: C4(x;)] = |Cslxp)l form + 1 <j <
n, then 1 =3""_, (1/i). By the lemma, there are only finitely many such n-
tuples, and so there is a maximum value for all possible ifs occurring therein,
say, M. It follows that a finite group G having exactly n conjugacy classes has
order at most M. But Exercise 1.41 shows that there are only finitely many
{nonisomorphic) groups of any given order.

EXERCISES
4.1. Let H < G. If both H and G/H are p-groups, then G is a p-group.

4.2, If |G| = p", where p is prime, and if 0 < k < n, then G contains a normal sub-
group of order p*,

4.3, Let G be a finite p-group, and let H be a nontrivial normal subgroup of G. Prove
that H N Z(G) # 1.

4.4, Let G be a finite p-group; show that if H is a normal subgroup of G having order
p, then H < Z(G).
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4.5. Let H be a proper subgroup of a finite p-group G. If |H| = p*, then there is a
subgroup of order p**! containing H.

4.6. Let p be a prime, let G be a finite group whose order is divisible by p, and assume
that P < G is a maximal p-subgroup (if Q < G is a p-subgroup and P < Q, then
P=20Q)

(i) Every conjugate of P is also a maximal p-subgroup.
(ii) If P is the only maximal p-subgroup of G, then P < G.

4.7. I pis a prime and G is a nonabelian group of order p?, then | Z(G)| = p, G/Z(G) =~
7, x Z,,and Z(G) = G, the commutator subgroup.

4.8. Prove that the number of normal subgroups of order p* of a finite p-group G is
congruent to 1 mod p.

The Sylow Theorems

The main results of this section are fundamental for understanding the struc-
ture of a finite group. If p® is the largest power of p dividing |G|, then we shall
see that G contains a subgroup of order p°. Any two such subgroups are
isomorphic (indeed, they are conjugate), and the number of them can be
counted within a congruence.

Definition. If p is a prime, then a Sylow p-subgroup P of a group G is a
maximal p-subgroup.

Observe that every p-subgroup of G is contained in some Sylow p-sub-
group; this is obvious when G is finite, and it follows from Zorn’s lemma
when G is infinite. (Although we have allowed infinite groups G, the most
important groups in this context are finite.)

Lemma 4.11. Let P be a Sylow p-subgroup of a finite group G.

(i) |Ng(P)/P|is prime to p.
(ii) If a € G has order some power of p and aPa™" = P, then a € P.

Proof. (i) If p divides | Ng(P)/P|, then Cauchy’s theorem (Theorem 4.2) shows
that Ng(P)/P contains some element Pa of order p; hence, S* = (Pa) has
order p. By the Correspondence Theorem, there is a subgroup § < N4(P) <
G containing P with S/P =~ §*. Since both P and S* are p-groups, Exercise 4.1
shows that S is a p-group, contradicting the maximality of P.

(ii) Replacing a by a suitable power of a if necessary, we may assume that
a has order p. Since a normalizes P, we have a € Ng(P). If a ¢ P, then the coset
Pa e Ng(P)/P has order p, and this contradicts (i).

The observation suggesting the coming proof is that every conjugate of a
Sylow p-subgroup is itself a Sylow p-subgroup.
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Theorem 4.12 (Sylow, 1872).

(i) If Pis a Sylow p-subgroup of a finite group G, then all Sylow p-subgroups
of G are conjugate to P.
(ii) If there are r Sylow p-subgroups, then r is a divisor of |G| and r = 1 mod p.*

Proof. Let X = {Py, ..., P,} be the family of all the Sylow p-subgroups of G,
where we have denoted P by P,. In Theorem 3.17, we saw that G acts on X
by conjugation: there is a homomorphism ¥: G — Sy sending a +— ,, where
V.(P;) = aP;a™ . Let Q be a Sylow p-subgroup of G. Restricting i to Q shows
that Q acts on X; by Corollary 3.21, every orbit of X under this action has
size dividing |Q}; that is, every orbit has size some power of p. What does it
mean to say that one of these orbits has size 1?7 There would be an i with
V.(P;) = P, for all a € Q; that is, aP;a™ = P; for all a € Q. By Lemma 4.11(li),
ifa e Q, then a € P;; thatis, Q < P;; since Q is a Sylow p-subgroup, @ = P,. If
Q = P = P, we conclude that every P-orbit of X has size an “honest” power
of p save {P,} which has size 1. Therefore, | X| = r = 1 mod p.

Suppose there were a Sylow p-subgroup Q that is not a conjugate of P; that
is, 0 ¢ X.If {P,} is a Q-orbit of size 1, then we have seen that Q = P;, contra-
dicting Q ¢ X. Thus, every Q-orbit of X has size an honest power of p, and so
p divides | X|; that is, r = 0 mod p. The previous congruence is contradicted,
and so no such subgroup Q exists. Therefore, every Sylow p-subgroup Q is
conjugate to P.

Finally, the number r of conjugates of P is the index of its normalizer, and
so it is a divisor of |G|. E3

For example, |S,| = 24 = 2*- 3, and 50 a Sylow 2-subgroup of S, has order
8. It is easily seen that Dg < S, if one recalls the symmetries of a square. The
Sylow theorem says that all the subgroups of S, of order 8 are conjugate
{hence isomorphic) and that the number r of them is an odd divisor of 24.
Since r # 1, there are 3 such subgroups.

We have seen, in Exercise 4.6, that if a finite group G has only one Sylow
p-subgroup P, for some prime p, then P <1 G. We can now see that the con-
verse is also true.

Corollary 4.13. A finite group G has a unique Sylow p-subgroup P, for some
prime p, if and only if P < G.

Proof. If G has only one Sylow p-subgroup P, then P < G, for any conjugate
of P is also a Sylow p-subgroup. Conversely, if P is a normal Sylow p-
subgroup of G, then it is unique, for all Sylow p-subgroups of G are conju-
gate. [@

! Since all Sylow p-subgroups have the same order, this congruence also follows from Theorem
4.8
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Theorem 4.14. If G is a finite group of order p°m, where (p, m) = 1, then every
Sylow p-subgroup P of G has order p°.

Proof. We claim that [G: P] is prime to p. Now [G: P]=[G:N][N: P},
where N = Ng(P), and so it suffices to prove that each of the factors is prime to
p. But [G: N] = r, the number of conjugates of p, so that [G: N] = 1 mod p,
while [N : P] = |N/P| is prime to p, by Lemma 4.11(j).

By Lagrange’s theorem, | P| = p*, where k < e, and so [G: P] = |G|/|P| =
p® *m. Since [G : P] is prime to p, however, we must have k = e.

Corollary 4.15. Let G be a finite group and let p be a prime. If p* divides |G|,
then G contains a subgroup of order p*.

Proof. If P is a Sylow p-subgroup of G, then p* divides | P, and the result now
follows from Exercise 4.2.

We have now seen how much of the converse of Lagrange’s theorem (if m
divides |G}, then G has a subgroup of order m) can be salvaged. If m is a prime
power, then G contains a subgroup of order m; if m has two distinct prime
factors, however, we have already seen an example (Theorem 3.7) in which G
has no subgroup of order m (namely, m = 6 and G = A4,, a group of order 12).

Since, for each prime p, any two Sylow p-subgroups of a finite group G are
isomorphic (they are even conjugate), we may list the Sylow subgroups of G,
one for each prime. It is plain that isomorphic groups G give the same list,
but the converse is false. For example, both Sy and Z4 give the same list.

Here is another proof of Sylow’s theorem, due to Wielandt, that does not
use Cauchy’s theorem (and so it gives a third proof of Cauchy’s theorem).

Lemma 4.16. If p is a prime not dividing an integer m, then for all n > 1, the

binomial coefficient (p m> is not divisible by p.

n

Proof. Write the binomial coefficient as follows:

p"m(p"m —1)---(p"m —i)---(p"m — p" + 1)
ph(p" =) (p" = i) (p" = p" + 1)

Since p is prime, each factor equal to p of the numerator (or of the denomina-
tor) arises from a factor of p”"m — i (or of p" — i). If i = 0, then the multiplicity
of p in p"m and in p” are the same because pfm. If 1 <i < p”, then i = p,
where 0 < k < nand pfj. Now p* is the highest power of p dividing p" — i, for
p"—i=p"— p*=p*p"* —j)and pfp"* — j (because n — k > 0). A simi-
lar argument shows that the highest power of p dividing p"m — i is also p*.
Therefore, every factor of p upstairs is canceled by a factor of p downstairs,
and hence the binomial coefficient has no factor equal to p.
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Theorem 4.17 (Wielandt’s Proof). If G is a finite group of order p"m, where
(p, m) = 1, then G has a subgroup of order p".

Proof. If X is the family of all subsets of G of cardinal p”, then | X is the
binomial coefficient in the lemma, and so pf|X| Let G act on X by left
translation: if B is a subset of G with p” elements, then for each g € G, define

gB = {gb: be B}.

Now p cannot divide the size of every orbit of X lest p|| X|; therefore, there is
some B € X with |O(B)| not divisible by p, where O(B) is the orbit of B. If G
is the stabilizer of B, then |G|/|Gg| = [G: Gg] = |@(B)] is prime to p. Hence,
|Ggl = p"m’ = p" (for some m’ dividing m). On the other hand, if b, € B and
g € Gg, then gb, € gB = B (definition of stabilizer); moreover, if g and 4 are
distinct elements of G, then gb, and hb, are distinct elements of B. There-
fore, |Gp) < |Bl =p",and 50 |Gg| =p". E

The next technical result is useful.

Theorem 4.18 (Frattini Argument). Let K be a normal subgroup of a finite
group G. If P is a Sylow p-subgroup of K (for some prime p), then

G = KNg(P).

Proof. If g € G, then gPg™ < gKg™' = K, because K <1 G. If follows that
gPg™! is a Sylow p-subgroup of K, and so there exists k € K with kPk™! =
gPg~'. Hence, P = (k™ 'g)P(k™g)™!, so that k™'g € N¢(P). The required fac-
torization is thus g = k(k™g). 1@

EXERCISES

4.9. (i) Let X be a finite G-set, and let H < G act transitively on X. Then G = HG,
foreach x e X.
(i) Show that the Frattini argument follows from (i).

4.10. Let {P;: i e I} be a set of Sylow subgroups of a finite group G, one for each prime
divisor of |G|. Show that G is generated by { J P;.

4.11. Let P < G be a Sylow subgroup. If Ng(P) < H < G, then H is equal to its own
normalizer; that is H = Ng(H).

4.12. If a finite group G has a unique Sylow p-subgroup for each prime divisor p of
|GJ, then G is the direct product of its Sylow subgroups.

4.13. (i) Let G be a finite group and let P < G be a Sylow subgroup. If H < G, then
Hn P is a Sylow subgroup of H and HP/H is a Sylow subgroup of G/H.
(Hint. Compare orders.)
(i) Let G be a finite group and let P < G be a Sylow subgroup. Give an example
of a (necessarily non-normal) subgroup H of G with Hn P not a Sylow
subgroup of H.
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4.14. Prove that a Sylow 2-subgroup of A5 has exactly 5 conjugates.

4.15. (i) Prove that a Sylow 2-subgroup of S is isomorphic to Ds.
(i) Prove that Dg x Z, is isomorphic to a Sylow 2-subgroup of S¢.

4.16. If Q is a normal p-subgroup of a finite group G, then Q < P for every Sylow
p-subgroup P.

Definition. An n x nmatrix A over a commutative ring R is unitriangular if it
has 0’s below the diagonal and 1’s on the diagonal. The set of all uni-
triangular 3 x 3 matrices over Z, is denoted by UT(3, Z,,).

417. (i) Show that |GL(3, Z,)| = (p* — 1)(p* — P)(p*> — P?).
(ii) If p is a prime, then UT(3, Z,)) is a Sylow p-subgroup of GL(3, Z,).
(iti) Show that the center of UT(3, Z,) consists of all matrices of the form
1 0 x
010
0 0 1

4.18. Show that a finite group G can have three Sylow p-subgroups A4, B, and C such
that AnB=1and AnC # 1. (Hint. Take G = S3 x S;.)

4.19. Let |G| = p"m, where p{m. If s < n and r, is the number of subgroups of G of
order p® then r,= 1 mod p.

420. (i) Let c=(12 3 4 5), let P={0> <S5, and let N = Ng (P). Show that
IN|=20and N = {0, a), wherea =(2 3 5 4).
{ii) If A4 is the group (under composition),

A={p:Zs—>Zs: p(x) =ax + B, o, fe Zs, o 0},

then Ny (P)= A. (Hint. Show that A4 = {s,t), where s:x > x + 1, and
£ x > 2x.)

Groups of Small Order

We illustrate the power of the Sylow theorems by classifying the groups of
small order.

Theorem 4.19. If p is a prime, then every group G of order 2p is eitﬁer cyclic or
dihedral.

Proof. If p = 2, then |G| = 4, and the result is Exercise 2.12. If p is an odd
prime, then Cauchy’s theorem shows that G contains an element s of order p
and an element ¢ of order 2. If H = {s), then H has index 2in G, and so H <
G. Therefore, tst = s* for some i. Now s = t2st? = t(tst)t = ts’t = s™°; hence,
i = 1 mod p and, because p is prime, Euclid’s lemma gives i = -+ 1 mod p.
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Thus, either tst = s or tst = s”*. In the first case, s and ¢ commute, G is
abelian, and Exercises 4.12 and 2.62(ji) give G = Z, X Z, = Z,,; in the sec-
ond case, G = D,,,.

We now generalize this result by replacing 2 by q.

Theorem 4.20. Let |G| = pg, where p > q are primes. Then either G is cyclic or
G = {a, b), where

bP =1, a?=1, aba™! = b™,

and m? =1 mod p but m %= 1 mod p. If qfp — 1, then the second case cannot
occur.

Proof. By Cauchy’s theorem, G contains an element b of order p; let S = (b>.
Since § has order p, it has index g. It follows from Exercise 3.33 that § < G.

Cauchy’s theorem shows that G contains an element a of order g; let
T =<a). Now T is a Sylow g-subgroup of G, so that the number ¢ of its
conjugates is 1 + kq for some k > 0. As above, eitherc = lorc=p. Ifc =1,
then T < Gand G = § x T (by Exercise 4.12),andso G = Z, x Z, = Z,,, by
Exercise 2.62(ii). In case ¢ = kq + 1 = p, then g|p — 1, and T is not a normal
subgroup of G. Since § <1 G, aba™! = b™ for some m; furthermore, we may
assume that m # 1 mod p lest we return to the abelian case. The reader may
prove, by induction on j, that a’ba™ = b™, In particular, if j = ¢, then m? =
1 mod p.

Corollary 4.21. If p > q are primes, then every group G of order pq contains a
normal subgroup of order p. Moreover, if q does not divide p — 1, then G must
be cyclic.

For example, the composite numbers n < 100 for which every group of
order n is cyclic are:

15, 33, 35, 51, 65, 69, 77, 85, 87, 91, 95.

Definition. The guaternions is a group Q = <a, b) of order 8 with a* =1,
b? =a? and bab™! = a7\

We continue describing groups of small order.
Theorem 4.22. Q and Dy are the only nonabelian groups of order 8.
Proof. A nonabelian group G of order 8 has no element of order 8 (lest it be
cyclic), and not every nonidentity element has order 2 (Exercise 1.26); thus, G

has an element a of order 4. Now <{a) < G, for it has index 2, and G/<{a) = Z,.
If be G and b ¢ (a, then b? € {a) (Exercise 2.16). If b> = a or b? = a3, then
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b has order 8, a contradiction; therefore, either
b*=4> or b =1
Furthermore, bab™! € {a), because {a) is normal, so that
bab*=a or  bab7! =43

(these are the only possibilities because a and bab™! have the same order).
The first case is ruled out, for G = {a, b) and G is abelian if a and b commute.
The following case remain:

(1) a4 = 1: b2 = a2, and bab-l = a3; and
(ll) (14 = 1’ b2 = 1, and bab_l = a3,

Since a® = a™!, (i) describes Q and (ii) describes Dg.

Lemma 4.23. If G has order 12 and G & A,, then G contains an element of
order 6; moreover, G has a normal Sylow 3-subgroup, hence has exactly two
elements of order 3.

Proof. If P is a Sylow 3-subgroup of G, then |P| = 3 and so P = <{b) for some
b of order 3. Since [G: P] = 4, there is a homomorphism : G — S, whose
kernel K is a subgroup of P; as |P| = 3, either K = 1 or K = P.If K = 1, then
¥ is an injection and G is isomorphic to a subgroup of S, of order 12; by
Exercise 3.15, G = A4,. Therefore, K = P and so P <« G; it follows that P is
the unique Sylow 3-subgroup, and so the only elements in G of order 3 are b
and b2 Now [G: C4(b)] is the number of conjugates of b. Since every conju-
gate of b has order 3, [G: C4(b)] <2 and |Cg(b)| = 6 or 12; in either case,
C;(b) contains an element a of order 2. But a commutes with b, and so ab has
order 6.

We now define a new group.

Definition. T is a group of order 12 which is generated by two elements a and
b such that a® = 1 and b? = a® = (ab)>.

It is not obvious that such a group T exists; we shall construct such a
group later, in Example 7.14.

Theorem 4.24. Every nonabelian group G of order 12 is isomorphic to either
A4 Dyg,0or T.

Remark. Exercise 3.50 shows that Sy x Z, = D,,.

Proof. 1t suffices to show that if G is a nonabelian group of order 12 which is
not isomorphic to A,, then either G= D, or GX T.

Let K be a Sylow 3-subgroup of G (so that K = (k) is cyclic of -order 3
and, by Lemma 4.23, K <1 G), and let P be a Sylow 2-subgroup of G (so that
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P has order 4). Notice that G = KP, for P is a maximal subgroup because it
has prime index. Now either P~V or P =~ Z,.

In the first case, P = {1, x, y, z}, where x, y, and z are involutions. Not
every element of P commutes with k lest G be abelian; therefore, there exists
an involution in P, say x, with xkx # k. But xkx is a conjugate of k, hence has
order 3; as G has only two elements of order 3, xkx = k™, and {x, k> = Ds
(= S;). We claim that either y or z commutes with k. If y does not commute
with k, then, as above, yky = k™%, so that xkx = yky and z = xy commutes
with k. If a = zk, then G = {a, x), a has order 6, and xax = xzkx = zxkx =
zk™' = a!, so that G = D, ,.

In the second case, P = {x) =~ Z,. Now x and k do not commute, because
G = {x, k) is not abelian, and so xkx™! = k™*. But x2 does commute with k,
for x%kx™? = x(xkx 1 )x™! = xk*x™! = k; hence, a = x2k has order 6. Since
x? and k commute, a®=(x2%k)® = x®k> = x2. Finally, {(ax)*> = axax =
kx3kxd = (kx ™ kx™ = (x"k 1 )kx™? (because xkx ! =k7!) = x"2 = x2% We
have shown that G =~ T in this case.

One can prove this last result in the style of the proof of Theorem 4.22,
beginning by choosing an element of order 6. The reader may see that the
proof just given is more efficient.

Notice that T is almost a direct product: it contains subgroups P = (x>
and K = (k> with PK = G, Pn K = 1, but only P is normal.

If n > 1, define G(n) to be the number of nonisomorphic groups of order n.
No one knows a formula for G(n), although it has been computed for n < 100
and beyond. Here is the classification of all groups of order <15 followed by
a table of values of ®(n) for small n. Of course, ®(n) = 1 whenever # is prime.

Table of Groups of Small Order

Order n G (n) Groups?
4 2 Z,V
6 2 Ze=Z, X 73,8,
8 5 Za, 2y X Ly, Zy X Zy X L, Dg, @
9 2 Lo, Zy % Zy
10 2 Z,0, D1o
12 5 Zi2.Z¢ X Ly, Agy Dys, T
14 2 Z,4 D1a
15 1 Zys
Some Other Values of ®(n)
n 16 18 21 24 25 26 27 28 30 32 64
G(n) 14 5 2 15 2 2 5 4 4 51 267

2 The abelian groups in the table will be discussed in Chapter 6.
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R. James, M.F. Newman, and E.A. O’Brien (1990) have shown, using com-
puters, that ®(128) = 2328; E.A. O’Brien (1991) has shown that ®(256) =
56,092, and that 6(512) > 8,000,000 (counting only those groups of “class 2”).
G. Higman (1960) and C. Sims (1965) showed that G(p") is about p*"*7. If
the prime factorization of an integer n is pi'p3*...p,", define p = u(n) to be
the largest ;. Using the fact that there are at most two nonisomorphic simple
groups of the same finite order (which follows from the classification of the
finite simple groups), A. Mclver and P.M. Neumann (1987) have shown that
G(n) < n***r+2,

Here is another type of application of the Sylow theorems.

ExampLE 4.1. There is no simple group of order 30.

Such a group would have r Sylow 5-subgroups, where r = 1 mod 5 and
r{30. Now r # 1, lest G have a normal subgroup, and so r = 6. Aside from the
identity, this accounts for 24 elements (for distinct subgroups of order 5
intersect in 1). Similarly, there must be 10 Sylow 3-subgroups, accounting for
20 elements, and we have exceeded 30.

ExaMPpLE 4.2. There is no simple group of order 36.

A Sylow 3-subgroup P of such a group G has 4 conjugates, and so
[G:P] = 4. Representing G on the cosets of P gives a homomorphism
V: G — S, with ker iy < P; since G is simple, { must be an injection and G is
imbedded in S,. This contradicts 36 > 24, and so no such group G can exist.

EXERCISES
4.21. A, is a group of order 60 containing no subgroups of order 15 or of order 30.

4.22. If G is the subgroup of GL(2, C) generated by

0 i : 0 1
= d B=
then G =~ Q. (See Exercise 2.24.)

4.23. The division ring H of real quaternions is a four-dimensional vector space over
R having a basis {1, i, j, k} with multiplication satisfying

i2=j2=k2=—1,
=k jk=i ki=j ji=—k ki=—i ik=—j

(these equations eight determine the multiplication on all of H.) Show that the
eight elements { &1, +i, +j, +k} form a multiplicative group isomorphic to Q.

4.24. Show that Q has a unique element of order 2, and that this element generates

Z(Q).
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4.25.
4.26.
4.27.
4.28.

4.29.

4.30.

4.31.
4.32.

4.33.

4.34.

4.35.
4.36.
437.

4.38.

Prove that Dy & Q.
Prove that Q contains no subgroup isomorphic to Q/Z(Q).
Prove that every subgroup of Q is normal.

Let G = Q x A x B, where A is a (necessarily abelian) group of exponent 2 and
B is an abelian group in which every element has odd order. Prove that every
subgroup of G is normal. (Dedekind proved the converse: if G is a finite
group in which every subgroup is normal, then G = Q x 4 x B as above)
Groups with this property are called hamiltonian, after W.R. Hamilton who
discovered Q.

Let SL(2, 5) denote the multiplicative group of all 2 x 2 matrices over Z5 which
have determinant 1.
(i) Show that [SL(2, 5)] = 120.
(ii) Show that Q is isomorphic to a Sylow 2-subgroup of SL(2, 5). (Hint. Show
that SL(2, 5) has a unique involution.)
(iii) Show that a Sylow 2-subgroup of S5 is Dg, and conclude that SL(2, 5) ¢ Ss.
(iv) Show that A5 cannot be imbedded in SL(2, 5).

For every divisor d of 24, show that there is a subgroup of S, of order d.
Moreover, if d # 4, then any two subgroups of order d are isomorphic.

Exhibit all the subgroups of S,; aside from S, and 1, there are 26 of them.

(i) Let p be a prime. By Exercise 4.17, P = UT(3, Z,) is a Sylow p-subgroup of
GL(3, Z,). If p is odd, prove that P is a nonabelian group of order p* of
exponent p. (Compare Exercise 1.26.) If p = 2, show that UT(3, Z,) =~ Q.

(i) Let p be an odd prime. Prove that there are at most two nonabelian groups
of order p® One is given in part (i) and has exponent p; the other has
generators a and b satisfying the relations a?® = 1, b = 1, and bab™ = a'*?.
(This group will be shown to exist in Example 7.16.)

Give an example of two nonisomorphic groups G and H such that, for each
positive integer d, the number of elements in G of order d is equal to the number
of elements in H of order d.

If G is a group of order 8 having only one involution, then either G = Zg or
Gz=Q.

If p and g are primes, then there is no simple group of order p2q.

Prove that there is no nonabelian simple group of order less than 60.

Prove that any simple group G of order 60 is isomorphic to A5. (Hint. If P and
Q are distinct Sylow 2-subgroups having a nontrivial element x in their intersec-

tion, then Cg(x) has index 5; otherwise, every two Sylow 2-subgroups intersect
trivially and Ng(P) has index 5.)

In Corollary 7.55, we shall prove that a group of squarefree order cannot be
simple. Use this result to prove that if |G| = p,...p,, where p, < p, <'- <p,
are primes, then G contains a normal Sylow p-subgroup.

Definition. If n > 3, a generalized quaternion group (or dicyclic group) is a
group Q, of order 2" generated by elements a and b such that

a¥ =1, babl=a"l, and b2 = a?"?,
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4.39.

4.40.

4.41.
4.42.
4.43.

4. The Sylow Theorems

Any two groups of order 2" generated by a pair of elements 4 and b for which
a?"* = b? and aba = b are isomorphic.

If G is a group of order 2" which is generated by elements a and b such that
a?? = b? = (ab)?,

then G = Q,.

Prove that Q, has a unique involution z, and that Z(Q,) = {z).

Prove that Q,/Z(Q,) = Djn-1.

Let G < GL(2, C) be generated by

0 o 0 1
= d B=

where w is a primitive 2" ! th root of unity for n > 3. Prove that G = Q,. Con-
clude that Q, exists.



CHAPTER 5

Normal Series

We begin this chapter with a brief history of the study of roots of polyno-
mials. Mathematicians of the Middle Ages, and probably those in Babylonia,
knew the gquadratic formula giving the roots of a quadratic polynomial
f(X)= X? + bX + c. Setting X = x — b transforms f(X) into a polynomial
g(x) with no x term:

g(x) = x* + ¢ — Lb2

Note that a number a is a root of g(x) if and only if « — b is a root of
f(X). The roots of g(x) are +%./b* —4c, and so the roots of f(X) are
H—b+ /b —4o).

Here is a derivation of the cubic formula! (due to Scipione del Ferro,

! Negative coefficients (and negative roots) were not accepted by mathematicians of the early
1500s. There are several types of cubics if one allows only positive coefficients. About 1515,
Scipione del Ferro solved some instances of x> + px = g, but he kept his solution secret. In 1535,
Tartaglia (Niccold Fontana) was challenged by one of Scipione’s students, and he rediscovered
the solution of x* + px = g as well as the solution of x> = px + g. Eventually Tartaglia told his
solutions to Cardano, and Cardano completed the remaining cases (this was no small task, for
all of this occurred before the invention of notation for variables, exponents, +, —, x, /, \/_ )
and =). A more complete account can be found in J.-P. Tignol, Galois’ Theory of Equations.

We should not underestimate the importance of Cardano’s formula. First of all, the physicist
R.P. Feynmann suggested that its arising at the beginning of the Renaissance and Reformation
must have contributed to the development of modern science. After all, it is a genuine example
of a solution unknown to the Greeks, and one component contributing to the Dark Ages was
the belief that contemporary man was less able than his classical Greek and Roman ancestors.
Second, it forced mathematicians to take the complex numbers seriously. While complex roots
of quadratics were just ignored, the casus irreducibilis, arising from one of Cardano’s cases,
describes real roots of cubics with imaginary numbers (see the next footnote). Complex numbers
could no longer be dismissed, and thus the cubic formula had great impact on the development
of mathematics, :
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Tartaglia (Niccold Fontana), and Cardano). A cubic f(X)= X3+ aX? +
bX + c can be transformed, by setting X = x — 44, into a polynomial g(x)
with no x? term:

gx)=x*+gx +r,

and a number « is a root of g(x) if and only if « — $a is a root of f(X). If a 15
a root of g(x), write « = 8 + y, where § and y are to be found. Now

o =(B+7)° =P +7’ +3(B% + By’
=B + 9> + 30py,
and so evaluating g(«) gives
) B+ +(GBBy+ go+r=0.

Impose the condition that fy = —g/3 (forcing the middle term of (1) to van-
ish). Thus,
B +y=—r.
We also know that
By = —/21,
and we proceed to find B and y. Substituting,
B — @275 = —r,
and so the quadratic formula yields
B =4[—r + (* + 43277
Similarly,
Y =301 F (* + 4¢>/27)'].

fw=e is a primitive cube root of unity, there are now six cube roots
available: f, w8, w?B, y, wy, w*y; these may be paired to give product —gq/3:

—q/3 = By = (@) (@) = (@*B)(wy).

Tt follows that the roots of g(x) are f + v, wB + @?y, and w?B + wy; this is
the cubic formula.?

The quartic formula was discovered by Lodovici Ferrari, about 1545; we
present the derivation of this formula due to Descartes in 1637. A quartic
f(X)=X*+aX?®+ bX*+cX + d can be transformed, by setting X =
x — %a, into a polynomial g(x) with no x> term:

27if3

g(x) = x* + gx® + rx +5;

moreover, a number « is a root of g(x) if and only if o — %a is a root of f(X).

2 The roots of f(x) = (x — 1)(x — 2)(x + 3) = x> — Tx + 6 are obviously 1, 2, and —3. However,
the cubic formula gives

B+ 7 =T H=6+ /—400/27) + 7 H(—6 — \/—400/27).
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Factor g(x) into quadratics:
x4 gx®+rx+s=x2+kx + D)(x?* — kx + m)

(the coefficient of x in the second factor must be — k because there is no cubic
term in g(x)). If k, I, and m can be found, then the roots of g(x) can be found
by the quadratic formula. Expanding the right side and equating coefficients
of like terms gives

I+m—k*=yq,
km—kl=r,
Im=s.

Rewrite the first two equations as
m+1l=q+ k%
m—1=rfk.
Adding and subtracting these equations gives
20 =k* + q —r/k,
2m =k* + q + r/k.

These two equations show that we are done if k can be found. But
(k* + q — r/k)(k? + q + r/k) = 4lm = 4s gives

k® + 2gk* + (g% — 4s)k* — r? =0,

a cubic in k2. The cubic formula allows one to solve for k2, and it is now easy
to determine I, m, and the roots of g(x).

Some Galois Theory

Let us discuss the elements of Galois Theory, the cradle of group theory. We
are going to assume in this exposition that every field F is a subfield of an
algebraically closed field C. What this means in practice is this. If f(x) € F[x],
the ring of all polynomials with coefficients in F, and if f(x) has degree n > 1,
then there are (not necessarily distinct) elements a,, ..., a, in C (the roots of
f(x)) and nonzero a € F so that

() = alx — a;)(x — a3)...(x — o)

in C[x]. The intersection of any family of subfields of a field is itself a subfield,
define the smallest subfield of C containing a given subset X as the intersec-
tion of all those subfields of C containing X. For example, if « € C, the smallest
subfield of C containing X = F U {a} is

F(o) = {f(@)/g(a):. f(x), g(x) € F[x], g(a) # O};
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F(a) is called the subfield obtained from F by adjoining o. Similarly, one can
define F(oy, ..., a,), the subfield obtained from F by adjoining o, ..., a,. In
particular, if f(x) € F[x] and f(x) = (x — o, )(x — &3)...(x — a,) € C[x], then
F(ay, ..., a,), the subfield obtained from F by adjoining all the roots of f(x),
is called the splitting field of f(x) over F. Notlce that the splitting field of f(x)
does depend on F. For example, if f(x) = x> + 1 € Q[x], then the sphttlng
field of f(x) over @ is Q(i); on the other hand, if we regard f(x) e R[x]; “then
its splitting field of f(x) over R is C.
1t is now possible to give the precise definition we need.

Definition. Let f(x) e F[x] have splitting field E over F. Then f(x) is solvable
by radicals if there is a chain of subfields

F=K,cK,c- <k,

in which E = K, and each K, is obtained from K; by adjoining a root of an
element of K;; that is, K;,; = K;(B;+,), where f§;,, € K;, and some power of
Bi+q liesin K.

When we say that there is a formula for the roots of f(x), we really mean
that f(x) is solvable by radicals. Let us illustrate this by considering the
quadratic, cubic, and quartic formulas.

If f(x) = x* 4+ bx + ¢, set F = Q(b, ¢). If B = \/b® — 4c, then B* € F; define
K, = F(p), and note that K, is the splitting field of f(x) over F.

If f(x) = x> + gx + r, set F = Q(q, r). Define 8, = \/r* + 4¢>/27, and de-
fine K, = F(B,); define B, =3/ —r + B, and define K, = K,(8,). Finally,
set K3 = K,(w), where w is a cube root of unity. Notice that the cubic for-
mula implies that K , contains the splitting field E of f(x). On the other hand,
E need not equal K,; for example, if all the roots of f(x) are real, then E = R
but Ky ¢ R.

If f(x) = x* + gx* + rx + s, set F = Q(q, r, 5)- Using the notation in our
discussion of the quartic, there is a cubic polynomial having k? as a root. As
above, there is a chain of fields F = K, « K, « K, = K, with k? € K;. De-
fine K, = K3(k), K5 = K4(/7), where y = k? — 4l, and K = K 5(, /&), where
8 =k* —4m. The dlscussmn of the quartic formula shows that the splitting
field of f(x) is contained in K.

Conversely, it is plain that if f(x) is solvable by radicals, then every root of
f(x) has some expression in the coefficients of f(x) involving the field opera-
tions and extractions of roots.

Definition. If E and E’ are fields, then a homomorphism is a function ¢: E — E’
such that, for all o, § € E,
a(l)=1,

ol + B) = a(«) + a(B),
a(@f) = a(@)a(p).
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If o is a bijection, then ¢ is an isomorphism; an isomorphism ¢: E — E is
called an automorphism.

Lemma 5.1. Let f(x) € F[x), let E be its splitting field over F, and let 6: E - E
be an automorphism fixing F (i.e., c(a) = a for all ac F). If a. € E is a root of
f(x), then a(a) is also a root of f(x).

Proof. If f(x)=Y a;x', then 0=a(f(@))=0(} a;0)=} o(a)o(®)' =Y a;0(e),

and so o() is a root of f(x).

Lemma 5.2. Let F be a subfield of K, let {o,,...,a,} © K, and let E =
F(ay, ..., a,). If K'is a field containing F as a subfield, and if ¢: E— K' is a
homomorphism fixing F with a(o;) = o; for all i, then o is the identity.

Proof. The proof is by induction on n > 1. If n = 1, then E consists of all
g(oty)/h(e;), where g(x), h(x) € F[x] and h(a,) # 0; clearly o fixes each such
element. The inductive step is clear once one realizes that F(a,..., a,) =
F*(a,), where F* = F(a,, ..., ot,.y)-

It is easy to see that if F is a subfield of a field E, then the set of all
automorphisms of E which fix F forms a group under composition.

Definition. If F is a subfield of E, then the Galois group, denoted by Gal(E/F),
is the group under composition of all those automorphisms of E which fix F.
If f(x) € F[x] and E = F(o4, ..., a,) is the splitting field of f(x) over F, then
the Galois group of f(x)is Gal(E/F).

Theorem 5.3. Let f(x) € F[x] and let X = {«,, ..., a,} be the set of its distinct
roots (in its splitting field E = F(a,,...,a,) over F). Then the function
¢@: Gal(E/F) - Sy =~ S, given by ¢(o) = c|X, is an imbedding; that is, ¢ is
completely determined by its action on X.

Proof. If o € Gal(E/F), then Lemma 5.1 shows that ¢(X) = X; ¢|X is a bijec-
tion because ¢ is an injection and X is finite. It is easy to see that ¢ is a
homomorphism; it is an injection, by Lemma 5.2.

Not every permutation of the roots of a polynomial f(x) need arise from
some o € Gal(E/F). For example, let f(x) = (x* — 2)(x* — 3) e Q[x]. Then
E = Q(,/2,/3) and there is no o € Gal(E/Q) with ¢(,/2) = /3.

Definition. If F is a subfield of a field E, then E is a vector space over F (if
a € F and « € E, define scalar multiplication to be the given product ao of two
elements of E). The degree of E over F, denoted by [E : F], is the dimension
of E.
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EXERCISES
5.1. Show that every homomorphism of fields ¢: E — K is an injection.

5.2. Let p(x) € F[x] be an irreducible polynomial of degree n. If a is a root of p(x) (in
a splitting field), prove that {1, &, a2 ...,a" '} is a basis of F(x) (viewed as a
vector space over F). Conclude that [F(a): F] = n. (Hint. The rings F[x]/(p(x))
and F(x) are isomorphic via g(x) + (p(x)) — g(a).)

5.3. Let F c E c K be fields, where [K : E] and [E : F] are finite. Prove that [K : F] =
[K:E]J[E: F). (Hint. If {«;, ..., &,} is a basis of E over F and if {8,,..., f,} is

a basis of K over E, then the set of mn elements of the form o;f; is a basis of K
over F.)

5.4. Let E be a splitting field over F of some f(x) € F[x], and let K be a splitting field
over E of some g(x) € E[x]. If ¢ € Gal(K/F), then ¢|E € Gal(E/F). (Hint. Lemmas
5.1and 5.2)

5.5. Let f(x) = x" — a € F[x], let E be the splitting field of f{x) over F, and let . € E
be an nth root of a. Prove that there are subfields

F=K,cK,c <K, =F(a)

with K, = K{(B; 1), B} € K;, and p(i) prime for all i. (Hint. If n = st, then
am = (o))

Lemma 5.4. Let p(x) € F[x] be irreducible, and let a and B be roots of p(x) in
a splitting field of p(x) over F. Then there exists an isomorphism A*: F(a) —
F(B) which fixes F and with J*(x) = p.

Proof. By Exercise 5.2, every element of F(x) has a unique expression of the
form ag + a,a + -+ + a,_,a" . Define 1* by

ag+ a0+ +a,_0" V=ay+a B+ +a,_ p

It is easy to see that A* is a field homomorphism; it is an isomorphism
because its inverse can be constructed in the same manner.

Remark. There is a generalization of this lemma having the same proof.
Let A: F — F’ be an isomorphism of fields, let p(x) = ag + a;x + --- + a,x" €
F[x] be an irreducible polynomial, and let p’(x) = A(ay) + Ala;)x + - +
Aa,)x" € F'[x]. Finally, let o be a root of p(x) and let B be a root of p’(x) (in
appropriate splitting fields). Then there is an isomorphism A*: F(x) — F'(B)
with A1*(a) = f and with A*|F = A.

Lemma 5.5. Let f(x) € F[x], and let E be its splitting field over F. If K is an
“intermediate field,” that is, F — K < E, and if 1: K — K is an automorphism
fixing F, then there is an automorphism A*: E — E with A*|K = A.

Proof. The proof is by induction on d = [E: F]. If d = 1, then E = K, every
rootay, ..., o, of f(x)liesin K, and we may take A* = 1. Ifd > 1, then E # K
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and there is some root o of f(x) not lying in K (of course, o € E, by definition
of splitting field). Now a is a root of some irreducible factor p(x) of f(x); since
o ¢ K, degree p(x) = k > 1. By the generalized version of Lemma 5.4, there
is Be E and an isomorphism A4,: K(x) = K(f) which extends 1 and with
4,(a) = B. By Exercise 5.3, [E: K(cx)] = d/k < d. Now E is the splitting field
of f(x) over K(a), for it arises from K(a) by adjoining all the roots of f(x).
Since all the inductive hypotheses have been verified, we conclude that 4,
and hence A, can be extended to an automorphism of E.

Remark. As with the previous lemma, Lemma 5.5 has a more general version
having the same proof. It says that if f(x) € F[x], then any two (abstract)
splitting fields of f(x) over F are isomorphic.

Theorem 5.6. Let p be a prime, let F be a field containing a primitive pth root
of unity, say, w, and let f(x) = x? — a e F[x].

(i) If aisaroot of f(x) (in some splitting field), then f(x) is irreducible if and
onlyifa¢ F.
(i) The splitting field E of f(x) over F is F(a).
(i) If f(x)is irreducible, then Gal(E/F) =~ Z

Proof. (1) If o € F, then f(x) is not irreducible, for it has x — o as a factor.
Conversely, assume that f(x) = g(x)h(x), where degree g(x) = k < p. Since
the roots of f(x) are o, wa, w?a, ..., w” ‘a, every root of g(x) has the form w'a
for some i. If the constant term of g(x) is c, then ¢ = + w"a* for some r (for ¢
is, to sign, the product of the roots). As both ¢ and w lie in F, it follows that
of € F. But (k, p) = 1, because pis prime, and so 1 = ks + tp for some integers
sand t. Thus
o= okt — (a*)(aP) € F.

(i) Immediate from the observation that the roots of f(x) are of the form
w'o.

(iii) If ¢ € Gal(E/F), then o(x) = w'a for some i, by Lemma 5.1. Define
¢: Gal(E/F) - Z, by ¢(o) = [i], the congruence class of i mod p. It is easy to
check that pis a homomorphism it is an injection, by Lemma 5.2. Since f(x)
is irreducible, by hypothesis, Lemma 5.4 shows that Gal(E/F) # 1. Therefore
¢ is a surjection, for Z, has no proper subgroups. &

Theorem 5.7. Let f(x) € F[x], let E be the splitting field of f(x) over F, and
assume that f(x) has no repeated roots in E (i.e., f(x) has no factor of the form
(x — )% in E[x]). Then f(x) is irreducible if and only if Gal(E/F) acts transi-
tively on the set X of all the roots of f(x).

Remark. It can be shown that if F has characteristic 0 or if F is finite, then
every irreducible polynomial in F[x] has no repeated roots.
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Proof. Note first that Lemma 5.1 shows that Gal(E/F) does act on X. If f(x)
is irreducible, then Lemma 5.4 shows that Gal(E/F) acts transitively on X,
Conversely, assume that there is a factorization f(x) = g(x)}#(x) in F[x]. In
E[x], g(x) =[] (x — &) and h(x) =[] (x — B;); since f(x) has no repeated
roots, o; # f; for all i, j. But Gal(E/F) acts transitively on the roots of f(x), so
there exists o € Gal(E/F) with o(ot;) = ;. and this contradicts Lemma 5.1.

3

It is easy to see that if oy is a root of f(x), then the stabilizer of o, is
Gal(E/F(o,)) < Gal(E/F), and Gal(E/F(x,)) is the Galois group of
f(x)/(x — a;) over F(a,). Thus, f(x)/(x — o) is irreducible (over F(x,)) if and
only if Gal(E/F (o, )) acts transitively on the remaining roots. We shall return
to this observation in a later chapter (Example 9.3) when we discuss multiple
transitivity.

Theorem 58. Let F « K < E be fields, where K and E are splitting fields of
polynomials over F. Then Gal(E/K) < Gal(E/F) and

Gal(E/F)/Gal(E/K) = Gal(K/F).

Proof. The function ®: Gal(E/F) — Gal(K/F), given by ®(0) = og}K, is well
defined (by Exercise 5.4, for K is a splitting field), and it is easily seen to be a
homomorphism. The kernel of @ consists of all those automorphisms which
fix K; that is, ker @ = Gal(E/K), and so this subgroup is normal. We claim
that ® is a surjection. If 1 € Gal(K/F), that is, 1 is an automorphism of K
which fixes F, then A1 can be extended to an automorphism A* of E (by
Lemma 5.5, for E is a splitting field). Therefore, A* € Gal(E/F) and ®@(1*) =
A*¥|K = A. The first isomorphism theorem completes the proof.

‘We summarize this discussion in the next theorem.

Theorem 5.9 (Galois, 1831). Let f(x) € F[x] be a polynomial of degree n, let F
contain all pth roots of unity for every prime p dividing n!, and let E be the
splitting field of f(x) over F. If f(x) is solvable by radicals, then there exist
subgroups G; < G = Gal(E/F) such that:

1) G=Gy=2G,=2=2G,=1;
(i) G;4, < G; for all i; and
(iii} G;/G;4, is cyclic of prime order for alli.

Proof. Since f(x) is solvable by radicals, there are subfields F = K, < K, <
-+ < K, with E < K, and with K,,; = K;(;.,), where B;,, € K;,, and some
power of fB;., lies in K;. By Exercise 5.5, we may assume that some prime
power of B;,, is in K;,,. If we define H; = Gal(K,/K;), then (i) is obvious.
Since F contains roots of unity, Theorem 5.6 shows that K;,, is a splitting
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field over K ;; moreover, it can be shown that there is such a tower of fields in
which K, is a splitting field of some polynomial over F. Theorem 5.8 now
applies to show, for all i, that H;,, = Gal(K,/K,.,) < Gal(K,/K;) = H; and
H;.+/H; = Gal(K;,,/K}); this last group is isomorphic to Z,, by Theorem
5.6.

Remarks. 1. We have shown only that Gal(K,/F) satisfies the conclusions
of the theorem. By Theorem 5.8, Gal(K,/E)< Gal(K,/F) and
Gal(K,/F)/Gal(K,/E) =~ Gal(E/F); that is, Gal(E/F) is a quotient of
Gal(K,/F). Theorem 5.15 will show that if a group satisfies the conclusions of
Theorem 5.9, then so does any quotient group of it.

2. The hypothesis that F contains various roots of unity can be eliminated.

3. If F has characteristic 0, then the converse of this theorem is also true; it,
too, was proved by Galois (1831).

Definition. A normal series of a group G 1s a sequence of subgroups
G=Gy=2G,=2-=2G,=1

in which G;,, < G, for all i. The factor groups of this normal series are the
groups G;/G;,, for i =0,1,..., n — 1; the length of the normal series is the
number of strict inclusions; that is, the length is the number of nontrivial
factor groups.

Note that the factor groups are the only quotient groups that can always
be formed from a normal series, for we saw in Exercise 2.45 that normality
may not be transitive.

Definition.> A finite group G is solvable if it has a normal series whose factor
groups are cyclic of prime order.

In this terminology, Theorem 5.9 and its converse say that a polynomial is
solvable by radicals if and only if its Galois group is a solvable group. P.
Ruffini (1799) and N.H. Abel (1824) proved the nonexistence of a formula
(analogous to the quadratic, cubic, and quartic formulas) for finding the roots
of an arbitrary quintic, ending nearly three centuries of searching for a gen-
eralization of the work of Scipione, Tartaglia, Cardano, and Lodovici (actu-
ally, neither the proof of Ruffini nor that of Abel is correct in all details, but
Abel’s proof was accepted by his contemporaries and Ruffini’s was not). In
modern language, they proved that the Galois group of the general quintic is
S5 (nowadays, we know that any irreducible quintic having exactly three
real roots [e.g., f(x) = x> — 4x + 2] will serve); since S5 is not a solvable
group, as we shall soon see, f(x) is not solvable by radicals. In 1829, Abel
proved that a polynomial whose Galois group is commutative is solvable by

3 We shall give another, equivalent, definition of solvable groups later in this chapter.
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radicals; this is why abelian groups are so called (of course, Galois groups
had not yet been invented). Galois’s theorem generalizes Abel’s theorem, for
every abelian group is solvable. Expositions of Galois Theory can be found
in the books of Artin (1955), Birkhoff and Mac Lane (1977), Jacobson (1974),
Kaplansky (1972), Rotman (1990), and van der Waerden (1948) listed in the
Bibliography.

The Jordan—Holder Theorem

Not only does Galois Theory enrich the study of polynomials and fields, but
it also contributes a new idea, namely, normal series, to the study of groups.
Let us give a brief review of what we have learned so far. Qur first results
arose from examining a single subgroup via Lagrange’s theorem. The second,
deeper, results arose from examining properties of a family of subgroups via
the Sylow theorems; this family of subgroups consists of conjugates of a
single subgroup, and so all of them have the same order. Normal series will
give results by allowing us to examine a family of subgroups of different
orders, thus providing an opening wedge for an inductive proof.

Definition. A normal series
G=Hy>H,>=zH,=1

is a refinement of a normal series
G=G,=2G, =2 =2G,=1

if Gy, Gy, ..., G, is a subsequence of Hy, Hy, ..., H,,.

A refinement is thus a normal series containing each of the terms of the

original series.

Definition. A composition series is a normal series
G=Gy=>2G, =2 >G,=1

in which, for all i, either G;,, is a maximal normal subgroup of G; or G;,, =
G,

i

Every refinement of a composition series is also a composition series; it can
only repeat some of the original terms. '

EXERCISES

5.6. A normal series is a composition series if and only if it has maximal length; that
is, every refinement of it has the same length.
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5.7. A normal series is a composition series if and only if its factor groups are either
simple or trivial.

5.8. Every finite group has a composition series.

5.9. (i) An abelian group has a composition series if and only if it is finite.
(i) Give an example of an infinite group which has a composition series.

5.10. If G is a finite group having a normal series with factor groups Hy, Hy, ..., H,,
then |G| =[] | Hil.

Exercise 5.10 shows that some information about G can be gleaned from a
normal series. Let us now consider two composition series of G = {x) = Z,,
(normality is automatic because G is abelian):

G={x*> > (x> 1,
G= (2 ={(x=>1.

The factor groups of the first normal series are G/{x>) & Z, {x*>/{x'%) =~
Z,, and {x'%>/1 = (x°) = Z,; the factor groups of the second normal series
are G/{x?> = Z,, {x*>/{x®> = Z,, and {x%) =~ Z;. In this case, both com-
position series have the same length and the factor groups can be “paired
isomorphically” after rearranging them. We give a name to this phenomenon.

Definition. Two normal series of a group G are equivalent if there is a bijection
between their factor groups such that corresponding factor groups are
isomorphic.

Of course, equivalent normal series have the same length. The two compo-
sition series for Z,, displayed above are equivalent; the amazing fact is that
this is true for every (possibly infinite) group that has a composition series!
The next technical result, a generalization of the second isomorphism theo-
rem, will be used in proving this.

Lemma 5.10 (Zassenhaus Lemma, 1934). Let A < A* and B <1 B* be four
subgroups of a group G. Then

A(A* N B) <1 A(A* n B*),
B(B* n 4) <1« B(B* n A%),
and there is an isomorphism

A(A* " B*) _ B(B* A*)
A(A*"B) ~ B(B*nA)’

Remark. Notice that the hypothesis and conclusion are unchanged by trans-
posing the symbols 4 and B.
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Proof. Since A <t A*, we have A <1 A*NB* and so AnB*=An(4*nB*)<
A* A B*; similarly, A* n B < A* n B*. It follows from Lemma 225 and
Exercise 2.38 that D = (4* » B)(A n B*) is a normal subgroup of 4* n B*.

If xe B(B*¥nA*), then x =bc for be B and ce B*n A* Define
[ B(B* " A) = (A* n B*)/D by f(x) = f(bc) = ¢D. To see that f is well de-
fined, assume that x = bc = b’c’, where b’ e Band ¢’ € B* n 4; then c’c”! =
bbb e (B* N A*)" B = Bn A* < D. It is routine to check that f is a surjec-
tive homomorphism with kernel B(B* n 4). The first isomorphism theorem
gives B(B* N A) < B(B* n A*) and

B(B* n A*) _B*nA*
B(B*nd4) ~— D
Transposing the symbols 4 and B gives A(4A* N B) <« A(4* n B*) and an

isomorphism of the corresponding quotient group to (B* n A*)/D. It follows
that the two quotient groups in the statement are isomorphic.

Theorem 5.11 (Schreier Refinement Theorem, 1928). Every two normal series
of an arbitrary group G have refinements that are equivalent.

Proof. Let
G=Gy=2G, =z2=2G,=1

and
G=Hy,>=H,>>H,=1

be normal series. Insert a “copy” of the second series between each G; and
G, ;. More precisely, define G; ; = G;.,1(G;n H;) for all 0 < j < m. Thus

Gi;j=Gi(GinH) > Gy (GinHjy) = Gy juq.
Notice that G; , = G; because H, = G and that G, ,, = G;,, because H,, = 1.

im m

Moreover, setting 4 = G;,, A* = G;, B = H;,, and B* = H; in the Zas-
senhaus lemma shows that G; ;,; <1 G; ;. It follows that the sequence

= =1

Go02Gy 122Gy 2610226, 102" 2G

n—1,m

is a refinement of the first normal series (with mn terms). Similarly, if H; ; is
defined to be H;,,(H;n G;), then H; ; > H;., ; and

ij=4
HO,O = HI.O =2z Hn,O Z'}:IO,I =z = HO.m—l B4 Hn,m—l =1

is a refinement of the second normal series (with mn terms). Finally, the
function pairing G; ;/G; ;. with H; ;/H;,, ;is a bijection, and the Zassenhaus
lemma (with 4 = G,,,, 4* = G;, B = H;,, and B* = H;) shows that corre-
sponding factor groups are isomorphic. Therefore, the two refinements are
equivalent. [3

Theorem 5.12 (Jordan—Holder). Every two composition series of a group G are
equivalent.
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Remark. C. Jordan (1868) proved that the orders of the composition factors
of a finite group depend only on G; O. Holder (1889) proved that the compo-
sition factors themselves, to isomorphism, depend only on G.

Proof. Composition series are normal series, so that every two composition
series of G have equivalent refinements. But a composition series is a normal
series of maximal length; a refinement of it merely repeats several of its terms,
and so its new factor groups have order 1. Therefore, two composition series
of G are equivalent.

Definition. If G has a composition series, then the factor groups of this series
are called the composition factors of G.

One should regard the Jordan—Holder theorem as a unique factorization
theorem.

Corollary 5.13 (Fundamental Theorem of Arithmetic). The primes and their
multiplicities occurring in the factorization of an integer n > 2 are determined
by n.

Proof. Let n = p,p,...p,, where the p; are (not necessarily distinct) primes. If
G = {x) is cyclic of order n, then

G = <X> > <xm> > <xpmz> > > <xm-~m—1> > 1

is a normal series. The factor groups have prime orders p,, p,, ..., p,, respec-
tively, so this is a composition series. The Jordan—Holder theorem now shows
that these numbers depend on » alone.

Recall that a finite group G is solvable if it has a normal series (necessarily
a composition series) with all its factor groups cyclic of prime order. Thus,
one sees that a particular group is not solvable by checking whether every
composition series has all its factor groups cyclic. With Jordan—Holder, one
need look only at a single composition series of G. For the next result, how-
ever, the Jordan—Haolder theorem is not needed, for we have essentially seen
(in Exercise 3.21) that S, has a unique composition series when n > 5.

Theorem 5.14. If n > 5, then S, is not solvable.

Proof. Since A, 1s a simple group for n > 5, the normal series S, > 4, > 1 is
a composition series; its composition factors are Z, and 4, and hence S, is
not solvable.

EXERCISES

5.11. Let G and H be finite groups. If there are normal series of G and of H having the
same set of factor groups, then G and H have the same composition factors.
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5.12. (i) Exhibit a composition series for S,.
(ii) Show that S, is solvable for n < 4.

5.13. Assume that G = H; x -~ x H, = K; x - x K,,, where each H; and K} is sim-
ple. Prove that m = » and there is a permutation n of {1, 2, ..., n} with K,
H, for all i. (Hint. Construct composition series for G.)

5.14. Prove that the dihedral groups D,, are solvable.

Solvable Groups

Even though solvable groups arose in the context of Galois Theory, they
comprise a class of groups of purely group-theoretic interest as well. Let us
now give another definition of solvability which is more convenient to work
with and which is easily seen to agree with the previous definition for finite
groups.

Definition. A solvable series of a group G is a normal series all of whose factor
groups are abelian. A group G is solvable if it has a solvable series.

We are now going to manufacture solvable groups. Afterwards, we will
give another characterization of solvability which will give new proofs of
these results.

Theorem 5.15. Every subgroup H of a solvable group G is itself solvable.

Proof.1If G = Gy = G, = --- = G, = 1 is a solvable series, consider the series
H=Hy,zHnG,)=>"">2HnG,)=1. This is a normal series of H,
for the second isomorphism theorem gives HN Gy, =(HNG)N Gy <
Hn G;forall i. Now (Hn G)/(H N Giyy) = Gy (H GGy < Gy/Guy; a8
G;/G; 4, is abelian, so is any of its subgroups. Therefore, H has a solvable
series.

Theorem 5.16. Every quotient of a solvable group is solvable.
Proof. It suffices to prove that if G is a solvable group and f: G— H is a
surjection, then H is a solvable group. If ‘
G=Gy =G, ==G=1
is a solvable series, then
H= f(Gy) > f(G) == f(G) =1

is a normal series for H: if f(x;+,) € f(G+;) and f(x;) e f(G), then
o) fo)f )™ = f(xixi0, %) € f(G),  because Gy <G, and  so
f(Gi+1) < f(G) for every i. The map ¢: G;— f(G))/f(G;sy), defined by
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x; > f(x:)f(G;4,), 1s a surjection, for it is the composite of the surjections
G; - f(G;) and the natural map f(G;) - f(G,)/f(G;,,). Since G;, < ker ¢, this
map ¢ induces a surjection G;/G;y; — f(G)/f(G;+;), namely, x;G;.q >
J(x:)f(G;4q).- Now f(G))/f(G;4,) is a quotient of the abelian group G;/G;44,
and so it is abelian. Therefore, H has a solvable series, and hence it is a
solvable group. 3

In the proof of Theorem 5.9, we showed only that Gal(X,/F) is solvable,
whereas we wanted to prove that Gal(E/F) is solvable. But Gal(E/F) is a
quotient of Gal(X,/F), and so Theorem 5.16 completes the proof of Theorem
5.9.

Theorem 5.17. If H <1 G and if both H and G/H are solvable, then G is solv-
able.

Proof. Let
G HzK}{=>Kf{>>K¥=1

be a solvable series. By the correspondence theorem, we can construct a
sequence looking like the beginning of a solvable series from G to H; that is,
there are subgroups K; (with H < K; and K;/H 2 K¥) such that

G>K,>K,>>K,=H,

K. < K;, and K;/K;,, (= K¥/K¥,,) is abelian. Since H is solvable, it has a
solvable series; if we splice these two sequences together at H, we obtain a
solvable series for G.

Corollary 5.18. If H and K are solvable groups, then H x K is solvable.
Proof. If G = H x K, then H < G and G/H =~ K.
Theorem 5.19. Every finite p-group G is solvable.

Proof-. The proof is by induction on |G|. By Theorem 4.4, | Z(G)| # 1. There-
fore, G/Z(G) is a p-group of order < |G/, and hence it is solvable, by induc-
tion. Since every abelian group is solvable, Z(G) is solvable. Therefore, G is
solvable, by Theorem 5.17.

Here is an alternative proof. The composition factors of G must be simple
p-groups. But we remarked (after proving that finite p-groups have nontrivial
centers) that there are no finite simple p-groups of order greater than p. It
follows that G is solvable.

Another approach to solvability is with commutator subgroups; that we
are dealing with abelian quotient groups suggests this approach at once.
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Definition. The higher commutator subgroups of G are defined inductively:
GO = G; GU+Y = GUr,

that is, G¥* is the commutator subgroup of G?. The series
G =GO > G\» > G@ >

is called the derived sevies of G.

To see that the higher commutator subgroups are normal subgroups of G,
it is convenient to introduce a new kind of subgroup.

Definition. An automorphism of a group G is an isomorphism ¢: G — G. A
subgroup H of G is called characteristic in G, denoted by H char G, if o(H) =
H for every automorphism ¢ of G.

If p(H) < H for every automorphism ¢, then H char G: since both ¢ and
¢! are automorphisms of G, one has ¢(H) < H and ¢ ' (H) < H; the latter
gives the reverse inclusion H = o ' (H) < ¢(H) and so ¢(H) = H.

For each a € G, conjugation by a (i.e., x — axa™!) is an automorphism of
G; it follows at once that every characteristic subgroup is a normal subgroup
(but there are normal subgroups which are not characteristic; see Exercise
5.28 below.)

Lemma 5.20.

() If H char K and K char G, then H char G.
(1) If H char K and K <1 G, then H <1 G.

Proof. (i) If ¢ is an automorphism of G, then ¢(K) = K, and so the restric-
tion ¢|K: K — K is an automorphism of K; since H char K, it follows that
¢(H) = (¢|K)(H) = H.

(ii) Let a € G and let ¢: G — G be conjugation by a. Since K < G, ¢|K is an
automorphism of K; since H char K, (¢|K)(H) < H. This says that if h € H,
then aha™ = p(h) € H.

Theorem 5.21. For every group G, the higher commutator subgroups are char-
acteristic, hence normal subgroups.

Proof. The proof is by induction on i > 1. Recall that the commutator sub-
group G' = G is generated by all commutators; that is, by all elements
of the form aba™'b~!. If ¢ is an automorphism of G, then @(aba™'b™!) =
e@ob)o(a) o)™t is also a commutator, and so ¢(G') < G'. For the in-
ductive step, we have just shown that G¢*V char G%?; since G char G, by
induction, Lemma 5.20(i) shows that GY*1) is characteristic in G.
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It follows that the derived series of a group G is a normal series if it ends
at 1. The next result shows that if G is solvable, then the derived series
descends faster than any other solvable series.

Lemma 522. If G=G, > G, =" = G, =1 is a solvable series, then G; >
G for all i.

Proof. The proof is by induction on i > 0. If i = 0, then G, = G = G, For
the inductive step, Theorem 2.23 gives G;,,; = Gi, since G,;/G;,, is abelian.
The inductive hypothesis gives G; > G%, so that G; = G% = G¥*Y). There-
fore, G; 4, = GY*Y), as desired.

Theorem 5.23. A group G is solvable if and only if G™ = 1 for some n.

Proof. Let G =G, = G, = - = G, =1 be a solvable series. By the lemma,
G; > GY for all i. In particular, 1 = G, > G", and so G™ = 1.

Conversely, if G™ = 1, then the derived series is a normal series; since it
has abelian factor groups, it is a solvable series for G.

Thus, the derived series of G is a normal series if and only if G is a solvable
group. ,

The following new proofs of Theorems 5.15, 5.16, and 5.17 should be com-
pleted by the reader; they are based on the new criterion for solvability just
proved.

Theorem 5.15. If H < G, then H? < G for all i; hence G =1 implies
H™ = 1, so that every subgroup of a solvable group is solvable.

Theorem 5.16. If f: G — K is surjective, then f(G®) = f(G)® for all i. There-
fore, G™ = 11implies 1 = f(G™) = f(G)", so that every quotient of a solvable
group is solvable.

Theorem 5.17. Let H <1 G, let K = G/H, and let f: G - K be the natural
map. Then K™ = 1 implies f(G™) = 1, and hence G < H. If H™ = 1, then
(G™)™ < H™ = 1. Finally, one proves by induction on n > 1 that G"*" <
(G")* for all m, and so G is solvable.

Definition. A normal subgroup H of a group G is a minimal normal subgroup
if H # 1 and there is no normal subgroup K of G with 1 < K < H.

Minimal normal subgroups always exist in nontrivial finite groups.

Theorem 5.24. If G is a finite solvable group, then every minimal normal sub-
group is elementary abelian.
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Proof. Let V be a minimal normal subgroup of G. Now Lemma 5.20(ii) says
that if H char V, then H <1 G; since V is minimal, either H =1 or H = V. In
particular, ¥’ char V, so that either V' =1 or V' = V. Since G is solvable, so
is its subgroup V. It follows from Theorem 5.23 that V' = V cannot occur
here, so that V' =1 and so V is abelian. Since V is abelian, a Sylow p-
subgroup P of V, for any prime p, is characteristic in V; therefore, V is an
abelian p-group. But {x € V: x? = 1} char ¥, and so ¥ is elementary abelian,
]

Corollary 5.25. If V is a minimal normal subgroup of a finite solvable group G,
then G acts on V as a group of linear transformations.

Proof. By the theorem, V is an elementary p-group; by Exercise 2.78, ¥ is a
vector space over Z, and every homomorphism on ¥ is a linear transforma-
tion. Define a homomorphism G — GL(V) by a — ¢,, where ¢,(v) = ava™
for all v € V (normality of V shows that ¢,(v) € V). Moreover, each ¢, is an
injection, being the restriction of an automorphism (namely, conjugation),
and every injection on a finite-dimensional vector space is a surjection; hence
each ¢, is nonsingular. B

What are the groups G whose only characteristic subgroups are G and 1?7
Such groups are sometimes called characteristically simple.

Theorem 5.26. A finite group G with no characteristic subgroups other than G
and 1 is either simple or a direct product of isomorphic simple groups.

Proof. Choose a minimal normal subgroup H of G whose order is minimal
among all nontrivial normal subgroups. Write H = H,, and consider all sub-
groups of G of the form H; x H, x --* x H,,wheren > 1, H; < G, and H; =
H. Let M be such a subgroup of largest possible order. We show that M = G
by showing that M char G; to see this, it suffices to show that ¢(H;) < M for
every i and every automorphism ¢ of G. Of course, ¢(H;)~ H=H,. We
show that ¢(H;) < G.If a € G, then a = ¢(b) for some b € G, and ap(H,)a™ =
o(B)Q(H)p((b) ™ = plaHa™') < ¢(H,), because H; < G. If ¢(H;) £ M, then
e(H)NM £ o(H) and |o(H,) M| <|p(H)| = [H|. But ¢(H)nM <G,
and so the minimality of |H| shows that ¢(H;)n M = 1. The subgroup
M, o(H;)) = M x @(H;) is a subgroup of the same type as M but of larger
order, a contradiction. We conclude that M char G, and so M = G. Finally,
H = H, must be simple: if N is a nontrivial normal subgroup of H, then IV is
a normal subgroup of M = H; x H, x -*- x H, = G, and this contradicts
the minimal choice of H.

Corollary 5.27. A minimal normal subgroup H of a finite group G is either
simple or a direct product of isomorphic simple subgroups.
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Proof. If N char H, then N <1 G, by Lemma 5.20(ii), so that either N =1 or

N:

H (because H is a minimal normal subgroup). Therefore, H has no

proper characteristic subgroups, and Theorem 5.26 gives the result.

This last corollary gives another proof of Theorem 5.24, for a finite simple
group G is solvable if and only if it is cyclic of prime order.

EXERCISES

5.15.
5.16.
5.17.

5.18.

5.19.

5.20.

5.21.
5.22.

5.23.

5.24.

5.25.
5.26.
5.27.

Every refinement of a solvable series is a solvable series.
A solvable group having a composition series must be finite.

If G has a composition series and if H < G, then G has a composition series one
of whose terms is H.

(i) If S and T are solvable subgroups of G with S < G, then ST is solvable.
(if) Every finite group G has a unique maximal normal solvable subgroup #(G);
moreover, G/%(G) has no nontrivial normal solvable subgroups.

(i) If p and g are primes, then every group of order pq is solvable.
(ii) If p and g are primes with p < ¢, then every group of order pg" is solvable.
(Hint. Use Sylow’s theorems.)

(1) Show that S, has no series
S:=Gy>Gy>->G,=1

such that all factor groups are cyclic and each G; is a normal subgroup of G.
(A group G with such a series is called supersolvable, and we now see that
not every solvable group is supersolvable.)

(ii) Show that every finite p-group is supersolvable.

If G is a group with |G| < 60, then G is solvable. (Hint. Use Exercise 4.36.)

Burnside proved {using Representation Theory) that the number of elements in
a conjugacy class of a finite simple group can never be a prime power larger
than 1. Use this fact to prove Burnside’s theorem: If p and q are primes, then
every group of order p™g” is solvable,

Prove that the following two statements are equivalent:

(i) every group of odd order is solvable;

{ii) every finite simple group has even order.

(In 1963, Feit and Thompson proved (i); the original proof is 274 pages long,)

Let G be a finite group of order > 1. If G is solvable, then G contains a nontrivial
normal abelian subgroup; if G is not solvable, then G contains a nontrivial
normal subgroup H with H = H'.

For every group G, its center Z(G) is characteristic in G.
IfH < Gand (|H), [G: H]) = 1, then H char G.
If H char G and H < K < G, then K/H char G/H implies K char G.
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5.28. Give an example of a group G containing a normal subgroup that is not a
characteristic subgroup. (Hint. Let G be abelian.)

Definition. A subgroup H of G is fully invariant if o(H) < H for every homo-
morphism ¢: G — G.

Of course, every fully invariant subgroup is characteristic and hence
normal.

5.29. Prove that the higher commutator subgroups are fully invariant.

5.30. Show that Z(G) may not be fully invariant. (Hint: Let G = Z, x S;.) (See Exer-
cise 5.25.)

Two Theorems of P. Hall

The main results of this section are generalizations of the Sylow theorems
that hold for (and, in fact, characterize) finite solvable groups.

Theorem 5.28 (P. Hall, 1928). If G is a solvable group of order ab, where
(a, b) = 1, then G contains a subgroup of order a. Moreover, any two subgroups
of order a are conjugate.

Proof. The proof is by induction on |G|; as usual, the base step is trivially
true.

Case 1. G contains a normal subgroup H of order a'b’, where a’|a, b'|b, and
b’ < b.

Existence. In this case, G/H is a solvable group of order (a/a’)(b/b’), which is
strictly less than ab; by induction, G/H has a subgroup 4/H of order a/a’.
Now A has order (a/a’)|H| = ab’ < ab; since A is solvable, it has a subgroup
of order a, as desired.

Conjugacy. Let A and A’ be subgroups of G of order a. Let us compute
k =|AH]|. Since AH < G, Lagrange’s theorem gives |4H| = o, where aja
and f|b. Since (a,b) =1 and A < AH, we have alafl, so that. a = «; since
H < AH, we have a'b’|af, so that b’|f. But the second isomorphism theorem
(actually, the product formula) gives kjaa’b’, so that B|b’. We conclude that
|AH| = k = ab’. A similar calculation shows that [4'H| = ab’ as well. Thus,
AH/H and A'H/H are subgroups of G/H of order a/a’. As |G/H| = (a/a’}(b/b’),
these subgroups are conjugate, by induction, say by xH e G/H. It is quickly
checked that xAHx™ = A’H. Therefore, xAx™* and A4’ are subgroups of A'H
of order a, and so they are conjugate, by induction. This completes Case 1.

If there is some proper normal subgroup of G whose order is not divisible
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by b, then the theorem has been proved. We may, therefore, assume that
b||H| for every proper normal subgroup H. If H is a minimal normal sub-
group, however, then Theorem 5.24 says that H is an (elementary) abelian
p-group for some prime p. It may thus be assumed that b = p™, so that H is
a Sylow p-subgroup of G. Normality of H forces H to be unique (for all Sylow
p-subgroups are conjugate). The problem has now been reduced to the fol-
lowing case.

Case 2. |G| = ap™, where p}a, G has a normal abelian Sylow p-subgroup H,
and H is the unique minimal normal subgroup in G.

Remark. We shall complete the proof here, but we note that this case follows
immediately from the Schur—Zassenhaus lemma to be proved in Chapter 7.

Existence. The group G/H is a solvable group of order a. If K/H is a minimal
normal subgroup of G/H, then |K/H| = q" for some prime g # p, and so
|K| = p™q"; if Q is a Sylow g-subgroup of K, then K = HQ. Let N* = N4(Q)
and let N = N* n K = Ni(Q). We claim that [N*| = a.

The Frattini argument (Theorem 4.18) gives G = KN*. Since

G/K = KN*/K = N*/N* A K = N*/N,

we have |[N*| = |G||N|/|K|. But K = HQ and Q < N < K gives K = HN,
hence |[K| = |HN| = |H||N|/|H n N|, so that

IN*| = |G|INI/IK| = |G|IN||H n N|/|H||N|
=(IGI//H)|H nN| = a|H A N|.

Hence |[N*|=a if HNN = 1. We show that HAN =1 in two stages:
(@) HAN < Z(K); and (1) Z(K) = 1.

(i) Let xe HN N. Bvery k € K = HQ has the form k = hs for he H and
se Q. Now x commutes with h, for H is abelian, and so it suffices to show
that x commutes with s. But (xsx™')s™! € 0, because x normalizes @, and
x(sx~*s™1) e H, because H is normal; therefore, xsx s ' e QN H = 1.

(1) By Lemma 5.20(ii), Z(K) <1 G. If Z(K) # 1, then it contains a minimal
subgroup which must be a minimal normal subgroup of G. Hence H < Z(K),
for H is the unique minimal normal subgroup of G. But since K = HQ, it
follows that Q char K. Thus Q < G, by Lemma 5.20(ii), and so H < Q, a
contradiction. Therefore, Z(K) = 1, HA N = 1, and |[N*| = a.

Conjugacy. We keep the notation of the existence proof. Recall that N* =
Ng(Q) has order a; let A4 be another subgroup of G of order a. Since |AK] is
divisible by a and by |K| = p™q", it follows that |AK| = ab = |G|, AK = G,

G/K = AK/K = AJ/(AnK),

and |4 n K| = q". By the Sylow theorem, 4 n K is conjugate to Q. As conju-
gate subgroups have conjugate normalizers, by Exercise 3.9(1), N*¥ = Ng(Q)
is conjugate to Ng(4 N K),and so a = |[N*| = |[Ng(4A nK)|.Since An K < A,
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we have A < Ng(A n K) and so A = Ng(4 n K) (both have order a). There-
fore, A is conjugate to N*.

The following definition is made in tribute to this theorem.

Definition. If G is a finite group, then a Hall subgroup H of G is a subgroup
whose order and index are relatively prime; that is, (|H|, [G: H]) = 1.

It is sometimes convenient to display the prime divisors of the order of a
group. If 7 is a set of primes, then a m-number is an integer n all of whose
prime factors lie in x; the complement of z is denoted by =/, and so a
#'-number is an integer n none of whose prime factors lie in 7.

Definition. If = is a set of primes, then a group G is a z-group if the order of
each of its elements is a 7-number; a group is a #'-group if the order of each of
its elements is a #’'-number.

Of course if a is a w-number and b is a n'-number, then a and b are
relatively prime. If 7 consists of a single prime p, then m-groups are just
p-groups, while p’-groups have no elements of order a power of p. It follows
from (Sylow’s) Theorem 4.14 that every Sylow p-subgroup in a finite group is
a Hall p-subgroup (Hall’s theorem says that Hall n-subgroups always exist in
finite solvable groups). In contrast to Sylow p-subgroups, however, Hall n-
subgroups (with |z| > 2) of a group G need not exist. For example, let G = A,
and 7 = {3, 5}; since | 45| = 60, a Hall n-subgroup would have index 4 and
order 15, and Corollary 3.16 shows that no such subgroup exists.

Definition. If p is a prime, and G is a finite group of order ap”, where ais a
p'-number, then a p-complement of G is a subgroup of order a.

Hall’s theorem implies that a finite solvable group has a p-complement for
every prime p. If G is a group of order p™g”, then G has a p-complement,
namely, a Sylow g-subgroup, and a g-complement, namely, a Sylow p-sub-
group. In the coming proof of the converse of Theorem 5.28, we shall use
Burnside’s theorem (see Exercise 5.22): Every group of order p™g” is solvable.

Theorem 5.29 (P. Hall, 1937). If G is a finite group having a p-complement for
every prime p, then G is solvable.

Proof. We proceed by induction on |G|; assume, on the contrary, that there
are nonsolvable groups satisfying the hypotheses, and choose one such, say
G, of smallest order. If G has a nontrivial normal subgroup N, and if H is any
Hall p’-subgroup of G, then checking orders shows that H n N is a Hall
p’-subgroup of N and HN/N is a Hall p’-subgroup of G/N. Since both N and
G/N have order smaller than |G|, it follows that both N and G/N are solvable.
But Theorem 5.17 now shows that G is solvable, a contradiction.
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We may assume, therefore, that G is simple. Let |G| = pi'...p;", where
the p; are distinct primes and e; > 0 for all i. For each i, let H; be a Hall
pi-subgroup of G, so that [G: H;] = pf, and thus |H;| = [];,; p If D =
Hyn - H, then [G:D] = []t., pf, by Exercise 3.31(ii), and so |D| =
pi'p32- Now D is a solvable group, by Burnside’s theorem. If N is a minimal
normal subgroup of D, then Theorem 5.24 says that N is elementary abelian;
for notation, assume that N is a p,-group. Exercise 3.31(ii) shows that
[G: D H,]=[]i-2 pf¥, so that [D A Hy| = pf* and D H, is a Sylow p,-
subgroup of D. By Exercise 4.16, N < DnH, and so N < H,. But, as above,
|DNH,| = p5? and comparison of orders gives G = H,(D n H,). If g € G,
then g=hd, where heH, and deDnH,; if xeN, then gxg'=
hdxd*h™! = hyh™! (where y = dxd~* € N, because N <1 D) and hyh™' € H,
(because N < H,). Therefore, N® < H,, where N is the normal subgroup of
G generated by N. Since H, < G, N # 1 is a proper normal subgroup of G,
and this contradicts the assumption that G is simple. [

This proof exhibits two recurring themes in finite group theory. Many
theorems having the form “If a group G has property P, then it also has
property Q” are proved by induction on |G| in the following style: assume
that G is a group of smallest possible order which has property P but not
property (, and then obtain a contradiction. In R. Baer’s suggestive phrase,
we assume that G is a “least criminal.”

The other theme is the reduction of a problem to the special case when a
simple group is involved. Many theorems are proved by such a reduction,
-and this is one reason why the classificaton of the finite simple groups is so
important.

EXERCISES

5.31. If G is a finite (not necessarily solvable) group and H is a normal Hall subgroup,
then H char G.

5.32. (i) If G is a finite solvable group, then for every set of primes 7, a maximal
n-subgroup is a Hall n-subgroup.

@ii) Let = = {3, 5}. Show that both Z, and Z are maximal n-subgroups of Ss.
Conclude, when G is not solvable, that maximal n-subgroups may not be
isomorphic and hence may not be conjugate.

(iii) If = = {2, 5}, then a maximal =-subgroup of S5 is not a Hall n-subgroup.
(Hint. Exercise 3.25.)

Definition. If 7 is a set of primes, define O,(G) to be the subgroup of G
generated by all the normal z-subgroups of G.

5.33. Show that O_(G) is a characteristic subgroup of G.

5.34. Show that O,(G) is the intersection of all the maximal n-subgroups of G.
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Central Series and Nilpotent Groups

The Sylow theorems show that knowledge of p-groups gives information
about arbitrary finite groups. Moreover, p-groups have a rich supply of nor-
mal subgroups, and this suggests that normal series might be a powerful tool
in their study. It turns out that the same methods giving theorems about
p-groups also apply to a larger class, the nilpotent groups, which may be
regarded as generalized p-groups.

Definition. If H, K < G, then
[H,K]={[hk}:he Hand ke K),

where [h, k] is the commutator hkh™ k™1,

An example was given, in Exercise 2.43, showing that the set of all commu-
tators need not be a subgroup; in order that [H, K7 be a subgroup, therefore,
we must take the subgroup generated by the indicated commutators. It is
obvious that [H, K] = [K, H], for [h, k]™* = [k, h]. The commutator sub-
group G’ is equal to [G, G] and, more generally, the higher commutator
subgroup G*Y is equal to [G®, GP].

We say that a subgroup K nermalizes H if K < Ng(H); it is easy to see that
K normalizes H if and only if [H, K] < H.

Definition. If H < G, the centralizer of H in G is
Cg(H) = {x € G: x commutes with every h € H};

that is, Cq(H) = {x e G: [x, k] = 1 forall h e H}.

We say that a subgroup K centralizes H if K < Cg(H); it is easy to see that
K centralizes H if and only if [H, K] = 1.

If x, y € G and [x, y] € K, where K < G, then x and y “commute mod K”;
that is, xKyK = yKxK in G/K.
Lemma 5.30.

() If K<Gand K < H < G, then[H, G] < K if and only if H/K < Z(G/K).
@) If HHK<G and f:G— L is a homomorphism, then f([H,K])=
L/(H), f(K)]. ‘

Proof. (i) If h € H and g € G, then hKgK = gKhK if and only if [hglK =K
if and only if [h, g] € K.
(i) Both sides are generated by all f([h, k]) = [ f(h), f(k)]. E3

Definition. Define characteristic subgroups y;(G) of G by induction:
71(G) = G; 7i+1(G) = [v:(G), G].
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Notice that y,(G) = [y,(G), G]1 =[G, G] = G’ = GV, 1t is easy to check
that y;4,(G) < y{G). Moreover, Lemma 5.30(i) shows that [y,(G), G] = y;,,(G)
gives 7(G)/7:+1(G) < Z(G/y;+1(G))-

Definition. The lower central series (or descending central series) of G is the
series
G=7,(G)=7,(G) ="

(this need not be a normal series because it may not reach 1).
There is another series of interest.

Definition. The higher centers ('(G) are the characteristic subgroups of G
defined by induction:

Q=1 "HGYH(G) = Z(G/L (G

that is, if v;: G — G/{'(G) is the natural map, then {**(G) is the inverse image
of the center.

Of course, {1(G) = Z(G).

Definition. The upper central series (or ascending central series) of G is

=@ =<te=<rx@=<-.

When no confusion can occur, we may abbreviate {*(G) by ¢* and y,(G)
by ;.

Theorem 5.31. If G is a group, then there is an integer ¢ with {*(G) = G if and
only if v.41(G) = 1. Moreover, in this case,

9:41(G) < 7HG)  foralli.

Proof. Assume that (= G, and let us prove that the inclusion holds by
induction on i. If i = 0, then y, = G = {*. If y;,; < {°7, then

Yivz = [Vi41, G1 < [Ccmi, Gl < (i,

the last inclusion following from Lemma 5.30. We have shown that the inclu-
sion always holds; in particular, if i = ¢, theny,,, < {° = 1.

Assume that y.,; = 1, and let us prove that y,,,_; < {/ by induction on j
(this is the same inclusion as in the statement: set j = ¢ —i). If j =0, then
Year = 1 =% If y.,y_; < (Y, then the third isomorphism theorem gives a
surjective homomorphism G/, .;_; = G/{/. Now [y,—_;, G] = yc41-j, S0 that
Lemma 5.30 gives y,_;/y.+1-; < Z(G/y.+1-;). By Exercise 3.10 [if A < Z(G)
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and f: G — H is surjective, then f(A4) < Z(H)], we have
Yoo U < Z(G/L7y = UL

Therefore, y,; < y.-;{/ < {(’*', as desired. We have shown that the inclusion
always holds; in particular, ifj = ¢, thenG =y, <{°*. B

The following result reflects another relationship between these two series.
Theorem 5.32 (Schur). If G is a group with G/Z(G) finite, then G’ is also finite.

Proof (Ornstein). Let g, ..., g, be representatives of the cosets of Z(G) in G;
that is, each x € G has the form x = g,z for some i and some z € Z(G). For all
x,y € G, [x, y] =[g;z g;2'] = [9;, 9;]. Hence, every commutator has the form
Lg:, g1 for some i, j, so that G has a finite number (< n?) of generators.

Each element g’ € G’ can be written as a word ¢, ‘- ¢,, where each ¢; is a
commutator (no exponents are needed, for [x, y]17* = [y, x]). It suffices to
prove that if a factorization of g’ is chosen so that ¢t = #(g’) is minimal, then
t(g')<niforallg’ e G.

We prove first, by induction on r > 1, that if a,be G, then [a, b]" =
(@ba™*b™'Y = (aby(a”'b™')Yu, where u is a product of r — 1 commutators.
This is obvious when » = 1. Note, for the inductive step, that if x, y € G, then
xy = yxx" 'y lxy = yx[x7!, y7']; that is, xy = yxc for some commutator c.
Thus, if r > 1, then

(aba~'b1y* = aba~'b~ (aba~'b"'Y
— ab[a™ b ] {(aby (@™ 'b™") Yu
= ab{(ab) (@' b7y} [a b Jcu

for some commutator c, as desired.

Since yx = x~!(xy)x, we have (px)" = x"* (xy)"x = (xy)", because [G : Z(G)]
=n implies (ab)’ € Z(G). Therefore, (a™*b™ )" =((ba)™* )" =((ba)") " =((ab)") ™.
It follows that

(%) [a, b]" is a product of n — 1 commutators.

Now xyx = (xyx~')x?, so that two x’s can be brought together at the ex-
pense of replacing y by a conjugate of y. Take an expression"’of an element
g’ € G' as a product of commutators c, ...c,, where t is minimal, If ¢t > n*,
then there is some commutator ¢ occurring m times, where m > n (for there
are fewer than n? distinct commutators). By our remark above, all such fac-
tors can be brought together to ¢™ at the harmless expense of replacing
commutators by conjugates (which are still commutators); that is, the num-
ber of commutator factors in the expression is unchanged. By (*), the length
of the minimal expression for g’ is shortened, and this is a contradiction.
Therefore, t < n, and so G’ is finite.
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Definition. A group G is nilpotent* if there is an integer ¢ such that y,.,(G) =
1; the least such c is called the class of the nilpotent group G.

Theorem 5.31 shows, for nilpotent groups, that the lower and upper cen-
tral series are normal series of the same length.

A group is nilpotent of class 1 if and only if it is abelian. By Theorem 5.31,
a nilpotent group G of class 2 is described by 7,(G) = G’ < Z(G) = {}(G).
Every nonabelian group of order p? is nilpotent of class 2, by Exercise 4.7.

Theorem 5.33. Every finite p-group is nilpotent.

Proof. Recall Theorem 4.4. Every finite p-group has a nontrivial center. If, for
some i, we have {¥(G) < G, then Z(G/{*(G)) # 1 and so {}(G) < {'*1(G). Since
G is finite, there must be an integer i with {/(G) = G; that is, G is nilpotent.

This theorem is false without the finiteness hypothesis, for there exist infi-
nite p-groups that are not nilpotent (see Exercise 5.45 below); indeed, there is
an example of McLain (1954) of an infinite p-group G with Z(G) = 1, with
G' = G (so that G is not even solvable), and with no characteristic subgroups
other than G and 1.

Theorem 5.34.

(i) Every nilpotent group G is solvable.
(i) If G # 1is nilpotent, then Z(G) # 1.
(iii) S5 is a solvable group that is not nilpotent.

Proof. (i) An easy induction shows that G < y,(G) for all i. It follows that if
Y.+1(G) = 1, then G€*V = 1; that is, if G is nilpotent (of class < ¢), then G is
solvable (with derived length < ¢ + 1).

(i) Assume that G # 1 is nilpotent of class ¢, so that y..,(G) =1 and
y{G) # 1. By Theorem 5.31, 1 # y.(G) < {}(G) = Z(G).

(iii) The group G = S, is solvable and Z(S;) = 1.

Theorem 5.35. Every subgroup H of a nilpotent group G is nilpotent. Moreover,
if G is nilpotent of class ¢, then H is nilpotent of class < c.

Proof. 1t is easily proved by induction that H < G implies y;,(H) < y,(G) for all
i. Therefore, y.+,(G) = 1 forces y, ., (H) = 1.

* There is an analogue of the descending central series for Lie algebras, and Engel’s theorem says
that if the descending central series of a Lie algebra L reaches 0, then L is isomorphic to a Lie
algebra whose elements are nilpotent matrices. This is the reason such Lie algebras are called
nilpotent, and the term for groups is taken from Lie algebras.
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Theorem 5.36. If G is nilpotent of class ¢ and H < G, then G/H is nilpotent of
class <c.

Proof. If - G — L is a surjective homomorphism, then Lemma 5.30 gives
y:(L) < f(y:(G)) for all i. Therefore, y,.,(G) = 1 forces y.,,(L) = 1. The theo-
rem follows by taking f to be the natural map.

We have proved the analogues for nilpotent groups of Theorems 5.15 and
5.16; is the analogue of Theorem 5.17 true? If H < G and both H and G/H are
nilpotent, then is G nilpotent? The answer is “no”: we have already seen that
S, is not nilpotent, but both 4; ~ Z, and S3/4; = Z, are abelian, hence
nilpotent. A positive result of this type is due to P. Hall. If H < G, then we
know that H' <1 G; Hall proved that if both H and G/H’ are nilpotent, then
G is nilpotent (a much simpler positive result is in Exercise 5.38 below). The
analogue of Corollary 5.18 is true, however.

Theorem 5.37. If H and K are nilpotent, then their direct product H x K is
nilpotent.

Proof. An easy induction shows that y;(H x K) < y;(H) x y/(K) for all i. If
M = max{c, d}, where y,,,(H) =1 = y,,,(K), then y . (H x K) =1 and
H x K is nilpotent.

Theorem 5.38. If G is nilpotent, then it satisfies the normalizer coadition: if
H < G, then H < Ng(H).

Proof. There exists an integer i with y;,,(G) < H and y,(G) £ H (this is true
for any descending series of subgroups starting at G and ending at 1). Now
[y:, H} < [y;, G] = ;41 < H, so that y; normalizes H; that is, y; < Ng(H).
Therefore, H is a proper subgroup of Ng(H).

The converse is also true; it is Exercise 5.37 below.

Theorem 5.39. A finite group G is nilpotent if and only if it is the direct product
of its Sylow subgroups.

Proof. If G is the direct product of its Sylow subgroups, then it is nilpotent,
by Theorems 5.32 and 5.36.

For the converse, let P be a Sylow p-subgroup of G for some prime p. By
Exercise 4.11, Ng(P) is equal to its own normalizer. On the other hand, if
Ng(P) < G, then Theorem 5.38 shows that Ng(P) is a proper subgroup of its
own normalizer. Therefore, N3(P) = G and P < G. The result now follows
from Exercise 4.12.

Of course, in any group, every subgroup of prime index is a maximal
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subgroup. The converse is false in general (S, has a maximal subgroup of
index 4, as the reader should check), but it is true for nilpotent groups.

Theorem 5.40. If G is a nilpotent group, then every maximal subgroup H is
normal and has prime index.

Proof. By Theorem 5.38, H < Ng(H); since H is maximal, Ng(H) = G, and so
H <1 G. Exercise 2.58 now shows that G/H has prime order.

Theorem 5.41. Let G be a nilpotent group.

() If H is a nontrivial normal subgroup, then H N Z(G) # 1.
(i) If A is a maximal abelian normal subgroup of G, then A = Cg(A).

Proof. (i) Since {°(G) = 1 and G = {*(G) for some c, there is an integer i for
which H n{(G) # 1; let m be the minimal such i. Now [H n{™(G), G] <
HA[{™G), Gl < HN{"Y(G) = 1, because H <1 G, and this says that 1 3
Hn{™G) < HnNZ(G).

(ii) Since A4 is abelian, A < Cgz(A). For the reverse inclusion, assume that
ge Cg(A) and g ¢ A. It is easy to see, for any subgroup H (of any group G)
and for all g € G, that gCg(H)g™ = Cg(g tHg). Since 4 < G, it follows that
gCq(A)g™ = C4z(A) for all g e G, and so Cg(4) < G. Therefore, Cg(A)/A4 is
a nontrivial normal subgroup of the nilpotent group G/4; by (i), there is
Ax € (Cg¢(4)/A) n Z(G/A). The correspondence theorem gives {4, x> a nor-
mal abelian subgroup of G strictly containing A4, and this contradicts the
maximality of 4. [

EXERCISES

$.35. If G is nilpotent of class 2 and if a € G, then the function G — G, defined by
x > [a, x], is a homomorphism. Conclude, in this case, that Cg(a) < G.

5.36. If G is nilpotent of class c, then G/Z(G) is nilpotent of class ¢ — 1.

5.37. Show that the following conditions on a finite group G are equivalent:
(1) G is nilpotent;
(i) G satisfies the normalizer condition;
(iii) Every maximal subgroup of G is normal.

$.38. If H < Z(G) and if G/H is nilpotent, then G is nilpotent.

Definition. A normal series
G=G6G,>2G6G,>2>G,=1
with each G; < G and G;/G,; ., < Z(G/G;,,) is called a central series.

$.39. (i) If G is nilpotent, then both the upper and lower central series of G are
central series.
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5.40.

541,
5.42.

5.43.

544,

5.4S.

5.46.

547

5.48.

5.49.

5.50.

5.51.

5. Normal Series

(i) Prove that a group G is nilpotent if and only if it has a central series
G=G,>G,>"">G,= 1. Moreover, if G is nilpotent of class ¢, then
341(G) < Gyay < {H(G) for all .

If G is a nilpotent group and H is a minimal normal subgroup of G, then
H < Z(G).

The dihedral group D,, is nilpotent if and only if 1 is a power of 2.

Let G be a finite nilpotent group of order n. If m|n, then G has a subgroup of
order m.

(i) If H and K are normal nilpotent subgroups of a finite group G, then HK is
a normal nilpotent subgroup.
(i) Every finite group G has a unique maximal normal nilpotent subgroup
Z(G) (which is called the Fitting subgroup of G).
(iti) Show that #(G) char G when G is finite.

(1) Show y,(UT(n, Z,)) consists of all upper triangular matrices with 1’s on the
main diagonal and 0’s on the i — 1 superdiagonals just above the main
diagonal (Hint. If A is unitriangular, consider powers of A — E, where E is
the identity matrix.)

(if) The group UT(n, Z,) of all n x n unitriangular matrices over Z,, is a p-group
that is nilpotent of class n — 1.

For each n > 1, let G, be a finite p-group of class n. Define H to be the group of
all sequences (g,, g,, - .-), with g, € G, for all n and with g, = 1 for all large n;
that is, g, # 1 for only a finite number of g,. Show that H is an infinite p-group
which is not nilpotent.

If x, y € G, denote yxy~* by x”. If x, y, z € G, prove
[x7 yZ] = [xa y] [x’ Z:]y and [x)’, Z] = [y’ Z]x[x’ Z]'
(Recall that [x, y] = xyx~'y™)

(Jacobi identity). If x,y,ze G, denote [x,[y,z]] by [x,y,z]. Prove that
[,y 2P0y, 274 X1 [z x7H ] = L.

(i) Let H, K, L be subgroups of G,and let [H, K, L] = ([h, k,IJ: he H, ke K,
le L. Show thatif [H, K, L] =1=[K, L, H],then [L, H, K] = 1.
(i) (Three subgroups lemma). If N < G and [H, K, L][K, L, H] < N, then
[L, H,K]<N. ;
(i) If H,K, and L are all normal subgroups of G, then [L,H,K]<
[H, K, L1[K, L, H]. (Hint. Set N = [H, K, L1[K, L, H].)

If G is a group with G = G', then G/Z(G) is centerless. (Hint. Use the three
subgroups lemma with H = {3(G)and K = L = G.)

Prove that [y,(G), 7(G)] < y:+5(G) for all i,j. (Hint. Use the three subgroups
Iemma.)

IfH <G and H~ G = 1, then H < Z(G) (and so H is abelian).
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p-Groups

There are many commutator identities that are quite useful even though they
are quite elementary.

Lemma 5.42. Let x, y € G and assume that both x and y commute with [x, y].
Then:

@) [x,y1"=[x" y]l = [x, y"] for allne Z; and
(i) (xy)" = Ly, x]"* " V2x"y" for all n > 0.

Proof. (i) We first prove (i) for nonnegative n by induction on n > 0; of course,
it is true when n = 0. For the inductive step, note that
[x, y1"[x, ¥] = x[x, yI"yx~'y~!, by hypothesis
= x[x" ylyx~'y~, by induction
= x(x"yx""yTyx "y
— [xn +1, yJ'

Now x[x, y] =[x, ylx, by hypothesis, so that xyx 'y ™' = yx 71y tx;
thatis, [x, y]™* = [y, x"117! = [x7%, y]. Therefore, if n > 0, then [x, y] ™" =
[x7% y1" = [x~" y], as desired.

(ii) The second identity is also proved by induction on n > 0.

(ey)(xy) = [y, x]"""D2x"y"xy
— [y, x]n(n—l)/an+l[x—1’ yn]yn+l
—_ [y’ x]n(n—l)/an‘Fl[y’ x]nyn+1
= [y, X0y, x] 1y

— [y, x]"'“)"/zx"“y"“.

Theorem 5.43. If G is a p-group having a unique subgroup of order p and more
than one cyclic subgroup of index p, then G = Q, the quaternions.

Proof. If A is a subgroup of G of index p, then 4 < G, by Theorem 5.40. Thus,
if x € G, then Ax e G/A, a group of order p, and so x” € 4. Let 4 = {a)
and B = <b) be distinct subgroups of index p, and let D = 4 n B; note that
D < G, for it is the intersection of normal subgroups. Our initial remarks
show that the subset
G’ = {x":xeG}

is contained in D. Since 4 and B are distinct maximal subgroups, it follows
that AB = G, and so the product formula gives [G : D] = p®. Hence, G/D is

abelian and G’ < D, by Theorem 2.23. As G = AB, each x € G is a product of
a power of a and a power of b; but every element of D is simultaneously a
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power of a and a power of b, and so it commutes with each x € G; that is,
D < Z(G). We have seen that

G <D < Z(G),

so that the hypothesis of Lemma 5.42(i) holds. Hence, for every x,y € G,
[y, x]?=[y* xJ. But y?e D <Z(G), and so [y, x]” = 1. Now Lemma 5.42(ii)
gives (xy)? = [y, x]P®?~V2xPy? If p is odd, then p|p(p — 1)/2, and (xy)f =
xPyP. By Exercise 2.55, if G[p] = {x e G: x* = 1} and G” = {x”: x € G} (as
defined above), then both these subsets are subgroups and [G : G[p]] = |G*].
Thus,

IG[p)l =[G:G?]1=[G:D][D:G"] = p?,

and G[p] contains a subgroup E of order p?; but E must be elementary
abelian, so that G[ p], hence G, contains more than one subgroup of order p.
We conclude that p = 2.

When p =2, we have D = {(a®’) = G* < Z(G), [G:D] =4, and since
[y,x}*=1forallx,ye G,

Cep)* = [y, x1°x*y* = x*y*,

Hence |G[2]|=[G:G*1=[G:D][D: G*]=8, because D =<{a*) and G*=
{a*>.If G[2] had only one cyclic subgroup of order 4, then it would contain
more than one involution (for every element of G[2] has order either 1, 2,
or 4); there are thus two cyclic subgroups {u> and <{v) of order 4 in G[2].
If a* # 1, we may take {u) < {(a*> < Z(G), and so {u){v) is an abelian
subgroup of G. But {(u) {(v) contains at least two involutions: either u? # v*
or u? # uv™!; this contradiction shows that a* = 1. It follows that |D| =2
and |G| = 8. By Exercise 4.34, G = Q or G = Zg; but only Q has more than
one subgroup of index 2. @&

We do an exercise in congruences before giving the next theorem.

Theorem 5.44. Let U(Z,.) be the multiplicative group
U(Zym) = {[a] € Z,m: ais 0dd}.
If m > 3, then
U(Zym) =<[—11, [51) = Z; X Zym-a.
Remark. U(Z,w) is the group of units in the ring Z ,m.

Proof. By Exercise 2.23, |U(Z,m)| = ¢(2™) = 2" 7. Induction and the bino-
mial theorem show that

5270 = (1 4+ 42" =14 27! mod 2™,

Since U(Z,.) is a 2-group, [5] has order 2° for some s > m — 2 (because
142"t % 1 mod 2™). Of course, [—1] has order 2. We claim that
51> n<[—11>=1. If not, then [5]=[—1] for some ¢; that is,
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5 = —1 mod 2" Since m >3, this congruence implies 5' = —1 mod 4; but
5=1mod 4 implies 5 = 1 mod 4, a contradiction. It follows that these two
cyclic subgroups generate their direct product, which is a subgroup of order
at least 2 x 2°>2 x 272 = 2""1 = (2™). This subgroup is thus all of
U(Z,m).

Corollary 5.45. Let G be a group containing elements x and y such that x has
order 2™ (where m > 3), y* = x%, and yxy™! = x". Then

t=+1 or t=+1+4+2"71

In the latter two cases, G contains at least two involutions.

Proof. Since y? = x?" commutes with x, we have
x = ylxy™ = yxiyt =x",
so that t* = 1 mod 2™, and the congruence class [¢] is an element of order 2
in U(Z,m). I m > 3, the lemma exhibits the only four such elements, and this
gives the first statement.
One involution in G is x*™". Suppose t = 1 + 2™, For any integer &,
(x4p)? = x*(pxky~lyp? = xkHate - 28
where s = k(1 +2""2) 4+ 2""%. Since m >3, 1 + 2" % is odd, and we can
solve the congruence
s=k(142"2)+21=0 mod 2",
For this choice of k, we have (x"y)? = x2 = x?" = 1, so that x*y is a second
involution (lest y e {x)).
Suppose that t= —1+2""'. As above, for any integer k, (x*y)* =
ktkit2r _ xk2™I427 Rewrite the exponent
kzm—l 4+ = zr(kzm-r—l _ 1),
and choose k so that k2" ™""! = 1 mod 2™™"; that is, there is an integer ! with
k2m=r=1 — 1 = I2™7". For this choice of k, we have

(xky)? = x2tamrion oyl g

X

and so G contains a second involution.

Theorem 5.46. A finite p-group G having a unique subgroup of order p is either
cyclic or generalized quaternion.

Proof. The proof is by induction on n, where |G| = p”"; of course, the theorem
is true when n = 0.

Assume first that p is odd. If n > 0, then G has a subgroup H of index p, by
Exercise 4.2, and H is cyclic, by induction. There can be no other subgroup
of index p, lest G be the quaternions (Theorem 5.43), which is a 2-group.
Therefore, H is the unique maximal subgroup of G, and so it contains every
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proper subgroup of G. But if G is not cyclic, then {x) is a proper subgroup of
G for every x € G, and so G < H, which is absurd.

Assume now that G is a 2-group. If G is abelian, then Theorem 2.19 shows
that G is cyclic; therefore, we may assume that G is not abelian. Let 4 be a
maximal normal abelian subgroup of G. Since 4 has a unique involution, 4
is cyclic, by Theorem 2.19, say, A = {(a). We claim that 4 has index 2. As-
sume, on the contrary, that |G/4| > 4. If G/A does not have exponent 2, then
there is Ab € G/A with b* ¢ A. Consider H = {a, b*) < {a,b) < G.If H is
abelian, then b? centralizes A4, contradicting Theorem 5.41(ii). As H is not
abelian, it must be generalized quaternion, by induction. We may thus as-
sume that b%ab™? = a™'. Now {a) < G gives bab™* = a' for some i, so that

at =b%ab™? = b(bab™')b™! = ba'b™! = a”,

and i = — 1 mod 2°, where 2° is the order of a. Note that e > 2, for A prop-
erly contains Z(G). But there is no such congruence: if ¢ > 3, then Theorem
5.44 shows that this congruence never holds; if e = 2, then — 1 is not a square
mod 4. It follows that G/4 must have exponent 2. Since |G/A| = 4, G/A
contains a copy of V. Therefore, there are elements ¢ and d with ¢, d, c™'d ¢ A
and with <a, ¢), {a, d), and {a, c"*d) proper subgroups of G. Now none of
these can be abelian, lest ¢, d, or ¢ 'd centralize A, so that all three are
generalized quaternion. But there are equations cac™! = a™ = dad ™%, giving
¢™'d € C4(A), a contradiction. We conclude that A = {a) must have index 2
in G.

Choose b € G with b2 e {a). Replacing a by another generator of A4 if
necessary, we may assume, by Exercise 2.20, that there is some r < n — 2 with

b? = g%

Now bab™ = a* for some t, because {a) <1 G. Since G has only one involu-
tion, Corollary 5.45 gives t = + 1. But ¢ = 1 says that a and b commute, so
that G is abelian, hence cyclic. Therefore, we may assume that t = —1 and
G = {a, b), where

a?t =1, bab' =a™', b*=a%.

To complete the proof, we need only show that r = n — 2. This follows from
Theorem 5.44: since t = — 1, we have 2" = —2"mod 2"7!, so that 2"*! =
Omod2"t,andr=n—-2. @

It is not unusual that the prime 2 behaves differently than odd brimes.

Definition. If G is a group, the its Frattini subgroup ®(G) is defined as the
intersection of all the maximal subgroups of G.

If G is finite, then G always has maximal subgroups; if G is infinite, it may
have no maximal subgroups. For example, let G = Q, the additive group of
rationals. Since G is abelian, a maximal subgroup H of G would be normal,
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and so G/H would be a simple abelian group; hence G/H would be finite and
of prime order. But it is easy to see that @ has no subgroups of finite index (it
has no finite homomorphic images).
If an (infinite) group G has no maximal subgroups, one defines ®(G) = G.
It is clear that ®(G) char G, and so ®(G) < G.

Definition. An element x € G is called a nongenerator if it can be omitted from
any generating set: if G = (x, Y), then G = (Y).

Theorem 5.47. For every group G, the Frattini subgroup ®(G) is the set of all
nongenerators.

Proof. Let x be a nongenerator of G, and let M be a maximal subgroup of G.
If x ¢ M, then G = {(x, M) = M, a contradiction. Therefore x € M, for all M,
and so x € ®(G). Conversely, if z € ®(G), assume that G = {z, Y). If (YD
G, then there exists a maximal subgroup M with {(Y)> < M. But ze M, and
50 G = <z, Y)> < M, a contradiction. Therefore, z is a nongenerator.

Theorem 5.48. Let G be a finite group.

(i) (Frattini, 1885). ®(G) is nilpotent.
(i) If Gis a finite p-group, then ®(G) = G'G”, where G” is the subgroup of G
generated by all pth powers.
(iii) If G is a finite p-group, then G/®(G) is a vector space over Z,,.

Proof. (i) Let P be a Sylow p-subgroup of ®(G) for some p. Since ®(G) < G,
the Frattini argument (!) gives G = ®(G)N4z(P). But ®(G) consists of non-
generators, and so G = Ng(P); thatis, P <t G and hence P <1 ®(G). Therefore,
®(G) is the direct product of its Sylow subgroups; by Theorem 5.39, ®(G) is
nilpotent.

(i) If M is a maximal subgroup of G, where G is now a p-group, then
Theorem 5.40 gives M < G and [G: M] = p. Thus, G/M is abelian, so that
G’ < M;moreover, G’ has exponent p, so that x? € M for all x € G. Therefore,
G'GP <O(G).

For the reverse inclusion, observe that G/G’'G” is an abelian group of expo-
nent p, hence is elementary abelian, and hence is a vector space over Z,.
Clearly ®(G/G'G?) = 1. If H < G and H < ®(G), then it is easy to check that
®(G) is the inverse image (under the natural map) of ®(G/H) (for maximal
subgroups correspond). It follows that ®(G) = G'G”.

(iii) Since G’'G” = ®(G), the quotient group G/®(G) is an abelian group of
exponent p; that is, it is a vector space over Z,,.

Theorem 5.49 (Gaschiitz, 1953). For every (possibly infinite) group G, one has
G' N Z(G) < 9(G).

Proof. Denote G' n Z(G) by D. If D £ ®(G), there is a maximal subgroup M
of G with D £ M. Therefore, G = MD, so that each g € G has a factorization
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g =md with me M and deD. Since de Z(G), gMg™ = mdMd‘m™ =
mMm™ = M, and so M < G. By Exercise 2.58, G/M has prime order, hence
is abelian. Therefore, G' < M. But D < G’ < M, contradicting D £ M.

Definition. A minimal generating set of a group G is a generating set X such
that no proper subset of X is a generating set of G.

There is a competing definition in a finite group: a generating set of smallest
cardinality. Notice that these two notions can be distinct. For example, let
G = {a) x {b), where a has order 2 and b has order 3. Now {a,b} is a
minimal generating set, for it generates G and no proper subset of it gener-
ates. On the other hand, G is cyclic (of order 6) with generator ab, and so {ab}
is a minimal generating set of smaller cardinality. In a finite p-group, how-
ever, there is no such problem.

Theorem 5.50 (Burnside Basis Theorem, 1912). If G is a finite p-group, then
any two minimal generating sets have the same cardinality, namely, dim G/®(G).
Moreover, every x ¢ ®(G) belongs to some minimal generating set of G.

Proof. If {x,,..., x,} is a minimal generating set, then the family of cosets
{x,, ..., X,} spans G/®(G) (where X denotes the coset x®(G)). If this family is
dependent, then one of them, say X,, lies in {X,, ..., X,,>. There is thus y e
(X35 v X,» < G with x,y7 € ®(G). Clearly, {x,37", x,..., x,} generates
G, so that G = {x,, ..., x,», by Theorem 5.47, and this contradicts mini-
mality. Therefore, n = dim G/®(G), and all minimal generating sets have the
same cardinality.

If x ¢ ®(G), then X # 0 in the vector space G/®(G), and so it is part of a
basis {X, X5, ..., X, }. I x; represents the coset X;, for i > 2, then G = (®(G), x,
Xgseees Xgp = <X, X, ..., X, 0. Moreover, {X, X,,..., X,} is a minimal gener-
ating set, for the cosets of a proper subset do not generate G/®(G). E

EXERCISES

5.52. Every subgroup of Q, is either cyclic or generalized quaternion.

5.53 (Wielandt). A finite group G is nilpotent if and only if G’ < ®(G).

5.54, If G is a finite p-group, then G is cyclic if and only if G/®(G) is cyclic.
Definition. A finite p-group G is extra-special if Z(G) is cyclic and ®(G) =
Z(G) =G

5.55. If G is extra-special, then G/Z(G) is an elementary abelian group.

5.56. Every nonabelian group of order p? is extra-special.

5.57. (i) If mis a power of 2, what is the class of nilpotency of D,,?
(i) What is the class of nilpotency of Q,? (Hint. Exercise 4.42.)



CHAPTER 6
Finite Direct Products

The main result of this chapter is a complete description of all finite abelian
groups as direct products of cyclic p-groups. By passing from abelian groups
to modules over a principal ideal domain, we show that this result gives
canonical forms for matrices. The essential uniqueness of the factorization of
a finite abelian group as a direct product of cyclic p-groups is then generalized
to nonabelian groups that are direct products of “indecomposable” groups.

The Basis Theorem

For the next few sections, we shall deal exclusively with abelian groups; as
is customary, we shift from multiplicative to additive notation. Here is a
dictionary of some common terms.

ab a+b
1 0
at —a
a” na
ab™t a—b
HK H+ K
aH a+ H
direct product direct sum
Hx K Hae kK
14 TH,

If a nonabelian group G = H x K is a direct product, then H is called a direct
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factor of G; in additive notation, one writes G = H @ K, and one calls H a
(direct) summand of G.

There are two remarks greatly facilitating the study of abelian groups.
First, if a, b € G and n € Z, then n(a -+ b) = na + nb (in multiplicative nota-
tion, (ab)* = a"b", for a and b commute). Second, if X is a nonempty subset of
G, then (X is the set of all linear combinations of elements in X having
coefficients in Z (see Theorem 2.7: in additive notation, words on X become
linear combinations).

Definition. If G is an abelian p-group for some prime p, then G is also called
a p-primary group.

When working wholly in the context of abelian groups, one uses the term
p-primary; otherwise, the usage of p-group is preferred.

We have already proved, in Theorem 5.39, that every finite nilpotent group
is the direct product of its Sylow subgroups; since every abelian group is
nilpotent, the next theorem is an immediate consequence. However, we give
another proof here to put the reader in the abelian mode. The following
theorem was attributed to Gauss by G.A. Miller (1901).

Theorem 6.1 (Primary Decomposition). Every finite abelian group G is a direct
sum of p-primary groups.

Proof. Since G is finite, it has exponent n for some n: we have nx = 0 for all
x € G. For each prime divisor p of n, define

G, = {x € G: p°x = 0 for some e}.

Now G, is a subgroup of G, for if p"x = 0 and p™y = 0, where m < n, then
p"(x — y) = 0 (because G is abelian). We claim that G = Y, G,, and we use the
criterion in Exercise 2.75(i).

Let n = pi*...p7~, where the p; are distinct primes and e; > 0 for all i. Set
n; = n/p;*, and observe that the ged (n,, ..., n,) = 1 (no p; divides every n,). By
Theorem VI.2 in Appendix VI, there are integers s; with Y s;n, = 1, and so
x =Y (s;mx). But s;mx e Gpi, because pfis;n;x = s;nx = 0. Therefore, G is
generated by the family of G’s.

Assume that x e G r\(Uq,&p G,>. On the one hand, p°x = 0 for some
e > 0; on the other hand x = qu, where g°x, =0 for exponents e,. If
m = [] g%, then m and p* are relatively prime, and there are integers r and s
with 1 = rm + sp®. Therefore, x = rmx + sp®x = 0,and s0 G, N <Uq¢p G =
0.

Definition. The subgroups G, are called the p-primary components of G.

Of course, G, is the Sylow p-subgroup of G, but the usage of p-primary
component is preferred when the works wholly in the context of abelian groups.
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We are going to show that every finite abelian group is a direct sum of
cyclic groups; it now suffices to assume that G is p-primary.

Definition. A set {x,,..., x,} of nonzero elements in an abelian group is
independent if, whenever there are integers my, ..., m, with Y i, mx; =0,
then each m;x; = 0.

When an abelian group G has exponent p, for some prime p, then it is a
vector space over Z,, and the notion of independence just defined coincides
with the usual notion of linear independence: m;x; = 0 implies p|m;, so that
the congruence class [m;] = 0in Z,. Of course, if G has no elements of finite
order (as is the case, for example, when G is a vector space over Q, R, or C),
then m;x; = 0 implies m; = 0, and so the definition of independence coincides
with that of linear independence in this case as well.

Lemma 6.2. If G is an abelian group, then a subset {x,,..., x,} of nonzero
elements of G is independent if and only if (x4, ..., %,> = {1 D@ @ (X >.

Progf. Assume independence; if ye {x;> n{{x;:j#i}), then there are
integers my, ..., m, with y = —m;x; =3, ., m;x;, and s0 ) ;_; mx, = 0. By
independence, m, x, = 0 for all k; in particular, m;x; = 0 and so y = —m;x; =
0. Exercise 2.75(1) now shows that {(x, ..., x,> = <{x ) @ - ® {x,).

For the converse, assume that ) m;x; = 0. For each j, we have —m;x; =
Yoirj My € O4) N {{x,: k # j} > = 0. Therefore, each m;x; = 0 and {x,, ...,
x,} is independent.

Here is a solution to a part of Exercise 2.78.

Corollary 6.3. Every finite abelian group G of prime exponent p is an elemen-
tary abelian p-group.

Proof. As a vector space over Z,,, G has a basis {x,, ..., x,}. Therefore, G =
{Xy, ..., X,», because a basis spans, and G = {x;> @ -+ @ {x,), because a
basis is independent.

Lemma 6.4. Let {x, ..., X,} be an independent subset of a p-primary abelian
group G.

@) If {zy,...,2,} = G, where pz; = x; for all i, then {z,, ..., z,} is independent.
() If ky, ..., k, are integers with k;x; # O for all i, then {k x, ..., k,x,} is also
independent.

Proof. An exercise for the reader.

Definition. If G is an abelian group and m > 0 is an integer, then

mG = {mx: x € G}.
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It is easy to see that mG is a subgroup of G; indeed, since G is abelian, the
function y,,: G — G, defined by x ~» mx, is a homomorphism (called multipli-
cation by m), and mG = im p,,. We denote ker p,, by G[m]; that is,

G[m] = {x € G: mx = 0}.

Theorem 6.5 (Basis Theorem).! Every finite abelian group G is a direct sum of
primary cyclic groups.

Proof. By Theorem 6.1, we may assume that G is p-primary for some prime
p. We prove the theorem by induction on n, where p"G = 0. If n = 1, then the
theorem is Corollary 6.3.

Suppose that p"*'G = 0. If H = pG, then p"H = 0, so that induction gives
H =Y}, {y;). Since y; € H = pG, there are z; € G with pz; = y;. By Lemma
6.2,{yy,..., y,} is independent; by Lemma 6.4 (i), {z,, ..., z,} is independent,
andso L ={z,,...,z,yisadirect sum: L = ) I, {z,).

Here is the motivation for the next step. Were the theorem true, then
G =Y C,, where each C, is cyclic, and H = pG = . pC,. In considering pG,
therefore, we have neglected all C, of order p, if any, for multiplication by p
destroys them. The construction of L has recaptured the C, of order greater
than p, and we must now revive the C, of order p.

For each i, let k; be the order of y;, so that k;z; has order p. The linearly
independent subset {k,z,, ..., k,z,} of the vector space G[p] can be extended
to a basis: there are elements {x, ..., x,} so that {kyz,, ..., k,z,, X, ..., X,}
is a basis of G[p]. If M = {x;, ..., x,, then independence gives M = Y {x;>.
We now show that M consists of the resurrected summands of order p; that
is, G = L ® M, and this will complete the proof.

() LnM=0. If geLnM, then g=) byz,=) a5, Now pg=0,
because ge M, and so ) pb;z; =0. By mdependence pbiz;=b,y; =0
for all i. It follows from Exercise 2.13 that b, = b/k; for some b;. Therefore,
0 =3 bikiz, — ), a;x;, and so independence of {k,zy,...,kz,, X, ..., X}
gives each term 0; hence g = ) a;x; = 0.

(i) L+ M = G.IfgeG,then pge pG = H, and so pg = Y. ¢;y; = 3. pc;z;.
Hence, p(g — Y, ¢;z;) =0 and g — ) ¢;z;€ G[p]. Therefore, g — ) ¢;z; =
Y. bikiz; + Y ajx;, so that g = Y (¢; + bikj)z; + ) ajx; € L + M.

Corollary 6.6. Every finite abelian group G is a direct sum of cyclzc groups:
G =i, (x>, where x; has order m;, and
my|m,|...|m,.

Proof. Let the primary decomposition of G be G =5 "7_, G, . By the basis
theorem, we may assume that each G, is a direct sum of cychc groups; let

! The basis theorem was proved by E. Schering (1868) and, independently, by L. Kronecker
(1870). '



The Basis Theorem 129

C; be a cyclic summand of G, of largest order, say, p;*. It follows that G =
K®((C,® - @®C,), where K is the direct sum of the remaining cyclic sum-
mands. But C; @-+- @ C, is cyclic of order m = [] p{, by Exercise 2.62(ii).
Now repeat this construction: let K = H @ D, where D is cyclic of order n,
say. If there is a cyclic summand S; in D arlslng from G, , that is, if G, # C,,
then S; has order p/* < pf, so that p/i|pf, for all i, and nlm This process ends
in a finite number of steps. E&

Definition. If G has a decomposition as a direct sum G = )’ C;, where C; is
cyclic of order m; and m,|m,|...|m,, then one says that G has invariant factors
(my, ..., m).

Theorem 6.7. If p is an odd prime, the multiplicative group
U(Z,.) = {[aleZ,.:(ap) =1},

is cyclic of order (p — 1)p" 2.

Remark. Theorem 5.44 computes this group for the prime 2.

Proof. If n = 1, the result is Theorem 2.18, and so we may assume that n > 2.
Let us denote U(Z,») by G. By Exercise 2.23, |G| = ¢(p") = (p — 1)p"™*

It is easy to see that B = {[b] € G: b = 1 mod p} is a subgroup of G. Every
integer b has a unique expression in base p: if 1 < b < p”, then

b=ay+ap+-+a,p"',  where 0<a;<p.

Since [b] € B if and only if a, = 1, it follows that |B] = p"!, and so B is
p-primary. By the primary decomposition, there is a subgroup A of G with
|{A] =p — 1 and with G = A ® B. If we can show that each of 4 and B is
cyclic, then Exercise 2.62(ii) will show that G is cyclic.

Consider f: G - U(Z,) defined by f([a]) = cls a (where [a] denotes the
congruence class of a mod p", and cls a denotes the congruence class of
amod p). Clearly, f is a surjection and ker f = B, so that G/B = U(Z,) =

1- On the other hand, G/B=(A @ B)/B=~ A,andso A=~ Z,_

We shall show that B is cyclic by showing that [1 + p]isa generator. Let

us prove, by induction on m > 0, that

1+pf"=1 modp™* and (1+pP"#1 modpm*2

If m=0, then 1 +p=1modp and 1+ p# 1 mod p%. For the inductive
step, the assumed congruence gives (1 + p)*™"" = ((1 + p)*™)? = (1 + kp™*'y,
for some integer k; the assumed incongruence gives p/k. The binomial theo-
rem gives (1 4+ kp”*1)? = 1 4+ kp™*2 + Ip™*3 for some I. Hence, (1 + p)*™™"
1 mod p™*? and (1 + p)™" % 1 mod p™*3. It follows that (1 -+ p)*"" s
1 mod p", and so [1 + p] has order p"~1.

Here is another proof of the basis theorem.
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Lemma 6.8. If G = {x,, ..., x,y and if a,, ..., a, arerelatively prime integers,
then there is a generating set of G comprised of n elements one of which is

Zi":x a;X;.

Proof. By Lemma V1.4 (in Appendix VI), there is a unimodular n x n matrix
A with integer entries (ie., det A = 1) whose first row is a,, ..., a,. Define
Y = AX, where X is the column vector with entries x,, ..., x,. The entries
Y1, ---» ¥ Of the column vector Y are linear combinations of the x;, hence are
elements of G; moreover, y, = 3 /-, a;x;. Now X = A7 AX = A7'Y. Since 4
is unimodular, all the entries of 47" are also integers. It follows that each x;
is a Z-linear combination of the y’s, and s0 G = (¥, ..., y,>-

Theorem 6.9 (Basis Theorem). Every finite abelian group G is a direct sum of
- cyclic groups.

Proof (E. Schenkman). Choose n smallest such that G can be generated by a
set with n elements. Among all generating sets {x,, ..., x,} of size n, choose
one containing an element x; of smallest order k; that is, no generating set of
size n contains an element of order less than k. If H = (x,, ..., x,), then H is
a proper subgroup of G (by the minimal choice of n), so that an induction on
|G| gives H a direct sum of cyclic groups. We claim that G = {x,;> ® H. It
suffices to show that {x,> " H = 0,for {x, > + H={xy,...,x,>)=G.Ifz ¢
{x;>nHand z+#0,then z=a,x, =Y, a;x;, for a,,...,a,eZ and 0 <
a; <k If d is the ged of ay, ..., a,, define g = —(a,/d)x; + ) i-, (a;/d)x;.
Now the order of g is smaller than k, fordg =0andd < a, < k. Buta,/d, ...,
a,/d are relatively prime, so that the lemma gives a generating set of G of size
n one of whose elements is g; this contradicts the minimality of k.

EXERCISES

6.1. Use the basis theorem to show that if G is a finite abelian group of order n, and
if k|n, then G contains a subgroup of order k.

6.2. Use the basis theorem to give a new proof of Theorem 2.19.

6.3. A finite abelian group G is generated by its elements of largest order. Show, by
considering Dg, that this may not be true of nonabelian groups.

6.4. If G is a finite p-primary abelian group, and if x € G has largest order then {x)
is a direct summand of G.

6.5. If G is an abelian group with invariant factors (m,, ..., m,), then the order of Gis
[T m; and the minimal exponent of G is m,.

6.6. If G is a finite p-primary group, then ®(G) = pG. Conclude, from the Burnside
basis theorem, that d(G), the minimal number of generators of G, is dim G/pG.

6.7. If G and H are elementary abelian p-groups, then d(G ® H) = d(G) + d(H).

6.8. Let G be a direct sum of b cyclic groups of order p™. If n < m, then p"G/p"*'G is
elementary and d(p"G/p"*'G) = b
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The Fundamental Theorem of Finite Abelian Groups

We have not yet answered a basic question about finite abelian groups: When
are two such groups G and H isomorphic? Since both G and H are direct
sums of cyclic groups, your first guess is that G =~ H if they have the same
number of summands of each kind; since Zg =~ Z, ® Z5, however, one had
better try to count primary cyclic summands of each kind. But this leads to a
serious problem. How can we count summands at all? To do so would re-
quire that the number of primary cyclic summands of any given kind is the
same for every decomposition of G. That is, we seek an analogue of the
fundamental theorem of arithmetic in which the analogue of a prime number
is a primary cyclic group.

Lemma 6.10. If a p-primary abelian group G has a decomposition G = Z C;
into a direct sum of cyclic groups, then the number of C; having order > p"*! is
d(p"G/p"**G), the minimal number of generators of p"G/p"**G.

Proof. Let B, be the direct sum of all C;, if any, of order p¥; say, there are
b, > 0 such summands in B,. Thus,

G=B,® @B,

Now p"G=p"B,,, ® - @ p"B,, because p"B, =---=p"B,=0, and p"*'G =
p"*'B,,,® - @p"*' B, Therefore, p"G/p""*G=p"B, ;@ (p"B,12/p" "' B,+2)®
<+ @ (p"B,/p"*'B,), and so Exercise 6.7 gives d(p"G/p"*'G) = b1 + bpyq +
<o+ b, H

Definition. If G is a finite p-primary abelian group and n > 0, then

U,(n, G) = d(p"G/p"*'G) — d(p"*' G/p"**G).

The important thing to notice now is that U,(n, G) is a number depending
on G but not upon any particular decomposition of G into a direct sum of
cyclic groups.

Theorem 6.11. If G is a finite p-primary abelian group, then any two decompo-
sitions of G into direct sums of cyclic groups have the same number of summands
of each kind. More precisely, for every n > 0, the number of cyclic summands
of order p"*'is U,(n, G).

Proof. For any decompaosition of G into a direct sum of cyclic groups, the
lemma shows that there are exactly U,(n, G) cyclic summands of order p"**.
The result follows, for U,(n, G) does not depend on the choice of decomposi-
tion.

Corollary 6.12. If G and H are finite p-primary abelian groups, then G = H if
and only if U,(n, G) = Uy,(n, H) for alln > 0.
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Proof. If ¢: G — H is an isomorphism, then ¢(p"G) = p"H for all n > 0, and
so ¢ induces isomorphisms p"G/p"*'G =~ p"H/p"*'H for all n. Therefore,
U,(n, G) = Uy(n, H) for all n.

Conversely, if G and H each have direct sum decompositions into cyclic
groups with the same number of summands of each kind, then it is easy to
construct an isomorphism G — H.

We have only to delete the adjective p-primary to complete this discussion.

Definition. The orders of the primary cyclic summands of G, that is, the
numbers p"*! with multiplicity U,(n, G) > 0 for all primes p and all n > 0, are
called the elementary divisors of G.

For example, the elementary divisors of an elementary abelian group of
order p* are (p, p, p), and the elementary divisors of Z are (2, 3).

Theorem 6.13 (Fundamental Theorem of Finite Abelian Groups).? If G and H
are finite abelian groups, then G = H if and only if, for all primes p, they have
the same elementary divisors.

Proof. The proof follows from two facts, whose easy proofs are left to the
reader:

(1) If ¢: G — H is a homomorphism, then ¢(G,) < H, for all primes p;
(2) G= Hifand only if G, = H, for all primes p.

Corollary 6.14. Let G be a finite abelian group.

() If G has invariant factors (my, ..., m,) and invariant factors (k,,..., k),
thens =t and k; = m; for all i.

(i) Two finite abelian groups G and H are isomorphic if and only if they have
the same invariant factors.

Proof. (i) The hypothesis gives two direct sum decompositions: G = Y i, C;
and G =Y5_, D;, where C; is cyclic of order m;, D; is cyclic of order k;
my|m,|...|m, and k,|k,|...|k,. By Exercise 6.5, m, = ki, for each is the mini-
mal exponent of G. By Exercise 6.10(i) below, the complementary summands
Y421 Ci and G = Y32} D, are isomorphic, and the proof is completed by
induction on max{s, t}. )

(ii) This follows at once from (i).

If one arranges the elementary divisors of a p-primary group in ascending
order, then they coincide with the invariant factors of G. However, elemen-

tary divisors and invariant factors can differ for groups G which are not

2 This theorem was proved in 1879 by G. Frobenius and L. Stickelberger.
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p-primary. For example, let
G=Zz@ZZ®ZZ®Z4®Z3®ZQ.

The elementary divisors of G are (2, 2, 2, 4; 3, 9), while the invariant factors of
G are (2,2, 6, 36).

EXERCISES
6.9. If G and H are finite abelian groups, then
U,(n, G® H) = U,(n, G) + U,(n, H)
for all primes p and all n > 0.

6.10. (i) If A, B, and C are finite abelian groups with A® C =~ B® C, then A =~ B.
(Hint. Exercise 6.9.)
(ii) If 4 and B are finite abelian groups for which A ® 4 ~ B® B, then 4 ~ B.

6.11. (i) If pisa prime and e > 1, then the number of nonisomorphic abelian groups
of order p° is #(e), the number of partitions of e.
(i) The number of nonisomorphic abelian groups of order n = [ ] pf* is [ ]; 2(e)),
where the p; are distinct primes and the ¢; are positive integers.
(ili) How many abelian groups are there of order 864 = 2°533?

6.12. (i) Let G = {a) x {bd, where both {a) and (b} are cyclic of order p2. If H =
{pay x {pb), compare U,(n, G) with U,(n, H) and U,(n, G/H).

(ii) Let G and H be finite abelian groups. If, for each k, both G and H have the

same number of elements of order k, then G =~ H. (Compare Exercise 4.33.)

6.13. If G is a finite abelian group and H < G, then G contains a subgroup isomorphic
to G/H. (Compare Exercise 4.29.)

Remark. The best solution to this exercise uses character groups; see Theo-
rem 10.55.

6.14, What are the elementary divisors of U(Z,), the multiplicative group of all con-
gruence classes [a] mod n with (q, n) = 1?7

6.15. Use the Fundamental Theorem of Finite Abelian Groups to prove the Funda-
mental Theorem of Arithmetic. (Hint. If n = pj*...p, then Exercise 2.62(ii)
. gives Z/nZ =[], Z/p'Z.)

Canonical Forms; Existence

We digress from the study of groups to apply the results of the preceding two
sections to Linear Algebra; we shall prove the existence and uniqueness of the
rational and Jordan canonical forms of a matrix. This material will not be
used until Chapter 8, but the reader will be pleased to see that the difficult
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portion of a first course in Linear Algebra can be done more easily from a
more advanced viewpoint (it is assumed that the reader has already learned
much of this, and so our pace is not leisurely). This project is one of transla-
tion, and so we first introduce a new vocabulary. The reader unfamiliar with
the rudiments of principal ideal domains can consult Appendix VI.

Definition. Let R be a ring. An abelian group V is an R-nodule if there is a
function s: R x V - V (called scalar multiplication and denoted by («, v)
ov) such that, for every o, f, l e Rand u,ve V:

(i) (@B)v = a(fv);

(i) (o + B)v = ow + P
(iii) a(u + v) = oau + av; and
@iv) lv=v.

When R is a field, an R-module is just a vector space. Thus, one may think
of an R-module as a vector space over a ring. Here we are concerned with
R-modules for R a principal ideal domain (we shall abbreviate “principal
ideal domain” to PID). Our favorite PID’s are Z and k[x], the ring of all
polynomials in x with coefficients in a field k.

ExaMPpLE 6.1. The terms abelian group and Z-module are synomyms. Every
abelian group is a Z-module, for axioms (i) through (iv) always hold for
scalars in Z.

ExAMPLE 6.2. Let k be a field and let R = k[x]. If V' is a vector space over k
and T: V - V is a linear transformation, then ¥ can be made into a k[x]-
module, denoted by V7, by defining f(x)v = f(T)v for all f(x)e k[x] and
v € V. In more detail, if f(x) = ag + ;X + 0y x% + -+ + ,x" € k[x], define

f(X)U = (aO + oy X + “2"2 +o O("X")U
=g+ a; To+ oy T2+ +a,T",

where T is the composite of T with itself i times. The reader should check
that axioms (i) through (iv) do hold.

Just as a principal ideal domain is a generalization of Z, so is an R-module
a generalization of an abelian group. Almost any theorem holding for abelian
groups has a true analogue for R-modules when R is a PID; moreover, the
proofs of the generalizations are usually translations of the proofs for abelian
groups.

Definition. If V is an R-module, then a subgroup W of V is a submodule if it
closed under scalar multiplication: if we Wandre R, thenrwe W.If Wisa
submodule of V, then the quotient module V/W is the abelian group V/W
equipped with the scalar multiplication r(v + W) = rv + W (the reader should
check that this is well defined).
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EXERCISES

6.16. A commutative ring R itself is an R-module (if , s € R, define scalar multiplica-
tion rs to be the given product of two elements in R). Show that the submodules
of R are its ideals.

6.17. (i) The intersection of any family of submodules of an R-module V is itself a
submodule.
(i) If X is a subset of ¥, let {X) denote the submodule generated by X; that is,
(X is the intersection of all the submodules of V containing X. If X s ¢,
show that (X is the set of all R-linear combinations of elements of X; that
is,
{X) = {finite sums ) r;x;: ;€ R and x; € X}.
In particular, the cyclic submodule generated by v, denoted by (v), is
{rv:reR}.

6.18. An R-module V is called finitely generated if there is a finite subset X wth
V=LX>.
(i) If R is a field, prove that an R-module V is finitely generated if and only if it
is finite-dimensional.
(ii) Prove that an abelian group (Z-module) G is finite if and only if G is finitely
generated and every element in G has finite order.

6.19. Let VT be the k[x]-module of Example 6.2. Prove that W is a submodule if
and only if W is a subspace of V for which T(W) < W (W is often called a
T-invariant subspace of V).

Definition. If V and W are R-modules, then their direct sum is the direct sum
V @ W of abelian groups equipped with the scalar multiplication r(v, w) =
(rv, rw).

6.20. If W, ..., W, are submodules of an R-module ¥, then V = W, @ --- @ W, ifand
only if V.= W, + - + W, (i.e, every ve V is a sum v = ) w;, where w; € W)
and W;n (| J;4; W;p = Ofor all i.

We are almost finished with the vocabulary lesson.

Definition. Let ¥ be an R-module, where R is a PID, and let v € V. The order
of v, denoted by ord(v), is {r € R: rv = 0} (it is easily checked that ord(v) is an
ideal in R). One says that v has finite order if ord(v) # 0, and one says that V'
is p-primary (where p € R is irreducible) if, for all v € ¥, ord(v) = (p™) for some
m (where (p) is the principal ideal generated by p). An R-module V is finite if
it is finitely generated and every element of ¥ has finite order.

If V is an abelian group and v € V, then a generator of ord(v) is the smallest
positive integer m for which mv = 0; that is, ord(v) = (m), where m is the order
of v in the usual sense. Exercise 6.18(ii) tells us that we have translated “finite
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abelian group” correctly into the language of R-modules: a “finite Z-module”
is an abelian group of finite order.

We remark that Exercise 6.18(11) is false if one drops the hypothesis that
the group G is abelian. The question (posed in 1902) whether a finitely gener-
ated group G of exponent e is finite became known as Burnside’s problem.’
Burnside proved that if G < GL(n, C) is finitely generated and has exponent
e, then G is finite. There is an “obvious” candidate for a counterexample, and
it was actually shown to be one, when e is a large odd number, by Adian and
Novikov in 1968 (in 1975, Adian showed that the group is infinite for all odd
e > 665). The proof is very long and intricate; a much simpler “geometric”
proof was found by A. Of'shanskii in 1982. In 1994, S. Ivanov showed that
there are infinite finitely generated groups of exponent e = 2*m, where k > 43
and m > 1 is any odd number.

Theorem 6.15. If V is a finite R-module, where R is a PID, then there are
Ugs ..., s € V with
V= <Ul>@'”® <vs>'

Moreover, the cyclic summands may be chosen to satisfy either of the following
conditions. If ord(v;) = (r;), then either:

(i) each r;is a power of some irreducible element in R; or
@) rylral...lr.

Proof. The proofs of the corresponding group-theoretic theorems translate
routinely to proofs for modules. The decomposition of the first type arises
from Corollary 6.12 (using the primary decomposition and elementary divi-
sors), and the decomposition of the second type arises from Corollary 6.6
(using invariant factors). &

Corollary 6.16. Let T: V — V be a linear transformation on a finite-dimen-
sional vector space over a field k. Then V =W, @ --- ® W,, where each W, =
{v;> is a cyclic T-invariant subspace. Moreover, the vectors vy, ..., vy can be
chosen with ord(v;) = (fi(x)), so that either:

(i) each fi(x) is a power of an irreducible polynomial in k[x]; or

@) £ L),

Proof. Regard V as a k[x]-module V7, as in Example 6.2. Since V is finite-
dimensional, it has a basis {w,, ..., w, }; each vector v € V is a k-linear combi-

3 The restricted Burnside Problem asks whether there is a function f(n, d) with |G| < f(n, d) for
every finite group G having minimal exponent n and d generators. P. Hall and G. Higman (1956)
proved that it suffices to find such a function for all prime powes n; A.L. Kostrikin (1959) found
such a function for all primes p; E.I. Zelmanov (1989) completed the proof by finding such a
function for all prime powers; see Vaughan—Lee (1993).
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nation v =Y o;wy; a fortiori, each v is a k[x]-linear combination of the w’s,
and so V7T is a finitely generated k[x]-module. Also, every v € V is annihi-
lated by some nonzero polynomial (this follows from the Cayley—Hamilton
theorem or, more simply, from the observation that since dim(V) = n, the
n + 1 vectors v, Tv, T?v, ..., T"v must be linearly dependent, and so there is
some nonzero polynomial in T that annihilates every vector ).

Since V7 is a finite k[x]-module, Theorem 6.15 shows that it is a direct
sum of cyclic submodules. By Exercise 6.19, these summands are cyclic
T-invariant subspaces. [

Lemma 6.17. Let T: V — V be a linear transformation on a finite-dimensional
vector space V.

(i) A subspace W is a cyclic T-invariant subspace of V if and only if there is
a vector ve W and an integer s > 1 so that {v, Tv, T?v,..., T*"'v} is a
basis of W.

(i) Moreover, if T'v=Y;i%o;T', then ord(v) is generated by g(x) =
xS — Y528 ot

Proof. (i) Consider the sequence v, Tv, T?v, ... in W; since V is finite-dimen-
sional, there is an integer s > 1 and a linearly independent subset {v, Tv, T?v,
..., T 'y} which becomes linearly dependent when T°v is adjoined. There-
fore, there are o; € k with T*v =Y ;25 o; T'v. If we W, then w = f(T)v for
some f(x) € k[x], and an easy induction on degree f shows that w lies in the
subspace spanned by {v, Tv, T?v, ..., T*"'v}; it follows that the subset is a
basis of W.

(i) It is clear that g(x) € ord(v). If h(x) € ord(v), that is, if h(T)v = 0, then the
division algorithm gives g(x), r(x) € k[x] with h(x) = g(x)g(x) + r(x) and
either r(x) = 0 or degree r(x) < degree g(x) = s. Now r(x) € ord(v); hence
r(x) =Y -0 Bix), t<s—1, and Y, ;T = 0, contradicting the linear
independence of {v, Tv, T?v, ..., T* *v}.

We remind the reader of the correspondence between linear transforma-
tions and matrices. Let V be a vector space over a field k with an ordered
basis {uy,...,u,},and let T: ¥ - ¥ be a linear transformation. For each j,
Tu; is a linear combination of the u;: there are o;; € k with

Tu; =y oy;u;.

The matrix of T relative to the ordered basis {u,,...,u,} is defined to be
A = [o;]. Therefore, for each j, the coordinates of Tu; form the jth column
of 4.

Definition. If f(x) = x" + «,_yx" ! 4+ -+ + & € k[x], where r > 2, then the
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companion matrix of f(x) is the r x r matrix C(f):

[0 0 0 ... 0 —a

1 00 ..0 —o

010 ... 0 -—a
Ch=lo 01 .. 0 —oy |’

(0 00 1 —a,_,

if f(x) = x — a, then C(f)is the 1 x 1 matrix [o].

Lemma 6.18. Let T: W — W be a linear transformation on a finite-dimensional
vector space W over k, and let W = WT = (v) be a cyclic k[x]-module. The
matrix of T relative to the basis {v, Tv, T*v, ..., T '} of W is the s x s
companion matrix C(g), where g(x) is the monic generator of ord(v). More-
over, the characteristic polynomial of C(g) is g(x).

Proof. If 0<i<s—1, then T(T')=T"*'v, and T(T* 'v)=Tv=) ;2§ o; T'y,
so that the matrix of T relative to the given basis is a companion matrix. The
Cayley—Hamilton theorem gives y(T) = 0, where y(x) is the characteristic
polynomial of C(g). Therefore x(x) e ord(v) = (g(x)), so that g(x){x(x). Hence
s = degree y(x) > degree g(x) = s, and 50 y(x) = g(x). B

Definition. Let 4 be an r x r matrix and let B be an s x s matrix; their direct
sum is the (r + s) x (r + s) matrix

A 0
0 By
Note that the direct sum of 4 and B is similar to the direct sum of B and A.

Theorem 6.19. Every n x n matrix A over a field k is similar to a direct sum of
companion matrices C(f,), ..., C(f,). Moreover, the f,(x) may be chosen so that
either:

(i) the fi(x) are powers of irreducible polynomials in k[x]; or

(i) f1NL00)]- | fylx)-

Proof. Let V = k", the vector space of all n-tuples of elements in k (viewed as
column vectors). The standard basis of Vis {e,, ..., e,}, where ¢; is the n-tuple
with ith coordinate 1 and all other coordinates 0. The matrix 4 defines a
linear transformation T: V — V by T(v) = Av, where v is a column vector.
Note that A is the matrix of T relative to the standard basis, for Ae; is the ith
column of A. View V as the k[x]-module V7. By Corollary 6.13, ¥ is a direct
sum of cyclic T-invariant subspaces: V = (v, @"-- ® {v,)>; by Lemma 6.17,
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there is a new basis of V:
2 . 2 . . 2
{v1, Ty, T?vy,...5 05, Toy, T?0g, ... .50, Tv,, T?,, ...}

The matrix B of T relative to this new basis is a direct sum of companion
matrices, by Lemma 6.18, and A is similar to B, for they represent the same
linear transformation relative to different ordered bases of V. Finally, Corol-
lary 6.16 shows that the v; can be chosen so that the polynomials f;(x) satisfy
either (1) or (ii). &

Definition. A rational canonical form is a matrix B that is the direct sum of
companion matrices C(f}), ..., C(f,) with f1(x)| f2(x)]...]f;(x). The polyno-
mials fi(x), f5(x), - .., f,{x) are called the invariant factors of B.

Theorem 6.19(ii) thus says that every matrix over a field k is similar to a
rational canonical form.

Recall that the minimum polynomial of a matrix A4 is the monic polynomial
m(x) of smallest degree with m(4) = 0. The reader should look again at Exer-
cise 6.5 to realize that the characteristic polynomial of a rational canonical
form B is analogous to the order of a finite abelian group and the minimum
polynomial is analogous to the minimal exponent.

In Chapter 8, we will study groups whose elements are nonsingular ma-
trices. Since the order of a group element is the same as the order of any of its
conjugates, the order of such a matrix is the order of its rational canonical
form. It is difficult to compute powers of companion matrices, and so we
introduce another canonical form (when the field of entries is large enough)
whose powers are easily calculated.

Definition. An s x s Jordan block is an s x s matrix of the form

[ 0 0 ... 0 O]
1 a0 00
01 « 00
0 0 1 0 0
0 00 a O
000 1 o]

A 1 x 1 Jordan block has the form [a].

Let K denote the n x n matrix consisting of all 0’s except for 1’s on the first
subdiagonal below the main diagonal; thus, a Jordan block has the form
«E + K, where E is the n x n identity matrix. Note that K2 is all 0’s except
for 1’s on the second subdiagonal below the main diagonal, K3 is all 0’s
except for 1’s on the third subdiagonal, etc., and K" = 0.
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Lemma 6.20. If J = «E + K is an n x n Jordan block, then

n—1
Jm = o"E + 2 <’?>am—iKi

(we agree that (nll) =0ifi>m)

Proof. The binomial theorem applies because «E and K commute. The sum
isfrom 1 ton — 1 because K" =0. &

Lemma 6.20 is very useful because the matrices K' are “disjoint.” For

example,
a 0" o™ 0
[1 u] =[mot’""1 Ot'"]
and
. am 0 0
mo™ ! a” 0

Theorem 6.21. If A is an n x n matrix over a field k which contains all the
eigenvalues of A, then A is similar to a direct sum of Jordan blocks.

Proof. Theorem 6.19(i) shows that it suffices to prove that a companion
matrix C(f), with f(x) a power of an irreducible polynomial, is similar to a
Jordan block. The hypothesis on k gives f(x) = (x — a)° for some o € k. Let
W be the subspace with basis {v, Tv, T?v, ..., T* "0}, where T is the linear
transformation arising from the companion matrix C(f). Consider the sub-
set B = {ug,uy,...,u,_y} of W, where ug=v, uy =(T —aE)v,...,u,_, =
(T — aE)~v. It is plain that & spans W, for T'v € <ug, ..., u;) for all i; since
|#| = s, it follows that 48 is an ordered basis of W.
Let us compute the matrix J of T relativeto Z. Ifj + 1 < s,

Tu; = T(T — «EYv
=(T — aEYTv
=(T — aEY[aE + (T — aE)Jv
= a(T — aEYv + (T — aEY*'p.
If j+ 1 <s, then Tu;=ou;+u;y; if j+ 1=s, then (T —aEY* =(T —aEf =
0, by the Cayley—Hamilton theorem (Lemma 6.18 identifies f(x) = (x — o)’
as the characteristic polynomial of C(f), hence of T). Therefore Tu,_, =
ou,_;. The matrix J is thus a Jordan block; it is similar to C(f) because both

represent the same linear transformation relative to different ordered bases
of W. 1
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Definition. A Jordan canonical form is a matrix B that is a direct sum of
Jordan blocks Jy, ..., J,. Each J; determines a polynomial g;(x) which is a
power of an irreducible polynomial, and the polynomials g,(x), ..., g,(x) are
called the elementary divisors of B.

Theorem 6.21 thus says that a matrix A4 is similar to a Jordan canonical
form if the ground field k contains all the eigenvalues of 4. In particular, if k
is algebraically closed, then this is always the case.

Canonical Forms; Uniqueness

Our discussion is still incomplete, for we have not yet considered uniqueness;
can a matrix 4 be similar to several rational canonical forms? Can A4 be
similar to several Jordan canonical forms? We have used the module ana-
logue of the basis theorem; we are now going to use the module analogue of
the fundamental theorem.

Definition. If V and W are R-modules, then a function ¢: V — W is an
R-homomorphism if

@0 +v') = ¢(v) + @(v')
and
p(ow) = agp(v)
for allv, v’ € ¥V and a € R; if @ is a bijection, then it is called an R-isomorphism.

Two modules V and W are called R-isomorphic, denoted by V = W, if there
exists an R-isomorphism ¢: V — W.

If R is a field, then an R-homomorphism is an R-linear transformation; if
V and W are abelian groups, then every homomorphism is a Z-homomor-
phism. If R = k[x] and V and W are k[x]-modules, then ¢: V- W is a
k-linear transformation such that

e(f(x)v) = f(x)p(v)
forallv e V and f(x) € k[x].

EXERCISES

6.21. Prove the first isomorphism theorem for modules. (Hint. Since modules are
abelian groups, the reader need check only that the isomorphism in Theorem
2.24 is an R-homomorphism.)

6.22. Every cyclic R-module V = (v) is R-isomorphic to R/ord(v). Conclude that two
cyclic modules are R-isomorphic if and only if they have generators with the
same order ideal.

6.23. If R is a PID and a, b € R are relatively prime, then R/(ab) = R/(a) @ R/().
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Theorem 6.22 (Fundamental Theorem). If R is a PID and V and W are finite
R-modules (i.e., they are finitely generated and every element has finite order),
then V =~ W if and only if either they have the same invariant factors or the
same elementary divisors.

Proof. Translate Corollary 6.14 into the language of modules. &

We continue the analysis of k[x]-modules in order to apply this theorem
to matrices.

Lemma 6.23. Let V and W be vector spaces over a field k, let T: V -V and
S: W — W be linear transformations, and let VT and WS be the corresponding
k[x]-modules. A function ¢: V — W is a k[x]-homomorphism if and only if ¢
is a linear transformation such that ¢(Tv) = Se(v) for allv e V.

Proof. If ¢: VT — WS is a k[x]-homomorphism, then ¢(f(x)v) = f(x)pv for
allv e V and all f(x) e k[x]. In particular, this equation holds for every con-
stant f(x), so that ¢ is a k-linear transformation, and for f(x) = x, so that
@(xv) = x¢v. But xv = Tv and x(¢@v) = S¢v, as desired.

The converse is easy: if equality o(f(x)v) = f(x)pv holds for every ve V
whenever f(x) constant or f(x) = x, then it holds for every polynomial.

Theorem 6.24. If A and B are n x n matrices over a field k, then A and B are
similar if and only if the corresponding k[ x]-modules they determine are k[x]-
isomorphic.

Proof. Construct the modules determined by the matrices: let ¥ be the vector
space of all column vectors of n-tuples of elements in k; define T, S: V — V by
Tv = Av and Sv = Bv. As usual, write V7 to denote V made into a k[x]-
module by xv = T(v) = Av, and write V* to denote V made into a module by
xv = S(v) = Bo.

If A and B are similar, then there is a nonsingular matrix P with PAP™! =
B. Now P defines an invertible linear transformation ¢: ¥V — V by ¢v = Po.
We claim that ¢ is a k[x]-isomorphism. By Lemma 6.23, it suffices to show
that 9T = S¢, and this follows from the given matrix equation PT = SP.

Conversely, assume that there is a k[x]-isomorphism ¢: V7. V5. By
Lemma 6.23, ¢ T = S¢; since ¢ is a bijection, pTep™" = S. If P is the matrix
of ¢ relative to the standard basis of V, this gives PAP™! = B, and so 4 and
B are similar.

Theorem 6.25. Two n x n matrices A and B over a field k are similar if and
only if they have the same invariant factors. Moreover, a matrix is similar to
exactly one rational canonical form.
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Proof. Only necessity needs proof. Since similarity is an equivalence relation,
we may assume that both 4 and B are rational canonical forms. By Theorem
6.24, A and B are similar if and only if VT and V* are k[x]-isomorphic (where
T(v) = Av and S(v) = Bv). Recall that the invariant factors are monic polyno-
mials fi(x) with f;(x)| f2(3)...| f,(x); if VT =} C,, where C,is a cyclic module
with order ideal ( f;(x)), then Theorem 6.22 says that the invariant factors are,
indeed, invariant; that is, they do not change after an isomorphism is applied
to ¥'T. Therefore, VT and V5 have the same invariant factors. But the invari-
ant factors of 4 and of B are just the polynomials determined by the last
columns of their companion matrices, and so 4 and B are equal.

Theorem 6.26. Two n x n matrices A and B over a field k containing their
eigenvalues are similar if and only if they have the same elementary divisors.
Moreover, if a matrix is similar to Jordan canonical forms J and J', then J and
J’ have the same Jordan blocks.

Proof. The proof is essentially the same as that of Theorem 6.25, with com-
panion matrices replaced by Jordan blocks.

Note that the rational canonical form of a matrix A4 is absolutely unique,
whereas the Jordan canonical form is unique only up to a permutation of the
Jordan blocks occurring in it.

This discussion of canonical forms has the disadvantage of not showing
how to compute the invariant factors of any particular matrix, and a Linear
Algebra course should include a discussion of the Swmith canonical form which
provides an algorithm for displaying them; see Cohn (1982). Let 4 be an
n x n matrix over a field k. Using elementary row and column operations
over the ring k[x], one can put the matrix xE — 4 into diagonal form (d, (x),

.., d,(x)), where each d;(x) is a monic polynomial or 0, and d,(x){d,(x)]...
|d,(x). The invariant factors of A turn out to be those d;(x) which are neither
constant nor 0. ‘

There are shorter proofs of Theorems 6.25 and 6.26, involving matrix com-
putations; for example, see Albert (1941).

EXERCISES

6.24. If A is a companion matrix, then its characteristic and minimum polynomials
are equal.

6.25. (i) Give an example of two nonisomorphic finite abelian groups having the
same order and the same minimal exponent.
(ii) Give an example of two complex n x n matrices which have the same char-
acteristic polynomials and the same minimum polynomials, yet which are
not similar.
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6.26. If b and b’ are nonzero elements of a field k, then
a b a b
d
bel o= 57
6.27. Let A and B be n x n matrices with entries in a field k. If k is a subfield of a field
K, then A and B are similar over k if and only if they are similar over K. (Hint.

A rational canonical form for A over k is also a rational canonical form for 4
over K.)

are similar.

6.28 (Jordan Decompositions). Let k be an algebraically closed field.
(i) Every matrix A over k can be written A = D + N, where D is diagonalizable
(i.e., similar to a diagonal matrix), N is nilpotent, and DN = ND. (It may be
shown that D and N are unique.)
(i) Every nonsingular matrix 4 over k can be written A = DU, where D is
diagonalizable, U is unipotent (i.e, U — E is nilpotent), and DU = UD. (It
may be shown that D and U are unique.) (Hint: Define U = E + ND™!)

The Krull-Schmidt Theorem

If a (not necessarily abelian) group is a direct product of subgroups, each of
which cannot be decomposed further, are the factors unique to isomorphism?
The Krull-Schmidt theorem, the affirmative answer for a large class of groups
(which contains all the finite groups), is the main result of this section. This is
another instance in which the name of a theorem does not coincide with its
discoverers. The theorem was first stated by J.M.H. Wedderburn in 1909, but
his proof had an error. The first correct proof for finite groups was given by
R. Remak in 1911, with a simplification by O.J. Schmidt in 1912. The theo-
rem was extended to modules by W. Krull in 1925 and to operator groups by
Schmidt in 1928 (we shall discuss operator groups in the next section).
Let us return to the multiplicative notation for groups.

Definition. An endomorphism of a group G is a homomorphism ¢: G — G.

There are certain endomorphisms of a group G that arise quite naturally
when G is a direct product (see Exercise 2.73).

Definition. If G = H, x --- x H,,, then the maps n;:G — H,, defined by
w;(hy ... h,) = h;, are called projections.

If the inclusion H; <, G is denoted by A;, then the maps A;%; are endomor-
phisms of G. Indeed, they are idempotent: A;n; o A;m; = A;m;.

Definition. An endomorphism ¢ of a group G is normalif p(axa™) = ap(x)a™
for all g, x € G.
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It is easy to see that if G is a direct product, then the maps 4;x; are normal
endomorphisms of G.

Lemma 6.27.

(i) If ¢ and  are normal endomorphisms of a group G, then so is their
composite @ o .
(i) If ¢ is a normal endomorphism of G and if H <1 G, then ¢(H) < G.
(iti) If ¢ is a normal automorphism of a group G, then ¢~ is also normal.

Proof. The proofs are routine calculations.

Here is a new way to combine endomorphisms of a group; unfortunately,
the new function is not always an endomorphism.

Definition. If ¢ and  are endomorphisms of a group G, then ¢ + ¥: G~ G
is the function defined by x - ¢ (x)¥(x).

If G is abelian, then ¢ + ¥ is always an endomorphism. If G = S;, ¢ is
conjugation by (1 2 3),and ¢ is conjugation by (1 3 2), then ¢ + ¥ isnot an
endomorphism of S;.

It is easy to see that if ¢ and  are normal endomorphisms and if ¢ + y is
an endomorphism, then it is normal. The equation (i o g){x)(j o p)(x) = x for
all x € G in Exercise 2.73 may now be written 15 = ig + jp.

Lemma 6.28. Let G = H, x --- x H,, have projections n;: G — H; and inclu-
sions A;: H; =, G. Then the sum of any k distinct 4;%; is a normal endomor-
phism of G. Moreover, the sum of all the A;7; is the identity function on G.

Proof. Note that Amy(h, ... h,) = h. If ¢ =Y ¥_, 4, (we consider the first k
maps for notational convenience), then ¢(h, ...h,) = h;...h; thatis, ¢ = Ax,
where 7 is the projection of G onto the direct factor H; x -+ x H, and A is
the inclusion of H; x -+ x H, into G. It follows that ¢ is a normal endomor-
phism of G and, if k = m, that ¢ = 1.

Definition. A group G is indecomposable if G # 1 and if G = H x K, then
either H=1or K = 1.

We now consider a condition on a group that will ensure that it is a direct
product of indecomposable groups (for there do exist groups without this

property).

Definition. A group G has ACC (ascending chain condition) if every increasing
chain of normal subgroups stops; that is, if

KISKz.SKg,S
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is a chain of normal subgroups of G, then there is an integer ¢ for which
K=Ky =K p, = . . .

A group G has DCC (descending chain condition) if every decreasing chaip
of normal subgroups stops; that is, if

H >H,>2H;>

is a chain of normal subgroups of G, then there is an integer s for which
Hy=Hgy =Hyp ="
A group G has both cham conditions if it has both chain conditions!

Every finite group has both chain conditions. The group Z has ACC byt
not DCC; in Chapter 10, we shall meet a group Z(p®) with DCC but not
ACC; the additive group of rationals @ has neither ACC nor DCC.

Lemma 6.29.

() If H < G and both H and G/H have both chain conditions, then G has both
chain conditions. In particular, if H and K have both chain conditions, then
sodoes H x K.

(ii) If G = H x K and G has both chain conditions, then each of H and K has
both chain conditions.

Proof. () If G, > G, > - is a chain of normal subgroups of G, then H n G, >
HAN G, > -is a chain of normal subgroups of H and HG,/H > HG,/H > -
is a chain of normal subgroups of G/H. By hypothesis, there is an integer ¢
with HnG,= Hn G,,; =+, and there is an integer s with HG,/H =
HG,,/H =---; that is, HG,= HG,,; =" "*. Let | =max{s,t}. By the
Dedekind law (Exercise 2.49), for all i > I,

G,=GHnG; =G, 1HnG;
=GyHNG)=Gy(Hn Gi+1)‘—<— Giis

and so G, = G4, = *--. A similar argument holds for ascending chains.

(i) If G = H x K, then every normal subgroup of H is also a normal
subgroup of G. Therefore, every (ascending or descending) chain of normal
subgroups of H is a chain of normal subgroups of G, hence must stop.

Lemma 6.30. If G has either chain condition, then G is a direct product of a
finite number of indecomposable groups.

Proof. Call a group good if it satisfies the conclusion of this lemma; call it bad
otherwise. An indecomposable group is good and, if both 4 and B are good
groups, then so is 4 x B. Therefore, a bad group G is a direct product, say,
G = U x V, with both U and V proper subgroups, and with U or V bad.
Suppose there is a bad group G. Define H, = G. By induction, for every n,
there are bad subgroups Hy, H,, ..., H, such that each H, is a proper bad
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direct factor of H;_,. There is thus a strictly decreasing chain of normal
subgroups of G
G=Hy>H,>H, >,

if G has DCC, we have reached a contradiction.

Suppose that G has ACC. Since each H; is a direct factor of H;_,, there are
normal subgroups K; with H;_, = H; x K. There is thus an ascending chain
of normal subgroups

Ki <K xK; <K, xK;xKy<-+,

and we reach a contradiction in this case, too. B

Lemma 6.31. Let G have both chain conditions. If ¢ is a normal endomorphism
of G, then @ is an injection if and only if it is a surjection. (Thus, either property
ensures that ¢ is an automorphism.)

Proof. Suppose that ¢ is an injection and that g ¢ ¢(G). We prove, by induc-
tion, that @"(g) ¢ ¢"*!(G). Otherwise, there is an element » € G with ¢"(g) =
p"*1(h), so that @(p” (g)) = @(e"(h)). Since ¢ is an injection, ¢"(g)) =
p"(h), contradicting the inductive hypothesis. There is thus a strictly de-
creasing chain of subgroups

G > 0(G) > *(G) > .

Now ¢ normal implies ¢" is normal; by Lemma 6.27, ¢"(G) <1 G for all n, and
so the DCC is violated. Therefore, ¢ is a surjection.

Assume that ¢ is a surjection. Define K, = ker ¢"; each K, is a normal
subgroup of G because ¢" is a homomorphism (the normality of ¢” is here
irrelevant). There is an ascending chain of normal subgroups

1:K0SK1SK2S"'.

This chain stops because G has ACC; let ¢t be the smallest integer for which
K,=K,,, =K,,, =.Weclaim that t = 0, which will prove the result. If
t > 1, then there is x € K, with x ¢ K,_,; that is, ¢*(x) = 1 and ¢""!(x) # L.
Since ¢ is a surjection, there is g € G with x = ¢(g). Hence, 1 = ¢'(x) =
@'*(g), so that g € K, ,; = K,. Therefore, 1 = ¢'(g) = ¢' " (¢(9)) = 0" (%),
a contradiction. Thus, ¢ is an injection. &

Definiticn. An endomorphism ¢ of G is nilpotent if there is a positive integer
k such that @* = 0, where 0 denotes the endomorphism which sends every
element of G into 1.

Theorem 6.32 (Fitting’s Lemma, 1934). Let G have both chain conditions and
let @ be a normal endomorphism of G. Then G = K x H, where K and H are
each invariant under ¢ (i.e., 9(K) < K and ¢(H) < H), ¢|K is nilpotent, and
@|H is a surjection.
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Proof. Let K, = ker ¢" and let H, = im ¢". As in the proof of Lemma 6.31,
there are two chains of normal subgroups of G:

G=H, >H, =" and I<K; <K,<-

Since G has both chain conditions, each of these chains stops: the H, after ¢
steps, the K, after s steps. Let [ be the larger of ¢ and s, so that H, = H,,, =
H,,=-and K,=K;,, =K,,,=-. Define H=H, and K =Kj; it is
easy to check that both H and K are invariant under ¢.

Let xe H K. Since x € H, there is g € G with x = ¢'(g); since x e K,
@'(x) = 1. Therefore, p?'(g) = ¢'(x) = 1, so that ge K,, = K,. Hence, x =
0'(g)=1l,andso HNK = 1.

If g € G, then ¢'(g) € H, = H,,, so there is y € G with ¢'(g) = ¢*(y). Ap-
plying @' to ge'(y™) gives 1, so that go'(y™') e K, = K. Therefore, g =
[g0'(y)]e'(y)e KH,andso G = K x H.

Now ¢(H) = ¢(H,)) = 9(¢'(G)) = ¢'*(G) = H;.y = H = H,so that p is a
surjection. Finally, if x € K, then ¢'(x) € K n H = 1, and so ¢|K is nilpotent.

Corollary 6.33. If G is an indecomposable group having both chain conditions,
then every normal endomorphism ¢ of G is either nilpotent or an automorphism.

Proof. By Fitting’s lemma, G = K x H with ¢|K nilpotent and ¢|H sur-
jective. Since G is indecomposable, either G = K or G = H. In the first case,
¢ is nilpotent. In the second case, ¢ is surjective and, by Lemma 6.31, ¢ is an
automorphism.

Lemma 6.34. Let G be an indecomposable group with both chain conditions,
and let ¢ and ¢ be normal nilpotent endomorphisms of G. If @ +  is an
endomorphism of G, then it is nilpotent.

Proof. We have already observed that if ¢ +  is an éndomorphism, then it
is normal, and so Corollary 6.33 says that it is either nilpotent or an auto-
morphism. If ¢ + { is an automorphism, then Lemma 6.27 (iii) says that its
inverse y is also normal. For each x € G, x = (¢ + ¥)yx = @y(x)¥y(x), so
that if we define 1 = @y and u = yry, then 15 = A + u. In particular, x™! =
A(x"Y)u(x"!) and, taking inverses, x = p(x)A(x); that is, 1 + p = u + A. The
equation A(A + y) = (A + u)A (which holds because A + u = 1) implies that
Au = pd. If follows that the set of all endomorphisms of G obtained from 4
and p forms an algebraic system® in which the binomial theorem holds: for
every integer m > 0,

=3, (”:)w

)

* This algebraic system (called a semiring) is not a commutative ring because additive inverses
need not exist.
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Nilpotence of ¢ and  implies nilpotence of A = ¢y and u = ¥y (they cannot
be automorphisms because they have nontrivial kernels); there are thus posi-
tive integers r and swith A" = 0 and u* = 0. If m = r + s — 1, then eitheri > r
or m — i > s. It follows that each term A‘y™ ' in the binomial expansion of
(A+ wmis 0:ifi > r, then ' = 0; if m — i > s, then u™ " = 0. Hence, (15)" =
A+ w"=0,and 15 =0, forcing G = 1. This is a contradiction, for every
indecomposable group is nontrivial.

Corollary 6.35. Let G be an indecomposable group having both chain conditions.
If ¢,..., @, is a set of normal nilpotent endomorphisms of G such that every
sum of distinct ¢’s is an endomorphism, then @, + -+ + @, is nilpotent.

Proof. Induction on n.

Theorem 6.36 (Krull-Schmidt). Let G be a group having both chain conditions.

i
G=H x' xH=K,; x--xK,

are two decompositions of G into indecomposable factors, then s = t and there
is a reindexing so that H; =~ K; for all i. Moreover, given any r between 1 and
s, the reindexing may be chosen so that

G=H;, x - xH xK, ; x xK,
Remark. The last conclusion is stronger than saying that the factors are
determined up to isomorphism; one can replace factors of one decomposition
by suitable factors from the other.

Proof. We shall give the proof when r = 1; the reader may complete the proof
for general » by inducton. Given the first decomposition, we must find a
reindexing of the K’s so that H; =~ K; foralliand G = H; x K, x --- x K,.
Let n;: G — H;and A;: H; =, G be the projections and inclusions from the first
decomposition, and-let g;: G — K; and p;: K; = G be the projections and
inclusions from the second decomposition. The maps A;7; and y;0; are normal
endomorphisms of G.

By Lemma 6.28, every partial sum ) y;0; is a normal endomorphism of G.
Hence, every partial sum of

Iy, = mA =n0lgoldy=mo (Z #j%) oldy = Z Ty 070

is a normal endomorphism of H;. Since 1y, = 7,4, is not nilpotent, Lemma
6.29 and Corollary 6.35 give an index j with m; 1;0;4; an automorphism. We
reindex so that 7, 4, 0,4, is an automorphism of H,; let y be its inverse.

We claim that ¢, A,: H, — K is an isomorphism. The definition of y gives
(ymyu1)(6141) = 1y,. To compute the composite in the reverse order, let
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6 = 6,4, 97, 1,: K, = K, and note that 6% = 6:
0o08=0Aynpo0 4 Jympy =6

(the term in bracketsis 1 ). Now 1y =1y o ly =yrm pu00d ymipy 044y =
7y iy 00y Ay; it follows that 6 # 0 (lest 15, = 0). Were 6 nilpotent, then 6% = 6
would force 8 = 0. Therefore, 6 is an automorphism of K, and so 6% = 6
gives = 1 (multiply each side by 67!). It follows that ¢, 4,: H, — K, is an
isomorphism (with inverse ymy u,).

Now o, sends K, x --- x K, into 1 while o, 4, restricts to an isomorphism
on H,. Therefore

H n(K, x - x K)=1

If we define G* = (H, K, x --* x K,)> < G, then
G¥*=H, x K, x - xK,.

If x € G, then x = k, k,...k, where k; € K;. Since =, i, is an isomorphism, the
map B: G — G, defined by x > 7, u,(k,)k, ...k, is an injection with image
G*. By Lemma 6.31, f is a surjection; thatis, G = G* = H; x K, x - x K,.
Finally,

K, x-xK,=2G/H =H, x - x H,

so that the remaining uniqueness assertions follow by induction on max{s, t}.

EXERCISES

6.29. Show that the following groups are indecomposable: Z; Z,.; Q; S,; Dy, Qys
simple groups; nonabelian groups of order p*; A,; the group T of order 12 (see
Theorem 4.24).

6.30. Assuming the Basis Theorem, use the Krull-Schmidt theorem to prove the
Fundamental Theorem of Finite Abelian Groups.

6.31. If G has both chain conditions, then there is no proper subgroup H of G with
G = H, and there is no proper normal subgroup K of G with G/K = G.

6.32. Assume that G has both chain conditions. If there is a group H with G x G =
H x H, then G = H. (Hint. Use Lemma 6.29(ii).)

6.33.° Let G have both chain conditions. If G ~ A x Band G = 4 x C, then B = C.
6.34. Let G be the additive group of Z[x]. Prove that G x Z = G x Z x Z, but that
Z£Zx7Z
Definition. A subgroup H < G is subnormal if there is a normal series
G=2G,2G,>2->H>1

5 R. Hirshon (Amer. Math. Monthly 76 (1969), pp. 1037-1039) proves that if A4 is finite and B and
C are arbitrary groups, then A x B A x C implies B C.
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6.35. (i) Give an example of a subgroup that is not subnormal.
(i) Give an example of a subnormal subgroup that is not a normal subgroup.
(iti) If G has a composition series and if H is subnormal in G, then G has a
composition series one of whose terms is H.
(iv) A group G has a composition series if and only if it has both chain condi-
tions on subnormal subgroups.

Operator Groups

There is a generalization of modules that allows us to extend some of our
earlier theorems in a straightforward way. We present new results having old
proofs.

Definition. Let Q be a set and let G be a group. Then Q is a set of operators
on G and G is an 2-group if there is a function Q x G — G, denoted by
(®, g) — wg, such that

w(gh) = (wg)(wh)

forallweQand g, heG.

Definition. If G and H are Q-groups, then a function ¢: G — H is an Q-map if
@ is a homomorphism such that ¢(wg) = we(g) forallw e Qand g € G.

If G is an Q-group, then a subgroup H < G is an admissible subgroup if
wheHforallweQandheH.

ExaMmpLE 6.3, If Q = ¢, then an Q-group is just a group, every homomor-
phism is an Q-map, and every subgroup is admissible.

ExaMpLE 6.4. If G is an abelian group and Q is a ring, then every Q-module
is an Q-group, every Q-homomorphism is an Q-map, and every submodule is
admissible.

ExaMmpLE 6.5. If Q is the set of all conjugations of a group G, then G is an
Q-group whose admissible subgroups are the normal subgroups. An Q-map
of G to itself is a normal endomorphism. An Q-isomorphism between Q-
groups is called a central isomorphism.

EXAMPLE 6.6. If Q is the set of all automorphisms of a group G, then G is an
Q-group whose admissible subgroups are the characteristic subgroups.

ExampLE 6.7. If Q is the set of all endomorphisms of a group G, then G is an
Q-group whose admissible subgroups are the fully invariant subgroups.

All the elementary results of Chapter 2 (and their proofs!) carry over for
Q-groups. For example, the intersection of admissible subgroups is admissi-
ble and, if H and K are admissible subgroups at least one of which is normal,
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then HK is admissible. If H is a normal admissible subgroup of an Q-group
G, then the quotient group G/H is an Q-group (where one defines w(gH) =
(wg)H). The kernel of an Q-map is an admissible normal subgroup, and the
first, hence the second and third, isomorphism theorems hold, as does the
correspondence theorem. The direct product of Q-groups H and K becomes
an Q-group if one defines w(h, k) = (wh, wk).

Definition. An Q-group G is £2-simple if has no admissible subgroups other
than 1 and G.

An admissible normal subgroup H of an Q-group G is maximal such if and
only if G/H is Q-simple.

If Q is a ring, then an Q-module ¥ with no submodules other than 0 and ¥V
is an Q-simple group. In particular, when Q is a field, a one-dimensional
Q-module is Q-simple. If Q is the set of all conjugations of G, then Q-simple
groups are just simple groups in the usual sense. If Q is the set of all automor-
phisms of a finite group G, then G is Q-simple (or characteristically simple) if
and only if it is a direct product of isomorphic simple groups (Theorem 5.26).

We call attention to three generalizations of results from groups to Q-
groups (the proofs are routine adaptations of the proofs we have given for

groups).

Definition. Let G be an Q-groups. An 2-series for G is a normal series
G=G,>2G,>2=2G,=1

with each G; admissible; an Q-composition series is an Q-series whose factor
groups are Q-simple.

If V is abelian and Q is a ring, then every normal series V =V, >V, >
.-+ > ¥, = 1 in which the ¥; are submodules is an Q-series; it is an Q-composi-
tion series if each V/¥;,, is Q-simple. In particular, if Q is a field, then V is a
vector space and the factors are one-dimensional spaces.

If Q is the set of all conjugations of G, then an Q-series is a normal series
G=Gy=G,="2=G,=1 in which each G; is a normal subgroup of G
(such a normal series is called a chief series or a principal series). If Q is the set
of all automorphisms of G, then an Q-series is a normal series in which each
term is a characteristic subgroup of G. Both the Zassenhaus lemma and the
Schreier refinement theorem carry over for Q-groups; it follows that a gener-
alized Jordan—Hélder the8rem is true.

Theorem 6.37 (Jordan—Hblder). Every two Q-composition series of an Q-group
are equivalent.

One can now prove that if ¥ is a finite-dimensional vector space over a
field k (that is, V is spanned by finitely many vectors), then the size n of a basis
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{vy, ..., v,} depends only on V. For i > 0, define subspaces ¥; of ¥ by ¥, =
{Vit1s--+» Uy, the subspace spanned by {v;4y,...,0,}. Then V=V, >V, >
-+ > V¥, = 01is an Q-composition series for V' (where Q = k) because the fac-
tor spaces are all isomorphic to k, hence are Q-simple. Therefore, the dimen-
sion of V is well defined, for it is the length of an Q-composition series of V.
Here are two more applications. Any two chief composition series of a
group have centrally isomorphic factor groups (Q = conjugations), and any
two characteristic series in which the factor groups are products of isomor-
phic simple groups have isomorphic factor groups (Q2 = automorphisms).

Theorem 6.38 (Fitting’s Lemnma). Let G be an Q-group having both chain
conditions on admissible subgroups, and let ¢ be an Q-endomorphism of G.
Then G = H x K, where H and K are admissible subgroups, @¢|H is nilpotent,
and ¢|K is a surjection.

Here is an application. Let ¥ be a finite-dimensional vector space over a
field k and let T: ¥V — V be a linear transformation. Then ¥V = U @ W, where
U and W are T-invariant, T|U is nilpotent, and T|W is nonsingular, We have
taken Q = k and observed that T|W surjective implies T|W nonsingular. The
matrix interpretation of Fitting’s lemma thus says that every » x n matrix
over a field k is similar to the direct sum of a nilpotent matrix and a non-
singular matrix.

An Q-group G is Q-indecomposable if it is not the direct product of non-
trivial admissible subgroups. ‘

Theorem 6.39 (Krull-Schmidt). Let G be an Q-group having both chain condi-
tions on admissible subgroups. If

G=H, xxH=K xxK,

are two decompositions of G into Q-indecomposable factors, then s =t and
there is a reindexing so that H, =~ K; for all i. Moreover, given any r between 1
and s, the reindexing may be chosen so that G=H; x - x H, x K, X
—ox K,



CHAPTER 7
Extensions and Cohomology

A group G having a normal subgroup K can be “factored” into K and G/K.
The study of extensions involves the inverse question: Given K <1 G and G/K,
to what extent can one recapture G?

The Extension Problem

Definition. If K and Q are groups, then an extension of K by Q is a group G
having a normal subgroup K, =~ K with G/K, =~ Q.

As a mnemonic device, K denotes kernel and Q denotes quotient. We think
of G as a “product” of K and Q.

ExampLE 7.1. Both Z4 and S, are extensions of Z; by Z,. However, Z; is an
extension of Z, by Z,, but Sy is not such an extension (for S; has no normal
subgroup of order 2).

ExaMmPLE 7.2. For any groups K and @, the direct product K x Q is an
extension of K by Q as well as an extension of Q by K.

The extension problem (formulated by O. Holder) is to find all exten-
sions of a given group K by a given group Q. We can better understand the
Jordan—Holder theorem in light of this problem. Let a group G have a com-
position series

G=K,2K,2>K,, 2K, =1
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and corresponding factor groups

KO/Kl = Ql’ AR Kn—Z/Kn-l = Qn—17 Kn—l/Kn = Qn'

Since K, = 1, we have K,_, = Q,, but something more interesting happens
at the next stage; K, _,/K,_; = 0,-, so that K,,_, is an extension of K,, _; by
0,-,- If we could solve the extension problem, then we could recapture K, _,
from K, _, and Q,,; that is, from Q, and Q,_,. Once we have K,,_,, we can
attack K, _; in a similar manner, for X, _3/K,_, = Q,—,. Thus, a solution of
the extension problem would allow us to recapture K,,_5 from Q,, Q, _,, and
Q,_,. Climbing up the composition series to K, = G, we could recapture
G from Q,,..., Q. The group G is thus a “product” of the Q;, and the
Jordan-Holder theorem says that the simple groups Q; in this “factorization”
of G are uniquely determined by G. We could thus survey all finite groups if
we knew all finite simple groups and if we could solve the extension problem.
In particular, we could survey all finite solvable groups if we could solve the
extension problem.

A solution of the extension problem consists of determining from K and Q
all the groups G for which G/K =~ Q. But what does “determining” a group
mean? We gave two answers to this question at the end of Chapter 1 when
we considered “knowing” a group. One answer is that a multiplication table
for a group G can be constructed; a second answer is that the isomorphism
class of G can be characterized. In 1926, O. Schreier determined all extensions
in the first sense (see Theorem 7.34). On the other hand, no solution is known
in the second sense. For example, given K and @, Schreier’s solution does not
allow us to compute the number of nonisomorphic extensions of K by Q
(though it does give an upper bound).

EXERCISES

7.1. If K and Q are finite, then every extension G of K by Q has order |K||Q|. If G has
a normal series with factor groups Q,,, ..., @, then |G| =[] |1Qil-

7.2. (i) Show that 4, is an extension of V by Z,.
(ii) Find all the extensions of Z, by V.

7.3..1f p is prime, every nonabelian group of order p* is an extension of Z, by Z,, x Z,,.
(Hint. Exercise 4.7.)

7.4. Give an example of an extension of K by Q that does not contain a subgroup
isomorphic to Q.

7.5. If (a, b) = 1 and K and Q are abelian groups of orders @ and b, respectively, then
there is only one (to isomorphism) abelian extension of K by Q.

7.6. Which of the following properties, when enjoyed by both K and Q, is also enjoyed
by every extension of K by Q7 (i) finite; (i) p-group; (iii) abelian; (iv) cyclic; (v)
solvable; (vi) nilpotent; (vit) ACC; (viit) DCC; (ix) periodic (every element has finite
order); (x) torsion-free (every element other than 1 has infinite order).
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Automorphism Groups

The coming construction is essential for the discussion of the extension prob-
lem; it is also of intrinsic interest.

Definition. The automorphism group of a group G, denoted by Aut(G), is the
set of all the automorphisms of G under the operation of composition.

It is easy to check that Aut(G) is a group; indeed, it is a subgroup of the
symmetric group Sg.

Definition. An automorphism ¢ of G is inner if it is conjugation by some
element of G; otherwise, it is outer. Denote the set of all inner automorphisms
of G by Inn(G).

Theorem 7.1.

(i) (NJC Lemma). If H < G, then C4(H) < Ng(H) and Ng(H)/Cz(H) can be
imbedded in Aut(H).
(i) Inn(G) < Aut(G) and G/Z(G) = Inn(G).

Proof. (i) If a € G, let y, denote conjugation by a. Define ¢: Ng(H) — Aut(H)
by a — y,|H (note that y,|H € Aut(H) because a € Ng(H)); ¢ is easily seen to
be a homomorphism. The following statements are equivalent: a € ker ¢;
y,/H is the identity on H; aha™ = h for all he H; ae Cz(H). By the first
isomorphism theorem, C4(H) < Ng(H) and Ng(H)/Cx(H) =~ im ¢ < Aut(H).

(i) If H = G, then Ng(G) = G, C4(G) = Z(G), and im ¢ = Inn(G). There-
fore, G/Z(G) = Inn(G) is a special case of the isomorphism just established.

To see that Inn(G) < Aut(G), take y, € Inn(G) and ¢ € Aut(G). Then
©7,97" = y,, € Inn(G), as the reader can check.

Definition. The group Aut(G)/Inn(G) is called the outer automorphism group
of G.

EXAMPLE 7.3. Aut(V) = S; 2 Aut(S;).

The 4-group V consists of 3 involutions and 1, and so every ¢ € Aut(V)
permutes the 3 involutions: if X =V — {1}, then the map ¢ > ¢|X is a
homomorphism Aut(V) — Sy = S;. The reader can painlessly check that this
map is an isomorphism.

The symmetric group S; consists of 3 involutions, 2 elements of order 3,
and the identity, and every ¢ € Aut(S;) must permute the involutions: if Y =
{(1 2),(1 3),(2 3)}, then the map ¢ +— ¢|Y is a homomorphism Aut(S,) -
Sy = S;; this map is easily seen to be an isomorphism.
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We conclude that nonisomorphic groups can have isomorphic automor-
phism groups.

ExampLE 7.4. If G is an elementary abelian group of order p”, then Aut(G) =
GL(®n, p).

This follows from Exercise 2.78: G is a vector space over Z, and every
automorphism is a nonsingular linear transformation.

ExAMPLE 7.5. Aut(Z) =~ Z,.

Let G = {x) be infinite cyclic. If ¢ € Aut(G), then ¢(x) must be a generator
of G. Since the only generators of G are x and x™*, there are only two auto-
morphisms of G, and so Aut(Z) = Aut(G) = Z,. Thus, an infinite group can
have a finite automorphism group.

EXAMPLE 7.6. Aut(G) = 1 if and only if |G| < 2.

It is clear that |G| < 2 implies Aut(G) = 1. Conversely, assume that Aut(G)
= 1.If ae G, then y, = 1 if and only if a € Z(G); it follows that G is abelian.
The function a — a™ is now an automorphism of G, so that G has exponent
2; that is, G is a vector space over Z,. If |G| > 2, then dim G > 2 and there
exists a nonsingular linear transformation ¢: G — G other than 1.

Recall that if R is a ring, then U(R) denotes its group of units:
U(R) = {r e R: there is s € R with sr = 1 = rs}.

Lemma 7.2. If G is a cyclic group of order n, then Aut(G) =~ U(Z,).

Proof. Let G = (a). If ¢ € Aut(G), then ¢(a) = a* for some k; moreover, a*
must be a generator of G, so that (k, n) = 1, by Exercise 2.20, and [k] € U(Z,).
It is routine to show that ®: Aut(G) — U(Z,), defined by ®(¢p) = [k], is an
isomorphism. -

Theorem 7.3.

(i) Aut(Z,) = 1; Aut(Z,) = Z,; if m = 3, then Aut(Zym) 2 Zy X Zym-2.
(ii) If p is an odd prime, then Aut(Z,») = Z,, where | = (p — 1)p™ ™.
(iii) If n = p{'...p}, where the p; are distinct primes and the e; > 0, then Aut(Z,)
= [; Aut(Z,), where q; = p;'.

Proof. ) U(Z,) = 1and U(Z,) = {[1], [—1]} = Z,. If m > 3, then the result
is Theorem 5.44.

(i) This is Theorem 6.7.

(iii) If a ring R = R, X -*- x R, is a direct product of rings (addition and
multiplication are coordinatewise), then it is easy to see that U(R) s the direct
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product of groups U(R,) x *-- x U(R,); moreover, the primary decomposi-
tion of the cyclic group Z, = Z, x :*- x Z, is also a decomposition of Z, as
a direct product of rings.

Theorem 7.1 suggests the following class of groups:

Definition. A group G is complete if it is centerless and every automorphism
of G is inner.

It follows from Theorem 7.1(ii) that Aut(G) = G for every complete group.
We are now going to see that almost every symmetric group is complete.

Lemma 7.4. An automorphism ¢ of S, preserves transpositions (¢(t) is a trans-
position whenever 7 is) if and only if ¢ is inner.

Proof. If ¢ is inner, then it preserves the cycle structure of every permutation,
by Theorem 3.5.

We prove, by induction on t > 2, that there exist conjugations y,, ..., 7,
such that y;*...y5 e fixes (1 2),...,(1 ©). If = € S,, we will denote ¢(n) by n®
in this proof. By hypothesis, (1 2)? = (i j) for some i, j; define y, to be conju-
gation by (1 i)(2 j) (if i = 1 or j = 2, then interpret (1 i) or (2 j) as the iden-
tity). By Lemma 3.4, the quick way of computing conjugates in S,, we see that
(1 2)? =(1 2)"2, and so y; o fixes (1 2).

Let y,, ..., 7, be given by the inductive hypothesis, so that = y;*...y7'p
fixes (1 2),..., (1 t).Since y preserves transpositions, (1 t + 1)¥ = (I k). Now
(1 2) and (! k) cannot be disjoint, lest [(1 2)(1 ¢t + 1)]¥ =(1 2)¥(1 t + 1)V =
(1 2)(I k) have order 2, while (1 2)(1 ¢ + 1) has order 3. Thus, (1 ¢t + 1)¥ =
A kor(lt+1)W=Q2Fk.Ifk<tthen(l t+1)»e{( 2),...,(1 t), and
hence it is fixed by y; this contradicts i being injective, for either (1 t + 1)¥
=(1 k=1 kYor(1 t+1)=@2 k) =2 k)¥. Hence, k > t + 1. Define y,,
to be conjugation by (k ¢t + 1). Now y,,, fixes(1 2),...,(1 tyand (1 £ + 1)
=(1 t+ 1)¥ so that y;}, -~ 7 e fixes (1 2),...,(1 t + 1) and the induction
is complete. It follows that y;*---y3;1¢ fixes (1 2),...,(1 n). But these trans-
positions generate S,, by Exercise 2.9(i), and so y;!...y;1¢ is the identity.
Therefore, ¢ =y, 7y, € Inn(S,).

Theorem 7.5. If n # 2 or n 5 6, then S, is complete.
Remark. S, =~ Z, is not complete because it has a center; we shall see in

Theorem 7.9 that S is not complete.

Proof. Let T, denote the conjugacy class in S, consisting of all products of k
disjoint transpositions. By Exercise 1.16, a permutation in S, is an involution
if and only if it lies in some T,. It follows that if 6 € Aut(S,), then 6(T;) = T,
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for some k. We shall show that if n 6, then |T;| # | T;| for k # 1. Assuming
this, then 6(T;) = T, and Lemma 7.4 completes the proof.
Now |T;| = n(n — 1)/2. To count T;, observe first that there are

Inn—Dxin—-2n—-3) x - xim—-2k+2)(n —2k +1)

k-tuples of disjoint transpositions. Since disjoint transpositions commute and
there are k! orderings obtained from any k-tuple, we have

|T,| = n(n— 1)(n — 2)--(n — 2k + 1)/kI2~.

The question whether | T;| = | T;| leads to the question whether there is some
k > 1 such that

() (n—2)(n—3)-(n— 2k + 1) = kl2¥™",

Since the right side of (*) is positive, we must have n > 2k. Therefore, for
fixed n,
left side > (2k — 2)(2k — 3)---(2k — 2k + 1) = 2k — 2)\.

An easy induction shows that if k > 4, then (2k — 2)! > k!2¥1, and so (x) can
hold only if k = 2 or k = 3. When k = 2, the right side is 4, and it easy to see
that equality never holds; we may assume, therefore, that k = 3. Since n > 2k,
we must have n > 6. If n > 6, then the left side of (*) > 5 x 4 x 3 x 2 =120,
while the right side is 24. We have shown that if n # 6, then | T ] # | T;| for all
k > 1, as desired.

Corollary 7.6. If 0 is an outer automorphism of Se, and if © € Sg is a transposi-
tion, then 0(z) is a product of three disjoint transpositions.

Proof. If n = 6, then we saw in the proof of the theorem that () does not hold
if k ¢ 3. (When k = 3, both sides of () equal 24.)

Corollary 7.7. If n # 2 or n # 6, then Aut(S,) = S,.
Proof. If G is complete, then Aut(G) = G. B

We now show that Sg is a genuine exception. Recall that a subgroup K <
Sy 1s transitive if, for every pair x, y € X, there exists o € K with g(x) = y. In
Theorem 3.14, we saw that if H < G, then the family X of all left cosets of H
is @ G-set (where p,: gH +— agH for each a € G); indeed, X is a transitive
G-set: given gH and g'H, then p,(gH) = g'H, where a = g’g™*.

Lemma 7.8, There exists a transitive subgroup K < S of order 120 which
contains no transpositions.

Proof. If o is a 5-cycle, then P = {g) is a Sylow S-subgroup of Ss. The Sylow
theorem says that if r is the number of conjugates of P, thenr = 1 mod 5 and
r is a divisor of 120; it follows easily that r = 6. The representation of S5 on
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X, the set of all left cosets of N = Ny (P), is a homomorphism p: S5 — Sy =
S¢. Now X is a transitive Ss-set, by Exercise 4.11, and so |ker p| < |S;|/r =
|S5|/6, by Exercise 3.44(iii). Since the only normal subgroups of S are S, A5,
and 1, it follows that ker p = 1 and p is an injection. Therefore, im p = S is
a transitive subgroup of Sy of order 120.

For notational convenience, let us write K < S, instead of im p < Sy.
Now K contains an element « of order 5 which must be a 5-cycle; say, a =
(1 2 3 4 5).If K contains a transposition (i j), then transitivity of K provides
B e K with B(j)=6, and so B(i j)B~* =(Bi Bj) =(I 6) for some I # 6 (of
course, | = Bi). Conjugating (I 6) € K by the powers of « shows that K con-
tains (16), (2 6), (3 6), (4 6), and (5 6). But these transpositions generate Sg,
by Exercise 2.9(i), and this contradicts K (= Ss) being a proper subgroup of
Se-

The “obvious” copy of S5 in Sy consists of all the permutations fixing 6;
plainly, it is not transitive, and it does contain transpositions.

Theorem 7.9 (Holder, 1895). There exists an outer automorphism of Sg.

Proof. Let K be a transitive subgroup of Sg of order 120, and let Y be the
family of its left cosets: ¥ = {a, K, ..., agK}. If 8: Sg — Sy is the representa-
tion of S¢ on the left cosets of K, then ker § < K is a normal subgroup of Sg.
But A, is the only proper normal subgroup of Sg, so that ker # = 1 and 8 is
an injection. Since S is finite, @ must be a bijection, and so 8 € Aut(S), for
Sy = S¢. Were 0 inner, then it would preserve the cycle structure of every
permutation in Sg. In particular, 8, defined by ,): ;K +— (1 2)o;K for
all 4, is a transposition, and hence 0 fixes «;K for four different i. But if 6, ,
fixes even one left coset, say ;K = (1 2)oyK, then o;'(1 2)e; is a transposi-
tion in K. This contradiction shows that 0 is an outer automorphism. M

Theorem 7.10. Aut(Sg)/Inn(Sg) = Z,, and so |Aut(Sg)| = 1440.

Proof. Let T, be the class of all transpositions in Sg, and let Ty be the class of
all products of 3 disjoint transpositions. If  and y are outer automorphisms
of Sg, then both interchange T; and Tj, by Corollary 7.6, and so 8~ *y(T;) =
T,. Therefore, 67 € Inn(Sg), by Lemma 7.4, and Aut(S¢)/Inn(Ss) has
order 2.

This last theorem shows that there is essentially only one outer auto-
morphism 8 of Sg; given an outer automorphism 6, then every other such
has the form 0 for some inner automorphism . It follows that Sq has exactly
720 outer automorphisms, for they comprise the other coset of Inn(Sg) in
Aut(S).
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Definition. A syntheme' is a product of 3 disjoint transpositions. A pentad is
a family of 5 synthemes, no two of which have a common transposition.

If two synthemes have a common transposition, say, (a b)(c d)(e f) and
(a b)(c e)(d f), then they commute. It is easy to see that the converse holds:
two commuting synthemes share a transposition.

Lemma 7.11. Sg contains exactly 6 pentads. They are:
(12)(34)(56), (13)(25)(46), (14)(26)(35), (15)(24)(36), (16)(23)(45);
(12)(34)(56), (13)(26)(45), (14)(25)(36), (15)(23)(46), (16)(24)(35);
(12)(35)(46), (13)(24)(56), (14)(25)(36), (15)(26)(34), (16)(23)(45);
(12)(35)(46), (13)(26)(45), (14)(23)(56), (15)(24)(36), (16)(25)(34);
(12)(36)(45), (13)(24)(56), (14)(26)(35), (15)(23)(46), (16)(25)(34);
(12)(36)(45), (13)(25)(46), (14)(23)(56), (15)(26)(34), (16)(24)(35).

Proof. There age exactly 15 synthemes, and each lies in at most two pentads.
There are thus at most 6 pentads, for 2 x 15 = 30 = 6 x 5; there are exactly
6 pentads, for they are displayed above.

Theorem 7.12. If {0,,..., 05} is a pentad in some ordering, then there is a
unique outer automorphism 0 of Sg with 6: (1 i)+ o; for i =2,3,4, 5, 6. More-
over, every outer automorphism of Sg has this form.

Proof. Let X = {(1 2),(1 3),(1 4),(1 5),(1 6)}. If 0 is an outer automor-
phism of Sg, then Corollary 7.6 shows that each 8((1 i)) is a syntheme. Since
(1 i) and (1 j) do not commute for i # j, it follows that 8((1 i)) and 6((1 j))
do not commute; hence, 0(X) is a pentad. Let us count the number of possible
functions from X to pentads arising from outer automorphisms. Given an
outer automorphism 8, there are 6 choices of pentad for 8(X); given such a
pentad P, there are 5! = 120 bijections X — P. Hence, there are at most 720
bijections from X to pentads which can possibly arise as restrictions of outer
automorphisms. But there are exactly 720 outer automorphisms, by Theo-
rem 7.10, and no two of them can restrict to the same bijection because X
generates Sg. The statements of the theorem follow.

Since every element in S is a product of transpositions, the information in
the theorem allows one to evaluate 6(f3) for every ff € Se.

Corollary 7.13. There is an outer automorphism of Sg which has order 2.

! A syntheme is a partition of a set X into subsets P; with | P;| = | P;| for all i, j (this term is due to
J.J. Sylvester).
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Proof. Define? € Aut(Sg) by
(1 2) (1 5)(2 3)4 6),
1 3)—(1 492 63 3),
(149132 46 6),
(1 5—(1 2)(3 6)4 5),
(16— (1 62 53 4).

A routine but long calcuation shows that i? = 1.
Here is another source of (possibly infinite) complete groups.
Theorem 7.14. If G is a simple nonabelian group, then Aut(G) is complete.

Proof. Let I = Inn(G) < Aut(G) = A. Now Z(G) = 1, because G is simple and
nonabelian, and so Theorem 7.1 gives I = G. Now Z(4) < C,(I) = {p € 4:
@y, = 7,0 for all g € G}. We claim that C,(I) = 1; it will then follow that A
is centerless. If @y, = 7,0 for all g € G, then y, = ¢y,0~" = y,,,. Therefore,
o(g)g™* € Z(G)=1forallge G,and so ¢ = 1.

It remains to show that every o € Aut(A) is inner. Now o(I) <t 4, because
I< A, and so Ino(l) <o(l). But ¢(I) @ I =~ G is simple, so that either
Ino()=1orIno(l)= o). Since both I and o(I) are normal, [, o(I)] <
I~ a(I). In the first case, we have [I, o(I)] = 1; that is, o(I) < C,(I) = 1, and
this contradicts o(I) = I. Hence, I n o(I) = o(I), and so o(I) < I. This inclu-
sion holds for every ¢ € Aut(A4); in particular, 6~!(I) < I, and so ¢(J) = I for
every o € Aut(A). If g € G, then y, € I; there is thus a(g) € G with

a(yg) = %z(g) .

The reader may check easily that the function a: G — G is a bijection. We
now show that o is an automorphism of G; that is, « € A. If g, h € G, then
0(¥y7) = 0(Vgn) = Vaeen- On the other hand, a(y,74) = 0 (1) 0 (7)) = Vag)Varry =
Yaigrathys hence Ot(gh) = oc(g)a(h)

We claim that ¢ = I',, conjugation by «. To this end, define 1 = ¢ o I’}
Observe, for all h € G, that

t(yn) = oL ' (7a) = (@7 py2)
= O'(Ya-l(h))
= Yaar) = Vi
2In Lam, T.Y., and Leep, D.B., Combinatorial structure on the automorphism group of S,
Expo. Math. (1993), it is shown that the order of any outer automorphism ¢ of S is either 2, 4, 8,

or 10, and they show how to determine the order of ¢ when it is given, as in Theorem 7.12, in
terms of its values on (1 i),for2 <i< 6.
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Thus, 1 fixes everything in I. If f € A, then for every g € G,
By Bt = t(By, A7) (because fy,f* € I and t fixes I)
= 1(B)y,=(B)™" (because 7 fixes I).

Hence ()~ € C,(I) = 1, and 7(B) = B. Therefore, 1= 1,6 =T, and 4 is
complete. [

It follows, for every nonabelian simple group G, that Aut(G) =~ Aut(Aut(G)).
There is a beautiful theorem of Wielandt (1939) with a similar conclusion. We
know, by Theorem 7.1, that every centerless group G can be imbedded in
Aut(G). Moreover, Aut(G) is also centerless, and so it can be imbedded in its
automorphism group Aut(Aut(G)). This process may thus be iterated to give
the automorphism tower of G:

G < Aut(G) < Aut(Aut(G)) < ---.

Wielandt proved, for every finite centerless group G, that this tower is con-
stant from some point on. Since the last term of an automorphism tower is a
complete group, it follows that every finite centerless group can be imbedded
is a complete group. Of course, there is an easier proof of a much stronger
fact: Cayley’s theorem imbeds a finite group in some S, with n > 6, and
Theorem 7.5 applies to show that S, is complete.

The automorphism tower of an infinite centerless group need not stop after
a finite number of steps, but a transfinite automorphism tower (indexed by
ordinals) can be defined (taking unions at limit ordinals). S. Thomas (1985)
proved, for every centerless group, that this automorphism tower eventually
stops. As in the finite case, the last term of an automorphism tower is com-
plete, and so every centerless group can be imbedded in a complete group. It
is shown, in Exercise 11.56, that every group can be imbedded in a centerless
group, and so it follows that every group can be imbedded in a complete
group.

Theorem 7.15. If K <1 G and K is complete, then K is a direct factor of G; that
is, there is a normal subgroup Q of G with G = K x Q.

Proof. Define Q = C4(K) = {ge G: gk = kg for all ke K}. Now KnQ <
Z(K)=1,and so K nQ = 1. To see that G = KQ, take g € G. Now y,(K) =
K, because K <1 G, and so y,/K € Aut(K) = Inn(K). There is thus k € K with
gxg™* = kxk™ for all x € K. Hence k™'g € [,k C4(x) = C4(K) = Q, and so
g = k(k™g) € KQ. Finally, Q < G, for gQg™! = k(k™'g)Q(k *g) k™ = kQk™*
(because k™'g e Q), and kQk™ = Q (because every element of Q commutes
with k). Therefore, G = K x Q. H

The converse of Theorem 7.15 is true, and we introduce a construction in
order to prove it. Recall that ifa € K, then L,: K — K denotes left translation
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by a; that is, L (x) = ax for all a € K. As in the Cayley theorem (Theorem
3.12), K is isomorphic to K' = {L,: a € K}, which is a subgroup of S. Simi-
larly, if R,: K — K denotes right translation by g, that is, R,: x + xa™*, then
K" = {R,:ae K} is also a subgroup of Si isomorphic to K.

Definition. The holomorph of a group K, denoted by Hol(K), is the subgroup
of Sy generated by K' and Aut(K).

Notice, for all a € K, that R, = L7, so that K" < Hol(K); indeed, it is
easy to see that Hol(K) = <K", Aut(K)>.

Lemma 7.16. Let K be a group.

(i) K' < Hol(K), K' Aut(K) = Hol(K), and K' ~ Aut(K) = 1.
(i) Hol(K)/K' =~ Aut(K).
(iii) CHol(K)(Kl) =K.

Proof. (i) It is easy to see that L,¢~' = L,,, and that it lies in K' for every
ae K and ¢ € Aut(K); since Hol(K) = (K, Aut(K)», it follows that K' <
Hol(K) and that Hol(K) = K' Aut(K). If a e K, then L,(1) = a; therefore,
L, € Aut(K) if and only if a = 1; that is, K' n Aut(K) = 1.

(ii) Hol(K)/K' = K! Aut(K)/K' = Aut(K)/(K' n Aut(K)) = Aut(K).

(iii) If @, b, x € K, then L,R,(x) = a(xb™) and R,L,(x) = (ax)b™*, so that
associativity gives K" < Cyy(K'). For the reverse inclusion, assume that
n € Hol(K) satisfies #L, = L, for all a e K. Now 5 = L,¢ for some be K
and ¢ € Aut(K). If x € K, then nL,(x) = L,oL,(x) = be(a)e(x) and L,n(x) =
L,L,p(x) = abo(x). Hence, bp(a) = ab for all a € K; that is, ¢ = y,-.. It fol-
lows that #(x) = L,(x) = b(b~*xb) = xb, and so n = R,-, € K", as desired.

5]

Here is the converse of Theorem 7.15.

Theovem 7.17. If a group K is a direct factor whenever it is (isomorphic to) a
normal subgroup of a group, then K is complete.

Proof. We identify K with the subgroup K' < Hol(K). Since K is normal, the
hypothesis gives a subgroup B with Hol(K) = K' x B. Now B < Cy,(K") =
K, because every element of B commutes with each element of K'. It follows
that if ¢ € Aut(K) < Hol(K), then ¢ = L,R, for some a, b € K. Hence, ¢(x)
=axb™ for all x € K. But now axyb™' = ¢ (x)¢(y) = axb™'ayb™, so that
1 = b™'a; therefore, ¢ = y, € Inn(K).

Since Hol(K) = K' x B and B < K" < Hol(K), Exercise 7.16 below shows
that K"=B x (K"nK").If o e K'n K", then ¢ = L, = R,, for a, b € K. For
all ce K, L,(c) = Ry(c) gives ac = ¢cb™;if ¢ = 1, then a = b™*, from which it
follows that a € Z(K). Therefore, K" n K' = Z(K")and K =~ B x Z(K). If 1 #
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@ € Aut(Z(K)), then it is easy to see that ¢: B x Z(K)— B x Z(K), defined
by (b, z) — (b, @z), is an automorphism of K; ¢ must be outer, for conjugation
by (B, {)e B x Z(K) =~ K sends (b, z) into (B, {)(b, 2)(B*, (1) = (Bb7Y, 2).
But K has no outer automorphisms, so that Aut(Z(K)) = 1 and, by Example
7.6, |Z(K)| < 2. If Z(K) =~ Z,, then it is isomorphic to a normal subgroup N
of Z, which is not a direct factor. But K is isomorphic to the normal sub-
group B x N of B x Z, which is not a direct factor, contradicting the
hypothesis. Therefore, Z(K) = 1 and K is complete.

The holomorph allows one to extend commutator notation. Recall that
the commutator [a, x] = axa™*x™' = x°x™!, Now let G be a group and let
A = Aut(G). We may regard G and A as subgroups of Hol(G) (by identifying
G with G'). For x € G and « € 4, define

(o x] = a(x)x7?,

and define
[4,G] =<{[a, x]: € A, x e G).

The next lemma will be used to give examples of nilpotent groups arising
naturally.

Lemma 7.18. Let G and A be subgroups of a group H,and let G = G, > G, >
-+- be a series of normal subgroups of G such that [A, G;] < G,,, for all i.
Define A, = A and

A;j={ne A: [0, G] < Gy for all i}.
Then [A;, A1 < Ay, for all j and 1, and [3(A), G.] < Gy for all i and j.

Proof. The definition of A; gives [4;, G;] < G;,; for all i. It follows that
[4;, A, Gi] = [4;, [41, G1] <[4, Gi4:] < Gjyy4;. Similarly, [4, 4;, G,] <
G;i14i- Now Gjipy; < (G, A}, because both G and A normalize each G,.
Since [A4;, A;, G1[A}, A4;, G;] < Gj4,4;, the three subgroups lemma (Exercise
5.48 (i) gives [G;, [4;, A,1] = [[4;, A;], G/] < G;4y4;. Therefore, [4;, 4,] <
Aj41+; for all i, by definition of A;.,. In particular, for i = 0, we have [4;, 4;]
< Ajy;. It follows that 4 = A, > A, > -+ is a central series for 4, and so
Exercise 5.38(ii) gives y;(4) < A; for all j. Therefore, [y;(4), G] < [4;, G] <
G+, as desired.

Definition. Let G = G, > G; > - > G, = 1 be a series of normal subgroups
of a group G. An automorphism « € Aut(G) stabilizes this series if a(G;x) =
G;x for all i and all x € G,_,. The stabilizer A of this series is the subgroup

A = {o € Aut(G): « stabilizes the series} < Aut(G).
Thus, « stabilizes a normal series G = G, > G, = *** > G, = 1 if and only

if «(G;) < G; and the induced map G;/G;, = G;/G;, defined by G;;,;x +—
G, ., a(x), is the identity map for each i.
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Theorem 7.19. The stabilizer A of a series of normal subgroups G = Gy = G,
>+ > G, = 1is anilpotent group of class <r — 1.

Proof. Regard both G and A as subgroups of Hol(G). For all i, if x € G, and
o € A, then a(x) = g;,,x for some g;,; € G;,,,and so a(x)x™* € G;,,. In com-
mutator notation, [4, G] < G,,,. By Lemma 7.18, [y{(4), G;] < G, for all i
and j. In particular, for i = 0 and j = r, we have [y,(4), G] < G, = 1; that is,
for all x € G and « € y,(A), we have a(x)x™* = 1. Therefore, y,(4) = 1 and A is
nilpotent of class < r — 1.

For example, let {v,, ..., v,} be a basis of a vector space V over a field k,
and define V,_, = {v;, v;44, ..., v,). Hence,

V=Vy>V,> >V =0

is a series of normal subgroups of the (additive abelian) group V. If 4 <
GL(V) is the group of automorphisms stabilizing this series, then A is a
nilpotent group of class <n — 1. If each a € A " GL(V) is regarded as a
matrix (relative to the given basis), then it is easy to see that A " GL(V) =
UT(n, k), the group of all unitriangular matrices. Therefore, UT(n, k) is also
nilpotent of class < n — 1. Compare this with Exercise 5.44.

If G=Gy,>G,>"=G,=11is any (not necessarily normal) series of a
group G (i.e,, G; need not be a normal subgroup of G;_,), then P. Hall (1958)
proved that the stabilizer of this series is always nilpotent of class < 4r(r — 1).

EXERCISES

7.7. If G is a finite nonabelian p-group, then p?||Aut(G)|.
7.8. If G is a finite abelian group, then Aut(G) is abelian if and only if G is cyclic.

7.9. (i) If G is a finite abelian group with |G| > 2, then Aut(G) has even order.
(i) If G is not abelian, then Aut(G) is not cyclic. (Hint. Show that Inn(G) is not
cyclic.)
(iti) There is no finite group G with Aut(G) cyclic of odd order > 1.

7.10. Show that |GL(2, p)| = (p*> — 1)(p® — p). (Hint. How many ordered bases are in
a two-dimensional vector space over Z,7)

7.11. If G is a finite group and Aut(G) acts transitively on G* = G — {1}, then G isan
elementary abelian group. .

7.12. If H and K are finite groups whose orders are relatively prime, then Aut(H x K)
~ Aut(H) x Aut(X). Show that this may fail if (| H|, |K|) > 1. (Hint. Take H =
Z,=K) ,

7.13. Prove that Aut(Q) = S,. (Hint. Inn(Q) = V and it equals its own centralizer in
Aut(Q); use Theorem 7.1 with G = Aut(Q) and H = Inn(Q).)

7.14. (i) Show that Hol(Z,) = Z,, Hol(Z,) = S5, Hol(Z,) = Dy, and Hol(Z,) = D, .
(ii) If P is a Sylow 5-subgroup of Ss, then Hol(Zs) = N; (P). (Hint. See Exercise
4.20.)
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7.15. Prove that Aut(Dg) = Dy, but that Aut(D,¢) % Dys.
7.16. Is Aut(4,) = S,? Is Aut(dg) = Sg?
717. G =B x Kand B< L <G, then L =B x (L nK).
7.18. If H < G, prove that
{p € Aut(G): ¢ fixes H pointwise and ¢(g)H = gH for all g € G}
is an abelian subgroup of Aut(G).

7.19. (i) Prove that the alternating groups A, are never complete.
(i) Show that if G is a complete group with G 5 G, then G is not the commuta-
tor subgroup of any group containing it. Conclude that S,, for n 3 2, 6, is
never a commutator subgroup.

7.20. If G is a complete group, then Hol(G) = G' x G". Conclude, for n # 2 and n # 6,
that Hol(S,) = S, x S,.

7.21. Prove that every automorphism of a group G is the restriction of an inner
automorphism of Hol(G).

7.22. Let G be a group and let f € S;. Prove that f € Hol(G) if and only if f(xy™'z) =
SIS f(z) forall x, y, z € G.

Semidirect Products

Definition. Let K be a (not necessarily normal) subgroup of a group G. Then
a subgroup Q < G is a complement of Kin Gif KN Q =1and KQ = G.

A subgroup K of a group G need not have a complement and, even if it
does, a complement need not be unique. In S;, for example, every subgroup
of order 2 serves as a complement to 45. On the other hand, if they exist,
complements are unique to isomorphism, for

G/K=KQ/K=0/[(KnQ)=0Q/1=Q.

A group G is the direct product of two normal subgroups K and @ if
KnQ=1and KQ=0G.

Definition. A group G is a semidirect product of K by Q, denoted by G =
K x Q, if K <« G and K has a complement Q, ~ Q. One also says that G
splits over K.

We do not assume that a complement Q, is a normal subgroup; indeed, if
Q, is a normal subgroup, then G is the direct product K x Q,.

In what follows, we denote elements of K by letters a, b, ¢ in the first half
of the alphabet, and we denote elements of Q by letters x, y, z at the end of
the alphabet.
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Before we give examples of semidirect products, let us give several different
descriptions of them.

Lemma 7.20. If K is a normal subgroup of a group G, then the following
statements are equivalent:

() G is a semidirect product of K by G/K (i.e., K has a complement in G);

(ii) there is a subgroup Q < G so that every element g € G has a unique expres-
sion g = ax, where a€ K and x € Q;

(i) there exists a homomorphism s: G/K — G with vs = 1, where v: G —
G/K is the natural map; and

(iv) there exists a homomorphism n: G — G with ker n = K and n(x) = x for
all x € im 7 (such a map = is called a retraction of G and im = is called a
retract of G).

Proof. (i) => (il) Let Q be a complement of K in G. Let g € G. Since G = KQ,
there exist a € K and x € Q with g = ax. If g = by is a second such factoriza-
tion, then xy ' =abe KnQ = 1.Hence b = aand y = x.

(ii) = (ili) Each g € G has a unique expression g = ax, where a € K and
x e Q. If Kg € G/K, then Kg = Kax = Kx; define s: G/K — G by s(Kg) = x.
‘The routine verification that s is a well defined homomorphism with vs =
1k is left as an exercise for the reader.

(ili) = (iv) Define n: G - G by = = sv. If x = n(g), then n(x) = n(n(g)) =
svsv(g) = sv(g) = mn(g) = x (because vs = lgx). If a € K, then n(a) = sv(a) =
1, for K = ker v. For the reverse inclusion, assume that 1 = n(g) = sv(g) =
s(Kg). Now s is an injection, by set theory, so that Kg = 1 and so g € K.

({iv) = (i) Define Q = im =n. If g € Q, then n(g) = g; if g € K, then n(g) = 1;
a fortiori, if ge K~ Q, then g = 1. If g € G, then gn(g™') e K = ker 7, for
n(gn(g™')) = 1. Since =(g) € Q, we have g = [gn(g7)]n(g) € KQ. Therefore,
Q is a complement of K in G and G is a semidirect product of K by Q.

ExaMpLE 7.7. S, is a semidirect product of 4, by Z,.
Take Q = {(1 2)) to be a complement of 4,,.
ExamrLE 7.8. D,, is a semidirect product of Z,, by Z,.

If D,, = <a, x), where (a) = Z, and (x> = Z,, then {a) is normal and
{x) is a complement of {a).

ExAMPLE 7.9. For any group K, Hol(K) is a semidirect product of K' by
Aut(K).

This is contained in Lemma 7.16.
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ExaMpLE 7.10. Let G be a solvable group of order mn, where (m, n) = 1. If G
contains a normal subgroup of order m, then G is a semidirect product of K
by a subgroup Q of order n.

This follows from P. Hall’s theorem (Theorem 5.28).
ExaMPLE 7.11. Aut(Sg) is a semidirect product of S¢ by Z,.
This follows from P. Hall’s theorem (Theorem 5.28).

ExaMpLE 7.12. If G = (a) is cyclic of order 4 and K = {a?), then G is not a
semidirect product of K by G/K.

Since normality is automatic in an abelian group, an abelian group G is a
semidirect product if and only if it is a direct product. But G is not a direct
product. Indeed, it is easy to see that no primary cyclic group is a semidirect
product.

ExaMPLE 7.13. Both S, and Z¢ are semidirect products of Z; by Z,.

Example 7.13 is a bit jarring at first, for it says, in contrast to direct prod-
uct, that a semidirect product of K by Q is not determined to isomorphism
by the two subgroups. When we reflect on this, however, we see that a semi-
direct product should depend on “how” K is normal in G.

Lemma 7.21. If G is a semidirect product of K by Q, then there is a homomor-

phism 0: Q — Aut(K), defined by 6, = v,|K; that is, for all x e Q and a € K,
0.(a) = xax™*.

Moreover, for all x,y, 1€ Q and a e K,

0,(a)=a and 0.(0,(a)) = 0,,(a).
Proof. Normality of K gives y,(K) = K for all x € Q. The rest is routine.
Remark. Tt follows that K is a group with operators Q.

The object of our study is to recapture G from K and Q. It is now clear that
G also involves a homomorphism 6: Q — Aut(X).

Definition. Let Q and K be groups, and let 8: Q — Aut(K) be a homomor-

phism. A semidirect product G of K by Q realizes 6 if, forall x e Qand a e K,
0.(a) = xax™*.

In this language, Lemma 7.21 says that every semidirect product G of K by
Q determines some 6 which it realizes. Intuitively, “realizing 6” is a way of
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describing how K is normal in G. For example, if 0 is the trivial map, that is,
0. = 14 for every x € G, then a = 0,(a) = xax™* for every ae K, and so K <

Ce(Q):

Definition. Given groups Q and K and a homomorphism 60: Q — Aut(X),
define G = K x,Q to be the set of all ordered pairs (a, x) € K x Q equipped
with the operation

(a, X) (b’ y) = (aex(b)a xJ’)

Theorem 7.22. Given groups Q and K and a homomorphism 0: Q — Aut(K),
theit G = K x4 Q is a semidirect product of K by Q that realizes 0.

Proof. We first prove that G is a group. Multiplication is associative:

[(a, x)(b, y)1(c, 2) (@, x)[(b, y)(c, 2)]
= (aex(b)’ xy)(c, Z) = (aa x)(bgy(c)a yZ)
= (ab,(b)0,,(c), xyz), = (a0,(b6,(c)), xyz).

The formulas in Lemma 7.21 (K is a group with operators Q) show that the
final entries in each column are equal.
The identity element of G is (1, 1), for

(1, D(a, x) = (16,(a), 1x) = (a, x);
the inverse of (a, x) is ((6,-1(a))~*, x™), for
((O1(@) 7, x7) (@, %) = (O (@) Oy-1(a), x7'x) = (1, 1)

We have shown that G is a group.

Define a function n: G — Q by (a, x) — x. Since the only “twist” occurs in
the first coordinate, it is routine to check that = is a surjective homomorphism
and that ker = = {(a, 1): a € K}; of course, ker 7 is a normal subgroup of G.
We identify K with ker 7 via the isomorphism a — (a, 1). It is also easy to
check that {(1, x): x € Q} is a subgroup of G isomorphic to Q (via x > (1, x)),
and we identify Q with this subgroup. Another easy calculation shows that
KQ = Gand K n Q = 1, so that G is a semidirect product of K by Q.

Finally, G does realize 9:

(1, x)(a, D(1, )7 = (0.(a), ¥)(1, x™*) = (6x(a), 1).

Since K x4 Q realizes 0, that is, 6,(b) = xbx™*, there can be no confusion if
we write b* = xbx " instead of 8,(b). The operation in K x4, Q will henceforth
be written

(a’ x)(ba y) = (abx: XY)

Theorem 7.23. If G is a semidirect product of K by Q, then there exists 8: Q —
Aut(K) with G = K x,0.
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Proof. Define 0,(a) = xax™ (as in Lemma 7.21). By Lemma 7.20 (ii), each
g € G has a unique expression g = ax with a € K and x € Q. Since multiplica-
tion in G satisfies

(ax)(by) = a(xbx™*)xy = ab*xy,
it is easy to see that the map K x,Q — G, defined by (a, x) — ax, is an
isomorphism.

‘We now illustrate how this construction can be used.

ExAMpLE 7.14. The group T of order 12 (see Theorem 4.24) is a semidirect
product of Z4 by Z,.

Let Z, = {a),let Z, = {x), and define 8: Z, — Aut(Z3) = Z, by sending a
into the generator. In more detail,

a*=a*> and (a?)*=aq,

while x2 acts on (a) as the identity automorphism: a** = a.
The group G = Z; x,Z, has order 12. If s = (a2, x?) and t = (1, x), then
the reader may check that

=1 and t*=5s%=(st)?

which are the relations in T,

ExXAMPLE 7.15. Let p be a prime, let K = {a, b)> be an elementary abelian
group of order p%, and let Q = (x» be a cyclic group of order p. Define
0: 0 —» Aut(K) = GL(2, p) by '

Lo
i1

Thus, a® = ab and b* = b. The commutator a*a! is seen to be b. Therefore,
G = K %,Q is a group of order p> with G = (a, b, x), and these generators
satisfy relations

a? =b?=x7=1, b =[x, a], and [b,a]l =1=[b, x].

If p is odd, then we have the nonabelian group of order p* and exponent p;
if p = 2, then G = Dy (as the reader may check). In Example 7.8, we saw that
Dg =~ Z, x4Z,; we have just seen here that Dy = V X, Z,. A group may thus
have distinct factorizations into a semidirect product.

ExAMPLE 7.16. Let p be an odd prime, let K = {a)> be cyclic of order p?, and
let @ = (x> be cyclic of order p. By Theorem 7.3, Aut(K) = 7,y = Z,_, X
7 ; indeed, by Theorem 6.9, the cyclic summand Z, = <a), where a(a) = a'*e,
If one defines 8: Q — Aut(K) by 8, = «, then the group G = K %, Q has order
p?, generators x, a, and relations x” = 1, a”* = 1, and xax™! = a* = a**?. We
have constructed the second nonabelian group of order p3 (see Exercise 4.32).
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EXERCISES
7.23. Show that the group Q, of generalized quaternions is not a semidirect product.

7.24. If |G| = mn, where (m, n) = 1, and if K < G has order m, then a subgroup @ < G
is a complement of K if and only if |Q| = n.

7.25. If k is a field, then GL(n, k) is a semidirect product of SL(n, k) by k*, where
k* =k — {0}.

7.26. 1f M is the group of all motions of R", then M is a semidirect product of Tr(n, R)
by O(n, R).

7.27. If K and Q are solvable, then K x4 Q is also solvable.

7.28. Show that K x,Q is the direct product K x Q if and only if 6: @ — Aut(K) is
trivial (that is, 0, = 1 for all x € Q).

7.29. 1f p and q are distinct primes, construct all semidirect products of Z, by Z,, and
compare your results to Theorem 4.20. (The condition gJp — 1 in that theorem
should now be more understandable.)

Wreath Products

Let D and Q be groups, let Q be a finite Q-set, and let {D,,: w € Q} be a family
of isomorphic copies of D indexed by Q.

Definition. Let D and Q be groups, let Q be a finite Q-set, and let K =
[loeq Do, where D, = D for all w € Q. Then the wreath product of D by Q,
denoted by D 2 Q (or by D wr Q), is the semidirect product of K by Q, where
Q acts on K by q-(d,) = (d,,) for g€ Q and (d,) € [ [,cq D,. The normal
subgroup K of D 2 Q is called the base of the wreath product.

The notation D 2 Q is deficient, for it does not display the Q-set Q; perhaps
one should write D 2, Q.

If D is finite, then |K| = |D|¥; if Q is also finite, then [D 2 Q| = |K x Q| =
IK||Q] = [D[]Q].

If A is a D-set, then A x Q can be made into a (D  Q)-set. Given d € D and
w € Q, define a permutation d* of A x Q as follows: for each (4, w') e A x @,
set
di, o) if o = o,
A o) if o #o.

It is easy to see that d*d.¥ = (dd’)%, and so D}, defined by
D¥ = {d¥: de D},

is a subgroup of S, , o; indeed, for each w, the map D — D¥, given by d +> d¥*,
is an isomorphism.

d¥(A, o) = {
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For each q € Q, define a permutation g* of A x Q by
q*(4, ) = (4, qo'),
and define
0*={q*:qeQ}.

It is easy to see that Q* is a subgroup of S, . and that the map Q — Q*, given
by g — g%, is an isomorphism.

Theorem 7.24. Given groups D and Q, a finite Q-set Q, and a D-set A, then the
wreath product D ¢ Q is isomorphic to the subgroup

W = <Q*7 Dg we Q> < SAxny
and hence A x Q is a (D 2 Q)-set.

Proof. We show first that K* = (| J,.q D is the direct product [[,q D¥.
It is easy to see that D¥ centralizes D} for all ' # w, and so D} < K* for
every w. Each d* e D fixes all (4, 0’} e A x Q with &' # w, while each ele-
ment of {|J, ., D> fixes all (4, w) for all A€ A. It follows that if d¥ e
DX {Juw s DED, thend} = 1.

If g € Q and w € Q, then a routine computation gives

grdsg* = d,

for each w e Q. Hence g*K*q*™* < K* for each g€ Q, so that K* < W
(because W = (K*, 0*>); it follows that W = K*Q*. To see that W is a
semidirect product of K* by 0%, it suffices to show that K* n 0* = 1. Now
d*(4, @) = (d4, @) or (4, ®'); in either case, d¥ fixes the second coordinate. If
q* € Q*, then g*(4, w') = (4, gqo’) and g* fixes the first coordinate. Therefore,
any g € K* n Q* fixes every (4, ') and hence is the identity.

It is now a simple matter to check that the map D?:Q — W, given by
d,)g+— (d})q*, is an isomorphism.

Call the subgroup W of S,,q the permutation version of D ¢ Q; when we
wish to view D 2 Q acting on A x €, then we will think of it as W.

Theorem 7.25. Let D and Q be groups, let Q be a finite Q-set, let A be a D-set,
and let W < S, . q be the permutation version of D 1 Q.

@) If Q is a transitive Q-set and A is a transitive D-set, then A x Q is a
transitive (D 2 Q)-set.

(i) If weQ, then its stabilizer Q,, acts on Q — {w}. If (L, w)e A x Q and
D(%) < D is the stabilizer of A, then the stabilizer W,; ,, of (4, ) is isomor-
phic to D(A) x (D Q,,), and [W: W ,1=[D:D(A)]I[0:Q,]

Proof. (i) Let (4, w), (¥, »') € A x Q. Since D acts transitively, there is d € D
with dA = A'; since Q acts transitively, there is g € Q with gw = «'. The reader
may now check that ¢*d}% (1, w) = (¥, @').
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(i) Each element of W has the form (d¥)g* and (d})g*(4, w)=
(1o ee 42) (4 qw) = d¥,(4, qw) = (dyuA, gw). It follows that (d})g* fixes
(4, w) if and only if g fixes w and d,, fixes 1. Let D¥(1) = {d¥. d € D(4)}. Now
D¥(4) is disjoint from (][, .., DX, Q%> and centralizes it: if g* € Q¥, then
g*d¥q*™! = d¥, = d}); hence

Wu.w)=<DZ§(/1L [ D, 2‘,>

' #w

= D3(4) x < I1 s, Q;‘i>

w'#Fw
~ D(A) x (D2Q,).
It follows that | W, ,,| = |D(4)||D|'*"*|Q,| and
[W: Ws,0] = IDIQIIDA) DI Q,| = [D: D(H][Q:Q,] &

Theorem 7.26. Wreath product is associative: if both Q and A are finite, if T
is a group, and if Ais a T-set, then T2 (D1 Q)= (T D)2 Q.

Proof. The permutation versions of both T2 (D 2 Q) and (T 2 D)2 Q are sub-
groups of Sy« 5 xq; We claim that they coincide. The group T 2 (D 2 Q) is gener-
ated by all t§; ,,, (for t € Tand (4, w) e A x Q) and all f* (for f € D 2 Q). Note
that t; ) (0, X, @) > (t8', X', ') if (', ') = (4, @), and fixes it otherwise;
also, f*: (&, A, @) — (&', f(X, ). Specializing f* to d} and to g*, we see
that T 2(D 2 Q) is generated by all tf; ,,, 4%, and g**, where d}: (¢, ¥, ') —
(¢, dX, w')if ' = w, and fixes it otherwise, and g**: (¢, A, @) > (&', 4, q').

A similar analysis of (T'2 D)2 Q shows that it is generated by all g**, d%,
and (t,)*, where (t,)*: (0, A, ') — (t8', X, ') if o = w and ' = 4, and fixes
it otherwise. Since (t,)% = t# ., the two wreath products coincide.

The best way to understand wreath products is by considering graphs.

Definition. A graph T" is a nonempty set V, called vertices, together with an
adjacency relation on V, denoted by v ~ u, that is symmetric (v ~ u implies
u ~ v for all u, v € V) and irreflexive (v £ v for all v € V),

One can draw pictures of finite graphs; regard the vertices as points and
join each adjacent pair of vertices with a line segment or edge. Notice that
our graphs are nondirected; that is, one can traverse an edge in either direc-
tion; moreover, there are no “loops™; every edge has two distinct endpoints.
An automorphism of a graph I with vertices ¥ is a bijection ¢: V — ¥ such
that i, v € V are adjacent if and only if ¢(u) and ¢(v) are adjacent. It is plain
that the set of all automorphisms of a graph I', denoted by Aut(I'), is a group
under composition.

For example, consider the following graph I":
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a, b4

Figure 7.1

If ¢ € Aut(T'), then ¢ fixes vertex O (it is the only vertex adjacent to 5 vertices),
@ permutes the “inner ring” Q = {1, 2, 3, 4, 5}, and, for each i, either ¢(a;) =
a,; and @(b;) = b,; or ¢(a;) = b, and (b;) = a,;. It is now easy to see that
[Aut(T')] = 2° x 5!. Regard S5 as acting on Q and regard S, as acting on
A = {a, b}. Identify the outer ring of all vertices {a,, b;: i € Q} with A x Q by
writing a; as (a, i} and b, as (b, i). If g € S5, then g permutes the inner ring:
q*(a;) = a, and g*(b;) = by; that is, g*(a, i) = (a, gi) and g*(b, i) = (b, qi). If
de S, and i € Q, then df*(a, i) = (da, i), d¥(b, i) = (db, i), while d¥ fixes (a, J)
and (b, j) forj # i. For example, if d interchanges a and b, then d#(a;) = b; and
d¥(b;) = a;, while d}* fixes a; and b; for all j # i. Thus, both ¢* and 4;* corre-
spond to automorphisms of I'. In Exercise 7.30 below, you will show that
Aut(T) = S, 2 S;.

A special case of the wreath product construction has Q = Q regarded as a
Q-set acting on itself by left multiplication. In this case, we write W = D 2, Q,
and we call W the regular wreath product. Thus, the base is the direct product
of |Q| copies of D, indexed by the elements of Q, and g € Q sends a |Q|-tuple
d,) € [Teq D. into (d,,). Note that |D 2, Q] = |D|'9|Q|. It is easy to see that
the formation of regular wreath products is not associative when all groups
are finite, for | T2, (D 2, Q)| # |(T 3, D)2, Q|.

If Q is an infinite set and {D,,: € Q} is a family of groups, then there are
two direct product constructions. The first, sometimes called the complete
direct product, consists of all “vectors” (d,,) in the cartesian product [ [,.q D,
with “coordinatewise” multiplication: (d,)(d.,} = (d,d.,). The second, called
the restricted direct product, is the subgroup of the first consisting of all those
(d,,) with only finitely many coordinates d,, # 1. Both versions coincide when
the index set Q is finite. The wreath product using the complete direct prod-
uct is called the complete wreath product; the wreath product using the re-
stricted direct product is called the restricted wreath product. We shall see
a use for the complete wreath product at the end of the next section. The
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first example of a (necessarily infinite) centerless p-group was given by D.H.
McLain (1954); it is a restricted wreath product of a group of prime order p
by Z(p™) (the latter group is discussed in Chapter 10; it is the multiplicative
group of all pth power roots of unity). McLain’s example is thus a p-group
that is not nilpotent. .

What is the order of a Sylow p-subgroup of the symmetric group S,? If
k < m are positive integers, define t = [m/k], the greatest integer in m/k. Thus,
k, 2k, ..., tk < m, while (t + 1)k > m, so that t is the number of integers i <m
which are divisible by k. If p is a prime, what is the largest power u of p
dividing m!? Think of m! as factored: m! =2 x 3 x 4 x -*» X m. By our ini-
tial remark, [m/p] factors of m! are divisible by p, [m/p?] factors are divisible
by p?, etc. Hence, if m! = p*m’, where (m’, p) = 1, then

u=[m/p] + [m/p*] + [m/p®] + -~

For example, if p = 2, then [m/2] is the number of even integers < m, [m/4]
is the number of multiples of 4 < m, and so forth. (Notice, for example, that
8 = 27 is counted three times by the formula for p.) In particular, if m = p*,
then the largest power of p dividing p"! is

p=pm) =p AP T A p

and so the order of a Sylow p-subgroup of the symmetric group S,. is p*®.

Theorem 7.27 (Kaloujnine, 1948). If p is a prime, then a Sylow p-subgroup of
S, is an iterated regular wreath product W, = Z , 2, Z , 2, -* 3, Z,, of n copies of

Z,, where W,y = W, Z,,.

Proof. The proof is by induction on n, the case n = 1 holding because a Sylow
p-subgroup of S, has order p. Assume that n > 1. Let A be a set with p”
elements and let D be a Sylow p-subgroup of S,; thus, A is a D-set. Let
Q={0,1,...,p— 1}, and let Q = {(g) be a cyclic group of order p acting on
Q by gi =i+ 1 mod p. The permutation version of the wreath product P =
D, Z,is a subgroup of Sy, q; of course, |A x Q| = p"*'. By induction, D is a
wreath product of n copies of 7, and so P is a wreath product of n + 1 copies
of Z,. To see that P is a Sylow p-subgroup, it suffices to see that its order is
p*®*1 where pu(n + 1) =p" +p" ' + - + p + 1. Now |D| = p*™, so that
|Pl=1|Dv, Z,,l = (p”"’))pp = pmt(nHl = pu(n+1)‘

Theorem 7.27 may be used to compute the Sylow p-subgroup of S,, for any
m (not necessarily a power of p). First write m in base p:

m=a,+ a,p+ a,p*>+--a,p, where 0<ag<p-—1

Partition X = {1, 2, ..., m} into a, singletons, a, p-subsets, a, p*>-subsets, ...,
and a, p'-subsets. On each of these p’-subsets Y, construct a Sylow p-sub-
group of Sy. Since disjoint permutations commute, the direct product of all
these Sylow subgroups is a subgroup of Sy of order p", where N = a, +
a i(2) + -+ + au(t) (recall that u(i)=p" > 4+p' 24+ p+1). But p¥is
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the highest power of p dividing m!, for
m=ag+a,p+ap*+-+ap,
and so
[m/p] + [m/p*1+ [m/p*] + - =(a, + azp + azp” + - + ap'™)
+(ay + asp+ ap® + -+ ap'T?)
+(@+ap+-+ap )+
=a,+a(p+)+ta(p*P+p+ 1)+
=a, +au2)+ -+ aut)=N.

Thus, the direct product has the right order, and so it must be a Sylow

p-subgroup of Sy = S,,.

For example, let us compute a Sylow 2-subgroup of S¢ (this has been done
by hand in Exercise 4.15 (ii)). In base 2, we have 6 =0 x 1 + 1 x 2+ 1 x 4.
A Sylow 2-subgroup of S, is Z,; a Sylow 2-subgroup of S, is Z,27Z,. We
conclude that a Sylow 2-subgroup P of S is Z, x (Z, 1 Z,). By Exercise 7.31

below, Z, ¢ Z, = Dg, so that P = Z, x Dy.

EXERCISES

7.30. Prove that Aut(I') = S, ¢ S5, where T is the graph in Figure 7.1. (Hint. Every
@ € Aut(I') is completely determined by its behavior on the outer ring consisting

of all vertices of the form q; or b;.)
7.31. Prove that Z, 1 Z, = Dg. (Hint. Z, 2 Z, has several involutions.)
7.32. If both D and Q are solvable, then D 2 Q is solvable.

7.33. Definition. Let D be a (multiplicative) group. A monomial matrix p over D is a
permutation matrix P whose nonzero entries have been replaced by elements of
D; we say that P is the support of p. If Q is a group of n x n permutation

matrices, then
M(D, Q) = {all monomial matrices u over D with support in Q}.

(i) Prove that M(D, Q) is a group under matrix multiplication.
(i) Prove that the subgroup Q = M(1, Q) < M(D, Q).

(iii) Prove that the diagonal M(D, 1) is isomorphic to the direct product

D x -+- x D (n times).

(iv) Prove that M(D, 1) <« M(D, Q) and that M(D, Q) is a semidirect product of

M(D, 1) by M(1, Q).
(v) Prove that M(D, Q) = D Q.

7.34, (i) Fix a group Q and a finite Q-set Q. For all groups D and A4 and all homomor-
phisms f: D — A, there is a homomorphism M(f): M(D, Q) — M(A4, Q) such
that M(1p) = 1.0 and, whenever g: 4 — B, then M(gf) = M(g)M(f).
(Hint. Just replace every nonzero entry x of a monomial matrix over D by
f(x).) (In categorical language, this exercise shows that wreath product is a

functor.)
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(i1) If D is abelian, show that determinant d: M(D, Q) — D is a (well defined)
homomorphism.

7.35. If (@, x) e D 2 Q (so that a e K = [] D,,), then
(@, x)" = (aa*a**...a™"", x".

7.36, Let X = B, u*+- U B,, be a partition of a set X in which each B, has k elements.
If
G = {g e Sx: for each i, there is j with g(B;) = B;},

then G =~ Sk 2 Sm.

Factor Sets

Since there are nonsimple groups that are not semidirect products, our sur-
vey of extensions is still incomplete. Notice the kind of survey we already
have: if we know Q, K, and 0, then we know the semidirect product K x,Q
in the sense that we can write a multiplication table for it (its elements are
ordered pairs and we know how to multiply any two of them).

In discussing general extensions G of K by Q, it is convenient to use the
additive notation for G and its subgroup K (this is one of the rare instances
in which one uses additive notation for a nonabelian group). For example, if
k € K and g € G, we shall write the conjugate of k bygasg + k — g.

Definition. If K < G, then a (right) transversal of K in G (or a complete set of
right coset representatives) is a subset T of G consisting of one element from
each right coset of K in G.

If T is a right transversal, then G is the disjoint union G = | J,.r K + t.
Thus, every element g € G has a unique factorization g = k + ¢t for k € K and
t € T. There is a similar definition of left transversal; of course, these two
notions coincide when K is normal.

If G is a semidirect product and Q is a complement of K, then Q is a
transversal of K in G.

Definition. If n: G — Q is surjective, then a lifting of x € Q is an element
I(x) e G with n(l(x)) = x.

If one chooses a lifting I(x) for each x € Q, then the set of all such is a
transversal of ker . In this case, the function I: Q — G is also called a right
transversal (thus, both [ and its image I(Q) are called right transversals).

Theorem 7.28. Let G be an extension of K by Q, and let I: Q — G be a transver-
sal.
If K is abelian, then there is a homomorphism 0: Q — Aut(K) with

0.(a) = I(x) + a — I{x)
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for every ae K. Moreover, if 1,:Q — G is another transversal, then
Ix)+a—lx)=1,(x)+a—1,(x) forallae K and x € Q.

Proof. Since K <1 G, the restriction y,|K is an automorphism of K for all
g € G, where 7, is conjugation by g. The function u: G — Aut(K), given by
g — v,|K, is easily seen to be a homomorphism; moreover, K < ker y, for K
being abelian implies that each conjugation by a € K is the identity. There-
fore, u induces a homomorphism u,: G/K — Aut(K), namely, Kg — u(g).

The first isomorphism theorem says more than Q =~ G/K; it gives an ex-
plicit isomorphism A: @ - G/K:if I: @ — G is a transversal, then i(x) = K +
I(x). If 1;: Q — G is another transversal, then I(x) — I,(x) € K, so that K + I(x)
= K + I, (x) for every x e Q. It follows that A does not depend on the choice
of transversal. Let 8: Q — Aut(K) be the composite: § = u, 4. If x € Q, then
0, = nuA(x) = pu (K + 1(x)) = p(l(x)) € Aut(K); therefore, if a € K,

0,(a) = p((x))(@) = I(x) + a — 1(x)
does not depend on the choice of lifting I(x). [

There is a version of Theorem 7.28 that provides a homomorphism 6 when
K is not assumed to be abelian (in this case, 8: Q — Aut(K)/Inn(K)), but this
more general situation is rather complicated. Thus, we shall assume that K is
abelian for the rest of this chapter.

A homomorphism 8: @ — Aut(K) makes K into a Q-set, where the action
is given by xa = 0,(a). (For semidirect products, we denoted 8,(a) by a*; since
we are now writing K additively, however, the notation xa is more appropri-
ate.) The following formulas are valid for all x, y, 1 e Q and a, b € K:

x(a + b) = xa + xb,
(xy)a = x(ya),

la = a.

Definition. Call an ordered triple (Q, K, 8) data if K is an abelian group, Q is
a group, and 8: Q — Aut(K) is a homomorphism. We say that a group G
realizes this data if G is an extension of K by Q and, for every transversal
. Q- G,

xa = 0.(a) =Il{x) + a — I(x)

forallxeQ andae K.

Using these terms, Theorem 7.28 says that when K is abelian, every exten-
sion G of K by Q determines a homomorphism 8: @ — Aut(K), and G realizes
the data. The intuitive meaning of 8 is that it describes how K is a normal
subgroup of G. For example, if the abelian group K is a subgroup of the
center Z(G), then 6 is the trivial homomorphism with 6, = 1 for all x e Q (for
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then a = xa = I(x) + a — I(x), and a commutes with all I(x), hence with all
g = b + I(x) for b € K). The extension problem is now posed more precisely
as follows: find all the extensions G which realize given data (Q, K, 6). Our
aim is to write a multiplication table (rather, an addition table!) for all such G.

Let n: G — Q be a surjective homomorphism with kernel K, and choose a
transversal I: Q - G with I(1) = 0. Once this transversal has been chosen,
every element g € G has a unique expression of the form

g=a+ l(x), aekK, xeQ,

(after all, I(x) is a representative of a coset of K in G, and G is the disjoint
union of these cosets). There is a formula: for all x, y € Q,

(1 Ix) +1(y) = f(x, ) + I(xy)  forsome f(x,y)eK,

because both I(x) + I(y) and I(xy) represent the same coset of K.

Definition. If n: G — Q is a surjective homomorphism with kernel K, and if
I: Q — G is a transversal with I(1) = 0, then the function f: Q@ x Q — K, de-
fined by (1) above, is called a factor set (or cocycle). (Of course, the factor set
S depends on the transversal 1)

Consider the special case of a semidirect product G. Theorem 7.23 shows
that G = K x40, so that we may assume that G consists of all ordered pairs
(a, x) € K x Q and that multiplication is given by

(@, x)(b, y) = (ab™, xy).
In additive notation, this becomes
(a, x) + (b, y) = (a + xb, x).

If I: Q - G is the transversal defined by I(x) = (0, x), then [ is a homomor-
phism—I(xy) = I(x) + I(y)—and so the factor set determined by this [ is identi-
cally zero. Thus, one may think of a factor set as a “measure” of G’s deviation
from being a semidirect product, for it describes the obstruction to the trans-
versal [ being a homomorphism.

Theorem 7.29. Let n: G — Q be a surjective homomorphism with kernel K, let
I: Q > G be a transversal with (1) =0, and let f: Q x Q@ — K be the corre-
sponding factor set. Then:

() forallx,yeQ,
fL,y)=0=f(x,1)

(i) the cocycle identity holds for every x, y,z € Q:
JG9) + fxy, 2) = xf(y, 2) + f(x, y2).
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Proof. The definition of f gives I(x) + I(y) = f(x, ) + l(xy). In particular,
IO + Iy) = f(1, y) + I(y); since we are assuming that I{(1) =0, we have
f({, y) = 0. A similar calculation shows that f(x, 1) = 0. The cocycle identity
follows from associativity:

D) + 1)1 + 1) = £(x, 3) + £ (53 2) + L(ey2)
on the other hand,
1x) + () + 12)] = xf (3, 2) + U(xy) + 1z2) by (D)
=xf(y, 2) + f(xy, 2) + Uxyz).
The cocycle identity follows.

A more interesting result is that the converse of Theorem 7.29 is true when
K is abelian.

Theorem 7.30. Given data (Q, K, 0), a function f: Q x Q — K is a factor set if
and only if it satisfies the cocycle identity

xf(y,z)—f(xy,z)+f(x,yz)—f(x,y)=0

as well as f(1,y) =0 = f(x, 1) for all x, y,z € Q. More precisely, there is an
extension G realizing the data and a transversal I: Q — G such that f is the
corresponding factor set.

Proof. Necessity is Theorem 7.29.-To prove sufficiency, let G be the set of all
ordered pairs (g, x) € K x Q equipped with the operation

(@ x) + (b, y) = (@ + xb + f(x, ¥), x)

(note that if f is identically O, then this is the semidirect product K x, Q).
The proof that G is a group is similar to the proof of Theorem 7.22. The
cocycle identity is needed to prove associativity; the identity is (0, 1); inverses
are given by
=@, x) = (=x"a— x"f(x, x71), x7).

" Define n: G — Q by (g, x) — x. It is easy to see that 7 is a surjective homo-
morphism with kernel {(a, 1): k € K}. If we identify K with ker = via a —
(a, 1), then K <1 G and G is an extension of K by Q.

Does G realize the data? We must show, for every transversal I: Q — G,
that xa = I(x) + a — I(x) for all x € Q and a € K. Now we must have /(x) =
(b, x) for some b € K. Therefore,

Ix) + a—I(x)=(b,x) + (a, 1) — (b, x)
=0+ xa,x)+ (—x7'b — x7Hf(x, x7), x7)
= (b4 xa+x[—x7b — x7f(x, x™H] + fx, x71), 1).
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Since K is abelian, the last term simplifies to (xa, 1). As any element of K, we
identify xa with (xa, 1), and so G does realize the data.

Finally, define a transversal I: Q — K by I(x) = (0, x) for all x € Q. The
factor set F corresponding to this transversal satisfies F(x, y) = I(x) + I(y) —
I(xy). But a straightforward calculation shows that F(x, y) = (f(x, y), 1), and
so f is a factor set, as desired.

Notation. Denote the extension G constructed in the proof of Theorem 7.30
by Gj; it realizes (Q, K, ) and it has f as a factor set (arising from the
transversal [(x) = (0, x)).

Definition. Z*(Q, K, 0) is the set of all factor sets f: @ x @ —» K.

Theorem 7.30 shows that Z?(Q, K, 6) is an abelian group under pointwise
addition: 1 + g: (x, ¥) = f(x, y) + g(x, y). If f and g are factor sets, then so is
f + g (for f + g also satisfies the cocycle identity and vanishes on (1, y) and
(x, 1)). If G, and G, are the extensions constructed from them, then G,,, is
also an extension; it follows that there is an abelian group structure on the
family of all extensions realizing the data (Q, K, 8) whose identity element is
the semidirect product (which is Gg)! This group of all extensions is extrava-
gantly large, however, because the same extension occurs many times. After
all, take a fixed extension G realizing the data, and choose two different
transversals, say, [ and I’. Each transversal gives a factor set:

Ix) +1(y) = f(x, y) + I(xy),
)+ 1 (y) = f'(x, p) + I'(xy)

Now the factor sets f and f' are distinct, but both of them have arisen from
the same extension.

Lemma 7.31. Let G be an extension realizing (Q, K, 0), and let 1 and I’ be
transversals with (1) = 0 = I'(1) giving rise to factor sets f and f’, respectively.
Then there is a function h: Q — K with h(1) = O such that

f106 y) = fx, y) = xh(y) — h{xy) + h(x)

forallx,yeQ.

Proof. For each x € Q, both I(x) and I'(x) are representatives of the same coset
of K in G; there is thus an element h(x) € K with

I'(x) = h(x) + I(x).

Since I'(1) = 0 = I(1), we have h(1) = 0. The main formula is derived as
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follows.
I'(x) + I'(y) = [h(x) + 1()] + [h(y) + 1(y)]
= h(x) + xh(y) + I(x) + I(y) (G realizes the data)
= h(x) + xh(y) + f(x, y) + l(xy)
= h(x) + xh(y) + f(x, y) — h(xy) + I'(xy).

Therefore, f'(x, y) = h(x) + xh(y) + f(x, y) — h(xy). The desired formula fol-
lows because each term lies in the abelian group K.

Definition. Given data (Q, K, 0), a coboundary is a function g: Q x Q — K for
which there exists h: Q — K with k(1) = 0 such that

g(x, y) = xh(y) — h(xy) + h(x).
The set of all coboundaries is denoted by B%(Q, K, 0).

It is easy to check that B*(Q, K, ) is a subgroup of Z%(Q, K, 0); that is,
every coboundary g satisfies the cocycle identity and g(x, 1) = 0 = g(1, x) for
all x e Q. Moreover, Lemma 7.31 says that factor sets f and f’ arising from
different transversals of the same extension satisfy f' ~ f € B*(Q, K, 8); that
is, they lie in the same coset of B%(Q, K, 6) in Z*(Q, K, 0). We have been led
to the following group and equivalence relation.

Definition. Given data (Q, K, ), then
- H¥Q, K, 0) = Z*(Q, K, 0)/BXQ, K, 0);

it is called the second cohomology group of the data.

Definition. Two extensions G and G’ realizing data (Q, K, 0) are equivalent if
there are factor sets f of G and f’ of G’ with f* — f € B%(Q, K, 6); that is, the
factor sets determine the same element of H%(Q, K, 6).

Here is a characterization of equivalence in terms of the extensions.
A diagram of groups and homomorphisms commutes if, for each ordered
pair of groups G and H in the diagram, all composites of arrows from G to H

are equal. For example,
A
s J \
B

N C
g
commutes if and only if h = gf.
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Theorem 7.32. Two extensions G and G’ realizing data (Q, K, 0) are equivalent
if and only if there exists an isomorphism y making the following diagram
commute:

G
/1\
i | n
0 —— K ':y Q — 1,
i | T’
\L/
Gl

where i and i’ are injective, n and 7' are surjective, im i = ker m, and im i’ =
ker 7'.

Remark. A homomorphism y making the diagram commute is necessarily an
isomorphism.

Proof. Assume that G and G’ are equivalent. There are thus factor sets f,
Q0 x Q- K, arising from liftings I I', respectively, and a function
h: Q » K with k(1) = 0 such that

@ f'%,3) = fx, y) = xh(y) — h(xy) + h(x)

for all x, y e Q. Each element of G has a unique expression of the form
a + I{(x), where a € K and x € Q, and addition is given by

[a+1x)]+[b+1()]=a+xb+ f(x,y) + Ixy);
there is a similar description of addition in G'. Define y: G — G’ by
Ya + 1(x) = a+ h(x) + I'(x).

Since /(1) = 0, we have y(a) = y(@a + I(1)) =a + h(1) + I'(l) = g, foralla e K,
because h(1) = 0; that is, y fixes K pointwise. Also, x = n(a + I(x)), while
'y(a + 1(x)) = 7'(a + h(x) + I'(x)) = 7'(I'(x)) = x. We have shown that the
diagram commutes. It remains to show that y is a homomorphism. Now

y([a + 1(x)] + [b + I(»)]) = y(a + xb + fx, y) + (x))
=a+ xb + f(x, y) + h(xy) + I'(xy),
while
p(@ + 1)) + 75 + 10)) = [a + h(x) + 1T + [b + h() + ()]
=a+ h(x) + xb + xh(y) + f'(x, ¥) + I'(xy).

The element I’(xy) is common to both expressions, and (2) shows that the
remaining elements of the abelian group K are equal; thus, y is a homomor-
phism,

Conversely, assume that there exists an homomorphism y as in the state-
ment, Commutativity of the diagram gives y(a) = a for all a € K. Moreover,
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if x € Q, then x = n(I(x)) = n'y(I(x)); that is, yI: Q — G’ is a lifting. Applying y
to the equation I(x) + I(y) = f(x, y) + /(xy) shows that yf is the factor set
determined by the lifting yl. But yf(x, y) = f(x, y) for all x, y € Q, because
f(x, y) € K. Therefore yf = f; that is, f is a factor set of G’. But f” is also
a factor set of G’ (arising from another lifting), and so Lemma 7.31 gives
f' — f e B% thatis, G and G’ are equivalent.

Definition. If G is an extension of K by Q, then y € Aut(G) stabilizes the
extension if the diagram in Theorem 7.32 (with G’ replaced by G) commutes.
The group A of all such y is called the stabilizer of the extension.

Theorem 7.33. If K and Q are (not necessarily abelian) groups and G is an
extension of K by Q, then the stabilizer A of the extension is abelian.

Proof. We give two proofs.

(i) If y € A4, then the hypothesis that y makes the diagram commute is
precisely the statement that y stabilizes the series G > K > 1. It follows from
Theorem 7.19 that the group A of all such y is nilpotent of class < 1; that is,
A is abelian.

-(ii) Here is a proof without Theorem 7.19. We first show that if ¢ € A and
g € G, then go(g)™' € K. Let T be a transversal of K in G, and write g = at
for a € K and t € T. By hypothesis, ¢(g) = a’t for some a’ € K, and go(g)™! =
att™'a’"! = aa'"! € K. Next, we show that go(g)™* € Z(K). If b € K, then

Lao(9)™, b] = go(9)~*be(g)g™ b7
= go(g) o(b)o(g)g b~ (¢@(b) = b since b € K)
= go(g~bg)g™'b™
=g(g'bg)g b7 (9bg™! € K)
=1

The map ©: A > [|,c¢ Z, (Where Z, = Z(K) for all g € G) defined by ©: ¢
(97 ¢(g)), has kernel {¢ € A: g"'¢(g) = 1 for all g € G}. Thus, ¢ € ker © if
and only if ¢(g) = g for all g € G; that is, ¢ = 1;. Therefore, 4 is imbedded
in the abelian group [] Z,, and hence A4 is abelian.

The next theorem summarizes the results of this section.

Theorem 7.34 (Schreier, 1926). There is a bijection from H*(Q, K, 0) to the set
i of all equivalence classes of extensions realizing data (Q, K, 6) taking the
identity O to the class of the semidirect product.

Proof. Denote the equivalence class of an extension G realizing the data
(0, K, 0) by [G]. Define ¢: H*(Q, K, 8) > E by o(f + B*(Q, K, 0)) = [G,],
where G, is the extension constructed in Theorem 7.30 from a factor sct f.
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First, ¢ is well defined, for if f and g are factor sets with f + B? = g + B2, then
f—geB? G, and G, are equivalent, and [G,] = [G,]. Conversely, ¢ is
an injection: if ¢(f + B*)= ¢(g + B?), then [G,]=[G,], f —geB? and
f+ B*=g+ B% Now ¢ is a surjection: if [G] € E and f is a factor set
(arising from some choice of transversal), then [G] =[G,] and [G]=
o(f + B?). The last part of the theorem follows from Exercise 7.39(ii) below:
an extension is a semidirect product if and only if it has a factor set in B2

By Exercise 1.44, there is a unique group structure on E making ¢ an
isomorphism, namely, [G,] + [G,] = [G,.,].

Corollary 7.35. H*(Q, K, 0) = 0 if and only if every extension G realizing data
(Q, K, 8) is a semidirect product.

Definition. If both Q and K are abelian and 8: Q — Aut(K) is trivial, then
Ext(Q, K) is the set of all equivalence classes of abelian extensions G of K

by Q.

Corollary 7.36. If both Q and K are abelian and 8: Q — Aut(K) is trivial, then
Ext(Q, K) < H¥(Q, K, 0).

Proof. 1f f: @ x Q — K is a factor set, then the corresponding extension G, is
abelian if and only if f(x, y) = f(y, x) for all x, y € Q: since 8 is trivial,

(@, %) + (b, y) =(a+ b+ fx, ), xy)
=(a+ b+ f(yx) xy)
=(b+a+ f(yx)yx)
= (b, y) + (a, x).

It is easy to see that the set S(Q, K, 8) of all such “symmetric” factor sets
forms a subgroup of Z%(Q, K, ), and

Ext(Q, K) = (Z% n S?)/(B> ~ §?)
~[(Z>n 8?) + B?]/B* < H*(Q, K, 0).

The groups H%(Q, K, #) and Ext(Q, K) (when Q is abelian and 8 is trivial)
are studied and computed in Homological Algebra and, in particular, in
Cohomology of Grecups.

Here is an interesting use of the cocycle identity. Given a Q-set Q, the
wreath product D ? Q is the semidirect product K x Q, where K = [[,cq Do
andge Q actson(d,) € HwEQ D, by q(d,) = (d,,). Now a formal description
of the elements of the base K = [[,.q D,, is as functions o: Q — D; that is, ¢
is the |Q|-tuple whose wth coordinate is o(w); the multiplication in K is
(07)(w) = o(w)r(w): the product of the wth coordinate of ¢ with the wth
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coordinate of 7. Now the action of Q on K is given by t%(w) = 7(qw) for g € Q
and w € Q. It follows that the wth coordinate of 74 is the g 'wth coordinate
of 7. Thus,

(0t9)(w) = o(w)t(g™ w),
and multiplication in the wreath product is

(0, 9)(z, q') = (077, qq).

Theorem 7.37 (Kaloujnine and Krasner, 1951). If D and Q are groups with Q
finite, then the regular wreath product D 2, Q contains an isomorphic copy of
every extension of D by Q.

Remark. The group D may not be abelian.

Proof. If G is an extension of D by Q, then there is a surjective homomor-
phism G — Q with kernel D, which we denote by a — a. Choose a transversal
Q-G

For ae G, define g,: Q - D by

0,(x) = I(x)al(a Tx).
It a, b € G, then
0,()5f(x) = 0,(x)o(a"x)
= 1(x)al(a Tx)l(a"x) "' bl(ba x)
= 1(x)7"bI((@b) ™ x) = g,(x).
Define ¢: G — D2, Q by
@(a) = (0,, 4)
for every a € G. We see that ¢ is a homomorphism, for
?(@e((b) = (0, 3)(0}, b)
= (0,07, ab)
= (0p> ab).
Finally, ¢ is injective. If a € ker ¢, then @ = 1 and o,(x) = 1 for all x € Q. The

first equation gives a € D; the second equation gives g,(x) = I(x) tal(a™Tx) =
1 for every x € Q. Since a~! = 1, we have I(x)*al(x) = 1, and so a = 1.

Remark. Here is a way to view the proof just given. The lifting / determines
2 factor set f: Q x Q » D (which determines the extension G to isomor-
phism). For each a € G, fixing one variable gives a function f, = f( ,a): Q0 -
D, namely, f,(x) = l(x)i{@)l(x@)~*. Since l(a) is almost a, we see that g, is just
a variation of f.

Corollary 7.38. If € is a class of finite groups closed under subgroups and
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semidirect products (i.e., if A€¥ and S < A, then S€¥; if A, Be€%, then
A %o B e % for all §), then € is closed under extensions.

Proof. Assume that G is an extension of D by Q, where both D, Q € %. Since
€ is closed under semidirect products, it is closed under finite direct products;
hence, [],cq D, € % Since € is closed under semidirect products, the wreath
product D 2,0 = ([ [oca Do) * Q € &; since % is closed under subgroups, the
theorem gives G € 4.

One may remove the finiteness hypothesis from Theorem 7.37 by using the
complete wreath product.

EXERCISES

7.37. If H is a subgroup of a group G and if U is a right transversal of H in G, then
U™ ={u"':ue U} is a left transversal of H in G. Conclude, for H <1 G, that
both U and U™ are transversals of H in G.

7.38. Prove that an extension G of K by Q is a semidirect product if and only if there
is a transversal I: Q — G that is a homomorphism.

7.39. (i) Prove that any two semidirect products realizing data (Q, K, 0) are equiva-
lent.
(i) Prove that an extension G realizing data (Q, K, 8) is a semidirect product if
and only if it has a factor set f € B2 '

7.40. Let p be an odd prime. Give an example of two extensions G and G’ realizing
(K, 0,0)=(Z,,Z,,0)with G = G’ but with G and G’ not equivalent. (Hinz. Let
K = {a) be cyclic of order p, and let G = {g> and G’ = (h) be cyclic of order
p*. Define i: K — G by i(a) = pg, and define i": K - G’ by i’(a) = 2ph. Show that
there is no isomorphism y: G — G’ making the diagram commute.)

Remark. Tt is plain that |H%(K, Q, 8)| is an upper bound for the number of
nonisomorphic extensions G of K by Q realizing 6. This last exercise shows
that this bound need not be attained. After all, every extension of Z, by Z,
has order p?, hence is abelian, so that either G = Zynor G=Z,x Z,; butit
can be shown that |H*(Z,, Z,,, 8)| = |Ext(Z,, Z,)| = p.

Theorems of Schur—Zassenhaus and Gaschiitz

We now apply Corollary 7.35 of Schreier’s theorem.

Recall that a Hall subgroup of a finite group (when it exists) is a subgroup
whose order and index are relatively prime. Also recall Exercise 7.24: If
|G| = mn, where (m, n) = 1, and if K < G has order m, then a subgroup Q < G
is a complement of K if and only if |Q] = n.
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Theoxem 7.39. If K is an abelian normal Hall subgroup of a finite group G (i.e.,
(IK|, [G: K]) = 1), then K has a complement.

Proof. Let |[K| = m, let Q = G/K, and let |Q] = n, so that (m, n) = 1. It suffices
to prove, by Corollary 7.35, that every factor set f: Q@ x Q — K is a cobound-
ary. Define 0: Q — K by
o(x) = ZQ &, 9);
ye

o is well defined since Q is finite and K is abelian. Sum the cocycle identity
Xf(y 2) = [y, 2) + flx, y2) = f(x, 9)
over all z € Q to obtain
xa(y) — o(xy) + o(x) = nf(x, y)

(as z ranges over all of Q, so does yz). Since (m, n) = 1, there are integers s and
t with sm + tn = 1. Define h: Q — K by h(x) = to(x). Then h(1) = 0 and

xh(y) — h(xy) + h(x) = f(x, y) — msf(x, y).
But sf(x, y) € K, so that msf(x, y) = 0. Therefore, f is a coboundary.

If K < G has complements Q and Q’, then Q = Q' (each is isomorphic to
G/K). One can say more if the orders of K and Q are relatively prime.

Theorem 7.40. If K is an abelian normal Hall subgroup of a finite group G,
then any two complements of K are conjugate.

Proof. Denote |K| by m and |G/K| by n, so that (m, n) = 1. Let @, and Q, be
subgroups of G of order n. As we observed above, each of these subgroups is
a complement of K. By Exercise 7.38, there are transversals I;: G/K — G, for
i =1, 2, with [,(G/K) = Q; and with each I, a homomorphism. It follows that
the factor sets f; determined by [, are identically zero. If h(x) is defined by
11(x) = h(x) + I,(x), then

0 = filx, y) = fo(x, y) = xh(y) — h(xy) + h(x).
Summing over all y e G/K gives the equation in K:
0 = xaq, — ay + nh(x),

where a = Y e x 7(y). Let sm + tn =1 and define b, = ta,. Since K has
-exponent m,

h(x) = h(x) — smh(x) = —tnh(x) = xtay — tay = xby — b,

for all x e G/K. We claim that —by, + Q; + by =Q,. If [,(x)e Q,, then
—by + 1;(x) + by = —bg + xby + 1, (x) = —h(x) + [;(x) = L,(x) — I,{x) +
L (%) = 1,(x).
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We now remove the hypothesis that K be abelian.

Theorem 7.41 (Schur—Zassenhaus Lemma, 1937).> 4 normal Hall subgroup K
of a finite group G has a complement (and so G is a semidirect product of K by
G/K).

Proof. Let |K| = m and let |G| = mn, where (m, n) = 1. We prove, by induc-
tion on m > 1, that G contains a subgroup of order n. The base step is
trivially true. If K contains a proper subgroup T which is also normal in G,
then K/T < G/T and (G/T)/(K/T) = G/K has order n; that is, K/T is a nor-
mal Hall subgroup of G/T. If |[K/T| = m’, then m' < mand [G/T: K/T]| = n.
The inductive hypothesis gives a subgroup N/T < G/T of order n. Now |N|
=n|T| and (n, | T|) = 1 (for | T| divides m), so that T is a normal Hall sub-
group of N (with | T| < m and with index [N : T] = n). By induction, N and
hence G contains a subgroup of order n.

We may now assume that K is a minimal normal subgroup of G. If pis a
prime dividing m and if P is a Sylow p-subgroup of K, then the Frattini
argument (Theorem 4.18) gives G = KNg(P). By the second isomorphism
theorem,

G/K = KNg(P)/K = Ng(P)/(K n N(P)) = Ng(P)/N(P),

so that [Ng(P)|n = |[Nx(P)||G/K| = |[Ng(P)|. If N4(P) is a proper subgroup of
G, then |Ng(P)| < m, and induction shows that N;(P) contains a subgroup of
order n. We may assume, therefore, that Ng(P) = G; thatis, P < G.

Since K > P and K is a minimal normal subgroup of G, we have K = P.
Lemma 5.20(ii) now applies: Z(P) char P and P < G imply Z(P) < G. Mini-
mality applies again, and Z(P) = P (Z(P) # 1 because P is a finite p-group).
But now P = K is abelian, and the proof follows from Theorem 7.39.

It follows that if a finite group G has a normal Sylow p-subgroup P, for
some prime p, then P has a complement and G is a semidirect product of P
by G/P.

We can prove part of the generalization of Theorem 7.41 for K nonabelian.

Theorem 7.42. Let K be a normal Hall subgroup of a finite group G. If either
K or G/K is solvable, then any two complements of K in G are conjugate.

Remark. The Feit—Thompson theorem says that every group of odd order
is solvable. Since |K| and |G/K]| are relatively prime, at least one of them
has odd order, and so complements of normal Hall subgroups are always
conjugate.

Proof. Let |[K| = m, let |G/K| = n, and let Q, and Q, be complements of K in
G; of course, @, =~ G/K = Q,.
Assume first that K is solvable. By Lemma 5.20(ii), K' <0 G; moreover,

3 Schur (1904) proved this in the special case Q cyclic.
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0, K'/K' =20,(Q,nK')~Q, (because 0, "nK'<Q;nK=1), so that
|0, K'/K'| = n. Now K' < K, because K is solvable. If K’ = 1, then K is
abelian and the result is Theorem 7.40; otherwise, |G/K’| < |G|, and induc-
tion on |G| shows that the subgroups @, K'/K’ and Q, K’/K’ are conjugate in
G/K'. Thus, there is g € G/K’ with g(Q,K'/K')g™* = Q,K'/K’; that is, g0,g ™!
< Q,K’ (where K'g = g). But K' < K gives |Q,K'| < |G|, and so the sub-
groups gQ, g ! and @, of order n are conjugate in Q,K’, hence are conjugate
in G.

Assume now that G/K is solvable. We do an induction on |G| that any two
complements of K are conjugate. Let M/K be a minimal normal subgroup of
G/K. Since K < M, the Dedekind law (Exercise 2.49) gives

(%) M=MnG=MnQK=(MnQ)K for i=1,2

note also that M n Q; <1 Q;. Now solvability of G/K gives M/K a p-group for
some prime p, by Theorem 5.24. If M = G, then G/K is a p-group (indeed,
since M/K is a minimal normal subgroup of G/K, we must have |M/K| = p).
Therefore, Q; and Q, (= G/K) are Sylow p-subgroups of G, and hence are
conjugate, by the Sylow theorem.

We may assume, therefore, that M < G. Now M N Q; is a complement of
Kin M, fori=1,2 (because M = (M N Q,)K, by (), and M nQ,)nK <
0;n K = 1). By induction, thereisxe M < Gwith M n @, = x(M n Q,)x!
= M nxQ,x. Replacing Q, by its conjugate xQ,x™! if necessary, we may
assume that

MnQ,=MnQ,.

HJ=MnQ,=MnQ,, thenJ <« Q;fori= 1,2, and so
Q: < Ng(J).
Two applications of the Dedekind law give
Ng(J) = Ng(J) n KQ; = (Ng(J) N K)Q;

and
J[N() " K1 Q= J(INs()n KN Q) = J

(because (Ng(J) N K)n Q; < K n Q; = 1), Therefore, Q,/J and Q,/J are com-
plements of J(Ng(J) n K)/J in Ng(J)/J. By induction, there is ¥ € Ng(J)/J
with Q,/J = 3(Q,/J)77!; it follows that Q, = yQ,y™!, where Jy =7, as
desired.

The proof of the following theorem is a variation on the proof of Theorem
7.39. Recall Exercise 4.16; a normal p-subgroup K of a finite group G is
contained in every Sylow p-subgroup P of G.

Theorem 7.43 (Gaschiitz, 1952). Let K be a normal abelian p-subgroup of a
finite group G, and let P be a Sylow p-subgroup of G. Then K has a complement
in G if and only if K has a complement in P.
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Proof. Exercise 7.17 shows that if Q is a complement of K in G, then @ n P is
a complement of K in P.

For the converse, assume that Q is a complement of K in P, so that Q is a
transversal of K in P. All groups in this proof will be written additively.
If U is a transversal of P in G (which need not be a subgroup!), then
P=);eoK+qand G=),.y P+u=\J,,K+q+u; thus, Q+ U=
{g+u:qeQueU} is a transversal of K in G. By Exercise 7.37,
—-U—-Q=-U+Q={—u+queU, qeQ}is also a transversal of K in
G (—Q = Q because Q is a subgroup). Let us denote — U by T, so that
|T| =[G:P]and T + Q is a transversal of K in G.

Define I: G/K - G by (K + t + q) =t + g. The corresponding factor set
f1G/K x G/K — K is defined by

WK+t'+g)+ U K+t+qg=f(K+t'+q¢,K+t+9g)
+ UK+t +q +1t+q)
In particular, if ¢ = 0, then
(+) Jx, K+q=0  forall xeG/K, allgeQ
(I(K+t'+qd +q=t'+q +gq=UK+1t'+q') + (K + g) because ¢’ + g
€ Q). Consider the cocycle identity
f(p2) = fx+p2)+fx,y+2 = flx,5)=0
for x, ye G/K and z = K + g with g € Q. Equation (x) shows that the first
two terms are zero, and so ,
(%) fle,y+2)=f(x, ) for x,yeG/K and z=K+q.

Let T = {ty,...,t,}, where n = [G: P]. For fixed y= K + g€ G/K and
foranyt;, K + g + t;lies in G/K; since T + Q is a transversal of K in G, there
ist;eT and g, Q with K + g +t; =K + t,; + g;. We claim that 7 is a
permutation. If K + g + t; = K + t,; + q;, then

g+tu—(tu+ag)eK and  g+14—-(,;+q)eK
give
g+t—qg—tyut+ty+q—t,—gek.
Since K < G, we have t; — ¢; + q; — t; € K; since Q is a subgroup, —¢; + g¢;
=qgeQ,sothatt;+qg—t;e Kand K + t; = K + t; + q. It follows that ¢, =
t; + g, so that j =i (and q = 0). Therefore, = is an injection and hence a

permutation.
Let T = {K + t:t € T} For x € G/K, define

o(x)= 3, flx, z)
zeT
o is well defined because G/K is finite and K is abelian. Summing the cocycle
identity gives
xo(y) = o(x) + ), flx,y+2)=[G:P1f(x, y).

zeT
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Buty+z=K+g+K+t,=K+g+t;,=K+1t,;+q,sothat f(x,y+ z)
=f(x, K +t;+q)=flx, K+1t,), by (++); since = is a permutation,
Y .7 f(x, y + 2) = o(x). Therefore,

xo(y) = o(x +y) + o(x) = [G: P]f(x, y).

This is an equation in K < P. Since ([G: P], |K|) = 1, there are integers a
and b with a|K| + b[G: P] = 1. Define h: G/K — K by h(x) = ba(x). Then
h(1) = 0 and

xh(y) = hx +y) + h(x) = f(x, y);

that is, f is a coboundary and so G is a semidirect product.

EXERCISES

7.41. Use the Schur—Zassenhaus lemma and Exercise 7.29 to reclassify all groups of
order pg, where p and g are distinct primes.

742. Prove that every group of order p’q, where p > q are primes, has a normal
Sylow p-subgroup, and classify all such groups.

7.43. Using Lemma 4.23, reclassify all groups of order 12.

7.44. Use factor sets to prove the existence of the generalized quaternions Q,. (Hint.
Exercise 4.42.)

Transfer and Burnside’s Theorem

We have seen several conditions guaranteeing that a group be a semidirect
product: P. Hall’s theorem (Theorem 5.28) for solvable groups; the Schur—
Zassenhaus lemma; Gaschiitz’s theorem. In each of these theorems, one starts
with a normal subgroup K of G and constructs a complement Q (= G/K). We
now aim for a companion theorem, due to Burnside, that begins with a Sylow
subgroup Q of G and, in certain cases, constructs a normal complement K.*
It is natural to seek a homomorphism whose kernel is such a normal sub-
group; it is called the transfer. The next lemma is in the spirit of a portion of
the proof of Gaschiitz’s theorem given above.

Lemma 7.44. Let Q be a subgroup of finite index nin G, and let {1, ..., 1,} and
{hy, ..., h,} be left transversals of Q in G. For fixed g € G and each i, there is
a unique (i) (1 < o(i) < n) and a unique x; € Q with

ghi = lLx;.

Moreover, o is a permutation of {1, ..., n}.

* Some other such theorems are quoted at the end of this section.
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Proof. Since the left cosets of Q partition G, there is a unique left coset [,Q
containing gh;; the first statement follows by defining oi =j. Assume that
oi = ok = j. Then gh, = I;x; and gh, = I;x;; thus gh;x{' = ghyx;', hi'h, =
x;ix, € Q, h;Q = h,Q, and i = k. Therefore, ¢ is an injection of a finite set to
itself, hence is a permutation.

This lemma will be used in two cases. The first has [; = k; for all i; that is,
the transversals coincide. In this case,

gli = laixb

where o € S, and x; € Q. The second case has two transversals, but we set
g = 1. Now

hj = lajyj’

where « € S, and y; € Q.

Definition. If Q is a subgroup of finite index n in a group G, then the traasfer
is the function V: G — Q/Q’ defined by

Vig) = HI x; Q'
where {I;,...,1,} is a left transversal of Q in G and gl; = [x;.

Remark. The transfer V: G — Q/Q’ is often denoted by Vi, the letter ¥V
abbreviating the original German term Verlagerung.

Theorem 7.45. If Q is a subgroup of finite index in a group G, then the transfer
V:G— Q/Q' is a homomorphism whose definition is independent of the choice
of left transversal of Q in G.

Remark. See Exercise 7.45 below which shows that a transfer defined via
right transversals coincides with V.

Proof. Let {l,,...,1,} and {hy,..., h,} be left transversals of Q in G. By
Lemma 7.44, there are equations for each g € G:

gl =1,x; ces, x €0,
ghi = hriyi’ TE Sm yi € Q’
hy =1z, aesS,, z€Q.

Now
ghi = glm'zi = laaixaizi'

Defining j by oj = oai, we have h; = I,,;z;, whence

gh; = hjzy 'x iz,
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The uniqueness assertion of Lemma 7.44 and the definition of j give

“anuxauza

Yi= Zj_lxaizi
Factors may be rearranged in the abelian group Q/Q': thus

H yin H Z, "aal mZxQ H xalQl

because ¢ *oa € S,, and so the inverse of each z; occurs and cancels z;.
Finally, [] x4Q =[] x:Q' since « € S,. We have shown that V is indepen-
dent of the choice of transversal.

Letg,g' e Gandlet {I,,...,[,} be aleft transversal of Q in G. Thus, gl; =
l,;x;and g'l; = I;y;, where x;, y; € Q. Then

gg,li = glriyl laﬂxnyi'

Therefore,
Vigg') = H x:y:;Q = <H xn‘Q’> (H yiQ’>
= (H X.-Q’> <H y;Q’) =V(gV(g'). B

If a subgroup Q of finite index in a group G has a (not necessarily normal)
complement K, then K = {a;, ..., a,} is a left transversal of Q in G. If b € K,
then ba; € K for all i: ba; = a,;. But the general formula (Lemma 7.44) is
ba; = a,;x;, so that each x; = 1. We conclude that if b € K, then V(b) = 1; that
is, K < ker V. If Q is abelian, then Q' = 1 and we may identify Q/Q’ with Q;
thus, im V < Q in this case. These remarks indicate that K = ker V is a rea-
sonable candidate for a normal complement of Q.

The following formula for the transfer says that V(g) is a product of conju-
gates of certain powers of g.

Lemma 7.46. Let Q be a subgroup of finite index nin G, and let {I,, .. l,,} be
a left transversal of Q in G. For each g € G, there exist elements hl, ces by of
G and positive integers ny, ..., n,, (all depending on g) such that:

() eachh;e{l,..., 1.}
(ii) hi'g™h; e Q;
(i) > m;=n=[G:Q%; and
(iv) V(g) =[] (i g"h)Q"

Proof. We know that gl, = [ ;x;, where o € S, and x; € Q. Write the complete
factorization of ¢ as a product of disjoint cycles (so there is one 1-cycle for
each fixed point). 0 = «; ... a,,. If &; = (jy, ..., J,), then

gl, =1 =1l,x, gl,=1x

ajy 11 27y Ja ]3"" g

. =1 x;

7[R Pl P
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and
-1_r _
L9’ =x;,...x; €Q.

Define h; = I; and n; = r; all the conclusions now follow. £

Theorem 7.47. If Q is an abelian subgroup of finite index n in a group G and
if Q@ < Z(G), then V(g) = g" for all g € G.

Proof. Since Q is abelian, we may regard the transfer as a homomorphism
V: G — Q. The condition Q < Z(G) implies that Q is a normal subgroup of G.
If g e Gand h™'g"h € Q, then normality of Q gives g" = h(h 'g"h)h ™! € Q. But
Q < Z(G) now gives h™'g"h = g". The result now follows from formulas (iii)
and (iv) of Theorem 7.45.

Corollary 7.48. If a group G has a subgroup Q of finite index n with Q < Z(G),
then g +— g" is a homomorphism.

Proof. We have just seen that this function is the transfer.

The reader should try to prove this last corollary without using the trans-
fer; I do not know a simpler proof.

Lemma 7.49. Let Q be a Sylow p-subgroup of a finite group G (for some prime
p)- If g, h € C4(Q) are conjugate in G, then they are conjugate in Ng(Q).

Proof. If h = y~1gy for some y € G, then h € y"*C4(Q)y = Cg(y™*Qy). Since Q
and y~'Qy are contained in Cg(h), both are Sylow subgroups of it. The Sylow
theorem gives ¢ € Cg(b) with Q = ¢ "'y~ Qyc. Clearly yc € Ng(Q) and ¢y *gyc
=che=h.

Theorem 7.50 (Burnside Normal Complement Theorem, 1900). Let G be a
finite group and let Q be an abelian Sylow subgroup contained in the center of
its normalizer: Q < Z(Ng(Q)). Then Q has a normal complement K (indeed, K
is even a characteristic subgroup of G).

Proof. Since Q is abelian, we may regard the transfer ¥ as a homomorphism
from G to Q. Let us compute V(g) for each g € Q. By Lemma 7.46, V(g) =
[1 ki g"h;. For each i, if g™ and h7'g"h, lie in Q, then they are conjugate
elements which lie in Cg(Q) (for Q abelian implies Q < C4(Q)). By Lemma
7.49, there is c; € Ng(Q) with hlg"h; = ¢71g™c;. But Q < Z(Ng(Q)) implies
ctg™c; = g™. Hence, if n = [G:Q], then V(g)=g"for allge Q. If |Q| = q,
then (n, g) = 1 (because Q is a Sylow subgroup), and there are integers o« and
B with an + fq = 1. Therefore, when g € O, we have g = g*"g#? = (g°)", so
that V: G — Q 1is surjective: if g € Q, then V(g*) = g*" =g¢. The first iso-
morphism theorem gives G/K =~ Q, where K = ker V. It follows that G = KQ



Transfer and Burnside’s Theorem 197

and K nQ =1 (because |K|=n and so (|K]|,|Q|) = 1). Therefore, K is a
normal complement of Q. Indeed, K char G because it is a normal Hall
subgroup.

Definition. If a Sylow p-subgroup of a finite group G has a normal p-comple-
ment, then G is called p-nilpotent.

Thus, Burnside’s theorem says that if @ < Z(Ng4(Q)), then G is p-nilpotent.
Here are some consequences of Burnside’s theorem.

Theorem 7.51. Let G be a finite group and let p be the smallest prime divisor of
|G|. If a Sylow p-subgroup Q of G is cyclic, then G is p-nilpotent.

Proof. By Theorem 7.1, there is an imbedding N4(Q)/C4(Q) <5 Aut(Q). Obvi-
ously, | N/C| divides |G|. Now Q is cyclic of order p™, say, and so Theorem 7.3
gives |Aut(Q)| = p™~1(p — 1) (this is true even for p = 2). Since Q is a Sylow
subgroup of G and Q < C = C¢(Q), p does not divide |N/C|. Hence, |[N/C|
divides p — 1. But (p — 1,|G|) = 1, because p is the smallest prime divisor of
|G|, and so |[N/C| = 1. Therefore Ng;(Q) = C5(Q). Since Q < G is abelian,
Q < Z(Cg(Q)), and since Ng(Q) = Cg(Q), we have Q < Z(Cg(Q)) = Z(N(Q))-
Thus, the hypothesis of Burnside’s theorem is satisfied, and so Q has a normal
complement.

Corollary 7.52. A nonabelian simple group cannot have a cyclic Sylow 2-
subgroup.

Remaik. We have already seen this in Exercise 3.30.

Theorem 7.53 (Holder, 1895). If every Sylow subgroup of a finite group G is
cyclic, then G is solvable.

Proof. If p is the smallest prime divisor of |G|, then Theorem 7.51 provides a
normal complement K to a Sylow p-subgroup of G. and Q =~ G/K. By induc-
tion on |G|, G/K is solvable. Since K is solvable (it is cyclic, hence abelian),
Theorem 5.17 shows that G is solvable.

Corollary 7.54. Every group G of squarefree order is solvable.
Proof. Every Sylow subgroup of G must be cyclic. &

Corollary 7.55. Let G be a nonabelian simple group, and let p be the smallest
prime divisor of |G|. Then either p* divides |G| or 12 divides |G|.

Proof. Let Q be a Sylow p-subgroup of G. By Corollary 7.52, Q is not cyclic.
Hence, |Q| = p?, so that if p* does not divide | Q|, then Q is elementary abelian
of order p?. Since Q is a two-dimensional vector space over Z,,, Exercise 7.10
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gives |Aut(Q)| = (p* — 1)(p* — p) = p(p + 1)(p — 1)>. Now Ng(Q)/Cs(Q) =»
Aut(Q), so that |[N/C]| is a divisor of |Aut(Q)}, and |N/C| # 1 lest Burnside’s
theorem apply. Since Q < C, p does not divide | N/C|; since p is the smallest
prime divisor of |G|, |N/C| must divide p + 1. But this is impossible if p is
odd, for the smallest prime divisor of |[N/C|is >p + 2. (We have shown that
if p is odd, then p® must divide |G|.) Moreover, if p = 2, then |Aut(Q)| = 6 and
|N/C| = 3, so that |G| is divisible by 2% x 3 = 12.

The simple group 45 has order 60, and 60 is divisible by 12 but not by 8.
There is an infinite class of simple groups, the Suzuki groups, whose orders
are not divisible by 3, hence not by 12 (their orders are divisible by 8). The
magnificent result of Feit and Thompson says that every simple nonabelian
group G has even order, and so |G| is divisible by either 8 or 12.

In Chapter 5, we gave an elementary but ingenious proof of a theorem of
Schur (Theorem 5.32). We now give a straightforward proof of this theorem
using the transfer; indeed, it was Schur who invented the transfer in order to
give the forthcoming proof of Theorem 7.57.

It is not generally true (see Theorem 11.48) that a subgroup of a finitely
generated group G is itself finitely generated.

Lemma 7.56. If G is a finitely generated group and H is a subgroup of G of
finite index, then H is finitely generated.

Proof.Let G =<{g,,...,9.yandlett,, ..., t, beright coset representatives of
H with t, = 1; thus, G = U?=1 Ht,. Enlarging the generating set if necessary,
we may assume that if g; is a generator, then g;* = g, for some k.

For all i, j, there is h(i, j) € H with t;g; = h(i, j)ty; 5. We claim that H is
generated by all the k(i j). If a € H, then a = g; g;,...g; ; no exponents are
needed since the inverse of a generator is also a generator. Now

a=g;9gi,---9,= 199, 9i,
= h(l,i)ty.9;,..-9;, some 1’
= h(1, i))h(1', i3)t5.9:. - gs, some 2’
= h(1,i))h(l, i,)h(2, i5)t5.9;,. .. g; = some 3’
= h(1, i))h(1, iy)... h((s — 1Y, i)t..
Since a and all the h’s lie in H, we have t, € H; therefore, t; =¢, = 1, as
desired.
Theorem 7.57 (Schur). If Z(G) has finite index in a group G, then G' is finite.

Proof. As in the proof of Theorem 5.32, G’ has a finite number of generators.
Now G'/(G'nZ(G))= G'Z(G)/Z(G) < G/Z(G), so that G'/(G' nZ(G)) is
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finite. By the lemma, G’ n Z(G) is finitely generated. As G' n Z(G) < Z(G) is
abelian, it is finite if it has finite exponent (this is not true for nonabelian
groups). Let V: G — Z(G) be the transfer. If a € G/, then V(a) = 1; if a € Z(G),
then V(a) = a", where n = [G: Z(G)] (Theorem 7.47). Therefore, G' n Z(G)
has exponent n, and hence is finite. As G’ is an extension of one finite group
by another finite group, it, too, is finite. &

The reader should be aware of two theorems of Griin whose proofs involve
the transfer; if G is a finite group and P is a Sylow subgroup, then one may
often compute P n G’ (see Robinson (1982, pp. 283-286)).

We state some other theorems guaranteeing p-nilpotence.

Theorem (Tate, 1964). Let G be a finite group, and let P < G be a Sylow
p-subgroup of G.If N < G and N n P < ®(P), then N is p-nilpotent.

Proof. The original proof is short, using the 5-term exact sequence in co-
homology of groups; a longer proof using the transfer is in Huppert (1967),
p- 431.

Call a subgroup H of a group G p-local, for some prime p, if there is some
nontrivial p-subgroup Q of G with H = N4(Q).

Theorem (Frobenius). A group G is p-nilpotent if and only if every p-local
subgroup H of G is p-nilpotent.

Proof. See [ Aschbacher, p. 203].

If p is a prime and P is a Sylow p-subgroup of a group G, define E(P) =
{x € Z(P): x* = 1}. If p*® is the largest order of an elementary abelian sub-
group of P, then the Thompson subgroup J(P) is defined as the subgroup of G
generated by all the elementary abelian p-subgroups of G of order p®,

Theorem (Thompson). Let p be an odd prime, and let P be a Sylow p-subgroup
of a group G. If C4z(E(P)) and Ng(J(P)) are p-nilpotent, then G is p-nilpotent.

Proof. See [Aschbacher, p. 203]. 3

EXERCISES

7.45. Let Q be a subgroup of finite index nin a group G, and let {y,, ..., y,} be a right
transversal of Q in G. For a€ G, y;a = p;y,; for p;e Q and 1€ S,. Prove that
R: G — Q/Q, defined by R(a) =[] p:Q', is the transfer; that is, R{(a) = V(a) for
all a € G. (Hint. Exercise 7.37.)
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7.46. (i) Letp, <p, <--- < p, be primes and let n = p, ... p,. Prove that every group
G of order n has a normal Sylow p,-subgroup. (Hint. Exercise 4.38.)

(i) If, in addition, (p;, p; — 1) =1 for all i <}j, then G must be cyclic. (One
can characterize such integers n by (1, ¢(n)) = 1, where ¢ is the Euler ¢-
function.)

(iii) Find all integers n such that every group G of order n is abelian.

Remark. We sketch a proof that there exist arbitrarily large sets of primes
{p1, ..., p,} which satisfy condition (ii) of Exercise 7.46. Let p, = 3, and sup-
pose that p; < p, < ‘- < p, are primes with (p;,, p; — 1)=1forall i <j. A
theorem of Dirichlet states: If (a, b) = 1, then the arithmetic progression
a, a+b,a+2b,... contains infinitely many primes. Since (2, p;...p,) =1,
there is a positive integer m such that p,,; =2 + mp,...p, is prime. The set
{p1, ..., P11} satisfies all the desired conditions.

7.47. (i) Let g and p be primes such that g = 1 mod p® Show that the multiplicative
group Z, contains a cyclic subgroup isomorphic to Z,.. (Hint: Theorem
2.18.)

() Let G =C x -+ x C,, where C; is cyclic of order p;* for (not necessarily
distinct) primes p;. Use Dirichlet’s theorem (see the remark following Exer-
cise 7.46) to show that there are n distinct primes g; with g, = 1 mod p;* for
i=1,...,n

(i) If G is a finite abelian group, then G can be imbedded in Z) for some
m. (Hint. Let m = [] g;, and use Theorem 7.3 (iii).) (This proof is due to
G. McCormick.)

7.48. () If V: G - Q/Q’ is the transfer, then G’ < ker V and V induces a homomor-
phism V: G/G’' — Q/Q’, namely, G'a — V(a).
(i) Prove that the transfer is transitive: if P < Q < G are subgroups of finite
index, and if T: G - Q/Q’, U: G — P/P',and V: Q — P/P' are transfers, then
U=VT.

7.49. If Q has index n in G, and if K < G satisfies G = KQ and Q < Cg(K), then
V{a) = a"Q’ for all a € G. (Hint. There is a transversal of Q contained in K; if
ae K and g e K, then g 'a"g e Q < C4(K), and this implies a” € C5(K)g™* =
Cs(gKg™) = C4(K),)

7.50. If G is a finite group of order mn, where (m, n) = 1, and if Q < Z(G) is a Hall
subgroup of order m, then K = ker V is a normal complement of Q (where
V:G — Q/Q' is the transfer),and G = K x Q.

7.51. Let G be a torsion-free group having a cyclic subgroup of finite index. Prove
that G is cyclic.

7.52. If p and q are primes, prove that every group of order p?q? is solvable.

7.53. If G is a nonabelian group with |G| < 100 and |G| # 60, then G is solvable. (See
Exercise 4.36.) (The next order of a nonabelian simple group is 168.)
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Projective Representations and the Schur Multiplier

We have already seen the usefulness of H?*(Q, K, 0), where K is abelian and
#: Q — Aut(K) is a homomorphism. When 6 is trivial, that is, 6(x) = 1 for all
x € Q, then we drop it from the notation and write H*(Q, K).

Definition. A central extension of K by Q is an extension G of K by Q with
K < Z(G).

It is easy to see that if G = K x,Q is a central extension, then G is the
direct product K x Q.

Lemma 7.58. Given data (Q, K, 0), then 0 is trivial if and only if every exten-
sion realizing the data is a central extension.

Proof. Recall that 6 arises from the equation: for all x € Q and a € K,
bx(a) = I(x) + a — I(x),

where I(x) is a lifting of x. Assume that 0 is trivial. Every g € G has the form
G=b + Il(x)forsome b € K and x € Q. If a € K, then a commutes with I(x) for
all x € Q; since K is abelian, a commutes with g, and so a € Z(G). Conversely,
if G is a central extension, each a € K commutes with every /(x) and so
f.(a)=aforallxeQandae K. B

Theorem 7.59. There is a bijection from the set of all equivalence classes of
central extensions realizing data (Q, K, 6), where 0 is trivial, to H*(Q, K).

Proof. Theorem 7.34 specializes to this result once we take account of the
lemma.

Definition. If Q is a group, then its Schur multiplier (or multiplicator) is the
abelian group
M(Q) = H*(Q, C*),

where C* denotes the multiplicative group of nonzero complex numbers.
Since C* is written multiplicatively, it is more convenient to write

M(Q) = H?*(Q, C*) multiplicatively as well. Thus, with & trivial, a function
f:Q x Q- C* is afactor set if and only if, for all x, y € Q:

Sy =1=fx1)
S0 W f(xy, 27 (%, y2)f(x, ) =1,

a function g: Q x Q - C* is a coboundary if and only if there is a function
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h: Q — C* with h(1) = 1 such that
g(x, y) = h(y)h(xy) " h(x).

Two factor sets f and g are equivalent if and only if fg™* is a coboundary.

Definition. If G is a finite group, its minimal exponent, denoted by exp(G), is
the least positive integer e for which x® = 1 for all x € G.

Theorem 7.60. If Q is a finite group, then M(Q) is a finite abelian group and
exp(M(Q)) divides |Q)|.

Remark. The first paragraph of the proof is just a repetition, in multiplicative
notation, of a portion of the proof given in Theorem 7.39.

Proof. If f: Q x Q — C* is a factor set, define 6: Q - C* by
o(x) = 112 f(x, 2).

Note that g(1) = 1. Now multiply the cocycle identity
O, 2 fxy, 2)7 f(x, y2)f(x, y) ™ = 1
over all z € Q to obtain
a(y)olxy)talx) = flx, yy,

where n = |Q] (as z ranges-over all of Q, so does yz). But this equation says
that (fB*(Q, C*))" = 1; that is, M(Q)" = 1. Thus, the minimal exponent of
M (Q) divides n when Q is finite.

For each x € Q, define h: Q —» C* by choosing A(1) =1 and h(x) to be
some nth root of a(x)™: h(x)" = o(x)™!. Define g: Q x Q » C* by g(x, y) =
Sf(x, Yh(y)h(xy) th(x). Clearly, f and g are equivalent, for they differ by a
coboundary. On the other hand,

glx, ' = f0x, yYh(y)'h(xy)~"h(x)"
= 6()aley) (X)) ole)o() ™ = 1.

Therefore, each element [ f] € M(Q) determines a function g: Q x Q — Z,,,
where Z, denotes the subgroup of C* consisting of all the nth roots of unity.
The result follows, for there are only finitely many such functions g. &

Corollary 7.61. If Q is a finite p-group, then M(Q) is a finite abelian p-group.

The Schur multiplier arises in Representation Theory; more precisely, in
the study of projective representations.

Definition. A projective representation of a group Q is a homomorphism
1: Q -» PGL(n, C) = GL(n, C)/Z(n, C), the group of all nonsingular n x n
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complex matrices modulo its center, the normal subgroup Z(n, C) of all non-
zero scalar matrices.

Just as GL(n, C) consists of automorphisms of a vector space, we shall see
in Chapter 9 that PGL(n, C) consists of automorphisms of a projective space.
An important example of a central extension is provided by GL(n, C), which
is a central extension of C* by PGL(n, C). Note that Z(n, C) =~ C*.

“Ordinary” representations of Q are homomorphisms Q — GL(n, C); they
have been well studied and contain valuable information about Q. The ques-
tion whether a given irreducible representation ¢ of a normal subgroup H <
Q can be extended to a representation of Q leads, in a natural way, to a
projective representation of Q. If x € 0, one can define a new representation
©*: H —» GL(n, C) by ¢~(h) = ¢(xhx™!); this makes sense because xhx~! € H
for all h e H. To make it easier to extend ¢, let us assume (as would be the
case were ¢ extendable to G) that the representations ¢ and ¢* are all similar;
that is, there is a nonsingular matrix P, with ¢(xhx™!) = P.@(h)P;! for all
h e H (of course, we may choose P, to be the identity matrix E). Now choose
a transversal T of H in Q, so that each x € Q has a unique expression of the
form x =th for te T and he H. The obvious candidate for an extension
®: Q - GL(n, C) of ¢ is ®(th) = P,p(h); it is clear that ® is a well defined
function that extends ¢. If ' € H and x =the Q (where t € T and h € H),
then

o(xh'x™ Yy = @(thh'h ™)

= Pphh'h P!
= Pio(he(h)eh) P
= O(x)p(h")D(x)".
It follows that if x, y € Q, then
Pleyh'y x7h) = @(xp)p(h)D(xy) 7.
On the other hand,
PLe(yh'y™)x) = @(x)o(yh'y)D(x) ™
= O(x)Q(y)p(h)D(y)D(x) ™

Hence, ®(xy)~! ®(x)®(y) centralizes ¢(h') for all k' € H. Now Schur’s lemma (!)
states that if ¢ is irreducible, then any matrix A centralizing every ¢(h')
must be a scalar matrix. Therefore, ®(xy)™! ®(x)®(y) is a scalar; that is, there
is f(x, y) e C* with

D(x)®(y) = P(xy)f(x, Y)E,

where E is the n x n identity matrix. This equation says that @ defines a
homomorphism Q¢ - PGL(n, C), namely, x — ®(x)Z(n, C).
It will be more convenient for the coming computations to think of projec-
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tive representations 7: Q — PGL(n, C) not as homomorphisms whose values
are cosets mod Z(n, C) but, as they have just occurred above, as matrix-
valued functions T satisfying the equation

T(x)T(y) = f(x, ») T(xy)

for all x, y € 0, where f.: Q x Q — C* is a function. Of course, one can al-
ways obtain this latter form by arbitrarily choosing (matrix) representatives
of the cosets t(x) in PGL(n, C); that is, if n: GL(n, C) » PGL(n, C) is the
natural map, choose T(x) with nT(x) = t(x). We always choose the identity
matrix E as the representative of t(1); that is, T(1) = E.

GL(n, C)
T T

Q"—— PGL(n,C)

Lemma 7.62. Let t: Q —» PGL(n, C) be a projective representation. If T: Q —
GL(n, C) is a matrix-valued function of 1, that is, T(x)T(y) = f.(x, y) T(xy),
then f, is a factor set. If T’ is another matrix-valued function of 1, so that
T'(xX)T'(y) = g.(x, Y)T'(xy), then f.g7' is a coboundary. Therefore, © deter-
mines a unique element [ f,] € M(Q).

Remark. This result is the reason factor sets are so called.

Proof. Since T(1) = E, we have f,(1, y) = 1 = f.(x, 1), while the cocycle iden-
tity follows from associativity: T(x(yz)) = T((xy)z).

Since nT(x) = t(x) = nT'(x)for all x € Q, T(x)T"'(x)™* = h(x)E, where h(x) €
C*. Itis easy to see, asin Lemma 7.31, that £.(x, ¥)g.(x, )™ = h(»)h(xy)  h(x);
that is, f,g7* is a coboundary.

Schur proved, for every finite group Q, that there is a “cover” U with
Q = U/M such that every projective representation of Q determines an ordi-
nary representation of U; moreover, it turns out that M =~ M(Q) and U is a
central extension of M(Q) by Q. The reader can now see why M(Q) is of
interest; for example, if M(Q) = 1, then U = Q, and every projective represen-
tation of Q gives a representation of Q itself. We now begin the proof of these
assertions.

Definition. Let v: U — Q be a surjective homomorphism with kernel K, and
assume that U is a central extension of K by Q. If t: Q - PGL(n,C) is a
projective representation, then t can be lifted to U if there exists a homomor-
phism % making the following diagram commute;

U——V—>Q

7 T
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We say that U has the projective lifting property if every projective repre-
sentation of Q can be lifted to U.

By Theorem 7.30, the elements of the central extension U may be viewed

as ordered pairs (a, x) € K x Q, where K = ker v. With this understanding,

_can be lifted to U if and only if n%(a, x) = tv(a, x) = 7(x) for all (a, x) € U. As

usual, we replace t by a matrix-valued function T; the equation n%((a, x)) =
7(x) in PGL(n, C) is now replaced by a matrix equaton in GL(n, C):

(a, x) = p(a, x)T(x)

for some function u: U — C*, where U = K x Q.

Definition. If K and A4 are groups with A4 abelian, then
Hom(K, A) = {all homomorphism K — A}.

If ¢, ¥ e Hom(K, A), define py: K — 4 by oy x — ¢(x) + ¢(x) for all x e
K; note that ¢y is a homomorphism because A is abelian. It is easy to see
that Hom(K, A4) is an abelian group under this operation.

In particular, if K is also an abelian group, define its character group
K* = Hom(K, C*).

Since C* is a multiplicative group, it is more convenient to write K* as a
multiplicative abelian group: if a € K and ¢, y € K*, then ¢y: a — @(a)y(a).
We shall prove, in Theorem 10.56, that K =~ K* for every finite abelian
group K.

If U is any central extension of Q with kernel K, define a function §: K* —
H?(Q, C*) = M(Q) as follows. By Theorem 7.34, U corresponds to an ele-
ment [e] € H*(Q, K), where e: Q x Q — K is a factor set, and U consists of
all (a, x) € K x Q, where (a, x)(b, y) = (abe(x, y), xy). If ¢ € K¥, it is routine to
check that the composite g o e: Q x Q — C™ is a factor set, and so [p o e] €
H?(Q, C*). Moreover, if e and e’ are equivalent factor sets, then ¢ o e and
@ o ¢ are also equivalent: if e'(x, y) = e(x, y)h(y)h(xy) " h(x), then

@oe(x,y) = ¢oelx y)oh(y)ph(xy) " oh(x).

Definition. Let U be a central extension of K by Q. If e: Q@ x Q — K is a factor
set of U, then the transgression 6 = 6Y is the homomorphism §: K* — M(Q)
defined by d(¢) = [¢ o €].

The preceding discussion shows that the transgression does not depend on
the choice of factor set e arising from the central extension U.

Lemma 7.63. Let U be a central extension of K by Q. Then the transgression
0: K* — M(Q) is surjective if and only if U has the projective lifting property.

Proof. By Theorem 7.34, the central extension U of K by Q determines [¢] €
H?(Q, K), where e: Q x Q — K is a factor set. The strategy is to show that if
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7: Q - PGL corresponds to a matrix-valued function T with T'(x)T(y) =
fi(x, ¥)T(xy), then t can be lifted to U if and only if [ f,] € im J; that is, there

is o € K* with §(p) = [p o €] = [ f.].
If [ f,] € im 6, then, for all x, y € Q, there is ¢ € K* and h: Q — C* with

) @ o e(x, y) = f,(x, Y)h(y)h(xy) ™ h(x).

As in Theorem 7.30, regard the elements of U as ordered pairs (a, x) € K x Q.
Define 7: U — GL(n, C) by

T(a, x) = p(a)h(x) T(x).
We compute:
((a, x) (b, y)) = T((abe(x, y), xy))

= olabe(x, y)h(xy) T(xy)

= @(ab)o o e(x, y)h(xy)f.(x, Y) T(x)T(y).
On the other hand, since C* is abelian,

T((a, x))T((b, ¥)) = @(@h(x) T(x)@(b)h(y) T(y)
= @(ab)h(x)h(y) T(x) T(y).

By (3), T is a homomorphism. But tv(a, x) = t(x) and ni(a, x) = ne(a)h(x)T(x)
= 1 T(x) = 7(x), and so 7 can be lifted to U.

Conversely, assume that 7 can be lifted to U: there is a homomorphism
7: U - GL(n, C) and a function u: K x Q —» C* with

T(a, x) = ula, x) T(x)

for all' ae K and x € Q. Since ¥ is a homomorphism, we may evaluate
T(a, x)%(b, y) in two ways: on the one hand, it is

u(a, X)T(x)u(b, Y)T(y);
on the other hand, it is T(abe(x, y), xy), which is
p(abe(x, y), xy) T(xy).
But T(x)T(y) = f.(x, y)T(xy), so that,for alla, be K and x, y € Q,
) p(abe(x, y), xy) = f:(x, y)u(a, x)u(b, y).
If x = y = 1, then (4) gives
p(ab, 1) = p(a, Hu(b, 1);
that is, the function ¢: K — C*, defined by
¢(@) = pla, 1),
lies in the character group K*. Define p: Q — C* by
p(x) = p(1, x).
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Ifa=>b=1in(4), then

ule(x, y), xy) = fi(x, y)p(x)p(y).
Finally, setting b = 1 and x = 1 gives u(a, y) = ¢(a)p(y). Hence

@ o e(x, y)p(xy) = fi(x, y)P(x)p(y),

and so ¢ o e(x, y)f.(x, y)™! is a factor set. Therefore, [f,] = [¢ o €] = 6(¢),
as desired.

Several properties of character groups, proved in Chapter 10, will be used
in the next proof. A (multiplicative) abelian group D is called divisible if every
element d € D has an nth root in D; that is, for every n > 0, there exsts x € D
with x" = d. For example, C* is a divisible group.

Lemma 7.64. Let U be a central extension of K by Q. Then the transgression
0: K* — M(Q) is injective if and only if K < U'.

Proof. We first show that if ¢ € K* and ¢(K n U’') = 1, then 6(¢) = [¢ o €]
=1 in M(Q). The second isomorphism theorem gives K/K n U’ = KU'/U".
Define y: KU'/U' — C* by y(aU’) = ¢(a) for all a € K; y is a well defined
homomorphism because K n U’ < ker ¢. But KU'/U’ is a subgroup of the
abelian group U/U’, so that the injective property (Theorem 10.23) of the
divisible group C* gives a homomorphism ¥: U/U’ — C* extending . Now,
forall x,y € Q,

P((1, ) UYL, pU) = ({1, x)(1, x)U")
= Y¥((e(x, ), xy)U)
= o(e(x, Y)¥((1, xy)U").
Define h: Q — C* by h(x) = ¥((1, x)U’). A routine calculation shows that

@ o e(x, y) = h(y)h(xy) " h(x),

so that §(¢) = [0 e] = 1 in M(Q). Since J is injective, ¢ = 1. But Theorem
10.58 shows that if K~ U’ < K, then there exists ¢ € K* with ¢ % 1 and
KU’ <ker ¢. We conclude that K n U’ = K; that is, K < U".

Conversely, if ¢ € ker 6, then 1 = 6(¢) = [ o €], where e is a factor set of
the extension U of K by Q. Thus, ¢ o e is a coboundary: there is a function
h: Q —» C* with h(1) = 1 such that, for all x, y € @,

@ o e(x, y) = h(y)h(xy) " h(x).

If we define @: U — C* by ®(a, x) = ¢(a)h(x), then a routine calculation shows
that @ is a homomorphism with ®|K = ¢. As C* is abelian, U’ < ker @, and
so U'n K < ker ¢. The hypothesis K < U’ gives U' n K = K, and so ¢ is
trivial; that is, 0 is injective.
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Definition. If Q is a group, then a cover (or representation group) of Q is a
central extension U of K by Q (for some abelian group K) with the projective
lifting property and with K < U".

The following lemma will be used in proving the existence of covers. It
follows from the preceding two lemmas that if a cover U of a finite group Q
exists, where U is a central extension of K by Q, then K = M(Q).

Lemma 7.65. If Q is a finite group, then the subgroup B*(Q, C*) has a finite
complement M = M(Q) in Z*(Q, C*).

Proof. We first show that B%(Q, C*) is a divisible group. If f € B%(Q, C*),
then there is h: Q — C* with k(1) = 1 and, for all x, y € Q,

f(x, ) = h(y)h(xy)~ h(x).

For n > 0 and each x € Q, let k(x) be an nth root of A(x) with k(1) = 1. Then
g: 0 x @ - C*, defined by g(x, y) = k(p)k(xy)"'k(x), is a coboundary with
g" = f. By Corollary 10.24, B*(Q, C*) has a complement M in Z*(Q, C*).
But M = Z%(Q, C*)/B%(Q, C*)= M(Q), which is finite, by Theorem 7.60. £

Theorem 7.66 (Schur, 1904). Every finite group Q has a cover U which is a
central extension of M(Q) by Q.

Proof. Let M be a complement of B%(Q, C*) in Z%(Q, C*), as in the lemma;
note that the elements of M are factor sets Q x Q — C*. Define K = M*. We
first define a certain factor set s: Q x Q — M*, and then construct the desired
central extension from it.

For each (x, y) € @ x Q, define s(x, y): M — C* by f +> f(x, y); thus, s(x, y)
€ M*, and there is a function s: @ x Q — M* given by (x, y) > s(x, y). Now s
satisfies the cocycle identity: for all x, y, z € Q.

s(v, 2)s(ey, 27t s(x, y2)sx, Y7 f e £, 2)f (xp, 2)7H (6, y2)f(x, 9) 7

and the last term is 1 because every f € M is a factor set. Similarly, s(1, y) =

= s(x, 1) for all x, y € Q because, for example, s(1, y). f > f(1, y) = 1. There-
fore, s € Z2(Q, M*). Let U be the corresponding central extension of M* by Q.
To see that U is a cover of Q, it suffices, by Lemmas 7.61 and 7.62, to prove that
the transgression 6: M** — M(Q) is an isomorphism. If [ f] € M(Q), then
feZ*Q, C*);since Z2 = B> x M, f has a unique expression f = bf’, where
be BYXQ,C*),f"eM,and [f] = [bf'] = [f']- Now u(f’) € C* makes sense
for all u € M* (since f' € M), and it is easy to check that ¢: M** — C*, given
by ¢@: x> u(f’), is a homomorphism. By definition, 6(¢) = [¢ o s]. The
composite pos:Q x Q- M*—>C* sends (X, y) > s(x, ¥} — o(s(x, y)) =
506 y)(f') = f'(x, ) that is, pos=f" and é(p)=[pos]=[/1=[S]
Therefore, § is surjective. But |M**| = |[M(Q)|, since M = M(Q) is finite, and
so 6 must be an isomorphism.
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It should not be surprising that calculations of the multiplier are best done
using techniques of Homological Algebra, Cohomology of Groups, and Rep-
resentation Theory; for example, see Huppert (1967, §V.25) and Karpilovsky
(1987). Indeed, the proofs given above fit into a general scheme (e.g., the
transgression homomorphism § arises in the “five-term exact sequence” as
the map H!(K, C*) — H?*(Q, C*)). When Q is finite, we mention that M(Q)
has been calculated in many cases; sometimes it is 1; sometimes it is not.

ExaMmpLE 7.17. Covers U of a finite group Q need not be unique.

If V is the 4-group, consider the central extensions U of K = Z, by V,
where U = Dg or U = @, the quaternions. In each case, K = Z(U) = U/, so
that U is a central extension with K < U". It follows from Lemma 7.64 that
M(V) # 1. We shall see in Chapter 11 that M(V) = Z,; it will then follow
from Lemma 7.63 that both Dg and Q are (nonisomorphic) covers of V.,

The following discussion comparing two central extensions of a group Q
will be completed in Chapter 11 when we show that covers of perfect groups,
in particular, covers of simple groups, are unique. Consider the commutative
diagram
v

1 ——>Kc_,U 0 1
a[ llq
|l — L c L,V o) ' 1,
u

where both rows are central extensions. We claim that a(K) < L. If a e K,
then 1 = v(a) = pa(a), so that a(a) € ker u = L. Denote the restriction of a by
p: K — L.If f: K — Lis any homomorphism, then there is a homomorphism
B*: L* —» K* given by  +— i o B, where y: L — C* is in L*,

The diagram gives two transgressions: denote them by 6Y: K* — M (Q) and
by 6V: L* » M(Q).

Lemma 7.67. Consider the commutative diagram
v

! —— K =, U Q0 > 1
] —— L L,V > Q > 1

u

whose rows are central extensions. Then §Yp* = 7.

Proof. Let e:Q x Q- K be a factor set of the top extension; we may
assume that U consists of all (a, x) € K x Q with multiplication (a, x) (b, y) =
(abe(x, y), xy) and with v(a, x} = x. Similarly, let /- Q x Q — L be a factor set
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of the bottom extension, so that V consists of all (¢, x) € L x Q with (c, x)(d, y)
= (cdf(x, y), xy) and with u(c, x) = x.

Now a((1, x)) = (h(x), I(x)) € ¥, and x = v(1, x) = pa((1, x)) = p((h(x), [(x))
= I(x); hence, x = I(x), and a(1, x) = (h(x), x). Note also that (a, x) = (a, 1)(1, x)
forallae K and x € Q.

Forallx,ye Q,

a((1, x)(1, y)) = a((e(x, y), x))

= a((e(x, y), 1)(1, xy))

= o((e(x, y), D)a((1, xy))

= (B oe(x, ), D(h(xy), xy),

because a € K is identified with (a, 1) and f((a, 1)) € L. On the other hand,
a((1, x)(1, y)) = a((1, x))a((1, y))

= (h(x), x)(h(y), y)
= (h(x)h(y)f(x, y), xy).

Therefore,
Boe(x, y) = flx, y)h(yp)h(xy)~ h(x);

that is,
[Boel=1[f1eM(Q)

It follows easily, for any y € L*, that [y o o ] = [ o f]. Hence, 6YB*(y)
=0UWopP)y=[YoPoe]l=[yof]=35"()as desired.

Theorem 7.68 (Alperin—Kuo, 1967). If Q is a finite group, e = exp(M(Q)), and
e’ = exp(Q), then ee’ divides | Q.

Proof (Brandis). We first show that if U is a finite group with subgroup
K < U nZ(U), then exp(K) exp(U/K) divides |U/K|. Let A be an abelian
subgroup with K < 4 < U, and let V: U - A4 be the transfer. Since 4 is
abelian, K < U’ < ker V, so that u € K implies V(u) = 1. By Theorem 7.47, if
u e Z(U), then V(u) = u". Therefore, ifu € K < U’ n Z(U), then x" = 1, and so
e = exp(K) divides n = [U: A] = [U/K : A/K]. Hence, e|4/K| divides |U/K|.
In particular, this holds for all cyclic subgroups A/K < U/K (for |U/K| does
not depend on n). But ¢’ = exp(U/K) divides | 4/K| for all cyclic A/K, and so
ee’ divides [U/K]|.

If U is a cover of Q, then M(Q) =~ K < Z(U), for U is a central extension.
Now K < U’, by definition of cover, so that K < U’ Z(U). By the first
paragraph, exp(K) exp(U/K) divides |U/K|. But K = M(Q) and U/K = Q,
and this gives the result.

We remark that Schur proved that if e = exp(M(Q)), then e? divides |Q|.
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Theorem 7.69. If every Sylow subgroup of a finite group Q is cyclic, then
M@ =1

Proof. For such a group, exp(Q) = |Q|. By Theorem 7.68, exp(M(Q)) = 1, and
so M(Q) =1.

Corollary 7.70.

(i) For everyn>1, M(Z,) = 1.
(i) If Q has squarefree order, then M(Q) = 1.

There is a more general result which implies Theorem 7.69: if p is a prime
divisor of |Q| and P is a Sylow p-subgroup of Q, then the p-primary compo-
nent of M(Q) can be imbedded in M(P).

We shall return to the Schur multiplier in Chapter 11, for it is also related
to presentations of groups.

Derivations

We again consider general data (Q, K, §) consisting of a group Q, an (addi-
tive) abelian group K, and a not necessarily trivial homomorphism 8: Q —
Aut(K) giving an action of § on K.

Definition. Given data (Q, K, 8), a derivation (or crossed homomorphism) is a
function d: Q — K such that

d(xy) = xd(y) + d(x).
The set Der(Q, K, ) of all derivations is an abelian group under the follow-

ing operation: ifd, d' € Der(Q, K, ), thend + d': x — d(x) + d'(x). In partic-
ular, if 8 is trivial, then Der(Q, K) = Hom(Q, K).

ExampPLE 7.18. Let data (Q, K, ) be given. For fixed a € K, the function
d,: Q = K, defined by x — a — xa is easily checked to be a derivation: it is
called the principal derivation determined by a.

ExaMPLE 7.19. Let G be an extension realizing data (Q, K, ), so that G con-
sists of all (@, x) e K x Q with (a, x) + (b, y) = (a + xb + f(x, y), xy) for a
factor set f. If y: G— G is a stabilizing automorphism, then y:(a, x) —
(a+d(x), x) for some d(x) € K, and the reader may check that d is a derivation.

Theorem 7.71. Let G be an extension realizing data (Q, K, 8). If A is the
stabilizer of this extension, then

A = Der(0, K, 6).
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Proof. Regard G as all (g,x)e K x Q. As in Example 7.19, if y € 4, then
y: (@, x) — (a + d(x), x), where d is a derivation. Define ¢: A — Der(Q, K, 6)
by ¢(y) =d. Now ¢ is a homomorphism: if y' € 4, then y":(a, x)
(a + d'(x), x), and y'y: (a, x) — (a + d(x) + d'(x), x). We see that ¢ is an iso-
morphism by constructing its inverse: if d is a derivation, define y: G —» G by
y: (@, x) — (a + d(x), x).

Lemma 7.72. Let G be a semidirect product K %,Q, and let y:(a, x) >
(a + d(x), x) be a stabilizing automorphism of G. Then y is an inner auto-
morphism if and only if d is a principal derivation.

Proof. If d is a principal derivation, then there is b € K with d(x) = b — xb.
Hence y(a, x) = (a + b — xb, x). But
(b, 1)+ (@, x) — (b, 1) = (b +a,x)
= + a— xb, x),

so that y is conjugation by (b, 1).
Conversely, if y is conjugation by (b, y), then for all (g, x) € G,

(@ x) = (b, y) + (a, x) — (b, y)
=(b+ya,yx) +(=y7'by7)
= (b + ya — yxy™'b, yxy™).

Since y is stabilizing, we must have yxy™! = x, so that
y(a, x) = (ya + b — xb, x).

Finally, if we choose x = 1, then (g, 1) = y(a, 1) (because y is stabilizing), and
so (a, 1) = (ya, 1). Therefore, ya = a for all a, and so y(a, x) = (@ + b — xb, x)
= (a + d(x), x), where d(x) = b — xb is a principal derivation.

It is easy to see that PDer(Q, K, ), the set of all principal derivations, is a
subgroup of Der(Q, K, 8).

Definition. Given data (Q, K, 8), the first cohomology group H*(Q, K, ) =
Der(Q, K, 8)/PDer(Q, K, 8).

If 6 is trivial, then H!(Q, K, 6) = Hom(Q, K). In particular, if Q is abelian
and K = C*, then H(Q, K) is the character group Hom(Q, C*) = Q*.

Theorem 7.73. If (Q, K, 0) are data and G = H »,Q, then
HY(Q, K, 8) < Aut(G)/Inn(G).

Proof. Let A be the stabilizer of the extension and let ¢: 4 — Der(Q, K, 6)
be the isomorphism of Theorem 7.71. By Lemma 7.72, ¢(4 n1Inn(G)) =
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PDer(Q, K, 6). Hence
HY(Q, K, 8) = Der(Q, K, 8)/PDer(Q, K, 0)
=~ A/(A n Inn(G))
=~ A Inn(G)/Inn(G) < Aut(G)/Inn(G). B
Since we will be dealing with two transversals in the next theorem, let us

write the elements of a semidirect product G = K x,Q not as ordered pairs
(a, x), but rather as sums a + [(x), where [I: Q — G is a transversal.

Theorem 7.74. Let G = K x,Q, where K is abelian, and let C and C' be com-
plements of K in G. If HY(Q, K, 8) = 0, then C and C' are conjugate.

Remark. By Theorem 7.34, the hypothesis is satisfied if H%(Q, K, 8) = 0.

Proof. Since C and C' are complements of K, they are isomorphic: C =
G/K = Q =~ C’; choose isomorphisms I: Q - Cand I': @ —» C". Both C and C’
are also transversals of K in G, and so they determine factor sets f and f’
(where, for example, I(x) + I(y} = f(x, y) + I(xy)). By Lemma 7.31, there is a
function h: Q — K, namely, h(x) = I'(x) — I(x), with

S 9) = f(x, y) = xh(y) — h(xy) + h(x).

Since ! and I’ are homomorphisms, it follows that both f and f* are identi-
cally zero. Thus, f'(x, y) — f(x, y) is identically zero, h(xy) = xh(y) + h(x),
and h is a derivation. The hypothesis H!(Q, K, 8) = 0 says that  is a princi-
pal derivation; that is, there is b € K with

I'(x) — I(x) = h(x) = b — xb.
Thqrefore,
F(x)=b+4 (—xb+ I(x)) =b + I(x) — b;
that is, C' = b + C — b is a conjugate of C.

Definition. If d: Q — K is a derivation, then its kernel is
kerd = {xe Q:d(x) = 0}.

For example, if d, is a principal derivation, then ker d,, is the set of all x € Q
which fix a.

Lemma 7.75, Let (Q, K, 6) be data, and let d: Q — K be a derivation.

(@) d(1) = 0.
(i) d(x!) = —x"td(x).
(ili) ker d is a subgroup of Q.
(iv) d(x) = d(y) if and only if x"'y e ker d.
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Proof. (i) d(1) = d(1- 1) = 1d(1) + d(1).

(i) 0 = d(1) = d(x 1) = x~1d(x) + d(x ).

(iii) 1 e ker d, by (i). If x, y € ker d, then d(x) = 0 = d(y). Hence, d(xy™!) =
xd(y™Y) + d(x) = —xy~td(y) + d(x) = 0. Therefore, xy™* e ker d and so ker d
is a subgroup of Q.

(iv) Now d(x'y) = x71d(y) + d(x ) = x"1d(y) — x"*d(x). Hence, if d(x)
= d(y), then d(x~'y) = 0. Conversely, if d(x~'y) = 0, then x™1d(y) = x"*d(x)
and d(y) = d(x).

The subgroup ker d need not be a normal subgroup.

We are going to use derivations to give another proof of the Schur—
Zassenhaus lemma. Given data (Q, K, 8), it is now more convenient to write
the abelian group K multiplicatively. Assume that an abelian normal sub-
group K has finite index n in a group E, and let [,, ..., I, be a left transversal
of K in G; that is, E = U;’=1 LK. As in Lemma 7.44, if e € E, then there is a
unique «;(e) € K with el; = I ;x;(e), where o is a permutation (depending on e).
Define a;(e} = I ;x(e)l;;}, so that

el, = aj(e)l,;,

and define a function d: E — K by

d(e) = ]j a;(e).

Lemma 7.76 (Gruenberg). Let K be an abelian normal subgroup of finite index
inagroup E, and let L = {l,, ..., ,} be a left transversal of K in E.

(i) If 0: E — Aut(K) is defined by 8,(k) = eke™!, then the function d defined
above is a derivation.
(i) If k € K, then d(k) = k".
(iii) If L is a complement of K in E, then L < ker d.
(iv) If ke K and e € E, then d(k~'ek) = d(k)?d(e)d(k)™*.

Proof. (i) If f € E, then fl; = a;(f)l,;, where 7 is a permutation. Now
e(fl) = eai(f)l; = ea(f)e el
= a;(f)ely = a(f)au(e)ly

since (ef')]; = a;(ef)l,,;, for some permutation w, so that a;(ef) = a;(f)°a,(e).
Since each a;(e) lies in the abelian group K, fore € Eand 1 < i < n, and since
7 is a permutation, it follows that

def) = H aef) = H a(f)a(e)

i=

= (H ai(f)e>(_1jl aﬁ(e)) = d(fYd(e).

Therefore, d is a derivation.
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(ii) If ke K, then K <1 E implies [;*kl; € K. Thus, kl; = I,(I7'kl,) so that
x;(k) = 17k, and the permutation ¢ determlned by k is the identity. But
a(k) = lﬂci(k)l,-‘1 = k, for all i, and so d(k) = []r-; ai(k) = k"

(iii) Recall that el; = I ;x;(e); if e = [, then [jJ; = I,1 for some I, € L, because
L is now assumed to be a subgroup. Hence, x([;}) = 1 = a,(/;) for all i (because
a; is a conjugate of x;), and so d(/;) = 1 for every j.

(iv) First, note that d(k')=d(k)™!, by Lemma 7.75 (ii), because both k™! and
d(k)™! lie in the abelian group K. Now, d(k~tek) = d(ek)* 'd(k™!) = d(ek)d(k™),
because both d(ek) and k™! lie in the abelian group K, and d(ek)d(k™!) =
d(kyd(e)d(k™!) = d(k)*d(e)d(k)™t. B

The definition of the derivation d is reminiscent of the transfer; indeed, it is
now easy to see that d|K is the transfer.
The following proof is due to K. Gruenberg and B.A.F. Wehrfritz.

Theorem 7.77 (= Theorems 7.40 and 7.41). Given data (Q, K, 0) with Q a finite
group, K a finite abelian group, and (|K|, |Q|) = 1, then every extension G of
K by Q realizing the data is a semidirect product; moreover, any two comple-
ments of K in G are conjugate.

Proof. Let E be an extension of K by Q realizing the data and let |Q| = n.
Define L = ker d, where d: Q — K is Gruenberg’s derivation. By Lemma 7.75
(i), L is a subgroup of Q. We claim that L n K = 1. If a € K, then d(a) = a",
by Lemma 7.76 (ii); if a € L, then d(a) = 1, by definition of kernel; hence,
a*=1 for allae L n K.But (|K|, n) = 1, by hypothesis, so that a = 1. Let us
now sed that E = KL. Ife E, thend(e) € K. Slnce (|K|, n) =1, thereiske K
with d{e) = k™", by Exercise 1.31. Hence d(e) = =f(k™1), by Lemma 7.76
(ii), and so ke € L = ker d, by Lemma 7.75 (iv). Therefore, e =k '(ke)e KL,
and E is a semidirect product.

We now show that if Y is another complement of K in E, then Y and L are
conjugate. Note that each of Y and L is a transversal of K in E. Let Y =
{yi,..»yapand L ={l;, ..., L}, and write y; = ¢;]; for ¢; € K. The derivation
determined by L is d(e) = []; a(e); the derivation determined by Y is 6(e) =
[1; «(e), where o;(e) € K and ey; = o;(e)y,;. But

ey = ecily = (ec;e™V)el; = cfaye)l,; = cfafe)cst yois
it follows that t = g, a;(e) = cfae)c,, and
5(6) = [Te) = [ ceale)est.
If we define ¢ = [] ¢;, then c € K and
5(e) = c%d(e)c™?

Since (| K|, n) = 1, there is k € K with ¢ = k", by Exercise 1.31, and so ¢ = d(k),
by Lemma 7.76 (ii). Hence, d(k~'ek) = d(k)°df(e)d(k)™* = c°d(e)c™*, by Lemma
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7.76 (iv). Therefore,
5(e) = d(ktek),

so that L = ker d = k(ker 6)k™! > kYk™, by Lemma 7.75 (iii). But |L| = | Y],
for both are complements of K, and so L = kYk™!.

EXERCISES

7.54. f G = K %,Q, then every transversal [: Q — G has the form I(x) = (d(x), x) for
some d(x) € K. Show that [ is a homomorphism if and only if d is a derivation.

7.55. Give an example of a derivation d: Q — K whose kernel is not a normal sub-
group of Q.

7.56. If 0: Q — Aut(K) is trivial, then H!(Q, K) =~ Hom(Q, K). Conclude that if B is an
abelian group, then H*(B, C*) =~ B*, the character group of B,

7.57. Regard the elements of an extension G realizing data (Q, K, 0) as ordered pairs
(a,x) e K x Q,letl: Q — G be the transversal I(x) = (0, x),and let /1 @ x Q = K
be the corresponding factor set. If d: G — K is Gruenberg’s derivation, show
that d(a, x) = na + Y, .o f(x, y), where n = |Q|.

7.58. Let Z; = (a), let Z, = (x), and define an action 6 of Z, on Z; by a* =a™.
Show that HY(Z,, Z,, 0) = 0. (Hint. S3 = Z4 % Z,, and Aut(S;)/Inn(S;) = 1.)
7.59. Let ¢: G— G be a homomorphism, and let G act on itself by conjugation: if
g, x € G, then g* = xgx ™. Show that d: G — G, defined by d(g) = gp(g) ™!, satis-
fies the equation
d(gg’) = d(g')d(g).
(Thus, d would be a derivation if G were abelian. This function d has already
arisen in Exercise 1.50 and in the proof of Theorem 7.33.)

Given data (Q, K, 8), there are cohomology groups H'(Q, K, 0) for alli > 0
and homology groups H{(Q, K, 8) for all i > 0. Cohomology of Groups is
the interpretation and computation of these groups. We have already
discussed the cohomology groups HY(Q, K, §) for i=1, 2. The group
H°(Q, K, §) consists of fixed points:

H°(Q, K,8)={ae K:xa=aforall xe Q};

the group H3(Q, K, 0) is involved with obstructions: what sorts of data can
extensions with nonabelian kernels realize. Now Hy(Q, K) is the maximal
Q-trivial quotient of K. If K = Z and @ is trivial, then the first homology
group H,(Q, Z) ~ Q/Q' and, when Q is finite, the second homology group
H,(Q, Z) = M(Q). There are also some standard homomorphisms between
these groups, one of which, corestriction, generalizes the transfer. A funda-
mental idea is to construct the group ring ZG of a group G and to observe
that G acting on an abelian group K corresponds to K being a ZG-module.
Indeed, our notation HY(Q, K, 6) is usually abbreviated to H'(Q, K) by
assuming at the outset that K is a ZG-module.



CHAPTER 8

Some Simple Linear Groups

The Jordan—Holder theorem tells us that once we know extensions and
simple groups, then we know all finite groups. There are several infinite
families of finite simple groups (in addition to the cyclic groups of prime
order and the large alternating groups), and our main concern in this chapter
is the most “obvious” of these, the projective unimodular groups, which arise
naturally from the group of all matrices of determinant 1 over a field K. Since
these groups are finite only when the field K is finite, let us begin by examining
the finite fields.

Finite Fields

Definition. If K is a field, a subfield of K is a subring k of K which contains
the inverse of every nonzero element of k. A prime field is a field k having no
proper subfields.

Theorem 8.1. Every field K contains a unique prime subfield k, and either
k= Qorkz=Z, for some prime p.

Proof. If k is the intersection of all the subfields of K, then it is easy to check
that k is the unique prime subfield of K. Define y: Z — K by y(n) = nl, where
1 denotes the “one” in K. It is easily checked that y is a ring homomorphism
with im y < k. Since K is a field, im y is a domain and ker y must be a prime
ideal in Z. Therefore, either ker y = 0 or ker y = (p) for some prime p. In the
first case, im y = Z and k contains an isomorphic copy F of the fraction field
of Z, namely, Q; as k is a prime field, k = F = Q. In the second case, k
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contains an isomorphic copy E of Z/ker y = Z,, which is a field; as k is.a
prime field, k = E= 7.

Definition. If K is a field with prime field k, then K has characteristic 0 if
k = Q and K has characteristicp ifk = Z,,.

Observe that if K has characteristic p > 0, then pa =0 foralla € K.

Corollary 8.2. If K is a finite field, then |K| = p" for some prime p and some
nx>l

Proof. If k is the prime field of K, then k ¢ Q because K is finite; therefore,
k=7, for some prime p. We may view K as a vector space over Z, (the
“vectors” are the elements of K, the “scalars” are the elements of k, and the
“scalar multiplication” aa, for a € k and « € K, is just their product in K); if K
has dimension n, then | K| = p".

There exist infinite fields of prime characteristic; for example, the field of all
rational functions over Z,, (i.e., the fraction field of Z,[x]) is such a field.

The existence and uniqueness of finite fields are proven in Appendix VI: for
every prime p and every integer n > 1, there exists a field with p" elements
(Theorem VI1.19); two finite fields are isomorphic if and only if they have the
same number of elements (Theorem VI.20). Finite fields are called Galois
fields after their discoverer; we thus denote the field with ¢ = p" elements by
GF(q) (another common notation for this field is F,), though we usually
denote GF(p) by Z,,.

Recall that if E is a field, k is a subfield, and n € E, then k(=), the subfield of
E obtained by adjoining n to k, is the smallest subfield of E containing k and
7; that is, k(n) is the intersection of all the subfields of E containing k and =.

Definition. A primitive element of a finite field K is an element = € K with
K = k(m), where k is the prime field.

Lemma 8.3. There exists a primitive element 7 of GF(p"); moreover, = may be
chosen to be a root of an irreducible polynomial g(x) € Z,[x] of degree n.

Proof. Let g = p" and let K = GF(q). By Theorem 2.18(ii), the multiplicative
group K™ is cyclic; clearly, any generator 7 of K* is a primitive element of K
(there can be primitive elements of K that are not generators of K*). By
Lagrange’s theorem, 197! = 1 (for |K*| = g — 1), and so 7 is a root of f(x) =
x?7! — 1, Factoring f(x) into a product of irreducible polynomials in k[x]
(where k = 7, is the prime field) provides an irreducible g(x) € k[x] having =
as a root. If g(x) has degree d, then k(n) is a subfield of K with [k(z): k] =d
(Theorem VI.21 in Appendix VI); therefore, |k(r)| = p%. But k(z) = K (be-
cause 7 is a primitive element) andsod =n. B
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Theorem 8.4. If p is a prime, then the group Aut(GF(p")) of all field automor-
phisms of GF(p") is cyclic of order n.

Proof. Let k be the prime field of K = GF(p"). If = is a primitive element of
K, as in the lemma, then there is an irreducible polynomial g(x) € k[x] of
degree n having = as a root. Since every ¢ € Aut(K) must fix k pointwise
(because ¢(1) = 1), Lemma 5.1 shows that ¢(n) is also a root of g(x). As
K = k(n), Lemma 5.2 shows that ¢ is completely determined by ¢(n). It
follows that |Aut(K)| < n, because g(x), having degree n, has at most n roots.
The map o: K — K, given by o(2) = «?, is an automorphism of K. If 1 <i<n
and o' = 1, then « = a” for every « € K. In particular, 77" ~! = 1, contra-
dicting = having order p" — 1 in K*. Therefore, (o) < Aut(K) is cyclic of
order n, and so Aut(K) = (o).

We remark that Aut(GF(p”)) is the Galois group Gal(GF(p")/Z,), for
every ¢ € Aut(GF(p")) fixes the prime field Z, pointwise.

The General Linear Group

Groups of nonsingular matrices are as natural an object of study as groups
of permutations: the latter consists of “automorphisms” of a set; the former
consists of automorphisms of a vector space.

Definition. If V is an m-dimensional vector space over a field K, then the
general linear group GL(V) is the group of all nonsingular linear transforma-
tions on V (with composite as operation).

If one chooses an ordered basis {e,, ..., ¢,} of V¥, then each T e GL(V)
determines a matrix A = [o;;], where Te; = ) ; ae; (the jth column of A con-
sists of the coordinates of Te;). The functlon T+ A is an isomorphism
GL(V) - GL(n, K), where GL(m, K) is the multiplicative group of all m x m
nonsingular matrices over K. When K = GF(g), we may write GL(m, q)
instead of GL(m, K).

Theorem 8.5. |GL(m, q)| = (g™ — 1)(@™ — ¢)...(g™ — q"").

Proof. Let V be an m-dimensional vector space over a field K, and let
{e,..., e,} be an ordered basis of V. If # denotes the family of all ordered
bases of V, then there is a bijection GL(V)— £: if T is nonsingular, then
{Te,,..., Te,} is an ordered basis of V; if {v,, ..., v,} is an ordered basis,
then there exists a unique nonsingular T with Te; = v; for all i.

Let {vy, ..., v,,} be an ordered basis of V. Since there are g™ vectors in V,
there are g™ — 1 candidates for v, (the zero vector is not a candidate). Having
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chosen v,, the candidates for v, are those vectors in V not in (v,), the
subspace spanned by v,; there are thus g™ — ¢ candidates for v,. More gener-
ally, having chosen an independent set {v,, ..., v;}, we may choose v;,, to be
any vector not in {v,,..., ;, and so there are g™ — ¢ candidates for v;,,.
The result follows.

Notation. If V is an m-dimensional vector space over K = GF(g), if t is a
nonnegative integer, and if 7 is a primitive element of K, then

M(t) = {4 € GL(V): det 4 is a power of n}.

Lemma 8.6. If Q = |GL(m, q)| and if t is a divisor of q — 1, then M(t) is a
normal subgroup of GL(m, q) of order Q/t. Moreover, if ¢ — 1 = p; ...p,, where
the p; are (not necessarily distinct) primes, then the following normal series is
the beginning of a composition series:

GL(m, g) = M(1) > M(p,) > M(p,p;) > > M(g—1) > 1.

Proof. Let K = GF(g). Use the correspondence theorem in the setting
det: GL(m, q) » K*.

If t divides ¢ — 1 = | K*|, then the cyclic subgroup (zn*) of K* is normal (K*
is abelian), has order (g — 1)/t, and has index ¢. Since M (t) is the subgroup of
GL(m, q) corresponding to {(x'}, it is a normal subgroup of index ¢ hence
order Q/t. Now |M(p; ... pi)/M(py ... Pixs)l = /Py .. PPy .. Pis1) = Pivi;
since the factor groups have prime order, they are simple.

Definition. A matrix (or linear transformation) having determinant 1 is called
unimodular.

The subgroup M(g — 1) consists of all the unimodular matrices, for
il = 1.

Definition. If V is an m-dimensional vector space over a field K, then the
special linear group SL(V) is the subgroup of GL(V) consisting of all the
unimodular transformations.

Choosing an ordered basis of V gives an isomorphism SL(V) — SL(m, K),
the group of all unimodular matrices. If K = GF(q), we may denote SL(m, K)
by SL(m, g).

The following elementary matrices are introduced to analyze the structure
of SL(m, K).

Definition. Let 1 be a nonzero element of a field K, and let i # j be integers
between 1 and m. An elementary transvection B;(1) is the m x m matrix differ-
ing from the identity matrix E in that it has A as its ij entry. A transvection is
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a matrix B that is similar to some By(A); that is, B is a conjugate of some By(4)
in GL(m, K).

Every transvection is unimodular. Note that the inverse of an elementary
transvection is another such: By(4)™! = B;(—4); it follows that the inverse of
any transvection is also a transvection.

If A € GL(m, K), then B, (})A is the matrix obtained from A4 by adding A
times its jth row to its ith row.

Lemma 8.7. Let K be a field. If AeGL(m, K) and det A = p, then A =
UD(p), where U is a product of elementary transvections and D =
diag{1, 1,..., 1, u}.

Proof. We prove, by induction on t < m — 1, that 4 can be transformed, by
a sequence of elementary operations which add a multiple of one row to
another, into a matrix of the form

E, =x
A ="
-5 ¢

where E, is the t x t identity matrix.

For the base step, note that the first column of 4 is not zero (4 is non-
singular). Adding some row to the second row if necessary, we may assume
that a,; # 0. Now add o7}(1 — «,,) times row 2 to row 1 get entry 1 in the
upper left corner. We may now make the other entries in column 1 equal
corner. We may now make the other entries in column 1 equal to zero by
adding suitable multiples of row 1 to the other rows, and so A has been
transformed into A4,.

For the inductive step, we may assume that 4 has been transformed into a
matrix A4, as displayed above. Note that C is nonsingular (for det 4, = det C).
Assuming that C has at least two rows, we may further assume, as in the base
step, that its upper left corner 7,4 ,+; = 1 (this involves only the rows of C,
hence does not disturb the top t rows of 4,). Adding on a suitable multiple of
row t + 1 to the other rows of 4, yields a matrix 4,,,.

We may now assume that 4 has been transformed into

5 ]
0 u
where u e K and u # 0. Adding suitable multiples of the last row to the other
rows cleans out the last column, leaving D ().

In terms of matrix multiplication, we have shown that there is a matrix P,
which is a product of elementary transvections, with P4 = D(y). Therefore,

A = P71D(p); this completes the proof because the inverse of an elementary
transvection is another such. 3
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Theorem 8.8.

(i) GL(m, K) is a semidirect product of SL(m, K) by K*.
(i) SL(m, K) is generated by elementary transvections.

Proof. (1) We know that SL < GL (because SL = ker det), and it is easy to see
that A = {D(p): pe K*} (= K*)is a complement of SL.

(i) By (i), each A € GL has a unique factorization A = UD(p), where
UeSL, D(p) e A, and det A = u. Therefore, 4 is unimodular if and only if
A = U. The result now follows from Lemma 8.7.

Notation. If V is an m-dimensional vector space over a field K, let Z(V) denote
the subgroup of GL(V) consisting of all scalar transformations, and let SZ(V)
be the subgroup of Z(V) consisting of all unimodular scalar transformations.

Let Z(m, K) = Z(V) denote the subgroup of all m x m scalar matrices oE,
and let SZ(m, K) = SZ(V) denote the subgroup of all «E with o™ = 1. If
K = GF(g), we may also denote these subgroups by Z(m, g) and SZ(m, g),
respectively.

Theorem 8.9.

(i) The center of GL(V) is Z(V).
(i) The center of SL(m, K) is SZ(m, K).

Proof. (i) If T € GL(V)is not a scalar transformation, then there is v € V with
{v, Tv} independent; extend this to a basis {v, Tv, u3, ..., u,,} of V. It is easy to
see that {v,v + Tv, us, ..., u,} is also a basis of ¥, so that there is a (non-
singular) linear transformation S: V — V with Sv =v, S(Tv) = v + Tv, and
Su; = u; for all i > 3. Now T and § do not commute, for TS(v) = Tv while
ST(v) = v + TV. Therefore, T ¢ Z(GL(V)), and it follows that Z(GL(V)) =
ZV).

(i) Assume now that T e SL(V), that T is not scalar, and that S is the
linear transformation constructed in (i). The matrix of S relative to the basis
{v, Tv, us, ..., u,} is the elementary transvection B, ,(1), so that det(S) =1
and S € SL(V). As in (i), T ¢ Z(SL(V)); that is, if T € Z(SL(V)), then T = «E
for some « € K. Finally, det(aE) = «™, and so «™ =1, so that SZ(V) =
Z(SL(V)).

Theorem 8.10. |SZ(m, q)| = d, whered = (m, q — 1).

Proof. Let K = GF(g). We first show, for all « € K*, that a™ = 1 if and only
if «? = 1. Since d divides m, a? = 1 implies a™ = 1. Conversely, there are
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integers a and b with d = am + b(q — 1). Thus

of = gam+bla—1) — ymay@-1b oame,

because 97! = 1. Hence o™ = 1 gives | = a™ = a

It follows that SZ(m, @) = {a € K*: «™ = 1} = {a € K*: a? = 1}. Therefore,
if 7 is a generator of K*, then SZ(m, q) = (x"*> and hence |SZ(m, q)| =
d.

Our preceding discussion allows us to lengthen the normal series in
Lemma 8.6 as follows: -

GL(m, q) > M(p,) > M(p,p,) > - > SL(m, q) > SZ(m, q) > 1.

The center SZ(m, q) is abelian and so its composition factors are no secret
(they are cyclic groups of prime order, occurring with multiplicity, for all
primes dividing g — 1). We now consider the last factor group in this series.

Definition. If V is an m-dimensional vector spaces over a field K, the projec-
tive unimnodular group PSL(V) is the group SL(V)/SZ(V).

A choice of ordered basis of V induces an isomorphism ¢:SL(V) X
SL(m, K) with @(SZ(V)) = SZ(m, K), so that PSL(V) =~ SL(m, K)/SZ(m, K).
The latter group is denoted by PSL(m, K). When K = GF(g), we may denote
PSL(m, K) by PSL(m, g).

We shall see, in Chapter 9, that these groups are intimately related to
projective geometry, whence their name.

Theorem 8.11. If d = (m, g — 1), then

IPSL(m, g)| = (g™ — 1)(g" — q)...(¢" — ¢""")/d.

Proof. Immediate from Theorems 8.5 and 8.10.

'EXERCISES
8.1. Let H <« SL(2, K), and let A € H. Using the factorization 4 = UD(p) (in the
proof of Theorem 8.8), show that if 4 is similar to {a g], then there is z € K*
Y

-1
such that H contains [a # 'B].
uy 6
8.2. Let B = By(1) e GL({m, K) = G. Prove that Cs(B) consists of all those nonsingu-
lar matrices 4 = [a;;] whose ith column, aside from a;;, and whose jth row, aside

from a;;, consist of all 0s.
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8.3. Let A < GL(m, K) be the subgroup of all nonsingular diagonal matrices.
(i) Show that A is an abelian self-centralizing subgroup; that is, if 4 € GL(m, K)
commutes with every D € A, then 4 € A.
(i) Use part (i) to give another proof that Z(GL(m, K)) = Z(m, K) consists of the
scalar matrices.

PSL(2, K)

In this section, we concentrate on the case m = 2 with the aim of proving that
PSL(2, q) is simple whenever q > 3. We are going to see that elementary
transvections play the same role here that 3-cycles play in the analysis of the
alternating groups.

Definition. A field K is perfect if either it has characteristic O or it has prime
characteristic p and every A € K has a pth root in K.

If K has prime characteristic p, then the map F: K — K, given by 1 A2, is
an injective homomorphism. If K is finite, then F must be surjective; that is,
every finite field is perfect. Clearly, every algebraically closed field K is per-
fect. An example of a nonperfect field is K = Z (), the field of all rational
functions with coefficients in Z,,; the indeterminate x does not have a pth root
in Z ,(x).

Lemma 8.12. Let K be a field which either has characteristic # 2 or is perfect
of characteristic 2. If a normal subgroup H of SL(2, K) contains an elementary
transvection B,,(4) or B,;(A), then H = SL(2, K).

Proof. Note first that if B;,(1) € H, then UB,, (W)U = B,,(— ), where

[

By Theorem 8.8(ii), it suffices to prove that H contains every elementary
transvection. Conjugate B, ,(4) by a unimodular matrix:

[a B:l[l 1}[5 —B:l_[l—iocy Ao? :l
y 6|0 1) -y o« | | =M* 1+ iy

In particular, if y = 0, then « # 0 and this conjugate is B, ,(1a?). Since H is
normal in SL, these conjugates lie in H. Define

= {0} u{ueK:B,(neH}

It is easy to see that I' is a subgroup of the additive group K, and so it
contains all elements of the form A(a? — §2), where «, § € K.
We claim that I" = K, and this will complete the proof. If K has character-
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istic # 2, then each u € K is a difference of squares:

=[5+ D1 - [ - DI~
For each u e K, therefore, there are o, f € K with A7 u = «? — f2, so that
u=Ae?—p?)el,and I' = K. If K has characteristic 2 and is perfect, then

every element in K has a square root in K. In particular, there is o« € K with
A7y = o2, and T contains a? = pu.

The next theorem was proved by C. Jordan (1870) for g prime. In 1893,
after . Cole had discovered a simple group G of order 504, E.H. Moore
recognized G as PSL(2, 8), and then proved thé'simplicity of PSL(2, q) for all
prime powers g > 3.

Theorem 8.13 (Jordan—Moore). The groups PSL(2, q) are simple if and only if
q>3.

Proof. By Theorem 8.11,

@ -Dg*—q ifqg=2",

PSL(2 = i
|PSL(2, g)| {(qz — 1)(¢* — q)/2 if g =p", pan odd prime.

Therefore, PSL(2, 2) has order 6 and PSL(2, 3) has order 12, and there are no
simple groups of these orders.
Assume now that g > 4. It suffices to prove that a normal subgroup H of
SL(2, q) which contains a matrix not in SZ(2, g) must be all of SL(2, g).
Suppose that H contains a matrix

4o a O
-5 &

where o # + 1; thatis, «® # 1.If B = B,,(1), then H contains the commutator
BAB™'A™' = B,,(1 — «™2), which is an elementary transvection. Therefore,
H =SL(2, q), by Lemma 8.12.

To complete the proof, we need only display a matrix in H whose top row
is [o 0], where.a # +1. By hypothesis, there is a matrix M in H, not in
SZ(2, q), and M is similar to either a diagonal matrix or a matrix of the form

0 -1
1 B Y
for the only rational canonical forms for a 2 x 2 matrix are: two 1 x 1 blocks

(i.e, a diagonal matrix) or a 2 x 2 companion matrix (which has the above
form because it is unimodular). In the first case, Exercise 8.1 shows that

cofy sl

since C is unimodular, «f = 1; since M is not in SZ(m, q), o # B. It follows
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that o % 4+ 1, and C is the desired matrix. In the second case, Exercise 8.1

shows that H contains
0 - p“l:]
D= .
[u B

If T = diag{a™!, o}, where « is to be chosen, then H contains the commutator
g

_ -1 a2 0

R PR |

We are done if a™2 # =+ 1; that is, if a* # 1. If ¢ > 5, then such an « exists, for
a field contains at most four roots of x* — 1. If g = 4, then every pe K
satisfies the equation x* — x = 0, so that « 5 1 implies a* # 1.

Only the case GF(5) = Z remains. Consider the factor § occurring in the
lower left corner A = pf(a® — 1) of U. If B # 0, choose a = [2] € Zs; then
a? —1+#0and U = B,,(%). Hence H contains the elementary transvection
U? = B,,(—24) and we are done. If § = 0, then

0 —ut
= H.
b LA 0 ]6

Therefore, the normal subgroup H contains

p o =yt —pt
* *

By, ()DB,(—v) = |:

for all ve Zs. If v = 2u7%, then the top row of this last matrix is [2 0], and
the theorem is proved.

Corollary 8.14. If K is an infinite field which either has characteristic # 2 or
is perfect of characteristic 2, then PSL(2, K) is a simple group.

Proof. The finiteness of K in the proof of the theorem was used only to satisfy
the hypotheses of Lemma 8.12.

Remark. In Theorem 9.48, we will prove that PSL(2, K) is simple for every
infinite field.

Corollary 8.15. SL(2, 5) is not solvable.
Proof. Every quotient of a solvable group is solvable.

We have exhibited an infinite family of simple groups. Are any of its mem-
bers distinct from simple groups we already know? Using Theorem 8.11, we
see that both PSL(2, 4) and PSL(2, 5) have order 60. By Exercise 4.37, all
simple groups of order 60 are isomorphic:

PSL(2, 4) ~ A, =~ PSL(2, 5).
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If ¢ = 7, however, then we do get a new simple group, for {PSL(2, 7}{ = 168,
which is neither prime nor in!. If we take g = 8, we see that there is a simple
group of order 504; if g = 11, we see a simple group of order 660. (It is known
that the only other isomorphisms involving 4,’s and PSLs, aside from those
displayed above, are Exercise 8.12: PSL(2, 9) & A4, (these groups have order
360); Exercise 9.26: PSL(2, 7) = PSL(3, 2) (these groups have order 168); The-
orem 9.73: PSL(4, 2) = Ag (these groups have order 20, 160).)

EXERCISES

8.4. Show that the Sylow p-subgroups of SL(2, 5) are either cyclic (when p is odd) or
quaternion (when p = 2). Conclude that SL(2, 5) & S;.

8.5. What is the Sylow 2-subgroup of SL(2, 3)?

8.6. (i) Show that PSL(2,2) = S,.
(i) Show that SL(2, 3) & S, but that PSL(2, 3) = A,.

8.7. What are the composition factors of GL(2, 7)?

8.8. Show that if H <« GL(2, K), where K has more than three elements, then either
H < Z(GL(2, K))or SL(2,K) < H.

89. (i) What is the commutator subgroup of GL(2, 2)?
(i) What is the commutator subgroup of GL(2, 3)?
(iii) If ¢ > 3, prove that the commutator subgroup of GL(2, ¢) is SL(2, g).

8.10. Prove, for every field K, that all transvections are conjugate in GL(2, K).

8.11. Let A be a unimodular matrix. Show that 4 determines an involution in
PSL(2, K)ifand only if 4 has trace 0, and that 4 determines an element of order
3in PSL(2, K) if and only if A has trace + 1. (Hint. Use canonical forms.)

8.12. Prove that any two simple groups of order 360 are isomorphic, and conclude
‘that PSL(2, 9) = Ag. (Hint. Show that a Sylow 5-subgroup has six conjugates.)

PSL(m, K) _

The simplicity of PSL(m, K) for all m > 3 and all fields K will be proved in
this section. In 1870, C. Jordan proved this theorem for K = Z,, and L.E.
Dickson extended the result to all finite fields K in 1897, four years after
Moore had proved the result for m = 2. The proof we present, due to E.
Artin, is much more elegant than matrix manipulations (though we prefer
matrices when m = 2).

An m x m elementary transvection B;(4) represents a linear transforma-
tion T on an m-dimensional vector space V over K. There is an ordered basis
{vy,..., v} of V with Tv, = v, for all | # i and with Tv; = v, + Av;. Note that
T fixes every vector in the (m — 1)-dimensional subspace H spanned by all
v F U
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Definition. If V is an m-dimensional vector space over a field K, then a
hyperplane H in V is a subspace of dimension m — 1.

The linear transformation T arising from an elementary transvection fixes
the hyperplane H pointwise. If we ¥ and w ¢ H, then {w) = {uw: pe K} is
a transversal of H in V: the vector space V, considered as an additive group,
is the disjoint union of the cosets H + uw. Hence, every vector ve V has a
unique expression of the form

v=puw+ h, nek, heH.
Lemma 8.16. Let H be a hyperplane in V and let T € GL(V) fix H pointwise. If

we Vand w¢ H, then
T(w) = uw + hq

for some u e K and hy € H. Moreover, given any v e V,
T(@)=pw+h,
for some h' € H.
Proof. We observed above that every vector in V has an expression of the

form Aw + h. In particular, T(w) has such an expression. If v e ¥, then v =
Aw + h” for some 4 € K and h” € H. Since T fixes H,

T() = AT(w) + h" = A(uw + ho) + h”
=pu(Aw+ h")+ [(1 — Wh" + Ahy]
=puv +h.

The scalar u = u(T) in Lemma 8.16 is thus determined uniquely by any T
fixing a hyperplane pointwise.

Definition. Let T € GL(V) fix a hyperplane H pointwise, and let x = p(T). If
u # 1, then T is called a dilatation; if y = 1 and if T # 1, then T is called a
transvection.

The next theorem and its corollary show that the transvections just defined
are precisely those linear transformations arising from matrix transvections.

Theorem 8.17. Let T € GL(V) fix a hyperplane H pointwise, and let yu = u(T).

(i) If T is a dilatation, then T has a matrix D(u) = diag{l, ..., 1, u} (relative
to a suitable basis of V).

(i) If T is a transvection, then T has matrix B,,(1) (relative to a suitable basis
of V). Moreover, T has no eigenvectors outside of H in this case.

Proof. Every nonzero vector in H is an eigenvector of T (with eigenvalue 1);
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are there any others? Choose w e V with w ¢ H; since T fixes H pointwise,
Tw=puw+ h, where he H.
Ifve Vandov¢ H, the lemma gives
To=puv +

where h' = (1 — p)h” + Ahy € H. If v is an eigenvector of T, then Tv = fv for
some f € K. But Tv = fv if and only if f = y and Ah = (u — 1)h": sufficiency
is obvious; conversely, if fv = uv + b, then (f — wo=h"e (>N H = 0.

(i) If T is a dilatation, then p — 150 and h” = A(u — 1)"*h. It follows
that v =w + (¢ — 1)"*h is an eigenvector of T for the eigenvalue u. If
{vy, ..., 1} is a basis of H, then adjoining v gives a basis of ¥, and the
matrix of T relative to this basis is D(u) = diag{L, ..., 1, u}.

(i) If T is a transvection, then u = 1. Choose w ¢ H so that Tw = w + h,
where he Hand h # 0. If v ¢ H is an eigenvector of T, thenav = Tov=v + h
for some « € K; hence, (« — l)ve {vDNnH=0,sothata =1 and To=1v. It
follows that T = 1,, contradicting the proviso in the definition of transvec-
tion excluding the identity. Therefore, T has no eigenvectors outside of H. If
{h, hy,..., h,} is a basis of H, then adjoining w as the first vector gives an
ordered basis of ¥, and the matrix of T relative to this basis is B;,(1).

Corollary 8.18. All transvections in GL(m, K) are conjugate.

Proof. Since transvections are, by definition, conjugates of elementary trans-
vections, it suffices to prove that any two elementary transvections are conju-
gate to B,,(1). Let V be an m-dimensional vector space over K with basis
{v1,..1, 0}, and let T be the linear transformation with Tv, = v, + v, and
Ty, =v,forall > 2.1fi % jand 1 5 0, define a new ordered basis {,, ..., t,}
of V as follows: put v, in position i, put A7'v, in position j, and fill the
remaining m — 2 positions with v, ..., v,, in this order (e.g, if m =5, i = 2,
and j =4, then {u,, ..., us} = {v3, vy, vy, A7 v,, v5}). The matrix of T rela-
tive to this new ordered basis is easily seen to be B;;(4). Therefore B,, (1) and
B;;(1) are similar, for they represent the same linear transformation relative to
different choices of ordered basis.

If Te GL(V) is a transvection fixing a hyperplane H and if w ¢ H, then
Tw = w + h for some nonzero he H. If ve V, then v = Aw + h” for some
Ae K and h" € H, and (%) in the proof of Lemma 8.16 gives Tv = v + ih
(because 1 — pu = 0). The function ¢: V — K, defined by ¢(v) = @(Aw + h) =
Ais a K-linear transformation (i.e., it is a linear functional) with kernel H. For
each transvection T, there is thus a linear functional ¢ and a vector h € ker ¢
with

Tv=v+ @)h forall veV.

Notation. Given a nonzero linear functional ¢ on ¥V and a nonzero vector
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h € ker g, define {¢, h}: V — V by
{o, h}: vo0 + @(V)h.

1t is clear that {¢, h} is a transvection; moreover, for every transvection 7,
there exist ¢ % 0 and h # 0 with T = {¢, h}.

Lemma 8.19. Let V be a vector space over K.

(i) If @ and y are linear functionals on V, and if h,l € V satisfy ¢(h) = y(h) =
o(l), then

{o.hyolo l={o,h+1}  and  {@,h}o{Y,h} ={p + ¥, h}.

(i) Forallo e K*,
{ap, h} = {@, ah}.

(ii) {@, h} = {, I} if and only if there is a scalar o € K* with
¥ =ap and h=al

(iv) If Se GL(V), then
S{p, h}S™' = {@S7, Sh}.

Proof. All are routine. For example, let us prove half of (iii). If {@, h} = {y, I},
then @(v)h = Y (v)! for all v € V. Since ¢ # 0, there is v € V with ¢(v) # 0, so
that h = @(v) "W (v)l; if & = @)™ Y (v), then h = al. To see that Y(u) = ap(u)
for all u € ¥, note that ¢(u) = 0 if and only if 1 (u) = 0 (because both h, [ # 0).
If Y(u) and @(u) are nonzero, then h = @(u) 'y (u)! implies @) 'y (u) =
e(®) W) =« andso y =ap.

Theorem 8.20. The commutator subgroup of GL(V) is SL(V) unless V is a
two-dimensional vector space over Z,.

Proof. Now det: GL - K* has kernel SL and GL/SL =~ K*; since K* is
abelian, (GL) < SL.

For the reverse inclusion, let v: GL — GL/(GL) be the natural map. By
Corollary 8.18, all transvections are conjugate in GL, and so v(T) = v(T") for
all transvections T and T"; let d denote their common value. Let T = {¢, h}
be a transvection. If we avoid the exceptional case in the statement, then H
contains a nonzero vector ! (not necessarily distinct from h) with h + 1 # 0.
By the lemma, {¢, h} o {¢, 1} = {9, h + I} (these are transvections because
I# 0 and h + [ # 0). Applying v to this equation gives d? = d in GL/(GL),
whence d = 1. Thus, every transvection T € ker v = (GL)'. But SL is gener-
ated by the transvections, by Theorem 8.8(ii), and so SL < (GL).

If ¥ is a two-dimensional vector space over Z,, then GL(V) is a genuine
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exception to the theorem. In this case,
GL(V)=SL(V) >~ SL(2,2) =@ PSL(2,2) =~ S,,

and (S;) = A,, a proper subgroup.
We have seen that any two transvections are conjugate in GL. It is easy to

see that
1 1 1 -1
R M

are not conjugate in SL(2, 3); indeed, these transvections are not conjugate in
SL(2, K) for any field K in which —1 is not a square. The assumption m > 3
in the next result is thus essential.

Theorem 8.21. If m > 3, then all transvections are conjugate in SL(V).

Proof. Let {@, h} and {y, I} be transvections, and let H = ker ¢ and L =
ker ¥ be the hyperplanes fixed by each. Choose v, u € V with ¢(v) = 1 = ¥(u)
(hence v ¢ H and u ¢ L). There are bases {h, h,, ..., h,—y }and {, L, ..., I, }
of H and L, respectively, and adjoining v and u gives bases {v, h, h,, ..., h,_,}
and {u, [, I, ..., L,  } of V.If S € GL(V) takes the first of these ordered bases
to the second, then

*) Swy=u, SH)=L and Sk =1

Let det § = d; we now show that we can force S to have determinant 1.
Since g > 3, the first basis of ¥ constructed above contains at least one other
vector\ (say, h,,-,) besides v and h. Redefine S so that S(h,,_)=d™l,_,.
Relative to the basis {v, h, h,, ..., h,—, }, the matrix of the new transforma-
tion differs from the matrix of the original one in that its last column is
multiplied by d ™. The new S thus has determinant 1 as well as the other
properties (+) of S. '

Now S{p, h}S7! = {¢S™*, Sh} = {¢S™*, I}, by Lemma 8.19(iv). Since ¢S™*
and y agree on the basis {u, 1, l,,..., [, } of V, they are equal. Therefore
{@, h} and {y, I}.are conjugate in SL, as desired.

Notation. If H is a hyperplane in a vector space V, then
J (H) = {all transvections fixing H} u {1, }.
Lemma 8.22. Let H be a hyperplane in an m-dimensional vector space V over
K.
(i) There is a linear functional ¢ with H = ker ¢ so that
TH)={{p.h}:he H}u {1,}.

(i) 7 (H) is an (abelian) subgroup of SL(V), and 9 (H) =~ H.
(iliy The centralizer Cy (7 (H)) = SZ(V)T (H).
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Proof. (i) Observe that linear functionals ¢ and ¥ have the same kernel if and
only if there is a nonzero « € K with iy = ag. Clearly y = a¢ implies ker yy =
ker ¢. Conversely, if H is their common kernel, choose we V with w ¢ H.
Now (w) = a@(w) for some o€ K*. If ve V, then v =Aw + h, for some
A eKand he H,and y(v) = Wy(w) = lapw) = ap(Aw + h) = ap(v).

If {o,h}, {$,1} € T(H), then Lemma 8.19(ii) gives {¥, 1} = {ap, I} =
{pl}. Since {@, h}™' = {¢, —h}, Lemma 8.19(i) gives {¢, h} o {y, I}7! =
{o, h — al} € T (H). Therefore, 7 (H) < SL(V).

(i) Let ¢ be a linear functional with H = ker ¢. By (i), each T € 7 (H) has
the form T = {¢, h} for some h € H, and this form is unique, by Lemma
8.19(iii). It is now easy to see that the function J (H) — H, given by {¢, h}—
h, is an isomorphism.

(ili) Since J (H) is abelian, SZ(V).9 (H) < Cs; (7 (H)). For the reverse in-
clusion, assume that S € SL(V) commutes with every {¢, h}: for all he H,
S{p, h}S™* = {¢p, h}. By Lemma 8.19(iv), S{p, h}S™" = {¢S™", Sh}, and so
Lemma 8.19(iii) gives « € K* with

(%) S t=ap and Sh=a"lh

Hence aS fixes H pointwise, so that oS is either a transvection or a dilatation.
If oS is a transvection, then S € 7 (H), and so S = «™*(aS) € SZ(V).J (H). If
oS is a dilatation, then it has an eigenvector w outside of H, and aSw = uw,
where 1 # p = det aS = o™ (for det S = 1); hence, Sw = o™ 'w. But pS™'w =
@@ ™ w) = "™ p(w), so that (+) give p(w) = a™@(w). Since @(w) 5 0 (be-
cause w ¢ H), we reach the contradiction «™ = 1.

Theorem 8.23 (Jordan—Dickson). If m > 3 and V is an m-dimensional vector
space over a field K, then the groups PSL(V) are simple.

Proof. We show that if N is a normal subgroup of SL(V) containing some A
not in SZ(V), then N = SL(V); by Theorem 8.17, it suffices to show that N
contains a transvection.

Since SL(V) is generated by transvections, there exists a transvection T
which does not commute with A: the commutator B = T™'47'T4 # 1. Note
that N < SL gives Be N. Thus

B=TY4'T4A) = T, T,,

where each T; is a transvection. Now T; = {¢;, h;}, where h; € H; = ker ¢, for
i =1, 2; that is,
Tw) = v + @)k, forall veV.

Let W be the subspace {hy, h,» < V, so that dim W < 2. Since dim V > 3,
there is a hyperplane L of V containing W. We claim that B(L) < L. If le L,
then

B(l) = T, T,() = T,() + o (T,(Nh,

=1+ @,(Ohh, + o (T (N)he L+ W< L.
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We now claim that H, n H, # 0. This is surely true if H, = H,. If H, # H,,
then H, + H, = V (hyperplanes are maximal subspaces) and dim(H,; + H,) =
m. Since

dim H, + dim H, = dim(H, + H,) + dim(H, » H;),

we have dim(H, n H,)=m — 2> 1.
If ze H, n H, with z 5 0, then

B(z) =T, T,(z) = z.

We may assume that B is not a transvection (or we are done); therefore,
B¢ 7 (L), which is wholly comprised of transvections. If B = aS, where
S e (L), then z is an eigenvector of S (z = Bz = aSz, and so Sz = a7z). As
eigenvectors of transvections lie in the fixed hyperplane, ze L and so o = 1,
giving the contradiction S = B. Therefore, B ¢ SZ(V)J (L) = C5.(Z (L)), so
there exists U € (L) not commuting with B:

C=UBU™B™! #1;
of course, C = (UBU™Y)B™' e N.If [ € L, then
C(l)= UBU™'B™(l) = UBB™()) = |,

because B1(l) e L and U™ € J(L) fixes L. Therefore, the transformation C
fixes the hyperplane L, and so C is either a transvection or a dilatation. But
C is not a dilatation because det C = 1. Therefore C is a transvection in N,
and the proof is complete.

We shall give different proofs of Theorems 8.13 and 8.22 in Chapter 9.
Observe that |PSL(3, 4)| = 20,160 = 48!, so that PSL(3,4) and Ag are
simple groups of the same order.

Theorem 8.24 (Schottenfels, 1900). PSL(3, 4) and A are nonisomorphic simple
groups of the same order.

Proof. The permutations (1 2)(3 4)and (1 2)(3 4)(5 6)(7 8) are even (hence
lie in Ag), are involutions, and are not conjugate in A4 (indeed, they are not
even conjugate in Sg for they have different cycle structures). We prove the
theorem by showing that all involutions in PSL(3, 4) are conjugate.

A nonscalar matrix A € SL(3, 4) corresponds to an involution in PSL(3, 4)
if and only if 42 is scalar, and A? is scalar if and only if (PAP )2 is scalar for
every nonsingular matrix P. Thus 4 can be replaced by anything similar to
it, and so we may assume that A is a rational canonical form. If A4 is a direct
sum of 1 x 1 companion matrices, then 4 = diag{a, f, y}. But A? scalar im-
plies «? = 2 = y2; as GF(4) has characteristic 2, this gives « = f = 7 and A4
is scalar, a contradiction. If 4 is a 3 x 3 companion matrix,
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then A2 has 1 as the entry in position (3, 1), and so 42 is not scalar. We
conclude that A is a direct sum of a 1 x 1 companion matrix and a 2 x 2
companion matrix:

Now det A = 1 = aff (remember that —1 = 1 here), so that = «™*, and A?
scalar forces y = 0. Thus,

There are only three such matrices; if 7 is a primitive element of GF(4), they
are

0
T

N

1 00 7 0 0
A=10 0 1]; B= ; C=10 0 =n|.
010 0 10

(=R e |

0
0
1 0
Note that A2 = E, B?> = n?E, and C? = nE. It follows that if M e SL(2, 3)
and M? = E (a stronger condition, of course, than M? being scalar), then M
is similar to A; that is, M = PAP™ for some P € GL(3, 4). In particular, 2B
and nC are involutions, so there are P, Q € GL(3, 4) with

PAP' =1?B  and QAQ ! =n=C.

Since [GL(3, 4): SL(3, 4)] = 3 (for GL/SL = GF(4)*) and since the matrix
diag{m, 1, 1} of determinant = # 1 commutes with A, Exercise 3.7 allows us
to assume that P and Q lie in SL(3, 4). It follows that 4, B, and C become
conjugate in PSL(3, 4), as desired.

Theorem 8.24 can also be proved by showing that PSL(3, 4) contains no
element of order 15, while 44 does contain such an element, namely,
(123)456738).

One can display infinitely many pairs of nonisomorphic simple groups
having the same finite order, but the classification of the finite simple groups
shows that there do not exist three nonisomorphic simple groups of the same
order.

Classical Groups

At the end of the nineteenth century, the investigation of solutions of systems
of differential equations led to complex Lie groups which are intimately re-
lated to simple Lie algebras of matrices over C. There are analogues of these
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Lie groups and Lie algebras which are defined over more general fields, and
we now discuss them (not proving all resulits).
In what follows, all vector spaces are assumed to be finite-dimensional.

Definition. If V' is a vector space over a field K, a function f: ¥V x V= K is
called a bilinear form if, for each v e V, the functions f(v, ) and f( , v) are
linear functionals on V.

A bilinear form f is called symmetric if f(v, u) = f(u, v) for all u, ve V, and
it is called alternating if f(v, v) = Oforallve V.

If f is alternating and u, ve V¥, then 0 = f(u + v, u + v) = f(u, u) + f(u, v) +
S, u) + f(v, v) = f(u, v) + f(v, u), so that f(v, u) = — f(u, v). Conversely, if f
is a bilinear form for which f(v, u) = —f(u, v), then 2f(v, v) = Ofor allv e V. If
K has characteristic # 2, then f is alternating; if K has characteristic 2, then
f is symmetric.

There is another interesting type of form, not quite bilinear (Bourbaki calls
it “sesquilinear™).

Definition. If K is a field having an automorphism ¢ of order 2 (denoted by
0. ar—>a”), then a hermitian form on a vector space V over K is a function
h: V x V = K such that, forall y,ve V:

(i) h(u, v) = h(v, u)";
(i) h(oau, v) = ah(u, v) for all « € K; and
(i) h(u + v, w) = h(u, w) + h(v, w).

Note that if h is hermitian, then h(u, fv) = h(fv, u)” = (Bh(v, w))° =
B°h(v, u)’ = B°h(u, v). Moreover, h is additive in the second variable, for
h(u, v + w) = h(v + w, u)® = (h(v, u) + h(w, w))° = h(v, u)* + h(w, u)° = h(u, v) +

h(u, w).
Complex conjugation z+— z is an automorphism of C of order 2. If V' is a
complex vector space with basis {x,, ..., x,},if x =) a;x;,and if y =Y fix;

(where o, f; € C), then B
hix, y) = Y. o5;
is a hermitian form.
If K is a finite field, then it has an automorphism o of order 2 if and only if
K =~ GF(q?) for some prime power g, in which case «® = a? (this can be
shown using Theorem 8.4).

Definition. If f: V' x V — K is either symmetric, alternating, or hermitian,
then we call the ordered pair (V, f) an inner product space.

Definition. Let (V, f) be an inner product space. If {v,, ..., v,} is an ordered
basis of V, then the inner product matrix of f relative to this basis is

A= [fv,v)]
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It is clear that f is completely determined by an inner product matrix, for
ifu=>3 a,and w=> fu,;, then

(u, w) = z aiﬁjf(vi? Uj)~
ij

What happens to the inner product matrix after changing basis?

Lemma 825. Let (V, f) be an inner product space, let {v,...,v,} and
{uy,...,u,} be ordered bases of V, and let the corresponding inner product
matrices be A and B.

() If f is bilinear, then A and B are congruent; that is, there is a nonsingular
matrix P with
B = P'AP.

(i) If f is hermitian, then A and B are o-congruent; that is, there is a
nonsingular matrix P = [ p;] with

B = P'AP°,
where P° = [(p;)’].

In either case, B is nonsingular if and only if A is nonsingular.

Proof. (i) Write u; = ). p;v;; the matrix P = [p;], being a transition matrix
between bases, is nonsingular. Now

fu;, uj) = f(; DkiV» 2’, szvz> = kzl Drif (W Ux)sz;

in matrix terms, this is the desired equation (the transpose is needed because
the indices k, i in the first factor must be switched to make the equation
correspond to matrix multiplication). The last statement follows from det B =
det(P'AP) = det(P)? det(A).

(i) S ”j) = ’; P (o, UI)PE*

Definition. An inner product space (V, f) is nondegenerate (or nonsingular) if
one (and hence any) of the inner product matrices of f is nonsingular.

Lemma 8.26. An inner product space (V, f) over a field K is nondegenerate if
and only if f(u, v) = 0 for all v € V implies u = 0.

Proof. Let {v, ..., v,} be a basis of V. If an inner product matrix 4 of f is
singular, then there is a nonzero column vector Y with AY = 0; that is, if
Y = (uy, ..., ), where y; € K, then u = Y v, is a nonzero vector with

flo,u) = X'AY =0
forallv =3 Av; (where X = (1, ..., 4,)).
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Conversely, if u satisfies f(u, v) = 0 for all v € ¥, then f(u, v;) = 0 for all v,
(where {v,,...,v,} is a basis of V). If u =) v, then iy, v) = 05 if

17

Y = (u4, ..., p,) is the column vector of u, then Y 5 0 and AY = 0. Hence 4
is singular.

Definition. An isometry of a nondegenerate space (V, f) is a linear trans-
formation T: V — V such that

f(Tu, Tv) = f(u, v)

forallu,ve V.

Lemma 8.27. If (V, f) is a nondegenerate space, then every isometry is non-
singular, and so all the isometries form a subgroup Isom(V, f) < GL(V).

Proof. If T is an isometry and Tu = 0, then f(u, v) = f(Tu, Tv) = f(0, Tv) =0
for all ve V. Since f is nondegenerate, it follows that u =0 and T is an
injection; since V is finite-dimensional, T is nonsingular, &

Lemma 8.28. Let (V, f) be a nondegenerate space, let A be the inner product
matrix of f relative to an ordered basis {vy, ..., v,} of V, and let T be a linear
transformation on V.

(i) If f is bilinear, then T is an isometry if and only if its matrix M = [m;]
relative to the ordered basis satisfies

M'AM = A4;

in this case, det M = +1.
(i) If fis hermitian, then T is an isometry if and only if

M'AM® = A,
where M = [(my;)’]; in this case, {det M)(det M®) = 1.

Proof. (i) [ (Tv;, Tv)) = f(Z Mg, Y, mkjvk>
] x
= IZk my; f(v,, V) = S, Uj)‘

After translating into matrix terms, this is the desired equation. It follows
that (det M)?(det A) = det A. Moreover, nondegeneracy of (V, f) gives non-
singularity of 4, and so det M = +1.

(i) The obvious modification of the equations above leads to the desired
matrix equation and its consequence for determinants. &

The group GL(V) acts on & (V), the set of all functions V' x V — K:if f is
a function and P € GL(V), define

- fRu, v) = f(P'u, Py,
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it is easily checked that if Q € GL(V), then f¥¢ = (fF)? (this is the reason for
the inverse). Notice that if f is either symmetric, alternating, or hermitian,
then sois f*.

Theorem 8.29. Let V be a vector space over a field K, and let # (V) be the
GL(V)-set of all functions V x V — K. When f is either symmetric, alternat-
ing, or hermitian, then the stabilizer of f is Isom(V, f); moreover, if g is in the
orbit of f, then Isom(V, g) is isomorphic to Isom(V, f) (indeed, they are conju-
gate subgroups of GL(V)).

Proof. The stabilizer GL(V), of f is {Pe GL(V): f¥ = f}, so that Pe
GL(V); if and only if f(u, v) = f(P™u, P™'v) for all u, ve V; that is, P™' €
Isom(V, f) and hence P elsom(V, f). By Exercise 3.37, Isom(V, f%) =
P Isom(V, f)P~".

Definition. Two functions f, g € #(V) are called equivalent if g = /¥ for some
P e GL(V).

If follows from the theorem that equivalent symmetric, alternating, or
hermitian forms determine isomorphic groups of isometries.

Lemma 8.30. Two bilinear forms f, g € (V) are equivalent if and only if they
have inner product matrices A and B which are congruent. Two hermitian forms
(relative to the same automorphism o) are equivalent if and only if their inner
product matrices are g-congruent.

Proof. By Lemma 8.25(1), we may assume that all inner product matrices are
determined by the same basis of V.

Let X and Y be column vectors. If f and g are bilinear and g = f?, then
g(X, Y) = X'BY (see the proof of Lemma 8.26). By definition, f7(X, Y) =
fPTIX, PTY) = (PT'X)'A(P7'Y) = X'[(P™')'4P™']Y. Since this equation
holds for all X and Y, it follows that B = (P™!)*AP™!; hence, A and B are
congruent.

Conversely, if B= (Q'4Q for some nonsingular Q, then X'BY =
X'Q'AQY = (QX)A(QY), so that g(X, Y) = f(Q7'X, 07'Y).

This argument, mutatis mutandis, works in the hermitian case as well. £

Let (V, f) be a nondegenerate space. We are going to see that all alternat-
ing forms f are equivalent, and so there is, to isomorphism, just one isometry
group Isom(V, f); it is called the symplectic group. If V is an n-dimensional
vector space over K, then Isom(V, f) is denoted by Sp(V) or by Sp(n, K}; if
K = GF(q), one writes Sp(n, g).

It is true that all hermitian forms are equivalent, and so there is, to isomor-
phism, just one isometry group Isom(¥, f) in this case as well; it is called the
unitary group. The group Isom(V, f) is now denoted by U(V) or by U(n, K);
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when K = GF(g?), one writes U(n, %) (recall that the only finite fields for
which hermitian forms are defined are of the form GF(g?)).

It is not true that all symmetric forms over a finite field are equivalent, and
it turns out that inequivalent forms give nonisomorphic groups. The groups
Isom(V, f) are called orthogonal groups; in odd dimensions over a finite field
of odd characteristic, there is only one orthogonal group, but in even dimen-
sions over finite fields of any characteristic, there are two orthogonal groups,
denoted by O*(V) and by O~ (V).

Definition. A group is a classical group if it is either general linear, symplectic,
unitary, or orthogonal.

We remark that the term classical group is usually not so precisely defined,;
for most authors, it also encompasses important groups closely related to
these as, say, SL(V) or PSL(V).

We now discuss symplectic groups; afterwards we will describe corres-
ponding resuits for the unitary and orthogonal groups.

Lemma 8.31. If (V, f) is a nondegenerate space, then for every linear functional
g € V* (the dual space of V), there exists a unique x € V with g = f(x, ).

Proof. We first prove that if {v,,...,v,} is a basis of ¥, then {f(vy, ), ...,
f(v,, )} is a basis of V*. Since dim V* = n (by standard linear algebra), it
suffices to prove that these n linear functionals are independent. Otherwise,
there are scalars 4;, not all 0, with " 4, f(v;, ) = 0; that is, ) 4, f(v;, x) = 0 for
allx e V If z =Y A, then f(z, x) = O for all x € V. Thus, z = 0, because [ is
nondegenerate and this contradicts the independence of the v;.

Since'g € V¥, there are scalars y; with g = > uif (v, ), and g(v) = f(x, v) for
all v € V. To prove uniqueness of x, suppose that f(x, v) = f(y, v) forallve V.
Then f(x — y, v) = 0for all v € ¥, and so nondegeneracy gives x — y = 0.

Definition. Let (V, f) be an inner product space. If x, y € ¥, then x and y are
orthogonal if f(x, y) = 0. If Y is a nonempty subset of V, then the orthogonal
complement of Y, denoted by Y4, is defined by

={veV: flv,y)=0forallye Y}.

It is easy to see that Y* is always a subspace of V. Using this notation, an
inner product space (¥, f) is nondegenerate if and only if ¥+ = 0.

Let (V, f) be a nondegenerate space. If W < V' is a subspace, then it is
possible that the restriction f|(W x W) is degenerate. For example, let V =
{x, y> be a two-dimensional space and let f have inner product matrix 4

relative to this basis:
0 1
A= ;
0 o]
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thus, f is symmetric and nondegenerate. However, if W = (x), the restric-
tion f](W x W) is identically zero.

Lemma 8.32. Let (V, f) be an inner product space, and let W be a subspace of
V.

(1) If fI(W x W) is nondegenerate, then
V=WwWeaWw-

(i) If (V; f) is a nondegenerate space and V. = W @ W+, then f|(W* x W1)is
nondegenerate.

Proof. (i) If x e W n W+, then f(x, W) = 0, and so nondegeneracy gives x =
0. If v € V, then the restriction g = f(v, )|W is a linear functional on W, and
so there is wy, € W with g(w) = f(v, w) = f(wg, w) for all w e W. But v = w, +
(v — wy), where wy € W, and v — wy e W

(i) If {vy,..., v,} is a basis of W and {v,+4, ..., 0,} is a basis of W+, then
the inner product matrix 4 of f relative to the basis {v,, ..., v,} has the form

B 0
=l el

so that det A = (det B)(det C). But A nonsingular implies C nonsingular; that
is, the restriction of f is nondegenerate.

Assume that (¥, f) is an inner product space with f alternating. If f is not
identically zero, there are vectors x and y with f(x, y) = « £ 0, Replacing x
by o !x if necessary, we may assume that f(x, y) = 1. If dim V = 2, then its

inner product matrix is thus
01
A= .

Definition. A hyperbolic plane is a two-dimensional nondegenerate space
(V, f) with f alternating.

We have just seen that every two-dimensional inner product space (V, f)
with f alternating and not identically zero is a hyperbolic plane.

Theorem 8.33. If (V, f) is a nondegenerate space with f alternating, then V is
even-dimensional. Indeed,

V = VV1 @ .. @ m,
where each W, is a hyperbolic plane and the summands are pairwise orthogonal,
that is, if i # j, then f(W;, W) = 0.

Proof. We proceed by induction on dim V > 0, the base step being trivial. If
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dim ¥ > 0, then our discussion above shows that there exist x, y, € V with
S, y1)= LU W =<x,,y,>, then Wis a hyperbolic plane and f|(W x W)
is nondegenerate, By Lemma 8.32(1), V= W& W+, by Lemma 8.32(ii),
fI(W* x W) is nondegenerate, and so the inductive hypothesis shows that
W1 is an orthogonal direct sum of hyperbolic planes.

Definition. If (V, f) is a nondegenerate space with f alternating, then a sym-
plectic basis of V is an ordered basis
{xl’ }’1, X2, J’z, IEEE) xb yl}
with f(x;, x;) = 0 = f(y;, y;) for all i, j, and f(x;, y;) = 6; = —f(y;, x;), where
0;=1ifi=jand §; = 0if i 5 j.
Thus, all inner products are 0 except f(x;, ;) =1 = —f(y;, x;) for all i.

Theorem 8.34. Let (V, f) be a nondegenerate space with f alternating.

(i) V has a symplectic basis {xy, Y1, X3, Yas -+ X1y W1}
(i) The inner product matrix A of f relative to this ordered basis is the matrix
J which is the direct sum of 2 x 2 blocks

I
—1 0}
(iii) Ifu—Z(acx + By and v =Y (y;x; + 6:y;), then

flu, v) =3 (@6, — Biyy)-

(iv) All nondegenerate alternating forms on V are equivalent, and so the sym-
plectic groups Isom(V, f), to isomorphism, do not depend on f.

Proof. (i) If V is the orthogonal direct sum of hyperbolic planes W, then the
union of the bases of the W, is a symplectic basis of V.

(ii) and (iii) are now routine calculations.

(iv) If g is a nondegenerate alternating form, then there is a symplectic basis
of V relative to g, so that any inner product matrix of g is also congruent to
J, and hence to any inner product matrix of f. Therefore, the isometry group
Isom(V. f) does not depend on f, by Theorem 8.29.

Notice that alternating bilinear forms are thus sums of 2 x 2 determinants.
Note also that if one reorders a symplectic basis so that all the x; precede all
the y;, then the matrix J is congruent to

N

where E is the | x [ identity matrix.
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Definition. If (V, f) is a nondegenerate space, then the adjoint of T, denoted
by T*,is a linear transformation on V for which

f(ITx, y) = f(x, T*y) forall x,yeV.
Lemma 8.35. Let (V, f) be a nondegenerate space, and let T be a linear trans-

Jormation on V having an adjoint T*. Then T is an isometry if and only if
T*T = 1,.

Proof. If T has an adjoint with T*T = 1, then, for all x, y e ¥, f(Tx, Ty) =
f(x, T*Ty) = f(x, y), so that T is an isometry.
Conversely, forall x, y e V,

f(x: T*Ty — y) = f(x, T*Ty) _f(x, y)
= f(TX, Ty) - f(xa »n=0

because T is an isometry. Since f is nondegenerate, T*Ty = y for all y € V,
and so T*T=1,.

One can prove uniqueness of adjoints in general, but we may observe here
that uniqueness holds for adjoints of isometries T because T* = T . It fol-
lows that TT* = 1.

How can one recognize a symplectic matrix?

Theorem 8.36. Let T € GL(V) and let {x,, y,, ..., X;, y;} be a symplectic basis
of V. If the matrix Q of T relative to this basis is decomposed into | x |

blocks
A T
then T* exists and has matrix

Al . o
Q* = [_ B ];
moreover, Q € Sp(2l, K) if and only if Q*Q = E.

Proof. Assume that T* exists. If Tx; = Y, (a,:x, + B:y,), then
f(xb T*xj) = f(TX;, xj)
= Z avif(xv: xj) + Z ﬂvif(yv: xj) = _ﬁji-

On the other hand, if T*x; = Y, (4,;x, + ,;,), then

f(xi’ T*xj) = f(xi’ z (}'rjxr + lurjyr)> = luij'
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It follows that if T* has matrix

A X

M Y/
then M = — B'. Similar calculations give the other three blocks. For existence
of T*, it is routine to check that the matrix construction in the statement

defines a linear transformation that behaves as an adjoint must. The last
statement follows from Lemma 8.35.

By Lemma 8.28, symplectic matrices have determinant +1, but it can
be shown, in fact, that every symplectic matrix has determinant 1; that is,
Sp(V) < SL(V).

EXERCISES
8.13. Show that Sp(2, K) = SL(2, K) for all fields K.

8.14. Let (¥, f) be a nondegenerate space with f alternating.
(i) Show that T e GL(V) is symplectic if and only if T carries symplectic bases
to symplectic bases.
(ii) If ¥ is a vector space over a finite field K, show that [Sp(V)]| is the number
of ordered symplectic bases.

The isometry group Isom(V,f) is called a unitary group when f is non-
degenerate hermitian, and it is denoted by U(V), U(n, K), or U(n, g*) (when
K is finite, a hermitian form requires | K| to be a square).

We now state without proofs the analogues of Theorem 8.34 and 8.35 for
unitary groups.

Definition. If (V, f) is an inner product space, then an orthorormal basis is an
ordered basis {v,, ..., v,} with j(v;, v;) = §;;.

Theorem. Let (V, f) be a nondegenerate space with f hermitian.

(i) V has an orthonormal basis {x1, ..., x,}.
(i) The inner product matrix of f relative to this basis is the identity matrix.
(i) If u=Y Ax;and v =Y, p;x;, then

f,0) =Y 2t

(iv) All nondegenerate alternating forms on V are equivalent, and so unitary
groups Isom(V, f) do not depend on f.

) If M eGL(V), then M* = (M"Y, and so M e U(V) if and only if
M(M'Y =E.

(vi) A linear transformation T € GL(V) is unitary if and only if it takes ortho-
normal bases into orthonormal bases.

The isometry groups Isom(V, f) are called orthogonal groups when f is
nondegenerate symnietric; we restrict the discussion to finite fields of scalars
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K. If K = GF(q) has odd characteristic and dim ¥V = 2] + 1 is odd, there is a
basis of V relative to which f has inner product matrix

1 00
J=10 0 E|,
0 E O

where E is the | x lidentity matrix. All forms are thus equivalent (for all inner
product matrices are congruent to J), and so there is, to isomorphism, just
one group Isom(V, f) in this case. It is denoted by O(V), O(2I + 1, K), or by
Oo@2l+ 1, g).

If dim V = 2lis even and K = GF(q) has odd characteristic, then there are
exactly two inequivalent forms: every inner product matrix is congruent to

0 E 0O

. |E 000

1_0010’
0 0 0 ¢

where E is the (I — 1) x (I — 1) identity matrix and ¢ = + 1. The correspond-
ing isometry groups are not isomorphic; they are denoted by O* (2], K) and
by O~ (2l, K) (or by O* (21, q) and by O~(2, q) when K = GF(g)).

Before describing the orthogonal groups in characteristic 2, let us recall the
definition of the real orthogonal group O(n, R) given in Chapter 3 in terms of
distance: if T e O(n, R), then ||[Tv]| = ||v|| for all ve R". In Theorem 3.29,
however, it was shown that T is orthogonal in this sense if and only if
(1, v) = (Tu, Tv) for all u, v e R” (where (u, v) is the usual dot product of vec-
tors in R"). Given any symmetric bilinear form f, define the analogue of
lvl? = (v, v) to be Q(v) = f(v, v). If u, v € V, then

fu+v,u+v)=f(uu) + 2f(u, v) + f(v, v);
that is, Q(u + v) — Q(u) — Q(v) = 2f(u, v).

Definition. A quadratic form on a vector space V over a field K is a function
Q: V - K such that:

(i) Qo) = «®>Q(u) for allu € ¥V and a € K; and
(i) Q(u + v) — Q1) — Q(v) = g(u, v), where g is a bilinear form on V (one
calls g a bilinear form associated to Q).

A quadratic form Q is nondegenerate if (V, f) is nondegenerate, where f is
an associated bilinear form.

If K has characteristic # 2, one can recapture f from Q: f(u,v) =
2(Q(u + v) — Q(u) — Q(v)), and there is just one bilinear form associated to Q.
The proof of Theorem 3.28 shows that a linear transformation T on V lies in
O(V)(i.e., f(Tu, Tv) = f(u, v)for all u, v € V) if and only if Q(Tu) = Q(u) for all
u € V. Thus, orthogonal groups in odd characteristic could have been defined
in terms of quadratic forms.
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Assume now that K = GF(g) does have characteristic 2. Bilinear forms g
associated to a given quadratic form Q are no longer uniquely determined
by Q; however, g satisfies two extra conditions: first, g(u, u) = 0 (because
u + u = 0); second, g is symmetric. Since —a = « for all « € K, it follows that
g is alternating. Theorem 8.33 shows that if (V] g) is to be nondegenerate, then
V must be even-dimensional, say, dim V = 2I. If K = GF(q) has characteris-
tic 2 and Q is a nondegenerate quadratic form on a 2I-dimensional vector
space V over K, then the orthogonal group O(V, Q) is defined as

O(V, Q) = {T e GL(V): Q(Tu) = Q(w) for all u e V}.

Given a nondegenerate quadratic form Q, there is always a symplectic basis
{x1, Y15 .5 X}, y;} such that Q(x;) = 0 = Q(y;) for all i < I; moreover, either
(+)Q0x) =0=0(y) or (=) Q(y) =1 and Q(x;) =y, where t* + ¢ + y is
irreducible in K[t]. One proves that there are only two nonisomorphic
groups for a given V arising from different quadratic forms Q (one from each
possibility just described); they are denoted by O* (2], K) and by O~ (2], K); as
usual, one may replace K by g in the notation when K = GF(g).

Each type of classical group gives rise to a family of simple groups; we
describe the finite such.
The center of Sp(2, g) consists of + E. Define

PSp(2, g) = Sp(2l, 9)/{ + E}.
These groups are simple unless (21, ) = (2, 2), (2, 3), or (4, 2). Moreover,

[PSp(2l, @)l = d~*q"(¢* — 1)(g* — 1)...(¢* — 1),

whered = (2,q — 1).

The center of U(n, q*) consists of all scalar transformations AE, where
A = 1. Let SU(n, ¢*) < U(n, q ) consist of all unitary transformations of
determinant 1, and define

PSU(n, %) = SU(n, g°)/center.
These groups are simple unless (1, ¢2) = (2, 4), (2, 9), or (3, 4). Moreover,
IPSU(n, ¢*)| = e1q"" V2 (g? — 1)(g> + D(g* = 1)...(¢" = (= 1)),

where € = (n, g + 1).

Assume that g is a power of an odd prime. Let the commutator subgroup
of O(n, q) be denoted by Q(n, g) (it is usually a proper subgroup of SO(n, g),
the subgroup consisting of all orthogonal transformations of determinant 1).
The center of Q(n, g) consists of diagonal matrices having diagonal entries
+1, and one defines

PQ(n, q) = Q(n, g)/center.

When n > 5 is odd, then these groups are simple, and

IPQQ2I+ 1, 9l =d7¢"(¢* = (g* = 1)...(¢* = 1),  godd,
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where d = (2, g — 1). Notice that |PQ(2! + 1, q)| = |PSp(2], ¢%)|; these two
groups are not isomorphic if / > 2 (Theorem 8.24, proved in 1900, exhibited
the first pair of nonisomorphic simple groups of the same order; here is an
infinite family of such examples).

When dim V = 2] is even, there are two orthogonal groups. If we denote
the commutator subgroup by €°, where ¢ = + 1, and the quotient Q°/center
by PCY, then the orders are:

IPQE2L, g)l = 971" (g* — D(g* — 1)...(¢** — 1)(qg" — ),

where g = (4, ¢' — ¢).

When q is a power of 2, then the groups PQ*(21, g) are simple for I > 3, and
their orders are given by the same formulas as when g is odd.

For proofs of these results, the reader is referred to Artin (1957), Carter
(1972), and Dieudonné (1958).

Every complex Lie group G determines a finite-dimensional Lie algebra
L(G) over C, and G simple implies L(G) simple. These simple Lie algebras
were classified by E. Cartan and W. Killing about 100 years ago; there are
four infinite classes of them and five “sporadic” such. In 1955, Chevalley
showed, for every finite field GF(g), how to construct analogues of these
simple Lie algebras over C; he also showed how to construct simple finite
groups from them. These families of simple groups (four are doubly indexed
by the dimension and the field GF(g); five of them, arising from the sporadic
Lie algebras, are singly indexed by g) are now called Chevalley groups. There
are thus nine such families, which include all those arising from the classical
groups (special linear, symplectic orthogonal) except those arising from
unitary groups (however, the finite simple groups arising from the unitary
groups were known to Dickson in 1900). Simple Lie algebras over C are
classified by certain graphs, called Dynkin diagrams. In 1959, Steinberg
showed that automorphisms of these graphs can be used to construct new
finite simple groups. There are four infinite classes of these simple groups,
called Steinberg groups, two of which are the families PQ*(m, g) for ¢ = +1
arising from the unitary groups. In 1960, Suzuki discovered a new class Sz(g)
of simple groups, where g is a power of 2 (these are the only simple groups
whose orders are not divisible by 3); in 1961, Ree discovered two more
infinite classes whose construction is related to that of the Suzuki groups;
these are the Swzuki groups and the Ree groups. (The interested reader should
consult the books of Carter and of Gorenstein for more details.) Collectively,
these 16 classes of simple groups are called the groups of Lie type.

The classification theorem of finite simple groups says that there are ex-
actly 18 infinite classes of them: the cyclic groups of prime order, the alternat-
ing groups, and the groups of Lie type; moreover, there are exactly 26 “spo-
radic” simple groups, 5 of which are the Mathieu groups to be discussed in
the next chapter. This theorem is one of the highest achievements of mathe-
matics; it is the culmination of the work of about 100 mathematicians be-
tween 1955 and 1985, and it consists of thousands of journal pages.



CHAPTER 9
Permutations and the Mathieu Groups

The Mathieu groups are five remarkable simple groups discovered by E.
Mathieu in 1861 and 1873; they belong to no infinite family of simple groups,
as do all the simple groups we have so far exhibited, and they are the first
examples of what are nowadays called sporadic simple groups. This chapter
is devoted to proving their existence and displaying some of their interesting
properties.

Multiple Transitivity

Even though permutation groups, orbits, and stabilizers were discussed in
Chapter 3, we repeat the basic definitions here for the reader’s convenience.

Definition. If X is a set and G is a group, then X is a G-set if there is a function
o G x X — X (called an action), denoted by «: (g, x) — gx, such that:

(i) 1x = x forall x e X; and
(1)) g(hx) = (gh)x forallg, he Gand xe X.

One also says that G acts on X. If | X| = n, then n is called the degree of the
G-set X.

We assume throughout this chapter that all groups G and all G-sets X
are finite; moreover, all vector spaces considered are assumed to be finite-
dimensional.

It is clear that if X is a G-set and H < G, then X is also an H-set (just
restrict the action G x X — X to H x X). Let us also recall that G-sets are
just another way of viewing permutation representations.
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Theorem 3.19. If X is a G-set with action «, then there is a homomorphism
&: G = Sy given by d(g): x+—gx = a(g, x). Conversely, every homomorphism
@: G — Sy defines an action, namely, gx = ¢(g)(x).

Definition. A G-set X with action « is faithful if &: G — Sy is injective.

Thus, a G-set X is faithful if and only if gx = x for all x € X implies g = 1.

If X is a G-set with action o, the subgroup im & < Sy is a permutation
group; hence, if X is a faithful G-set, then G can be identified with im &, and
we may view G itself as a permutation group. Cayley’s theorem says that
every group G of order n has a faithful representation ¢: G — Sg; in this case,
G itself is a faithful G-set of degree n. Since |S,| = n! is so much larger than n,
however, faithful G-sets of smaller degree are more valuable.

ExampPLE 9.1. This is a generic example. Assume that a set X has some “struc-
ture” and that Aut(X) is the group of all permutations of X which preserve
the structure. Then X is a faithful Aut(X)-set; indeed, X is a faithful G-set for
every G < Aut(X).

If X is a G-set and gx = x, where g € G and x € X, then one says that g
fixes x. A G-set X in which each g € G fixes every x € X is called a trivial
G-set.

ExamMpPLE 9.2. If X is a G-set with action «, let N = {g‘e G: gx = x for all
xe X}. Then N = kerd, so that N < G, and it is easy to see that X is a
faithful (G/N)-set (where (Ng)x = gx).

Recall that a G-set X is transitive if, for every x, y € X, there exists g€ G
with y = gx. If x € X, we denote its G-orbit {gx: g € G} either by Gx or by
O(x); thus, X is transitive if X = Gx for some x € X. The first observation
when analyzing G-sets is that one may focus on transitive G-sets.

Theorem 9.1. Every G-set X has a unique decomposition into transitive G-sets.
More precisely, X is partitioned into its G-orbits, each of which is a transitive
G-set. Conversely, if a G-set X is partitioned into transitive G-sets {X;:ie I},
then the X, are the G-orbits of X.

Proof. 1t is clear that the orbits partition X into transitive G-sets. Conversely,
it suffices to prove that each X; is an orbit. If x; € X, then the orbit Gx; = X;
because X; is a G-set. For the reverse inclusion, if y € X, then transitivity of
X; gives y = gx, for some g € G. Hence, y € Gx;, and X; < Gx;.

Recall that the stabilizer of x, denoted by G,, is defined by
G,={geG:gx=x}.
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Theorem 9.2. If X is a transitive G-set of degree n, and if x € X, then
1G] = n|Gyl.
If X is a faithful G-set, then |G| is a divisor of (n — 1)L.

Proof. By Theorem 3.20, |Gx| = [G: G,]. Since X is transitive, Gx = X, and
so n=|G|/|G,|. If X is faithful, then G, < Sy_(,), and the latter group has
order (n — 1)L

Here is a solution to Exercise 3.4. If a finite group G has only two con-
jugacy classes, then every two nonidentity elements are conjugate; that is,
G* = G — {1} is a transitive G-set (where G acts on G* by conjugation).
Theorem 9.2 says that |G| — 1 is a divisor of |G|; this can happen only when
|G| = 2.

Theorem 9.3. Let X be a transitive G-set, and let x, y € X.

(i) If tx =y for some t € G, then G, = G,, = tGt™".
(i) X has the same number of G,-orbits as of G,-orbits.

Proof. (i) If g fixes x, then tgt ™'y = tgx = tx = y and tgt ! fixes y. Therefore,
tG,t™! < G,. Similarly, t7'G,t < G,, and this gives the reverse inclusion.

(ii) Since X is transitive, there is ¢ € G with tx = y. Denote the G -orbits by
{G,z;: i e I}, where z; € X. If w; = tz; € X, then we shall show that the subsets
G,w; are G,-orbits of X. Clearly, these subsets are transitive G,-sets. Further,

G,w; = tG t7'w; = tG,z;.

Since t is a permutation of X, it carries partitions into partitions. The result
now follows from Theorem 9.1.

Definition. If X is a transitive G-set, then the rank of X is the number of
G,-orbits of X.

Theorem 9.3 shows that the rank of X does not depend on the choice of
x € X. Of course, {x} is a G,-orbit of X, and so rank X is really describing the
behavior of G, on X — {x}.

Theorem 9.4. If X is a transitive G-set and x € X, then rank X is the number
of (G,-G,)-double cosets in G.

Proof. Define f: {G,-orbits} — {(G,-G,)-double cosets} by f(G,y) = G.gG,,
where gx = y. Now f is well defined, for if hx = y, then gx = hx, g the G,,
h=1g(g~*h) € G.gG,, and G.gG, = G,.hG,. Let us show that f is injective.
If f(G,y) = G.9G, = G.hG, = f(G,z), where gx = y and hx = z, then there
are a, b € G, with g = ahb. Now y = gx = ahbx = ahx = az € G,z; it follows



250 9. Permutations and the Mathieu Groups

that G,y = G,z. Finally, f is surjective: if g € G, then gx = y and f(G.y) =
G,9G,.

See Exercise 9.12 below for another characterization of rank X.
Observe that if X is transitive and |X| > 2, then rank X > 2 (otherwise
G = G,G,, and every g € G fixes x, contradicting transitivity). Let us now

consider the minimal case when rank X = 2; the G,-orbits are {x} and
X — {x}, and so G, acts transitively on X — {x}.

Definition. Let X be a G-set of degree n and let k < n be a positive integer.
Then X is k-transitive if, for every pair of k-tuples having distinct entries
in X, say, (xg,...,%) and (yi,..., yx), there is g€ G with gx;, =y, for
i=1,...,k

Of course, 1-transitivity is ordinary transitivity. If k> 1, then every
k-transitive G-set is (k — 1)-transitive. A k-transitive G-set X is called doubly
transitive (or multiply transitive) if k > 2, triply transitive if k > 3, ..., and so
forth.

It is quite common to say that a group G is k-transitive if there exists a
k-transitive G-set. This usage applies to other adjectives as well.

The easiest example of a multiply transitive G-set is provided by X =
{1,...,k} and G = S,; it is plain that X is a k-transitive S;-set.

Lemma 9.5. Let X be a G-set. If k > 2, then X is k-transitive if and only if, for
each x € X, the G,~set X — {x} is (k — 1)-transitive.

Proof. Assume that X is k-transitive, and let (x, ..., X,_;) and (¥, ..., Yi-1)
be (k — 1)-tuples of distinct elements of X — {x}. There is thus g € G with
gx = x (so that g € G,) and gx; = y; forall i > 1.

Conversely, let (x,...,%,) and (y,...,y,) be k-tuples of distinct ele-
ments of X. By hypothesis, there is ge G, with g(x,..., x4, %) =
(V155 Yue1s %), and there is he G, with h(yy, ¥z, ..., Yooy, %) =
(V15 Y25 -+ Yu—1, Vi) Therefore, hg € G carries (x1, ..., X)) to (Y1, -+ -5 Vi)

Theorem 9.6. Every doubly transitive G-set hasrank 2, and if x € X and g ¢ G,
then G = G, v G,gG,.

Proof. Since G acts k-transitively on X for k > 2, we have G, acting (k — 1)-
transitively on X — {x}; hence G, acts transitively on X — {x}. Therefore, as
a G,-set, X has two orbits: {x} and X — {x}; thus rank X = 2. By Theorem
9.4, there are exactly two (G,-G,)-double cosets in G.

Definition. If X is a G-set and x,,...,x, € X, then the stabilizer is the
subgroup
»={9€Gigx;=xfori=1,...,t}.
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It is easy to see that G, . = ();G,,. In particular, if x, y € X, then X is
also a G.-set and a G,-set, and

(Gy)y = Gs,, = (G)): = G0 G,

The proof of Theorem 9.3(i) generalizes: if X is a k-transitive G-set, then
stabilizers of k distinct points are conjugate; that is, if (x,,..., x,) and
(¥4, ---» yi) are k-tuples of distinct points and tx; = y; for all §, then G, =
th ..... X; t—l‘

There is another stabilizer not to be confused with Gy, oox if Y =
{xy,..., %}, define Gy = {g € G: g(Y) = Y}. Thus, g € Gy if and only if ¢ per-
mutes Y, whereas g€ G,,,.. , if and only if g fixes ¥ pointwise. Hence,
. < Gy, with strict inclusion almost always.

The next result generalizes Theorem 9.2.

Theorem 9.7. If X is a k-transitive G-set of degree n, then
Gl =n(n—1@n—-2)...(0 — k + 1)|G,,
for every choice of k distinct elements x,,...,x,. If X is faithful, then

|Gy,.....x | 1s a divisor of (n — k)!.

Proof. 1f x, € X, then |G| = n|G,,|, by Theorem 9.2. Since G, acts (k — 1)-
transitively on X — {x, }, by Lemma 9.5, induction gives
|G| =(n—=1)...(0 — k + 1)| G,

and this gives the result. When G acts faithfully, then the result follows from
G being imbedded in Sy_,,

P

..... Xp}*

Definition. A k-transitive G-set X is sharply k-transitive if only the identity
fixes k distinct elements of X.

Theorem 9.8. The following conditions are equivalent for a faithful k-transitive
G-set X of degree n.

() X is sharply k-transitive.
@) If (xq,..., %) and (yq, ..., y,) are k-tuples of distinct elements in X, then
there is a unique g € G with gx; = y; for all i.
(i) |Gl=nn—1)...(n — k + 1).
(iv) The stabilizer of any k elements in X is trivial.

If k > 2, then these conditions are equivalent to:

(v) For every x € X, the G,-set X — {x} is sharply (k — 1)-transitive.
Progf. All verifications are routine and are left are exercises for the reader.

Theorem 9.9. For every n, the symmetric group S, acts sharply n-transitively on
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X ={1,..., n}; for every n > 3, the alternating group A, acts sharply (n — 2)-
transitively on X.

Proof-. The first statement is obvious, for S, contains every permutation of X.
We prove the second statement by induction on n > 3. If n = 3, then A, =
{(1 2 3)) acts sharply transitively on X = {1, 2, 3}. If n > 3, then (4,);, the
stabilizer of i, where 1 < i < n, is isomorphic to 4,_;; by induction, it acts
sharply (n — 3)-transitively on X — {i}. Theorem 9.8(v) now completes the
proof. E

ExampLE 9.3. Let f(x) € Q[x] be a polynomial of degree n with distinct roots
X ={oy,...,0,} = C;let E = Q(ay, ..., o,) be the splitting field of f(x), and
let G = Gal(E/Q) be the Galois group of f(x). By Lemma 5.2, X is a G-set; by
Theorem 5.7, X is transitive if and only if f(x) is irreducible over Q. Now f(x)
factors in Q(ay)[x]: f(x) = (x — ;) f;(x). Moreover, G; = Gal(E/Q(a,)) <
Gal(E/Q) = G is the stabilizer of o, and so G, acts on X — {«, }; indeed, G,
is also the Galois group of f;(x). By Theorem 5.7, G, acts transitively if and
only if fi(x) is irreducible (over Q(«,)). Hence, G = Gal(E/Q) acts doubly
transitively on X if and only if both f(x) and f; (x) are irreducible (over @ and
Q(ey), respectively). Of course, this procedure can be iterated. The set X =
{ay, ..., a,} of all roots of f(x) is a k-transitive G-set if and only if the poly-
nomials f(x), f;(x), ..., fi_i(x) are all irreducible (over @, Q(«,),..., and
Q(ay, .-, a1 ), respectively).

It can be proved that there are no faithful k-transitive groups for k > 5
other than the symmetric and alternating groups. It follows that if the Galois
group G of a polynomial is 6-transitive, then G is either a symmetric group or
an alternating group. Indeed, if G is 4-transitive, then the only additional
possibilities for G are four of the Mathieu groups.

Sharp k-transitivity is interesting for small k.
Definition. A sharply 1-transitive G-set X is called regular.

A faithful G-set X is regular if and only if it is transitive and only the
identity has a fixed point. It is now easy to see that the left regular representa-
tion of a group G in the Cayley theorem makes G itself into a regular G-set.

Our discussion of sharply 2-transitive G-sets begins with a technical
definition.

Definition. If X is a G-set, then the Frobenius kernel N of G is the subset
N = {1} u {g € G: g has no fixed points}.

The Frobenius kernel may not be a subgroup of G, for it may not be closed
under multiplication.
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Lemma 9.10. If X is a faithful sharply 2-transitive G-set of degree n, then the
Frobenius kernel N of G has exactly n elements.

Proof. By Theorem 9.8(iii), |G| = n(n — 1). For each x € X, the stabilizer G,
has order n — 1 (because |G| = n|G,|), so that |G| =n — 2, where G =
G, — {1}. If x #y, then G,nG, =G, , =1, by Theorem 9.8(iv). Hence,
{G#: x € X} is a disjoint family, and || J,.x G¥| = n(n — 2). Since N is the
complement of this union, |[N|=n(n —1)—nn—-2)=n B

The basic philosophy is that permutation representations of a group G can
yield important information about G. We now illustrate this by classifying all
those groups G having a G-set X as in Lemma 9.10 in the special case when
n =|X| is odd (the classification when n is even is known, but it is more
difficult).

Theorem 9.11. Let X be a faithful sharply 2-transitive G-set of odd degree n.

(i) Each G, contains a unique involution.
(i) G, has a center of even order, and a Sylow 2-subgroup of G, is either
cyclic or generalized quaternion.
(i) The Frobenius kernel N of G is a normal subgroup of G.
(iv) The degree n is a power of an odd prime p.
(v) N is an elementary abelian p-group.
(vi) G is a semidirect product of N by G,.

Proof. (i) Since |G| = n(n — 1) is even, G contains an involution g. Now g,
being a permutation of the n points of X, has a cycle decomposition; indeed,
Exercise 1.16 shows that g is a product of disjoint transpositions 7,...1,,.
Since |X| is odd, g must fix some x € X; that is, g € G,; because G acts
sharply, g can fix nothing else, so that m = 1(n — 1). If h is another involution
in G, then h e G, for some y € X (perhaps y = x) and h = g,... 5, a product
of disjoint transpositions. Note that g and h can have no factors in common;
otherwise, we may assume that t,, = ¢,, = (a b) (because disjoint transposi-
tions commute); then gh™ fixes a and b, hence is the identity. Therefore,
l=ghtandg=h

Assume that G, has t involutions. Sharp 2-transitivity implies that {G7:
x e X} is a disjoint family, and so G contains nt such elements, each of
which involves m = 3(n — 1) transpositions. Collectively, there are thus tm =
int(n — 1) distinct transpositions occurring as factors of these involutions.
But there are only n(n — 1) transpositions in Sy = S,, and so t =1, as
desired.

(ii) Let g, h € G,, and assume that g is an involution. Then hgh™! is an
involution, so that the uniqueness in (i) gives hgh™ = g; that is, g € Z(G,).
The second statement follows from Theorem 5.46.

(iii) If T is the set of all involutions in G, then we claim that TT < N (the
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Frobenius kernel). Otherwise, there exist g, h e T with gh £ 1 and gh ¢ N;
that is, gh fixes some y € X. If z = hy, then both g and h have the transposi-
tion (y z) as a factor: hy =z and hz = hhy =y (h* = 1), gy = hy = z (for
ghy =y gives hy = g7'y = gy) and gz = ghy = y. By (i), g = h, giving the
contradiction gh = 1.

For fixed g € T, the functions T — N, defined by h+> gh and by h hg, are
both injective. By (i), | T| = n, for there is exactly one involution in each G#
as x varies over X; by Lemma 9.10, |[N| = n = |T|. It follows that both injec-
tions above must be surjections; that is, g7 = N = Tg forallge T.

The Frobenius kernel always contains 1 and it is closed under inverses and
conjugations by elements in G. Here N is closed under multiplication: choose
g € T and observe that

NN = (Tg)(gT) = Tg*T = TT < N.

(iv) Choose an element h € N of prime order p; since N is a subgroup of
odd order n, p is odd. We claim that C4(h) < N. If f € G* commutes with A,
then ifh™* = f.If f € G, for some x € X, then

feG,nhGh1=G,NG,, =1,

because hx # x. Therefore, f ¢ { ). x Gy, so that f € N. We conclude that
Cg(h) < N, and so [G:Cz(W)] =[G:N][N:C4(h)] =[G:N]=n—1. But
[G: Cg(h)] is the number of conjugates of h, all of which lie in the normal
subgroup N of order n. It follows that N* consists precisely of all the conju-
gates of h; that is, N is a p-group (of exponent p), and so n = |[N| is a power
of p.

(v) If g € G is an involution, then conjugation by g is an automorphism of
N satisfying the conditions in Exercise 1.50(ii). Therefore, N is an abelian
group of exponent p, hence it is a vector space over Z,, and hence it is an
elementary abelian p-group.

(vi) Weknow that N < G, N n G, = 1,and NG, = G (by the product rule).
(One could also use the Schur—Zassenhaus lemma, for the orders of N and
G, are consecutive integers, hence are relatively prime.) &

Here is the proper context for this theorem. Let X be a faithful transitive
G-set with each g € G* having at most one fixed point. If no such g has a fixed
point, then X is a regular G-set; if some g does have a fixed point, then G is
called a Frobenius group. (An equivalent description of a Frobenius group is
given in Exercise 9.9 below: a group G is a Frobenius group if and only if it
contains a proper subgroup H s 1, called a Frobenius complement, such that
HngHg™! =1 for all g ¢ H.) It is easy to see that if there exists a faithful
sharply 2-transitive G-set X of any (not necessarily odd) degree, then G is
a Frobenius group: set H = G,, and note that G,ngG.g™' = G, N G,, =
G, ,» = 1 forall g ¢ G,.In 1901, Frobenius proved that Frobenius kernels of
Frobenius groups are (normal) subgroups (in 1959, Thompson proved that
Frobenius kernels are always nilpotent), and that every Frobenius group G is
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a semidirect product of its Frobenius kernel by G, (which is a Frobenius
complement) (see Isaacs (1976), p. 100). Every Sylow subgroup of a Frobenius
complement is either cyclic or generalized quaternion; such groups are usu-
ally solvable (see Theorem 7.53), but there do exist nonsolvable ones. The
group SL(2, 5), which is not solvable, by Corollary 8.15, is a Frobenius com-
plement. Let V be a two-dimensional vector space over GF(29), and let
GL(2, 29) act on V by matrix multiplication on the elements of V regarded as
column vectors. There is a copy H of SL(2, 5) imbedded in GL(2, 29), and the
group G =V xH is a Frobenius group with Frobenius complement H ~
SL(2, 5) (see Passman (1968), p. 202).

EXERCISES
9.1. If V is a vector space, then GL(V) acts faithfully on ¥ and on V* = V — {0}.

9.2. Let H be a proper subgroup of G.
(i) Show that the representation of G on the cosets of H (Theorem 3.14) makes
the set of cosets G/H into a transitive G-set of degree [G: H]. Show that
G/H need not be faithful.
(ii) Show that the representation of G on the conjugates of H (Theorem 3.17)
makes the family of all conjugates of H into a transitive G-set of degree
[G : Ng(H)] which need not be faithful.

93. Letn>5and2 <t <n.
(i) Show that S, cannot act transitively on a set with ¢ elements. Conclude that
every orbit of an S,-set with more than two elements has at least n elements.
(i) Show that S, has no subgroups of index t.

9.4. If X is a G-set and H < G, then every G-orbit is a disjoint union of H-orbits.

9.5. (i) If G is a finite group with G* = G — {1} a transitive Aut(G)-set, then G is
_elementary abelian,
(i) Show that Q” is a transitive Aut(Q)-set.

9.6. If X is a transitive G-set and N < G, then X is an N-set and |N,| = |N,]| for all
x,ye X.

9.7. Let G be a group with |G| < n. Prove that G is isomorphic to a transitive
subgroup of S, if and only if G contains a subgroup H of index » such that
neither H nor any proper subgroup of H is normal in G. (Hint. For necessity, use
Theorem 3.12; for sufficiency, take H to be the stabilizer of any symbol.)

9.8. Let X be a G-set and let H < G. If the H-orbits of X are {0, ..., ¢}, then the
orbits of gHg™* are {g0,, ..., g00}. Use this result to give a new proof of Theo-
rem 9.3(ii).

9.9. A finite group G acting on a set X is a Frobenius group if and only if there is a
subgroup H with 1 < H < Gand HngHg™* = 1forall g ¢ H. (Hint. Take H to
be the stabilizer of a point.)

9.10. If G is abelian, then a faithful transitive G-set is regular. (Hint. If x, y € X, then
G,=G,)
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9.11. If X is a sharply k-transitive G-set, then X is not (k + 1)-transitive. (In particu-
lar, no regular G-set is doubly transitive.)

9.12. If X is a transitive G-set, prove that |G| rank X = ¥ . s F(g)?, where F(g) is the
number of x € X fixed by g. (Hint. Count the set {(g, x, Y € G X X x X:gx = x,
gy = y} in two different ways.)

Primitive G-Sets

If G is a group of order n, then Cayley’s theorem gives a faithful permutation
representation of G of degree n; that is, G may be regarded as a subgroup of
S,- The coming discussion can often give representations of smaller degree.

Definition. If X is a G-set, then a block is a subset B of X such that, for each
g € G, either gB = Bor gBn B = ¢ (of course, gB = {gx: x € B}).

Uninteresting examples of blocks are ¢F, X, and one-point subsets; any
other block is called nontrivial.

Consider the following example of a G-set of degree 6, where G =~ S;.
G={1,(123)a b c)(1 3 2)acbh),(1 b2 a3 ec),
(1 a2 o3 b), (1 92 b3 a)}

b

Figure 9.1
It is easy to see that either “triangle” {1, 2, 3} or {a, b, ¢} is a block; moreover,
{1, a}, {2, b}, and {3, c} are also blocks.

Definition. A transitive G-set X is primitive if it contains no nontrivial block;
otherwise, it is imprimitive.
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Every partition {B, ..., B,} of a set X determines an equivalence rela-
tion = on X whose equivalence classes are the B;. In particular, if X is a G-set
and B is a block, then there is an equivalence relation on X given by x = y
if there is some g;B containing both x and y. This equivalence relation is
G-invariant: that is, if x = y, then gx = gy for all g € G. Conversely, if = is a
G-invariant equivalence relation on a G-set X, then any one of its equivalence
classes is a block. Thus, a G-set is primitive if and only if it admits no non-
trivial G-invariant equivalence relations.

Theorem 9.12. Every doubly transitive G-set X is primitive.

Proof. If X has a nontrivial block B, then there are elements x, y, z € X with
x,y€ B and z ¢ B. Since X is doubly transitive, there is g € G with gx = x
and gy = z. Hence, x € BngB and B # ¢B, a contradiction. EI

Theorem 9.13. Let X be a transitive G-set of degree n and let B be a nontrivial
block of X.

@) If g € G, then gB is a block.
(ii) There are elementsg,, ..., g,, of G such that

Y= {ng"'wgmB}

is a partition of X.
(iil) |B| divides n, and Y is a transitive G-set of degree m = n/|B)|.

Proof. (i) If gB n hgB # (J for some h e G, then B g *hgB # (J; since B is
a block, B = g~thgB and gB = hgB.

(i) Choose b € B and x, ¢ B. Since G acts transitively, there is g, € G with
g.b = x,. Now B # g, B implies Bn g, B = (J, because B s a block. If X =
Bu g,B, we are done. Otherwise, choose x, ¢ BuU g, B, and choose g, € G
with g,b = x,. It is easy to sce that g, B is distinct from B and from g, B, so
that g,Bn(Bu g,B) = (J because B and g, B are blocks. The proof is com-
pleted by iterating this procedure.

(iii) Since |B| = |g;B| for all i, n=|X|=m|B| and |Y|=m = n/|B|. To
see that Y is a transitive G-set, let g;B, g;Be Y and choose x € B. Since
X is transitive, there is g € G with gg;x = g;x; that is, (J # gg,Bng;B =
(99:9:")g;B N g;B. Since g;B is a block, it follows that gg;B = g;B, as
desired.

Definition. If B is a block of a transitive G-set X and if Y = {¢, B, ..., g,,B} is
a partition of X (whereg,, ..., g,, € G), then Y is called the imprimitive system
generated by B.

Corollary 9.14. A transitive G-set of prime degree is primitive.

Proaf. This follows from Theorem 9.13(iii).
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Here is a characterization of primitive G-sets.

Theorem 9.15. Let X be a transitive G-set. Then X is primitive if and only if,
for each x € X, the stabilizer G, is a maximal subgroup.

Proof. If G, is not maximal, there is a subgroup H with G, < H < G, and we
will show that Hx = {gx: g € H} is a nontrivial block; that is, X is imprimi-
tive. If g e G and Hx ngHx # (&, then hx = gh’x for h, k' € H. Since h™'gh’
fixes x, we have h™'gh’ € G, < H and so g € H; hence, gHx = Hx, and Hx is
a block. It remains to show that Hx is nontrivial. Clearly Hx is nonempty.
Choose g e G with g ¢ H. If Hx = X, then for every y € X, there is h € H with
y = hx; in particular, gx = hx for some h € H. Therefore g™'h € G, < H and
g € H, a contradiction. Finally, if Hx is a singleton, then H < G,, contra-
dicting G,, < H. Therefore, X is imprimitive.

Assume that every G, is a maximal subgroup, yet there exists a nontrivial
block B in X. Define a subgroup H of G:

H={geG:gB =B}

Choose x € B. If gx = x, then x e BngB and so gB = B (because B is a
block); therefore, G, < H. Since B is nontrivial, there is y € B with y # x.
Transitivity provides g € G with gx = y; hence ye BngB and so gB = B.
Thus, g € H while g ¢ G,;thatis, G, < H.If H= G,thengB = Bforallg € G,
and this contradicts X # B being a transitive G-set. Therefore G, < H < G,
contradicting the maximality of G,.

ExAMPLE 9.4. If X is a transitive G-set and 1 ¢ H < G, then it need not be
true that X is a transitive H-set. For example, if V' is a vector space, then
V* =V — {0} is a transitive GL(V)-set. However, if H is the center of GL(V)
(i.e., if H is the subgroup of all the scalar transformations), then V#* is not a
transitive H-set.

Lemma 9.16. Let X be a G-set, and let x, y € X.

() If H < G, then Hx " Hy # J implies Hx = Hy.
(i) If H < G, then the subsets Hx are blocks of X.

Proof. (i) It is easy to see that Hy = Hx if and only if y e Hx. If Hy n Hx #
5, then there are h, K’ € H with hy = h’x. Hence y = h™*h’x € Hx and
Hy = Hx.

(ii) Assume gHx n Hx ¢ (. Since H < G, gHx n Hx = Hgx n Hx. There
are h, h’ € H with hgx = h’x, and so gx = h™*h’x € Hx. Therefore, gHx =
Hx.

Theorem 9.17.

() If X is a faithful primitive G-set of degree n >2,if H <1 G and if H # 1,
then X is a transitive H-set.
(ii) n divides |H|.
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Proof. (i) The lemma shows that Hx is a block for every x € X. Since X
is primitive, either Hx = J (plainly impossible), Hx = {x}, or Hx = X. If
Hx = {x} for some x e X, then H < G,. But if g € G, then normality of H
gives H = gHg™' < gG,g™* = G,,. Since X is transitive, H < (),.xG, = 1,
for X is faithful, and this is a contradiction. Therefore Hx = X and X is a
transitive H-set.

(ii) This follows from Theorem 9.2.

Using this theorem, we see that the GL(V)-set ¥V'# in Example 9.4 is transi-
tive but not primitive.

Corollary 9.18. Let X be a faithful primitive G-set of degree n. If G is solvable,
then n = p™ for some prime divisor p of |G|; if G is nilpotent, then n is a prime
divisor of | G|.

Proof. If G is solvable, a minimal normal subgroup H of G is elementary
abelian of order p¥, by Theorem 5.24. The theorem now gives n a divisor of
p*, and so n, too, is a power of p. If G is nilpotent, then G has a normal
subgroup H of prime order p (e.g.,, take H = {g), where ¢ is an element of
order p in Z(G)). The theorem gives n a divisor of p; thatis,n =p. B&

EXERCISES

9.13. Let X be an imprimitive G-set and let B be a maximal nontrivial block of X;
that is, B is not a proper subset of a nontrivial block. Show that the imprimitive
system Y generated by B is a primitive G-set. Give an example with X faithful
and Y not faithful.

9.14. (i) Let X be a transitive G-set, let x € X, and let 4 be a nonempty subset of X.
Show that the intersection of all g4 containing x, where g € G, is a block.
(i) Let X be a primitive G-set and let A be a nonempty proper subset of X. If x
and y are distinct elements of X, then there exists g € G with x € g4 and
y ¢ gA. (Hint. The block in part (i) must be {x}.)

9.15. (i) Prove that if a group G has a faithful primitive G-set, then its Frattini
subgroup ®(G) = 1.
(ii) Prove that a p-group G that is not elementary abelian has no faithful primi-
- tive G-set. (Hint. Theorem 5.47.)

Simplicity Criteria

We now prepare the way for new proofs showing that the alternating groups
and the projective unimodular groups are almost always simple.

Definition. If X is a G-set and H < G, then H is a regular normal subgroup if
X is a regular H-set.
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If H is a regular normal subgroup, then |[H| = | X|. Thus, all regular normal
subgroups have the same order.

Theorem 9.19. Let X be a faithful primitive G-set with G, a simple group. Then
either G is simple or every nontrivial normal subgroup H of G is a regular
normal subgroup.

Proof. If H < G and H # 1, then Theorem 9.17(i) says that X is a transitive
H-set. We have H n G, < G, for every x € X, so that simplicity of G, gives
either H N G, = 1 and X is regular or H N G, = G,; that is, G, < H for some
x € X. In the latter event, Theorem 9.15 gives G, a maximal subgroup of G,
so that either G, = H or H = G. The first case cannot occur because H acts
transitively, so that H = G and G is simple. &

It is proved in Burnside (1911), p. 202, Theorem XIII, that if a group G has
a faithful doubly transitive G-set X whose degree is not a prime power, then
either G is simple or G has a simple normal subgroup. (This result may be
false when the degree is a prime power; S, is a counterexample.)

Here is the appropriate notion of homomorphism of G-sets.

Definition. If X and Y are G-sets, then a function f: X - Y is a G-map if
flgx) = gf(x) for all x € X and g € G; if f is also a bijection, then f is called a
G-isomorphism. Two G-sets X and Y are isomorphic, denoted by X = Y, if
there is a G-isomorphism f: X — Y.

By Theorem 9.1, every G-set X determines a homomorphism ¢: G — Sy.
Usually there is no confusion in saying that X is a G-set and not displaying
¢, but because we now wish to compare two G-sets, let us denote X more
precisely by (X, ¢). The action of ge G on x € X is now denoted by ¢,x
instead of by gx. The definition of G-map f: (X, ¢) — (Y, ¥) now reads, for all
geGand xe€ X, as

J(@,(x)) = Y, (f(x)).

ExaMPLE 9.5. Let G be a group, and let 4, p: G — Sg be the left and right
regular representations of G (recall that 1,: x+—gx and p,: x—xg~" for all
x, g€ G). We claim that (G, ) and (G, p) are isomorphic G-sets. Define
f:G— Gby f(x) = x7; clearly f is a bijection. Let us see that f is a G-map.

fA,(x) = flgx) = x71g™! = f(x)g™" = p,(f(x)).
EXAMPLE 9.6. Chinese Remainder Theorem.

If S < G is any (not necessarily normal) subgroup, we denote the family of
all left cosets of S in G by G/S; it is a G-set with action g(xS) = (gx)S (as in
Theorem 3.12). If X and Y are G-sets, then their cartesian product X x Y
may be regarded as a G-set with diagonal action: g(x, y) = (gx, gy).
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If G is a (finite) group and H, K < G are such that HK = G, then there is a
G-isomorphism f: G/(H n K) 55 (G/H) x (G/K), where the latter has diagonal
action. Define f by x(H n K) — (xH, xK). It is straightforward to show
that f is a well defined injective G-map. Since HK = G, the product formula
|HK||H n K| = |H||K| gives |G|/|H||K| = 1/|H n K|; multiplying both sides
by |G| gives [G: H][G: K] =[G:H K], and so f must be surjective as
well. Therefore, f is a G-isomorphism.

Theorem 9.20. Every transitive G-set X is isomorphic to the G-set G/G, of all
left cosets of G, on which G acts by left multiplication.

Proof. Let X = {x,,..., x,}, let H = G, and, for each i, choose g; € G with
g;x; = x; (which is possible because X is transitive). The routine argument
that f: X — G/H, given by f(x;) = g;H, is a well defined bijection is left to the
reader (recall that n = |0(x,)| = [G: H]). To check that f is a G-map, note
that if g € G, then for all i there is j with gx; = x;, and so

Sflgx;) = f(x)) = g;H.
On the other hand,
af(x;) = gg;H.

But ggix, = gx; = x; = g;Xy; hence gj_lggl- € G,, = H, and so g;H = gg;H, as
desired.

Theorem 9.21.

(i) If H, K < G, then the G-sets G/H and G/K (with G acting by left multipli-
cation) are isomorphic if and only if H and K are conjugate in G.

(i) Two transitive G-sets (X, @) and (Y, ) are isomorphic if and only if stabi-
lizers of points in each are conjugate in G.

Proof. (i) Assume that there is a G-isomorphism f: G/H — G/K. In particular,
there is g € G with f(H) = gK. If h € H, then

gK = f(H) = f(hH) = hf (H) = hgK.

Therefore, g 'hg € K and ¢g"*Hg < K. Now f(g™*H) = g"'f(H) = g"'gK =
K gives f71(K) = g~'H. The above argument, using f ' instead of f, gives
the reverse inclusion gKg™! < H.

Conversely, if g™ Hg = K, define f: G/H — G/K by f{aH) = agK. It is rou-
tine to check that f is a well defined G-isomorphism.

(i) Let H and K be stabilizers of points in (X, ¢) and (Y, ), respectively.
By Theorem 9.20, (X, ¢) =~ G/H and (Y, ) = G/K. The result now {ollows
from part (i). E

Corollary 9.22. If G is solvable, then every maximal subgroup has index a prime
power; if G is nilpotent, then every maximal subgroup has prime index.
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Remark. The second statement was proved in Theorem 5.40.

Proof. If H < G, then the stabilizer of the point {H} in the transitive
G-set G/H is the subgroup H. If H is a maximal subgroup of G, then G/H
is a primitive G-set, by Theorem 9.15, and so |G/H| = [G: H] is a prime
power, by Corollary 9.18. A similar argument gives the result when G is
nilpotent. [

Lemma 9.23. Let X be a transitive G-set and let H be a regular normal sub-
group of G. Choose x € X and let G, act on H* by conjugation. Then the
G,-sets H* and X — {x} are isomorphic.

Proof. Define f: H* — X — {x} by f(h) = hx (notice that hx # x because H
is regular). If f(h) = f(k), then h™*k € H, = 1 (by regularity), and so f is injec-
tive. Now | X | = |H| (regularity again), |H*| = |X — {x}|, and so f is surjec-
tive. It remains to show that f is a G,-map. If g € G, and h e H?*, denote the
action of g on h by g « h = ghg™!. Therefore,

flg=h) = flghg™) = ghg™ x = ghx,
because g~! € G,; on the other hand, g-f(h) = g(hx), and so f(g*h) =
g-f(h) &8

Lemma 9.24. Let k > 2 and let X be a k-transitive G-set of degree n. If G has
a regular normal subgroup H, then k < 4. Moreover:

(1) if k = 2, then H is an elementary abelian p-group for some prime p and n
is a power of p;
(ii) if k >3, then either H>~ Z3 and n=73 or H is an elementary abelian
2-group and n is a power of 2; and
(i) if k>4, then H~V andn = 4.

Proof. By Lemma 9.5, the G,-set X — {x} is (k — 1)-transitive for each fixed
x € X; by Lemma 9.23, H* is a (k — 1)-transitive G,-set, where G, acts by
conjugation.

(i) Since k > 2, H? is a transitive G,-set. The stabilizer G, acts by conjuga-
tion, which is an automorphism, so that all the elements of H* have the same
(necessarily prime) order p, and H is a group of exponent p. Now Z(H) < G,
because Z(H) is a nontrivial characteristic subgroup, so that | X| = |Z(H)| =
|H|, for Z(H) and H are regular normal subgroups of G'. Therefore, Z(H) =
H, H is elementary abelian, and | X| is a power of p.

(ii) If h e H*, then it is easy to see that {h, h™'} is a block. If k > 3, then
H? is a doubly transitive, hence primitive, G,-set, so that either {h, h™'} =
H* or {h, h™*} = {h}. In the first case, [H| = 3, H =~ Z,, and n = 3. In the
second case, h has order 2, and so the prime p in part (i) must be 2.

(i) If k>4, k—1>3 and |H*| = 3; it follows that both H =~ Z, and
H =~ Z, are excluded. Therefore, H contains a copy of V; say, {1, h, k, hk}.
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Now (G,), acts doubly transitively, hence primitively, on H* — {h}. It is easy
to see, however, that {k, hk} is now a block, and so H* — {h} = {k, hk}. We
conclude that H = {1, h, k, hk} ~ Vand n = 4.

Finally, we cannot have k > 5 because n < 4.

Of course, the case k = 4 does occur (G = S, and H = V). Compare the
case k = 2 with Theorem 9.11.

Theorem 9.25. Let X be a faithful k-transitive G-set, where k > 2, and assume
that G, is simple for some x € X.

@) If k = 4, then G is simple.
(i) If k > 3 and | X| is not a power of 2, then either G =~ S, or G is simple.
(iii) If k > 2 and | X| is not a prime power, then G is simple.

Proof. By Theorem 9.19, either G is simple or G has a regular normal sub-
group H. In the latter case, Lemma 9.24 gives k < 4; moreover, if k = 4, then
H =~V and | X| = 4. Now the only 4-transitive subgroup of S, is S, itself, but
the stabilizer of a point is the nonsimple group S;. Therefore, no such H
exists, and so G must be simple. The other two cases are also easy conse-
quences of the lemma (note that the stabilizer of a point of an S;-set is the
simple group S, = Z, so that S, is a genuine exception in part (ii)).

Here is another proof of the simplicity of the large alternating groups.
Theorem 9.26. A, is simple for alln > 5.

Proof. The proof is by induction on n > 5. If n = 5, then the result is Lemma
3.8. By Theorem 9.9, A4, acts (n — 2)-transitively on X = {1, 2, ..., n}; hence,
if n > 6, then A, acts k-transitively, where k > 4. The stabilizer (4,), of n is
just A4,_; (for it consists of all the even permutations of {1, ..., n — 1}), and
so it is simple, by induction. Therefore, 4, is simple, by Theorem 9.25(i).

Here is another simplicity criterion. It shall be used later to give another
proof of the simplicity of the PSLs.

Theorem 9.27 (Iwasawa, 1941). Let G = G’ (such a group is called perfect) and
let X be a faithful primitive G-set. If there is x € X and an abelian normal
subgroup K <1 G, whose conjugates {gKg™': g e G} generate G, then G is
simple.

Proof. Let H # 1 be a normal subgroup of G. By Theorem 9.17, H acts
transitively on X. By hypothesis, each g e G has the form g =[] g:k;g:?,
where g; € G and k; € K. Now G = HG,, by Exercise 4.9(i), so that g; = h;s;
for each i, where h; € H and s; € G,.. Normality of K in G, now gives

g =[1hs;k;s7*hi' e HKH < HK
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(because H lies in the subgroup HK), and so G = HK. Since K is abelian,
G/H = HK/H = K/(H n K) is abelian, and H > G’ = G. Therefore, G is
simple.

EXERCISES

9.16. If X is a G-set, let Aut(X) be the group of all G-isomorphisms of X with itself.
Prove that if X is a transitive G-set and x € X, then Aut(X) = N(G,)/G,. (Hint.
If @ e Aut(X), there is ge G with gx = ¢(x); the desired isomorphism is
@ g7'G,)

9.17. Let X be a transitive G-set, and let x, y € X. Prove that G, = G, if and only if
there is @ € Aut(X) with o(x) = y.

Affine Geometry
All vector spaces in this section are assumed to be finite-dimensional.

Theorem 9.28. If V is an n-dimensional vector space over a field K, then
V# =V — {0} is a transitive GL(V)-set that is regular when n=1. If n > 2,
then V* is doubly transitive if and only if K = Z,.

Proof. GL(V) acts transitively on V#, for every nonzero vector is part of a
basis and GL (V) acts transitively on the set of all ordered bases of V. If n = 1,
only the identity can fix a nonzero vector, and so V# = K* is regular.

Assume that n > 2, and that {y, z} is a linearly independent subset. If
K # Z,, there exists A € K with 1 5£ 0, 1; if xe V¥, then {x, Ax} is a linearly
dependent set, and there is no g € G with gx = y and gix = z. Therefore,
GL(V) does not act doubly transitively in this case. If K = Z,, then every
pair of distinct nonzero vectors is linearly independent, hence is part of a
basis, and double transitivity follows from GL(V) acting transitively on the
set of all ordered bases of V.

Definition. If V is a vector space and y € V, then translation by y is the func-
tion t,: V — V defined by
L(x)=x+y

for all x € V. Let Tr(V) denote the group of all translations under composi-
tion (we may also write Tr(n, K) or Tr(n, g)).

Definition. If V is a vector space over K, then the affine group, denoted by
Aff(V), is the group (under composition) of all functions a: V — V (called
affinities) for which there is y € V and g € GL(V) such that

a(x)=gx +y
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for all x € V. (Of course, a is the composite £,g.) We may also denote Aff(V)
by Aff(n, K) or by Aff(n, g).

Since gt,g~! = t,,, we have Tr(V) < Aff(V); moreover, the map ¢,y is an
isomorphism of the group Tr(V) with the additive abelian group V.

Theorem 9.29. A vector space V of dimension n over a field K is a doubly
transitive Aff(V)-space; it is sharply 2-transitive when n = 1.

Proof. Since Tr(V) acts transitively on V (as is easily seen), it suffices to show
thatif x # 0 and if y  z are vectors, then there exists a € Aff(V) with a(x) = y
and a(0) = z. There exists g € GL(V) with g(x) = y — z, by Theorem 9.28, and
one checks that a € Aff(V), defined by a: v+ g(v) + z, sends (x, 0) to (y, z). If
n = 1, then g is unique, hence a is unique, and so the action is sharp.

When n =1 and K = GF(g), then |Aff(1, q)| = q(q — 1), for Aff(1, g) acts
sharply 2-transitively on a set with g elements. Indeed, Aff(1, g) is the semi-
direct product K »;, K*, where §: K* — K is defined by 8: x+— multiplication
by x. If g is a power of an odd prime, then K = GF(g) is a sharply 2-transitive
Aff(1, g)-set of odd degree, and so Aff(1, g) is described by Theorem 9.11.

Let us now consider linear subsets of a vector space V: lines, planes, etc.,
not necessarily passing through the origin.

Definition. If S is an m-dimensional subspace of a vector space V, then a coset
W = S + v, where v € V, is called an affine m-subspace of V. The dimension of
S + v is defined to be the dimension of the subspace S.

There are special names for certain affine m-subspaces: if m =0, 1, or 2,
they are called points, affire lines, and affine planes, respectively; if dim V = n,
then affine (n — 1)-subspaces of V are called affine hyperplanes.

We are going to focus attention on the affine subspaces of a vector space
V—its “geometry (that is, we focus on the lattice of all affine subspaces).”
Here is a description of this aspect of V.

Definition. Let V be an n-dimensional vector space over a field K, let 4 be a
set, and, for 0 < m < n, let %, (4) be a family of subsets of A (called affine
m-subspaces). If a: V — A is a bijection such that a subset W of V is an affine
m-subspace (W = S + v) if and only if a(W) € £, (A4), then (4, Z,(A4), o) is
called an affine n-space over K with associated vector space V.

ExampLE 9.7. If V is an n-dimensional vector space over a field K, define
&, (V) to be the family of all affine m-subspaces S + v in V (where S is a
sub-vector space) and define a: V' — V to be the identity. Then (V, Z,.(V), 1)
is an affine space, called the standard affine space of V over K.

ExampLE 9.8. Let (V, &, (V), 1) be a standard affine space over K and let
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v e V.Then (V, Z,(V), t,) is also an affine space over K, where ¢, is translation
by v.

We have not given the most important examples of affine spaces: certain
subsets of projective spaces (to be defined in the next section). A projective
space X is obtained from a vector space V by adjoining a “hyperplane at
infinity”; the original V inside of X is called the “finite” portion of X; that is,
it is called affine.

Definition. If (4, £, (4), «) and (B, Z,(B), f) are affine spaces over K, then a
bijection f: 4 — B is an affine isomorphism if, for all m, a subset W of A lies
in %,,(A4) if and only if f(W) lies in .%,,(B). One says that (4, .%,(A), «) and
(B, Z,(B), p) are isomorphic if there is an affine isomorphism between them.

If (4, £,(A), «) is an affine space over K, then the set of all affine automor-
phisms of A is a group under composition, denoted by

Aut(A, Z,(A4), ).

If (A4, %, (4), «) is an affine space over K, then a: V — A is an affine isomor-
phism from (V, Z,(V), 1) to (4, Z,(A4), ), and so every affine space is iso-
morphic to a standard affine space.

Theorem 9.30. If (A, £, (A), ) is an affine space associated to a vector space V,
then
Aut(V, Z,(V), 1) = Aut(4, Z,(4), «).

Moreover, two affine spaces (A, £, (A), &) and (B, Z,(B), B) over K are isomor-
phic if and only if they have associated vector spaces of the same dimension.

Proof. It is easy to see that ' afa™" is an isomorphism Aut(V, Z,(V), 1,,) -
Aut(4, £, (4), a).

If (4, #,(A), «) is an affine space with associated vector space ¥, then
dim V is the largest m for which %,,(A4) is defined. Therefore, isomorphic
affine spaces have associated vector spaces of the same dimension.

Conversely, if dim V = dim U, then there is a nonsingular linear transfor-
mation g: ¥V — U, and fga™': A — B is an affine isomorphism, for it is a
composite of such. E

As a consequence of Theorem 9.30, we abbreviate notation and write
Aut(V, Z,(V), 1,) = Aut(V).

If V is an n-dimensional vector space over a field K, we may write Aut(n, K),
and if K = GF(g), we may write Aut(n, g).

It is clear that Aff(V) < Aut(V), for affinities preserve affine subspaces. Are
there any other affine automorphisms?
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ExampLE 9.9. If K = C, the map f: C"— C" (the vector space of all n-tuples
of complex numbers), given by (zy, ..., z,)—{(Z,, ..., Z,) (Where Z denotes the
complex conjugate of z}, is easily seen to be an affine automorphism. More
generally, if ¢ is any automorphism of a field K, then o,: K" — K", defined by

a*(/lly"w’q'n) Z(li',...,/q.: >

is an affine automorphism, where A% denotes the image of A under o.
Here is a coordinate-free description of o,,.

Definition. Let ¥V and V' be vector spaces over K. A function f: V- V'is a
semilinear transformation if there exists ¢ € Aut(K) such that, forall x, ye V
andall e K,

S+ y)=fx)+ f(»)

and
f(Ax) = A7f(x).

A semilinear transformation f is nonsingular if it is a bijection.

All linear transformations are semilinear (take ¢ = 1), as are all the func-
tions ¢,, of Example 9.9, and it is easy to see that every nonsingular semilinear
transformation ¥ — V is an affine automorphism of the standard affine space.

We claim that each nonzero semilinear transformation f: V' — U deter-
mines a unique automorphism ¢ of K. Assume that there is an automorphism
7 of K for which f(iv) = A°f(v) = A%(v). Since f is nonzero, there is a vector
vo € V with f(vy) # 0. For each 4 € K, 1°f(vy) = A%f(vo); hence, A = A* and
¢ =1 If f and g are semilinear transformations V — V with field automor-
phisms ¢ and r, respectively, then their composite fg is semilinear with field
automorphism o7; if f is a nonsingular semilinear transformation with field

automorphism ¢, then f~* is semilinear with field automorphism ¢ ™.

Definition. All nonsingular semilinear transformations on a vector space V
form a group under composition, denoted by 'L(V). If V is an n-dimensional
vector space over K, then we may write I'L(n, K), and if K = GF(g), we may
write T'L(n, q).

Of course, TL(V) < Aut(V).
The remarkable fact is that we have essentially displayed all possible affine
automorphisms. Here are two lemmas needed to prove this.

Lemma 9.31. Let V be a vector space of dimension > 2 over a field K.

(1) Two distinct lines¢, = Kx, + y, and ¢, = Kx, + y, are either disjoint or
intersect in a unique point.
(i) Two distinct points x, y € V lie in a unique line, namely, K(x — y) + y.
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(i) If {x, y} is linearly independent, then
{x+y} =Ex+ y)n(Ky + x).

(iv) Two distinct hyperplanes H + x and J + y are disjoint if and only if H =
J. In particular, if dimV = 2, distinct lines Kx + y and Kz + w are dis-
joint if and only if Kx = Kz.

Proof.()lfze/ Ny, thend 0y =(Kx; +y)0(Kx, +y,)=(Kx; nKx,)+
z, by Exercise 2.26. Now Kx; = Kx, cannot occur lest the lines #; and £,
be distinct cosets of the same subgroup Kx,; and hence disjoint. Therefore
Kx,nKx, ={0} and £, "¢, = {z}.

(ii) Clearly K(x — y) + y is a line containing x and y; a second such line
intersects this one in at least two points, contradicting (i).

(iii) Independence of {x, y} implies that the lines Kx + y and Ky + x are
distinct. But x + y € (Kx + y) n (Ky + x), and (i) now gives the result.

(iv) If H = J, then distinct hyperplanes are distinct cosets of H, and hence
are disjoint. If H # J, then H + J = V (because H and J are maximal sub-
spaces). Hence y — x = h + j for some h € H and j e J. Therefore, h + x =
—j+ ye(H + x) n(J + y), and the hyperplanes intersect.

The last statement follows, for a hyperplane in a two-dimensional vector
space is a line.

Lemma 9.32. Let V and U be vector spaces over K, let f: V — U be an affine
isomorphism of standard affine spaces with f(0) =0, and let W be a two-
dimensional subspace of V with basis {x, y}. Then:

() f(Kx) = Kf(x):
(i1) {f(x), f(»)} is linearly independent;

(i) fO¥) = {f(x), f(»)D, the subspace spanned by f(x) and f(y), and
(iv) fIW: W — f(W) is an affine isomorphism.

Proof. (i) Kx is the unique line containing x and 0, and f(Kx) is the unique
line containing f(x) and f(0) = 0.

(ii) If {f(x), f(»)} is dependent, then f(x), f(»), and O are collinear; ap-
plying the affine isomorphism f~! gives x, y, and 0 collinear, contradicting
the independence of {x, y}.

(iii) For each ordered pair 4, 1 € K, not both zero, denote the line contain-
ing Ax and py by Z(4, p). Since W = | J, ,4(4 p), it follows that f(W)=
Uan f(£(4, 1). Denote < f(x), f(y)> by W'. To see that f(W) = W’, choose a
line Z(4, u). By (i), there are a, f € K with f(ix) = af(x) and f(uy) = Bf(y).
Now f(Ax), f(uy) € W' for all 1 and p, hence f(£(4, ) =« W', and so f(W) =
W'. For the reverse inclusion, consider the affine isomorphism f~! and the
subset {f(x), ()}, which is independent, by (ii). As above, we see that
f7HW') = W, so that W’ < f(W).

(iv) By (iii), f(W) is a two-dimensional vector space, and so its affine struc-
ture is the same as that of W, by Theorem 9.30.
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Theerem 9.33. If V and U are isomorphic vector spaces of dimension > 2 over
a field K, then every affine isomorphism f: V — U has the form f =t,g for
some u € U and some nonsingular semilinear transformation g; that is, for all
x eV,

Jx)=g(x) + u

Remarks. 1. One must assume that dim V > 2, for every bijection between
one-dimensional vector spaces is an affine isomorphism.

2. We will not use the full force of the hypothesis, namely, f(%,.(V)) =
Z,(U) for all m < n; we shall assume only that /(&£ (V)) = & (U); that is, f
carries lines to lines.

Proof. Composing f with the translation x+— x — f(0), we may assume that
f(0) = 0; it suffices to prove that such an affine isomorphism is semilinear.
Since f is a bijection, it preserves intersections; in particular, if /; and ¢, are
lines, then (£, nZ,) = f(£1) N f(£2)

If {x, y} is independent, then we claim that

fIRx +y) = Kf(x) + f(3).

By Lemma 9.32(iii), both f(Kx + y) and f(Kx) are lines contained in
{f(x), f(y)>; indeed, they are disjoint because Kx + y and Kx are disjoint.
Since f(Kx) = Kf(x), by Lemma 9.31(i), we may apply Lemma 9.31(iv) to
{f(x), £(y)> to obtain

SEx +y)=Kf(x)+ z

for some z. In particular, there are scalars o, § € K with f(y) = af(x) + z and
f(Ax + y) = Bf(x) + z, where 4 € K and f§ depends on A. Thus

fx +y) = ff(x) + f(y) — of ()
= (B — a)f (x) + f(y) € Kf(x) + f(y).

Therefore f(Kx + y) € Kf(x) + f(y), and equality holds because both are
lines. .

We now prove that f(x + y) = f(x) + f(y) when {x, y} is independent. By
Lemma 9.31(iii), (Kx + y) n (Ky +x)= {x+ y}. Since f preserves intersections,

{f(x +»} = f(Kx + y)n f(Ky + x)
= [Kf(x) + f(W] o [Kf(y) + f(x)]
={fx+ O}

the last equality because { f(x), f(»)} is independent (Lemma 9.32(ii)). There-
fore, f(x + y) = f(x) + f(y) if {x, y} is independent. It remains to show that
SfOx + ux) = f(Ax) + f(ux), and we do this in two steps (as f(0) = 0, we may
assume that 1 # 0 and p # 0). Since dim ¥V > 2, we may choose w so that
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{w, x} is independent; it follows that {x + w, —x} is also independent. Now
Jw) = f((x +w) — x)
= f(x +w) + f(—x) (independence of {x + w, —x})
= f(x) + fw) + f(—x) (independence of {x, w})
It follows that f(—x) = —f(x). Consequently, if 1 + u = 0, then f(ix + ux) =
0 = f(Ax) + f(px). Finally, if 2 + g # 0, then {Ax + w, ux — w}, {Ax, w}, and
{ux, —w} are independent sets (for A # 0 and p # 0), and so
Sx + px) = f(Ax + w) + f(ux — w)
= f(Ax) + f(w) + f(ux) + f(—w)
= fU) + f().

We have proved that f is additive.

If x # 0 and A € K, then f(Kx) = Kf(x) implies that there is o,(1) € K with
f(Ax) = 0,(4)f(x). The function ¢,: K —> K is a bijection (because f(Kx)=
Kf(x)) with g,(1) = 1. Additivity of f implies

a.(A + Wf(x) = f((A + wx) = f(Ax + px)
= f(Ax) + f(ux) = [0:(4d) + 0.() 1/ ();

Since f(x) # 0, we see that g, is additive.
Next, we show that ¢, does not depend on x. Choose w so that {x, w} is
independent. Now

fOx + Aw) = f(Ax) + f(Aw) = 0, (D) f(x) + 6, (D) f(Ww).
On the other hand,
SOx 4+ Aw) = 0,4, (D f(x + W) = 0,4, (D) [f(X) + f(W)].

Equating coefficients,
Ux(j') = ax-!-w(’l) = ow(j')'

Lastly, if p € K*, then {px, w} is independent and we see, with px in place of
x, that 6,.(4) = 0,,(4).

It remains to show that o: K — K is multiplicative (the subscript may now
be omitted). But

JfOpx) = o, (An) f(x)

and also

Jux) = 0, (D f(px) = 6, (D)o (1)f(x).

Therefore, o.(Ap) = 6,,(1)o.(1); as ¢ does not depend on the subscript,
a(Ay) = a(X)o(n), and so o € Aut(K). It follows that f is semilinear.

Corollary 9.34. Let V and W be vector spaces over a field K with dim(V) =
dim(W) = 2. If g: V - W is an additive function for which g(v) = A,v for all
v € V, where 4, € K, then all the A, are equal and g is a scalar transformation.
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Proof. This is essentially contained in the next to last paragraph of the proof
of the theorem.

Corollary 9.35. Let (A4, %, (A), o) and (B, &£, (B), ) be affine spaces of dimen-
sion > 2 with associated vector spaces V and U, respectively. If f: A — Bis an
affine isomorphism, then

f = ﬁtzga—17

where g: V — U is a nonsingular semilinear transformation and z = B~*fa(0).

Proof. The function g’: V — U, defined by ¢g''= pfx, is an affine isomor-
phism; if g is defined by g = t__g’, then g: V— U is an affine isomorphism
with g(0) = 0. By Theorem 9.33, g is a nonsingular semilinear transformation.
Therefore g = t_,g’ = t_,f 'fx, and the result follows.

If V is a vector space over a field K, we have written Aut(V) for the group
of all affine automorphisms of V. If dim V' > 2, then Theorem 9.33 shows that
feAut(V)if and only if f(x) = g(x) + y, where g is a nonsingular semilinear
transformation and y € V. If dim ¥ = 1, then we have already remarked that
every permutation of V is an affine automorphism: the group of all affine
automorphisms is the symmetric group on V.

Theorem 9.36. If V is an n-dimensional vector space over a field K, then TL(V)
is a semidirect product of GL(V) by Aut(K). If K = GL(q) = GF(p"), then

ITL(n, g)| = IT'L(n, p")| = r|GL(n, g)I.

Proof. We have already seen that each g e I'L(V) determines a unique o €
Aut(K); this function TL(V) — Aut(K) is a surjective homomorphism with
kernel GL{V). As in Example 9.9, choose a basis of V and, for each o ¢
Aut(K), consider the semilinear transformation o,.. It is easy to see that Q =
{o,:0 € Aut(K)} < TL(V), Q =~ Aut(K), and Q is a complement of GL(V).
Therefore, TL(V) =~ GL(V) x Aut(X).

When K = GF(g), then [TL(V)| = |Aut(K)||GL(V)|. The result now fol-
lows from Theorem 8.4. H

When V is finite, |GL (V)| is given by Theorem 8.5

Theorem 9.37. Let V be a vector space of dimension n over a field K.

(i) Aut(V), the group of affine automorphisms of V, is a semidirect product of
Tr(V) by TL(V).
(ii) If K = GF(q), then
|Aut(V)] = g"[TL(V)!

(iii) V is a doubly transitive Aut(V)-set.
(iv) Aff(V) = Aut(V) if and only if Aut(K) = 1.
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Proof. (i) By Theorem 9.33, if f € Aut(V), then f(x) = g(x) + y for some g €
I'L(V) and some y € V. Define n: Aut(V.)) > I'L(V) by n(f) = g. Now ker = =
Tr(V) and = fixes T'L(V) pointwise, so that = is a retraction. Lemma 7.20 now
gives Aut(V) = Tr(V) xI'L(V).

(i1) This follows from (i) after recalling that Tr(V) = V.

(iii) This follows from Theorem 9.29, for Aff(V) < Aut(V).

(iv) Aut(K) = 1if and only if every semilinear transformation is linear.

There exist fields K for which Aut(K) = 1. For example, the prime fields Q
and Z,, for all primes p, and the real numbers R.

EXERCISES

9.18. Choose a basis of an n-dimensional vector space V over a field K. To the affin-
ity a e Afi(V) with a(x) = g(x) + y (where g € GL(¥) and y € V), assign the

(n+ 1) x (n + 1) matrix
A b
0 1f

where A is the matrix of g (relative to the chosen basis) and b is the column
vector whose entries are the coordinates of y. Show that this assignment gives
an injective homomorphism Aff(V) = Aff(n, K) - GL(n + 1, K) whose image
consists of all matrices whose bottom row is [0 -+~ 0 1].

9.19. Show that Aff(V) is a semidirect product of Tr(V) by GL(V) and that
|Aff(n, g) = ¢"|GL(n, g)|.

9.20. Let V and U be n-dimensional vector spaces over a field K, where n > 2, and let
V, Z,(V), 1) and (U, Z,(U), 1) be standard affine n-spaces over K. Show that
every affine isomorphism f: ¥V — U has the form f =t gt,, whereue U,ve V,
and g: V — U is a nonsingular semilinear transformation.

9.21. Show that the center of I'L(V) consists of all the nonzero scalar transforma-
tions.

9.22. Choose a basis of a vector space V over K and, for ¢ € Aut(K), define o,: V=V
as in Example 9.9. If g € GL(V), let [1;] be the matrix of g relative to the
chosen basis. Show that ¢, go, " is linear and has matrix [o(1;)]. Conclude that
det(c,go,') = a(det g), and hence that SL(V) < TL(V).

Projective Geometry

We now turn from affine geometry to projective geometry. The need for
projective geometry was felt by artists obliged to understand perspective in
order to paint replicas of three-dimensional scenes on two-dimensional can-
vas. If a viewer’s eyes are regarded as a vertex, then the problem of drawing
in perspective amounts to analyzing conical projections from this vertex onto
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planes (see Coxeter (1987), §1.2); this is the etymology of the adjective “projec-
tive.” To a viewer, two parallel lines appear to meet at the horizon, and
projective space was invented to actually make this happen. “Points at infin-
ity” (which constitute a “horizon”) are adjoined to ordinary space: for each
line in ordinary space, there is a new point serving as the common meeting
point of all lines parallel to it. It is more efficient for us, however, to reverse
this procedure; we begin with the larger space and then observe that ordinary
(affine) space exists inside of it.

Let V be a vector space over a field K. Define an equivalence relation on
V* =V — {0} by x = y if there exists A € K* with y = 1x; if x € V'*, denote
its equivalence class by [x]. If x € V#, then [x] is the family of all the nonzero
points on the line through x and the origin.

Definition. If V is an (n + 1)-dimensional vector space over a field K, then
P(V) = {[x]: x e V*} is called projective n-space; one says that P(V) has
projective dimension n.

If ¥ = K**!, then we denote P(V) by P*(K); if K = GF(q), we may denote
PY(K) by P*(q). If x = (xg, Xy, ..., X,) € K"*1, then we may denote [x] by
its homogeneous coordinates [x,, x4, ..., X,]. Of course, homogeneous co-
ordinates are not coordinates at all; if A # 0, then [Ax,, Ax,,..., 4x,] =
[x0s X1 ---» X,]- However, it does make sense to say whether the ith homoge-
neous coordinate is 0, for x; = 0 implies Ax; = 0 for all 1 € K*.

Affine spaces have no algebraic operations; one can neither add nor scalar
multiply. However, using its associated vector space, one can restore these
operation to (A4, Z,(A), o) with the bijection a. Projective spaces P(V) have
also lost the algebraic operations of V, but they cannot be restored; the
only vestiges are homogeneous coordinates and projective subspaces, defined
below.

Definition. If W is a subset of V, define
(W] ={[x]: xe W*#} = P(V).

If W is an (m + 1)-dimensional sub-vector space of ¥, then [W] is called a
projective m-subspace; one says that [W] has projective dimension m.

Here, too, there are names for special subspaces: if m = 0, 1, or 2, projective
m-subspaces are called projective points, projective lines, or projective planes;
respectively; projective (n — 1)-subspaces of a projective n-space are called
projective hyperplanes.

The reason for lowering dimension in passing from V to P(V) should now
be apparent: a line in V (through the origin) becomes a projective point, for
all the nonzero points on the line are equivalent. A plane in V (through the
origin) becomes a projective line, and so forth.
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Theorem 9.38. Let V be a vector space over a field K of dimension n > 2.

(@) If x,yeV*=V— {0}, then [x] # [y] if and only if {x, y} is linearly
independent.
(i) Every pair of distinct points [x], [y] € P(V) lie on a unique projective line.
(ili) If H is a projective hyperplane and L is a projective line not contained in
H, then H N L is a projective point.

Proof. (i) The following are equivalent: [x] = [y]; y = Ax for some 1 € K*;
{x, y} is linearly dependent.

(ii) Since [x] # [y], the subspace W = {x, y) of V is two-dimensional, and
so [W] is a projective line containing [x] and [y]. This line is unique, for
if [W’] is another such line, then W’ is a two-dimensional subspace of V
containing the independent set {x, y}, and so W’ = W.

(iii) Write H = [U] and L = [W], where U and W are subspaces of V of
dimension n and 2, respectively. Now W ¢ U because L ¢ H. Therefore,
U+WwW=YV,

dim(U n W) = dim(U) + dim(W) — dim(U + W)
—n4+2—(n+1)=1,

and [U n W] has projective dimension 0; that is, [Un W] = [U]n[W] =
H L is a projective point.

Definition. Let ¥ and V'’ be vector spaces. A collineation (or projective isomor-
phism) is a bijection 8: P(V) — P(V’) such that a subset S of P(V) is a projec-
tive m-subspace if and only if 6(S) is a projective m-subspace of P(V’). Two
projective spaces are isomorphic if there is a collineation between them.

Notation. If g: V - V' is a nonsingular semilinear transformation, then the

function
P(g): P(V) - P(V"),

defined by g([x]) = [g(x)], is easily seen to be a collineation. If g is a linear
transformation, then P(g) is called a projectivity.

We are going to see that if dim(¥V) > 3, every collineation on P(V) has the
form P(g) for some g € TL(¥V).

Theorem 9.39. Two projective spaces P(V) and P(V') are isomorphic if and
only if dim V = dim V".

Proof. Necessity is obvious: for all m, P(¥) has a projective m-subspace if and
only if P(V’) does. Conversely, if dim ¥V = dim V’, there is a (linear) iso-
morphism g: ¥V — V', and hence there is a collineation (even a projectivity)
P(g): P(V)-> P(V’). H©
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In view of this theorem, every projective n-space over K is isomorphic to
P(K"*') = P"(K), where K"*! is the vector space of all (n 4+ 1)-tuples of ele-
ments of K.

Theorem 9.40.
(i) For every n > 0 and every prime power q,
IP"(q) =q"+¢q" "+ +q+ 1.

In particular, every projective line in P"(q) has q + 1 points.
(i) The number of projective lines in P?(q) is the same as the number of projec-
tive points, namely, g* + q + 1.

Proof. (i) If V = K"*!, where K = GF(g), then |V #| = ¢"*! — 1. Since V* is
partitioned into equivalence classes [x] each of which has g — 1 elements, we
have :
P'@l =@ —Da-1=q¢"+q¢" '+ +q+1L

(i) We claim that there are exactly g + 1 lines passing through any point
[x]. Choose a line ¢ not containing [x]; for each of the g + 1 points [y] on
¢, there is a line joining it to [x]. If £ is any line containing [x], however,
Theorem 9.38(iii) shows that there exists some point [y] € £’ n¢. Since two
points determine a line, £’ coincides with the line joining [x] and [y] origi-
nally counted.

Choose a line ¢,; for each of the g + 1 points [x] on #,, there are exactly
q lines (other than ¢,) passing through [x]. We have displayed g(q + 1) + 1
distinct lines (the extra 1 counts the line £,). Since every line £’ meets ¢, we
have counted all the lines in P*(g). @

Here is the important example of an affine space.

Theorem 9.41. If [W] is a projective hyperplane in a projective n-space P(V)
andif xe V — W, then A = P(V) — [W] can be given the structure of an affine
n-space (A, Z,(A), a) with associated vector space W, where a: W — A4 is
defined by a(w) = [w + x] forallwe W.

Proof. If 0 < m < n, define
Z(A) = {[U]n A4: U is a subspace of V with dim(U) = m + 1}.

We show that « is a bijection by exhibiting its inverse. Since x ¢ W, every
v € V has a unique expression of the form v = Ax + wforwe Wand 1 € K. If
v ¢ W, then 1 # 0 and there is an element v’ equivalent to v with v’ — xe W
(namely, v' = A7!v). This element v’ is the unique such: if v” = uv, u # 171,
and v” — x € W, then (" — x) — (v” — x) = (A™! — p)v forces v € W, a contra-
diction. The function B: A — W, defined by B([v]) = v’ — x (where v’ is the
unique scalar multiple of v for which v" — x is in W), is thus well defined, and
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B is easily seen to be ¢7*. It is now routine to show that (4, %,,(4), ) is an
affine n-space with associated vector space W.

We illustrate Theorem 9.41 with K = GF(2) and ¥V = K2 In this case, the
complement of a projective line (which we now call a “line at infinity”) is an
affine plane consisting of 4 points and 6 lines.

Figure 9.2

There are three pairs of parallel lines in 4 (e.g., 12 and 34), so that P%(2)
requires 3 points at infinity to force every pair of lines to meet. Since | P?(2)| =
2% + 2 4+ 1 = 7, the picture of P2(2) is

3 b 2
Figure 9.3

There are now 7 lines instead of 6 (the circle {a, b, ¢} is a line; “line” in this
pictorial representation of P?(2) has nothing to do with euclidean lines drawn
on a sheet of paper). We have adjoined one “infinite point” to each of the lines
in A so that any pair of extended lines now meet; {a, b, ¢} is the horizon.
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Lemma 9.42. Let V and V' be vector spaces of dimension > 2, let H be a
projective hyperplane in P(V), and let A be the affine space P(V)— H. If
f, h: P(V) > P(V’) are collineations with f|A = h| A, then f = h.

Proof. Let ¢ be an affine line in 4, and choose two distinct points x and y on
¢. Since P(V) is a projective space, there is a unique projective line £* con-
taining x and y (and ¢). Since f(x) = h(x) and f(y) = h(y), it follows that
f(£*) = h(¢*). By Theorem 9.38(iii), H n¢* is a projective point z. Now
f(@)=fHn*) = f(H) N f(£*) = h(H) N h(Z*) = h(z), so that f and h also
agree on all the points of H as well. .

Theorem 9.43 (Fundamental Theorem of Projective Geometry). If V and V'
are isomorphic vector spaces over a field K of dimension n + 1 > 3, then every
collineation f: P(V) — P(V’) has the form f = P(g) for some nonsingular semi-
linear transformation g: V- V.

Remarks. 1. One needs dim(V) > 3, for then P(V) has projective dimension
> 2. Every bijection between projective lines is a collineation.

2. There is a stronger version of this theorem in which K is assumed only
to be a division ring. This version does not affect finite groups, however, for
a theorem of Wedderburn (1905) asserts that every finite division ring is a
field.

Proof. Let W be an n-dimensional subspace of V, so that [W] is a projective
hyperplane in P(V). As in Theorem 941, A = P(V) — [W] is an affine
n-space with affine isomorphism o: W— A given by a(w) = [w + x] for
any x € V — W. Now f([W]) is a hyperplane in P(V’) (since f is a collin-
eation), so there is an n-dimensional subspace W’ of V' such that A’ =
P(V') — f([W]) = [W'] is an affine n-space with bijection f: W’ — 4’ given
by B(w') = [w” + y] for y e V' — W’; as any such y will serve, choose y so
that [y] = f([x]). Since f is a collineation, its restriction f|4: 4 - A’ is an
affine isomorphism. By Corollary 9.35, /|4 = ft,ga”!, where g: W —» W'is a
nonsingular semilinear transformation and z = ~!fx(0). Now

z = f7u(0) = BT ([x]) = A7 ([¥]).

Ifv' € V', then 7} ([v']) = v” — y, where v” is the unique scalar multiple of v’
for which v” — y e W'. If follows that 87}([y]) =y — y=0,and sot, = t, =
1. Therefore,

f1A = Bga™.

Now V =<{x>@® W. If ¢ is the field automorphism determined by the
semilinear transformation g, define §: V - V' by

glAx +w) = A%y + g(w),

where e K and we W. It is routine to check that § is a semilinear
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transformation with §(x) = y and §|W = g; also, § is nonsingular because g
is nonsingular and y ¢ W’. We claim that f = P(g). For all [v] € 4,

S(eD) = Bgo ([v])
= B(g(Av — x)) (where Av — x € W)
= (A°G(v) — §(x)) = B(A°G(v) — »)
=[27G@) — y + y] = [A°§()] = [4()]
= P(g)([vD).
Therefore, f|A = P(§)| 4, and so f = P(g), by Lemma 9.42. B

There are some interesting groups acting on projective space.

Notation. If V is a vector space over K, denote the group of all nonzero
scalar transformations on V by Z(V). If dim(V) = n, we may denote Z(V) by
Z{n, K); if K = GF(q), we may denote Z(V) by Z(n, q).

Theorem 9.44. If dim(V) > 3, the group TL(V)/Z(V) is isomorphic to
the group C of all collineations of P(V) with itself; if dim(V)= 2, then
T'L(V)/Z(V) is isomorphic to a subgroup of the syminetric group on P(V) (the
symmetric group is the full collineation group of P(V) in this case).

Proof. Define a homomorphism n: T'L(V) — C by =(g) = P(g). If g e ker =,
then P(g) = 1; that is, [g(v)] = [v] for all v € V, so there are scalars A, with
g(v) = A,v for all v. By Corollary 9.34, g is scalar, and so = induces an injec-
tion PTL(V) — C. If dim(V) > 3, then the Fundamental Theorem 9.43 gives
7 surjective, so that TL(V)/Z(V) = C. If dim(V) = 2, then C is the symmetric
group on P(V).

Definition. If V is a vector space over a field K, then the quotient group
T'L(V)/Z(V) is denoted by PT'L(V) and its subgroup GL(V)/Z(V) is denoted
by PGL(V). As usual, one may replace V by (n, K) or by (n,q) when
appropriate.

Theorem 9.44 shows that PI'L(V) is (isomorphic to) the collineation group
of the projective space P(V) (when dim(¥) > 2), and it is easy to see that
PGL(V) is the subgroup of all projectivities. The projective unimodular
group PSL(V) = SL(V)/SZ(V) can be imbedded in PGL(V): after all,

PSL(V) = SL(V)/SZ(V) = SL(V)/(Z(V) A SL(V))
~ SL(NZ(V)/Z(V)
< GL(V)/Z(V)
= PGL(V).
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ExAMPLE 9.10. PTL(2, 4) = S, and PGL(2, 4) > A,.

For all n > 1, the group PI'L(n + 1, g) is the group of all collineations of
P"(g), so that PT'L(n + 1, q) (and each of its subgroups) acts faithfully on
P*(qg). In particular, PT'L(2, 4) acts faithfully on P*(4). Since |P*'(4)| =5,
PGL(2, 4) < PTL(2, 4) < S5. By Theorems 9.36 and 8.5, |[PT'L(2, 4)| = 120
and |PGL(2, 4)| = 60. The isomorphisms follow.

Theorem 9.45. For every vector space V, PSL(V) (and hence the larger groups
PGL and PT'L) acts doubly transitively on P(V).

Proof. 1f ([x], [y]) and ([x'], [¥']) are ordered pairs of distinct clements
of P(V), then {x, y} and {x’, y'} are linearly independent, by Theorem 9.38.
Each of these independent sets can be extended to bases of V, say, {x, y,
Z3,...,2,} and {x',y’,z5,...,z,}. There exists g € GL(V) with g(x) = x/,
g(y) =y, and g(z;) = z{ for all i > 3. Hence P(g)[x] = [x'] and P(g)[y] =
[y']. If det(g) = 4, define h e GL(V) by h(x) = A7*x’, h(y) = y’, and h(z;) = z{
for all i. Then det(h) = 1, so that he SL(V), P(h)[x] = [A"'x'] = [x'], and
P(h)[y] = [y']. Therefore, PSL(V) acts doubly transitively on P(V). &l

We now give a second proof of the simplicity of the PSL’s. Recall the
discussion preceding Lemma 8.19: for every transvection T € SL(V), where V
is a vector space over K, there is a linear functional ¢: ¥ — K and a nonzero
vector h € ker f such that T = {¢, h}, where

{@,h}: v>v + o)A
Theorem 9.46. PSL(n, K) is simple if (n, K) # (2, Z,) and (n, K) # (2, Z3).

Proof. We use Iwasawa’s criterion, Theorem 9.27. Let G = PSL(V), where V
is a vector space over K. By Theorem 9.45, P(V) is a faithful doubly transi-
tive, hence primitive, G-set.

Choose h € V* and define a subgroup of the stabilizer Gy, by

H = {P({o, h}): p(h) = 0} U {1}.
Applying P to the formula {¢, h}{y, h} = {¢ + ¥, h} of Lemma 8.19(i),
we see. that H is abelian. Recall Lemma 8.19(iv): If S e GL(V), then
S{p, B}S7' = {S™", Sh}; this is true, in particular, for SeSL(V). Now
P(S) € Gy, if and only if Sh = Ah for some 1€ K. But {¢, Ah} = {Ay, h}, by
Lemma 8.19(ii), and this shows that H <1 G;.

We now show that the conjugates of H generate G, and it suffices, by
Lemma 8.8(ii) (SL(V) is generated by the transvections), to show that every
P({y, k}) is a conjugate of some P({¢, h}). Choose S € SL(V) with Sh = k.
Then, for any {¢, h},

PS)P({g, B})P(S)™! = P({pS7", k}).
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As ¢ varies over all linear functionals annihilating A, the linear functional
@S~ varies over all those annihilating k = Sh. In particular, given i, there is
o with @(h) =0 and y = S

It remains to prove that G is perfect: G = G'. Suppose some transvection T
is a commutator: T= [M, N] for some M, N € SL(V). If T" is another trans-
vection, then 7" and T are conjugate in GL(V), by Corollary 8.18. There-
fore, there is U e GL(V) with T = TV = [M, N]V = [MY, NV]. But both
MY, NV e SL(V), because SL(V) <t GL(V), and so T’, too, is a commutator.
It follows that SL(V) is perfect, and so its quotient PSL(V) is perfect as well.

Let n> 3 and let {e,, ..., ,} be a basis of V. Define T € GL(V) by T(e;) =
e foralli#3and T(e;) =e; — e, —e;.

1 0 -1
T=1|0 1 -1
0 0 1

Note that T = {¢, h}, where h = —e, — e, and ¢ is the linear functional
which selects the third coordinate: ¢ (3 A;e;) = A5. Define M = B, ;(—1) and
define N by Ne, = —e,, Ne, = ¢,,and Ne; = ¢; for all i > 3. Both M and N
lie in SL(V), and a routine calculation shows that [M, N] = MNM™'N! =
T:
1 0 -1 01 0lft o 1]Jo -1 o] 1 0 -1
o 1 Off—-1 0 Of{0 1 Ofj1 O Of=f0 1 -—-1).
0 0 1 0 0 1{j0 0 1¢{jO 0 1 0 0 1
If n = 2 and |K| > 3, then there exists A € K with 1 # 1. But

Es i ] E PR

and so the (elementary) transvection B,,(4? — 1) is a commutator. All the
conditions of Iwasawa’s criterion have been verified, and we conclude that
PSL(n, K) is simple with two exceptions.

Note that the proof of Corollary 8.14 does not work for nonperfect fields
of characteristic 2; the proof above has no such limitation.
Here is a chart of the groups that have arisen in this chapter.

Tr(V) < Aff(V) < Aut(V)
|9 v
SL(V) < GL(V) < TL(V)
| v}
SZ(V) < Z(V).

Here is a summary of the various relations that have arisen among these
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groups, where ¥ is a vector space over K.
SZ(V)=Z(V)~SL(V),
GL(V)~ SL(V) xK*;
I'L(V)= GL(V) xAut(K);
Aut(V)= T'L(V) xTr(V),
Aff(V)= GL(V) xTr(V).

EXERCISES

9.23. Show that if n > 2, then PSL(n + 1, K) acts faithfully and transitively on the set
of all projective lines in P"(K). (Hint. Two points determine a unique line.)

9.24. Let f: P(V)— P(V) be a collineation, where dim(V) > 3. If there exists a projec-
tive line £ in P(V) for which f|¢ is a projectivity, then f is a projectivity.

9.25. Prove that PGL(2, 5) & S5 and PSL(2, 5) = As. (Hint. |P1(5)| = 6.)

9.26. Prove that any two simple groups of order 168 are isomorphic, and conclude
that PSL(2, 7) = PSL(3, 2). (Hint. If G is a simple group of order 168, then a
Sylow 2-subgroup P of G has 7 conjugates and Ng(P)/P = Z,. Construct a
projective plane whose points are the conjugates of P and whose lines are those
subsets {aPo™, PP, yPy™'} for which {o, B, y} is a transversal of P in Ng(P))

Sharply 3-Transitive Groups

We have seen that the groups PI'L(n, K) are interesting for all n > 3: they
are collineation groups of projective (n — 1)-space. Let us now see that
PT'L(2, K) and its subgroup PGL(2, K) are also interesting.

Definition. If K is a field, let K = K U {c0}, where co is a new symbol. If
o e Aut(K) aAnd ad — be # 0, then a semilinear fractional transformation is a
function f: K — K given by

() = (aA? + b)f(cA® +d)  for ieR.

The “extreme” values are defined as follows: f(1) = o0 if cA? + d = 0; f(c0) =
o if ¢ = 0; f(0) = ac™* if ¢ # 0. If o is the identity, then f is called a linear
fractional transformation.

These functions arise in complex variables; there, K = C and ¢ is complex
conjugation.

It is easy to see that all the semilinear fractional transformations on K
form a group under composition.
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Notation. TLF(K) denotes the group of all semilinear fractional transforma-
tions on K, and LF(K) denotes the subgroup of all the linear fractional
transformations.

Theorem 9.47. For every field K, PT'L(2, K) ~ I'LF(K) and PGL(2, K) =
LF(K).

Proof. Choose a basis of a two-dimensional vector space V over K. Using
Theorem 9.36, one sees that each feI'L(2, K) has a unique factorization
f = go,, where g € GL(2, K) and ¢ € Aut(K). If the matrix of g relative to the

chosen basis is
a b
c df

define : T'L(2, K) - TLF(K) by go, = (aA’ + b)/(cA® + d). It is easy to see
that ¢ is a surjective homomorphism whose kernel consists of all the non-
zero scalar matrices. The second isomorphism is just the restriction of this
one.

We have seen that P!(K) is a PI'L(2, K)-set and that K is a [LF(K)-set.
There is an isomorphism : PT'L(2, K) - I'LF(K) and there is an obvious
bijection 6: PY(K)— K, namely, [4, 1]+ if Ae K and [1,0]— 0. If y&
PT'L(2, K) and 1 € K, when is it reasonable to identify the action of y on
[4, 1] with the action of ¥/(y) on 6([4, 1])? More generally, assume that there
is a G-set X (with action a: G — Sy), an H-set Y (with action §: H — Sy), and
a bijection §: X — Y. As in Exercise 1.39, 6 gives an isomorphism 0,: Sy — Sy
by n+> 6n67 . Finally, assume that there is an isomorphism y: G — H. There
are now two possible ways to view Y as a G-set: via 0, a or via fi.

G —— S

wl }

H —T) Sy
Definition. With the notation above, the G-set X and the H-set Y are isomor-
phic if the diagram commutes; that is, if 6,0 = fy.

ExaMpLE 9.11. The T'LF(K)-set K and the PT'L(2, K)-set P!(K) are
isomorphic.

Let y: PT'L(2, K) —» I'LF(K) be the isomorphism of Theorem 9.47, and let
6: PY(K) - K be the bijection given by [4, 1]+ 4 and [0, 1]+ co. Now each
y € PT'L(2, K) is the coset of some semilinear transformation g; relative to the
standard basis of K%, g = ho,,, where ¢ is the corresponding field automor-
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a b
h-—[c djl.

The action of y on [, u] is essentially matrix multiplication: g[1, u] =
ho, [A, k] = h[A?, u°] (we are regarding [A°, 4] as a column vector).

To see that f,a, = By,, it must be shown that f,a, and By, agree
on Ku{ow}. If AeK and cA?+d#0, then 6,a,(1)=0a,67'(1)=
O, ([4, 1]) = 0(P(9)[4, 11) = 6(P(ho, )[4, 1]) = 6([aA” + b,cA” + d]) =
0[(ar? + b)/(cA® + d), 1] = (ak® + b)/(cA? + d) = By, (1) (¥, is this semilinear
fractional transformation, and fi,(4) is its evaluation at A).

The reader may check that 6, (1) = fi,(4) when cA? + d =0 and also
that 0, (c0) = By, (o).

phism and

Theorem 9.48. For every field K, the projective line P*(K) is a faithful sharply
3-transitive PGL(2, K)-set.

Proof. As in Example 9.11 (with the restriction PGL(2, K) - LF(K) re-
placing the isomorphism PI'L(2, K) - 'LF(K)), it suffices to consider linear
fractional transformations acting on K. The stabilizer of oo is Aff(1, K) =
{A+al + b}, the subgroup of LF(K) consisting of all numerators. By Theo-
rem 9.29, K is a sharply 2-transitive Aff(1, K)-set. It suffices, by Theorem 9.8,
to show that LF(K) acts transitively on K. But if pe K, then f(A) = 4 + u
sends O to ¢ and f(A) = 1/Asends Oto co. B

If K = GF(g), then Theorem 9.8(iii) gives another proof that |PGL(2, q)| =
(@+ Daglg— 1)

Let us display a second family of sharply 3-transitive G-sets. The groups
occur as subgroups of the semilinear fractional transformations T'LF(g). If
h=(al’ + b)/(cA® + d) e TLF(K), then ad — bc % 0. Multiplying numerator
and denominator by ue K* does not change h, but it does change the
“determinant” to u*(ad — bc). If g is a power of an odd prime p, then the
nonzero squares form a subgroup of index 2 in GF(g)*, namely, {n2), where
7 is a primitive element of GF(q) (if g is a power of 2, then every element of
GF(g) is a square). In this odd prime case, it thus makes sense to say that
det(h) is or is not a square.

A second ingredient in the coming construction is an automorphism o of
GF(q) of order 2; ¢ exists (uniquely) if and only if g = p*", in which case
A% = A

Definition. Let p be an odd prime, let ¢ = p*", and let o € Aut(GF(g)) have
order 2. Define M(q) < I'LF(q) = S u T, where
S = {A>(al + b)/(cA + d)| ad — bc is a square}

and
T = {4 (aA® + b)/(cA® + d)| ad — bc is not a square}.
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It is easy to check that M(q) is a subgroup of 'LF(K); indeed, S is a
subgroup of index 2 in M(g), and T is its other coset. Since it is a subgroup
of semilinear fractional transformations, M(q) acts faithfully on K, where
K = GF(g).

Theorem 9.49. Let p be an odd prime, let g = p*", and let K = GF(g). Then R
is a faithful sharply 3-transitive M (g)-set.

Proof. If G = M(g), then G = S v T implies G, = S, v T, where
Se = {A+>al + bla is a square}

and
= {A+>al® + blais not a square},

Let o and B be distinct elements of K. If « — B is a square, define h € S,
by h()) = (¢ — B)A + B; if « — B is not a square, define he T, by h(d) =
(o — B)A? + B. In either case, h(1) = « and h(0) = §, so that G,, acts doubly
transitively on K. But, in each of S, and T, there are g choices for b and
1(g — 1) choices for a, so that |G,,| = g(g — 1). By Theorem 9.8(iii), this action
is sharp. Finally, G acts transitively on K, for A — 1/ lies in G (the negative
sign gives determinant 1, and 1 is always a square), and — 1/4 interchanges 0
and co. The result now follows from Theorem 9.8(v).

Zassenhaus (1936) proved that the actions of PGL(2, g) and of M(g) on the
projective line (if we identify GF(q) v {cc} with the projective line) are the
only faithful sharply 3-transitive G-sets; the first family of groups is defined
for all prime powers g; the second is defined for all even powers of odd
primes. As each of PGL(2, q) and M(q) acts sharply 3-transitively on a set
with g + 1 elements, their common order is (g + 1)g(g — 1) when g = p*' and
p is odd. Tt is true that PGL(2, q) 2 M(qg) in this case; here is the smallest
instance of this fact.

Notation. The group M(9) is denoted by M,, (and it is often called the
Mathieu group of degree 10).

In the next section, we shall construct five more Mathieu groups: M,,,
M,,, M,,, M,5, M, , (the subscripts indicate the degree of each group’s usual
representation as a permutation group). However, the phrase “the Mathieu
groups” generally refers to these five groups and not to M.

Theorem 9.50. PGL(2,9) and M, are nonisomorphic groups of order 720
acting sharply 3-transitively on K, where K = GF(9).

Proof. We already know that each of these groups acts sharply 3-transitively
on K, a set with 10 elements, and so each group has order 10 x 9 x 8 = 720.
Let G=PGL(2,9). The double stabilizer G, o, = {h: A+>akla # 0} =
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GF(9)* ~ Zg; indeed, a generator of G, , is g: A+ 74, where 7 is a primitive
element of GF(9). There is an involution ¢ € G, namely, t: A+ 1/4, such that
tgt = g~*. It follows that {t, G, > = D, is a Sylow 2-subgroup of G.

Let H = M,,. The automorphism ¢ of GF(9) in the definition of M, is
A+ A3, The double stabilizer

Hop,o = SO,uo VU Thw
= {h: A+ a*Ala # 0} U {h: 1> aA?|a nonsquare}.

It is now easy to see that H, . is a nonabelian group of order 8 having a
unique involution; hence, H, ,, = Q, the quaternions. Since D, ¢ has no qua-
ternion subgroups, it follows that G and H have nonisomorphic Sylow 2-
subgroups, and so G # H.

T.Y. Lam and D.B. Leep found that every subgroup of index 2 in Aut(Sg),
a group of order 1440, is isomorphic to either Sq, M;,, or PGL(2,9), and
each of these does occur.

EXERCISES

The polynomial p(x) = x? + x — 1 is irreducible in Z,[x] (for it is a quadratic having
no roots in Z,). Now GF(9) contains a root « of p(x); indeed, GF(9) = Z,(n), so that
7t is a primitive element of GF(9). In the following exercises, n denotes a primitive
element of GF(9) for which n + = = 1.

9.27. Prove that a Sylow 3-subgroup of M, is elementary abelian of order 9.

9.28. Prove that (M,,),, is a group of order 72 having a normal Sylow 3-subgroup.
Conclude that (M;,),, is a semidirect product (Z; x Z,) xQ. (Hint. For every
be GF(9)*, 11+ b has order 3; the inverse of Ar»>n®l+b is A
7%, — 75'b, and the inverse of Ai— 27143 + bis Ao 2 ¥51 — 22¥5p3)

9.29. There are exactly 8 elements of (M ,),, of order 3, and they are conjugate to one
another in (Mg)-

9.30. Prove that the subgroup S of M(g) is isomorphic to PSL(2, g). Conclude that
M, is neither simple nor solvable. (Hint. If h(A) = (ad + b)/(cA + d) and
ad — bc = p?, multiply numerator and denominator by p~*)

9.31. Show that M,, is not a semidirect product of S by Z,. (Hint. T contains no
involutions.)

9.32. Regard GF(9) as a two-dimensional vector space over Z, with basis {1, n}.
Verify the following coordinates for the elements of GF(9):

1=(1,0), n* =(—1,0),

n=(0,1), n* = (0, 1),
n? =(1, —1), = (-1,1),
B =(=1-1, 7’=(,1.

(Hint. n* = —1.)
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9.33. Show that M, = {0y, 65, 03, 04, 05, Where
o,(A) = —1/4, o) =i+1, oz =24 +m,
o,(N) =724,  os() =nA3

9.34. Prove that M, consists of even permutations of P1(9). (Hint. Write each of the
generators 0;, 1 <i < 5, as a product of disjoint cycles.)

9.35. Let g4 and o, be the permutations of GF(9) defined by g4(4) = n*1 + nA> and
a,(2) = 23. Regarding GF(9) as a vector space over Z3, prove that g and g are
linear transformations.

9.36. Prove that GL(2, 3) 2 {0y, gs, 0, 0, (Where o, and o5 are as in Exercise 9.33,
and o4 and o, are as in Exercise 9.35). (Hint. Using the coordinates in Exercise

9.32, one has
o = 1 -1 _|0 -1
“Tler o 2T of

11 1 o-1
“=lo -1 “=lo -1}

Mathieu Groups

We have already seen some doubly and triply transitive groups. In this sec-
tion, we construct the five simple Mathieu groups; one is 3-transitive, two
are 4-transitive, and two are S-transitive. In 1873, Jordan proved there are
no sharply 6-transitive groups (other than the symmetric and alternating
groups). One consequence of the classification of all finite simple groups is
that no 6-transitive groups exist other than the symmetric and alternating
groups; indeed, all multiply transitive groups are now known (see the survey
article [P.J. Cameron, Finite permutation groups and finite simple groups,
Bull. London Math. Soc. 13 (1981), pp. 1-227).

All G-sets in this section are faithful and, from now on, we shall call such
groups G permutation groups; that is, G < Sy for some set X. Indeed, we
finally succumb to the irresistible urge of applying to groups G those adjec-
tives heretofore reserved for G-sets. For example, we will say “G is a doubly
transitive group of degree n” meaning that there is a (faithful) doubly transi-
tive G-set X having n elements.

We know that if X is a k-transitive G-set and if x € X, then X — {x} isa
(k — 1)-transitive G.-set. Is the converse true? Is it possible to begin with a
k-transitive G,-set X and construct a (k + 1)-transitive G-set X U {y}?

Definition. Let G be a permutation group on X and let X = X U {0}, where
oo ¢ X. A transitive permutation group G on X is a transitive extension of G
ifG<Gand G, =0G.
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_ Recall Lemma 9.5: If X is a k-transitive G-set, then X isa (k + 1)-transitive
G-set (should X exist).

Theorem 9.51, Let G be a doubly transitive permutation group on a set X.
Suppose there is x € X, o0 ¢ X, g € G, and a permutation h of X = X U {0}
such that:

(i) ge Gy

(1) h(c0)e X
(iii) h* € G and (gh)® € G; and
(iv) hG.h = G,.

Then G = {G, h) < Sy is a transitive extension of G.

Proof. Condition (ii) shows that G acts transitively on 3? . It suffices to prove,
as Theorem 9.4 predicts, that G = G U GhG, for then G, = G (because noth-
ing in GhG fixes o).
By Corollary 2.4, G U GhG is a group if it is closed under multiplication.
Now
(G v GhG)(G U GhG) = GG v GGhG v GhGG v GhGGhG

c Gu GhG u GhGhG,

because GG = G. It must be shown that GhGhG = G U GhG, and this will
follow if we show that hGh < G U GhG.

Since G acts doubly transitively on X, Theorem 9.4 gives G = G, u G, gG.,
(for g ¢ G,). The hypothesis gives y, 6 € G with h? =y and (gh)® = §. It fol-
lows that hy™' = h™ =y 'h and hgh = g~*h~'g"'$. Let us now compute.

hGh = h(G, U G,gG,)h
= hG,hu hG,gG.h
= hG hu (hG h)h™ gh ™ (hG, h)
= G,uG,h™igh™'G, (condition (iv))
© =G, UG hghy™)G,
=G, UGy g h gy TG,
cGuUGh™G
=GuGy'hG
= Gu GhG.

One can say a bit about the cycle structure of h. If h(c0) = ae X, then
h* e G = G,, implies h(a) = h*(c0) = oo; hence, h = (0 a)h', where h' € G, ,,
is disjoint from (co a). Similarly, one can see that gh has a 3-cycle in its
factorization into disjoint cycles.
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The reader will better understand the choices in the coming constructions
once the relation between the Mathieu groups and Steiner systems is seen.

Theorem 9.52. There exists a sharply 4-transitive group M, of degree 11 and
order 7920 = 11:10-9-8 = 2*-32-5-11 such that the stabilizer of a point is
Mo

Proof. By Theorem 9.49, M,, acts sharply 3-transitively on X = GF(9)u
{o0}. We construct a transitive extension of M, acting on X = {X, w},
where @ is a new symbol. If # is a primitive element of GF(9) with
72 4+ 1 = 1, define

X = o0,
g =00 oo)(n n")(n* 7°)(n* =°) = 1/4,

and
h=(c0 w)(r 7*)(7* 77)(7° =% = (0 o0)ag,

where o¢(4) = n?A + nA> (use Exercise 9.32 to verify this).

The element g lies in M,,, for det(g) = —1 = =*, which is a square in
GF(9). It is clear that g ¢ (M), (for g(c0) =0), h(w) = w0 € X, and h? =
1 € G. Moreover, (gh)®> = 1 because gh = (w 0 o0)(r =° 7*)(n? =7 =°).

To satisfy the last condition of Theorem 9.51, observe that if f € (M),
then

hfh(o0) = hf(w) = h(w) = o,
so that h(M,¢).h = (M,o), if we can show that hfh € M,,. Now (M,,), =

S, u T, so that either f = %1+« or f= n¥*"11® + «, where i >0 and
o € GF(9). In the first case (computing with the second form of h = (w 0)ay),

hfh(i) — (R2i+4 + 7E6‘+4)/1 + (n2i+3 + 1[6”7)23 + nza + 7'[0!3.

The coefficients of 4 and A3 are n2***(1 + =*) and n?"*3(1 + n*"**), respec-
tively. When i = 2j is even, the second coefficient is 0 and the first coefficient
is ©**4 which is a square; hence, ifhe S, < M,, in this case. When
i=2+1 is odd, the first coefficient is O and the second coefficient is
n%n°, which is a nonsquare, so that Afhe T, « M,,. The second case
(f = n®"*123 4 ) is similar; the reader may now calculate that

() = 72+ + n*)A + 721 + 24 ) A3 4 n2a + e,

an expression which can be treated as the similar expression in the first case.
It follows from Theorem 9.8(v) that M, ;, defined as (M, ,, 1), acts sharply
4-transitively on X, and so |M, | = 7920.

Note, for later use, that both g and ’ are even permutations, so that Exer-
cise 9.34 gives My, < A,,.

This procedure can be repeated; again, the difficulty is discovering a good
permutation to adjoin.
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Theorem 9.53. There exists a sharply 5-transitive group M,, of degree 12
and order 95,040 = 12-11-10-9-8 = 25-33-5- 11 such that the stabilizer of a
point is My .

Proof. By Theorem 9.52, M,, acts sharply 4-transitively on Y =
{GF(9), 0, w}. We construct a transitive extension of M;, acting on Y=
{Y, Q}, where Q is a new symbol. If z is a primitive element of GF(9) with
72 + n = 1, define

X =,
h= (0 w)(r n?) x> 7)) =),

and
k= (0 Q@ n*)n? %) (n® n7) = (0 QI3 = (v Q)o,

(note that this is the same h occurring in the construction of M)
Clearly k(Q)=weY and h¢(M,,), = M,o. Also, k*=1 and hk =
(w Q o) 7 7% (xn? n° =) has order 3. To satisfy the last condition of
Theorem 9.51, observe first that if fe (M,,), = M, = Su T, then kfk also
fixes . Finally, kfke M,;: if f(2)= (a + b)/(cA + d) € S, then kfk(1) =
(@A + b¥)/(c®A + d°) has determinant a®d® — b3¢c® = (ad — bc)?, which is a
square because ad — bc is; a similar argument holds when fe T. Thus,
kMok = M.

It follows from Theorem 9.8(v) that M, ,, defined as {M,,, k), acts sharply
5-transitively on ¥, and so | M, | = 95,040.

Note that k is an even permutation, so that M,, < A,,.

The theorem of Jordan mentioned at the beginning of this section can now
be stated precisely: The only sharply 4-transitive groups are S,, Ss, A¢, and
M, ,; the only sharply S-transitive groups are Ss, S, 47, and M,,; if k > 6,
then the only sharply k-transitive groups are Sy, S,.,, and 4,,,. We remind
the reader that Zassenhaus (1936) classified all sharply 3-transitive groups
(there are only PGL(2, q) and M(p®") for odd primes p). If p is a prime
and g = p”, then Aut(l, g) is a solvable doubly transitive group of degree g.
Zassenhaus (1936) proved that every sharply 2-transitive group, with only
finitely many exceptions, can be imbedded in Aut(1, g) for some g; Huppert -
(1957) generalized this by proving that any faithful doubly transitive solvable
group can, with only finitely many more exceptions, be imbedded in Aut(1, g)
for some g. Thompson completed the classification of sharply 2-transitive
groups as certain Frobenius groups. The classification of all finite simple
groups can be used to give an explicit enumeration of all faithful doubly
transitive groups. The classification of all sharply 1-transitive groups, that is,
of all regular groups, is, by Cayley’s theorem, the classification of all finite
groups.

The “large” Mathieu groups are also constructed as a sequence of transi-
tive extensions, but now beginning with PSL(3, 4) (which acts doubly transi-
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tively on P?(4)) instead of with M,,. Since |P2(4)| = 4% + 4 + 1 = 21, one
begins with a permutation group of degree 21. We describe elements of P2(4)
by their homogeneous coordinates.

Lemma 9.54. Let § be a primitive element of GF(4). The functions f;: P*(4) »
P2(4), for i = 1, 2, 3, defined by

Sl V] = [22 + py, 2, v,

folhs vl = 2%, 42, pv2],

f3lA v = [2%, 42, 97],
are involutions which fix [1, 0, 0]. Moreover,

(PSL(3,4), f5, fa> = PT'L(3, 4).

Proof. The proof is left as an exercise for the reader (with the reminder that
all 3-tuples are regarded as column vectors). A hint for the second statement
is that PSL(3,4) < PI'L(3, 4), PT'L(3, 4)/PSL(3, 4) = S5, and, if the unique
nontrivial automorphism of GF(4) is o: 21— A%, then f; = ¢, and
1 00
=101 O0jo,. B
0 0 p

Theorem 9.55. There exists a 3-transitive group M,, of degree 22 and order
443,520 = 22-21-20-48 = 27-3%-5-7- 11 such that the stabilizer of a point is
PSL(3, 4).

Proof. We show that G = PSL(3, 4) acting on X = P?(4) has a transitive
extension. Let
x =[1,0,0],
g[l, 1 v] = [/l, ’19 V]a
hy = (c0 [1,0,0])f;.
In matrix form,
010
g=|1 0 0],
0 0 1

so that det(g) = —1 = 1 € GF(4) and g € PSL(3, 4). It is plain that g does not
fix x = [1, 0, 0] and, by the lemma, that h? = 1. The following computation
shows that (gh,)® = L.If[A, u, v] # oo, [1,0, 0], or [0, 1, 0], then

(ghy)’[h 1 v] = [Av + (v + 1), wv + 22 + 1),v2].
If v # 0, then v> = 1 and v® + 1 = 0, so that the right side is [Av, uv, v?] =
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[A, u, v]. If v = O, then the right side is [ 42, 12, 07; since Ay # 0, by our initial
choice of [4, u, v], we have [u?, 12, 0] = [(Awu?, (A)A% 0] = [4, i, 0]. The
reader may show that (gh,)? also fixes oo, [1,0,0], and [0, 1, 0], so that
(ghy)* =

Finally, assume that k € G, < PSL(3, 4), so that k is the coset (mod scalar
matrices) of

1 % =
k=10 a b
0 ¢ d

(because k fixes [1, 0, 0]). Now det(k) = 1 = ad — bc. The reader may now
calculate that h, kh,, mod scalars, is

1 = %
hikh, =10 a* b?
0 ¢% 4’

which fixes [1, 0, 0] and whose determinant is ad* — b%c? = (ad — bc)* = 1.
Thus h,G.h, = G,, and Theorem 9.51 shows that M,, = (PSL(3, 4), h;)
acts 3-transitively on X = P2(4) U {c0} with (M,,),, = PSL(3, 4).

By Theorem 9.7, |[M,,| = 22+21-20-|H|, where H is the stabilizer in M,,
of three points. Since (M,;), = PSL(3,4), we may consider H as the
stabilizer in PSL(3, 4) of two points, say, [1, 0, 0] and [0, 1, 0]. If A € SL(3, 4)
sends (1, 0, 0) to («, 0, 0) and (0, 1, 0) to (0, j3, 0), then A has the form

« 0 vy
A={0 B &1,
0 0 g
where 7 = («)™ . There are 3 choices for each of « and f, and 4 choices for

each of y and 4, so that there are 144 such matrices 4. Dividing by SZ(3, 4)
(which has order 3), we see that |H| = 48.

Theorem 9.56. There exists a 4-transitive group M, of degree 23 and order
10,200,960 =23-22-21-20-48 = 27-32-5-7-11-23 such that the stabilizer
of a point is M,,.

Prooj. -The proof is similar to that for M,,, and so we only provide the
necessary ingredients. Adjoin a new symbol w to P?(4) u {c0}, and let

X = 00,
g = (o0 [1,0,0])f; = the former h,,
hy = (0 00)f>.

The reader may apply Theorem 9.51 to show that M,; = (M,,, h,> is a
transitive extension of M,,. H
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Theorem 9.57. There exists a 5-transitive group M,, of degree 24 and order
244,823,040 = 24-23-22-21-20-48 = 2'°-33-5-7-11-23 such that the stabi-
lizer of a point is M,5.

Proof. Adjoin a new symbol Q to P?(4) U {co, w}, and define
X = o,
g = (0 o)f, = the former h,,
hy = (Q )f;.

The reader may check that Theorem 9.51 gives M,, = {(M,3, h;) a transitive
extension of M, ;.

Theorem 9.58 (Miller, 1900). The Mathieu groups M,,, M,5, and M,, are
simple groups.

Proof. Since M,, is 3-transitive of degree 22 (which is not a power of 2) and
since the stabilizer of a point is the simple group PSL(3, 4), Theorem 9.25(ii)
gives simplicity of M,,. The group M,, is 4-transitive and the stabilizer of a
point is the simple group M,,, so that Theorem 9.25(i) gives simplicity of
M,,. Finally, M,, is 5-transitive and the stabilizer of a point is the simple
group M,3, so that Theorem 9.25(i) applies again to give simplicity of
M,,.

Theorem 9.59 (Cole, 1896; Miller, 1899). The Mathieu groups M, and M,,
are simple.

Proof. Theorem 9.25(i) will give simplicity of M,, once we prove that M, is
simple. The simplicity of M, cannot be proved in this way because the
stabilizer of a point is M, which is not a simple group.

Let H be a nontrivial normal subgroup of M,,. By Theorem 9.17, H is
transitive of degree 11, so that |H| is divisible by 11. Let P be a Sylow
11-subgroup of H. Since (11)? does not divide |[M,|, P is also a Sylow 11-
subgroup of M,,, and P is cyclic of order 11.

We claim that P # Ny(P). Otherwise, P abelian implies P < Cy(P) <
Ny(P)and Ny(P)/Cy(P) = 1. Burnside’s normal complement theorem (Theo-
rem 7.50) applies: P has a normal complement Q in H. Now |Q| is not divisi-
ble by 11, so that Q char H; as H <« M,,, Lemma 5.20(ii) gives Q < M,,. If
0 # 1, then Theorem 9.17 shows that |Q] is divisible by 11, a contradiction.
If Q = 1, then P = H. In this case, H is abelian, and Exercise 9.10 gives H a
regular normal subgroup, contradicting Lemma 9.24.

Let us compute Ny, (P). In S, there are 11!/11 = 10! 11-cycles, and
hence 9! cyclic subgroups of order 11 (each of which consists of 10 11-
cycles and the identity). Therefore [S;; : N5,,(P)] = 9! and |Ns, (P)| = 110.
Now Ny, (P) = Ns,,(P)n M;,. We may assume that P = {(¢), where ¢ =
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(t2...101)fz=( 11)2 10)(3 9)(4 8)(5 7), then 7 is an involution
with 707 = 67" and 1 € Ny, (P). But 7 is an odd permutation, whereas M, <
Ay, so that [Ny (P)| = 11 or 55. Now P < Ny(P) < Ny, (P), so that either
P = Ny(P) or Ny(P) = Ny, (P). The first paragraph eliminated the first pos-
sibility, and so Ny(P) = Ny, ,(P) (and their common order is 55). The Frattini
argument now gives M, = HNy (P) = HNy(P) = H (for Ny(P) < H), and
so M, issimple. [

EXERCISES

9.37. Show that the 4-group V has no transitive extension. (Hint. If h € S5 has order
5,then <V, h) > As.)

9.38. Let W = {ge M,,: g permutes {cc, Q}}. Show that there is a homomor-
phism of W onto S; with kernel (M,,) 4, .- Conclude that [W| =6 x 72.

9.39. Prove that Aut(2, 3), the group of all affine automorphisms of a two-dimen-
sional vector space over Zs, is isomorphic to the subgroup W of M,, in the
previous exercise. (Hint. Regard GF(9) as a vector space over Z3.)

9.40. Show that (PSL(3, 4), h,, h3> < M,, is isomorphic to PI'L(3, 4). (Hint. Lemma
9.54.)

Steiner Systems

A Steiner system, defined below, is a set together with a family of subsets
which can be thought of as generalized lines; it can thus be viewed as a kind
of geometry, generalizing the notion of affine space, for example. If X is a set
with | X| = v, and if k < v, then a k-subset of X is a subset B = X with |B| = k.

Definition. Let 1 < t < k < v be integers. A Steiner system of type S(t, k, v) is
an ordered pair (X, %), where X is a set with v elements, 4 is a family of
k-subsets of X, called blocks, such that every ¢ elements of X lie in a unique
block.

ExaMPLE 9.12. Let X be an affine plane over the field GF(g), and let & be the
famiiy of all affine lines in X. Then every line has g points and every two
points determine a unique line, so that (X, %) is a Steiner system of type
52, 9. 4%

ExampLE 9.13. Let X = P?(g) and let & be the family of all projective lines in
X. Then every line has g + 1 points and every two points determine a unique
line, so that (X, %) is a Steiner system of type S(2, g + 1, 4% + g + 1).

EXAMPLE 9.14. Let X be an m-dimensional vector space over Z,, where m >
3, and let 4 be the family of all planes (affine 2-subsets of X). Since three
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distinct points cannot be collinear, it is easy to see that (X, %) is a Steiner
system of type S(3, 4, 2™).

One assumes strict inequalities 1 <t < k < v to eliminate uninteresting
cases. If t = 1, every point lies in a unique block, and so X is just a set
partitioned into k-subsets; if t = k, then every t-subset is a block; if k = v, then
there is only one block. In the first case, all “lines” (blocks) are parallel; in the
second case, there are too many blocks; in the third case, there are too few
blocks.

Given parameters 1 < t < k < v, itis an open problem whether there exists
a Steiner system of type S(¢, k, v). For example, one defines a projective plane
of order n to be a Steiner system of type S(2, n + 1, n? + n + 1). It is conjec-
tured that n must be a prime power, but it is still unknown whether there
exists a projective plane of order 12. (There is a theorem of Bruck and Ryser
(1949) saying that if » = 1 or 2 mod 4 and n is not a sum of two squares, then
there is no projective plane of order n; note that n = 10 is the first integer
which neither satisfies this hypothesis nor is a prime power. In 1988, C. Lam
proved, using massive amounts of computer time, that there is no projective
plane of order 10.)

Definition. If (X, %) is a Steiner system and x € X, then
star(x) = {Be B: x € B}.

Theorem 9.60. Let (X, &) be a Steiner system of type S{t, k, v), where t > 3. If
x € X, define X' = X — {x} and #' = {B — {x}: B e star(x)}. Then (X', #') is
a Steiner system of type S(t — 1, k — 1, v — 1) (called the contraction of (X, %)
at x).

Proof. The routine proof is left to the reader.

A contraction of (X, %) may depend on the point x.

Let Y and Z be finite sets, and let W = Y x Z. For each y e Y, define
#(, )=l{z€ Z: (y, 2) € W}| and define #( , 2)=|{y € Y: (3, z) € W}|. Clearly,
2 #m ) =1Wl= 3, #(,2)

yeY zeZ
We deduce a counting principle: If #(y, ) =mforallye Yandif #( ,2z)=n
for all z € Z, then
m|Y| =n|Z|.

Theorem 9.61. Let (X, %) be a Steiner system of type S(t, k, v). Then the num-
ber of blocks is

B = vo— DN —2)...o—t+ 1)
%] = k(k — )k —2)...(k—t+ 1)

if r is the number of blocks containing a point x € X, then r is independent of x



Steiner Systems 295

and
- DE—2—t+1)
TR Dk—2)(k—t+ 1)

Proof. If Y is the family of all t-subsets of X, then |Y| = “v choose t” =
v — 1)+ (v — t + 1)/t!. Define W = Y x £ to consist of all ({x,, ..., x,}, B)
with {x;,...,x,} < B. Since every t-subset lies in a unique block,
#({xy,...,x,}, ) = 1; since each block B is a k-subset, #( , B) = “k choose
t” = k(k — 1)---(k — t + 1)/t!. The counting principle now gives the desired
formula for |4|.

The formula for r follows from that for |4| because r is the number of
blocks in the contraction (X', #’) (where X' = X — {x}), which is a Steiner
system of type S(t — 1, k — 1, v — 1). It follows that r does not depend on the
choice of x.

Remarks. 1. The proof just given holds for all t > 2 (of course, (X', Z') is not
a Steiner system when t = 2sincet — 1 = 1).

2. The same proof gives a formula for the number of blocks in a Steiner
system of type S(t, k, v) containing two points x and y. If (X', ') is the
contraction (with X’ = X — {x}), then the number r’ of blocks in (X', &')
containing y is the same as the number of blocks in (X, %) containing x and
y. Therefore,
= —=3)v—t+ 1
T k—2)k—=3)(k—t+1)

Similarly, the number #” of blocks in (X, #) containing p points, where
I<p<tis

’

w_W-pP—p-1)---1+1)
k—pk—p—1)-k—-t+1)
3. That the numbers |#| =r, 1, ... 7P, ..., " are integers is, of course, a
constraint on t, k, v.

Definition. If (X, %) and (Y, %) are Steiner systems, then an isomorphism is a
bijection f: X — Y such that Be % if and only if f(B) e . If (X, &) = (Y, ¥),
then f is called an automorphism.

For certain parameters t, k, and v, there is a unique, to isomorphism,
Steiner system of type S(t, k, v), but there may exist nonisomorphic Steiner
systems of the same type. For example, it is known that there are exactly four
projective planes of order 9; that is, there are exactly four Steiner systems of
type S(2, 10, 91).

Theorem 9.62. All the automorphisms of a Steiner system (X, %) form a group
Aut(X, 8) < Sy.
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Proof. The only point needing discussion is whether the inverse of an auto-
morphism h is itself an automorphism. But Sy is finite, and so A~ = h™ for
some m > 1. The result follows, for it is obvious that the composite of auto-
morphisms is an automorphism.

Theorem 9.63. If (X, &) is a Steiner system, then Aut(X, %) acts faithfully on
AB.

Proof. If ¢ € Aut(X, #) and ¢(B) = B for all blocks B, then it must be shown
that ¢ = 1.

For x € X, let r = |star(x)|, the number of blocks containing x. Since ¢ is an
automorphism, @(star(x)) = star(¢(x)); since ¢ fixes every block, ¢(star(x)) =
star(x), so that star(x) = star(¢(x)). Thus, ¢(x) and x lie in exactly the same
blocks, and so the number ' of blocks containing {¢(x), x} is the same as the
number r of blocks containing x. If @(x) # x, however, ' =r gives k=1v
(using the formulas in Theorem 9.61 and the remark thereafter), contradict-
ing k < v. Therefore, @(x) = x forall x € X.

Corollary 9.64. If (X, %) is a Steiner system and x € X, then ( \p ary B = {x}.

Proof. Let x, y e X. If star(x) = star(y), then the argument above gives the
contradiction ' = r. Therefore, if y # x, there is a block B with x € B and

y¢B,sothat y ¢ (VpepamB

We are going to see that multiply transitive groups may determine Steiner
systems.

Notatien. If X is a G-set and U < G is a subgroup, then
FU)={xeX:gx=xforallge U}.
Recall that if U < G and g € G, then the conjugate gUg™* may be denoted
by U®.
Lemma 9.65. If X is a G-set and U < G is a subgroup, then
F(U%) = gZ(U) foral gegG.
Proof. The following statements are equivalent for xe X:xe £(U%;

gug ™ (x) = x for all ue U; ug™(x) = g7*(x) for all ue U; g~ (x) e F(U);
xeg#(U). B

Theorem 9.66. Let X be a faithful t-transitive G-set, where t > 2, let H be the
stabilizer of t points x,, ..., x, in X, and let U be a Sylow p-subgroup of H for
some prime p.



Steiner Systems 297

(1) Ng(U) acts t-transitively on & (U).

(1) (Carmichael, 1931; Witt, 1938). If k = | % (U)| >t and U is a nontrivial
normal subgroup of H, then (X, &) is a Steiner system of type S(t, k, v),
where | X| = v and

B ={9FU):geG}={F{U:geG)}.

Proof. (i) Note that F(U) is a Ng(U)-set: if g e Ng(U), then U = U? and
F(U) = F(U?) = gF(U). Now {x4, ..., x,} = F(U) because U < H, the sta-
bilizer of x,,..., x,; hence k = |[#(U)| > t. If y,, ..., y, are distinct elements
of #(U), then t-transitivity of G gives g € G with gy, = x; for all i. ff u e U,
then gug™'x; = guy; = gy; = x; (because y; € F(U)); that is, U? < H. By the
Sylow theorem, there exists h € H with U? = U". Therefore h™*g € N;(U) and
(hg)y; = h™ix; = x; for all i.

(ii) The hypothesis gives 1 < t < k < v. If k = v, then F(U) = X; but U #
1, contradicting G acting faithfully on X. It is also clear that k = |#F(U)| =
|gZ (U)| forallg e G.

If y,, ..., y, are distinct elements of X, then there is g € G with gx; = y, for
all i, and so {y,, ..., y.} = gF(U). It remains to show that g#(U) is the
unique block containing the y,. If {y1, ..., y,} = A% (U), then there are z,, .. .,
z,€ & (U) with y; = hz; for all i. By (i), there is ¢ € Ng(U) with z; = ox; for all
i, and 50 gx; = y; = hox; for all i. Hence g™ ho fixes all x; and g™*ho € H. Now
H < Ng(U), because U <1 H, so that g™ ho € Ng(U) and g™*h € N4 (U). There-
fore, U? = U" and g# (U) = #(U%) = F(U") = h#(U), as desired. HE

Lemma 9.67. Let H < M,, be the stabilizer of the five points

0, @, {, [1, 0, 0], and [0, 1, 0].

(i) H is a group of order 48 having a normal elementary abelian Sylow 2-
subgroup U of order 16.
() FU)=7¢u{c0o, w, Q}, where ¢ is the projective line v =0, and so
|F(U)| = 8.
(i1i) Only the identity of M,, fixes more than 8 points.

Proof. (i) Consider the group H of all matrices over GF(4) of the form

1 0 «
A=20 v B |,
0 0 y!

where 4, y # 0. There are 3 choices for each of A and y, and 4 choices for each
of « and B, so that |H| =3 x 48. Clearly H/Z(3,4) has order 48, lies in
PSL(3, 4) < M,,, and fixes the five listed points, so that H = H/Z(3, 4) (we
know that |H| = 48 from Theorem 9.57). Define U < H to be all those matri-
ces A above for which y = 1. Then U = U/Z(3, 4) has order 16 and consists
of involutions; that is, U is elementary abelian. But U < H, being the kernel
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of the map H — SL(3, 4) given by

A 0 0
A0 Ay 0 |,
0 0o it
so that U < H.

(ii) Assume that {4, y, vl e F(U). If he U, theny = 1 and
A 1 0 afjfid A+ av EA
hlp|=|0 1 Bllp|=|uthv|=|Cn
v 0 0 1ifv y &y

for some £ € GF(4)*. If v = 0, then all projective points of the form [4, g, 0]
{which form a projective line # having 4 + 1 =5 points) are fixed by h. If
v # 0, then these equations have no solution, and so A fixes no other projec-
tive points. Therefore, every h e U fixes £, co, , €, and nothing else, so that
FU)=¢u {0, w, Q} and |F(U)| = 8.

(iif) By S-transitivity of M,,, it suffices to show that h € H* can fix at most
3 projective points in addition to [1, 0, 0] and [0, 1, 0]. Consider the equa-
tions for £ € GF(4)*:

A 1 0 « A A4 av EA
hip|=10 v B |lu|=[rwm+phv|=]|Cn]|
v 0 0 y il y~ly Ev

If v = 0, then we may assume that A # 0 (for [0, 1, 0] is already on the list of
five). Now A=A +av= ¢4 and p=yu+ fv = &u give y = 1; hence he U
and h fixes exactly 8 elements, as we saw in (ii). If v £ 0, then v = y~ly = &
implies ¢ = y7!; we may assume that y # 1 lest h e U. The equations can now
be solved uniquely for Aand p (A= (y™* — 1) tavand = (y™* — y)"!fv), so
that h ¢ U can fix only one projective point other than [1, 0, 0] and [0, 1, 07;
that is, such an A can fix at most 6 points. A

Theorem 9.68. Neither M, nor M, has a transitive extension.

Proof. In order to show that M,, has no transitive extension, it suffices to
show that there is no sharply 6-transitive group G of degree 13. Now such a
group G would have order 13-12-11-10-9-8. If g € G has order 5, then g is
a product of two 5-cycles and hence fixes 3 points (g cannot be a 5-cycle lest
it fix 8 > 6 points). Denote these fixed points by {a, b, ¢}, and let H = G, , .
Now {g) is a Sylow 5-subgroup of H ({g) is even a Sylow 5-subgroup of G),
so that Theorem 9.66(i) gives N = N;({g)) acting 3-transitively on #({(g)) =
{a, b, c}; that is, there is a surjective homomorphism ¢: N — S5. We claim
that C = C5({g>) £ ker ¢. Otherwise, ¢ induces a surjective map ¢,: N/C —
S;5. By Theorem 7.1, N/C < Aut({g)), which is abelian, so that N/C and
hence S, are abelian, a contradiction. Now C <1 N forces ¢(C) < ¢(N) = S;,
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so that ¢(C) = A5 (we have just seen that ¢(C) ## 1) and so 3 divides |C].
There is thus an element h € C of order 3. Since g and h commute, the element
gh has order 15. Now gh cannot be a 15-cycle (G has degree 13), and so its
cycle structure is either (5, 5, 3), (5, 3, 3), or (5, 3). Hence (gh)°, being either a
3-cycle or a product of 2 disjoint 3-cycles, fixes more than 6 points. This
contradiction shows that no such G can exist.

A transitive extension G of M,, would have degree 25 and order 25-24-
23-22-21-20-48. If g e G has order 11, then g is a product of 2 disjoint
11-cycles (it cannot be an 11-cycle lest it fix 14 > 8 points, contradicting
Lemma 9.67(iii)). Arguing as above, there is an element h e G of order 3
commuting with g, and so gh has order 33. Since G has degree 25, gh is not a
33-cycle, and so its cycle structure is either of the form (11, 11, 3) or one
11-cycle and several 3-cycles. In either case, (gh)!! has order 3 and fixes more
than 8 points, contradicting Lemma 9.67.

Theorem 9.69.

(i) Let X = P*(4)u {0, w, Q} be regarded as an M,,-set, let U be a Sylow
2-subgroup of H (the stabilizer of 5 points), and let # = {gF(U): g e
M,,}. Then (X, B) is a Steiner system of type S(5, 8, 24).

(ii) If g (U) contains {co, w, Q}, then its remaining 5 points form a projective
line. Conversely, for every projective line £’, there is g € PSL(3,4) < M,,
with gF(U) = ¢’ U {00, 0, Q}.

Proof. (i) Lemma 9.67 verifies that the conditions stated in Theorem 9.66 do
hold.

(i) The remark after Theorem 9.61 gives a formula for the number r”
of blocks containing 3 points; in particular, there are 21 blocks containing
{co, w, Q). If £ = #(U) is the projective line v =0, and if g e PSL(3,4) =
(M24)0, 0.0, then gZ (U} = g(¢) u {c0, o, Q}. But PSL(3, 4) acts transitively
on the lines of P?(4) (Exercise 9.23) and P?(4) has exactly 21 lines (Theorem
9.40(ii)). It follows that the 21 blocks containing the 3 infinite points co, w, Q
are as described.

The coming results relating Mathieu groups to Steiner systems are due to
R.D. Carmichael and E. Witt.

Theorem 9.70. M,, =~ Aut(X, %), where (X, #) is a Steiner system of type
S(5, 8, 24).

Remark. There is only one Steiner system with these parameters.
Proof. Let (X, %) be the Steiner system of Theorem 9.69: X = P?(4)u

{co, w, Q} and B = {gZF (U): g € M,,}, where F(U) = £ L {0, w, Q} (here £
is the projective line v = 0).
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It is clear that every g € M,, is a permutation of X that carries blocks
to blocks, so that M,, < Aut(X, 4). For the reverse inclusion, let ¢ €
Aut(X, 4). Multiplying ¢ by an element of M, if necessary, we may assume
that ¢ fixes {co, w, Q} and, hence, that ¢|P?(4): P?(4) - P?(4). By Theorem
9.69(ii), @ carries projective lines to projective lines, and so ¢ is a collineation
of P%(4). But M,, contains a copy of PI'L(3, 4), the collineation group of
P2(4), by Exercise 9.40. There is thus g € M,, with g|P*(4) = ¢|P?(4), and
og~! e Aut(X, &) (because M,, < Aut(X, 8)). Now @g~* can permute only
o, w, Q. Since every block has 8 elements pg~' must fix at least 5 elements;
as each block is determined by any 5 of its elements, pg™' must fix every
block, and so Theorem 9.63 shows that g™ = 1; that is, ¢ = g€ M,,, as
desired.

We interrupt this discussion to prove a result mentioned in Chapter 8.
Theorem 9.71. PSL(4, 2) =~ A,.

Proof. The Sylow 2-subgroup U in H, the stabilizer of 5 points in M,,, is
elementary abelian of order 16; thus, U is a 4-dimensional vector space
over Z,. Therefore, Aut(U) =~ GL(4, 2) and, by Theorem 8.5, |Aut(U)| =
Q* = 1)2* —2)(2* — 4)(2* — 8) = 8!/2.

Let N = Ny, (U). By Theorem 9.66(ii), V acts 5-transitively (and faithfully)
on % (U), a set with 8 elements. Therefore, [N| =8:7-6-5-4-s, where s <
6 = |S5]. If we identify the symmetric group on & (U) with Sg, then [Sg: N] =
t < 6 (where t = 6/s). By Exercise 9.3(ii), Sg has no subgroups of index ¢ with
2 <t < 8. Therefore, t = 1 ort = 2; thatis, N = Sg or N = A5. Now there is
a homomorphism ¢: N — Aut(U) given by g+ y, = conjugation by g. Since
Ag is simple, the only possibilities for im ¢ are Sg, Ag, Z,, or 1. We cannot
have im ¢ = S (since |Aut(U)| = 8!/2); we cannot have |im ¢| <2 (for H <N,
because U <1 H, and it is easy to find h e H of odd order and u € U with
huh™ st u). We conclude that N = A4 and that ¢: N — Aut(U) = GL(4, 2) is
an isomorphism.

Theorem 9.72. M, = Aut(X’, #'), where (X', #') is a Steiner system of type
S@4,7,23).

Remark. There is only one Steiner system with these parameters.

Proof. Let X' = P?(4) u {0, w}, let B = B'(£) = £ U {00, w}, where ¢ is the
projective line v =0, and let &' = {g(B'): g € M,;}. It is easy to see that
(X', #') is the contraction at Q of the Steiner system (X, ) in Theorem 9.69,
so that it is a Steiner system of type S(4, 7, 23).

It is clear that M,; < Aut(X’, 4'). For the reverse inclusion, let ¢ e
Aut(X’, #'), and regard ¢ as a permutation of X with ¢(Q) = Q. Multiplying
by an element of M,, if necessary, we may assume that ¢ fixes oo and w.
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Since (X", 4') is a contraction of (X, 4), a block in &’ containing co and w
has the form ¢’ U {c0, w}, where ¢’ is a projective line. As in the proof of
Theorem 9.70, ¢|P?(4) preserves lines and hence is a collineation of P?(4).
Since M,, contains a copy of PI'L(3, 4), there is g € M,, with g|P%(4) =
@|P?(4). Therefore, g and ¢ can only disagree on the infinite points co, w,
and .

If Be star(Q) (i.e., if B is a block in £ containing ), then ¢(B) and g(B) are
blocks; moreover, |@(B) N g(B)| = 5, for blocks have 8 points, while ¢ and g
can disagree on at most 3 points. Since 5 points determine a block, however,
@(B) = g(B) for all B e star(Q2). By Corollary 9.64,

{@} ={<P(Q)}=fp< N B>

star(Q)
= () (B
star(Q)
=) g(B)=g( N B>={g(§2)}~
star(Q) star(Q)

Hence g() = Q and g € (M,4)q = M,,. The argument now ends as that in
Theorem 9.70: pg™! € Aut(X', #') since M,; < Aut(X', #), og™! fixes &
and ¢ =g € M,;.

Theorem 9.73. M,, is a subgroup of index 2 in Aut(X", 8"), where (X", B") is
a Steiner system of type S(3, 6, 22).

Remark. There is only one Steiner system with these parameters.

Proof. Let X" = X — {Q, 0}, let b" = F(U) — {Q, w}, and let B" = {gb":
g€ M,,]. It is easy to see that (X", #”) is doubly contracted from (X, 4), so
that it is a Steiner system of type S(3, 6, 22).

Clearly M,, < Aut(X”, #"). For the reverse inclusion, let ¢ € Aut(X”, ")
be regarded as a permutation of X which fixes Q and w. As in the proof of
Theorem 9.72, we may assume that @(co)=co and that ¢|P*(4) is a
collineation. There is thus g € M,, with g|P?(4) = ¢|P?(4). Moreover, con-
sideration of star(w), as in the proof of Theorem 9.72, gives g(w) = w.
Therefore, pg™" is a permutation of X fixing P2(4) U {w}. If pg™* fixes Q,
then g™ = 1y and ¢ =g € (M,4)q,, = M,,. The other possibility is that
09~ = (c0 Q). _

We claim that [Aut(X”, ") M,,] < 2. If ¢y, ¢, € Aut(X", #”) and o¢,,
¢, ¢ M,,, then we have just seen that ¢; = (00 Q)g; for i =1, 2, where
g:€ My, But 979, = @1'0; € (My4)q,, = M,; (since both ¢ fix Q and w);
there are thus at most two cosets of M,, in Aut(X”, 8").

Recall the definitions of the elements A, and h; in M,,: h, = (0 ©0)f, and
hy = (Q w)fs, where f, f5 act on P?(4) and fix o, v, and Q. Note that h,
fixes Q and h; fixes co. Define g = hyh,hy = (Q 0)f3/2f5, and define
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@: X" — X" to be the function with ¢(c0) = oo and ¢|P*(4) = f3f,/5. By
Lemma 9.54, ¢|P?(4) is a collineation; since ¢ fixes oo, it follows that
@ € Aut(X”, 8”). On the other hand, ¢ ¢ M,,, lest pg™* =(Q ) e M,,,
contradicting Lemma 9.67(iii). We have shown that M,, has index 2 in
Aut(X”, #"). B

Corollary 9.74. M, , has an outer automorphism of order 2 and Aut(X", B") ~
M,, xZ,.

Proof. The automorphism ¢ € Aut(X”, ") with ¢ ¢ M,, constructed at the
end of the proof of Theorem 9.73 has order 2, for both f, and f, are
involutions (Lemma 9.54), hence the conjugate f; f, f5 is also an involution. It
follows that Aut(X”, ") is a semidirect product M,, xZ,. Now ¢ is an
automorphism of M,,: if ae M,,, then a® = pap™' € M,,. Were ¢ an inner
automorphism, there would be b € M,, with pap™ = bab™ for all a € M,,;
that is, pa™ would centralize M,,. But a routine calculation shows that ¢
does not commute with h, = (co [1,0,0])f, € M,,, and so ¢ is an outer
automorphism of M,,.

The “small” Mathieu groups M, and M,, are also intimately related to
Steiner systems, but we cannot use Theorem 9.66 because the action is now
sharp.

Lemma 9.75. Regard X = GF(9)u {c0, 0, Q} as an M, ,-set. There is a
subgroup ¥ < M, ,, isomorphic to Sg, having two orbits of size 6,say, Z and Z',
and which acts sharply 6-transitively on Z. Moreover,

T ={peM, u2) =2}

Proof. Denote the 5-set {c0, w, Q, 1, —1} by Y. For each permutation z of Y,
sharp 5-transitivity of M,, provides a unique t* € M, with t*|Y = 1. It is
easy to see that the function Sy — M,,, given by t+>t*, is an injective
homomorphism; we denote its image (isomorphic to Ss) by Q.

Let us now compute the Q-orbits of X. One of them, of course, is Y. If 7 is
the 3-cycle (co w ), then t* € Q has order 3 and fixes 1 and — 1. Now t* is
a product of three disjoint 3-cycles (fewer than three would fix too many
points of X), so that the {z*)-orbits of the 7-set X — Y have sizes (3, 3, 1).
Since the Q-orbits of X (and of X — Y) are disjoint unions of {zt*)-orbits
(Exercise 9.4), the Q-orbits of X — Y have possible sizes (3, 3, 1), (6, 1), (3, 4),
or 7. If Q has one orbit of size 7, then Q acts transitively on X — Y; this is
impossible, for 7 does not divide |Q| = 120. Furthermore, Exercise 9.3(i) says
that Q has no orbits of size ¢, where 2 < t < 5. We conclude that X — Y has
two Q-orbits of sizes 6 and 1, respectively. There is thus a unique point in
X — Y, namely, the orbit of size 1, that is fixed by every element of Q. If ¢ € Sy
is the transposition (1 —1), then its correspondent ¢* € Q fixes 0, w, Q and
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interchanges 1 and — 1. But {: GF(9) — GF(9), defined by {: A+— — 4, lies in
M, (for —11isasquare in GF(9)) and {|Y = o, so that { = ¢*. Since the only
other point fixed by { is 0, the one-point Q-orbit of X — Y must be {0}.

Define Z =Y u {0} = {0, 0, Q, 1, —1,0}. We saw, in Exercise 9.33,
that M,;, < M,, contains ¢,:P'9)—P!'(9), where o;:d— —1/1 is
(0 w)(1I —1)(z® m)(n> n7). Let us see that the subgroup T = (0, 0,) = S.
The set Z is both a Q-set and a (g, >-set, hence it is also a Z-set. As X acts
transitively on Z and the stabilizer of 0 is Q (which acts sharply 5-transitively
on Z — {0} = Y), we have ¥ acting sharply 6-transitively on the 6-point set
Z,and so X = S,. Finally, the 6 points X — Z comprise the other Z-orbit of
X (for we have already seen that X — Z is a Q-orbit).

If € Q, then B(Y) = Y and B(0) = 0, so that §(Z) = Z. Since 0,(Z) = Z, it
follows that ¢(Z) = Z for all ¢ € X. Conversely, suppose u € M, and u(Z) =
Z. Since X acts 6-transitively on Z, there is ¢ € X with ¢|Z = u|Z. But po™!
fixes 6 points, hence is the identity, and y = g € Z.

Theorem 9.76. If X = GF(9) U {0, w, Q} is regarded as an M,,-set and # =
{gZ:ge M, },where Z = {0, w, Q, 1, —1, 0}, then (X, B) is a Steiner system
of type S(5, 6, 12).

Proof. 1t is clear that every block gZ has 6 points. If x,,..., x5 are any
five distinct points in X, then S-transitivity of M,, provides g € M,, with
{x{,..., x5} = gZ. It remains to prove uniqueness of a block containing five
given points, and it suffices to show that if Z and gZ have five points in
common, then Z = gZ. Now if Z = {z,, ..., z¢}, then gZ = {gz4, ..., gz¢},
where' gz,, ..., gzs € Z. By Lemma 9.75, there is 0 € £ < M, with oz, =
gzy,..., 025 = gzs. Note that 0Z = Z, for Z is a Z-orbit. On the other hand,
o and g agree on five points of X, so that sharp 5-transitivity of M,, gives
o =g. Therefore Z=0Z =gZ. B

If GF(9) is regarded as an affine plane over Z,, then the blocks of the Steiner
system constructed above can be examined from a geometric viewpoint.

Lemma 9.77. Let (X, &) be the Steiner system constructed from M, in Theo-
rem 9.76. A subset B of X containing T = {co, w, Q} is a block if and only if
B = Tw{, where ! is a line in GF(9) regarded as an affine plane over Z,.

Proof. Note that Z = T U ¢, where £, = {1, —1, 0}, and ¢, is the line con-
sisting of the scalar multiples of 1. By Exercises 9.38 and 9.39, M, , contains
a subgroup W = Aut(2, 3) each of whose elements permutes T. Hence, for
every g€ W, gZ = Tu g/, and g/, is an affine line. But one may count
exactly 12 affine lines in the affine plane, so that there are 12 blocks of the
form T U /. On the other hand, the remark after Theorem 9.61 shows that
there exactly 12 blocks containing the 3-point set 7. [
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Theorem 9.78. M,, =~ Aut(X, &), where (X, &) is a Steiner system of type
S(, 6, 12).

Remark. There is only one Steiner system with these parameters.

Proof. Let (X, #) be the Steiner system constructed in Theorem 9.76. Now
M, < Aut(X, %) because every g € My, carries blocks to blocks. For the
reverse inclusion, let ¢ € Aut(X, %). Composing with an element of M, if
necessary, we may assume that ¢ permutes T = {c0, w, Q} and ¢ permutes
GF(9). Regarding GF(9) as an affine plane over Z;, we see from Lemma 9.77
that ¢|GF(9) is an affine automorphism. By Exercise 9.39, there is g € M,,
which permutes T and with g|GF(9) = ¢|GF(9). Now pg~! € Aut(X, 4), for
M, < Aut(X, B), pg~! permutes T, and @g~" fixes the other 9 points of X.
We claim that @g~! fixes every block B in 4. Thisis clearif [ BN T| =0, 1, or
3. In the remaining case, say, B = {0, @, X, ..., X,}, then @g~'(B) must
contain either co or w as well as the x;, so that |B pg™*(B)| > 5. Since
5 points determine a block, B = ¢g !(B), as claimed. Theorem 9.63 forces
og~! =1,and so ¢ = g € M,,, as desired.

Theorem 9.79. M., = Aut(X’, &#'), where (X', #') is a Steiner system of type
54, 5, 11).

Remark. There is only one Steiner system with these parameters.

Proof. Let (X', #’) be the contraction at Q of the Steiner system (X, %) of
Theorem 9.76. It is clear that M, < Aut(X’, #). For the reverse inclusion,
regard ¢ € Aut(X’, 4') as a permutation of X with ¢(Q) = Q. Multiplying by
an element of M, if necessary, we may assume that ¢ permutes {00, w}.
By Lemma 9.77, a block B’ € #' containing co and w has the form B’ =
{co, w} U, where ¢ is a line in the affine plane over Z;. As in the proof of
Theorem 9.78, ¢|GF(9) is an affine isomorphism, so there is g € M,, with
giGF(9) = ¢|GF(9). As in the proof of Theorem 9.72, an examination of
g(star(QQ)) shows that g(Q) = Q, so that g € (M,,)q = M,,. The argument
now finishes as that for Theorem 9.78: pg™! € Aut(X', #'); pg™* fixes #;
p=geM,,. @

The subgroup structures of the Mathieu groups are interesting. There are
other simple groups imbedded in them: for example, M, , contains copies of
Ag, PSL(2,9), and PSL(2, 11), while M,, contains copies of M,,, Ag, and
PSL(2, 23). The copy Z of S¢ in M, , leads to another proof of the existence
of an outer automorphism of Sg.

Theorem 9.80. S¢ has an outer automorphism of order 2.

Remark. See Corollary 7.13 for another proof.
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Proof. Recall from Lemma 9.75 that if X = {00, w, Q} U GF(9) and X (= S)
is the subgroup of M, in Lemma 9.75, then X has two X-orbits, say, Z =
Y {0} and Z' = Y' U {0'}, each of which has 6 points. If ¢ € £ has order 5,
then ¢ is a product of two disjoint 5-cycles (only one 5-cycle fixes too many
points), hence it fixes, say, 0 and 0". It follows that if U = (o), then each of Z
and Z’ consists of two U-orbits, one of size 5 and one of size 1. Now H =
(M13)0,00 = My, and U is a Sylow 5-subgroup of H. By Theorem 9.66, N =
Ny,,(U) acts 2-transitively on #(U) = {0, 0'}, so there is a € N of order 2
which interchanges 0 and 0'.

Since o has order 2, a = 1,...1,,, where the t; are disjoint transpositions
and m < 6. But M,, is sharply 5-transitive, so that 4 < m; also, M,, < 4,,,
sothatm=4orm=6..

We claim that « interchanges the sets Z = Yu {0} and Z'= Y" u {0'}.
Otherwise, thereis y € Y with a(y) = z € Y. Now aoa = o' for some i (because
anormalizes {¢)). If 6°(y) = uand o(z) = v, then u, v € Y because Y U {0} is a
T-orbit. But u = ¢(y) = aca(y) = ao(z) = a(v), and it is easy to see that y, z,
u, and v are all distinct. Therefore, the cycle decomposition of o involves
(0 0'), (y z), and (v u). There is only one point remaining in Y, say a, and
there are two cases: either a(a) = a or a(a) e Y'. If o fixes a, then there is
y' € Y moved by o, say, a(y’) = z’ € Y'. Repeat the argument above: there
are points u’, v’ € Y’ with transpositions (y’ z’) and (v ') involved in the
cycle decomposition of . If a’ is the remaining point in Y’, then the transpo-
sition (¢ a’) must also occur in the factorization of o because « is not a
product of 5 disjoint transpositions. In either case, we haveae Yand a'e Y’
with o = (0 0')(y z)(v u)(a a')B, where § permutes Y’ — {a’}. But aoa(a) =
o'(a) e Z; on the other hand, if o(a’) = b’ € Y, say, then aca(a) = xo(a’) =
a(b’), so that «(b’) € Y. Since a’ is the only element of Y’ that o moves to Y,
b'=a' and o(a’) = b’ = a’; that is, ¢ fixes a’. This is a contradiction, for ¢
fixes only 0 and 0.

It is easy to see that o normalizes X. Recall that ¢ € X if and only if 6(Z) =
Z (and hence o(Z') = Z'). Now aoa(Z) = ao(Z') = a(Z') = Z, so that aoo €
%. Therefore, y = v, (conjugation by «) is an automorphism of X.

Suppose there is B € = with ac*a = fo*B! for all o* € Z; that is, fla e
C=Cy,(2). If C=1, then a = fe X, and this contradiction would show
that y is an outer automorphism. If 6* € X, then ¢* = g¢’, where o permutes
Z and fixes Z’ and ¢’ permutes Z’ and fixes Z. Schematically,

c¥=(z x ...)z x" ...}
if u € My,, then (as any element of S, ,),
pou™t = (uz px .. (pz px’ L)

In particular, if pe C (so that us*u™! = ¢*), then either u(Z) = Z and
w(Z') = Z’ or p switches Z and Z'. In the first case, p e X, by Lemma 9.75,
and pe CN X = Z(Z) = 1. In the second case, pou™ = ¢’ (and puo'p™ = ),
so that o and ¢’ have the same cycle structure for all 6* = g0’ € Z. But there
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is o* € T with o a transposition. If such y exists, then o* would be a product
of two disjoint transpositions and hence would fix 8 points, contradicting
M, being sharply 5-transitive.

There is a similar argument, using an imbedding of M, into M,,, which
exhibits an outer automorphism of M, ,. There are several other proofs of the
existence of the outer automorphism of Sg; for example, see Conway and
Sloane (1993).

The Steiner systems of types S(5, 6, 12) and S(5, 8, 24) arise in algebraic
coding theory, being the key ingredients of (ternary and binary) Golay codes.
The Steiner system of type S(5, 8, 24) is also used to define the Leech lattice,
a configuration in R?# arising in certain sphere-packing problems as well as
in the construction of other simple sporadic groups.



CHAPTER 10

Abelian Groups

Commutativity is a strong hypothesis, so strong that all finite abelian groups
are completely classified. In this chapter, we focus on finitely generated and,
more generally, countable abelian groups.

Basics

A valuable viewpoint in studying an abelian group G is to consider it as an
extension of simpler groups. Of course, this reduces the study of G to a study
of the simpler groups and an extension problem.

In this chapter, we assume that all groups are abelian and we again adopt
additive notation. ’

Definition. A sequence of groups and homomorphisms
..._,ALB_Q,CgD__,...

is an exact sequence if the image of each map is the kernel of the next map. A
short exact sequence is an exact sequence of the form

0-4LBSC0.

There is no need to label the arrow 0— A, for there is only one such
homomorphism, namely, 0+ 0; similarly, there is no need to label the only
possible homomorphism C — 0: it must be the constant map x+ 0. In the
short exact sequence above, 0 = im(0 — A) = ker f says that f is an injec-
tion and 4 = im f; also, im g = ker(C — 0) = C says that g is a surjection.
Finally, the first isomorphism theorem gives B/im f = B/kerg =~ img = C.
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If 4 <B and f is the inclusion, then im f = A and B/A = C. Thus, B is
an extension of 4 by C if and only if there is a short exact sequence
0->A—->B->C-0.

Definition. If G is a group, its torsion subgroup is

tG = {x & G: nx = 0 for some nonzero integer n}.

Note that tG is a fully invariant subgroup of G.
When G is not abelian, then tG may not be a subgroup. For example,
Exercise 2.17 shows that tG is not a subgroup when G = GL(2, Q).

Definition. A group G is torsion if tG = G; it is torsion-free if tG = 0.

The term torsion is taken from Algebraic Topology; the homology groups
of a “twisted” manifold have elements of finite order.

Theorem 10.1. The quotient group G/tG is torsion-free, and so every group G is
an extension of a torsion group by a torsion-free group.

Proof. If n(g + tG) = 0 in G/tG for some n # 0, then ng € tG, and so there is
m # 0 with m(ng) = 0. Since mn # 0, g € tG, g + tG = 0in G/tG, and G/tG is
torsion-free.

If an abelian group is a semidirect product, then it is a direct product or, in
additive terminology, it is a direct sum. The first question is whether the
extension problem above is only virtual or if there exists a group G whose
torsion subgroup is not a direct summand of G (i.e., there is no subgroup
A < G with G = tG @ A). Let us first generalize one of the constructions we
have already studied.

Definition. Let K be a possibly infinite set and let {4,: k € K} be a family of
groups! indexed by K. The direct product (or complete direct sum or strong
direct sum), denoted by [ [ Ay, is the group whose elements are all “vec-
tors” (a,) in the cartesian product of the 4, and whose operation is

(ax) + (b)) = (ax + by)-

The direct sum (or weak direct sum), denoted by Y ;. x 4y, is the subgroup of
[ Tkex Ay consisting of all those elements (a;) for which there are only finitely
many k with g, # 0.

If the index set K is finite, then [, . x Ay = D xex 4i; if the index set K is

! These constructions make sense for nonabelian groups as well. They have already arisen, for
example, in our remark in Chapter 7 that different wreath products K 2 Q (complete and re-
stricted) arise when Q acts on an infinite set Q.
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infinite and infinitely many 4, # 0, then the direct sum is a proper subgroup
of the direct product.

Definition. If x € G and n is a nonzero integer, then x is divisible by n in G if
there is g € G with ng = x.

Were the operation in G written multiplicatively, then one would say that
x has an nth root in G. Exercise 1.31 shows that an element of order m is
divisible by every n with (n, m) = 1.

Theorem 10.2. There exists a group G whose torsion subgroup is not a direct
summand of G.

Proof. Let P be the set of all primes, and let G = [ [, Z,. If g is a prime and
x = (x,) € G is divisible by g, then there is y = (y,) with gy, = x, for all p; it
follows that x, = 0. Therefore, if x is divisible by every prime, then x = 0.

We claim that G/tG contains a nonzero element which is divisible by every
prime. If this were true, then G # tG @ H for some subgroup H, because
H = G/tG. Ifa, € Z, is a generator, then a = (a,) has infinite order: if na = 0,
then na, = 0 for all p, so that p divides n for all p and hence n = 0. Therefore
a ¢ tG, and its coset a + tG is a nonzero element of G/tG. If q is a prime, then
a, is divisible by g in Z, for all p # g, by Exercise 1.31; there is thus y, e Z,
with gy, = a, for all p # q. Define y, = 0 and define y = (y,). Now a — qy €
tG (for its coordinates are all 0 except for a, in position g). Hence

gy +1tG)=qy+1tG=a—(a—qy)+1tG=a+1G,
and so a + tG is divisible by every prime q. &

We restate Lemma 7.20 for abelian groups.

Lemma 10.3. If G is an abelian group and A < G, then the following statements
are equivalent.

() A isadirect summand of G (thereis a subgroup B < G with An B = 0 and
A+ B=0)

(i) There is a subgroup B < G so that each g € G has a unique expression
g=a+bwithaeAandbe B.

(i) There exists a homomorphism s: G/A — G with vs = 1,4, where v: G —
G/A is the natural map.

(iv) There exists a retraction n: G — A; that is, n is a homomorphism with
n(a)=a forallae A.

The following criterion is a generalization of Exercise 2.75 (which charac-
terizes finite direct sums).
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Lemma 10.4. Let {A,: ke K} be a family of subgroups of a group G. The
following statements are equivalent.

() G=)xex Ay

(ii) Every g € G has a unique expression of the form

g= z Qg

ke K

where a, € Ay, the k are distinct, and a, # 0 for only finitely many k.
(i)} G =< Urex Ax> and, for each je K, A;00 | Jip; 4> = 0.

Proof. Routine.

Theorem 10.5. If V is a vector space over a field K, then, as an additive group,
V is a direct sum of copies of K.

Proof. Let X be a basis of V. For each x € X, the one-dimensional subspace
Kx spanned by x, is, as a group, isomorphic to K. The reader may check,
using Lemma 104, that V=3 .y Kx.

There is a notion of independence for abelian groups.

Definition. A finite subset X = {x, ..., x,} of nonzero elements of a group G
is independent if, for all m;e Z,  m;x; = 0 implies m;x, = 0 for each i. An
infinite set X of nonzero elements in G is independent if every finite subset is
independent.

If X is an independent subset of a group G and ) m,x = 0, then m,x = 0
for each x. If G is torsion-free, then m, = 0 for all x; however, if G has torsion,
then one may conclude only that m, is a multiple of the order of x.

Lemma 10.6. A set X of nonzero elements of a group G is independent if and

only if
X>= ) x>

xe X

Proof. Assume that X is independent. If x, € X and y e (x¢> N (X — {x4}),
then y = mx, and y = ) m;x;, where the x; are distinct elements of X not
equal to x,. Hence

—mxg + Tmyx; =0,

so that independence gives each term 0; in particular, 0 = mx, = y.
The proof of the converse, also routine, is left to the reader.

Recall, in the context of abelian groups, that p-groups are called p-primary
groups.
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Theorem 10.7 (Primary Decomposition). Every torsion group G is a direct sum
of p-primary groups.

Proof. For a prime p, define
G, = {x € G: p"x = 0 for some n > 0}

(G, is called the p-primary component of G.) The proof of Theorem 6.1, mutatis
mutandis, show that G~ ) ,G,. H

Theorem 10.8. If G and H are torsion groups, then G = H if and only if
G, = H, for all primes p.

Proof. If : G — H is a homomorphism, then ¢(G,) < H, for all primes p. In
particular, if ¢ is an isomorphism, then ¢(G,) < H, and ¢7'(H,) < G, for all
p. It follows easily that ¢|G, is an isomorphism G, - H,.

Conversely, assume that there are isomorphisms ¢,: G, — H,, for all primes
p. By Theorem 10.4(ii), each g € G has a unique expression of the form g =
Y ,a,, where only a finite number of the a, # 0. Then ¢: G — H, defined by
@()_a,) =) @,(a,), is easily seen to be an isomorphism.

Because of these last two results, most questions about torsion groups can
be reduced to questions about p-primary groups.

Here are two technical results about direct sums and products that will be
useful.

Theorem 10.9. Let G be an abelian group, let { A;: k € K} be a family of abelian
groups, and let {i,: A, — G: k € K} be a family of homomorphisms. Then G =
Y vex Ay if and only if, given any abelian group H and any family of homo-
morphisms {fi: A,— H: ke K}, then there exists a unique homomorphism
@: G — H making the following diagrams commute (@i, = f,):

A, —=— G

/
fk\ //lﬂ
v
H

Progf. We show first that G =) A, has the stated property. Define
Ji: A, & G to be the inclusion. By Lemma 10.4, every g € G has a unique
expression of the form g = Y ;. x a;, with g, # O for only finitely many k. It
follows that y(g) = 3 fi(a,)is a well defined function; it is easily checked that
i is a homomorphism making the kth diagram commute for all k; that is,
Vji = fi for all k.

Assume now that G is any group satisfying the stated property, and
choose the diagram with H = G and f; = j,. By hypothesis, there is a map
@: G - Y, A, making the diagrams commute.
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Finally, we show that ¢ and @y are identities. Both y¢ and 1; complete
the diagram

A, — 5 G

Y/

G

and so the uniqueness hypothesis gives Y ¢ = 15. A similar diagram shows
that gy is the identity on Y. 4.

Theorem 10.10. Let G be an abelian group, let {4,k € K} be a family of
abelian groups, and let {p,: G - A,: k€ K} be a family of homomorphisms.
Then G ~ I—lksKAk if and only if, given any abelian group H and any family
of homomorphisms {fi: H— A,: k € K}, there exists a unique homomorphism
¢@: H— G making the following diagrams commute for all k:

P
Ay e

7
S /@
/

H

Proof. The argument is similar to the one just given if one defines
Pi: | Liex A1 = H as the projection of a “vector” onto its kth coordinate.

EXERCISES

10.1. Let {4,: k € K} be a family of torsion groups.
(i) The direct sum Y ;. g 4, is torsion.
(i) If nis a positive integer and if each A4, has exponent n (Le., n4, = 0 for all k),
then [ [ x 4y Is torsion.

10.2. If x € G, then any two solutions to the equation ny = x differ by an element z
with nz = 0. Conclude that y is unique if G is torsion-free.

10.3. If G is a torsion-free group and X is a maximal independent subset, then G/{X )
is torsion.

104. (i) If G = Y A,, prove that the maps i,: 4, — G in Theorem 10.9 are injections.
(i) If G = [[ A, prove that the maps p,: G — A4, in Theorem 10.10 are surjec-
tions.

Free Abelian Groups

Definition. An abelian group F is free abelian if it is a direct sum of infinite
cyclic groups. More precisely, there is a subset X < F of elements of infinite
order, called a basis of F, with F = erx {x);ie, F Z Z.
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We allow the possibility X = ¢, in which case F = 0.

It follows at once from Lemma 10.4 that if X is a basis of a free abelian
group F, then each u € F has a unique expression of the form u =) m,x,
where m, € Z and m, = 0 for “almost all” x € X; that is, m, # 0 for only a
finite number of x.

Notice that a basis X of a free abelian group is independent, by Lemma
10.6.

Theorem 10.11. Let F be a free abelian group with basis X, let G be any abelian
group, and let f: X — G be any function. Then there is a unique homomorphism
@: F — G extending f; that is,

o(x)=f(x)  forall xeX.
Indeed, if u =Y m,x € F, then p(u) =y m, f(u).

X — G

Proof. If ue F, then uniqueness of the expression u =) m,x shows that
¢:u— Y m,f(u) is a well defined function. That ¢ is a homomorphism ex-
tending f is obvious; ¢ is unique because homomorphisms agreeing on a set
of generators must be equal.

Here is a fancy proof. For each x € X, there is a unique homomorphism
@,: {x) = G defined by mx+>mf(x). The result now follows from Lemma
10.6 and Theorem 10.10.

Corollary 10.12. Every (abelian) group G is a quotient of a free abelian group.

Proof. Let F be the direct sum of | G| copies of Z, and let x, denote a generator
of the gth copy of Z, where g € G. Of course, F is a free abelian group with
basis X = {x,: g € G}. Define a function f: X — G by f(x,) =g forallgeG.
By Theorem 10.11, there is a homomorphism ¢: F — G extending f. Now ¢
is surjective, because f is surjective, and so G = F/ker ¢, as desired. [

The construction of a free abelian group in the proof of Corollary 10.12
can be modified: one may identify x, with g. If X is any set, one may thus
construct a free abelian group F having X itself as a basis. This is quite
convenient. For example, in Algebraic Topology, one wishes to consider
formal Z-linear combinations of continuous maps between topological
spaces; this can be done by forming the free abelian group with basis the set
of all such functions.

The corollary provides a way of describing abelian groups.
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Definition. An abelian group G has generators X and relations A if G = F/R,
where F is the free abelian group with basis X, A is a set of Z-linear combina-
tions of elements of X, and R is the subgroup of F generated by A. If X can
be chosen finite, then G is called finitely generated.

ExaMPLE 10.1. G = Z has generator x and relation 6x.

ExAMPLE 10.2. G = Z, has generators {x, y}, and relations {2x, 3y}.

ExampLE 103. G=Q has generators {x;,...,X,,...} and relations
{x1 — 2%, %3 — 3%X3, .oy Xyoy — BXpy .. )

ExaMPLE 10.4. If G is free abelian with basis X, then G has generators X and
no relations (recall that 0 is the subgroup generated by the empty set). The
etymology of the term free should now be apparent.

We have just seen that one can describe a known group by generators and
relations. One can also use generators and relations to construct a group

with prescribed properties.

Theorem 10.13. There is an infinite p-primary group G = Z(p®) each of whose
proper subgroups is finite (and cyclic).

Proof. Define a group G having

generators: X = {Xq, X1, ...s Xpy .-}
and
relations:  {pxg, Xo — PXy, Xy — PXg, ey Xpoy — PXpy -+ }.

Let F be the free abelian group on X, let R < F be generated by the relations,
andleta, = x,+ Re F/R = G. Then pa, = 0and a,_, = pa,foralln > 1, so
that p"*'a, = pa, = 0. It follows that G is p-primary, for p**'¥'!_ m, a, = 0,

where m, € Z. A typical relation (i.e., a typical element of R) has the form:
Mo pXo + 21 My(X,—y — PX,) = (Mop + my)xo + Z (M 4y — m,p)x,.
nz nx1

Ifa, = 0, then x, € R, and independence of X gives the equations 1 = myp +
my and m,., = pm, for all n > 1. Since R < F and F is a direct sum, m, = 0
for large n. But m,,.; = p"m, for all n, and so m, = 0. Therefore, 1 = mp, and
this contradicts p > 2. A similar argument shows that a, # 0 for all n. We
now show that all a, are distinct, which will show that G is infinite. If a, = g,
for k > n, then a,_, = pa, implies a;, = p*"a,, and this gives (1 — p*™")q, =
0; since G is p-primary, this contradicts a, 0.

Let H < G. If H contains infinitely many a,, then it contains all of them,
and H = G. If H involves only ay, ..., a,, then H < <ay, ..., a,» < {a,>.
Thus, H is a subgroup of a finite cyclic group, and hence H is also a finite
cyclic group., B3
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The group Z(p®) has other interesting properties (see Exercise 10.5 below),
and we shall return to it in a later section.

Theorem 10.14. Two free abelian groups F =3, .x<{x)> and G =3 ,.y{y>
are isomorphic if and only if | X| = Y]

Proof. Since | X| = | Y|, there is a bijection f: X — Y < G, and f determines a
homomorphism ¢: F — G with ¢(x) = f(x) for all x € X. Similarly, there is a
homomorphism ¥: G — F with ¥s(y) = f™(y) for all y € Y. But ¢y and y¢
are identities because each fixes every element in a basis, and so ¢: F — G is
an isomorphism.

Conversely, if p is a prime, then V= F/pF is a vector space over Z,. We
claim that X = {x + pF:x € X} is a basis of V. It is clear that X spans V.
Assume that Z[m, ](x + pF) = 0, where [m,] € Z, and not all [m,] = [0]. If
m, is a representative of [m,], then ) m(x + pF) 0. In F, this equation
becomes Y m,x € pF; that is, there are integers n, with Y m.x =Y pn,x.
Independence of a basis gives m, = pn, for all x, and so [m,] = [0] for all x.
This contradiction shows that X is independent, and hence it is a basis of V.
We have shown that dim F/pF = |X| = | X|. In a similar way, one shows that
dim F/pF = |Y|, so that | X| = |Y]|.

Definition. The rank of a free abelian group is the cardinal of a basis.

Theorem 10.14 says that two free abelian groups are isomorphic if and
only if they have the same rank. The reader will not be misled by the analogy:
vector space—free abelian group; dimension—rank.

It is clear that if F and G are free abelian, then

rank(F @ G) = rank(F) + rank(G),

for a basis of F @ G can be chosen as the union of a basis of F and a basis
of G.

Theorem 10.15 (Projective Property). Let : B — C be a surjective homomor-
phism of groups. If F is free abelian and if o: F — C is a homomorphism, then
there exists a homomorphism y: F — B making the diagram below commute (i.e.,

By =a).

Remark. The converse is also true.

Proof. Let X be a basis of F. For each x € X, surjectivity of « provides b, € B



316 10. Abelian Groups

with B(b,) = a(x). Define a function f: X — B by f(x) = b,. By Theorem
10.11 there is a homomorphism y: F — B with y(x) = b, for all x. It follows
that fy = o, for they agree on a generating set of F: if x € X, then fy(x) =
B(b,) = a(x).

Corollary 10.16. If H < G and G/H is free abelian, then H is a direct summand
of G;thatis, G=H® K, where K < G and K ~ G/H.

Proof. Let F = G/H and let §: G —» F be the natural map. Consider the
diagram

B F 0,

where 1 is the identity map. Since F has the projective property, there is a
homomorphism y: F — B with fy = 1;. Define K = im y. The equivalence of
(i) and (iii) in Lemma 10.3 gives B=ker f@imy=H® K. &

We give two proofs of the next result. The first is a special case of the
second, but it contains the essential idea; the second involves infinite methods
which, though routine, may obscure the simple idea.

Theorem 10.17. Every subgroup H of a free abelian group F of finite rank n is
itself free abelian; moreover, rank(H) < rank(F).

Proof. The proof is by induction on n. If n =1, then F = Z. Since every
subgroup H of a cyclic group is cyclic, either H = 0 or H =~ Z, and so H is
free abelian of rank < 1. For the inductive step, let {x,, ..., X, } be a basis
of F. Define F' =<{x,,...,x,» and H = HnF'. By induction, H’ is free
abelian of rank < n. Now

H/H = H/HAF)=(H + F)/F < F/F' = 7.

By the base step, either H/H' =0 or H/H' =~ Z. In the first case, H = H’
and we are done; in the second case, Corollary 10.16 gives H = H' @ <h)
for some h e H, where (h) =~ Z, and so H is free abelian and rank(H) =
rank(H' @ Z)=rank(H)+ 1<n+1. B

We now remove the finiteness hypothesis.

Theorem 10.18. Every subgroup H of a free abelian group F is free abelian, and
rank(H) < rank(F).

Proof. That every nonempty set can somehow be well-ordered is equivalent
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to the Axiom of Choice (see Appendix IV). Let {x,: ke K} be a basis of F,
and assume that X is well-ordered.

For each k € K, define F;, = (x;: j < k) and F, = {x;: j < k) = F{ ® {x;;
define H, = HN F; and H, = H " F,. Note that F = | JF, and H = | J H,.
Now H, = Hn F, = H,n F,, and so

Hy/Hy = H/(H, " F)
~(H,+ F)/F<F/F=Z

By Corollary 10.16, either H, = H, or H, = H, ® {l), where {h> =~ Z. We
claim that H is free abelian with basis the set of all h,; it will then follow that
rank(H) < rank(F), for the set of h, has cardinal < |K| = rank(F).

Since F = () F,, each he H (as any element of F) lies in some F,; define
u(h) to be the smallest index k for which h € F, (we are using the fact that K
is well-ordered). Let H* be the subgroup of H generated by all the k. Sup-
pose that H* is a proper subgroup of H. Let j be the smallest index in

{w(h): he H and h ¢ H*},

and choose h' € H, h' ¢ H* with u(h') = j. Now u(h') = jgivesh' e Hn F;, s0
that
h' = a -+ mh, acH; and meZ

Thus, a = b’ —mh; € H, a ¢ H* (lest i’ € H*), and u(a) < j, a contradiction.
Therefore, H = H*.

By Lemma 10.4(ii), it remains to show that linear combinations of the I,
are unique. It suffices to show that if

myhy, + o+ mhy =0,

where k, < -+ < k,, then each m; = 0. Of course, we may assume that m, # 0.
But then m hk € (hk >NH, = 0 a contradiction. It follows that H is free
abelian.

EXERCISES -

10.5. (i) Prove, for each n > 1, that Z(p®) has a unique subgroup of order p".
(i) Prove that the set of all subgroups of Z(p®) is well-ordered by inclusion.
(iiiy Prove that Z(p*) has the DCC but not the ACC.
(iv) Let R, = {€*™"": ke Z, n > 0} < C be the multiplicative group of all pth
power roots of unity. Prove that Z(p®) =~ R

10.6. (i) Prove that the group G having generators {xqo, X1, X3, ...} and relations
{pxo, Xo — P"X,, all n > 1} is an infinite p-primary group w1th N1 p"G #
0.
(ii) Prove that the group G in (i) is not isomorphic to Z(p®).

10.7. (i) Prove that an abelian group G is finitely generated if and only if it is a
quotient of a free abelian group of finite rank.
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(i) Every subgroup H of a finitely generated abelian group G is itself finitely
generated. Moreover, if G can be generated by r elements, then H can be
generated by r or fewer elements.

10.8. Prove that the multiplicative group of positive rationals is free abelian (of
countably infinite rank). (Hint. Exercise 1.52(ii).)

10.9. If F is a free abelian group of rank n, then Aut(¥F) is isomorphic to the multi-
plicative group of all n x n matrices over Z with determinant = + 1.

10.10. An abelian group is free abelian if and only if it has the projective property.

10.11. If F is a free abelian group of rank n and H is a subgroup of rank k < n, then
F/H has an element of infinite order.

10.12. () If 4 L B4 chpisan exact sequence of free abelian groups, prove that
B ~im f @ ker h.
@) Ifn>1and0—> F, - -+ - F; - F, — 0is an exact sequence of free abelian
groups of finite rank, then ) ., rank(F;) = 0.

10.13. Prove the converse of Corollary 10.16: If a group G is (isomorphic) to a direct
summand whenever it is a homomorphic image, then G is free abelian.

10.14. A torsion-free abelian group G having a free abelian subgroup of finite index is
itself free abelian.

Finitely Generated Abelian Groups

We now classify all finitely generated abelian groups.

Theorem 10.19. Every finitely generated torsion-free abelian group G is free
abelian.

Proof. We prove the theorem by induction on n, where G = {x,, ..., x,,>. If
n=1and G s 0, then G is cyclic; G = Z because it is torsion-free.

Define H = {g € G: mg € {x,) for some positive integer m}. Now H is a
subgroup of G and G/H is torsion-free: if x € G and k(x + H) = 0, then kx ¢
H, m(kx) € {x,», and so x € H. Since G/H is a torsion-free group that can be
generated by fewer than n elements, it is free abelian, by induction. By Corol-
lary 10.16, G = F @ H, where F = G/H, and so it suffices to prove that H is
cyclic. Note that H is finitely generated, being a summand (and hence a
quotient) of the finitely generated group G.

If g € H and g # 0, then mg = kx, for some nonzero integers m and k. It is
routine to check that the function ¢: H - Q, given by g+ k/m, is a well
defined injective homomorphism,; that is, H is (isomorphic to) a finitely gener-
ated subgroup of Q, say, H = {a,/b, ..., a,/b,». If b = []i-, b;, then the map
V: H— Z, given by hi bh, is an injection (because H is torsion-free). There-
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fore, H is isomorphic to a nonzero subgroup of Z, and hence it is infinite
cyclic. E

Theorem 10.20 (Fundamental Theorem). Every finitely generated abelian
group G is a direct sum of primary and infinite cyclic groups, and the number
of summands of each kind depends only on G.

Proof. Theorem 10.19 shows that G/tG is free abelian, so that Corollary 10.16
gives G = tG @ F, where F =~ G/tG. Now tG is finitely generated, being a
summand and hence a quotient of G, and Exercise 6.18(ii) shows that G is
finite. The basis theorem for finite abelian groups says that tG is a direct sum
of primary cyclic groups.

The uniqueness of the number of primary cyclic summands is precisely
Theorem 6.11; the number of infinite cyclic summands is just rank(G/tG), and
so it, too, depends only on G.

The next result will give a second proof of the basis theorem.

Theorem 10.21 (Simultaneous Bases). Let H be a subgroup of finite index in a
firee abelian group F of finite rank n. Then there exist bases {y,, ..., o} of F
and {hy, ..., h,} of H such that h; € {y;) for all i.

Proof. If {x,, ..., x,} is an ordered basis of F, then each element h € H has
coordinates. Choose an ordered basis and an element h so that, among all
such choices, the first coordinate of h is positive and minimal such. If h =
kyx, -+ + k,x,, then we claim that k, divides k; for all i > 2. The division
algorithm gives k; = ¢;k, + r;, where 0 < r, < k,. Therefore,

Ch=ki(xg + gaXg o+ X)) F 12X, 0 X,

Define y, = x; + ¢g;%, + *** + ¢,X,, and note that {y,, x5, ..., x,} is an or-
dered basis of F. Now h = k,y, + r,x, + -+ + r,x,. If r; # 0 for some i, then
the first coordinate of h relative to the ordered basis {x;, y,, ..., x,} violates
the minimality-of our initial choice. Therefore, r, = 0 for all i > 2 and k,
divides k; for all i > 2.

If " =myy, + myx, + -+ + m,x, is any element of H, we claim that k,
divides m,. For if m; = gk, + r, where 0 < r < k,, then h’ — gh € H has first
coordinate r < k,, a contradiction. It follows that the map n: H — H, given
by h'+>m, y,, is a retraction with image <h)». By Lemma 10.3, H = (h) @
kerm = (h) @ (Hn {x3, ..., X, ). Since {x,, ..., x,» is free abelian of rank
n—1and Hn{x,,...,x,> is a subgroup of finite index, the proof can be
completed by induction on n.

Corollary 10.22 (Basis Theorem). Every finite abelian group G is a direct sum
of cyclic groups.
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Proof. Write G as F/R, where F is free abelian of finite rank n, say. By
Theorem 10.21, there are bases {y,,..., y,} and {hy,..., h,} of F and R,
respectively, with h; = k,y, for all i. By Theorem 2.30, G = ) 1., Z,,.

EXERCISES

10.15. If F is a free abelian group of finite rank n, then a subgroup H of F has finite
index if and only if H is free abelian of rank n.

10.16. Let {x,,..., x,} be a basis of a free abelian group F. If k, ..., k, are inte-
gers with ged(ky, ..., k,) = 1, then there are elements y,,..., y, such that
{kyxy + -+ kyXy, ¥2, ..., V) is a basis of F.

10.17. Let F be free abelian of rank n and let H be a subgroup of the same rank. Let
{x{,..., x,} beabasisof F,let {y;, ..., y,} be a basis of H, and let y; = ) myx,.
Prove that
[F:H] = |det[my]].

(Hint. Show that |det[m;]] is independent of the choice of bases of F and of H.)

Divisible and Reduced Groups

A reader of Chapter 1, asked to give examples of infinite abelian groups,
probably would have responded with Z, @, R, and C. We now study a com-
mon generalization of the latter three groups.

Definition. A group G is divisible if each x € G is divisible by every integer
n > 2; that is, there exists g, € G with ng, = x for alln > 2.

ExaMmPLE 10.5. The following groups are divisible: Q; R; C; the circle group T;
Z(p*); the multiplicative group F* of all nonzero elements of an algebraically
closed field F (in particular, C*).

ExampLE 10.6. Every quotient of a divisible group is divisible.

ExaMPLE 10.7. If {4,: k € K} is a family of groups, Then each of ), . x 4, (and
[ 1kex A4 is divisible if and only if every 4, is divisible.

ExaMmpLE 10.8. A torsion-free divisible group G is a vector space over Q.

If x € G and n > 0, then there is a unique y € G with ny = x, by Exercise
10.2. There is thus a function Q x G — G, given by (m/n, x)>my (where
ny = x), which is a scalar multiplication satisfying the axioms in the defini-
tion of vector space.

Theorem 10.23 (Injective Property, Baer, 1940). Let D be a divisible group and
let A be a subgroup of a group B. If f: A— D is a homomorphism, then f
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can be extended to a homomorphism ¢: B — D; that is, the following diagram
commutes:

0 —— 4 %\B.

Proof. We use Zorn’s lemma. Consider the set & of all pairs (S, h), where
A < S < Band h: S— D is a homomorphism with h|4 = f. Note that & 3
J because (A4, f) € &. Partially order & by decreeing that (S, h) < (S, h’) if
S < §'and h' extends h; that is, h'|S = h. If € = {(S,, h,)} is a simply ordered
subset of &, define (5, i) by S = | ), S, and /i =  J, h, (this makes sense if one
realizes that a function is a graph; in concrete terms, if se S thense S, for
some «, and A(s) = h,(s)). The reader may check that (S, h) € & and that it is
an upper bound of ¥. By Zorn’s lemma, there exists a maximal pair (M, g) €
&. We now show that M = B, and this will complete the proof.

Suppose that there is b € Bwith b ¢ M. If M’ = (M, b), then M < M’, and
so it suffices to define h’: M’ — D extending g to reach a contradiction.

Casel. Mn<{b) =0.

In this case, M’ = M @ <b), and one can define h’ as the map m + kb~
g(m).
Case2. M ~<{b)> #0.

If k is the smallest positive integer for which kb € M, then each y € M’ has
a unique expression of the form y = m + tb, where 0 <t < k. Since D is
divisible, there is an element d € D with kd = h(kb) (kb € M implies h(kb) is
defined). Define h': M’ — D by m + tb+> g(m) + td. It is a routine calculation,
left for the reader, that A’ is a homomorphism extending g.

Corollary 10.24. If a divisible group D is a subgroup of a group G, then D is a
direct summand of G.

Proof. Consider the diagram:

0—~——>Dc_i._,\B

where 1, is the identity map. By the injective property, there is a homomor-
phism ¢: G — D with ¢i =1, (where i is the inclusion D < G); that is,
@(d) = dfor alld € D. By Lemma 10.3, D is a direct summand of G.

Definition. If G is a group, then dG is the subgroup generated by all the
divisible subgroups of G.
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Note that dG is a fully invariant subgroup, for every image of a divisible
group is divisible.

Lemma 10.25. For any group G, dG is the unique maximal divisible subgroup
of G.

Proof. 1t suffices to prove that dG is divisible, Let x € dG and let n > 0. Now
x =d, + -+ d,, where each d; € D,, a divisible subgroup of G. Since D; is
divisible, there is y; € D; with ny; = d, for all i. Hence y, + --* + y, € dG and
n(y, + - + y) = x, as desired.

Definition. A group G is reduced if dG = 0.
Of course, G is divisible if and only if dG = G.

Theorem 10.26. For every group G, there is a decomposition
G=dGDR.

where R is reduced.

Proof. Since dG is divisible, Corollary 10.24 gives the existence of R. If D < R
is divisible, then D < RndG = 0, by Lemma 10.25.

The reader should compare the roles of the subgroups tG and dG. Every
abelian group G is an extension of the torsion group tG by a torsion-free
group (but tG need not be a direct summand); G is an extension of the
divisible group dG by a reduced group, and dG is always a direct summand.

Recall that if G is a group, then G[n] = {x € G: nx = 0}.

Lemma 10.27. If G and H are divisible p-primary groups, then G = H if and
only if G[p] = H[p].

Proof. Necessity follows easily from the fact that ¢(G[p]) < H[p] for every
homomorphism ¢: G — H.

For sufficiency, assume that ¢: G[p] - H[p] is an isomorphism; com-
posing with the inclusion H[ p] <» H, we may assume that ¢: G[p] — H. The
injective property gives the existence of a homomorphism ®: G — H extend-
ing ¢; we claim that @ is an isomorphism.

(1) @ is injective.

We show by induction on n > 1 that if x € G has order p”, then ®(x) = 0.
If n = 1, then x € G[p], so that ®(x) = ¢(x) = 0 implies x = 0 (because ¢ is
injective). Assume that x has order p"*! and ®(x) = 0. Now ®(px) = 0 and
px has order p”, so that px = 0, by induction, and this contradicts x having
order p"*1,

(i) @ is surjective.
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We show, by induction on 1 > 1, that if y € H has order p”, then y € im @,
If n =1, then y € H[p] = im ¢ < im ®. Suppose now that y has order p"*!,
Since p"y € H[ p], there is x € G with ®(x) = p"y; since G is divisible, there is
g € G with p"g = x. Thus, p"(y — ®(x)) = 0, so that induction provides z € G
with @(z) = y — ®(g). Therefore, y = ®(y + g), as desired. B

Theorem 10.28. Every divisible group D is a direct sum of copies of Q and of
copies of Z(p®) for various primes p.

Proof. 1t is easy to see that tD is divisible, so that D = tD @ V, where V =~
D/tD. Now V is torsion-free and divisible, so it is a vector space over Q, by
Example 10.8; by Theorem 10.5, V is a direct sum of copies of Q.

For every prime p, the p-primary component G of tD is divisible (it is a
summand of a divisible group). Let r = dim G[p] (as a vector space over Z,),
and let H be the direct sum of r copies of Z(p®). Now H is a p-primary
divisible group with G[p] =~ H[p], and so G = H, by the lemma.

Notation. If D is a divisible group, let §,(D) = dimg D/tD and let §,(D) =
dimz D[p].
The proof of the next theorem is left as an exercise.

Theorem 10.29. If D and D’ are divisible groups, then D = D’ if and only if
0(D) =-0,(D’) and, for all primes p, 6,(D) = 6,(D’).

There is an analogy between theorems about free abelian groups and theo-
rems about divisible groups that may be formalized as follows. Given a com-
mutative diagram containing exact sequences, then its dual diagram is the
diagram obtained from it by reversing all arrows. For example, the dual
diagram-of 0 > A — B is B— A — 0, and this leads one to say that “sub-
group” and “quotient group” are dual notions. The notion of short exact
sequence is self-dual, Theorems 10.9 and 10.10 show that “direct sum” and
“direct product” are dual, and the projective property is dual to the injective
property (suggesting that free abelian groups are dual to divisible groups).
The next result should be compared to Corollary 10.12.

Theorem 10.30. Every group G can be imbedded in a divisible group.

Proof. Write G = F/R, where F is free abelian. Now F = ) Z, so that F <
> @ (just imbed each copy of Z into Q). Hence G = F/R =), Z)/R <
(O Q)/R, and the last group is divisible, being a quotient of a divisible
group.

The next result should be compared to Exercise 10.12.

Corollary 10.31. A group G is divisible if and only if it is a direct summand of
any group containing it.
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Proof. Necessity is Corollary 10.24. For sufficiency, Theorem 10.30 says that
there is a divisible group D containing G as a subgroup. By hypothesis, G is
a direct summand of D, and so G is divisible.

EXERCISES

10.18.
10.19.

10.20.

10.21.

10.22.

10.23.

10.24.

10.25.

10.26.

10.27.
10.28.

10.29.

10.30.

10.31.

Show that the group G/tG in Theorem 10.2 is divisible.

If0—» 4 — B— C — 0is an exact sequence and if 4 and C are reduced, then B
is reduced.

(i) If G is the group in Exercise 10.6, then G/{a,) is a direct sum of cyclic
groups.
(ii) Show that G is reduced.

(i) Prove that Q/Z =), Z(p®). (Hint. Use Exercise 10.5.)
(ii) Prove that (Q/2)[n] = Z,,.

Prove that a group D is divisible if and only if it has the injective property.
(Hint. {n) < Z for all n > 1; extend homomorphisms {(n) — D to homomor-
phisms Z — D.)

(i) A group G is divisible if and only if G = pG for all primes p.
(ii) A p-primary group is divisible if and only if G = pG. (Hint. Use Exercise
1.31.)

If G and H are groups, prove that G = H if and only if dG = dH and G/dG =
H/dH.

The following conditions on a group G are equivalent:
(i) G is divisible;

(ii) Every nonzero quotient of G is infinite; and

(ili) G has no maximal subgroups.

If G and H are divisible groups each of which is isomorphic to a subgroup
of the other, then G = H. Is this true if we drop the adjective “divisible™?

If G and H are divisible groups for which G ® G =~ H® H, then G = H.

(i) Prove that the following groups are all isomorphic: R/Z; the circle group
T [1,Z2(p™); R® (@/Z); C*~.

(ii) Prove that t(C*) = Q/Z.

Prove that every countable abelian group G can be imbedded in ) 2, D;, where

D, =~ Q®(Q/2) for all i.

(i) Every torsion-free group G can be imbedded in a vector space over Q.
(Hint. Imbed G in a divisible group D, consider the natural map D — D/tD,
and use Example 10.8.)

(i) If a maximal independent subset of a torsion-free group G has n elements,
then G can be imbedded in a vector space over Q of dimension n.

If A is a group and m € Z, define m,: 4 - 4 by ar>ma.
(i) Show that 4 is torsion-free if and only if m, is an injection for all m # 0.
(i) Show that A is divisible if and only if m, is a surjection for every m # 0.
(iif) Show that A is a vector space over Q if and only if m is an automorphism
for every m # 0.
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Torsion Groups

Torsion groups can be quite complicated, but there are two special classes of
torsion groups that are quite manageable: divisible groups and direct sums of
cyclic groups. We shall prove that every torsion group is an extension of a
direct sum of cyclics by a divisible. The proof involves a special kind of
subgroup that we now investigate.

Definition. A subgroup S > G is a pere subgroup if, for every integer n,
SnnG =nS.
It is always true that S " nG > nS, and so it is only the reverse inclusion

that is significant: if s € S N nG, then s € nS; that is, if s€ S and s = ng for
some g € G, then there exists s’ € S with s = ns".

ExampLE 10.9. Every direct summand is pure.

LetG=A®B.Ifae Aanda = ng,theng =a’ + b’,fora’ € Aand b’ € B.
Now nb’ = 0,fornb’ =a —na’e An B = 0. Hence a = na’ and 4 is pure.

ExampLE 10.10. If S < G and G/S is torsion-free, then S is pure.

If s =ng, then g + S e G/S has finite order; since G/S is torsion-free,
g+S==S,andgeS.

ExaMPLE 10.11. ¢tG is a pure subgroup of G that may not be a direct summand
of G.

By Theorem 10.1, G/tG is torsicn-free, and so Example 10.10 shows that :G
is pure. It follows from Theorem 10.2 that tG need not be a direct summand.

Lemma 10.32. Let S be a pure subgroup of G, and let v: G — G/S be the natural
map. If y € G/S, then there is x € G with v(x) = y such that x and y have the
same order.

Proof. Surjectivity of the natural map provides x € G with v(x) = y. If y has
infinite order, then so does x. If y has finite order n, then v(nx) = nv(x) =
ny = 0, so that nx € ker v = S. Since S is pure, there is s’ € S with nx = ns’. If
z=Xx — s, then nz = 0 and v(z) = v(x — s’) = y. But n divides the order of z,
by Exercise 2.14, and so z has order n. [

Lemma 10.33. Let T < G be pure. If T < S < G, then S/T is pure in G/T if
and only if S is pure in G.

Proof. Suppose that S/T is pure in G/T. Assume that se S and s = ng for
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some g € G. In G/T, § = ng (where bar denotes coset mod T), and so there is
s’ € S with § = n§’; that is, there is t € T with s = ns’ + t. Thus t = n(g — s'),
and the purity of T gives t'e T with ng —ns’=nt’. Hence s =ng =
n(s’ + t’). Buts’ + t' € §, because T < S, and so S is pure in G.

Conversely, suppose that S is pure in G. If § € S/T and § = ng in G/T, then
ng =s+t for some t € T. Since T < S, we have s + ¢t € S, and purity gives
s’ € S with s + t = ns’. Therefore, § = n§’ and S/T is pure.

Lemma 10.34. A p-primary group G that is not divisible contains a pure non-
zero cyclic subgroup.

Proof. Assume first that there is x € G[p] that is divisible by p* but not by
p**!, and let x = p*y. We let the reader prove that {y) is pure in G (Exercise
1.31 shows that one need check only powers of p).

We may, therefore, assume that every x € G[p] is divisible by every power
of p. In this case, we prove by induction on k > 1 that if x € G and p*x = 0,
then x is divisible by p. If k = 1, then x € G[p], and the result holds. If
p**1x = 0, then p*x € G[p], and so there is z € G with p**'z = p*x. Hence
p*(pz — x) = 0. By induction, there is we G with pw=pz — x, and x =
p(z — w), as desired.

We have shown that G = pG, and so Exercise 10.25(ii) gives G divisible, a
contradiction.

Definition. A subset X of a group G is pure-independent if it is independent
and (X is a pure subgroup of G.

Lemma 10.35. Let G be a p-primary group. If X is a maximal pure-independent
subset of G (i.e., X is contained in no larger such), then G/{X ) is divisible.

Proof. If G/{X) is not divisible, then Lemma 10.34 shows that it contains a
pure nonzero cyclic subgroup (y); by Lemma 10.32, we may assume that
y€ G and y € G/{X) have the same order (where y+ ¥ under the natural
map). We claim that {X, y} is pure-independent.

Now <X) < <X, y> <G, and <X, y>/KX)> =<J) is pure in G/{X); by
Lemma 10.32, (X, y) is pure in G.

Suppose that my + Y mx; = 0, where x; € X and m, m; € Z. In G/<X), this
equation becomes my = 0. But y and y have the same order, so that my = 0.
Hence ) m;x; = 0, and independence of X gives m;x; = 0 for all i. Therefore
{X, y} is independent, and by the preceding paragraph, it is pure-indepen-
dent, contradicting the maximality of X.

Definition. A subgroup B of a torsion group G is a basic subgroup if:

(i) B is a direct sum of cyclic groups;
(i) B is a pure subgroup of G; and
(iii) G/B is divisible.
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Theorem 10.36 (Kulikov, 1945). Every torsion group G has a basic subgroup,
and so G is an extension of a direct sum of cyclic groups by a divisible group.

Proof. Let G = )’ G, be the primary decomposition of G. If G, has a basic
subgroup of B, then it is easy to see that ) B, is a basic subgroup of G. Thus,
we may assume that G is p-primary.

If G is divisible, then B = 0 is a basic subgroup. If G is not divisible, then it
contains a pure nonzero cyclic subgroup, by Lemma 10.34; that is, G does
have pure-independent subsets. Since both purity and independence are pre-
served by ascending unions (see Exercise 10.28(i)), Zorn’s lemma applies to
show that there is a maximal pure-independent subset X of G. But Lemmas
10.6 and 10.33 show that B = (X is a basic subgroup. Ei

The following theorem was proved by H. Priifer in 1923 for G countable;
the general case was proved by R. Baer in 1934,

Corollary 10.37 (Priifer—Baer). If G is a group of bounded order (i.e., nG =0
for some n > 0), then G is a direct sum of cyclic groups.

Remark. Were G nonabelian, we would say “G has finite exponent” instead
of “G is of bounded order.”

Proof. By Theorem 10.28, a bounded divisible group must be 0. Therefore, if
B is a basic subgroup of G, then G/B =0 and B = G.

Assume that G is a direct sum of p-primary cyclic groups. Let B, be the
direct sum of all those summands of order p”, if any, so that G = B; @
B, ®@---. When G is finite, we proved (in Chapter 6) that d, = dim p"G/p"*'G
is the number of cyclic summands of order > p"*!, so that the number of
cyclic summands of order precisely p"*! is just d, — d,.,. This formula
does not generalize to infinite groups because one cannot subtract infinite
cardinals.

If G is an infinite direct sum of p-primary cyclic groups, it is still true that
d, is the number of cyclic summands of order > p"*'. How can we distin-
guish those elements in p"G coming from cyclic summands of order p"*! from
those.cyclic summands of larger order? The elementary observation that a
cyclicsummand <{a) has order p"*! if and only if p"a has order p suggests that
we focus on elements of order p; that is, replace p"G by p"G n G[p].

Definition. If G is a p-primary group and n > 0, then
U{n, G} = dimz, (p"G n G[p])/(p""'G n G[p]).

Lemma 10.38. If G is a direct sum of p-primary cyclic groups, then U {n, G} is
the number of cyclic summands of order p"*'.
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Proof. Let B, be the direct sum of all those cyclic summands of order p”, if
any (in the given decomposition of G),so that G =B, @B, ® - ® B, @ *-;
let b, be the number of summands in B, (of course, b, may be 0). It is easy to
see that

Glpl=B,®pB, ®p°B; @ - ®p" 'B.®
and
p"G =p"B"+1®...@pan®...‘
Hence, for all n > 0,
pP"GNG[p]l=p"B,y; ®p""'B, s @,

and so
(p"G N Gp])/(p™'G A G[p]) = p"B,41-

Therefore, U {n, G} = dim(p"B,+,) = b,+1, as desired.

Theorem 10.39. If G and H are direct sums of p-primary cyclic groups, then
G = H if and only if U{n, G} = U{n, H} for alln > 0.

Proof. The numbers U {n, G} depend only on G and not upon the decomposi-
tion.

Theorem 10.40. Any two basic subgroups of a p-primary group G are
isomorphic.

Proof. Let B be a basic subgroup of G. The number b, of cyclic summands of
B of order p” is equal to the number of such summands of B/p"*'B, and so it
suffices to show that this latter quotient depends only on G.

We claim, for every n > 1, that G = B + p"G. If g € G, then divisibility of
G/B gives g + B = p"x + B for some x € G, so there is some b € B with g =
b + p"x € B + p"G. It follows that

G/pn-HG = (B + pn+1G)/pn+1G
=~ B/(Bnp"*'G)
= B/p"*'B, by purity.

Therefore, B/p"*! B is independent of the choice of B.
An example is given in Exercise 10.41 below showing that the divisible
quotient G/B, where B is a basic subgroup, is not determined by G.

Here is a condition forcing a pure subgroup to be a summand.

Corollary 10.41 (Priifer, 1923). A pure subgroup S of bounded order is a direct
summand.

Proof. Assume that S < G is pure and that nS =0 for some n > 0. Let
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v: G — G/(S + nG) be the natural map. The group G/(S + nG) is of bounded
order (it has exponent n) so that it is a direct sum of cyclic groups, by Corol-
lary 10.33. Write G/(S + nG) = ) ;<X;>, where X; has order r; for each i,
choose x; € G with v(x;) = X;. Now

TiXp = $; + ng;,
where s; € S and g; € G. But r; divides (the exponent) n, so that
s; = ri(x; — (n/r))gy).
Since S is pure, there is t; € S with s; = r;t;. Define
yi=Xx— 1,

Now v(y;) = X; and r;y; = ng;. Let K be the subgroup generated by nG and
all the y;; we shall show that G = S @ K.

@HSnK=0.

Letse SNnK;since se K, s = Y, m;y; + nh;since s € S, v(s) = 0. Thus, 0 =
Y m;%;, and independence gives m;X; = 0; hence, r; divides m; for all i. We
have chosen y; so that r;y; e nG, hence m;y; € nG. Therefore, s =Y m;y; +
nh € nG. Since S is pure, there is s’ € S with s = ns’ e nS = 0.

(i) S+K=G.

If g € G, then v(g) = Y I;X;. Since v(}.L;y;) = Y I;X;, we have g — Y L;y; €
kerv==S+nG; say, g— ) Ly;=s+nh Thus, g=s+@mh+) Ly)e
S+ K B

Corollary 10.42. If tG is of bounded order, then tG is a direct summand of G.
In particular, tG is a direct summand when it is finite.

Corollary 10.43. A4 torsion group G that is not divisible has a p-primary cyclic
direct summand ( for some prime p).

Proof Since G is not divisible, at least one of its primary components, say, G,,,
is not divisible. By Lemma 10.34, G, has a pure nonzero cyclic summand C
and C must be a summand of G, by the theorem. &

Corollary 10.44. An indecomposable group G is either torsion or torsion-free.

Proof. Assume that 0 < tG < G. Now G is not divisible, lest it be a summand
of G, so that Corollary 10.43 shows that G has a (cyclic) summand, contra-
dicting indecomposability.

Here are three lovely results (see Fuchs, Griffith, or Kaplansky for proofs).
All countable torsion groups are classified by Ulmn’s Theorem (1933).if G is a
p-primary group, there is a transfinite version of the numbers U {n, G} (the
Ulm invariants) with n varying over ordinal numbers, and two countable
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torsion groups are isomorphic if and only if their respective primary com-
ponents have the same Ulm invariants. (There are uncountable p-primary
groups having the same Ulm invariants which are not isomorphic; see Exer-
cise 10.39(ii) below.) A theorem of Prifer (1923) says that a countable p-
primary group G is a direct sum of cyclic groups if and only if ()2, p"G =0
(this is false for uncountable groups, as is shown in Exercise 10.39(iii) below).
Kulikov (1941) has characterized direct sums of cyclic groups, and one conse-
quence of his criterion is that every subgroup of a direct sum of cyclic groups
is another such.

EXERCISES
10.32. If G is torsion-free, then a subgroup S is pure if and only if G/S is torsion-free.

10.33. (i) Given an example of an intersection of two pure subgroups of a group G
not being pure (Hint: Take G = Z, @ Z3.)
(ii) Given an example in which the subgroup generated by two pure subgroups
is not pure. (Hint. Look within a free abelian group of rank 2.)

10.34. (i) If Gis torsion-free, then any intersection of pure subgroups is pure, and one
can define the pure subgroup generated by a subset X (as the intersection of
all the pure subgroups containing X).
(ii) Let G be torsion-free, and let x € G. Show that the pure subgroup gener-
ated by x is:
{g € G: mg e {x)}.

(We have rediscovered the subgroup H in the proof of Theorem 10.19.)
10.35. A pure subgroup of a divisible group is a direct summand.

10.36. (i) Show that an ascending union of pure subgroups is always pure.
(ii) Show that an ascending union of direct summands need not be a direct
summand. (Hint. Consider [[,.p Z,.)

10.37. (@) If G = ¢(J ], Z,), then G is an uncountable group with U{n, G} = 1 for
alln>0.
(ii) Show that Ulm’s theorem does not classify uncountable torsion groups.
(Hint. ([ Zpn) E Y 51 Z,n)

(iif) Prove that G = ¢(J[2.; Z,») is not a direct sum of cyclic groups.

10.38. Prove that a torsion group is indecomposable if and only if it is isomorphic to
a subgroup of Z(p*) for some prime p.

10.39. Show that [],Z, is not a direct sum of (possibly infinitely many) indecom-
posable groups.

10.40. (Kaplansky). In this exercise, G is an infinite group.
(i) If every proper subgroup of G is finite, then G =~ Z(p*) for some prime p.
(i) If G is isomorphic to every proper subgroup, then G =~ Z.
(iii) If G is isomorphic to every nonzero quotient, then G =~ Z(p®).
(iv) If every proper quotient is finite, then G = Z.
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1041. Let G = Y 2, <a,), where a, has order p**', and let B = (pa,, a, — pa,.,,
n > 1) < G. Show that B is a basic subgroup of G. As G is a basic subgroup of
itself, conclude that the quotient G/B, where B is basic in G, is not an invariant
of G.

Subgroups of Q

The notion of rank can be generalized from free abelian groups to arbitrary
torsion-free groups.

Theorem 18.45. If G is a torsion-free group, then any two maximal independent
sets in G have the same number of elements. If a maximal independent subset
of G has r elements, then G is an additive subgroup of an r-dimensional vector
space over Q.

Proof. Let X be a maximal independent subset of G. By Exercise 10.30, G can
be imbedded in a vector space W over Q; let V' be the subspace of W spanned
by G. If X spans V, then it is a basis of V; this will prove both statements in
the theorem, for then all maximal independent subsets of G will have dim V
elements.

If v € V, then there is a finite sum v = ) g;g;, where g;€ Q and g, € G; if b
is the product of the denominators of the g;, then bv e G. By Exercise 10.3,
maximality of X gives G/{X) torsion There is thus a nonzero integer m with
mbv € {X); that is, mbv is a Z-linear combination of elements in X, and so v
is a Q-linear combination of elements in X. &

Definitien. The rank of a torsion-free group G is the number of elements p(G)
in a maximal independent subsct. Define the rank p(G) of an arbitrary
abelian group G to be p(G/tG).

Theorem 10.45 shows that the rank is independent of the choice of maxi-
mal independent subset; when G is torsion-iree, it characterizes p(G) as the
(minimal) dimension of a vector space V over Q containing G. Thus, a tor-
sion-free group of finite rank is just a subgroup of a finite-dimensional vector
space over ; in particular, a torsion-free group of rank 1 is just a nonzero
subgroup of the additive group of rational numbers Q.

Here are three subgroups of Q.

A: all rationals having squarefree denominators;
B: all dyadic rationals; that is, all rationals of the form a/2*.
C: all rationals whose decimal expansion is finite.

No two of these groups are isomorphic. For example, 4 % B because B con-
tains a nonzero solution x to the system of equations 2*y, = x, while 4 does



332 10. Abelian Groups

not. One can also describe C as all rationals whose denominators are re-
stricted to be powers of 10, and the same reasoning shows that 4 % C and
B#C.

Definition. Let G be a torsion-free group and let x € G. If p is a prime, then
the p-height of x, denoted by h,(x), is the highest power of p dividing x in G:
more precisely, if p"g, = x is solvable in G for all n, then h,(x) = oo;if k is the
largest integer n for which p”g = x is solvable in G, then h,(x) = k.

Each nonzero x in a torsion-free group G determines its height sequence
h(x) = (hy(x), h3(x), ..., hy(x), ...), which is a sequence of nonnegative inte-
gers and the symbol co. For example, each of the groups Z, Q, 4, B, and C
contains x = 1; its height sequence in each group is:

zZ: (0,0,0,...)
Q: (o0, 00, 0,...);
A (1,1,1,...)

B: (00,0,0,0,...);and
C: (00,0,00,0,0,0,...).

Different elements in the same group G of rank 1 may have different height
sequences. For example, the height sequence of x = 168 = 23-3-7 in each of
the groups above is:

(3,1,0,1,0,0,...)

(00, 0, c0, 0,...);
(4,2,1,2,1,1,1, ...}
(00,1,0,1,0,0,0,...); and
C: (00,1,00,1,0,0,0,...).

@ o 0 N

We have been led to the following definitions.
Definition. A characteristic is a sequence of nonnegative integers and the
symbol co. Two characteristics are equivalent if:

(i) they have co in the same coordinates; and
(i) they differ in at most a finite number of (other) coordinates.

An equivalence class of characteristics is called a type.

Lemma 10.46. Let G be a torsion-free group of rank 1. If x, y € G are nonzero,
then their height sequences are equivalent.

Proof. If y = nx, where n = pf'...p/, then h,(x) = h,(y) for all primes p #
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P1>---»Ppand h,(y) = e; + h,(x)fori=1,...,t (we agree that oo + k = o).
Thus, the result is true in this case.

For the general case, note that if G is isomorphic to a subgroup of @, then
there are nonzero integers m and n with my = nx. Thus, the height sequences
of y, my = nx, and x are all equivalent. I

As a result of the lemma, one may define the type ©(G) of a torsion-free
group G of rank 1 as the equivalence class of the height sequence of any of its
nonzero elements.

Theorem 10.47. If G and G’ are torsion-free groﬂps of rank 1, then G =~ G' if
and only if ©(G) = 1(G").

Proof. If x € G and ¢: G — G’ is a homomorphism, then 4,(x) < h,(¢(x)) for
all primes p; if ™" exists, then /1,(p(x)) < h,(¢ ™" (¢(x))) = h,(x). Hence, if ¢
is an isomorphism and x € G, then x and ¢(x) have the same height sequence,
so that 1(G) = 1(G’).

For the converse, the hypothesis says that nonzero elements x € G and
x" € G’ have equivalent height sequences. Let P be the finite set of primes p
for which h,(x) < h,(x"), and let Q be the finite set of primes for which
hy(x) > hy(x’) (of course, P or Q may be empty). For pe P, define ¢, =
hy(x") — h,(x) (the definition of equivalence says that both h,(x) and h,(x')
are finite); for g e Q, define f, = h,(x) — h(x'). f m =[], .pp* and n =
[14c0 4%, then it is easy to see that mx and nx’ have the same height
sequence.

Let us now assume that both G and G’ are subgroups of @ containing
elements y and y’, respectively, having the same height sequence; let y = a/b
and y’ = a'/b’. The subgroup (b/a)G of Q is isomorphic to G, and the sub-
group (b'/a’jG’ is isomorphic to G. Replacing G by (b/a)G and G’ by (b'/a’)G,
we may assume that 1 lies in both G and G’ and that it has the same height
sequence in each group. But it is now an easy exercise that G = G'. @

There is an existence theorem complementing the uniqueness theorem just
proved.

Theorem 10.48. For every type 1, there exists a torsion-free group G of rank 1
with t1(Gy = t.

Proof. If (ky, ks, ..., k,, ...) is @ characteristic in 7, define G as the subgroup
of @ generated by all rationals of the form 1/p®, where e < k, if k,, is finite,
and e is any positive integer if k, = co. It is easy to see that the height
sequence of 1 € G is the given characteristic. [

Torsion-free groups of rank > 2 are not classified (though there do exist
several kinds of description of them). After L. Fuchs (1971) showed that there



334 10. Abelian Groups

are indecomposable groups of all ranks r, where r is smaller than the first
strongly inaccessible cardinal (should such exist), S. Shelah (1974) showed
that indecomposables of every rank r exist.

There are groups of infinite rank that are not direct sums of indecomposable
groups. Every group of finite rank is either indecomposable or a direct sum
of indecomposables; if all the summands have rank 1, then R. Baer (1937)
showed that the summands are unique to isomorphism; otherwise, the sum-
mands need not be unique; indeed, not even the ranks of the summands are
determined. B. Jonsson (1957) introduced the notion of quasi-isomorphism?:
two torsion-free groups of finite rank are quasi-isomorphic if each is iso-
morphic to a subgroup of the other having finite index. There is a corre-
sponding notion of indecomposable: a group is strongly indecomposable if it
is not quasi-isomorphic to a direct sum of two nonzero groups. He proved
that every torsion-free group of finite rank is quasi-isomorphic to a direct
sum of strongly indecomposable summands and that these summands are
unique in the sense of the Krull-Schmidt theorem.

Definition. If G is an abelian group, then its endomorphism ring End(G) is the
set of all endomorphisms of G with composition as multiplication and point-
wise addition (if ¢, Y € End(G), then ¢ + ¥: g @(g) + Y (9)).

There is a remarkable theorem of A.L.S. Corner (1963). Let R be a
countable ring whose additive group is torsion-free and reduced; then there
exists a countable group G, which is also torsion-free and reduced, with
End(G) = R. In the proof of the Krull-Schmidt theorem, we saw a close
connection between decompositions of a group and endomorphisms, and
one can thus use Corner’s theorem to produce strange examples of torsion-
free groups from pathological rings. For example, there are nonisomorphic
countable torsion-free groups, each isomorphic to a direct summand of the
other; there is a countable torsion-free group which has no indecomposable
direct summands.

EXERCISES

1042, If G is torsion-free of rank 1 and x e G is nonzero, then G/{x) is torsion.
Describe G/{x) in terms of the height sequence of x. (Hint. G/<{x) < Q/Z.)

10.43. If A and B are subgroups of @, show that there is an exact sequence 0 —
AnB>A®B—->A+B-0.

10.44. If G is a subring of Q, then G is also a torsion-free group of rank 1. Show that
the height sequence of 1 consists of 0’s and wo’s.

2 In his dissertation submitted in 1914 (which was not well known because of World War I),
F.W. Levi defined the characteristic of an element in a torsion-free group, classified the sub-
groups of Q, introduced quasi-isomorphism, and gave the first examples of torsion-free groups
having different direct sum decompositions into indecomposables.
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10.45. (i) Show that if ¢: Q — Q is a (group) homomorphism, then there exists g € Q
with ¢(x) = gx for all x e Q.
(ii) If G and G’ are subgroups of @ and if ¢: G — G’ is a homomorphism, then
there is g € Q with ¢(x) = gx for all x € G. (Hint. Use the injective property
of Q.)

10.46. If G is torsion-free of rank 1 and type z, prove that End(G) is a subring of Q
and find its type.

10.47. If R and S are subrings of Q, then R = § as rings if and only if R = § as abelian
groups (by definition, both R and § contain 1). Conclude that there are un-
countably many nonisomorphic subrings of Q.

10.48. Give an example of nonisomorphic torsion-free groups of rank 1 having iso-
morphic endomorphism rings.

10.49. Let A denote the dyadic rationals and let B denote the triadic rationals:
B={geQ: q=a/3* aeZandk > 0}.
Let G be the subgroup of Q @ Q generated by
{(a,0):ae A} u{(0,b:beB}u{} b}
Prove that G is an indecomposable group of rank 2.

10.50. (i) Use Theorem 10.45 to show that p(4) = dim(V), where V is a vector space
over Q of smallest dimension containing 4/tA.
(i) f 0> A4 - B— C— 0is an exact sequence of abelian groups, prove that
p(B) = p(4) + p(C).

Character Groups

In Chapter 1, we raised the twin questions of describing groups and of de-
scribing homomorphisms, and we now focus on the latter.

Definition. Let o/ denote the class of all abelian groups. A function T: & — &
is a covariant (additive) functor if, for every homomorphism ¢: A — B, there
is a homomorphism T(¢p): T(A) — T(B) such that:

(@) T(ly) = Lreays
(ii) if 0: B — C, then T(6¢) = T(0)T(e); and
@ii) ify: A - B, then T(p + ¥) = T(p) + TW).

ExaMPLE 10.12. If G and 4 are abelian groups, then

Hom(G, 4) = {homomorphisms ¢: G — A},

Hom(G, A) is an abelian group under pointwise addition: if ¢, ¥ € Hom(G, A),
then ¢ + ¥: g— @(g) + ¥(9). If A = G, then Hom(G, G) is just the additive
group of the endomorphism ring End(G).)
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If G is a fixed group, define T: &/ — &/ by
T(A) = Hom(G, A);

if ¢: A— B, define T(¢): Hom(G, A) > Hom(G, B) by o> ¢@a, where o e
Hom(G, A). The reader should verify that T is a covariant functor.

ExampLE 10.13. The identity functor J: of — </, defined by J(4) = A and
J(o) = @, is a covariant functor.

ExampLE 10.14. The torsion subgroup defines a covariant functor t: of — 7.
Define t(4) to be the torsion subgroup tA4, and if ¢: A — B, then define
t(g) = pltA.

In a similar way, the maximal divisible subgroup defines a covariant
functor d: & — .

Definition. A function S: & — <7 is a contravariant (additive) functor if, for
every homomorphism ¢: A — B, there is a homomorphism S(¢): S(B) — S(4)
such that:

(1) S(Ly) = sy
(ii) if 8: B — C, then S(8¢p) = S(p)S(0); and
(iil) if : 4 — B, then S(p + ¥) = S(@) + S(Y).

Note that contravariant functors reverse the direction of arrows.

ExampLE 10.15. If G is a fixed group, define S: o7 —» &7 by
S(A4) = Hom(4, G);

if ¢: A— B, define S(p): Hom(B, G) » Hom(4, G) by fir—> B¢, where f €
Hom(B, G). The reader can verify that S is a contravariant functor.

To see how functors behave, one must recast definitions in a form recog-
nizable by them. For example, instead of saying that an isomorphism is a
homomorphism ¢: A — B that is an injection and a surjection, one should
say instead that it is a homomorphism for which there exists §: B— A such
that

0p=1, and 08 = 15.

We can now see that if ¢ is an isomorphism and T is a functor (contra or co),
then T'(¢) is also an isomorphism: just apply T to the pair of equations above.

Definition. A covariant functor T is left exact if exactness of (x): 0 > 4 >
Btc implies exactness of
0 T(4) 22 1(B) 28 T(C);

a contravariant functor S is left exact if exactness of (+*): 4 > B Lcoo
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implies exactness of
0 S(C) =25 5(B) =2 S(4),

There are also right exact functors in Homological Algebra.

Theorem 10.49. If G is a group, then S = Hom( , G) and T = Hom(G, ) are
left exact functors.

Proof. We shall prove that S is left exact; the reader may prove that T is left
exact. -
‘We must show exactness of
0 - Hom(C, G) 22 Hom(B, 6) 2% Hom(4, G);
that is, we must show that S(B) is injective, im S(f) < ker S(z), and
ker S{x) < im S(B).

(i) ker S(B) =0.

If f: C > Gand S(B)f = fB = 0, then f annihilates im f; as 8 is surjective,
imp=Cand f=0.

(i) im S(B) < ker S().

If f: C - G, then S(«)S(B)f = fBa = 0 because fo = 0.

(iii) ker S(a) < im S(B).

Suppose that g: B— G and S(«) = ga = 0, so that g annihilates im a. De-
fine g,.: C - G by g,(c) = g(b), where B(b) = ¢ (B is surjective). Now g, is
well defined: if f(b’) = ¢, then b — b’ e ker f = im «; that is, b — b’ = aa, and
so g(b —b’) = gafa) = 0. But S(f)g, =g.8 =g, for if be B and B(b) =,
then g,B(b) = g,4(c) = g(b).

Here is the answer to the question when “— 0” occurs at the right end of
the functored sequence.

Theorem 18.50. A group G is free abelian if and only if, for every exact se-
quence 0 > A > B Lco 0, there is an exact sequence

0 — Hom(G, A) ~= Hom(G, B) -~ Hom(G, C) - 0.
Proof. Assume that G is free abelian. To prove that T(p) is surjective, we

must show that if g € Hom(G, C), there is f € Hom(G, B) with T(B)f = g;
that is, ff = g. Let us draw a diagram.

LG
/
s/
S 7 g
/s
7/
'd
B C 0
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The projective property of G (Theorem 10.15) gives the existence of f (indeed,
this is how the projective property was born).

Conversely, a similar argument shows that a group G for which T(f)
is always surjective must have the projective property. But Exercise 10.10
shows that such a group must be free abelian,

Theorem 10.51. A group G is divisible if and only if, for every exact sequence
0 A5 B4 Co0, there is an exact sequence

0 — Hom(C, G) 2 Hom(B, G) 2 Hom(A4, G) - 0.
Proof. Use the injective property and Exercise 10.22.

Theorem 10.52. Given a group G and a family of groups {A;: j € J}, then

Hom (Z A;, G> ~ jEI_IJ Hom(4;, G).

jelJ

Proof. For each j,eJ, let i S5 jesA; be the inclusion. Define
6: Hom(}’ 4;, G)— [ 1 Hom(4;, G) by f + (fi)). Define a map  in the reverse
direction by (f;)~ f, where f is the unique map ) 4; — G for which fi; =
f; for all j (Theorem 10.10). The reader may check that 6 and y are
inverses.

If the index set J is finite, then the functor Hom( , G) sends the finite direct
sum y7_, A; into the direct sum )}, 4; Hom(4;, G); that s,

Hom ( Y A, G) ~ Y Hom(4,, G).
=1 j=1
Theorem 10.53. Given a group G and a family of groups {A;: j € J}, then

Hom <G, 11 Aj> ~ [] Hom(G, 4).
jeJ Jjed

Proof. For each j,€J, let p;: []A;— A; be the projection onto the jyth

coordinate. An argument similar to that of Theorem 10.52, using Theorem

10.11, shows that the map 6: Hom(G, [ [ 4;)— [ Hom(G, 4;), defined by

S+ (p;f),1s an isomorphism.

If the index set J is finite, then the functor Hom(G, ) sends the (finite) direct
sum ) 7, A; into the direction sum Y ", Hom(G, 4)); that is,

Hom (G, 3 A,) ~ 3 Hom(G, 4,
j=1 Jj=1

If m is an integer and A is a group, let m,: A > A be multiplication by m;
that is, m,: ar>ma. Note that m, = 1, + --- + 1, (m addends) if m > 0.



Character Groups 339

Theorem 10.54. If me Z and my: A— A is multiplication by m, then
T(m,): T(A) > T(A) is also multiplication by m.
Proof. By Exercise 10.51 below, the result is true when m = 0. If m > 0, then
Timy) =T+ + 1)
= (L) + -+ T(L,)
= Iy + 7+ I
= M4y
The reader may easily see that T(—~1,) = — 174, so that the result is true for

allme Z.

ExampLE 10.16. For every group G, Hom(G, Q) is torsion-free divisible, and
hence it is a vector space over Q.

By Exercise 10.31, H = Hom(G, Q) is torsion-free divisible if and only if
my is an automorphism for all m # 0. Thus, the result follows from Theorem
10.54.

The same argument shows that Hom(Q, G) is also a vector space over Q.

ExawmpLE 10.17. Hom(Z, G) = G for every group G.
It is easy to see that f+ f(1) is an isomorphism.

ExampLE 10.18. For every group G,

Hom(Z,, G) =~ G[r] = {ge G:ng = 0}.

Apply the (contravariant) functor S = Hom( , G) to the exact sequence
0-27Z2%2Z— 7,0, where the first map is multiplication by n, to obtain the
exact sequence

0 — Hom(Z,, G) » Hom(Z, G) - Hom(Z, G).
Thus Hom(Z,,, G) = ker S(n). But there is a commutative diagram
Hom(Z, ) —~ Hom(Z, G)

o

¢ — 6

where the downward arrows are the isomorphisms of Example 10.17. It fol-
lows easily that ker S(n) = ker n = G[n].
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Definition. If G is a group, its character group G* is
G* = Hom(G, Q/Z).

The next lemma shows, when G is finite, that this definition coincides with
our earlier definition of character group in Chapter 7.

Lemma 10.55. If G is finite, then G* ~ Hom(G, C*).

Proof. By Exercise 10.28(ii), the torsion subgroup #(C*) =~ Q/Z. Therefore,
C* =~ (Q/Z) ® D, where D is torsion-free divisible. Hence, Hom(G, C*) =
Hom(G, Q/Z) ® Hom(G, D) = Hom(G, Q/Z), for Hom(G, D) = 0 because G
is finite. @

Remark. There is another common definition of character group: G =
Hom(G, T). Since T = C*, by Exercise 10.28(i), we see that G =~ G*. The
character groups G arise in Pontrjagin duality, where G is assumed to be a
locally compact abelian topological group and G is the group of all continu-
ous homomorphisms (when G is a discrete group, then every homomorphism
is continuous).

The following properties of character groups were used in our discussion
of the Schur multiplier in Chapter 7.

Theorem 10.56. If G is finite, then G =~ G*.

Proof. If G = Z,, then Example 10.18 gives G* =~ (Q/Z)[n] = Z, (Exercise
10.21(ii)), as desired. By the basis theorem, G = Y C,, where C; is finite cyclic,
so that Theorem 1052 gives G* = (C)* =Y C;=G. ®

Let us now solve Exercise 6.13.

Theorem 10.57. If G is a finite abelian group and S < G, then G contains a
subgroup isomorphic to G/S.

Proof. There is an exact sequence 0 —» S —» G — G/S — 0. Since Q/Z is divisi-
ble, Theorem 10.51 gives an exact sequence
0-(G/S)* > G* > §* > 0.
Hence G/S = (G/S)* is isomorphic to a subgroup of G* = G. H
Theorem 10.58. Let G be an abelian group, let a € G, and let S be a subgroup

of G with a¢ S. If D is a divisible group with Q/Z < D, then there exists
@: G — D with ¢(S) = 0 and ¢(a) # 0.

Remark. The important cases are D = @Q/Zand D =T~ C*.
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Proof. If [a] = a + S € G/S, then there is a homomorphism : {[a]> = D
with y([a]) # 0: if [a] has finite order n, define y([a]) = I/n + Z € Q/Z < D;
if [a] has infinite order, define ¥/([a]) = 1 + Z. By the injective property of D,
¥ extends to a homomorphism ¥: G/S — D. If ¢: G — D is defined to be ¥v,
where v: G — G/S is the natural map, then ¢(S) =0 and ¢(a) = ¥([a]) #
0. &

If G is finite, then we know that G ~ G* =~ (G*)*; let us denote the latter
group, the “double dual,” by G**. We now exhibit a specific isomorphism.

Definition. Let G be a group. For each x e G, define a homomorphism
E. . G*—>Q/Z by E.¢)= op(x);, thus, E ,eG**. The evaluation map
E: G— G** is defined by x— E,.

Theorem 10.59. For every group G, the evaluation map E: G — G** is an injec-
tion; if G is finite, then E is an isomorphism.

Proof. If x € ker E, then E_(¢) = ¢(x) = 0 for all ¢ € G*; by Theorem 10.58,
x = 0, and so E is an injection. If G is finite, then G** =~ G, by Theorem 10.56,
so that [G**| = |G| and E is an isomorphism. M

EXERCISES

10.51. Show that if T is an (additive) functor, then T(0) = 0, where 0O denotes either
the trivial group O or the (constant) map which sends every element into 0.

10.52. Prove that Hom(A4, B) = 0 in the following cases:
(i) A is torsion and B is torsion-free;
(i) A is divisible and B is reduced;
(i) A is p-primary and B is g-primary, where p % q.

10.53. (i) Show that 4 is reduced if and only if Hom(Q, 4) = 0.
(i) Use Theorem 10.50 to show thatif 0 - 4 - B— C — O is exact and 4 and
C are reduced, then B is reduced.

10.54. If G is finite and S < G, define
St={feG* f(ss=0forallseS}.

(i) Show that S* is a subgroup of G* and that §* = (G/S)*.

(ii) If G is a finite group of order n and if k is a divisor of n, then G has the same
number of subgroups of order n as of index n. (Hint: The function $+> $*
is a bijection.)

10.55. Here are examples related to Theorems 10.52 and 10.53. Let P denote the set
of all primes.
(i) Prove that Hom(][] pep Ly, Q) # 0. Conclude that Hom([] Z,, Q) is iso-
morphic to neither ), Hom(Z,, Q) nor [ Hom(Z,, Q).
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10.56.

10.57.

10. Abelian Groups

() If G=Y,.pZ, then Hom(G,} ,.pZ,) and Y Hom(G,Z,) are not
isomorphic.
(iii) Hom(Z, ¥ ,.5Z,) and [ Hom(Z, Z,,) are not isomorphic.
Let f: A— B be a homomorphism. Show that f*: B* — 4* is a surjection
(where A* = Hom(4, Q/Z) and f*: ¢+ @f for every ¢ € B*) if and only if f is
an injection; show that f*: B* — A* is an injection if and only if f is a sur-
jection. Conclude that f* is an isomorphism if and only if f is an isomorphism.

Consider the commutative diagram of not necessarily abelian groups in which
the rows are exact sequences (thus, the kernels are assumed to be normal
U

¢l llq

subgroups):
K
ﬂl
’

]—— L c L,V —Q—— 1

] —— 5 —V>Q—>1

Show that if f is an isomorphism, then « is an isomorphism.



CHAPTER 11

Free Groups and Free Products

Generators and Relations

The notion of generators and relations can be extended from abelian groups
to arbitrary groups once we have a nonabelian analogue of free abelian
groups. We use the property appearing in Theorem 10.11 as our starting
point.

-Definition. If X is a subset of a group F, then F is a free group with basis X
if, for every group G and every function f: X — G, there exists a unique
homomorphism ¢: F - G extending f

N
N
N e
N
N
N

We shall see later that X must generate F.

Observe that a basis in a free group behaves precisely as does a basis
B = {v,,..., v,} of a finite-dimensional vector space V. The theorem of linear
algebra showing that matrices correspond to linear transformations rests on
the fact that if W is any vector space and w,, ..., w,, € W, then there exists a
unique linear transformation T: V — W with T(v;) = w; for all i.

The following construction will be used in proving that free groups exist.
Let X be a set and let X! be a set, disjoint from X, for which there is a
bijection X — X!, which we denote by x—x!. Let X’ be a singleton set
disjoint from X U X! whose only element is denoted by 1. If x € X, then x!
may denote x and x° may denote 1.
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Definition. A word on X is a sequence w=(a;,d,,...), Where
a;e X U X7 U {1} for all {, such that all a; = 1 from some point on; that is,
there is an integer n > 0 with @; = 1 for all i > n. In particular, the constant
sequence )

(1,1,1,...)

is a word, called the empty word, and it is also denoted by 1.

Since words contain only a finite number of letters before they become
constant, we use the more suggestive notation for nonempty words:

w=Xx3x32... X0,

where x; € X, ¢; = +1, —1,0r0,and ¢, = + 1. Observe that this spelling of a
word is unique: two sequences (a;) and (b;) are equal if and only if a; = b, for
all i. The length of the empty word is defined to be O; the length of w =
x51x%. .. x2 is defined to be n.

Definition. If w = x§'...x% is a word, then its inverse is the word w™! =

DI

Definition. A word w on X is reduced if either w is empty or w = x§1x5... x%,
where all x; € X, allg; = +1, and x and x™! are never adjacent.

The empty word is reduced, and the inverse of a reduced word is reduced.

Definition. A subword of w = x{*x%... x/~ is either the empty word or a word
of the form v = xf*... x/, where 1 <i<j<n

- Thus, v is a subword of w if there are (possibly empty) subwords w’ and w”
with w = w'ow”. A nonempty word w is reduced if and only if it contains no
subwords of the form x°x~¢ or x°.

There is a multiplication of words: if w = x$1x% ... xZ and u =y y32... yom,
then wu = x5'x%...x:ydys2. .. yo= This multiplication does not define a
product on the set of all reduced words on X because wu need not be reduced
{even when both w and u are). One can define a new multiplication of reduced
words w and u as the reduced word obtained from wu after cancellations.
More precisely, there is a (possibly empty) subword v of w with w =w'v
such that v™! is a subword of u with u = v™*u” and such that w’u" is reduced. -
Define a product of reduced words, called juxtaposition, by

wu =w'u’,
Theorem 11.1. Given a set X, there exists a free group F with basis X.

Proof. Let F be the set of all the reduced words on X. One can show that F
is a group under juxtaposition, but verifying associativity involves tedious
case analyses. Instead, we use the van der Waerden trick (1945).
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For each x € X, consider the functions |x|: F — F and [x}|: F — F, defined
as follows: for e = +1,
xtxpxf.ooxi if x® £ x7h,

n

€ £1 B £n)
|x |(x1xx22..‘x,.") = {x?”‘x:ﬁ if xt= x-l-z‘.

Since |x?| o [x7?| and |x7¢| o [x?| are both equal to the identity 1z: F — F, it
follows that |x?| is a permutation of F with inverse |x7¢|. Let Sy be the sym-
metric group on F, and let & be the subgroup of Sy generated by [X] =
{lx|: x € X}. We claim that & is a free group with basis [ X]. Note that there
is a bijection {: [X] — X, namely, |x|+> x.

An arbitrary element g € & (other than the identity) has a factorization

() g=Ilxilolxglo-olxr

where ¢; = +1 and |x?| and |x"¢| are never adjacent (or we can cancel). Such
a factorization of g is unique, for g(1) = x§*x%...x:», and we have already
noted that the spelling of a (reduced) word is unique.

To see that & is free with basis [X], assume that G is a group and that
. f:[X]~- G is a function. Since the factorization (*) is unique, the function
@: F - G, given by ¢(|x{*| o [x32| o -~ o [xp[) = f(IXTNS(1x2])... f(Ix37]), is
well defined and extends f. Since [ X] generates &, it suffices to show that ¢
is a homomorphism, for uniqueness of ¢ would then follow from the fact that
two homomorphisms agreeing on a generating set must be equal.

Let w and u be reduced words on [X]. It is obvious that p(wou) =
o(w)@(u) whenever the word wu (obtained from w o u by deleting vertical
‘bars) is reduced. Write w=w'ov and u=v"'ou”, as in the defini-
tion of juxtaposition. Now o(w) = @(w)e() and @)= o )oW") =
o) 1 p(u”) (because w’' o v and v™* o u” are reduced). Therefore, p(w)o(u) =
oW o) e’ )=pw )eu"). On the other hand, p(w o u)=¢p(w’ o u”)
= p(w')eu") (because w’' o u” is reduced), and so ¢ is a homomorphism.

We have shown that & is a free group with basis [X]. Since {: # — F,
defined by [x§| o |x%| 0 -+~ o |xZ| > x{1x52. .. X", is a bijection with LX) =
{([IX]) = X, Exercise 1.44 shows that we may regard F as a group isomor-
phic to &; thus, F is a free group with basis X (moreover, X generates F
because [ X] generates #). H

Corollary 11.2. Every group G is a quotient ofa free group.

Proof. Construct aset X = {x,: g € G} so that f: x,+— g is a bijection X — G.
If F is free with basis X, then there is a homomorphism ¢: F — G extending
f, and ¢ is a surjection because f is. Therefore, G = F/ker ¢. B

Definition. Let X be a set and let A be a family of words on X. A group G has
generators X and relations A if G ~ F/R, where F is the free group with basis
X and R is the normal subgroup of F generated by A. The ordered pair (X|A)
is called a presentation of G.
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A relation® r € A is often written as r = 1 to convey its significance in the
quotient group G being presented.

There are two reasons forcing us to define R as the normal subgroup of F
generated by A:if r€ A and w € F, then » = 1 in G implies wrw™ = 11in G;
we wish to form a quotient group.

ExaMpLE 11.1. G = Z has generator x and relation x° = 1.

A free group F = {(x) on one generator is infinite cyclic, and {x)>/{x°) ~
Zs. A presentation of G is (x|x®).

ExaMpLE 11.2. Another presentation of G = Z; is

Zs=(x,y|x*=1,y> =1, xyx"tyt = 1).

When we described a presentation of Z, as an abelian group in Example
10.2 (i.e,, when we viewed Zg as a quotient of a free abelian group), the only
relations were x> and y®. Now we must also have the commutator as a
relation to force the images of x and y to commute in F/R.

ExampiE 11.3. The dihedral group D,, has a presentation

Dy, =(x,ylx"=1,y* =1, yxy = x71).

It is acceptable to write a relation as yxy = x~! instead of xyxy = 1. In
particular, compare the presentation of Dy with that of Z, in Example 11.2.

We have passed over a point needing more discussion. By definition, D,,, is
a group of order 2n having generators S and T satisfying the given relations.
If G = F/R, where F is the free group with basis {x, y} and R is the normal
subgroup generated by {x", y”, xyxy}, does G have order 2n? We have seen
various concrete versions of D,,; for example, Theorem 3.31 displays it as the
symmetry group of a regular n-gon. The definition of free group gives a
surjective homomorphism ¢: F — D,, with ¢(x) = S and ¢(y) = T. More-
over, R < ker ¢, because S and T satisfy the relations, so that the third
isomorphism theorem gives a surjection F/R — F/ker ¢; that is, there is a
surjection®* G = F/R — D,,. Hence, |G| = 2n. The reverse inequality also

! Many authors use the words “relation” and “relator” interchangeably.

2 W. von Dyck (1882) invented free groups and used them to give the first precise definition of
presentations. The version of the third isomorphism theorem used here is often called von Dyck’s
Theorem: Let G have a presentation )

G =(x;, ...,x,,lrj(xl, v Xp), jEd)

so that G = F/R, where F is the free group with basis {x,, ..., x,} and R is the normal subgroup
generated by the r;. If H is a group with H = (yy, ..., y,> and if 5(y;, ..., y,) = 1 for all j, then
there is a surjective homomorphism G — H with x; y; for all i.
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holds, for each element in G has a factorization xy/R with 0 <i < n and
0 <j < 2. Thus, |G| = 2n, and we are now entitled to write G = D,,.

A description of a group by generators and relations is flawed in that the
order of the presented group is difficult to determine. This is not a minor
difficulty, for we shall see in the next chapter that it is even an unsolvable
problem (in the logicians’ precise sense) to determine, from an arbitrary
presentation, the order of the presented group. Indeed, it is an unsolvable
problem to determine whether a presentation defines a group of order 1. The
reader should also see the next section on coset enumeration.

Let us continue the list of examples.

ExaMPLE 11.4. The group of quaternions has presentations
Q=(abla*=1,b>=a* bab™ ' =a™!)
and
Q = (x, ylxyx = y, x* = y?).

In each case, an argument is needed to show that the presented group has
order 8.
ExaMpLE 11.5. Given positive integers [, m, and », define
P(l,m,n) = (s, t|s' = t™ = (st)" = 1).

Example 11.3 shows that P(n, 2, 2) = D,, and, using Exercise 3.52, one can
show that P(2, 3,3) > 4,, P(2,3,4) = S,, and P(2, 3, 5) =@ A;. These groups
are called polyhedral groups, and they are finite only in the cases just listed
(see Coxeter—Moser).

ExampLE 11.6. The draid group B, has the presentation
015> Opllo, 0] = Lifj # i £ 1, 6;0;410; = 0;410;0144)

Braid groups were introduced by E. Artin (1925) and are related to knot
theory.

ExaMPLE 11.7. A free abelian group G with basis X has presentation
G=X|xyxty ' =1forall x, y e X);
a free group F with basis X has presentation
F = (X|).

Having proved that free groups exist, let us now consider their uniqueness;
that is, when are two free groups isomorphic.

Lemma 11.3. If F is a free group with basis X, then F/F' is a free abelian group
with basis X, = {xF": x € X}.
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Proof. Assume that A is an abelian group and that f: X, — A is a function.
Define fu: X — A4 by x+— f(xF’). Since F is free with basis X, there is a
homomorphism ¢: F — A extending f,. But F’ < ker ¢, because 4 is abelian,
so that there is a homomorphism @: F/F' — A, defined by wF'+— o(w),
extending f.

We claim that the extension @ is unique. Suppose that 6: F/F' — A and
O8(xF') = f(xF'). If v: F— F/F' is the natural map, then Ov:F - 4 is a
homomorphism with 8v(x) = (xF’') = f(xF') = ¢(x) for all x € X. Since X is
a basis of F, Ov = ¢ = @v; since v is surjective, = @. Therefore, F/F’ is free
abelian with basis X,. @

Theorem 11.4. Let F and G be free groups with bases X and Y, respectively.
Then F = G if and only if | X| = |Y].

Proof. If ¢: F — G is an isomorphism, then F/F’' =~ G/G'. By the lemma, F/F’
is free abelian with basis X, = {xF': x € X}. As | X,| = | X]|, it follows that
| X| = rank(F/F’). Similarly, | Y| = rank(G/G’), and so | X | = | Y|, by Theorem
10.14.

If | X| = | Y], there is a bijection f: X — Y which, upon composing with the
inclusion Y <> G, may be regarded as a function X — G. Since F is free with
basis X, there is a unique homomorphism ¢: F — G extending f. Similarly,
there is a unique homomorphism y: G — F extending f ~!: Y — X. The com-
posite Y@: F — F is a homomorphism which fixes X pointwise; that is, y¢
extends the inclusion function 1: X <» F. But the identity 1 -also extends i,
and so uniqueness of extension gives Yy ¢ = 1. Similarly, ¢y = 14, so that
@: F - G is an isomorphism.

Definition. The rank of a free group F is the number of elements in a basis
of F.

Theorem 11.4 says that rank(F) does not depend on the choice of basis
of F.

Corollary 11.5. If F is free with basis X, then F is generated by X.

Proof. Choose a set Y with |Y| =|X]| and a bijection f: Y — X. The free
group G with basis Y constructed in Theorem 11.1 (as the set of all reduced
words on Y) is generated by Y. As in the proof of Theorem 114, the
homomorphism : G — F extending f is an isomorphism, so that G = {Y)

implies F = (Y(Y)) =<f(1)> =<(X). B

Theorem 11.6 (Projective Property). Let 5: B— C be a surjective homomor-
phism. If F is free and if a: F — C is a homomorphism, then there exists a
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homomorphism y: F — B making the diagram below commute (i.e., By = a):.

F
Ve
7
Y 7/ a
7/
7/
I'e

Proof. The proof is identical to that given for free abelian groups in Theorem
10.15. =

We shall see in Exercise 11.46 below that the converse of Theorem 11.6 is
also true: a group G is free if and only if it has the projective property.

Semigroup Interlude

We are now going to construct free semigroups; the formal definition is no
surprise.

Definition. If X is a subset of a semigroup Z, then ¥ is a free semigroup with
basis X if, for every semigroup S and every function f: X — S, there exists a
unique homomorphism ¢: X — § extending f.

X — S
Definition. A word w on X is pesitive if either w = 1 or w = x{'x%...x5",
where all exponents ¢; > 0.

The set £ of all positive words on X is a free semigroup with basis X (the
product of positive words is positive and, with no cancellation possible, it is
easy to prove that multiplication is associative). It follows that every semi-
group is a homomorphic image of a free semigroup. Before defining presenta-
tions of semigroups, however, we first define quotients.

Definition. A congruence on a semigroup § is an equivalence relation = on S
such that
a=a and b=b' imply ab=a'b'.

_If = is a congruence on a semigroup S, then the quotient semigroup is the
set of all equivalence classes, denoted by S/=, with the operation

[a][b] = [ab],
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where [a] denotes the equivalence class of a € S (this operation is well defined
because = is a congruence).

There are two general constructions of congruences. The first arises from a
homomorphism ¢: S — T of semigroups; define a = b if ¢(a) = ¢(b). This
congruence is called ker g, and it is straightforward to prove the first isomor-
phism theorem:

S/ker ¢ ~im ¢

(if § and T are groups and K = {s € S: ¢(s) = 1}, then ker ¢ is the equiva-
lence relation on S whose equivalence classes are the cosets of K). Here is a
second construction. As any relation on S, a congruence is a subset of § x S.
It is easy to see that any intersection of congruences is itself a congruence.
Since S x S is a congruence, one may thus define the congruence generated
by any subset E of S x § as the intersection of all the congruences containing
E. If X is the free semigroup with basis X and if {w, = u;: i € I} is a family of
equations, where w;, u; € Z, then define = to be the congruence generated by
{w, w;:i eI} =« = x Z. The quotient semigroup X/= is said to have the
presentation :
(X|w; =y, foralliel).

EXERCISES
11.1. Use presentations to prove the existence of the nonabelian groups of order p*,
where p is prime. (See Exercise 4.32.) B
11.2. Prove that a free group of rank > 2 is a centerless torsion-f'ree group.
11.3. Prove that the group G = (x, y|x™, y") is infinite when m, n > 2.
114 (Baer). Prove that a group E has the injective property if and only if E = 1.

(Hint. D.L. Johnson). Let A be free with basis {x, y} and let B be the semidirect
product B = 4 % {z), where z is an involution acting by zxz = y and zyz = x.)

11.5. Let X be the disjoint union X = YU Z. If F is free with basis X and N is the
normal subgroup generated by Y, then F/N is free with basis {zN:z € Z}.

11.6. Show that a free group F of rank > 2 has an automorphism ¢ with ¢(@(w)) =
w for all w € F and with no fixed points (¢(w) = w implies w = 1). (Compare
Exercise 1.50.)

11.7. If H < G and G/H is free, then G is a semidirect product of H by G/H. (Hint.
Corollary 10.16 and Lemma 7.20.)

11.8. Let G be a group, let {t;;iel} =G, and let S=(t;:iel) < G. If there is a
homomorphism ¢: G — F (where F is the free group with basis X = {x;:i e I})
with @(¢;) = x; for all i, then S is a free group with basis {¢;: i € I}.

11.9. The binary tetrahedral group B is the group having the presentation

B=(r,s t|lr* =35> =t =rst).
(i) Prove that rst € Z(B) and that B/{rst) =~ A, (the tetrahedral group).

(ii) Prove that B has order 24.
(iii) Prove that B has no subgroup of order 12.
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11.10. The dicyclic group DC, is the group having the presentation
DC, =(r, s, t|lr? = s* = t" = rst).
(i) Ifn =2""2 then DC, = Q,,, the generalized quaternion group (see Exercise

4.40).
(i) Show that DC, has order 4n.

11.11. Show that (6,0;...6,)"*! € Z(B,,), where B,, is the braid group (see Example
11.6). It is known that Z(B,) is the infinite cyclic group generated by this
element.

11.12. (i) Show that a free semigroup with a basis having at least two elements is not
commutative.
(ii) Show that a subsemigroup of a free semigroup need not be free. (Hint. Find
an appropriate subsemigroup of the multiplicative semigroup of positive
integers.)

Coset Enumeration

The method of coset enumeration, distilled by Todd and Coxeter (1936) from
earlier particular cases, is a mechanical way to find the order of a given group
from a presentation. It does not always work (nor can any such algorithm
always work, as we shall see in the next chapter), but it does work whenever
the presented group is finite. The method rests on the following elementary
lemma.

Lemma 11.7. Let G be a finite group, X a set of generators of G,H < G
a subgroup, and Hw,, ..., Hw, some distinct cosets of H. If \Ji-y Hw; is
closed under right multiplication by every ae X U X', then G = | Ji=, Hw,,
[G:H] =n,and |G| = n|H|.

Prooj. If Y is any nonempty subset of G with Ya< Y for allae X u X7},
then Y = G (because X generates G and w e Y for every word w on X). In
particular, G = (J., Hw;, so that every coset of H must appear as Hw; for
some i; thatis, [G: H] = n.

We illustrate the method in a specific case before describing it in general.
Let G be the group having the presentation

G=_(stls®=1t2=1,1tst = s?).
Write each of the relations as a word with all exponents + 1:
§SS; tt; tsts™is7L

For each of these relation words, begin making a relation table by putting a
vertical line under each of its letters.

s s S t t t s t s
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If a word has [ letters, there are thus / vertical lines. We regard these lines as
being the dividing lines forming ! + 1 columns, and we now proceed to create
rows. In each of the three tables, put 1 at the beginning and at the end of the
first row. Draw row 2 (in each table), beginning and ending with 2, and put 2
next to 1 in the first table.

s s S t t t s t s
112 1 1 1 1 1
2 2 2 2 2 2

Build an auxiliary table containing entries

s 5!

1/2 and 2}1.
Now scan each of the tables to see whether there are any empty squares of
either of the two forms

s st

] e [T

in either case, fill the empty square with 2, obtaining

s s s t ot t s t sttt
112 1 1 1. 1 1271
2 2 2 2 2 2

Having filled all such squares, now draw row 3 (in each table), beginning and
ending with 3, and put 3 in the first available square in the first table (next
to 2).

s s s t ot t s .t sttt
112311 1 1 1 211
2 2 2 2 2 2
3 3 3 3 3 3

The auxiliary table receives new entries

s st
213 and 3)2
and, because the first row of table one has been completed, there are bonus
entries: the auxiliary table also receives

s st

311 and 1}3.
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Now fill more squares using the (enlarged) auxiliary table to obtain

s s s t ot t s t sttt
11213]1 1 1 1 31211
2131112 2 2 2 11342
3111213 3 3 3 21113

The first table is complete, but we will continue until all the relation tables
are complete (if possible). The next step draws row 4 (in all three tables) with
4 in the first row of the second table, yielding auxiliary table entries

t t!
1/4 and 4|1

as well as bonus entries

t t!
4|1 and 1] 4

Fill in more square using the auxiliary table and obtain

s s s t ot t s t sttt
11213]1 11411 114 31211
2131112 2 2 2 411)3)2
31141213 3 3 3 2113
4 4 414 4|12 4

Continue adding rows 5 and 6, filling in squares using all the entries in the
auxiliary table.

s s s t ot t s t sttt
12131 1|41 114]5]3]2]1
213112 21612 21614132
3111213 31503 305162113
415 4 414 4l1]|2{6|5]|4
5 415 50315 5131114 5
6 6 61216 6123|5416

When we try.to add row 7, a new feature appears. In row 4 of the first table,
‘the new 7 after 5 gives the auxiliary table entry

S
5|7
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but the auxiliary table already contains
s
5]6.

This is an instance of coset collapse; delete row 7 and replace all other occur-
rences of 7 by the smaller number 6, including the entries in the auxiliary
table. Continuing this procedure ultimately leads to the completed tables

s s s t ot t s t sttt
1{2113 1 1141 114513211
21312 2162 2161411)3)2
3111213 31513 3(5]6(2)113
415|164 4]1]4 4111216|5)4
516415 513415 513111465
614|516 6|2 »_6 612|3]1]|3}|6

The procedure now stops because all the relation tables are complete.
According to the next theorem, the conclusion is that the presented group G
has order 6 (of course, G = S;).

Theorem 11.8 (Coset Enumeration). Let G have a presentation with a finite
number of generators and relations. Set up one table for each relation as above,
add new integer entries and enlarge the auxiliary table as above whenever
possible, and delete any larger numbers involved in coset collapse. If the proce-
dure ends with all relation tables complete and having n rows, then the presented
group G has order n.

Proof. Let 1 denote the identity element of G, and assume that the other
integers i in the tables, where 1 < i < n, denote other elements of G. The entry

a
il

in any relation table is interpreted as the equation ia = j in G. This explains
the twin entries in the auxiliary table: if ia = j, then ja™ = i. The construction
of the relation tables is a naming of elements of G. If there is a blank square
to the right of i, with line labeled a between, then j is the element ia; if the
blank square is to the left, then j is the element ia™!. Coset collapse occurs
when ia = j and ia = k, in which case j = k.

Let Y be the set of elements in G that have been denoted by some i with
1 <i < n. That all the tables are complete says that right multiplication by
any a € X U X! produces only elements of Y. Therefore, Lemma 11.7 applies
to Y (with H taken to be the trivial subgroup), and so |G| = n.
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Notice the hypothesis “If the procedure ends”; one does not know in ad-
vance whether the procedure will end.

There is a generalization of the algorithm from which the name “coset
enumeration” arises. Consider the binary tetrahedral group (of order 24)
given in Exercise 11.9:

B =(r,s,t|r? =53 =t = rst).
First rewrite the presentation to display relations equal to 1:
B=(r,s tlrtst =r 2 =rts 2 = 1),

One could use Theorem 11.8 to show that B has order 24, but tables with 24
rows are tedious to do. Instead, let us choose a subgroup H < G for which
generators are known. For example, we might choose H = {s) in this exam-
ple (cyclic subgroups are simplest). The idea is to use a slight variant of
Theorem 11.8 to enumerate the cosets of H in G (instead of the elements of G).
This is done as follows. In addition to relation tables, draw subgroup genera-
tor tables, one for each generator of H. For example, there are two such tables
if we choose H = {rst, s); there is just one such table if we choose H = {s).
New tables consist of one row, and they are called complete once all their
squares are filled without drawing any new rows under them. In our example,
there is just one subgroup generator table, and it is already complete.

S

ik

In the general case, the rows of the subgroup generator tables are completed
first, giving pairs of entries to the auxiliary table (in our example, the entries
in the auxiliary table arising from the subgroup generator table are

s st

11 and 1]1).

After completing these one-rowed tables, the relation tables are completed as
before. The numbers i now denote right cosets of H in G, with 1 denoting H.
The entry
a
ilJ

in a table means that if i = Hw, then j = Hwa. When all the tables are com-
pleted, Lemma 11.7 applies to calculate [G : H], and hence |G| is known if | H|
is. This version actually does enumerate the cosets of H.

In Exercise 11.13 below, the reader is asked to use coset enumeration to
show that the order of the binary tetrahedral group B is 24. One must com-
pute | H|; that is, one must compute the order of s (it is 6) and then see that
the relation tables are complete with 4 rows.

There are two unexpected consequences of coset enumeration. When H =
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1, the completed relation tables can be used to construct the regular represen-
tation of G. For example, we saw above that the presentation of G = S,

G=(st|s®>=1t2=1,1tst = 5?),

has relation tables:

s s s t ot t s t s°'s
112(13]1 1141 11453121
213112 21612 216141132
311123 31513 3156 ]21}3
415164 41114 41112]6|5 4
516{41{5 51315 5131114165
614156 61216 61213136

The first column of the first table displays the values of right multiplication
by s (as a permutation of {1, ..., 6}), and the first column of the second table
does this for ¢. Right multiplication by s and ¢ are:

s—>(123)456 and t—(1 42 63 3),

so that the right regular representation has R, = (1 3 2)(4 6 5) (because
R, i is7') and R, = (1 4)(2 6)(3 5). More generally, when one enumer-
ates the cosets of a subgroup H of G, then one obtains the representation of
G on the cosets of H (the construction above differs from that of Theorem
3.14 only in giving the representation on the right cosets of H instead of on
the left cosets as in that theorem).

The information contained in completed relation tables can also be used to
draw a directed graph.

Definition. A directed graph I is a set V, called vertices, together with a subset
E <V x V; ordered pairs (u,v)e E are called directed edges. A directed
graph yields an associated graph I'': both I" and I"" have the same vertices,
and u and v are called adjacent in I" if u # v and either (4, v) or (v, u) is a
directed edge in T".

One can picture a finite directed graph I' by drawing ¥ as points and
drawing an arrow from u to v if (u, v) € E. In contrast to graphs, which have
at most one edge between any pair of vertices, a directed graph may have two
edges between a pair of vertices, one in each direction (given u, v & V, it may
happen that both (u, v) and (v, u) € E). However, even if both (u, v) and (v, u)
are directed edges in T, there is only edge between them in the associated
graph I". (There is a notion of multigraph, directed or nondirected, which
allows many edges between a given pair of vertices, but we do not need
them here.)
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Definition. Let G be a group and let X be a set of generators of G. The
Cayley graph I = IT'(G, X) is the directed graph with vertices the elements
of G and with a directed edge from g to h if h = gx for some x € X.

If coset enumeration of a presentation (X|A) of a group G yields complete
relation tables, then one can record the information in these tables as the
Cayley graph I'(G, X). For example, here is the Cayley graph of S, obtained
from the presentation above.

Figure 11.1

The Cayley graph of a group and a generating set is always defined, wheth-
er or not coset enumeration can be completed. Notice that the Cayley graph
does depend on the choice of generating set. For example, a Joop is an edge of
the form (v, v). If we take G itself as a generating set, then I'(G, G) contains
the loop (1, 1), while I'(G, X) has no loops if 1 ¢ X. The Cayley graph is
the beginning of a rich and fruitful geometric way of viewing presentations
(see Burnside (1911), Dicks and Dunwoody (1989), Gersten (1987), Lyndon
and Schupp (1977), and Serre (1980)).

EXERCISES

11.13. (i) In the presentation of the binary tetrahedral group B given above, show
that s has order 6 in B.
(i) Use coset enumeration relative to the subgroup H = {s) to compute the
order of B.
(iii) Find the representation of B on the (right) cosets of H.

11.14. Describe the group G to isomorphism if G has the presentation

1 1

(g7, s tlrgrt =g rtrt =%, s rs = 1% tst ™t = §%, rt = tr).

11.15. Let (X] A) be a presentation of a group G. Show that the Cayley graph I'(G, X)
has no loops if and only if 1 ¢ X.
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Definition. The degree of a vertex v in a graph I' is the number of vertices
adjacent to it; the degree of a vertex v in a directed graph I is its degree in the
associated graph I'. A graph or directed graph is regular of degree k if every
vertex has the same degree, namely, k.

11.16. If X is a finite generating set of a group G with 1 ¢ X, then the Cayley graph
I'(G, X) is regular of degree 2|X|. (Hint. If g € G and x € X, then (gx™*, g) and
(g, gx) are directed edges.)

11.17. Draw the Cayley graph I'(G, X) if G is a free abelian group of rank 2 and X is
a basis.

11.18. Draw the Cayley graph I'(G, X) if G is a free group of rank 2 and X is a basis,

Presentations and the Schur Multiplier

The Schur multiplier M(Q) of a group Q is discussed in Chapter 7 (the reader
is advised to reread the appropriate section); it is related to presentations of
0 because of the following isomorphism.

Hopf’s Formula. If Q = F/R is a finite® group, where F is free, then
M(Q) = (RN F')/[F, R].

Remark. An “aspherical” topological space X has the property that its
homology groups are completely determined by its fundamental group
7, (X). Hopf (1942) proved that H,(X) = (R n F')/[F, R], where F is free and
F/R = n,(X). Schur (1907) proved that M(Q) = (R F')/[F, R] when Q is
finite (i.e., Schur proved Hopf’s formula in this case!). Comparison of Hopf’s
formula to Schur’s theorem led Eilenberg and Mac Lane to their creation of
Cohomology of Groups; the homology group H,(X) of the aspherical space
X is the homology group H,(m,(X), Z) of the fundamental group =,(X).
When 7,(X) is finite, H,(n,(X), Z) is isomorphic to the second cohomology
group H*(m;(X), C*) = M(r,(X)).

We will prove Hopf’s formula for all finite groups Q, but we first consider
a special class of groups.

Definition. A group Q is perfect if Q = Q'.

Every simple group is perfect. The proofs of Theorems 8.13 and 8.23 show
that the groups SL(n, g) are perfect unless (n, g) = (2, 2) or (2, 3).

3 Let us explain the finiteness hypothesis in Hop(’s formula. In Chapter 7, we defined M(Q) as
the cohomology group H2(Q, C*). Nowadays, after defining homology groups of Q, one defines
M(Q) as the second homology group H,(Q, Z). There is always an isomorphism H,(Q, Z) =
(H*(Q, C*))*, where * denotes character group. When Q is finite, the abelian group H? is also
finite, and hence it is isomorphic to its own character group, by Theorem 10.54.
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The definition of exact sequence
e dALBS S

(the image of each homomorphism is equal to the kernel of the next one)
makes sense if the groups are nonabelian. Of course, every image, being a
kernel of a homomorphism, must be a normal subgroup.

Lemma 11.9. Let v: U — Q be a central extension of a group K =ker v by a
group Q. If Q is perfect, then U’ is perfect and v|U": U’ — Q is surjective.

Proof. Since v is surjective, v(U’) = Q’; as Q is perfect, v(U’) = Q, and v|U’ is
surjective. If u € U, there is thus «’' € U’ with v(u') = v(u); hence, there is
ze K < Z(U) with u = u'z. To see that U’ is perfect, it suffices to show that
U < U”. But if [u,v] is a generator of U’, then there are ', v’ € U’ and
central elements z,, z, with [y, v] = [u'z, v'z,]1=[w, v ] U". A

Theorem 11.10. If Q is a perfect finite group and if Q = F/R, where F is free,
then M(Q) = (R n F')/[F, R]. Moreover, F'/[F, R] is a cover of Q.

Proof. Since R < F, we have [F, R] < R; moreover, [F, R] < F. There is
thus an exact sequence

1= R/[F,R] - F/[F,R] > F/R—1,

which is plainly a central extension. It is easily checked that (F/[F, R]) =
F'/[F, R]. Since Q = F/R is perfect, Lemma 11.9 gives an exact sequence &
(with v’ the restriction of v)

& 1> ((RAF)[F,R]>F/[F,R]> F/R>1

(for (RnF)/[F,R]=(R/[F,R])n(F/[F,R])=kerv'). Let us denote
(RN F')/[F,R] by K. As F'/[F,R] is perfect, by Lemma 11.9, we have
K < (F'/[F, R]). Therefore, the transgression §: K* — M(Q) is injective, by
Lemma 7.64. But. Q is finite, by hypothesis, so that M(Q) is also finite, by
Theorem 7.60; hence K is finite and K =~ K*, by Theorem 10.56. To see that
d is surjective, it suffices, by Lemma 7.63, to prove that the central extension
¢ has the projective lifting property. Consider the diagram with exact rows

l—— R —— F ) 1

T

1 c* » GL > PGL . 1.

Since F is free, it has the projective property (in the diagram in Theorem 11.6,
let « = tx); there exists a homomorphism o: F -» GL making the diagram
commute; moreover, since the bottom extension is central, it is easy to see
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that [F, R] < ker o. There results a commutative diagram with exact rows

1 ——— R/[F,R] —— F/[F,R] 0 - 1
{—— ¢* —— GL - PGL 51,

where ¢’: u[F, R] > o(u) for all u € F. Since Q is perfect, we may replace the
top row by £ and the downward map ¢’ by its restriction ¥ = ¢’| F'//[F, R].
Thus, T can be lifted, ¢ has the projective lifting property, and the injection
d: K* > M(Q) is also a surjection, as desired. Finally, F'/[F, R] is a cover of
Q, by Lemmas 7.63 and 7.64. W

A central extension U of K by Q has the projective lifting property if, for
every homomorphism 1: Q@ - PGL, there is a homomorphism %: U - GL
making the following diagram commute:

1 » K » U > Q0 1

T T

1 > C* > GL > PGL 1.

Of course, the bottom row is a central extension. Are there central extensions
of Q which have a projective lifting property with respect to other central
extensions?

Definition. A central extension U of Q is a universal central extension if, for
every central extension ¥ of O, there is a unique homomorphism « making
the following diagram commute:

1 » K U 5 0 1
Pl
1 L 14 0 N

The uniqueness of the homomorphism o will be used to show that if Q has
a universal central extension, then U is unique to isomorphism.

Observe that commutativity of the diagram implies that «(K) < L; that
is, insertion of the map f = «|K: K — L yields an augmented commutative
diagram

1 K U 0 51
A,
1 » L 14 0 5L
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Theorem 11.11. If Q is a finite perfect group, then its cover U = F'/[F, R] is a
universal central extension of Q.

Proof. Consider the portion of the proof of Theorem 11.10 showing the exis-
tence of a map F'/[F, R] - GL making the diagram commute; this portion
holds if one replaces the central extension 1 - C* - GL — PGL — 1 by any
central extension and the map t by any map. In particular, one may replace
the central extension by 1 - L — V' — Q — 1 and the map 7 by 1,, where V' is
a central extension of L by @. Thus, it only remains to prove the uniqueness
of such a map.

Let v:U—Q and u: V> Q be the given surjections. Suppose that a,
f: U—V are homomorphisms with ue =v=puf. If u e U, then po(u) = uf(u),
so that a(u)f(u)™! e ker u < Z(V); there is thus z € Z(V) with a(u) = B(u)z.
Similarly, if «' e U, there is z’' € Z(V) with a(u’) = f(u')z’. Therefore,
a([u, u']) = [a), ()] = [Pz, B@')z'] = [B), p@')] = B([u, u']).
Since U is perfect, by Lemma 11.9, it is generated by all commutators. There-
fore, « = B, as desired. W

The converse of Theorem 11.11 is true: a finite group Q has a universal
central extension if and only if Q is perfect (see Milnor (1971), §5). More
generally, a possibly infinite group Q has a universal central extension if and
only if Q/Q’ is free abelian (see Gruenberg (1970), p. 214).

Corollary 11.12. Every finite perfect group Q has a unique cover U which is
itself a finite perfect group.

Proof. By Theorem 11.11, the cover U = F'/[F, R] is a universal central
extension of Q; if a central extension V of L by Q is a cover, then there is a
commutative diagram

1 K < U——2¢Q 1
B GJ ch
1 L < v —£— 0 > 1

By Lemma 7.67, the transgressions are related by 6 8* = §". As both U and
V are covers, however, both transgressions are isomorphisms (Lemmas 7.63
and 7.64), and so * is an isomorphism. By Exercise 10.55, § is an isomor-
phism, and by Exercise 10.56, « is an isomorphism. Finally, Lemma 11.9
shows that U is/perfect. W

We are now going to prove that Hopf’s formula holds for every (not neces-
sarily perfect) finite group Q.
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Lemma 11.13. If Q is a finite group and
1-K—->E->Q-1

is a central extension, then K n E' is finite.

Proof. Since K < Z(E), we have [E: Z(E)] < [E: K] =|Q| < co. Thus Z(E)
has finite index in E, and so Schur’s Theorem (Theorem 7.57) gives E’ finite,
Therefore K n E' < E' is also finite. 0

Lemma 11.14. If Q = F/R is a finite group, where F is free, then there is q

central extension
1-R/[F,R]->F/[F,R]->Q—1.

Moreover, if F is finitely generated, then R/[F, R] is also finitely generated.

Proof. We have already noted (in Theorem 11.10) that the sequence is a
central extension. Now F finitely generated implies that F/[F, R] is finitely
generated. As Q is finite, R/[F, R] < F/[F, R] is a subgroup of finite index,
and so Lemma 7.56 shows that R/[F, R] is finitely generated. B

Lemma 11.15. Let Q = F/R be a finite group, where F is a finitely generated
free group. The torsion subgroup of R/[F, R]is (R n F')/[F, R], and there is a
subgroup S with [F, R] < S < R, with § < F, and with

R/[F,R] =(Rn F)/[F,R]® S/[F, R].

Proof. Let T = (Rn F')/[F, R]. Since T = (R/[F, R]) n (F'/[F, R]), Lemma
11.13 shows that T is finite, and so T < t(R/[F, R]). For the reverse inclu-
sion, note that (R/[F, R])/T = (R/[F, RDAR N F)/[F,R]) = R/(RNnF)=
F'R/F < F/F', which is free abelian. By Corollary 10.16, there is a subgroup
S with [F,R]<S <R such that R/[F,R]=T& S/[F,R]. Therefore,
t(R/[F, R]) = (Rn F')/[F, R]. Finally, R/[F, R] < Z(F/[F, R]), so that all
its subgroups are normal in F/[F, R]; in particular, S/[F, R] < F/[F, R] and
S<F. H

Lemma 11.16. Let Q be a finite group and let Q = F/R, where F isa finitely
generated free group.
(i) There is a central extension
l1-K—->E->Q->1
with K < E and with K = (Rn F')/[F, R].
(i) IR~ F)/[F, R]l < IM(Q)I-
Proof. (i) Choose S, as in Lemma 11.15, with S < F, [F, R] < S <R, and
R/[F,R] = (Rn F)/[F, R] ® S/[F, R]. Consider the exact sequence
1-R/S>F/S—>Q—1.
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_ Since R/[F,R] 1is central in F/[F,R], it follows that R/S =
(R/[F, R])/(S/LF, R])is central in F/S = (F/[F, R])/(S/[F, R]); moreover, the
definition of S gives (R/[F, R])/(S/[F, R]) ~ (R n F')/[F, R]. Finally, R/S =
(RN F)S/S < F'S/S = (F/S).

(i) By Lemma 11.13, R/S is finite. By Lemma 7.64, the transgression
8:(R/S)* > M(Q) is an injection, so that |[(RnF')/[F,R]|=|R/S|=
[(R/SY| < IM(Q)). W

Theorem 11.17 (Schur, 1907). If Q is a finite group with Q = F/R, where F is
a finitely generated free group, then

M(Q)=(RnF)/[F,R].

Proof. Let 1L —>US5Q—1 be a central extension with L < U’, let
{y1,.., ya} be a basis of F, and let v: F — Q be a surjective homomor-
phism. For all i, choose u; € U with n(y;) = v(y;). Since F is free with basis
{¥1,--- ¥a}, there is a homomorphism ¢: F » U with no = v. Now L =
LnU < Z(U)yn U’' < ®(U), by Theorem 5.49. Therefore,

U=<uy,...,u,, LY < uy, ..., u,, ®(U)> =<uy, ..., u,),

by Theorem 5.47, so that ¢ is surjective.

If ae L, then a = o(w) for some we F (for o is surjective), and so 1 =
n(a) = no(w) = v(a). Hence, w e ker v = R, and so a = o(w) € o(R); that is,
L < o(R). For the reverse inclusion, if r € R, then 7o (r) = v(r) = 1, so that
o(ryeker r = L. Thus, L =o(R). Note that o([F, R]) = [a(F), c(R)] =
[U,L] =1, because L is central, so that ¢ induces a homomorphism
c:F/[F,R]->U. But (RN F')/[F,R])) =c(R)no(F)=LnU =L, and
so [(RNF)/[F,R]| = |L|.

By Theorem 7.66, there is a central extension

1-L->U->0->1
with L = M(Q) and L < U'. Therefore, Lemma 11.16(ii) gives
[M(Q)| = |L| < (RN F')/[F, R]| < |M(Q)I.
Returning to Lemm‘; 11.16 with K = (RN F')/[F, R], the injection
o: K* — M(Q) must be surjective, and so M(Q) = (RN F)/[F,R]. R

Corollary 11.18. For every finite group Q, if Q = F/R, where F is a finitely
generated free group, then (R N F')/[F, R] is independent of the finite presen-
tation F/R of Q.

Proof. We have (RN F')/[F, R] = M(Q), and the Schur multiplier M(Q) is
defined independently of a presentation. B

Definition. If 4 is a finitely generated abelian group, let d(4) denote the
number of elements in a smallest generating set of A; that is, 4 can be gener-
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ated by some set of d(A4) elements, but it cannot be generated by any set of
size d(A) — 1.

If p(A) denotes the rank of a finitely generated abelian group A, that is, the
rank of the free abelian group A/tA, then it is easy to see that

p(A) < d(A);

with equality if and only if 4 is free abelian; moreover, p(4) = 0 if and only if
A is finite. The reader may prove that if 4 and B are finitely generated abelian
groups, then
p(A @ B) = p(4) + p(B);

indeed, Exercise 10.50(ii) shows that if there is an exact sequence 0 » 4 —
E — B — 0 of abelian groups, then p(E) = p(4) + p(B). On the other hand,
this is not generally true if p is replaced by d. For example, Zs = Z, @ Z,,
and 1 = d(Zs) = d(Z, ® Z3) # d(Z;,) + d(Z;) = 2. However, if F is a finitely
generated free abelian group, then

d(A ® F) = d(A) + d(F).

Lemma 11.19. Assume that Q has a finite presentation

Q= (X1 Xl Y15 o5 )

If F is the free group with basis {xy,...,x,} and R is the normal subgroup
generated by {yy, ..., y,}, then R/[F, R] is a finitely generated abelian group
and d(R/[F,R]) <. o

Proof. We have R’ = [R, R] < [F, R] < R, since R < F, so that R/[F, R] is
abelian. The proof is completed by showing that it is generated by the cosets
of the y’s. Now Ris generated by { fy;f ™*: fe F,i=1,..., 7} (R is the normal
subgroup of F generated by {y,,..., y,}). But fy;f 'y;* e [F, R], so that
fv:f "1LF, R] = y,[F, R], as desired. '

Theorem 11.20. If Q has a finite presentation
Q = (xl’ ceey xnlyl’ ey yr),
then M(Q) is finitely generated, d(M(Q)) <r, and
n—r < p(Q/Q) — d(M(Q)).
Proof. Let F be free with basis {x;, ..., x,}, and let R be the normal subgroup

generated by {y,,..., y,}- By Lemma 11.19, there is an exact sequence of
finitely generated abelian groups

1) 0—>(RNF)/[F,R]-> R/[F,R]>R/(RNF)—0.
Therefore, d(M(Q)) = d((R n F')/[F, R]) < r (by Exercise 10.7, an easy con-
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sequence of Theorem 10.17). Now
R/(RNF')= RF'/F <F/F'

By Lemma 11.3, F/F' is free abelian of rank n; by Theorem 10.17, its sub-
group R/(R n F’) is also free abelian, and so Corollary 10.16 shows that the
exact sequence (1) splits. Thus,

R/[F, R] = M(Q) ® RF'/F’;
since RF'/F’ is free abelian, d(M(Q)) + d(RF'/F'y = d(R/[F, R]) < r, and so
d(RF'[F') <r — d(M(Q)).
Since RF'/F' is free abelian, d(RF'/F’) = p(RF'/F’), and so

2 p(RF'[F') <7 — d(M(Q)).
Now Q' = (F/R) = RF'/R, so that Q/Q’' = (F/R)/(RF'/R) = F/RF' and
®3) p(F/RF') = p(Q/Q').

There is another exact sequence
0— RF/F' - F/F' - F/RF' -0,

so that n = p(F/F') — p(F/RF’) = p(RF'/F’). Combining this with (2) and (3)
gives
n—p(Q/Q) = p(RF'[F') < r — d(M(Q)),

which is the desired inequality.

Corollary 11.21. If Q is a finite group having a presentation with n generators
and r relations, then
dM@Q)<r—n.
Proof. Since Q is finite, Q/Q’ is finite and p(Q/C')=0. &
Since d(M(Q)) > 0, it follows that r > n for every finite presentation of a
finite group Q; that is, there are always more relations than generators. We

give a name to the extreme case.

Definition. A group is balanced if it has a finite presentation with the same
number of generators as relations.

Corollary 11.22. If Q is a finite balanced group, then M(Q) = 1.
The converse of this corollary is false.

Corollary 11.23. If V is the 4-group, then M(V) = Z,.
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Proof. In Example 7.17, we saw that M(V) # 1, and Theorem 7.68 shows that
exp(M(V)) = 2. There is a presentation V = (g, bla* = 1, b* = 1, [a, b] = 1),
By Corollary 11.21, d(M(V)) < 3 — 2 = 1, and so M(V)iscyclic. B

We have now completed Example 7.17: in contrast to perfect groups, the
4-group V does not have a unique cover.

It is a theorem of J.A. Green (1956) that if p is a prime and Q is a group of
order p", then |M(Q)| < p™*¥2, One can also show that this bound is best
possible: equality holds if Q is an elementary abelian group of order p”; of
course, a special case of thisis Q@ = V.

We have proved two theorems helping us to compute the Schur multiplier
of a finite group Q: the theorem of Alperin—Kuo (Theorem 7.68) giving a
bound on exp(M(Q)); Corollary 11.21 giving a bound on d(M(Q)).

EXERCISES

11.19. Prove that M(Q,) = 1, where Q, is the group of generalized quaternions.
11.20. Prove that M(D,,) = 1 if n is odd and has order < 2 if n is even. (It is known
that M(D,,) = Z, if nis even.)
11.21. Prove that |M(45)| < 2. (It is known that M(45) = Z,.)
11.22. (i) Asin Example 11.5, show that 4, has a presentation
Ay =(s,t|s? =183 =1,(st)> = 1).
(i) Show that the binary tetrahedral group B is a cover.of A,.
(iii) Prove that M(A,) =~ Z,.
11.23. Show that M(S,) is cyclic of order < 2. (Hint. Example 11.5.) (It is known that
: M(S,) x Z,foralln >4)
11.24. Show that SL(2, 4) is the cover of PSL(2, 4).

Fundamental Groups of Complexes

The theory of covering spaces in Algebraic Topology contains an analogue of
Galois Theory: there is a bijection from the family of all covering spaces X
mapping onto a topological space X and the family of all subgroups of the
fundamental group =, (X). This theory was used by Baer and Levi to prove
the Nielsen—Schreier theorem: Every subgroup of a free group is itself free.
We mimic the topological theorems here in a purely algebraic setting.

Definition. A complex K (or abstract simplicial complex) is a family of nop-
empty finite subsets, called simplexes, of a set V = Vert(K), called vertices,
such that:

(1) if v e V, then {v} is a simplex;
(i) if s is a simplex, then so is every nonempty subset of s.
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A simplex s = {v,, vy, ..., v,} with g + 1 vertices is called a g-simplex; one
says that s has dimension g, and one writes dim(s) = q. If n is the largest
dimension of a simplex in K, then K is called an n-complex and one writes
dim(K) = n (if there is no simplex of largest dimension, then dim(K) = o).

A O-complex is a set of points, and a 1-complex is a graph: define u,ve V
to be adjacent if and only if {u, v} is a 1-simplex. It turns out that 2-complexes
are sufficiently complicated to serve all of our needs (see Exercise 11.21
below).

Even though no topology enters into the forthcoming discussion, the read-
er should know the geometric background behind the definition of complex
in that setting. A O-simplex is a point; regard a 1-simples {u, v} as an edge
with endpoints u and v; regard a 2-simplex {u, v, w} as a (two-dimensional)
triangle with vertices u, v, and w; regard a 3-simplex as a (solid) tetrahedron;
and so forth. A complex may now be regarded as a space built by gluing
simplexes together in a nice way.

Figure 11.2

A complex L is a subcomplex of a complex K if Vert(L) = Vert(K) and if
every simplex in L is also a simplex in K (we recognize the empty set (& as
being a subcomplex). A subcomplex L of K is full if every simplex in K having
all its vertices in L already lies in L. Thus, a full subcomplex L is determined
by its vertices Vert(L).

For example, if s is a simplex, then the subcomplex |s|, consisting of s and
all its nonempty subsets, is full. For each g > 0, the g-skeleton, defined by

K? = {simplexes s € K: dim(s) < g},
is a subcomplex. Thus, Vert(K)=K°®< K' =K%y {all 1-simplexes} =
K*< K3 = ---. Ifdim(K) = nand q < n, then K?is not a full subcomplex.

Definition. An edge in a complex K is an ordered pair ¢ = (i, v) of (not neces-
sarily distinct) vertices lying in a simplex. If u and v are vertices in a complex
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K, then a path o of length n from u to vis a sequence of n edges

o= (u7 vl)(vl: Uz)"'(vn—Z’ Un—l)(vn—ls U).

Call u the origin of « and denote it by o(x); call v the end of a and denote it by
e(a). A closed path at v is a path o for which o(x) = e(a).

Definition. A complex K is connected if there is a path between any pair of itg
vertices.

Definition. If {L;: i € I} is a family of subcomplexes of a complex K, then the
union | ) L; is the subcomplex consisting of all those simplexes s lying in at
least one L;, and the intersection ﬂLi is the subcomplex consisting of all
those simplexes s lying in every L;. Two subcomplexes L and L’ are disjoint
fLNnL =g.

It is easy to see that Vert(| ) L;) = | ) Vert(L;) and Vert((") L;) = (") Vert(L,);
in particular, L and L’ are disjoint if and only if Vert(L) n Vert(L') = &.

Theorem 11.24. Every complex K is the disjoint union of connected sub-
complexes K = | ) K;, and the K; are uniquely determined by K. Moreover,
each K, is a full maximal connected subcomplex.

Proof. The relation on V = Vert(K) defined by u = v if there is a path in K
from u to v is easily seen to be an equivalence relation; let {¥;: i € I} be its
family of equivalence classes, and let K; be the full subcomplex of K having
vertex set V;. Clearly, K is the union | ) K;. If a simplex s in K has a vertex u
in K;, then there is a path from u to each vertex of s, and so s < ¥;; hence,
s € K; because K, is full. Now X is the disjoint union | ) K, forif s € K; n K,
where i # j, then s « ¥,n ¥, = (&, a contradiction. To see that K is con-
nected, assume that there is an edge (1, v) in K, where u € ¥;. Then s = {u, v}
is a simplex, and so the argument above shows that s< ¥, and veV.
If u,w e V,, then u = w, and so there is a path in K from u to w. An induc-
tion on the length of the path shows that the path lies in K;, and so K; is
connected.

To prove uniqueness, let K = | ] L; be a disjoint union, where each L; is a
connected subcomplex. It is easy to see that each L; is a full subcomplex; it
follows, for each simplex in K, that there is a unique L; containing all its
vertices. In particular, there is no simplex {u, v} with u € Vert(L;) and v ¢
Vert(L;); this shows that each L; is a maximal connected subcomplex, for
there are no paths leading outside of it.

Choose some L;. If s € L;, then there is a unique K; with s € K;. If t € L;is
another simplex, then ¢ € K, for some . However, the presence of a path
between a vertex of s and a vertex of ¢t shows, as above, that | = i. Therefore,
t € K;and L; is contained in K;. Maximality of L; gives L; = K;. B
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Definition. The connected subcomplexes K; occurring in the disjoint union
K= U K; are called the components of K.

We are now going to define a multiplication of paths reminiscent of juxta-
position of words in a free group.

Definition. If x = ¢,...¢, and f = #,...1,, are paths in a complex K, where
the ¢; and #; are edges, and if e(«) = o(p), then their product is the path

af=€1...6N . Np

The path af is a path from o(x) to e(p). This multiplication is associative
when defined, but every other group axiom fails.

Definition. There are two types of elementary moves on a path « in a complex
K. The first replaces a pair of adjacent edges (u, v)(v, w) in a by (u, w) if
{u, v, w} is a simplex in K; the second is the inverse operation replacing (u, w)
by (4, v)(v, w) in this case. Paths o and f in K are komotopic, denoted by
o =~ B, if one can be obtained from the other by a finite number of elementary
moves.

> - g o

X u w y

Figure 11.3

For example, let K be the 2-complex drawn above, let «=
(x, u)(u, w)(w, y), and let § = (x, u)(u, v)(v, w)(w, y). If K contains the simplex
{u, v, w}, then a ~ B; if K does not contain this simplex, then a % f.

It is easy to check that homotopy defines an equivalence relation on the
family of all paths in K.

Definition. If « is a path in a complex K, then the equivalence class of a,
denoted by [o], is called a path class.

If @ ~ B, then o(x) = o(f) and e(«) = e(P) (for only “interior” vertices are
changed by the elementary moves in a homotopy). Hence, one may define the
origin and end of a path class [«], denoted by o[«] and e[a], respectively.
Homotopy is compatible with the multiplication of paths: if & ~ §, o« ~ f,



370 11. Free Groups and Free Products

and e(x) = o(p), then the reader may check that aff ~o'f’; that is, if
e(a) = o(B), then multiplication of path classes, given by

[«]1CA] = [of],

is well defined.

If K is a complex and v € Vert(K), then the trivial path at v is (v, v). If
¢ = (u, v), define ¢! = (v, u) and, ifa = ¢, ... ¢, is a path, define its inverse path
at =gt et
Lemma 11.25. The set of all path classes of a complex K has the following
properties:

(i) if o[0] = u and e[a] = v, then
[, w)][e] = [«] = [«][(v, v)],
[e][0™] = [, )],
and .
[«7][o] = [(v, )]- )
(i) if o, B, and y are paths and one of ([«][B]) [y] or [a]([B1[y]) is defined,
then so is the other and they are equal.

Proof. Straightforward.

The set of all path classes in K with its (not always defined) multiplicé-
tion is called a groupoid. We extract groups from a groupoid in the obvious
way.

Definition. A basepoint of a complex X is some chosen vertex v. The junda-
mental group of a complex with basepoint v is

n(K, v) = {[o]: o is a closed path at v}.

Theorem 11.26. For every vertex v in a complex K, n(K, v) is a group with
identity the path class of the trivial path at v.

Proof. This follows at once from the lemma, for multiplication is now always
defined. =

Remark. There is a topological space | K| which is the “geometric realization”
of a complex K, and n(K, v) is isomorphic to the fundamental group of |K|
defined in Algebraic Topology (see Rotman (1988), Theorem 7.36).

The next result shows that the fundamental group of a connected complex
does not depend on the choice of basepoint.
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Theorem 11.27.

() If (K, v) is a complex with basepoint, and if L is the component of K
containing v, then
(K, v) = n(L, v).

(ii) If K is a connected complex with basepoints v and v', then
(K, v) = n(K, v').

Proof. (i) Since every (closed) path with origin v has all its vertices in Vert(L),
the underlying sets of the two groups are equal. As the multiplications on
each coincide as well, the groups themselves are equal.

(ii) Since K is connected, there is a path y in K from v to v’. Define
(K, v) > n(K, v') by [«]—= [y '][e][y] = [y 'ay]. Note that the latter
multiplication takes place in the groupoid of all path classes in K; the prod-
uct, however, lies in n(K, v’). It is a simple matter, using Lemma 11.25, to
check that f is an isomorphism with inverse [f]—[yY][f][y!]. W

Definition. If K and L are complexes, then a simplicial map ¢: K — L is a
function ¢: Vert(K) — Vert(L) such that {@uv,, @v,, ..., ¢v,} is a simplexin L
whenever {v,, vy, ..., v,} is a simplex in K. A simplicial map ¢ is an isomor-
phism if it is a bijection whose inverse is also a simplicial map.

The identity on Vert(K) is a simplicial map. It is easy to see that the
composite of simplicial maps, when defined, is a simplicial map. If ¢p: K - L
is a simplicial map and {vo, vy, ..., ,} is a simplex, then there may be re-
peated vertices in the simplex {@v,, @vy, ..., Pv,}.

Let ¢: K — L be a simplicial map. If ¢ = (4, v) is an edge in K, then ¢¢ =
(ou, pv)is an edge in L (because {pu, ¢v} is a simplex in L). fa = ¢,...¢, is
a path, then define

pa = Py .. (psm

which is a path in L. If o ~ f are paths in K|, then po ~ ¢f in L, for if {u, v, w}
is a simplex in K, then {ou, pv, pw} is a simplex in L.

Theorem 11.28. If ¢: K — L is a simplicial map, then ¢ ,: n(K, v) > n(L, ¢v),
defined by [o]+ [@a], is a homomorphism. Moreover, m is a (covariant)
functor: (1), is the identity, and if y: L — M is a simplicial map, then (Y @), =
'//#(P#: Tt(K, U) - ﬂ(M, lp(pv)'

Proof. Routine. W
Definition. A i)ath o =g ...&, 1 reduced if either o is trivial or no g = (u,v)is

adjacent to its inverse (v, ) and no &; is a trivial path. A circuit is a reduced
closed path.
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Let us show that every path « in a complex is homotopic to either a
reduced path or a trivial path. If « contains a subpath (u, ) (v, u), then o ~ ¢,
where o is obtained from « by replacing (u, v)(v, u) by the trivial path (u, u). If
o is not trivial and &’ contains a trivial path (u, u), then o ~ «”, where o” is
obtained from o’ by deleting (u, u). These steps can be iterated. Since each
path obtained is shorter than its predecessor, the process eventually ends,
and the last path is either reduced or trivial. In particular, every closed path
is homotopic to either a circuit or a trivial path.

Definition. A tree is a connected complex of dimension < 1 having no circuits
(the only zero-dimensional tree has a single vertex).

Let us show that if u and v are distinct vertices in a tree T, then there is a
unique reduced path from u to v. Connectivity provides a path « from u to v,
which we may assume is reduced. If § # o is another reduced path from u to
v, then « and B contain a (possibly empty) subpath y such that o« =o'y,
B = B’y, and the last edge of o« is distinct from the last edge of f’. It follows
that o/ §/~* is reduced, and hence it is a circuit in T. This contradiction shows
that o = .

Definition. A complex K is simply connected* if it is connected and n(K, v) =
1 for some v € Vert(K).

By Theorem 11.27(ii), this definition does not depend on the choice of
basepoint v in K.

Every tree T is simply connected: we have just noted that every closed path
is homotopic to either a circuit or a trivial path, and there are no circuits in
a tree.

Theorem 11.29. Let L be a simply connected subcomplex of a complex K. If a
is a closed path in K at v all of whose edges lie in L, then [a] = 1 in (K, v).
This is true, in particular, when L is a tree.

Proof. The inclusion ¢: Vert(L) <> Vert(K) is a simplicial map L — K, and
it induces a homomorphism ¢,: n(L, v) > n(K, v). The hypothesis gives
@4([]) = [pa] =[], so that [«] eim ¢,. But L simply connected gives
w(L,v)=1,hence[a]=1. W

If L is a subcomplex of a complex K, then the homomorphism
@4 m(L, v) » n(K, v) induced by the inclusion ¢: Vert(L) <> Vert(K) need
not be injective. For example, it is easy to see that a 2-simplex K is simply
connected, but we shall soon see that its perimeter is not.

+ Some authors do not insist that simply connected complexes be connected. For them, a com-
plex is simply connected if all its components are simply connected in our sense.
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Definition. A subcomplex T of a complex K is a maximal tree if T is a tree
which is contained in no larger tree in K.

Lemma 11.30. If K is a connected complex, then a tree T in K is a maximal
tree if and only if Vert(T) = Vert(K).

Proof. Suppose that T is a maximal tree and there exists a vertex v ¢ Vert(T).
Choose a vertex vg in T; since K is connected. There is a path ¢, ...¢, in K
from vy to v = v,; let g; = (v;—y, v;). Since vq is in T and v is not in 7, there
must be an i with v;_; in T and v; not in T. Consider the subcomplex T’
obtained from T by adjoining the vertex v; and the simplex {v;_,, v;}. Clearly
T’ is connected, and any possible circuit in T” must involve the new vertex v;.
There are only two nontrivial edges in T’ involving v;, namely, ¢ = (v;_,, v;)
and ¢7', and so any closed path involving v; as an “interior” vertex is not
reduced, while any circuit at v; would yield a circuitin T at v;_;. Thus T" is a
tree properly containing 7, contradicting the maximality of T.

The proof of the converse, similar to that just given, is left to the
reader. W

Every complex K has a maximal tree (this is obvious when K is finite, and
a routine Zorn’s lemma argument shows it to be true in general). Usually, a
" complex has many maximal trees.

Definition. Let K be a complex and let 2 = {X;:iel} be a partition
of Vert(K). The quotient complex K/% has vertices the subsets X;, and
{Xi» ---» X, } is a simplex if there are vertices v; € X; such that {v;, ..., v; }
is a simplex in K.

Of course, one can construct a quotient complex of X modulo an equiva-
lence relation on Vert(K), for the equivalence classes partition Vert(X).

EXERCISES

11.25. Prove that a complex K is connected if and only if its 1-skeleton K is con-
nected.

11.26. If s is a simplex, then the complex |s| (consisting of s and all its nonempty
subsets) is simply connected.

11.27. Prove that the inclusion K2 <» K induces an isomorphism n(K2, v) = n(K, v).
Conclude that every fundamental group arises as the fundamental group of a
2-complex.

11.28. Let I, be the 1-complex having vertices {to, ..., t,} and simplexes {to,¢,},
{t;,t2}, ..., {ty-1, ts}. Prove that a path in a complex K of length n is a
simplicial map I, — K.
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11.29. Let T be a finite tree. If v(T) is the number of vertices in T and e(T) is the
number of edges in 7, then
o(T)—e(T)=1.

11.30. Prove that a 1-complex K is simply connected if and only if it is a tree.

11.31. (i) Let Kbeacomplexandlet Tand Sbetreesin K.If TS # &, then T~ §
is a tree if and only if T n S is connected.
(i) If {T;: i e I} is a family of trees in a complex K with T, ~ T; a tree for all ;
and j, then { J T; is a tree.

11.32. Let K be a 1-complex with basepoint w, let T be a tree in K, and let (4, v) be'an
edge not in T. f a = a'(u, v)a” and f = f'(u, v)f" are closed paths in K at w
with o, o, §/, and B” paths in T, then o = f.

11.33. Let G be a free group of rank 2 with basis X. Show that the graph associated
to the Cayley graph I'(G, X) is a tree.

11.34. If ¢: K — L is a simplicial map, then im ¢ is a subcomplex of L; moreover; Lf
K is connected, then im ¢ is connected.

11.35. If K is a complex and 2 = {X;:ic 1} is a partition of its vertices, then the
natural map v: K — K/%, which sends each vertex into the unique X; contain-
ing it, is a simplicial map.

11.36. Let K be a connected complex, and let L be a subcomplex that is a disjoint
union of trees. Show that there is a maximal tree of K containing L. (Hint. Use
Exercise 11.35)

Tietze’s Theorem

Tietze’s theorem gives a presentation for the fundamental group of a con-
nected complex.

Definition. If T is a maximal tree in a connecied complex K, then (K, T)is
the group having the presentation:

generators: all edges (4, v) in K;
relations: Type (a): (u, v) = 1 if (4, v) is an edge in T;
Type (b): (4, v)(v, x) = (u, x) if {4, v, x} is a simplex in K.

Theorem 11.31 (H. Tietze, 1908). If K is a connected complex and T is a
maximal tree in K, then
n(K, w) = I (K, T).

Remark. Since K is connected, different choices of basepoint w for K yield
isomorphic groups.

Proof. Let F be the free group with basis X = all edges (1, v) in K and let R
be the normal subgroup of relations, so that 7 (K, T) = F/R.
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Since T is a maximal tree in K, there is a unique reduced path 1, in T from
w to each v e Vert(T) — {w} = Vert(K) — {w}; define 1,, = (w, w). Define a
function f: X — n(K, w) by

(u, ) [A,(u, 1) A;1]

(which is the path class of a closed path at w), and let ¢: F — n(K, w) be the
unique homomorphism it defines. We claim that R < ker ¢.

Type(a): If (w,v) is in T, then the path A,(u, v)A;* lies in T, and hence
[Au(#, v)A;*] = 1 in n(K, w), by Theorem 11.29.
Type (b): If {u, v, x} is a simplex in K, then

(A, 0) 2,1 10,0, )AL ] = (A, 0)A4," 4,0, 0)A57]
= [A ) (v, x)A:*]
= [A %) 4711,
Therefore, ¢ induces a homomorphism ®: 7 (X, T) — n(K, w) with
@: (u, )R- [A,(4, 1)A;1].

We prove that @ is an isomorphism by constructing its inverse. If ¢, ... &, is
a closed path in K at w, define

0(ey...,)=¢,...,Re T (K, T).

Observe that if « and § are homotopic closed paths, then the relations in
T (K, T) of Type (b) show that («x) = 6(p): for example, if « = y(u, v) (v, x)d
and B = y(u, x)8, where {1, v, x} is a simplex in K, then

B e =6"1(u, x)"1(u, v)(v, x)6 € R.
There is thus a homomorphism ®: (X, w) — I (X, T) given by
®: [e,...6,]>0(,...8,)=¢,...6,R.
Let us compute composites. If [¢, ... ¢,] € n(K, w), then

 ®(e,...5,R) = D&, R)... D(,R)
= [o(e1). .. 0(e,)]
= [Ayer... 8,451 ]
=[5

because 1, is a trivial path. Therefore, @@ is the identity. We now compute
the other composite. If (i, v) is an edge in K, then

O®((u, v)R) = O(¢(u, v)
= e([’lu(u’ v)lzjl])
= A, (u, V)R
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But 4, and A;! lie in R, since their edges do, so that
Au(t, ©)A7R = A,(u, v)R = (u, )R,

the last equation arising from the normality of R (Exercise 2.30(ii)). The
composite @@ thus fixes a generating set of 7 (K, T), hence it is the identity.
Therefore, n(K, w)= (K, T). &

Corollary 11.32. If K is a connected 1-complex, then n(K, w) is a free group.
Moreover, if T is a maximal tree in K, then

rank n(K, w) = |{1-simplexes in K not in T}|;

indeed, F has a basis consisting of all [A,(u, v)A, '], where one edge (u, v) is
chosen from each 1-simplex {u,v} ¢ T.

Proof. By the theorem, it suffices to examine J (K, T). The relations of Type
(2) show that (K, T)is generated by those edges (4, v) in K which are not in
T. A smaller generating set is obtained by discarding, for each l-simplex
{u, v}, one of the two edges (u, v) or (v, u), for (v, u)R = (4, v) 'R in T (K, T).

If {u, v, w} is a simplex in K, then at least two of the vertices are equal, for
dim K = 1. Thus, the relations of Type (b) have the form:

(u, u) (u9 1)) = (u, U),
(u’ v) (U, v) = (v’ v):
(u, v) (v, u) = (u, u).

All of these are trivial: since (v, v) = 1 and (4, v) = (v, w)?, the subgroup R of
relations is 1. Therefore, 7 (K, T) is free with basis as described.

Here is a simple example of a complex whose fundamental group is free.

v, Uy v,

Figure 114
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Definition. If I is a set, then a bouquet of |11 circles is the 1-complex B;
with distinct vertices {u;, v;: i € I} U {w} and 1-simplexes {w, u}, {w, v;}, and
{v;, w;} forallie I

Corollary 11.33. If I is a set and B, is a bouquet of I circles, then n(B;, w) is a
free group of rank |1|.

Proof. 1t is easy to see that B; is a connected l-complex and that all the
1-simplexes containing w form a maximal tree. Therefore, (B, w) is free with
basis

{[(W9 ui)(uh vi)(via W)]' i € I} .

In Exercise 11.14, we gave a presentation of the trivial group G = 1. Using
Tietze’s theorem, we see that fundamental groups of simply connected com-
plexes produce many such examples.

Covering Complexes

The last section associated a group to a complex; in this section, we associate
a complex to a group.

Definition. Let p: K — K’ be a simplicial map. If L' is a subcomplex of K,
then its inverse image is

p (L) = {simplexes s € K: p(s)e L'}.

It is easy to check that p™'(L') is a subcomplex of X which is full if L’ is full.
In particular, if s is a simplex in X', then the subcompiex |s|, consisting of s
and all its nonempty subsets, is full, and so p~*(|s}) is a full subcomplex of X.

In what follows, we will write s instead of |s|.

Definition. Let K be a complex. A connected complex K is a covering complex
of K if there is a simplicial map p: K — K such that, for every simplex s in K,
the inverse image p~!(s) is a disjoint union of simplexes,

p7is) = 3
iel

with p|3;: §; — s an isomorphism for each i € I. The map p is called the projec-
tion and the simplexes §; in K are called the sheets over s.

If K has a covering space, then K must be connected, for a projection
p: K — K is a surjection, and Exercise 11.28 shows that the image of a con-
nected complex is connected.
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Notice that every simplex §in K is isomorphic to a simplex in K it follows
that dim K = dim K.
The picture to keep in mind is

Figure 11.5

ExampLE 11.8. Let K be the “circle” having vertices {vo, vy, 05} and 1-
simplexes {vg, v;}, {vy,,}, and {v,, v}, and let K be the “line” having
vertices {t;: i € Z} and 1-simplexes {¢;, t;+, } for all i € Z. Define p: K — X by
p(t;) = v;, where j =imod 3. The reader may check that p: RK->Kisa
covering complex.

Theorem 11.34. Let p: K — K be a covering complex and let W be a basepoint
in K with Pp(W) = w. Given a path o in K with origin w, there exists a unique

path & in K with origin w and with pi = a.

Remark. One calls & the lifting of a because of the picture

]

~

] —

4
Proof. We prove the lemma by induction on n = length «. If n =1, then
o = (w, v), where s = {w, v} is a simplex; we may assume that v s w, so that s
is a l-simplex. If § is the sheet over s containing W, then §= {W, 7} is a
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1-simplex, (W, §) is an edge, and p(W, §) = (w, v). To prove uniqueness, sup-
pose that (w, #I) is also a lifting (so that {w, i} is a 1-simplex). Then {W, 7} and
{W, i1} are sheets over {w, v} that are not disjoint, contradicting the definition
of covering complex. Therefore, i = 7.

If n > 1, then a = (w, v)B, where § is a path of length n — 1 beginning at v.
By the base step, there is a unique (W, ) lifting (w, v); by induction, there is a
unique lifting 3 of B beginning at 5. Thus, (W, 7)f is the unique lifting of «
beginning at w. M

Lemma 11 35. Let p: K — K be a covering complex, and let W be a basepoint in
K with p(W) = w. If o and B are homotopic paths in K with origin w, then their
liftings & and § having origin W are homotopic and e(&) = e(f).

Proof. It suffices to prove that if (&, 9)(D, %) is a lifting of (u, v)(v, x) and if
s= {u v, x} is a simplex in K, then {u, %} is a simplex in K. Let §=
{, W', X'} be the sheet over s containing & and letf= {u, 5", X"} be the sheet
over s containing #, where pf = pd” = v and pil = pii’ = u. Now (4, ) and
(i1, ") are liftings of (u, v) beginning at i, so that uniqueness of lifting gives
# = 0”. The sheets § and f over s are not disjoint, and so § = f; that is, § = 5",
i’ =1, and %' = X". A similar argument comparing § with the sheet over s
containing % shows that X =%". W

Theorem 11.36. Let p: K-K be a covering complex, and let W be a basepoint
in K with p(W) = w. Then p,: n(K, W) > n(K, w) is an injection.

Proof. Assume that [A], [B] e n(K, W) and that p,[4] = p,[B]; that is,
[pA] = [pB]. If « = pA and § = pB, then 4 = & and B = . The hypothesis
gives o ~ B, and so Lemma 11.35 gives 4 = & ~ = B; that is, [A] = [B].

What happens to the subgroup p#n(K, W) as the basepoint is changed?

Theorem 11.37. Let p: K — K be a covering complex, and let W be a basepoint
in K with p(%) = w. If p(@i) = w, then p ,n(K, W) and p#n(IZ, if) are conjugate
subgroups of n(K, w). Conversely, if H < n(K, w) is conjugate to p#n(IZ, W),
then H = p ,n(K, i) for some i with p(ii) =

Proof. Since K is connected, there is a path B from W to &. Then f = pBis a
closed path at w, [ f] € n(K, w), and Theorem 11.27(ii) gives
[B™'1n(K, W)[B] = n(K, @),

hence . -
[B_l]p#ﬂ(K, W) [B] = p#n(K’ a)
Conversely, assume that H = [«] p#n(IZ, w)[] 7L If B is the lifting of o~
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with origin w, and if e(B) = i, then p(if) = w. By Theorem 11.27(ii),
(B 1n(K, W) (8] = n(K, @),

so that p,n(R, @) = p([F1n(K, W)[B]) = [alpn(K, W)[a] ™ = H, as
desired.

Definition. If p: K — K is a simplicial map and if w is a vertex in K, then
p~(w) is called the fiber over w.

In the next theorem, we observe that the fundamental group G = (K, w)
acts on the fiber p~!(w); more precisely, p~!(w) is a right G-set. Recall that one
can always convert a right G-set X into a left action by defining gx to be xg™.

Theorem 11.38. Let p: K — K be a covering complex and let w be a vertex in
K. Then the fiber | p~'(w) is a transitive (right) n(K, w)-set and the stabilizer of
a point W is p#n(K w).

Proof. If % p~*(w) and [«] € (K, w), define %[«] = e[@], where & is the
lifting of & having origin X; since homotopic paths have the same end, Lemma
11.35 shows that this definition does not depend on the choice of path in [o].

We now verify the axioms of a G-set. The identity element of n(K, w) is
[(w, w)]; the lifting of (w, w) with origin X is obviously (%, X) whose end is X.
Let [«], [B] € n(K, w), let & be the lifting of & having origin X, and let j = e(&).
If § is the lifting of 8 with origin 7, then &8 is a lifting of oc,B with origin X. By
uniqueness of lifting, &P is the lifting of «f having origin %, and so %[afl =
e[@B] = e[B]. On the other hand, X[«] (8] = (e[#])[B] = F[B] = e[B].

Now n(K, w) acts transitively:if %, j e p ~1(w), then connectivity of K shows
there is a path 4 in K from % to 7. Iif « = pA, then [«] € (X, w) and X[«] =
efA]=7.

Finally, the stabilizer of a point X € p™*(w) consists of all [«] € n(X, w)
for which e[d] = %. But e[d] = X if and only if [&] € n(X, W) if and only if
[o] € pur(K, ).

Corollary 11.39. Let p: K — K be a covering complex.
@) If wis a basepoint in K and W € p~*(w), then
[n(K, w): p (K, )] = [p™" ()]
(ii) If w and u are basepoints in K, then |p~*(w)| = |p~ ! (u)|.
Proof. (i) The number of elements in a transitive G-set is the index of the
stabilizer of a point. .
(i) If @ € p~(u), then there is a path Bin K from W to #; let § = pB. Define

homomorphisms ®: n(K, w) > n(K, @) and ¢: n(K, w) > n(K, u) by [A]—
[B'4B] and [a] — [ B 28], respectively. It is easy to check that the follow-
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ing diagram commutes:
(K, %) —— n(K, @)
Py Py

(K, w) —0 (K, u).
Since ® and ¢ are isomorphisms, it follows that the index of im p, on the left
is equal to the index of im p, on the right. W
We are now going to construct some covering complexes.
Definition. Let K be a complex with basepoint w and let 7 be a subgroup of
(K, w). Define a relation on the set of all paths in K having origin w by
a=,f if e@=e(B) and [af']em
Notation. It is easy to see that =, is an equivalence relation. Denote the

equivalence class of a path « by %, and denote the family of all such classes
by K.

We now make K into a complex. Let s be a simplex in K, and let a be a
pathin K with o(¢) = w and e(a) € s. A continuation of « in s is a path § = ao/,
where o is a path wholly in s. Define a simplex in K, to be

[s, %x] = {¥B: B is a continuation of « in s},
where s is a simplex in K and o is a path from w to a vertex in s. Thus,

%8 € [s, %x] if and only if there is a path o« wholly in s with § = ao’.

Lemma 11.40. Let K be a connected complex, let w be a basepoint in K, and let
7 < (XK, w). Then K, is a complex and the function p: X, —» K, defined by
Ga— e(a), is a simplicial map.

Proof. Straightforward. &
Define w = €(w, w) € K, and choose W as a basepoint.

Lemma 11.41. If K is a connected complex, then every path o in K with origin
w can be lifted to a path A in K., from W to %o.

Proof. Let o= (w,v,)(v{,v5)...(v,—1, V), and define “partial paths” «; =
(W, v1)(vy, v3)... (01, v;) for i > 1. If 5 is the simplex {v;, v;+, }, then both %,
and %o, lie in [s;, %], so that (%u;, ¥x;.,) is an edge in K. Therefore,

A = (W, Gu,) By, Gos) ... (G, o)

is a lifting of « having origin w. W
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Corollary 11.42. If K is a connected complex, then K, is a connected complex.
Proof. There is a path in K, from W to every %«. @

Theorem 11.43. If K is a connected complex with basepoint w, and if & <
(K, w), then p: K, — K is a covering complex with p ,(K ., W) = 7.

Proof. If s is a simplex in K, then p’ = p|[s, %«] is an isomorphism [s, €0] — s
if and only if it is a bijection. To see that p’ is an injection, suppose that
B, 6y € [s, 6] and e(f) = p(#B) = p(%y) = e(y). Thus, B =af’ and y = ay,
where §’ and y’ are paths wholly in s, and

ﬂ,y—l = (Zﬂ"))'—lfx—l ~ aa'1

LBy 1et] € [en(s, e(@)[et] = 1, by Theorem 11.29). Thus,
By *]l=1len B=,y, 4B =%y, and p’ is an injection. To see that p’ is a
surjection, let v be a vertex in s and let o be a path in s from e(x) to v. Define
B = ao’, and note that p(€f) = e(B) = v.

If s is a simplex in K, then it is easy to see that

P = U [s %]
Bac K,

as sets; but since s is a full subcomplex of K, its inverse image is a full
subcomplex of K, and so it is completely determined by its vertices. To
prove that p: K, — K is a covering complex, it remains to prove that the
sheets are pairwise disjoint. If €y € [s, €a] n [s, €8], then y =, a¢’ and y =,
BB, where o’ and B’ lie wholly in s. It follows that e(o’) = e(#') and, as in the
preceding paragraph, [aa’ f717'] = [#f7!]. But [aa’' B 17 1 =[yy ] =
1 em, so that o =, f, G0 = 4B, and [s, Go] = [s, €5].

Finally, we show that p ,n(K_, W) = n. If a is a closed path in K at w, then
p: K, — K being a covering complex implies, by Theorem 11.34, that there is
a unique lifting & of o having origin w. But we constructed such a lifting 4 in
Lemma 1141, so that & = 4 and e(&) = e¢(4) = %o The following statements
are equivalent: [«] € p (K., W); [o] = [pA4], where [4] € n(K,, W), e(4) =
o(A) = W; G0 = w; [o(w, w)™'] € &; [o] € =. This completes the proof. B

Remark. Here is a sketch of the analogy with Galois Theory. If p: K — K is
a covering complex, then a simplicial map ¢: K — K is called a covering map
(or deck transformation) if pp = p. The set Cov(K/K) of all covering maps is
a group under composition.

Recall that if k is a subfield of a field K, then the Galois group Gal(K/k) is
defined as the set of all automorphisms ¢: K — K which fix k pointwise. To
say it another way, if i: k < K is the inclusion, then Gal(K/k) consists of all
those automorphisms ¢ of K for which oi = i. In the analogy, therefore, all
arrows are reversed.

Every connected complex K has a covering complex p: U - K with
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U simply connected (Exercise 11.34 below), and it can be shown that
Cov(U/K) = n(K, w) (note that Cov(U/K) is defined without choosing a
basepoint). It is true that U is a universal covering complex in the sense that
whenever ¢: K — K is a covering complex, then there is a projection r: U —
K which is a covering complex of K. (One may thus regard U as the analogue
of the algebraic closure k of a field k, for every algebraic extension of k can be
imbedded in k.) Moreover, the function K — Cov(U/K) is a bijection from
the family of all covering complexes of K to the family of all subgroups of the
fundamental group 7(K, w). For proofs of these results, the reader is referred
to my expository paper, Rocky Mountain Journal of Mathematics, Covering
complexes with applications to algebra, 3 (1973), 641-674.

EXERCISES

11.37. Let p: K—Kbea covering complex. If L is a connected subcomplex of K and
if L is a component of p~*(L), then p|L: L — L is a covering complex.

11.38. (i) if p: K - K is a covering complex and T is a tree in K, then p~*(T) is a
disjoint union of trees. (Hint: Show that every component of p~*(T) is a
tree.)

(i) Show that there is a maximal tree of K containing p~!(T). (Hint: Use
Exercise 11.30.)

11.39. Let p: K — K be a covering complex, and suppose that there are j points in
every fiber p~(v), where v is a vertex in K. Show that there are exactly j sheets
over each simplex s in K.

11.40. (i) Every connected complex K has a universal covering space p: K — K; that
is, K is simply connected. (Hint. Let « be the trivial subgroup of n(K, w).)
(i) If K is a connected 1-complex, then its universal covering complex is a tree.
(This last result may well have been the impetus for the “Bass—Serre the-
ory” of groups acting on trees {see Serre, 1980).

The Nielsen—Schreier Theorem

In 1921, J. Nielsen proved that every finitely generated subgroup H of a free
group F is itself free (he also gave an algorithm deciding whether or not a
word « in F lies in H). In 1927, O. Schreier eliminated the hypothesis that H
be finitely generated. There are, today, several different proofs of this theo-
rem, some “algebraic” and some “geometric.” The first geometric proof was
given by R. Baer and F.W. Levi in 1936, and this is the proof we present.
There is another elegant geometric proof, due to J.-P. Serre (1970), using the
notion of groups acting on trees.

Theorem 11.44 (Nielsen—Schreier). Every subgroup H of a free group F is
itself free. -
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Proof. If F has rank |I|, and if K is a bouquet of [I| circles, then Corollary
11.33 allows us to identify F with n(K, w). As in Theorem 11.43, there ig
a covering complex p: Ky — K with p,n(Ky, W) = H. Now p, is an injec-
tion, by Theorem 11.36, so that H = n(Ky, w). But dim(K) =1 implies
dim(K ) = 1, and so n(Ky, W) is free, by Corollary 11.32. B

Theorem 11.45. If F is a free group of finite rank n and H is a subgroup of
finite index j, then rank(H) = jn —j + 1.

Proof. If K is a finite connected graph, denote the number of its vertices by
v(K) and the number of its 1-simplexes by e(T). If T is a maximal tree in
K, the v(T)=v(K), by Lemma 11.30. We saw in Exercise 11.23 that
v(T) — e(T) = 1. By Lemma 11.30, the number of 1-simplexes in K — T is

e(K—T)=e(K)—e(T)=eK)—v(T) + 1 = ¢(K) — v(K) + 1.

If, now, B, is a bouquet of n circles, then v(B,) = 2n + 1 and ¢(B,) = 3n.
After identifying F with n(B,, w), let p: Ky — B, be the covering complex
corresponding to H. By Corollary 11.39, j = [F : H] = |p~*(w)|. Therefore,
v(K ) = jo(B,) and, by Exercise 11.33, e(Ky) = je(B,). We compute the num-
ber of 1-simplexes in Kj outside a maximal tree 7'

e(Ky — T) = e(Ky) — v(Ky) + 1
= je(B,) — ju(B,) + 1
=3jn—j2n+ 1)+ 1
=jn—j+1
Corollary 11.32 completes the proof. &

Remark. If K is an n-complex and b; denotes the number of its i-simplexes,
then its Euler—Poincaré characteristic y(K) is Y "_o(—1)'b;. Thus, rank(H) =
1 — x(Kg)-

We have shown that a subgroup H of a free group F is free;.can we find a
basis of H?

Recall that a right transversal of a subgroup H in a group F consists of one
element chosen from each right coset Ha; denote the chosen element by
I(Ha). If F is free with basis X and if x € X, then both [(Hax) and [(Ha)x lie
in Hax, and so the element h, , defined by

h, . = l(Ha)xI(Hax)™*
lies in H (these elements should be indexed by (Ha, x), but we have abbrevi-

ated this to (a, x).) We are going to see that if a transversal of H in F is chosen
nicely, then the set of all nontrivial A, , is a basis of H.
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Here is a notion that arose in Schreier’s proof of the subgroup theorem.

Definition, Let F be a free group with basis X, and let H be a subgroup of F.
A Schreier transversal of H in F is a right transversal S with the property that
whenever x§'x52...x " lies in S (where x; € X and ¢; = 3 1), then every initial
segment x§'x52... xi (for k < n) also lies in S.

We will soon prove the existence of Schreier transversals.

Lemma 11.46. Let p: K — K be a covering complex and let T be a maximal tree
in K. If w is a basepoint in K, then each component of p~*(T) meets the fiber
P~ (w).

Proof. If C were a component of p~'(T) disjoint from the fiber, then w ¢ p(C).
There would then exist an edge (u, v) with u € p(C) and v ¢ p(C); of course,
v € Vert(T) = Vert(K). By Theorem 11.34, this edge may be lifted to an edge
(@, D), where @i e C and ¥ ¢ C. Since § e p~1(T), this contradicts C being a
maximal connected subcomplex of p™}(T). B

Theorem 11.47. Let F be a free group with basis X, and let H be a subgroup of
F. There exists a Schreier transversal S = {I{(Ha): a € F}; moreover, a basis for
H consists of all those h, , = l(Ha)xI(Hax)™ that are distinct from 1, where
xe X.

Proof.? Identify F with (K, w), where K is a bouquet of circles, and et T be
a maximal tree in K. Let p: Ky — K be the covering complex corresponding
to H and choose some W € p~!(w) as the basepoint in K.

Let T be a maximal tree in K containing p~!(T) (whose existence is
guaranteed by Exercise 11.32(ii)). For each vertex ¥ in X, there is a unique
reduced path A, in 7 from W to ¥. In particular, there are such paths for every
Ve p~(w), and p,[4,] € n(K, w). We claim that the family

S={1}u{allp,[4y]: V ep }(T)and 4, notin T}

is a right transversal of H in n(K, w). Given a coset H[«], let & be the lifting
of a having origin w. If ¥ = ¢(d@), then V € p~*(w) and [d@4;*] € n(Ky, W).

3 Here is an algebraic proof of the existence of Schreier transversals. Define the length A(Hg) of
a coset Hg to be the minimum of the lengths of its elements (relative to a basis X of F). We prove,
by induction on n > 0, that every coset Hg with A(Hg) < n has a representative of the form
x§'x%...xt each of whose initial segments is also a representative (of a coset of shorter length).
Begin by choosing 1 to be the representative of H. For the inductive step, let }(Hg) = n + 1, and
let ux® € Hg be an element of minimal length, where ¢ = + 1. The coset Hu has length n (or we
could find a shorter element of Hg), so that it has a representative v of the desired type, by
induction. Now Hg = (Hu)x® = (Hv)x? and so vx® is a representative of Hg of the desired type.
An algebraic proof that the nontrivial h, . form a basis of H, however, does not follow as
quickly from the existence of a Schreier transversal as it does in the geometric proof above.



386 11. Free Groups and Free Products

Figure 11.6

Applying p, gives [«]p4[4y'] € p4n(Ky, W) = H, and so H[«] = Hp,[4],
as desired.

We now show that S is a Schreier transversal. Subdivide 4, into subpaths:
Ay = A, A,...A,, where each A, contains exactly one edge not in p~!(T) (if
there is no such subdivision, then 4, lies wholly in p~*(T) = T and palAv]l =
1). If U, = e(&;), then U, lies in some component C; of p~*(T). By Lemma
11.46, there is a vertex V. e C; n p~!(w) and, since C; is a tree, there is a unique
reduced path B; in C; from U, to ¥;. Consider the new path D, D, ... D,, where
D, = A,B,,and D, = B A;p; for i > 2; of course, A, >~ D, D, ... D,. For each
i, the initial segment D, D, ... D; is a path in the tree T from W to V. Since Av,
is also such a path, these paths are homotopic: [4, ] = [D;D,...D;], and so
p«[D;D,...D;] lies in S for all i. But Exercise 11.26 shows that each pD,
determines a generator (or its inverse) of n(K, w). Therefore, S is a Schreier
transversal.

By Corollary 11.32, a basis for n(Ky, W) is

{(U, N (U, V¢ T
since p, is an injection, a basis of H is the family of all
p#[4u(U, V)iytl = P#[D1D2~'-Dn]P#[Dn+1]P#[D1D2~'Dn+1]—1,

where (U, V) is an edge corresponding to a 1-simplex { U, V} not in T: and
D,,, = B(U, V) for paths § and f’ having all edgesin 7. H

Theorem 11.48. If F is a free group of rank 2, then its commutator subgroup F’'
is free of infinite rank.

Proof. If {x, y} is a basis of F, then Lemma 11.3 shows that F/F’ is free
abelian with basis {xF’, yF'}. Therefore, every right coset of F'a has a unique
representative of the form x™y", where m, n € Z. The transversal [(F'a) =
I(F'x™y") = x™y" is a Schreier transversal (e.g., if m and n are positive, write
x™y"as x...xy...y). If n > 0, then I(F'y") = y" while I(F'y"x) # y"x. There-
fore I(F'y")xI(F'y"x)™* # 1 for all n > 0, and so there are infinitely many
h,,#1 ©&
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We have seen, in a finitely generated free group F, that a subgroup of finite
index is also finitely generated but, in contrast to abelian groups, we now see
that there exist subgroups of finitely generated groups that are not finitely
generated.

EXERCISES

11.41.

11.42.

11.43.
11.44.
11.45.

11.46.
11.47.

11.48.

11.49

11.50.

11.51.

11.52.

11.53.

Let G be a noncyclic finite group with G = F/R, where F is free of finite rank.
Prove that rank(R) > rank(F).

Let G have a presentation with n generators and r relations, where n > r. Prove
that G has an element of infinite order. Conclude that n < r when G is finite.
(Hint. Map a free group on n generators onto a free abelian group on n genera-
tors, and use Exercise 10.11.) Equality n = r can occur; for example, the group
Q of quaternions is a finite balanced group.

Prove that a free group of rank > 1 is not solvable.
Exhibit infinitely many bases of a free group of rank 2.

If F is free on {x, y}, then {x, y ' xy, ..., y™"xy", ...} is a basis of the subgroup
it generates.

Prove that a group is free if and only if it has the projective property.

Use Theorem 11.45 to give another proof of Lemma 7.56: if G is a finitely
generated group and H is a subgroup of finite index, then H is finitely
generated.

Show that a finitely generated group G has only finitely many subgroups of
any given (finite) index m. (Hint. There are only finitely many homomorphisms
¢: G — S, (for there are only finitely many places to send the generators of G).
If H < G has index m, then the representation of G on the cosets of H is such
a homomorphism ¢, and ker ¢ < H. Apply the correspondence theorem to the
finite group G/ker ¢.)

(M. Hall). If G is a finitely generated group and H < G has finite index, then
there is K < H with [G: K] finite and with K char G. (Hint. If ¢ € Aut(G),
then [G: ¢(H)] =[G : H]. By Exercise 11.48, there are only finitely many sub-
groups of the form ¢(H); let K be their intersection.)

If F is free and R < F, then F/R’ is torsion-free, where R’ = [R, R]. (Hint
(Rosset). First reduce to the case F/R cyclic of prime order p. Let x e F satisfy
x? e R'; if x € R, its coset has finite order in R/R’; if x ¢ R, then x ¢ F’ (since
F' < R), and x? ¢ F’, hence x? ¢ R")

If F is a free group of rank > 2, then its commutator subgroup F' is free of
infinite rank.

Let F be free on {x, y}, and define ¢: F —» S; by o(x) = (1 2) and ¢(y) =
(1 2 3). Exhibit a basis for ker ¢.

If F is frée on {a, b, c, d}, prove that [a, b][c, d] is not a commutator.
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Free Products

We now generalize the notion of free group to that of free product. As with
free groups, free products will be defined with a diagram; that is, they will be
defined as solutions to a certain “universal mapping problem.” Once exis-
tence and uniqueness are settled, then we shall give concrete descriptions of
free products in terms of their elements and in terms of presentations.

Definition. Let {A4;: i € I} be a family of groups. A free product of the 4;is a
group P and a family of homomorphisms j;: A; — P such that, for every
group G and every family of homomorphisms f;: 4;— G, there exists a
unique homomorphism ¢: P — G with ¢j; = f; for all i.

P

|

Ji :(P
)

Ai'—'—'—> G

Si

The reader should compare this definition with Theorem 10.9, the analo-
gous property of direct sums of abelian groups.

Lemma 11.49. If P is a free product of {A;: i € I}, then the homomorphisms j;
are injections.

Proof. For fixed i € I, consider the diagram in which G = 4., f; is the identity
and, for k # i, the maps f;: A, — A, are trivial.

P

s
Ji L4

A —— A

Then @j; = 1,, and so j; is an injection. @

In light of this lemma, the maps j;: A; — P are called the imbeddings.
ExampLE 11.9. A free group F is a free product of infinite cyclic groups.

If X is a basis of F, then {(x) is infinite cyclic for each x e X; define
Jx x> = F to be the inclusion. If G is a group, then a function f: X - G
determines a family of homomorphisms f,: {x) — G, namely, x"~ f(x)"
Also, the unique homomorphism ¢: F — G which extends the function f

clearly extends each of the homomorphisms f,; that s, ¢j, = f, for all x € X.

Here is the uniqueness theorem.
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Theorem 11.50. Let {A;: i € I} be a family of groups. If P and Q are each a free
product of the A;, then P = Q.

Proof. Let j: A;— P and k;: A;— Q be the imbeddings. Since P is a free
product of the 4, there is a homomorphism ¢: P — Q with ¢j; = k; for all i.
Similarly, there is a map ¥: Q — P with yk, = j; for all i.

P
Ji lﬂ’
4; —— Q
Consider the new diagram
P
Ji 1‘//(?
Ai '—;‘——P P .

Both Y9 and 1, are maps making this diagram commute. By hypothesis,
there can be only one such map, and so Y@ = 1,. Similarly, ¢y = 1,, and
so @: P — Q is an isomorphism. W

Because of Theorem 11.50, we may speak of the free product P of
{A;:ie1};itis denoted by
P=:x A;
iel
if there are only finitely many A;’s, one usually denotes the free product by

Apxew A
Theorem 11.51. Given a family {A;: i € I} of groups, a free product exists.

Proof. The proof is so similar to the proof of the existence of a free group
(Theorem 11.1) that we present only its highlights.

Assume that the sets 47 = 4, — {1} are pairwise disjoint, call (| ); A7) v
{1} the alphabet, call its elements letters, and form words w on these letters;
thatis, w = a; ... a,, where each g, lies in some A¥ U {1}. A word w is reduced
if either w = 1 or w = g, ...a,, where each letter q; € Az‘jé and adjacent letters
lie in distinct A¥. Let the elements of the free product be ali the reduced
words, and let the multiplication be “juxtaposition.” In more detail, assume
that a,...a, and b,...b, are reduced. If a, and b, lie in distinct A7, then

“ay...a,b,...b, is reduced, and it is the product. If a, and b, lie in the same
A¥ and a,b, # 1 (ie, a,b, € AY), then a, ...(a,b,)...b,, is reduced and it is
the product. If a, and b, lie in the same A7 and a,b, = 1, then cancel and
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repeat this process for a; ...a,-; and b, ...b,_,; ultimately, one arrives at a
reduced word, and it is the product. It is easy to see that 1 is the identity and
that the inverse of a reduced word is reduced; an obvious analogue of the van
der Waerden trick can be used to avoid a case analysis in the verification of
associativity. W

If P is the free product of two groups 4 and B, and if f: A - G and
g: B— G are homomorphisms, then the homomorphism ¢: P — G in the def-
inition of free product is given by

@(asb, ...a,b,) = flay)g(by). .. fla,)g(b,)-

Uniqueness of the spelling of reduced words shows that ¢ is a well defined
function, and it is not difficult to show (as in the proof of Theorem 11.1) that
@ is a homomorphism.

Theorem 11.52 (Normal Form). If g € %,.,; A; and g # 1, then g has a unique
factorization :
g=ay...a,

where adjacent factors lie in distinct A¥.

Proof. The free product constructed in Theorem 11.51 has as its elements all
reduced words. H

Theorem 11.53. Let {A;: i € I} be a family of groups, and let a presentation of
A; be (X;|A;), where the sets {X;: i € I} are pairwise disjoint. Then a presenta-
tion of %;.1 A; is (U Xi|U A).

Proof. Exercise 11.54 below shows that if F; is the free group with basis X,
then F = 3, F, is the free group with basis | );.; X;. Let {ji: 4; < %, 4;}
be the imbeddings. If R; is the normal subgroup of F; generated by the rela-
tions A;, and if v;: F; — A4; is a surjection with ker v, = R;, then the map
@: F — %;_; A, extending all F; > A; < %,.; 4; has kernel the normal sub-
group generated by | );.;A;. @

One can give a second proof of the existence of free products by showing
that the group presented by (| ) X;|{ J A;) satisfies the conditions in the
definition.

EXERCISES

11.54. Assume that the sets {X;: i € I} are pairwise disjoint. If F; is the free group with
basis X, then ;. F; is the free group with basis  J,; X;.

11.55. If a € A and b e B are nontrivial elements in A * B, then aba™'b~! has infinite
order. Conclude that A = B is an infinite centerless group.
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11.56. Prove that every group E can be imbedded in a centerless group, and use this
result to prove that E can be imbedded in Aut(H) for some H.

11.57 (= 11.4). Prove that a group E has the injective property if and only if E = 1.
(Hint (Humphreys). Show that E is not normal in the semidirect product H % E,
where H is as in Exercise 11.56.)

11.58. The operation of free product is commutative and associative: for all groups
A, B, and C.

A*B=BxA and Ax(B*C)=(A*B)%C.

11.59. If N is the normal subgroup of A *B generated by A, then (A*B)/N = B
(compare Exercise 11.5).

11.60. Show that there is a unique homomorphism of 4, -+~ * A, onto 4; x -+ x A4,
which acts as the identity on each 4;.

11.61. Let A,,..., A,, By,..., B, be indecomposable groups having both chain
conditions. If A *---* A, = B, **** % B, then n = m and there is a permuta-
tion o of {1,2,..., n} such that B,; = 4, forall i.

11.62. If G is the commutator subgroup of G = %;.;4;, then G/G' =} ;. ;(4;/A4})
(compare Lemma 11.3).

Definition. The infinite dihedral group D, is the group with presentation
(s, t)t> = 1, st =571y,
11.63. (i) ProvethatD, = Z,*Z,.
(i) Prove that the Schur multiplier M(D,)) = 1. (Hint. Theorem 11.20.)
Definition. The modular group is PSL(2, Z) = SL(2, Z)/{ +I}.
11.64. (i) The group G with presentation (a, bja® = b = 1}is isomorphic to Z, * Z5.
(ii) Prove that PSL(2, Z) = Z, = Z,. (Hint. Exercise 2.17(ii).)
(iii) Show that the Schur multiplier M(PSL(2, Z)) = 1. (Hint. Theorem 11.20.)
11.65 (Baer—Levi). Prove that no group G can be decomposed as a free product and
as a direct product (ie., there are not nontrivial groups with 4+B =G =
C x D). (Hint (P.M. Neumann). If G= A+ B and a€ A and b € B are non-

trivial, then Cg(ab) = Z;if G = C x D, choose ab = cd, for ¢ € C* and d € D¥,
to show that Cg(ab) is a direct product.)

The Kurosh Theorem

Kurosh proved that every subgroup of a free product is itself a free product;
we will now prove this theorem using covering complexes. To appreciate this
geometric proof, the reader should first look at the combinatorial proof in
Kurosh, vol. 2, pp. 17-26.

Theorem 11.54. Let K be a connected complex having connected subcomplexes
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K; ielsuchthat K =\ );.(K;. If there is atree T in K with T = K; " K, for
all i # j, then
TL'(K, W) = ok 7'l:(I<ia Wi)
iel

for vertices w in K and w; in K;.

Proof. For each i, choose a maximal tree T; in K; containing T. By Exercise
11.31(1), T* = UlE 1 T; is a tree in K; it is a maximal tree because it contains
every vertex of K.

By Tietze’s theorem (Theorem 11.36), n(K;, w;) has a presentation (E;|A,),
where E, is the set of all edges in K; and A, consists of relations of Type (a):
(u, v) = 1if (4, v) € T;; Type (b): (u, v)(v, X)(u, x)™* = 1if {u, v, x} is a simplex
in K. There is a similar presentation for n(K, w), namely, (E|A), where E is
the set of all the edges in K, and A consists of all edges (u, v) in T* together
with all (u, v) (v, x)(u, x)™* with {u, v, x} a simplex in K. Theorem 11.53 says
that a presentation for ., n(K;, w;) is ({_ E;||_ A;). It follows that n(K, w) =
%1 0(Ky, w), for E =),/ Ep, T* = ;1 T;, and {u, v, x} lies in a simplex
of K if and only if it lies in some K;. H

In the next section we will prove that every group G is isomorphic to the
fundamental group of some complex. Assuming this result, we now prove the
Kurosh theorem.

Theorem 11.55 (Kurosh, 1934). If H < ., A, then H = Fx(%,_, H,) for
some (possibly empty) index set A, where F is a free group dand each H, is a
conjugate of a subgroup of some A,.

Proof. Choose connected complexes K; with n(X;, w;) = A;. Define a new
complex K by adjoining a new vertex w to the disjoint union | )., Vert(X;)
and new 1-simplexes {w, w;} for all i € I. If T is the tree consisting of these
new simplexes, then Theorem 11.54 gives '

(K, w) = ,* (K, u T, w,).

But Tietze’s theorem (Theorem 11.36) gives n(K; U T, w;) = n(K;, w;) = A, for
each i, so that

(K, w) = % A,
iel
Identity n(K, w) with %;.; 4;, let p: Ky — K be the covering complex
corresponding to the subgroup H < *,.;A4;, and choose W e p~'{w) with
p#ﬂ:(KH, w) = H. For each i, p"(K ) is the d1s101nt union of its components
K;; choose a maximal tree 7}, in K Define L to be the 1-complex:

L= TupX(T)
Finally, let T be a maximal tree in L containing p~!(T) (which exists, by
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~

Exercise 11.36). Observe that T n K,; = T, lest we violate the maximality of
T;in KU

Consider, for ali i and j, the subcomplexes L and K U T of K. Clearly K B
is the union of these, while the intersection of any pa1r of them is the tree T
By Theorem 11.54,

n(Ky, W) = (L, W)*(* n(K uT w ))

where W;; € p 1(w)r'\ K,J Now n(L, W) is free, because dlm(L) = 1. Since T is
a maximal tree in K,j u T, Tietze’s theorem gives n(K,J uT Wy) = n(KU, W)
for each i and j. By Exercise 11.37, pIK ;; — K is a covering complex, and
Theorem 11.36 shows that n(Ki,, W) is 1somorph1c (via (PIKU)#) to a sub-
group of n(K;, w). Finally, Theorem 11.37 shows that this subgroup is equal
to a conjugate of a subgroup of #(K;, w), as desired. B

Corollary 11.56. If G = %;.; A;, where each A, is torsion, then every torsion-
free subgroup of G is a free group.

Proof. Every nontrivial subgroup of any A; contains elements of finite
order. MW

Corollary 11.57. If G = ;. A,, then every finite subgroup is conjugate to a
subgroup of some A;. In particular, every element of finite order in G is conju-
gate to an element of finite order in some A;.

Proof. Every nontrivial free product contains elements of infinite order. &

The last corollary shows how dramatically the Sylow thecrems can fail for
infinite groups. If 4 and B are any two finite p-groups, then each is a Sylow
p-subgroup of A * B; thus, Sylow subgroups need not be isomorphic, let
alone conjugate.

We only state the following important result of Grushko (1940) (see
Massey for a proof using fundamental groups). If G is a finitely generated
group, define y(G) to be the minimal number of generators of G. Grushko’s
theorem states that if 4 and B are finitely generated groups, then

(A % B) = u(A) + w(B).

EXERCISES

11.66. Show that if an element T € SL(2, Z) has finite order n,thenn=1,2,3,4,0r 6
(see Exercise 11.64(i1)). Moreover, T is conjugate to either +1, + 4, or +B,

where
0 -1 0 1
A=~I:1 0] and B—[_l _1].
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11.67. Prove that the modular group has a free subgroup of index 6. (Hint. The kemel
of Z,*Z5 - Z, x Z5 is torsion-free.)

11.68. Show that the commutator subgroup of the modular group is free.
11.69. Prove that the modular group contains a free subgroup of infinite rank.

11.70. (i) If f:A— G and g: B— H are homomorphisms, prove that there is a
unique homomorphism ¢: A*B— G*H with cpIA f and @|B=g.
Denote ¢ by f*g.
(i) Given a group A, show that there is a functor T with T(G) = A * G and, if
g:G—>H,then T(g) = 1,#g: AxG > A*H.

The van Kampen Theorem

The van Kampen theorem answers the following natural question: If a com-
plex K is the union of subcomplexes L; and L,, can one compute n(K, w) =
n(L, U L,, w) in terms of n(L, w) and m(L,, w)? The key idea is to realize
that n is a functor, and since functors recognize only complexes and
simplicial maps (but not vertices or simplexes), the notion of union should be
described in terms of diagrams.

If S is a set that is a union of two subsets, say, S = 4 U B, then thereis a
commutative diagram (with all arrows inclusions)

AnB =—, A

]

B -, AuB

Moreover, A U B is the “best” southeast corner of such a diagram in the
following sense: given any set X in a commutative diagram

ANnB — , A

[t

B —5 X

where f and g are (not necessarily injective) functions agreeing on A N B, then
there is a (unique) function ¢: A U B — X with ¢|A = f and ¢@|B =g. We
have been led to the following definition.

Definition. Let A, B, and C be groups, and let i: A — B and j: A — C be (not
necessarily injective) homomorphisms. A solution (G, f, g) of the data is a
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I

C————»G

commutative diagram
-———>

where G is a group and f and g are homomorphisms. A pushout of this data
is a solution (P, j’, i')
A B

C—————»P

—_—

such that, for every solution (G, f, g), there exists a unique ¢: P - G with
f=¢j/ and g=goi

If a pushout (P, j’, i) of the data exists, then P is unique to isomorphism,
for if (Q, j”, i) is another pushout, then the homomorphisms ¢: P — Q and
¥: Q — P provided by the definition are easily seen to be inverses.

Even though a pushout is a triple (P, j’, i’), one usually calls the group P
a pushout of the data.

Theorem 11.58.

(1) A pushout (P,j, 1) exists for the datai: A —» B and j: A — C.

(iiy The pushout P is isomorphic to (B * C)/N, where N is the normal subgroup
of B+ C generated by {i(a)j(a™'): a € A}. Indeed, if A has a presentation
(X)A) and B has a presentation (Y|T), then P has a presentation

=X uvYlAuT u{i(@j@™)aeA}).

Proof. 1t is easy to-see that (P, j’, i’} is a solution, where P = (B* C)/N, j'(b) =
bN,and i’(c) = ¢N.

Suppose that (G, f, g) is a solution of the data. The definition of free prod-
uct gives a unique homomorphism y: B+ C — G with y|B = f and y|C = g:
if b e B and ¢ € C, then y(bc) = f(b)g(c). For alla € 4,

Y(i(@)j(a™)) = fila)gi(a™) = 1,

because fi =gj, and so N < ker ¢. Therefore, ¥ induces a homomorphism

= (B* C)/N — G with ¢j'(b) = ¢(bN) = ¥/(b) = f(b) and ¢i’(c)= p(cN) =
|//(c) g(c). The map ¢ is unique because P is generated by (the cosets of)
B U C. It is plain that P has the desired presentation. W
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Corollary 11.59.

(@) If i: A-> B, j: A—> C, and C = 1, then the pushout P of this data is P =
B/N, where N is the normal subgroup of B generated by im i.
(i) If A=1,then P = B+ C.

If A is an infinite cyclic group with generator x, then 4 % 4 is a free group
of rank 2 with basis {x, y}. Obviously, it is necessary to write y for the second
generator to avoid confusing it with x. More generally, if groups A4; have
presentations (X;|A;) for i = 1, 2, then we assume that the sets X; are disjoint
when we say that a presentation for 4; * 4, is (X; U X,|A; U A,). If the sets
X, and X, are not disjoint, then new notation must be introduced to make
them disjoint.

Theorem 11.60 (van Kampen).® Let K be a connected complex having con-
nected subcomplexes L, and L, with K = L, U L,. If L, nL, is connected
and w € Vert(L, N L,), then n(K, w) is the pushout of the data

n(Ly O Ly, w) =2 7(L,, w),
J2e

TC(LZ’ W)
where j;: L, n L, < L, is the inclusion for i =1, 2.

Moreover, if a presentation of n(L;, w) is (E;|A} U A7) as in Tietze’s theorem
(E; is the set of edges in L;, A} are the relations of Type (a), and A are the
relations of Type (b)), then a presentation for n(K, w) is

(J1E{ V2 Ealj1 AL AT U ja Ay U AL L {(he)(jze)—l: e€ Eo}),

where E is the set ofedgesin L, N L,.
Remark. The hypothesis that K is connected is redundant.

Proof. Choose a maximal tree T in L; N L, and, for i = 1 and 2, choose a
maximal tree T; in L; containing T. By Exercise 11.31(ii), T, u T, is a tres; it
is a maximal tree in K because it contains every vertex. Tietze’s theorem gives
the presentation n(K, w) = (E|A’ U A”), where E is the set of all edges (4, v) in
K, N =En(T;uT,),and

A" = {(u, v)(v, X)(u, x)7*: {u, v, x} is a simplex in K}.
There are similar presentations for both n(L;, w), as in the statement of the

theorem. Make the sets E, and E, disjoint by affixing the symbols j, and j,.

6 This theorem was first proved by Siefert and found later, independently, by van Kampen. This
is another instance when the name of a theorem does not coincide with its discoverer.
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By Theorem 11.58(ii), a presentation for the pushout is
(J1E1 V2 Ealji A 01 AT O Ay Uja Ay 0 {(j1€)(j2€) i e € Eo})
The generators may be rewritten as
J1Eo Vji(Ey — Eo) U jaEq U ja(E; — Eo).

The relations include j, E, = j, E,, and so one of these is superfluous. Next,
A=E,nT,=(E;nT)U(E;n(T; — T)), and this gives a decomposition of
j1A] Uj, A, into four subsets, one of which is superfluous. Further, A” =
1w AY, for if (u, v)(v, X)(u, x) ' €A, then s = {u,v,x} e K =L, U L,, and
hence s € L; for i = 1 or i = 2. Now transform the presentation as follows:

(i) isolate those generators and relations involving L; N L,;
(i) delete superfluous generators and relations involving L, N L, (e.g., delete
all such having symbol j,);
(iii) erase the (now unnecessary) symbols j; and j,.

It is now apparent that both n(X, w) and the pushout have the same presen-
tation, hence they are isomorphic. W
Corollary 11.61. If K is a connected complex having connected subcomplexes
L, and L, such that L, v L, = K and L, N L, is simply connected, then

. (K, w) = n(L,, w)* 7(L,, w).

Proof. Immediate from the van Kampen theorem and Corollary 11.59(ii).
]

Cerollary 11.62. Let K be a connected complex having connected subcomplexes
Ly and L, such that L, uL,=X and L,NL, is connected. If we
Vert(L, n L,) and if L, is simply connected, then

(K, w) = n(L,, w)/N,

where N is the normal subgroup generated by the image of n(L, N L,, w).
Moreover, in the notation of the van Kampen theorem, there is a presentation

(K, w) = (E1]A} U AT U, Eo).

Proof. Since n(L,, w) = 1, the result is immediate from the van Kampen
theorem and Corollary 11.59(). W

We now exploit Corollary 11.62. Let K be a connected 2-complex with
basepoint w, and let
a=ey...en=(W,0,)(1, 03)... (05 W)

be a closed pathin K at w.
Define a triangulated polygon D(x) to be the 2-complex with vertices
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Figure 11.7

(Po, <y Pp—1>90s -+ +5 dn-1> r} and 2'Simplexes {T, 9i> di+1 }9 {qb 9i+15 Pi+1 }’
and {g;, p;, P;i+1}» where 0 <i<n— 1 and subscripts are read mod n. Let
dD(«) denote the boundary of D(); that is, dD(«) is the full subcomplex of
D(0) having vertices {po, ..., P~y }- Define the attaching map ¢,: 0D(x) > K
by @.(p;)=v; for all 0 <i<n—1 (where we define v, = w). Clearly, ¢,
carries the boundary path (pg, p1)(P1, P2)- - - (Pa=1, Po) Onto the path a.

Let K be a complex with basepoint w, let « be a closed path in K at w, and
let @,: D(«) » K be the attaching map. Let 2 be the partition of the disjoint
union Vert(K)uU Vert(D(e)) arising from the equivalence relation which
identifies each p; with @,(p;). Then the quotient complex K, = (K L D())/?
is called the complex obtained from K by artaching a 2-cell along «. Notice
that all the p; in D(x) have been identified with vertices of X, but the “interior”
vertices 7, go, 41, ... are untouched. Thus, if  is the full subcomplex of K,
with vertices {r, 4o, 41, ...}, then @ is simply connected. On the other hand,
if we delete the vertex r, and if Q is the full subcomplex with vertices

{qO, di, -"}9 then 7E(Q’ ‘Io) =7
Theorem 11.63. Let « be a closed path at w in a complex K, and let K, be
obtained from K by attaching a 2-cell along a. Then

n(K,, w) = n(K, w)/N,
where N is the normal subgroup generated by [a].
Proof. Define L, to be the full subcomplex of K, with vertices Vert(K)u
{dos---»qn-1}, and define L, to be the full subcomplex with vertices {r, w,

dos---»qdn-1}- Note that L, UL, = K, and that L, n L, is the 1-complex
with vertices {w, go, ..., q,—1}- Since there is just one reduced circuit, it
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follows that n(L, nL,,w)=~Z. Now L,, being isomorphic to the full
subcomplex of D(e) with vertices {r, 4o, ..., 4,_1 }, is simply connected. The
inclusion j: K = L, induces an isomorphism (K, w) —» n(L, w). Define a
function ¥ : Vert(L,) — Vert(K) by ¥(v) = v for all v € Vert(K) and ¥(q;) =
@,(p;) for all i. It is easy to check that y is a simplicial map and that
Jjw:L; —» L, is homotopic to the identity. Since = is a functor, the induced
map ¥, is the inverse of j,. The proofis completed by Corollary 11.62, for the
image of the infinite cyclic group n(L, N L,, w) is generated by [«]. W

The next construction is needed to attach a family of 2-cells.

Definition. Let {K;: i € I} be a family of complexes, and let w; be a basepoint
in K;. The wedge \/;.; K; is the disjoint union of the K; in which all the
basepoints w; are identified to a common point b.

For example, a bouquet of circles is a wedge of 1-complexes. Theorem
11.54 shows that n(\/;.; K;, b) = ;. n(K;, w).
The next theorem was used in the proof of the Kurosh theorem.

Theorem 11.64. Given a group G, there exists a connected 2-complex K with
G = (K, w).

Proof. Let (X|A) be a presentation of G and let B be a bouquet of | X| circles
having vertices {w, u¥, v™*: x € X}. If each x € X is identified with the path
(w, u*)(u*, v*)(v*, w), then each relation in A may be regarded as a closed
path in B at w. For example, xyx ™' is viewed as the path

(w, u¥) (>, v*) (0%, w)(w, u”) (W, vV*)(V7, w)(w, v°) (%, u*)(u*, w).

For each path aeA, let the triangulated polygon D(x) have vertices
{r% P8, P, ..., 4%, 45, ...}, and let @,: 0D(x) — B be the attaching map. Let
D = \/qe4 D(e) (in which all the vertices pg are identified to a common base-
point, denoted by p,). If 0(\/,ca D(®)) is defined to be the full subcomplex
with vertices all the pf, then there is a simplicial map ¢: d(\/,ca D(®)) » B
with @|0D(x) = ¢, for all « € A. Define K as the quotient complex of the
disjoint union B u D in which p, is identified with w and, for all « € A and all
i > 0, each vertex pf is identified with ¢,(pf). We have “draped” 2-simplexes
on a bouquet of circles. Thus,

Vert(K) = Vert(B) u ( U {45, 43, }>

Let T be the tree in K with vertices {w, u™: x € X}, let Q* be the full sub-
complex with vertices {g%, g%, ...}, and let 0" be the full subcomplex with
vertices {r® qg, q%,...}. Define L, to be the full subcomplex with vertices
Vert(B) U ({J e AVert(Q“)) and define L, to be full subcomplex with vertices
Vert(T) U(U Vert(Q%)). Each Q“ is simply connected, so that (with suitable
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basepoints #) 7(L, w) = n(\/, 0% #), by Theorem 11.34, and n(\/ 0% #)
%, (0% #) =1, by Theorem 11.54; thus, n(L,, w) = 1. We now show that
the inclusion j: B < L, induces an isomorphism n(B, vy) = 7(L1, vo). Define
a function y: Vert(L,) — Vert(B) by y(v) = v for all v € Vert(B) and y(g?) =
@.(pf) for all « and i. It is easy to see that i is a simplicial map and that
j: L, > L, is homotopic to the identity. Since = is a functor, the induced
map V¥, is the inverse of j,. Now LyuL, =K and L; n L, = Tu(\/,0%,
so that m(L, N Ly, w) = n(\/, Q% #) = %,7n(Q% #) is free of rank |A|.
By Corollary 11.62, n(K,w)= n(L,, w)/N, where N is the image of
n(Ly 0 L,, w). Therefore, n(K, w) = G, for they have the same presentation.
|

Definition. A group G is finitely presented (or finitely related) if it has a
presentation with a finite number of generators and a finite number of
relations.

There are uncountably many nonisomorphic finitely generated groups, as
we shall see in Theorem 11.73. Since there are only countably many finitely
presented groups, there exist finitely generated groups that are not finitely
presented. We shall give an explicit example of such a group at the end of this
chapter.

Corollary 11.65. A group G is finitely presented if and only if there is a fzmte
connected 2-complex K (i.e., Vert(X) is finite) with G = n(K, w).

Proof. By Tietze’s theorem, n(K, w) is finitely presented. Conversely, if G
is finitely presented, then the complex K constructed in the theorem is
finite. &

There is a construction dual to that of pushout. A selution of the diagram

A

(* ‘{"

B— G

[]
is a triple (D, ', ') making the following diagram commute:
5

D—— 4

B—ﬂ)G.

Definition. A pullback of diagram (+) is a solution (D, o, §') that is “best” in
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the following sense: if (X, ", f”) is any other solution, then there is a unique
homomorphism 6: X —» D with «” = «’0 and " = §'6.

1t is easy to see that if (D, o, f') is a pullback, then D is unique to isomor-
phism. One often abuses notation and calls the group D the pullback of
diagram (). Some properties of pullbacks are given in Exercises 11.75 and
11.76 below.

Pullbacks have already arisen in the discussion of the projective lifting
property in Chapter 7: given a projective representation t: Q - PGL(n, C),
then the pullback U of = and the natural map n: GL(n, C) - PGL(n, C) is a
central extension which allows 7 to be lifted:

U—V>Q

GL —— PGL.

EXERCISES

11.71. Prove that every finitely generated free group is finitely presented.
11.72. Prove that every finite group is finitely presented.

11.73. Prove that every finitely generated abelian group is finitely presented.

11.74. Prove that a group having a presentation with a finite number of relations is
the free product of a finitely presented group and a free group.

11.75. Let A and B be subgroups of a group G, and let « and § be the respective
inclusions. Show that 4 ~ B is the pullback.

11.76. Prove that the pullback of diagram (x) always exists. (Hint. Define D =
{(a, b)|p(b) = a(a)} < A x B, define «: (a, b}~ b, and define B'": (a, b)r> a.)

Amalgams

Amalgams arise from the special case of the van Kampen theorem in
which the maps j;,: n(L, n L,, w) > n(L;, w) induced from the inclusions
jitLin Ly & L; (for i = 1, 2) are injections. That an inclusion L < K need
not induce an injection between fundamental groups can be seen when K is
simply connected and L is not. The advantage of this extra hypothesis, as
we shall see, is that a normal form is then available for the elements of the
pushout,

Definition. Let 4, and 4, be groups having isomorophic subgroups B, and
B,, respectively; let 6: B; » B, be an isomorphism. The amalgam of A, and
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A, over 0 (often called the free product with amalgamated subgroup) is the
pushout of the diagram

B, —l’ Ay,

Jjé

A,

where i and j are inclusions.

Recall that pushouts are the diagrammatic version of unions.

We proved in Theorem 11.58 that the amalgam exists: it is (4; * 4,)/N,
where N is the normal subgroup of A, * A, generated by {b6(b™'). b € B, };
moreover, any two pushouts of the same data are isomorphic. We denote the
amalgam by

Ay %9 A,

(a less precise notation replaces the subscript 6 by the subscript B;). An
amalgam, as any pushout, is an ordered triple (4, %4 A,, 4;, 1,); the maps
A A; > A %4 A, are given, as in Theorem 11.58, by a;—a;N.

1t is clear that each b € B; is identified in 4, %, 4, with 8(b); it is not clear
whether other identifications are consequences of the amalgamation. For
example, is it obvious whether the maps A; are injections? Is it obvious
whether 4, *4 A, # 1? These questions can be answered once we give a more
concrete description of an amalgam in terms of its elements.

For each i = 1, 2, choose a left transversal of B; in A4; subject only to the
condition that the representative of the coset B; is 1. For a € 4;, denote the
chosen representative of aB; by I(a), so that a = [(a)b for some uniquely deter-
mined b € B; (depending on a).

Definition. A normai form is an element of 4, * 4, of the form

I(a))ay)... {a,)b,

where b € B;, n > 0, the elements I(a;) lie in the chosen transversals of B; in
A4, , and adjacent l(a;) lie in distinct A4,.

In the special case that B, (and hence B,) is trivial, the amalgam is the free
product and every reduced word is a normal form.

Theorem 11.66 (Normal Form). Let A, and A, be groups, let B; be a subgroup
of A; fori= 1,2, and let 6. B, - B, be an isomorphism. Then for each element
WN € A, %4 A,, there is a unique normal form F(w) with wN = F(w)N.

Proof. By Theorem 11.58, 4, %, A, = (A, * A,)/N, where N is the normal
subgroup of A, * A, generated by {b6(b7'): b € B,}. Each coset of N has a
representative w = x,y,...X,y, in the free product, where x; € A, y; € Az,
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and only x; or y, is allowed to be 1. We now give an algorithm assigning a
normal form F(w) to each coset wN in the amalgam such that F(w)N = wN.

Letw = x,y,.Ify;, =1, then x; = l(x,)b = F(w), where b € B,, and we are
done. If x, =1, then w = y, = I(y,)b for b € B, and so I(y,)07(b) = F(w) is
anormal form in wN. If x, # 1 and y, # 1, then

X1y = l(x1)by, = U(x,)0(b)y, in Aj%gAy;
but z = 6(b)y, € A4,, so that z = l(z)b, for some b, € B,. Therefore,
x1y1 = 1) l(2)b, = I(x,)l(2)07" (b;) in A% A,

and the last element is a normal form F(w) in wN. This procedure can be
iterated, ending with a normal form. (Observe that the penultimate step
produces a last factor b lying in either B, or B,; if b € B, one has a normal
form; if b € B,, then it must be replaced by 87'(b) € B,.)

The van der Waerden trick will prove uniqueness of this normal form by
constructing a homomorphism ® with domain A4, *, 4, which takes different
values on different normal forms: if F(w)# F(w’), then ®(F(w)N) #
®(F(w')N). Let M be the set of all normal forms; by Theorem 11.52, different
normal forms have different spellings. If a € 4, define a function |a: M - M
by

lal(l(a;)l(ay)-. . (a,)b) = F(al(a,)l(a;)...1(a,)b)
(if @ and I(a,) lie in distinct A;, then I(a,)l(a;)...l(a,)b and also
al(a;)l(a,)...l(a,)b have the form x,y,...x,y,, and the algorithm F can be
applied; if a and I(a,) lie in the same A;, then the algorithm applies to
[al(a,)]l(a,)... l(a,)b). Clearly |1] is the identity function on M, and
consideration of several cases (depending on where initial factors live) shows
thatifa,a’ € 4, U 4,, then

lal o |a’| = |aa’l.
Therefore, [a™| = |a| ™ and each |a| is a permutation of M. If S, is the group
of all permutations of M, then a+|a| is a homomorphism A4; — S, for
i =1,2. In particular, if b€ B, < A, |b|: M — M is defined and |b| = |0(b)|.
The defining property of free product allows us to assemble these two
homomorphisms into a single homomorphism

@: A1 * Ay > Sy

with @(l(a,)l(az). .. 1(a,)b) = |(a,)] o [l{a)| o o |I(@,)| o |b]. For all be By,
[b| = |6(b)| gives bO(b~')eker ¢, and so ¢ induces a homomorphism
®: A, %y A, = (A, % A,)/N > Sy, by

@((a;)l(ay)-- - Ua,)bN) = ¢(l(a;)l(a,)... l(a,)b)
=|la)l o [laz) o -~ o |l(a,)] o [b].

Now  [la,)] o |l(ay)l o --- o [l(@,)] o [bI(1) = I(a;)l(a;)... a,)b;  that i,
®WN): 1 — F(w). Thus, if G(w) were another normal form in wN, then
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®(WN): 1+— G(w), and so G(w) = F(w). Therefore, for each element wN of the
amalgam, there is a unique normal form F(w) with wN = Fw)N. ®

Theorem 11.67. Let A, and A, be groups, let B, and B, be isomorphic
subgroups of A, and A,, respectively, and let 0: B, — B, be an isomorphism.

(i) The (pushout) homomorphisms A;: A; - A, x4 A, are injections fori=1,2.
(i) If A; = A;(4;), then (A}, Ay) = Ay *q Ay and Ay N Ay = A1(B;) = A,(By).

Proof. (i) If a;eA; is not 1, then F(g)# 1 and ®(a;N)#1; but
®(a;N) = pAla;) # 1 implies 4,(a;) # 1, and so A, is an injection.

(i) It follows from A, *, A, = (4, * A,)/N that (A, A%> = A ;%4 A,. If
u € A} N A}, then there are q; € 4; with a; N = u = a, N. Now F(a,) = l(a,)b
and F(a,) = l(a,)b’, so that the uniqueness of the normal form gives
l(a,) = l(ay) and b = b". But l(a,) = l(a,) can occur only when both are 1, lest
we have equality of the distinct normal forms I(a,)!(a,) and l(a,)!l(a,). Hence
bN=a,N=u=a,N=0b'N, and uei,(B,)=1,(B,). For the reverse
inclusion, it is easy to see thatif be B;, then bN e 4, n 4,. M

In view of the last theorem, it is customary to regard the elements of
A, *9 A, as normal forms and the maps A; as inclusions. The statement of
Theorem 11.67 now simplifies to {A4,, 4,> = A, %4 A, and 4, "4, =B, =
B,. This is the point of view taken in the next corollary.

Corollary 11.68. Let E = A, x4 A, have amalgamated subgroup B. If y,, ...,
y»€ E with y; € A; , where i; # i;,;, and if y; ¢ B for all j, then y, ...y, # 1. |

Proof. Immediate from the normal form theorem. ®

Theorem 11.69 (Torsion Theorem). An element in A, =, A, has finite order if
and only if it is conjugate to an element of finite order in A or in A,.

Proof-. This follows easily from the normal form theorem.

We are now going to apply amalgams to prove some imbedding theorems.
The following two theorems are due to G. Higman, B.H."Neumann, and
Hanna Neumann.

Theorem 11.70 (Higman, Neumann, and Neumann, 1949). Let G be a group
and let ¢: A — B be an isomorphism between subgroups A and B of G. Then
there exists a group H containing G and an element t € H with

p@=t"tatr  forall aeA.

Proof. Let {u) and {v) be (disjoint) infinite cyclic groups, and define groups
K, =G+{w and K, =G+ <{v).
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If L, = (G, udu™'> < K,, then
L, = G+u'Auy,
for there can be no equation in K, a fortiori in L,, of the form
giutaug,utau. . gutau=1.
Similarly, if L, = (G, vBv™!Y < K,, then
L, =~ G+v !B

By Exercise 11.70, there is an isomorphism 8: L, — L, with 8|G the identity
and 6(u"lau) = v p(a)v.

Define H = K, *4 K,. By Theorem 11.67, H contains a subgroup isomor-
phicto L; (and G < L,). Foreacha e 4, u™'au = v p(a)v, so thatif t € H is
defined by t = uv™, then

tlat=¢(@ forall ac4d. ®H

If G is a countable group, then G is a homomorphic image of a free group
F of countable rank: G =~ F/R. By Theorem 11.48, F can be imbedded in a
free group F* of rank 2. Were R a normal subgroup of F* (it is not!), then
G = F/R would be imbedded in a group F*/R having two generators. This
proof is fictitious, but the theorem is true.

Theorem 11.71 (Higman, Neumann, and Neumann, 1949). Every countable
group G can be imbedded in a group H having two generators.

Remark. This follows from Exercise 3.28 when G is finite.

Proof. Let g, =1 and let gq, g4, ---, g, --- be a list of all the elements of G.
Let H = G= F, where F is free with basis {x, y}. Consider the subgroups of
H:
A=y, x yx, ..., xT"yx" LD
and
~ B=4%g1y XY, ..., Gy XY, D
Now A4 is free with basis the displayed generators, by Exercise 11.45, and the
map ¢: A - B given by
@ x"yx"—> g,y "xy" forall n>0
is easily seen to be an isomorphism. Theorem 11.70 gives a group H®
containing H and an element ¢t € H® such that
p@=t1tat forall aeA.

We claim that (y, t) < H® contains G, and this will complete the proof. Now
x =) =t"yte (y,t>. Moreover, t 1 x""yx"t = (x "yx") = g,y "xy",
and this shows that g, e {x, y,t) = (y,t) foralln>1. B



406 11. Free Groups and Free Products

Corollary 11.72. If G is a countable group, then there is a 2-generator group E
containing it such that, for all n > 1, E contains an element of order n if and
only if G contains an element of order n.

Proof. Observe, in the proof of Theorem 11.71, that the 2-generator group
containing G is obtained in two steps. First, we formed the amalgam H =
G *, F, where F is free. By the torsion theorem (Theorem 11.69), the only
integers n which are orders of elements of finite order in H are those arising
from G. The second step uses Theorem 11.70, where the ultimate group is a
subgroup of an amalgam K, *, K,, where each K; >~ H % Z, and the torsion
theorem applies again. W

Theorem 11.73 (B.H. Neumann, 1953). There are uncountably many non-
isomorphic finitely generated groups.

Proof (Schupp). If S is a set of primes, define G(S) = Y. ,.5Z,; as in Corollary
11.72, let H(S) be a 2-generator group containing G(S) which has an element
of prime order p if and only if p € S. It follows that if T is a subset of the
primes, then T # S implies H(T) # H(S), for there is a prime p in T that is
not in S (or vice versa); thus H(T) has an element of order p and H(S) does.
not. As there are uncountably many subsets of the primes, there are thus
uncountably many nonisomorphic 2-generator groups. W

EXERCISES

11.77 (Schupp). Prove that Corollary 11.68 implies the normal form theorem (Theo-
rem 11.66).

11.78. For every torsion-freec group G, there exists a (necessarily simple) group H
containing G which has exactly two conjugacy classes. (Compare Exercise 3.4.)

11.79. Prove that there exists a 2-generator group G which contains an isomorphic
copy of every countable abelian group. (Hint. Exercise 10.31.)

11.80. Prove that there is a 2-generator group containing an isomorphic copy of
every finite group.

11.81. Prove that a finitely presented group can be imbedded in a finitely presented
group having two generators.

11.82. Consider the diagram
B —— 4,.

i

4,

If A, and A, are finitely presented and if B is finitely generated, then the
pushout is finitely presented.
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HNN Extensions

There is another construction, closely related to amalgams, that we will use
in the next chapter to prove that there exists a finitely presented group having
unsolvable word problem.

We adopt the following notation. If a group G has a presentation (X|A),
then

G® = (G: Y|A)

denotes the group with presentation (X u Y|A u A’), where it is understood
that X and Y are disjoint. In particular, if Y = ¢, then we are merely
adjoining additional relations to G, so that G is a quotient of G. For
example, in the notation of Theorem 11.58, the pushout P has the presenta-
tion (B * Cli(a)j(a™!), a € A).

Definition. Let G be a group with isomorphic subgroups 4 and B, and let
@: A — B be an isomorphism. Then the group having the presentation
(G; plp~tap = ¢(a) for all a € A)

is called an HNN extension of G; it is denoted by G Q, 4 or, less precisely, by
G @ A. The group G is called the base and the generator p is called the stable
letter of G 0, A.

The next theorem shows that HNN extensions appear in Theorem 11.70 of
Higman, Neumann, and Neumann.

Theorem 11.74. The subgroup {G, t) < K %, K, in Theorem 11.70 is an HNN
extension with base G and stable letter t.

Proof. Let us recall the notation of Theorem 11.70. Begin with a group G and
two subgroups 4 and B isomorphic via an isomorphism ¢: 4 — B. Let K; =
Gx(u), K,=G#<), L =<G u*4Au) <G=<{u), L, ={G, v 'Bv) <
G+ (v, and 0: L, — L, the isomorphism which carries each g € G into itself
and which sends u~'au into v *¢(a)v. If a presentation of G is (X|A), then
Theorem 11.58(ii) says that a presentation of the amalgam K 4 K, is

(X, u,v|A, utau = v p(a)v for all a e A).
As t = uv™!, we see that a presentation for (G, t) is
(X, t|A, t7tat = @(a) for all a € A);

that is, {(G,t> is an HNN extension with base G and stable letter t. W
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Note the resemblance between amalgams and HNN extensions. Both be.
gin with a pair of isomorphic subgroups; the amalgam is a group in which the
two subgroups are made equal; the HNN extension is a group in which the
two subgroups are made conjugate. This observation is important in further
study (see Dicks and Dunwoody, Lyndon and Schupp, Serre (1980), and
Stallings).

Here is a geometric context in which HNN extensions arise. Consider a
connected topological space X with homeomorphic disjoint subspaces 4 and
B, and let ¢: A — B be a homeomorphism. We are going to “add a handle”
to X. Define a new space X% as the quotient space of the disjoint union
X U (A4 x I)(where Lis the closed unit interval) by identifying each a € 4 with
(a, 0) and each ¢(a) with (a, 1). The picture is as shown in Figure 11.8.

This construction can be carried out for complexes: the role of the closed
unit interval I is played by the 1-simplex (also denoted by I) having two
vertices 0 and 1. If we denote the vertices in Vert(4 x I) by a x O and a x 1,
where a € Vert(4), then A x Iis made into a complex by “triangulating” it: if
dim(A) = n, then dim(4 x I) =n + 1 and its (n + 1)-simplexes are defined to
be all subsets of the form

{ag x0,...,a;,x0,a;,x1,...,a, x 1},

where {ay, ..., a,} is an n-simplex in 4 and 0 < i < n. Notice that if {a, b}
is a 1-simplex in A4, then 4 x I has edges (a x 0,a x 1), (b x 0,b x 1),

Figure 11.8
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(@ax0,bx0),(ax1>bx1),and (a x 0, b x 1). It follows easily that 4 x I
is connected if 4 is connected.
For example, the cartesian product I x I has 2-simplexes pictured below.

0, 1) 11

0,0) {1, 0)

Remark. If « = (w, a,)...(a,, w) is a closed path in A4, then « x 0 and « x 1
are closed paths in A x I, where a x i = (w x i, a; x i)...(a, x i, w x i) for
i € {0, 1}. Moreover, if § is the edge (w x 1, w x 0), then

ax0~pax 1B

It is now easy to show that the injection j: A - A x I, given by ar—a x 0,
induces an isomorphism

Jem(A, w3 a(A x I w x 0).

Definition. Let A and B be disjoint subcomplexes of a connected complex
K, and let ¢: A > B be an isomorphism. The complex obtained by adding
a handle to K is

K% =(Ku(4x D)2

where 2 identifies a € Vert(4) with a x 0 and ¢(a) with a x 1.

Theorem 11.75. Let K be a connected complex with disjoint isomorphic sub-
complexes A and B; let w e Vert(A) be a basepoint, and let ¢: A — B be an
isomorphism. If K< is obtained from K by adding a handle according to this
data, then n(K®, w) is an HNN extension with base n(K, w).

Remark. It is this result that suggests the notation G @ 4 for HNN exten-
sions.

Proof. Since K is connected, there is a path y in K from w to ¢(w); since 4,
hence A x I, is connected, there is a path f in the handle from ¢(w) to w.
Define H as the union of y and the handle (regard a path as the 1-complex
consisting of its edges and their vertices); note that K uH = K® and
KnH=AuBuy.

The van Kampen theorem (which applies because K n H is connected)
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Figure 11.9

shows that (K%, w) is the pushout of the diagram
n(AuBuy,w) —— n(H, w).

(K, w)

Since AN (Buy) =1y, which is simply connected, Corollary 11.61 gives
T(AuBuy, w) 2 (4, wxn(Buy,w). Now H=9yfuU(H —1y), so that
n(H, w) = n(H — vy, w)= (B, w), by Corollary 11.61. As A and B are disjoint,
H—y=~ A x1 where A is identified with 4 x 0 and B is identified with
A x 1. Thus, each closed path « at w in A is identified with the closed path
o x 0 atw x 0. By the remark above,

@ x 0 f7Hax DB =By (e x )y~ B,
where y(x x 1)y™! is a closed path at w x 0 in Buy. But a x 1 = ¢« (be-
cause a = ¢(a) in K®), so that « = & x 0 = (yB) "1ypay~'(yB). Since yB is a
loop,
n(H, W) = ﬂ(H -7 w)*n(Yﬁ’ W) = n(A X I, W)* <t>,
where t = [yf] is a generator of the infinite cyclic #(yg, w). Finally, the injec-
tion j: a—a x 0 induces a isomorphism
Jeim(A, w) 3 (A x L w x 0).
Thus, n(H, w) = n(4, w)*<t), and [a] =t [a]t, where ¢ :n(4, w)—
n(B U y, w) is induced by the isomorphism ¢. Now use the presentation given
in van Kampen’s theorem. M
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Notice that the definition of HNN extension involves two isomorphic sub-
groups A and B of a group G. In contrast to the geometric situation in
Theorem 11.75, there is no hypothesis that the subgroups be disjoint in any
sense; indeed, A = B is allowed.

We are going to generalize the definition of HNN extension so that it
involves a set of stable letters.

Definition. Let a group E have a presentation (X|A), and let {p;:ie I} be a
nonempty set disjoint from X. Assume that there is an index set J and, for
each i € I, there is a family {a;, b;: j € J} of pairs of words on X. Then the
group E? has a presentation with base E and stable letters {p;: i e I} if

E® = (E; p;, i € I|p; ‘ayp; = by for all i, j).

We allow a; and b; to be 1 so that the number of “honest” relations
involving p; (i.e, both a; and b; distinct from 1) may be distinct from the
number of honest relations involving p, for some k # i.

Lemma 11.76. If E® has a presentation with base E and stable letters
{p;:ie I}, then (p;:iel) < E%is a free group with basis {p;:ie I}.

Proof. Let {z;:ie I} be a set and let F be the free group with basis {z;: i e I}.
If E has the presentation E = (X|A), then E® has the presentation

E® = (X, p;, i e I|A, pitayp, = by for all i, ).

Define a homomorphism ¢: E? - F by ¢(x) = 1 for all x € X and ¢(p;) = z;
for all i; note that ¢ is well defined because it sends all the relations into 1.
The lemma now follows from Exercise 11.8.

Notation. Let E? have a presentation with base E and stable letters {p;: i  I}.
For each i, define two subgroups of E:

A;={ayjel> and B, =<(b;jeJ;

now define

A=<JA4> and B=(B.

Definition. A group E® having a presentation with base E and stable letters
{pi:iel} is an HNN extension if, for each i, there is an isomorphism
@;: A; = B; with ¢y(a;) = by for all j.

If there is only one stable letter p, then we can recapture the original
definition of HNN extension by setting {a;: j € J} = 4 (there is now no need
to have the first index {) and b; = ¢(a;) for all j.

ExampLE 11.10. I E is a group and F is a free group with basis {p;: i € I} then
E *F is an HNN extension of E with stable letters {p;: i & I}.
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This is the “trivial” example in which all a;; and b; are 1; of course, E® =
E x {t) = E x Z in this case.

ExampLE 11.11. If E = (X|A) and E® = (E; t|t ™  w;t = w;, i € I), where the o,
are words on X, the E? is an HNN extension with base E and stable letter ¢,

In this case, A = B = {(w;, i€ I), and the isomorphism ¢: A — B is the
identity.

ExampLE 11.12. Let E be the free group with basis {w, x}, and let E? have the
presentation

1

E®=(w,x,y,zly 'xy =w, y tw lxwy = xw™, z7lwxz = w).

Now E? has a presentation with base E and stable letters {y, z}. The various
subgroups are: A, = {x, w 'xw); B, = (w, xw™'); A, = {(wx); B, = {(w).
There is an isomorphism ¢,: A,— B, with x—w and w™'xwi>xw™,
because both groups are free with bases the displayed generating sets; there is
also an isomorphism ¢,: A, — B, with wx — w, because both 4, = {wx) and
B, = {(w) are infinite cyclic. It follows that E? is an HNN extension with base
E and stable letters {y, z}.

There are two natural questions about an HNN extension E®? of E. Is E
imbedded in E®? Is there a normal form for the elements of E%?

The next lemma shows that an HNN extension with several stable letters
can be viewed as the end result of a sequence of HNN extensions, each
involving a single stable letter.

Lemma 11.77. If E% is an HNN extension of E with stable letters {p,, ..., p,},
then there is a group E? which is an HNN extension of E with stable letters
{P1s.--» Pu—y } Such that E% is an HNN extension of E" with stable letter p,.

Proof. Define
E" =(E;py,..., Paylpitagpi=by 1 <i<n—1,jeJ). @

Theorem 11.78. If E® is an HNN extension with base E and stable letters
{P1,-.-s Pn}» then E can be imbedded in E®. In particular, if A and B are
isomorphic subgroups of a group E and if ¢: A — B is an isomorphism, then
E<Eq,A.

Proof. We prove the theorem by induction on the number » of stable letters.
If n = 1, the result follows from Theorem 11.74. For the inductive step, the
lemma gives E? an HNN extension with base E? and stable letter p,. The
inductive hypothesis gives E < E”, and the step n = 1 gives E' < E%. @
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Corollary 11.79. If K is a connected complex with basepoint w and if K< is
obtained from K by adding a handle, then

(K, w) < n(K®, w).
Here is a sharper version of Theorem 11.71.

Corollary 11.80. Every countable group G can be imbedded in a 2-generator
group H = (t, x> in which both t and x have infinite order.

Proof. Let F be a free group with basis {x, y}. Enumerate the elements of
G:go=1,94,..., 8y -.., and define

H=(G*F;t|t"'x"yx"t = g,y "xy", n = 0).

The group H thus has a presentation with base G = F and stable letter t. In
the proof of Theorem 11.71, we saw that

n

A=y, x7tyx, ..., x "yx", ...>

and

B={xgy7" %y, .00 gy "xY" D
are each free with bases the displayed generators; there is thus an isomor-
phism ¢: A —> B with ¢(x)=y and @(x"yx") =g,y "xy" for all n> 1.
Therefore, H is an HNN extension of G*F, so that G < G*F < H, and
G < {t,x) < H, as in the proof of Theorem 11.71. Finally, x € F < H has
infinite order, for F is free, while ¢ has infinite order, by Lemma 11.76. ®

Notation. Let F be a free group with basis X, let N be a normal subgroup of
F, and let G = F/N. If w and o’ are (not necessarily reduced) words on X,
then we write
w=w inG
if oN = o' N in F/N. We write
w=o

if w and o’ have exactly the same spelling.

For example, if X = {a, b, ¢}, ® = ac and o’ = abb™'¢, then w = @ in G
(even in F), but o # o'.

In this new notation, if w is a word on X = {x,, ..., x,}, then a word B is
a subword of o if there are possibly empty words o and y with o = affy. A
word w involves x; if either x; or x;! is a subword of w.

Definition. Let E? be an HNN extension with base E = (X]A) and stable
letters {p;: i € I}. A pinch is a word of the form

pigp: %
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where g is a word on X such that the element pfgp; “liesin 4; < Aife = —1
or the element pfgp; °liesin B, < Bife = +1.

Theorem 11.81 (Britton’s Lemma, 1963). Let E® be an HNN extension with
base E = (X|A) and stable letters {p;iel}. If wis a word with w = 1 in E®
and which involves at least one stable letter, then w has a pinch as a subword,

Proof (Schupp). Assume first that there is only one stable letter p; = p, so that
the presentation of E? is

= (X7 p]A’ p_lajp = bj7jEJ)'

Let 4 and B be isomorphic subgroups of E, and let ¢: A — B be an isomor-
phism, so that the presentation may be rewritten

=(X,plA, p~tap = p(a), a € A).

We may assume that ;
W = goP*gy--- PG,

where n > 1, each ¢; = + 1, and the g; are (possibly empty) words on X.

As in Theorem 11.67, we view the amalgam K, %, K, (where K, =
E«+<{uy, K, = Ex{v)) as having amalgamated subgroup H =K, nK, =
(E,u™'Au) = (E,v ' Bv) satisfying u 'au=v"'p(a)v for all ae A. By
Theorem 11.75, E® can be identified with (E, p)> < K, %y K,, where p = uv™!.
We are going to use the normal form theorem for elements in amalgams as
given in Corollary 11.68.

Return to the word w. Since p = uv™!,

‘ @ = go(uv ™)1 g, (uv™ )2 g, (w1 )3 gs .. (w07 g,
where g; € E. Reassociate w according to the following instructions: assume
that e, ..., ¢; have the same sign, but that el+1 has opposite sign. If ¢; > 0,
reassociate
Gouv™)* gy (up™h) . (o™ )ig (uv ™t
as
(Gow)p™H (g1 ™" ... (gi W) (W g0)u ™

ife; < 0, interchange the symbols u and v in the last expression; continue this
rewriting process if ¢;, 4, ..., €, have the same sign and e, has opposite sign,
until all of w has been reassociated according to this scheme. Note that there
are conjugates v 'g;v or u 'g,u wherever exponents change sign, and that
adjacent factors (in the new association) lie in distinct K;. Since @ = 1 in the
amalgam, by hypothesis, Corollary 11.68 says that at least one of the factors
must lie in the amalgamated subgroup H. Now the factors u*, v?, g;u, g;v,
where e = + 1, do not lie in H = {E, u"'Au) = (E, v Bv), because the sum
of the exponents of 4 or of v in any such word is not 0. Therefore, one of the
conjugates v 'g,v or u"'g,u lies in H. A conjugate v 'g,v arises from an
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element of H = (E, v™'Bv) only when g; lies in B (in the proof of Theorem
11.70, we saw that {E, v™' Bv) = E » v~ ' Bv); of course, v ™' g;v arises in o from
the subword uv™'g;ou"! = pg;p~*; that is, from the pinch p°g;p~¢ with e =
+1. A conjugate u 'g,u arises from an element of H = {E, u"*Au) only
when g, lies in 4; of course, u™g;u arises from vu™'guv™* = p~'g,p; that is,
from the pinch p®g,p~¢ withe = — 1.

The general case follows by induction. As in the proof of Lemma 11.77,
define

E? =(E;pps-- PualPitaypi = by 1 <i<n—1,jel),

and note that E® is an HNN extension with base E’ and stable letter p,. If
® = 1 does not involve p,, then it contains a pinch pfgp; ° for some i < n and
induction completes the proof. If i = n, then the base step of the induction
gives a pinch pZgp,* as a subword of w. If g is a word on X, we are done. If
g involves some p, ..., p,_;, then there is a word g’ on X, namely, a word on
by, j € J, with g = g’ in E”. Thus, gg'~* = 1 in E”, and induction provides a
pinch 7 which is a subword of gg’ . Since ¢'! contains no stable letters, ©
must be a subword of g, as desired. W

Definition. Let E? be an HNN extension with base E = (X|A) and stable
letters {p,, ..., p;}. Aword w on X U {p,, ..., p,} is p;-reduced for some i if it
contains no pinch pfwp; ¢ as a subword.

Note, in particular, that p-reduced words contains no subwords of the
form pfp;e.

Corollary 11.82. Let E® be an HNN extension with base E = (X|A) and stable
letters {p,, ..., p,}. Assume that

&= YopfYy ... PF™ Y, and B =60pft6; ... p/"d,

are pyreduced words for some i, where each ¢;, fi, = +1 and none of the (possi-
bly empty) words y; or 6, involve p;.

If a=f in E®, then m=n, (e,...,e,) = (f1,..-» fy), and the word
PEm Y07  prin is a pinch.

Proof. Since af™' =1 in E® Britton’s lemma says that the word of™!
contains a pinch as a subword. As each of « and B (hence f7!) are p;-reduced,
the pinch must occur at the interface; that is, the subword pf=y,,8,  p;/» is a
pinch. It follows that the exponents e, and —f, have opposite sign, and so
en=f,

The proof is completed by induction on max{m,n}. In the pinch
PEm Ym0yt pi 7, Britton’s lemma says that

)6t = alft...ale if e, = —1,
mon = \ph bl if e, = +1,

iy e
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where a; € A;, b;€ B,and h, = +1.Ife,, = —1,
PEmmOy Pl = pital, - agp;
= (v ag,p) (7 4 py) - (pi* afps)

= bh‘ bht

yy® te*
We have eliminated one p; from « and one from S, and so the remainder of

the proof follows from the inductive hypothesis. The proof in the other case
= +1is similar. &

The normal form theorem for HNN extensions has its most succinct state-
ment in the special case when there is only one stable letter; the statement
and proof of the generalization for arbitrary HNN extensions is left to the
reader.

Theorem 11.83 (Normal Form). Let E® be an HNN extension with base
= (X|A) and stable letter p. Then each word w on {X, p} is equal in E® to a
p- reduced word
Wop 1C01-~-I7e"60n;

moreover, the length n and the sequence (e, ..., e,) of exponents are uniquely
determined by o.

Proof. If o contains a pinch = as a subword, then the relations in E® allow
one to replace 7 by a subword involving two fewer occurrences of the stable
letter p. The uniqueness of the length and exponent sequence follow at once
from Corollary 11.82.

It follows from Theorem 11.73 that there exist finitely generated groups
that are not finitely presented, for there are only countably many finitely
presented groups. Here is an explicit example -of such a group.

Lemma 11.84. If a group G has a presentation

(xl’-“a xmlph P2s-+-s Pns )

as well as a finite presentation

(yla ey Yklol, 02,--~, o'r),

then all but a finite number of the relations p, = 1 in the first presentation are
superfluous.

Proof. Let G, be the group defined by the first presentation, let G, be the
group defined by the second presentation, and let ¢: G, — G, be an isomor-
phism with inverse V. Since Y/(g;) = 1 in G, for each i, it is a word on (finitely
many) conjugates of p,’s; as there are only finitely many o;, only finitely many
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p, suffice to prove all Y(s;) = 1. For notational convenience, let us denote

these by P1s P2s -5 Pn-
Since ¢(p,) = 1 in G, for each n,

(D(Pn) = co,,(ol, 025405 0',),

where o, is a word on conjugates of ¢,, 05, ..., 6,. Therefore,

Pn = ¥0(p) = Y(@y(0y, -, 0) = D, (0)), -, Y(a)).

But this equation says that every relation p, lies in the normal subgroup
generated by p,, p,, - .., py, which is what is to be proved. B

The following explicit example was found by W.W. Boone.

Theorem 11.85. Let F be the free group with basis {a, b}, and let its commuta-
tor subgroup F’ be free with basis {®,, ..., w,, ...}. Then the group G having
the presentation

G=(ab,plpwp=0w,n=x1)
is a finitely generated group that is not finitely presented.
Proof. Recall first that Theorem 11.48 shows that F’ is a free group of infinite

rank. Were G finitely presented, then the lemma would say all but a finite
number of the relations could be deleted; that is, there is some N with

G=(a,b, P|P—1(D1P =Wy,.-., P_le—lp = Wy_1).

The displayed presentation exhibits G as an HNN extension with base F =
{a, b and stable letter p. Since p"'wyp = wy in G. Britton’s lemma provides
aword fon<{wy,...,wy_,» With wy = fin F = {a, b), and this contradicts
the fact that {wy, ..., wy) is a free group with basis {w,, ..., wy}. B

EXERCISES

11.83. Let a € G have infinite order. Show that there is a group H containing G in
which (a) and {a?) are conjugate. Conclude that a conjugate of a subgroup S
may be a proper subgroup of S.

11.84 (Schupp). Use the normal form theorem for HNN extensions to prove the
normal form theorem for amalgams.



CHAPTER 12
The Word Problem

Introduction

Novikov, Boone, and Britton proved, independently, that there is a finitely
presented group # for which no computer can ever exist that can decide
whether an arbitrary word on the generators of £ is 1. We shall prove this
remarkable result in this chapter.

Informally, if . is a list of questions, then a decision process (or algorithm)
for & is a uniform set of directions which, when applied to any of the ques-
tions in .%, gives the correct answer “yes” or “no” after a finite number of
steps, never at any stage of the process leaving the user in doubt as to what
to do next.

Suppose now that G is a finitely generated group with the presentation

G=(xg,...,%n=1j=1)

every (not necessarily reduced) word @ on X = {x,..., x,} determines an
element of G (namely, wR, where F is the free group with basis X and R is
the normal subgroup of F generated by {r;,j > 1}). We say that G has a
solvable word problem if there exists a decision process for the set & of all
questions of the form: If w is a word on X, is @ = 1 in G? (It appears that
solvability of the word problem depends on the presentation. However, it can
be shown that if G is finitely generated and if its word problem is solvable for
one presentation, then it is solvable for every presentation with a finite num-
ber of generators.)

Arrange all the words on {x,, ..., x,} in a list as follows: Recall that the
length of a (not necessarily reduced) word @ = x¢'...x%m, where ¢; = +1,is
m. For example, the empty word 1 has length 0, but the word xx™* has length
2. Now list all the words on X as follows: first the empty word, then the
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words of length 1 in the order x,, x{%, ..., x,, x; !, then the words of length 2
in “lexicographic” order (as in a dictionary): x;x; < x;x;! < x;%, <+ <
x7tx, < x7tx7t <o < x;'x; !, then the words of length 3 in lexicographic
order, and so forth. Use this ordering of words: wq, @,, @,, ... to define the
list # whose kth question asks whether o, = 1 in G.

We illustrate by sketching a proof that a free group

G=(x1,...,%,| D)
has a solvable word problem. Here is a decision process.

1. If length(w,) = 0 or 1, proceed to Step 3. If length(w,) > 2, underline the
first adjacent pair of letters, if any, of the form x;x;* or x; ! x;; if there is no
such pair, underline the final two letters; proceed to Step 2.

2. If the underlined pair of letters has the form x;x;! or x;!x;, erase it and
proceed to Step 1; otherwise, proceed to Step 3.

3. If the word is empty, write w, = 1 and stop,; if the word is not empty, write
w, # 1 and stop.

The reader should agree, even without a formal definition, that the set of
directions above is a decision process showing that the free group G has a
solvable word problem. ,

The proof of the Novikov—Boone—Britton theorem can be split in half.
The initial portion is really Mathematical Logic, and it is a theorem, proved
independently by Markov and Post, that there exists a finitely presented
semigroup S having an unsolvable word problem. The more difficult portion
of the proof consists of constructing a finitely presented group % and show-
ing that if # had a solvable word problem, then S would have a solvable
word problem. Nowhere in the reduction of the group problem to the semi-
group problem is a technical definition of a solvable word problem used, so
that the reader knowing only our informal discussion above can follow this
part of the proof. Nevertheless, we do include a precise definition below.
There are several good reasons for doing so: the word problem can be prop-
erly stated; a proof of the Markov—Post theorem can be given (and so the
generators and relations of the Markov—Post semigroup can be understood);
a beautiful theorem of G. Higman (characterizing the finitely generated sub-
groups of finitely presented groups) can be given. Here are two interesting
consequences: Theorem 12.30 (Boone—Higman): there is a purely algebraic
characterization of groups having a solvable word problem; Theorem 12.32
(Adian—Rabin): given almost any interesting property P, there is no decision
process which can decide, given an arbitrary finite presentation, whether or
not the presented group enjoys P.

EXERCISES

12.1. Sketch a proof that every finite group has a solvable word problem.
12.2. Sketch a proof that every finitely generated abelian group has a solvable word
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problem. (Hint. Use the fundamental theorem of finitely generated abelian
groups.)

12.3. Sketch proofs that if each of G and H have a solvable word problem, then the
same is true of their free product G = H and their direct product G x H.

12.4. Sketch a proof that if G = (x,, ..., x,|r; = 1,j = 1) has a solvable word problem
and if H is a finitely generated subgroup of G, then H has a solvable word
problem. (Hint. If H = {h,, ..., h,,), write each h; as a word in the x.)

Turing Machines

Call a subset E of a (countable) set Q “enumerable” if there is a computer that
can recognize every element of E and no others. Of course, the nature of such
a well-behaved subset E should not depend on any accidental physical con-
straints affecting a real computer; for example, it should not depend on the
number of memory cells béing less than the total number of atoms in the
universe. We thus define an idealized computer, called a Turing machine, after
its inventor A. Turing (1912—-1954), which abstracts the essential features of a
real computer and which enumerates only those subsets E that, intuitively,
“ought” to be enumerable.

Informally, a Turing machine can be pictured as a box with a tape running
through it. The tape consists of a series of squares, which is as long to the left
and to the right as desired. The box is capable of printing a finite number of
symbols, say, so, S;,-.:, Sp, and of being in any one of a finite number of
states, say, 4o, 41, - - - » y- At any fixed moment, the box is in some state g; as
it “scans” a particular square of the tape that bears a single symbol s; (we
agree that s, means blank). The next move of the machine is determined by
g; and s; and its initial structure: it goes into some state g; after obeying one
of the following instructions:

1. Replace the symbol s; by the symbol s, and scan the same square.
2. Move one square to the right and scan this square.
3. Move one square to the left and scan this square.

The machine is now ready for its next move. The machine is started in the
first place by being given a tape, which may have some nonblank symbols
printed on it, one to a square, and by being set to scan some one square while
in “starting state” g,. The machine may eventually stop (we agree that g,
means “stop”; that is, the machine stops when it enters state q,) or it may
continue working indefinitely.

Here are the formal definitions; after each definition, we shall give an infor-
mal interpretation. Choose, once and for all, two infinite lists of letters:

Sgs S15S25--. and  go, 4, g, - -
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Definition. A quadruple is a 4-tuple of one of the following three types:
q:5;Sk 1
q:5;Rqy,
q:5;Lq;.

A Turing machine T is a finite set of quadruples no two of which have the

same first two letters. The alphabet of T is the set {so, s, ..., Sy} of all
s-letters occurring in its quadruples.

The three types of quadruples correspond to the three types of moves in
the informal description given above. For example, g;s;Rq, may be inter-
preted as being the instruction: “When in state g, and scanning symbol s;,
move right one square and enter state g;.” The “initial structure” of the
Turing machine is the set of all such instructions.

Recall that a word is positive if it is empty or if it has only positive
exponents. If an alphabet A4 is a disjoint union Su T, where S = {s;; i e I},
then an s-word is a word on S.

Definition. An instantaneous description o is a positive word of the form o =
0q;7, where ¢ and 7 are s-words and 7 is not empty.

For example, the instantaneous description o = 5,504, 555, S, is to be inter-
preted: the symbols on the tape are $,5¢55S,5,, with blanks everywhere else,
and the machine is in state g, scanning ss.

Definition. Let T be a Turing machine. An ordered pair (a, §) of instanta-
neous descriptions is a dasic move of T, dencted by

C‘qﬂ,

if there are (possibly empty) positive s-words ¢ and ¢’ such that one of the
following conditions hold:

(i) « = og;5;0’ and B. = oq;s,0’, where g;5;5.9,€ T;

(i) @ = ag;s;5,0" and f§ = as;q;5,0", where q;5;Rq, € T;
(iii) « = og;s; and f = os;q;50, Where q;5;Rq, € T;
(iv) a = os,q;5;0" and f = oq,s;s;0', where g;5;Lq, € T; and

(v) « = g;5;0" and § = q;5,5,0", where g;5;Lq, € T.

If o describes the tape at a given time, the state g; of T, and the symbol s;
being scanned, then § describes the tape, the next state of 7, and the symbol
being scanned after the machine’s next move. The proviso in the definition
of a Turing machine that no two quadruples have the same first two symbols
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means that there is never ambiguity about a machine’s next move: if & — g
and a — y, then § =y.

Some further explanation is needed to interpret basic moves of types (iii)
and (v). Tapes are finite, but when the machine comes to an end of the tape,
the tape is lengthened by adjoining a blank square. Since s, means blank,
these two rules thus correspond to the case when T is scanning either the last
symbol on the tape or the first symbol.

Definition. An instantaneous description « is terminal if there is no instanta-
neous description 8 with « — B. If w is a positive word on the alphabet of T,
then T computes o if there is a finite sequence of instantaneous descriptions
o =g, 0y, ..., o, where o; > o, forall i <t — 1, and o, is terminal.

Informally, w is printed on the tape and T is in starting state g, while
scanning the first square. The running of T is a possibly infinite sequence of
instantaneous descriptions g, — a, — a3 — ***. This sequence stops if T
computes w; otherwise, T runs forever.

Definition. Let Q be the set of all positive words on symbols S = {5, ..., sp}.
If T is a Turing machine whose alphabet contains S, define

e(T) = {w € Q: T computes v},

and say that T enumerates e(T). A subset E of Q is r.e. (recursively
enumerable) if there is some Turing machine T that enumerates E.

The notion of an r.e. subset of Q can be specialized to subsets of the natural
numbers N = {n € Z: n > 0} by identifying each n e N with the positive word
s"*1, Thus, a subset E of N is an r.e. subset of N if there is a Turing machine
T with s, in its alphabet such that E = {n e N: T computes s{*'}.

Every Turing machine T defines an r.e. subset £ = ¢(T) < L, the set of all
positive words on its alphabet. How can we tell whether w € Q lies in E? Feed
g, into T and wait; that is, perform the basic moves g, —> o, > a3 — -
If w € E, then T computes w and so T will eventually stop. However, for a
given w, there is no way of knowing, a priori, whether T will stop. Certainly
this is unsatisfactory for an impatient person, but, more important, it
suggests a new idea.

Definition. Let Q be the set of all positive words on {sq, sy, - .., S)}. A subset
E of Q s recursive if both E and its complement Q — E are r.e. subsets.

If E is recursive, there is never an “infinite wait” to decide whether or not
a positive word w lies in E. If T is a Turing machine with e(T) = E and if T’
is a Turing machine with e(T’) = Q — E, then, for each w € Q, either Tor T”
computes . Thus, it can be decided in a finite length of time whether or not
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a given word o lies in E: just feed w into each machine and let T and T’ run
simultaneously.

Recall the informal discussion in the introduction. If % is a list of ques-
tions, then a decision process for & is a uniform set of directions which, when
applied to any of the questions in %, gives the correct answer “yes” or “no”
after a finite number of steps, never at any stage of the process leaving the
user in doubt as to what to do next. It is no loss of generality to assume
that the list % has been encoded as positive words on an alphabet, that E
consists of all words for which the answer is “yes,” and that its complement
consists of all words for which the answer is “no.” We propose that recursive
sets are precisely those subsets admitting a decision process. Of course, this
proposition (called Church’s thesis) can never be proved, for it is a question
of translating an intuitive notion into precise terms. There have been other
attempts to formalize the notion of decision process (e.g., using a Turing-like
machine that can read a two-dimensional tape; or, avoiding Turing machines
altogether and beginning with a notion of computable function). So far, every
alternative definition of “decision process” which recognizes all recursive sets
has been proved to recognize only these sets.

Theorem 12.1. There exists an r.e. subset of the natural numbers N that is not
recursive.

Proof. There are only countably many Turing machines, for a Turing
machine is a finite set of quadruples based on the countable set of letters
{R, L, sg, S5 ---; 4o, 91, --- - Assign natural numbers to these letters in the
following way:

R—0; L1 qo—2; q1—4 ¢2—6
SoF>3; s;5 s, T

If T is a Turing machine having m quadruples, juxtapose them in some order
to form a word w(T) of length 4m; note that T # T’ implies w(T) # w(T").
Define the Gddel number

4m
G(T) = l;! P,

where p; is the ith prime and ¢, is the natural number assigned above to the
ith letter in w(T). The Fundamental Theorem of Arithmetic implies that
distinct Turing machines have distinct Gddel numbers. All Turing machines
can now be enumerated: Ty, T3, ..., T,, ...: let T precede T" if G(T) < G(T").
Define
E = {ne N: T, computes s7+'}

(thus, n € E if and only if the nth Turing machine cémputes n).
We claim that E is an r.e. set. Consider the following figure reminiscent of



424 12. The Word Problem

the proof that the set of all rational numbers is countable:
To T I T T,

2 3 4 5
4151 4151 4151 4151 2418
| 7 M 7 N
%2 %22 32 U4z
"4 7 e
L2%) *a3 *33
| 7 N

Oya Oag

The nth column consists of the sequence of basic moves of the nth Turing
machine 7, beginning with g, s} It is intuitively clear that there is an enu-
meration of the natural numbers »n lying in E: follow the arrows in the figure,
and put n in E as soon as one reachers a terminal instantaneous description
o,,; in column n. A Turing machine T* can be constructed to carry out these
instructions (by Exercise 12.11 below, such a T* exists having stopping state
qo; that is, terminal instantaneous descriptions, and only these, involve ¢,.)
Thus, E is an r.e. subset of N.

The argument showing that E is not recursive is a variation of Cantor’s
diagonal argument proving that the set of reals is uncountable. It suffices to
prove that the complement

E'={neN:n¢E} = {neN: T, does not compute s7*'}

is not an r.e. subset of N. Suppose there were a Turing machine T’ enumerat-
ing E'; since all Turing machines have been listed, T’ = T,, for some m € N. If
me E' = e(T') = e(T,,), then T,, computes s™*!, and so m € E, a contradic-
tion. if m ¢ E, then m € E and so 7,, computes s™*! (definition of E); hence
me e(T,) = e(T') = E, a contradiction. Therefore, E' is not an r.e. set and E
is not recursive. &

EXERCISES

12.5. Prove that there are subsets of N that are not r.e. (Hint. There are only
countably many Turing machines.)

12.6. Prove that the set of all even natural numbers is r.e.

12.7. Give an example of a Turing machine T, having s, in its alphabet, which does
not compute s;.

12.8. Let Q be the set of all positive words on {sy, s, ..., Sy}. If E; and E, are re.
subsets of Q, then both E, U E, and E, n E, are also r.e. subsets.

12.9. Let Q be the set of all positive words on {s¢, 5y, ..., 5y }. If E; and E, are
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recursive subsets of Q, then both E, U E, and E, n E, are also recursive sub-
sets. Conclude that all recursive subsets of Q form a Boolean algebra.

12.10. If E, and E, are recursive subsets of N, then E; x E, is a recursive subset of
N x N. (Hint. First imbed N x N into N by “encoding” the ordered pair (m, n)
as 2"3")

12.11. If T is a Turing machine enumerating a set E, then there is a Turing machine

T* having the same alphabet and with stopping state g, that also enumerates
E.

The Markov—Post Theorem

We now link these ideas to algebra.

If I' is a semigroup with generators X = {x,, ..., x,} and if Q is the set of
all positive words on X, then the semigroup I' has a solvable word problem if
there is a decision process to determine, for an arbitrary pair of words w,
' € Q, whether w = ' in T'. This (informal) definition gives a precise defini-
tion of unsolvability.

Definition. Let I' be a semigroup with generators X = {x,, ..., x,}, and let Q
be the set of all positive words on X. The semigroup I has an unsolvable word
problem if there is a word we €Q such that {w e Q: w = w, in T’} is not
recursive.

If F is the free group with basis X = {x, ..., x,}, then we shall view the set
Q of all (not necessarily positive) words on X as the set of all positive words
on the alphabet
{0 X7 oy X X7t}

Definition. Let G be a group with presentation (x, ..., x,|A), and let Q be
the set of all words on x,, ..., x, (viewed as the set of positive words on
{x1, x7%, ..., Xp, x;1}). Then G has a solvable word problem if {(weQ: 0w =1
in G} is recursive.

The distinction between r.e. sets and recursive sets persists in group theory.

Theorem 12.2. Let G be a finitely presented group with presentation
G = X1,y XnlF1yvs Frn)
If Qis the set of all words on x, ..., x,, thenE={weQ: 0 =1 in G} isre.

‘Proof. List the words w,, @y, ... in Q as we did in the Introduction: first the
empty word, then the words of length 1 in order x,, x7*, ..., x,, x;, then the
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words of length 2 in lexicographic order, then the words of length 3 in lexico-
graphic order, and so forth. Similarly, list all the words on {ry, ..., 7,}: po,
P1s--- - As in the proof of Theorem 12.1, following the arrows in the figure
below enumerates E.

-1 -1 -1 -1
Wo Po Do WpP1Wo" —> W P D WopP3Wo - —
l d v d
-1 -1 -1
@ Py Wy P10y Wy P @y
Vg e
-1 -1
W3PoW; Wy 0103
l W

30003

It follows that a finitely presented group G has solvable word problem if
and only if {w € Q: w # 1 in G} is re.

Recall the following notation introduced in Chapter 11. If @ and ' are
(not necessarily reduced) words on an alphabet X, then we write

o=
if w and o’ have exactly the same spelling.
Suppose that a semigroup I' has a presentation

I =(X|o;=B,jeJ).

If w and ' are positive words on X, then it is easy to see that w = @' in T if
and only if there is a finite sequence

V=W DW= S0, =,

where @; — w;,, is an elementary operation; that is, either w; = oa;7 and
w11 = of for some j, where ¢ and t are positive words on X or w;; = of;T
and w; = oo;T.

Let us now associate a semigroup to a Turing machine T having stopping
state q,. For notational convenience, assume that the s-letters and g-letters
involved in the quadruples of T are s, S1, ..., Sy, and qg, 41, ..., dy. Let g
and h be new letters.

Definition. If T is a Turing machine having stopping state g, then its asso-
ciated semigroup I'(T) has the presentation:

r(T) = (q’ h7 SO: sl’ ey SM! qu ql! ey qNIR(T))a

where the relations R(T) are
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as;=as i gsmgeT,
forall p=0,1,..., M:
4:5;S5 = ;1S if gq;5;Rq €T,
q;5;h = 5;9,50h if q;5,Rq;eT;
554;5; = q1555; if gq;5LqeT,

hq;s; = hq;s,s; if gs;LqeT;

doSg = o>
sgdoh = qoh,
hgoh = q.

The first five types of relations are just the obvious ones suggested by the
basic moves of T; the new letter & enables one to distinguish basic move (ii)
(in the definition of a Turing machine) from basic move (iii) and to distinguish
basic move (iv) from basic move (v). One may thus interpret 4 as marking the
ends of the tape, so that the following words are of interest.

Definition. A word is h-special if it has the form hah, where « is an instanta-
neous description.

Since T has stopping state q,, each hah (with o terminal) has the form
haqqth, where ¢ and 7 are s-words and 7 is not empty. Therefore, the last
three relations allow us to write hah = g in I'(T) whenever « is terminal.

Lemma 12.3. Let T be a Turing machine with stopping state q, and associated
semigroup

F(T) =(q, h, 505 S15 -5 Sy dos 15 - +-» QNIR(T))

(i) Let w and ' be words on {Sg, Sy, ---s Sys Gos d1» --+» Ay} With @ £ g and
o' # q.If o — ' is an elementary operation, then w is h-special if and only
if @' is h-special.

(il) If @ = hah is h-special, ®' # q, and w — ' is an elementary operation of
one of the first five types, then @' = hfh, where either o —> B or f > aisa
basic move of T.

Proof. (i) This is true because the only relation that creates or destroys h is
hgoh = q.

(i) By the first part, we know that w’ is h-special, say, @’ = hph. Now an
elementary move in a semigroup is a substitution using an equation in a
defining relation; such a relation in I'(T) of one of the first five types corre-
sponds to a quadruple of T, and a quadruple corresponds to a basic move.
Thus, eithera > forf—-o. B

Lemma 12.4.'Let T be a Turing machine with stopping state q,, let Q be the set



428 12. The Word Problem

of all positive words on the alphabet of T, and let E = e(T). If w € Q, then
weE ifandonlyif hqoh=gq inIT(T).

Proof. If w € E, then there are instantaneous descriptions «; = q,, a,, ...,
o,, where «; — o;,4, and o, involves go. Using the elementary operations in
I'(T) of the first five types, one sees that hq, wh = ho,h in I'(T); using the last
three relations, one sees that ha,h = g in I'(T).

The proof of sufficiency is of a different nature than the proof of necessity
just given, for equality in I'(T) is, of course, a symmetric relation, whereas
o — f3 a basic move does not imply that f — « is a basic move.

If hg, wh = q in T'(T), then there are words w;, ..., , on {, S, S1, - .., Sy,
do» 41» ---» dy} and elementary operations

hq,0h =0, > wy > —> 0, = hgoh — q.

By Lemma 12.3(i), each w; is h-special: w; = ho;h for some instantaneous
description «;. By Lemma 12.3(ii), either «; — &4, or &, — o;. We prove, by
induction on ¢ > 2, that all the arrows go to the right; thatis, foralli <t — 1,
o; = ;4. It will then follow that g, — o, — - — «, is a sequence of basic
moves with «, terminal (for «, involves g,, the stopping state); hence T
computes w and w € E. It is always true that «,_, — «,, for «, is terminal and
hence a,_; « &, cannot occur. In particular, this shows that the induction
begins when t = 2. Suppose that ¢t > 2 and some arrow goes to the left. Since
the last arrow o,_, — o, points right, moving backward until one reaches an
arrow pointing left gives an index i with

Qg € 0 > Uyyg -
Buit there is never ambiguity about the next move of a Turing machine, so
that o;_, = o4, and w;_; = ha;_ h = ha; . h = w;,,. We may thus eliminate

w; and w,,,, thereby reducing m, and the proof is completed by induction.
'

Theorem 12.5 (Markov—Post, 1947).
(i) There is a finitely presented semigroup

')’=(q, h’ S0s S15+++> Sars o> 15 -+ quR)

with an unsolvable word problem.
(ii) There is no decision process which determines, for an arbitrary h-special
word hoh, whether hah = q in y.

Proof. (i) If T is a Turing machine with stopping state g, and with alphabet
A = {59, 8y, ..., Spr}, then let Q be all the positive words on A and let E =
¢(T) = Q. Define Q to be all the positive words on 4 U {q, h, 4o, 41> ---» dn}»
where gy, 41, ..., gy are the g-letters occurring in the quadruples of 7, and
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define
E={@eQ @ =qinT(T)}.

Define ¢: Q —Q by w+— hq, wh, and identify Q with its image Q, = Q; the
subset E of Q is now identified with

E, ={hq0h: 0 € E}.
It is plain that E, is a recursive subset of Q, if and only if E is a recursive
subset of Q. In this notation, Lemma 12.4 reads:
El = E (@) Ql .

Now assume that T is the Turing machine T* (with stopping state g,) of
Theorem 12.1, so that E, hence E,, is r.e. but not recursive. Were E recursive,
then Exercise 12.9 would give E,, hence E, recursive, and this is a contradic-
tion. Therefore, y = I'(T*) has an unsolvable word problem.

(ii) Define

§ = {h-special words hah: hah = qin T'(T*)}.
Were S a recursive subset of Q, then § n Q, would be a recursive subset of Q,,
by Exercise 12.9. But §nQ, =E,. ®

For later use, we rewrite the generators and relations of the Markov—Post
semigroup y(T*).

Corollary 12.6.
(i) There is a finitely presented semigroup
I'=1(q, 905---> N> S0 - -» Suel Fi2:, Gy = H;q;, K, i € D),

with an unsolvable word problem, where F,, G,, H,, X; are (possibly empty)
positive s-words and q; , q;, € {4, qo, .-, dn}-

(ii) There is no decision process which determines, for arbitrary q; and positive
s-words X and Y, whether Xq; Y = qinT.

Proof. (i) Regard the generator h of the semigroup y = I'(T*) as the last
s-letter and re-index these s-letters so that h = s,,. The rewritten relations in
R(T*) now have the described form.

(ii) Let Q, be the set of all positive words on the rewritten generators of T,
let

A = {Xq;,Y: X, Y are positive words on rewritten
s-letters and Xgq; Y = qin T},

and let

S, = {sy0sy: @ = aqt, where ¢ and t are positive
words on s, ..., Sy_, and sy0s,, = qin T’}
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(remember that h has been rewritten as s,,). Of course, S, is just the subset §
of the theorem rewritten in the new notation. Now A nQ, = S,; since §, is
not recursive, Exercise 12.9 shows that A is not recursive. &

The Novikov—Boone—Britton Theorem:
Sufficiency of Boone’s Lemma

The word problem for groups was first considered by M. Dehn (1910) and by
A. Thue (1914). The solution was given by P.S. Novikov (1955) and, indepen--
dently, by W.W. Boone (1954-1957) and by J.L. Britton (1958). In 1959,
Boone exhibited a much simpler finitely presented group than any of those
previously given, and he proved it has an unsolvable word problem. In con-
trast to the “combinatorial” proofs of Novikov and Boone, Britton’s proof
relies on properties of HNN extensions (which led him to discover Britton’s
lemma). In 1963, Britton gave a much simpler and shorter proof for Boone’s
group; we present his proof here, incorporating later improvements of
Boone, D.J. Collins, and C.F. Miller, IIIl. We assure the reader that all the
Mathematical Logic required in the proof has already appeared; we need
only Corollary 12.6, a paraphrase of the Markov—Post theorem, that exhibits
a particular finitely presented semigroup I' with an unsolvable word
problem.

Remember that the proof is going to reduce equality of words in a group
to equality of words in a semigroup. It is thus essential to keep track of
exponents, for while arbitrary words make sense in a group, only positive
words make sense in a semigroup.

Notation. If X = sj! ...s;m is a {not necessarily positive) s-word, then X* =
spet...spem Note that 1f X and Y are s-words, then (X#)* = X and (XY)* =
X*Y*,

Recall, for every Turing machine T, that there is a semigroup I' = I'(T)
with the presentation

Ir= (qv o> -+ -5 N> S0 -+ +» SMlFiqilGi = HiqizKi! i€ I)’

where F, G;, H;, K; are (possibly empty) positive s-words and g¢;,q;, €
{4 90, - an}-

For every Turing machine T, we now define a group 4 = %(T) that will be
shown to have an unsolvable word problem if T is chosen to be the Turing
machine T* in the Markov—Post theorem. The group %(T) has the presenta-
tion:
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generators: q, 4o, - --» qns Sos - s Saps ¥y L € 1, X, 8, k5
relations:forallieland all =0, ..., M,
xs = $5x7, A] T

riSp = SpXIiX,

1 F#q, Gr; = H q; K, A,

try = rt,

tx = xt, A; |
kr, = r;k,
kx = xk,

k(g™'tq) = (g tq)k.
The subsets A; = A, = A, of the relations are labeled for future reference.

If X and Y are s-words, define
(Xg;Y)* = X*q,Y,
where q; € {4, 4o, .., dn }-

Definition. A word X is special if Z = X*q,Y, where X and Y are positive
s-words and q; € {q, 4o, ---> dy}-

If T is special, then £ = X#q;,Y, where X and Y are positive s-words, and
so I* = (X*q;Y)* = Xq,Y is a positive word; therefore, Z* determines an
element of the semigroup I'.

The reduction to the Markov—Post theorem is accomplished by the fol-
~ lowing lemma:

Lemma 12.7 (Boone). Let T be a Turing machine with stopping state q, and
associated semigroup T = I'(T) (rewritten as in Corollary 12.6). If ¥ is a
special word, then

kT Uy ="k in B=BT)
if and only if * = q in T(T).

Theorem 12.8 (Novikov—Beone—Britton). There exists a finitely presented
group & with an unsolvable word problem.

Proof. Choose T to be the Turing machine T* of the Markov—Post theorem.
If there were a decision process to determine, for an arbitrary special word Z,
whether kZ™1tZk 1T 71t7'T = 1 in %(T*), then this same decision process
determines whether £* = g in I'(T*). But Corollary 12.6(ii) asserts that no
~ such decision process for I'(T*) exists. ®
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Corollary 12.9. Let T be a Turing machine with stopping state q, enumerating
a subset E of S (the set of all positive words on the alphabet of T). If w e Q,
then o € E if and only if k(h™'q,wh) = (h* q, wh)k in B(T).

Proof. By Lemma 12.4, o € E if and only if hq, wh = q in I'(T). But, in %(T),
(hg,wh)* = h™'q, wh (which is a special word), and Boone’s lemma shows
that (h"'q, wh)* = hq, wh = q in T'(T) if and only if k(h ™' q, wh) = ("™ q, wh)k
in%(T) 2

The proof below is valid for any Turing machine T with stopping state g,,.
We abbreviate Z(T)to Z and I'(T)to I'.
The proof of Boone’s lemma in one direction is straightforward.
Lemma 12.10.
@A) If V is a positive s-word, then
rV=VR in® and r'V=VR ind,

where R and R’ are words on {r;, x} with R positive.
(ii) If U is a positive s-word, then

U*r'=LU* in% and U*r,=L'U* in%,
where L and L' are words on {r;, x}.
Proof. We prove that V' = VR in # by induction on m.> 0, where V =
Sp, -+ Sg, . This is certainly true when m = 0. If m > 0, write V = V'spm; by
induction, nV =rV's, =V'R’s; , where R’ is a positive word on {r;, x}.
Using the relations xs; = spx* and r;Sp = spxr;x, we see that there is a posi-

tive word R on {r;, x} with R = R's; in 4.
The proofs of the other three equations are similar. &

Proof of Sufficiency in Boone’s Lemma. If Z is a special word with Z* =
Xq;Y = qinT, then there is a sequence of elementary operations

H=w,ow, > o w,=q inT,

where, for each v, one of the words w, and w, ., has the form UF,q; G;V with
U and V positive s-words, and the other has the form UH;q; K;V. By the
lemma, there are equations in %:

U#(Hi#qizKi)V =U*@r" Fi#Qil Gr)V
= L’U?“(F,?"qil G;) VR,

where L' and R’ are words on {r;, x}. In a similar manner, one sees that there
are words L” and R” on {r;, x} with

U#(Fi#‘hl G)V = U#(riHi#qizKiri—l)V = L”U#(Hi#qizKi)V i
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Since w, = w, 4, in T implies w¥ = w¥,, in %, by the relations labeled A,, it
follows, for each v, that

* * 7
wf=LofR, m%AB

for words L, and R, on some r; and x. The words L=L,...L,_; and R =
R,_;...R; are thus words on {x, r,, i € I'}, and

¥ =LwfR inA
But w¥ = (£*)* = X and o} = ¢* = ¢, so that
X=LgR in4%.

Since the generators ¢ and k commute with x and all the r;, they commute
with L and R. Therefore,

kT 1Bkt 1S = kR g L' tLqRk™* R™'q* L™t 1 LgR
=kR g tgk™ g7t 1qR
= R7Ykq ™ *tgk™'q 't 1q)R
=1,
because the last word is a conjugate of a relation. M

Observe that the last relation of the group % appears only in the last step
of the proof.

Cancellation Diagrams

We interupt the proof of Boone’s lemma (and the Novikov—Boone—Britton
theorem) to discuss a geometric method of studying presentations of groups,
essentially due to R. Lyndon, that uses diagrams in the plane. Since we are
only going to use diagrams in a descriptive way (and not as steps in a proof),
we may write informally. For a more serious account, we refer the reader to
Lyndon and Schupp (1977, Chap. V) with the caveat that our terminology
does not always coincide with theirs.

When we speak of a polygon in the plane, we mean the usual geometric
figure including its interior; of course, its boundary (or perimeter) consists of
finitely many edges and vertices. A directed polygon is a polygon each of
whose (boundary) edges is given a direction, indicated by an arrow. Finally,
given a presentation (X|A) of a group, a labeled directed polygon is a directed
polygon each of whose (directed) edges is labeled by a generator in X.

Given a presentation (X|A) of a group, we are going to construct a labeled
directed polygon for (almost) every word

w=xfxin

* n
where x4, ..., x, are (not necessarily distinct) generators and each ¢; = +1.
For technical reasons mentioned below, w is restricted a bit.
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Definition. Let F be a free group with basis X. A word w = x§'...xf"on X
with each e¢; = +1 is called fireely reduced if it contains no subwords of the
form xx™* or x 'x with x € X.

A cyclic permutation of w=x5...xf is a word of the form
xf. . xgnxs ... xfiyp (by Exercise 3.8, a cyclic permutation of w is a conjugate
of it). A word w is cyclically reduced if every cyclic permutation of it is freely
reduced.

If o = x$t... x5 is cyclically reduced, construct a labeled directed polygon
as follows: draw an n-gon in the plane; choose an edge and label it x,; label
successive edges x,, x5, ..., X, as one proceeds counterclockwise around the
boundary; direct the ith edge with an arrow according to the sign of e; (we
agree that the positive direction is counterclockwise). For example, if k and x
commute, then the labeled directed polygon is the square in Figure 12.1.

k
Figure 12.1

Figure 12.2

As a second example, consider the last relation in Boone’s group #: o =
kq~'tqgk™'q™'t™'q. The labeled directed polygon for w is the octagon whose
first edge is the top k-edge in Figure 12.2. If w is not cyclically reduced, this
construction gives a polygon having two adjacent edges with the same label
and which point in opposite directions, and such polygons complicate proofs.
However, there is no loss in generality in assuming that every relation in a
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presentation is cyclically reduced, for every word has some cyclically reduced
conjugate, and one may harmlessly replace a relation by any of its conju-
gates. Every cyclically reduced relation thus yields a labeled directed polygon
called its relator polygon.

We can now draw a picture of a presentation (X|A) of a group G (with
cyclically reduced relations A) by listing the generators X and by displaying
a relator polygon of each relation in A. These polygons are easier to grasp
(especially when viewing several of them simultaneously) if distinct genera-
tors are given distinct colors. The presentation of the group £ in Boone’s
lemma is pictured in Plate 1 (inside front cover). There are six types of genera-
tors: q; s; r; x; t; k, and each has been given a different color.

There is a presentation of a group called %, which is pictured in Plate 3.
This group will occur in our proof of the Higman imbedding theorem.

Another example is provided by an HNN extension: a relation involving a
stable letter p has the form ap®bp~¢c, where e = +1. If the corresponding
relator polygon is drawn so that the p-edges are parallel, then they point in
the same direction.

Let D be a labeled directed polygon. Starting at some edge on the bound-
ary of D, we obtain a word w as we read the edge labels (and the edge
directions) while making a complete (counterclockwise) tour of D’s boundary.
Such a word o is called a boundary word of D. (Another choice of starting
edge gives another boundary word of D, but it is just a cyclic permutation,
hence a conjugate, of w. A clockwise tour of D’s boundary gives a conjugate
of o™t)

Definition. A diagram is a labeled directed polygon whose interior may be
subdivided into finitely many labeled directed polygons, called regions; we
insist that any pair of edges which intersect do so in a vertex.

We quote the fundamental theorem in this context; a proof can be found
in Lyndon and Schupp.

Fundamental Theorem of Combinatorial Group Theory. Let G have a finite
presentation (X |A), where A satisfies the following conditions:

(i) each 6 € A is cyclically reduced,
(i) if e A, then 6™ e A,
(iii) if 6 € A, then every cyclic permutation of ¢ lies in A.

If w is a cyclically reduced word on X, then w = 1 in G if and only if there is
a diagram having a boundary word w and whose regions are relator polygons of
relations in A.

An immediate consequence of this theorem is a conjugacy criterion. As-
'sume that w and w’ are cyclically reduced words on X, and consider the
annulus with outer boundary word «’ and inner boundary word w, as in
Figure 12.3.
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Figure 12.3

Corollary. The elements w and o’ are conjugate in G if and only if the interior
of the annulus can be subdivided into relator polygons.

The proof consists in finding a path f from ' to @ and cutting along
B to form a diagram as in Figure 12.4. A boundary word of the new diagram
is @' Bw™* 7%, and the fundamental theorem says that this word is 1 in G.
Conversely, if ' fo™' 7! = 1 in G, one may form an annulus by identifying
the edges labeled f; that is, start with the diagram on the above right and
glue the f’s together to obtain the annulus on the left.

Figure 12.4

An example will reveal how these diagrams can illustrate the various steps
taken in rewriting a word using the relations of a given presentation. The
proof of sufficiency of Boone’s lemma requires one to prove, for a special
word X, that

w(Z) = kX UZkIZ IS =1 in 4.
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The hypothesis provides a sequence of elementary operations
=@, vw,> o w,=q inT.

The proof begins by showing that each w} has the form Ufg; V,, where
v<n—1and U, and ¥, are positive s-words; moreover, there are words L,
and R, on {x, r;, i € I} such that, for all v,

* — * 1
w¥=L,w¥,R, in%

Figure 12.5

Figure 12.5 pictures all of these equations; we have not drawn the subdivision
of each interior polygon into relator polygons, and we have taken the liberty
of labeling segments comprised of many s-edges by a single label Y, X, V,, or
u,.

The reader should now look at Plate 2; it is a diagram having w(Z) as a
boundary word. In the center is the octagon corresponding to the octagonal
relation w(q) = kq~'tqk~'q~'t™'q, and there are four (almost identical) quad-
rants as drawn above, involving either £ or ! on the outer boundary and
g or g~ ! on the octagon (actually, adjacent quadrants are mirror images). The
commutativity of k with x and each r; allows one to insert sequences of
squares connecting k-edges on the outer boundary to k-edges on the octagon;
similarly, the commutativity of ¢ with x and each r; inserts sequences
connecting t-edges on the outer boundary with t-edges on the octagon. Since

" the quadrants have already been subdivided into relator polygons, the four
quadrants together with the four border sequences, form a diagram. There-
fore, w(Z) = 1 in 4, as asserted by the fundamental theorem.
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Define %* to be the group having the same presentation as % except that
the octagonal relation is missing. Now regard Plate 2 as an annulus having
the octagonal relation as the inner boundary word. This annulus has just
been subdivided into relator polygons, and so the corollary of the fundamen-
tal theorem says that w(Z) is conjugate to w(q) in #°. This last result is a
reflection of the fact that the octagonal relation enters the given proof of the
sufficiency of Boone’s lemma at the last step.

The Novikov—Boone—Britton Theorem:
Necessity of Boone’s Lemma

We now turn to the proof of the more difficult half of Boone’s lemma. Geo-
metrically, the problem is to subdivide the labeled directed polygon with
boundary word w(X) into a diagram whose regions are relator polygons of 4.
The conjugacy of w(Z) and the octagonal relation w(q) in the group %#*
(mentioned above) suggests a strategy to prove the necessity of Boone’s
lemma: subdivide the annulus with outer boundary w(X) and inner boundary
w(q) using the relations of #* (thereby allowing us to avoid further use of the
octagonal relation w(q)), trying to make the annulus look like Plate 2. We
shall give formal algebraic proofs, but, after the proof of each lemma, we shall
give informal geometric descriptions. (It was the idea of E. Rips to describe
this proof geometrically, and he constructed the diagrams for the Novikov—
Boone—Britton theorem as well as for the coming proof of the Higman im-
bedding theorem. He has kindly allowed me to use his description here.)
Define groups %,, %, %#,, and %, as follows:

B, = (x| D), the infinite cyclic group with generator x;
By = (Bos So» ---» SmlA1)

(recall that we labeled certain subsets of the relations of Z as A; = A, = A,
when we defined 4, recall also that this notation means that we are adjoining
the displayed generators and relations to the given presentation of 4,);

By, =(B,*Q; 1, i€ I|A,),
where Q is free with basis {q, 4o, ..., qn };
By = (Ba; tI1A;).
Lemma 12.11. In the chain
Bo< B < B *Q < B, < B, < %,

each group is an HNN extension of its predecessor; moreover, B, = Q is an
HNN extension of %,. In more detail:
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(i) %, is an HNN extension with base %, and stable letters {s,, ..., sy };
(i) B, *Q isan HNN extension with base %, and stable letters {s,, ..., sp;} L
{qa qos--+» qN}a
(ii) B, Qisan HNN extension with base #, and stable letters {q, 4o, ...,qx};
(iii) %, is an HNN extension with base %, * Q and stable letters {r:ie I};
(iv) %, isan HNN extension with base %, and stable letter t; and
(v) 8 is an HNN extension with base %, and stable letter k.

Proof. (i) The presentation
By = (%, 505 - -+, Sylsg x55 = x, all P)

shows that 2, has base (x) = %, and stable letters {so, ..., Sy }. Since x has
infinite order, 4; = (x> = {(x*) = By, and so0 @p: Az — B, defined by x>
x2, is an isomorphism for all . Therefore, 4, is an HNN extension.

(ii"} The presentation of %, * Q,

-1 2 -1 -1
(anOa'“’sM’q’qO’"-an‘sﬂ xsﬂ=x »q "Xq =X, (q; Xqi=x)’

shows that &, xQ has base %, and stable letters {so,..., Sy} V{4 qy5---,
gy}- Since x has infinite order, 4; = (x> = (x*) = By, and so the maps ¢,
are isomorphisms, as above; also, the maps ¢, are identity maps, where
A,, = <{x) = B, Thus, &, = Q is an HNN extension with base %, and stable
letters {sq, ..., Spr} U {q o5 ---» dn}-

(ii) Since Q is free with basis {q, 4o, ---, gy}, Example 11.10 now shows
that #,*Q is an HNN extension with base %, and stable letters

{q’ qu RRE) qN}
(iii) The presentation

B, = (B, +Q;ryi€ I|ri_1(E#qilGi)ri = Hi#inKi: ri_l(sﬁx)ri = Sﬂx_l)

shows that %, has base %, * Q and stable letters {r;, i € I}. Now, for each i,
the subgroup 4; is (Fq; G;, sz, all B> and the subgroup B; is (H?q;, X;,
spx~1, all B). We claim that both 4; and B; are free groups with bases the
displayed generating sets. First, use Exercise 11.8 to see that (s;x, all §) is
free with basis {s;x, all B}: map (s,x, all §) onto the free group with basis
~ {805 ..., 5y} by setting x = 1; then observe that 4; = (F*q; G, spx, all B> =
(F#q;,G;) + {(spx, all B> < B, »Q (because Fq; G; involves a g-letter and
elements of the free group {szx, all ) do not). A similar argument applies to
B;, and so there is an isomorphism ¢;: 4; — B; with ¢;(F#q; G;) = H?q; K;
and @y(ssx) = szx~* for all B. Thus, #, is an HNN extension with base
B *Q.
(iv) Note that %, has base %, and stable letter t:

By = (By; tit it =1, t 7 xt = x);

Since ¢t commutes with the displayed relations, %, is an HNN extension of
%,, as in Example 11.11.
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(v) Note that 4 has base %, and stable letter k:
B= By klkirk=r,ielLk xk =x, k™ (g ' tq)k = g tq).
As in Example 11.11, # is an HNN extension of 4,.

Corollary 12.12.

(i) The subgroup {s;X, ..., SyXx)> < %, is a free group with basis the displayed
letters.
(i) There is an automorphism \ of %, withy(x) = x™* and (sg) = s, for all B.

Proof. (i) This was proved in part (iii) of the above lemma.
(ii) The function on the generators sending x— x~* and s;—s; for all g
preserves all the relations. W

The reader should view Lemma 12.11 as preparation for the remainder of
the proof; it will allow us to analyze words using Britton’s lemma, Theorem
11.81. :

Lemma 12.13. Let X be a fixed speci‘al word satisfying the hypothesis of
Bonne’s lemma:
wE) = kT UZkTIZYTIE =1 in4

Then there are freely reduced words L, and L, on {x, r,, i € I} such that
L2L,=q in%,.

Proof. Since # is an HNN extension with base %, and stable letter k,
Britton’s lemma applies to the word kX ~!'tZk !Z7't7!E; it says that
kZ7'tTk™! is a pinch and that £t = C in %, where C is a word on
{x, g 'tq,r,ie I}. (Since the stable letter k commutes with {x, g 'tq,r,
i e I}, we are in the simple case of Example 11.11 when the subgroups A and
B are equal and the isomorphism ¢: 4 — B is the identity.) Therefore, there
exist words w of the form =™1tZC™! = 1 in %,; in detail,

w=X""IRNg 1t q)R,(g t2q)R,...(g" ' t*"q)R, = 1 in B,

where the R; are (possibly empty) freely reduced words on {x,r;, i€ I} and
e; = + 1. We assume  is such a word chosen with n minimal.

Since 4, is an HNN extension with base %, and stable letter ¢, Britton’s
lemma applies again, showing that w contains a pinch t°Dt~°, and there is a
word Ron {x,r, i€ I} withD =R in %,.

If the pinch involves the first occurrence of the letter ¢t in w, then t°Dt™° =
tZR,q 't . Hencee = +1,e; = —1,tZRoq 't* = tRt™*, and

ZRyq ' =R in%,;

equivalently,
R'IR,=q in%,,

which is of the desired form.
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If the initial t° in the pinch is t*, where j > 1, then t°Dt™¢ = t®qR;q " t%
with gR;q™" = R in 4, for some word R on {x, ;, i € I}. Since %, < %5, by
Theorem 11.78, we may view this as an equation in %;:

t%qR;q 't = t°qR;q 't "° = t°Rt™° in %,.

But the stable letter ¢ in #; commutes with x and all r, so there is an
equation
qRiq™' =R in%,.

Hence, in 4,
(q't%q)R(q "t q) = ¢ ' t°Rt™%q
=q'Rq (for t commutes with x, r;)
=q"'(qR;a™")q
= R;.

There is thus a factorization of w in #; having smaller length, contradicting
the choice of n being minimal. Therefore, this case cannot occur. B

q

Figure 12.6

Geometrically, we have shown that the labeled directed annulus with outer
boundary word w(Z) and inner boundary word the octagon w(q) contains a
“quadrant” involving Z on the outer boundary, g on the inner boundary, and
internal paths L, and L, which are words on {x, r;, i € I}. Of course, there are
two such quadrants as well as two “mirror images” of these quadrants which
involve 7! on the outer boundary and g™ on the inner boundary. More-
over, the regions subdividing these quadrants are relator polygons corre-
sponding to the relations A;; that is, they do not involve k-edges or t-edges.
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Finally, there is no problem inserting the “border sequences” connecting
k-edges (and t-edges) on the outer boundary with k-edges (and t-edges) on the
inner boundary, for the internal paths of the quadrants involve only x and
r;’s, all of which commute with k and with ¢.

Recall that ¥ = X*q;Y, where X and Y are positive s-words and g; ¢
{4, 905 - - -» qv}- We have just shown that

L, X*q;YL,=q in%,

for some freely reduced words L, and L, on {x,r;, i e I}. Rewrite this last
equation as

L X#q;=qL3'Y™" in%,.

Lemma 12.14. Each of the words L, X*q; and qL3' Y™ is r-reduced for every
iel

Proof. Suppose, on the contrary, that L, X*g; contains a pinch r{Cr; ¢ as a
subword. Since X* is an s-word, this pinch is a subword of L, a word on
{x, 1, iel}.Since L, is freely reduced, C = x™ for some m # 0. Since 4, is an
HNN extension with base %, * Q and stable letters {r;, i € I}, Britton’s lemma
says that there is a word V in &, * Q, where Q = (g, q,, - .., 4y, such that

V = wo(Fq;,G) 0, ...(F*q;,G)"w,,

e;= +1,w;isaword on {s;X, ..., sy x} for all j, V is reduced as a word in the
free product, and
x"=V in% *Q.

Since x™e 4,, one of the free factors of &, * 0, we may assume that V
does not involve any g-letters; in particular, ¥ does not involve F*g; G;.
Therefore,

X" = wo = (55, %) ... (55, x)> in By,

where each f, = + 1. Since 4, is an HNN extension with base #, = {x) and
stable letters (so, --., Sar}, another application of Britton’s lemma says that
the word x™™w,, which is 1 in 4,, contains a pinch of the form sfx‘s;”,
where ¢ = + 1. Now inspection of the spelling of w, shows that it contains no
such subword; we conclude that w, = 1, hence x™ = 1. But x has infinite
order (since 4, < 4, ), and this contradicts m 5 (0. We conclude that L,, and
hence L, X*g;, is r;-reduced.
A similar proof shows that gL;* Y ™! is also r,-reduced. H

We know that the boundary word of each of the four quadrants is 1, so
that each quadrant is subdivided into relator polygons. The two words in the
lemma are sub-boundary words that do not flank either of the two g-edges;
that is, neither of the g-edges is surrounded by other (boundary) edges on
both sides. As we are working within %%, the octagonal relator polygon is not
inside a quadrant. The only other relator involving a g-letter is the eight-
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qi,
Figure 12.7

q

Figure 12.8

sided “petal” in A, (Figure 12.7). There must be such a petal involving
the g-letter on the quadrant’s boundary. The lemma shows that the petal’s
boundary must contain edges in Y and edges in X * (Figure 12.8).

The following lemma completes the proof of Boone’s lemma and, with
it, the Novikov-Boone—Britton theorem. In view of a further application
of it in the next section, however, we prove slightly more than we need
now.

Lemma 12.15. Let L, and L, be words on {x, r;,i € I} that are r-reduced for
alliel If X and Y are freely reduced words on {s,, ..., Sy} and if

LiX*q;YL,=q in%,,
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then both X and Y are positive and
Xq;Y=(X*q;Yy*=q inT.

Remark. In our case, both X and Y are freely reduced, for X and Y are
positive (because X = X*q;Y is special), and positive words are necessarily
freely reduced.

Proof. The previous lemma shows that L, X*g; = qL;' Y ™! in 4, and that
both words are r-reduced. By Corollary 11.82, the number p > 0 of r-letters
in L, is the same as the number of r-letters in L, (because no r-letters occur
outside of L, or L,); the proof is by induction on p.
If p = 0, then the equation L, X*q;YL, = qis
x"X*q;Yx"=¢q in%,.

This equation involves no r-letters, and so we may regard it as an equation
in %, *Q < %, where § = (g, q,, - .., gy - But the normal form theorem for
free products (Theorem 11.52) gives g; = g and x™X* = 1 = Yx"in 4%, . Since
4, is an HNN extension with base %, = {x) and stable letters {so, - .-, Sy},
it follows from Britton’s lemma that m = 0 = n and that both X and Y are
empty. Thus, X and Y are positive and Xq;Y = gq;=qinT.

Assume now that p>0. By Lemma 12.14, the words L,X*q; and
qL3;'Y™! are r-reduced for all i. Since 4, is an HNN extension with base
A, * Q and stable letters {r;, i € I}, Britton’s lemma gives subwords L, of L,
and L, of L, such that

) L X*q;YL, = Ly(r/x™"X*q;Yx"r7 )L, = q in %,,
where the word in parentheses is a pinch; moreover, either ¢ = —1 and
x"X*q,Yx" e A; = (Fq, G, spx, all B,
ore= +1and ,
x"X*q;Yx" € B;= (Hf q;,K,, spx7 7, all ).
In the first case,
q; = 4i,»

for the membership holds in the free product &, * Q; in the second case,
q; = gq;,- We consider only the case

e=—1,
leaving the similar case e = + 1 to the reader. There is a word
o = x"X*q;Yx"uo(F* ;G u, ...(F*q;G)*u, =1 in B, *Q,

where o; = +1 and the u; are possibly empty words on {s,x, all g}. Of all
such words, we assume that w has been chosen with ¢t minimal. We may
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further assume that each ; is a reduced word on {szx, all B}, for Corollary
12.12(i) says that this set freely generates its subgroup. Since w = 1in %, * Q,
the normal form theorem for free products (Theorem 11.52) shows that each
“syllable” of w between consecutive g;’s is equal to 1 in %,. However, if
one views %, *(Q as an HNN extension with base %, and stable letters
{4, 4o, - .-, gy} (as in Example 11.10, in which case the subgroups 4 and B are
1), then Britton’s lemma says that « contains a pinch ¢;Cq;* as a subword
with C =1 in 4, (of course, this case of Britton’s lemma is very easy to see
directly).
If a pinch involves the first occurrence of g;, then —¢ = a; = —1 and

Yx"u,G:' =1 in4%,.

We claim that a pinch cannot occur at any other place in w. Otherwise, there
is an index v with a pinch occurring as a subword of (F* q;G;)*u,(F* 4;G;)™*".
If @, = +1, then «,,, = —1, the pinch is q;Gu,G'q;", and Gu,G* =
lin 4,; if a,= —1, then a,,, = +1, the pinch is ¢;'F*"'u,F*q;, and
F#~'u,F* = 1in %,.In either case, we have u, = 1 in %,. But u, is a reduced
word on the basis {s,x: all B}, and so u, = 1, contradicting the minimality of
t. We conclude thatt =1,a, = —1, and

©=x"X*q;Yx"u,G q; ' F* 'u; =1 in%B, *Q.
We have already seen that
Yx"u,Gil=1 in4%,,
and so it follows from w being in the free product that
Ff lu,x"X* =1 in%,.

We rewrite these last two equations, by conjugating, into more convenient
form:

@ X*FF 'y x"=1 in4,.

Recall that G; is a positive s-word. Let us show, after canceling all
subwords of the form sgs;' or s;'s; (if any), that the first surviving letter of
G; 'Y is positive; that is, there is enough cancellation so that the whole of
G; is eaten by Y). Otherwise, after cancellation, G;'Y begins with s;* for
some f. Since %, is an HNN extension with base {x) and stable letters
{S5 ---» Su}» then x"ua G Y = 1 in 4, implies, by Britton’s lemma, that its
post-cancellation version contains a pinch s{Ds;/ = s{x"s;/, where 0 < 1 <
M. Now u, is a reduced word on {syx, ..., 5,X}, say,

{ x"u,Gr'Y =1 in %,

uo = (55, %" ... (s5, %),

where g, = + 1. The pinch is not a subword of x"u,. It follows that the last
letter s37 of the pinch s{x"s7/ is the first surviving letter s;* of G;™' Y. Thus,
A=B=8, f=+1=g, and s;x*s;’ = s;xs;*; that is, h=1. But x =
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spx?s;" in 4B, , giving x € (x*), a contradiction. The first surviving letter of
G 'Y is thus positive, and so there is a subword Y; of Y beginning with a
positive s-letter for which Y = G, ;.

In a similar manner, one sees, after canceling all subwords of the form s;s5*
or s;'s, (if any), that the first surviving letter of X#F*~' is negative; that is,
there is enough cancellation so that the whole of F#~! is eaten by X #). The
proof is just as above, inverting the original equation X*F* 'u,x™ =1 in
4, . There is thus a subword X, of X with X7 ending in a negative letter and
such that X = X | F,.

We have proved, in 4,, that 1 = x"uyG;'Y = x"u,G; ' G,Y, and so

ug! = Y,x" in4,.
Define

vyt = rtugtr,.

Since u, is a word on spx’s and r;” ' spxr; = szx~* for all f, the element v5' is a
word on {s,x7%, ..., 5,x ' }. But we may also regard u;" and vg" as elements
of B, =<{x, Sg,-.., Sy . By Corollary 12.12(ii), there is an automorphism
¥ of B, with y(x) =x"* and y(sz) ='s; for all . Hence, v5" = Y (up') =
Y(Y;x") = Y, x7"; that is,

3) vy =Y, x™ in%,.
If one defines v7! = r uj'r;, then a similar argument gives
@ it =x""XY,

where X, is the subword of X defined above.
Let us return to the induction (remember that we are still in the case
e = —1 of the beginning equation (1)):

Ly X?q;YL, = Ly(rfx" X *q; ¥x"r;° )Ly = q in%,.
There are equations in 4%,, ,
g=LX*q;YL, = Lyr *(x™ X #)q;(Yx")r;L,
= L3ri_1(ul_lFi#)qj(Giual)riLd- Eq. (2)
= L3vl_lri_1(Fi#qui)riv(;1L4
= Lyvy (7 (F#q;Gim)vg Ly
= (Lavfl)Hi#qx'z K;(v5'Ly) .
= (Lyx™"X)H#q;, K{(Y1x™"L,) Egs. (3), (4).

Therefore,
Lyx™™X{H?q;,K;Y,)x™"Ly=q in%,.

Now L;x™™and x™L, are words on {x, r;, i € I} having at most p — 1 occur-
rences of various r-letters. In order to apply the inductive hypothesis, we
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must see that X7 H? and K,Y, are freely reduced; that is, they contain no
“forbidden” subwords of the form ss;* or s5's;. Now K is a positive word
on s-letters, so that it contains no forbidden subwords; further, ¥, = G;* Y is
just a subword of Y (since the whole of G; is eaten by Y), hence has no
forbidden subwords, by hypothesis. Therefore, a forbidden subword can
occur in K;Y; only at the interface. But this is impossible, for we have seen
that Y, begins with a positive letter, namely, “the first surviving letter” above.
A similar argument shows that X7 H/ is freely reduced.

By induction, both X, H; and K;Y, are positive. Hence, their subwords X,
and Y, are also positive, and hence X = X, F; and Y = G,Y] are positive. The
inductive hypothesis also gives

(Xin#QizKi Y)*=q inT.
Since (X#H)* = X, H,, we have
&) X HiqizKin =q inT

(it is only now that we see why the “sharp” operation * was introduced; had
we used inversion instead, we would now have H;X,q; K;Y; = qinT, and we
could not finish the proof). Thus,

Xq;Y = X, Fq;G)Y,
= X,Fq;,GY, =X, Hq,K;Y, inT.
Combining this with (5) gives
Xq;Y=q inT,

as desired. The case ¢ = +1 at the beginning of the inductive step is entirely
similar, and the proof of Boone’s lemma and the Novikov-Boone-Britton
theorem is complete.

Here is some geometric interpretation of the long proof of this last lemma.
At the end of the previous lemma, we had shown that a quadrant involving
Z = X*q; Y on the outer boundary and a g on the inner boundary must
have a “petal” relator polygon next to g; . Now there is another g-letter on
this petal which is now in the interior of the quadrant. As petals are the only
relator polygons involving g-letters (for we are working in %), there must be
a sequence of such petals (involving various g-letters) from the outer bound-
ary of the quadrant to the g on the inner boundary (Figure 12.9).

Do any other g-edges occur on interior regions of the quadrant? The only
other possibility is a flower whose eight-sided petals arise from a petal relator
regions (Figure 12.10). We have not drawn the relator polygons that sub-
divide the eye of the flower, but we may assume that the eye contains no relator
. regions having g-edges (otherwise the eye contains a smaller such flower and
we examine it). The boundary word of the flower’s eye involves s and s,
and this word is 1 in 4,. By Britton’s lemma, this word contains a pinch of
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4;

q
Figure 12.9

Figure 12.10
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the form r?Cr; ¢ There are thus two adjacent petals whose r-edges point in
opposite directions, and this contradicts the orientation of these petals (note
how the geometry of the plane enters).

qi,

Figure 12.11

Now focus on the top portion of the quadrant. The remainder of the proof
shows that the dashed paths comprised of s-edges can be drawn (actually, the
proof shows that the rightward path is X7 (followed by x™™, which is incor-
porated into L,)and the leftward path is Y; (followed by x", which is incorpo-
rated into L,). Induction says that one can repeat this construction, so that
the petals move down to the bottom g; thus the whole quadrant can be
subdivided into relator regions.

Aside from the group-theoretic proof just given (which is a simplification
of Britton’s original proof), there are several other proofs of the unsolvability
of the word problem for groups: the original combinatorial proofs of
Novikov and of Boone; a proof of G. Higman’s, which is a corollary of
his imbedding theorem. The proof of Higman’s imbedding theorem that we
shall give in the next section uses our development so far, whereas Higman’s
original proof does not depend on the Novikov—Bcone—Britton theorem.

We must mention'an important result here (see Lyndon and Schupp (1977)
for a proof). W. Magnus (1930) proved the Freiheitsatz. If G is a finitely
generated group having only one defining relation r, say, G = (x, ..., X,|r),
then any subset of {x,, ..., x,} not containing all the x; involved in r freely
generates its subgroup. As a consequence, he showed (1932) that G has a
solvable word problem.

There are other group-theoretic questions yielding unsolvable problems;
let us consider another such question now.

.Definition. A finitely generated group G = (X|A) has a solvable conjugacy
problem if there is a decision process to determine whether an arbitrary pair
of words w and @’ on X are conjugate elements of G.
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When G is finitely presented, it can be shown that its having a solvable
conjugacy problem does not depend on the choice of finite presentation. A
group with a solvable conjugacy problem must have solvable word problem,
for one can decide whether an arbitrary word w is (a conjugate of) 1; the
converse is false. We now indicate how this result fits into our account.

Corollary 12.16. The group % has solvable word problem and unsolvable
conjugacy problem.

Proof. Recall that %* is Boone’s group # without the octagonal relation
w(q). A.A. Fridman (1960) and Boone, independently, proved that %2 has
solvable word problem (we will not present this argument).

The following three statements are equivalent for any special word Z:

(i) wX)=1in %,

(i) T*=1inT;
(iii) w(Z) is conjugate to w(q) in B2
The necessity of Boone’s lemma is (i) = (ii); in geometric terms, we have
already seen that the labeled directed annulus with outer boundary word
w(Z) and inner boundary word w(q) can be subdivided into relator polygons
corresponding to relations other than w(qg); that is, using relations of %, This
proves (ii) = (iti). Finally, (iii) = (i) is obviously true, because w(g) = 1 in 4.
The equivalence of (i) and (iii) shows that % has a solvable conjugacy prob-
lem if and only if # has a solvable word problem. By the Novikov—Boone—
Britton theorem, % has an unsolvable conjugacy problem. @

The Higman Imbedding Theorem

When can a finitely generated group be imbedded in a finitely presented
group? The answer to this purely group-theoretic question reveals a har-
monic interplay of Group Theory and Mathematical Logic. The proof we
present here is due to S. Aanderaa (1970).

The following technical lemma is just a version of the “trick” which allows
an arbitrary word on an alphabet to be viewed as a positive word on a larger
alphabet.

Lemma 12.17. Every group G has a presentation
G =YV

in which every relation is a positive word on Y. If G is finitely generated (or
finitely presented), there is such a presentation in which Y (or both Y and W) is
finite.

Proof. If G = (X |A) is a presentation, define a new set X’ disjoint from X and
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in bijective correspondence with it via x - x’,
X ={x'lxe X},
and define a new presentation of G:
G=(XuVX|A, xx', xe X),
where A’ consists of all the words in A rewritten by replacing every occur-
rence of every x 1 by x’. W
Definition. A group R is recursively presented if it has a presentation
R=(uy,...,u,l0o =1, weE),
where each w is a positive word on u;, ..., u,, and E is an r.e. set.

The lemma shows that the positivity assumption, convenient for notation,
is no real restriction on R.

EXERCISES

12.12. If a group R is recursively presented, then it has a presentation whose relations
form a recursive set of positive words. (Hint. If the given presentation is

R=(uy,...,uul0, =1,k >0),
where {w, = 1, k > 0} is an .. set of positive words, define a new presentation
(15 -y thy Y1y = 1, y¥oo, = 1,k > 0))

12.13. Every finitely generated subgroup of a finitely presented group is recursively
presented. (Hint: Consider all words that can be obtained from 1 by a finite
number of elementary operations.)

12.14. Every recursively related group can be imbedded in a two-generator recur-
sively presented group. (Hint. Corollary 11.80.)

Theorem 12.18 (G. Higman, 1961). Every recursively presented group R can be
imbedded in a finitely presented group.

With Exercise 12.13, Higman’s theorem characterizes finitely generated
subgroups of finitely presented groups.
Assume that R has a presentation

R=(@u,...,u,jo =1, wekE),

where E is an r.e. set of positive u-words. There is thus a Turing machine T
(with alphabet {sg, ..., sy} containing {u,, ..., 4,}) enumerating E; more-
-over, by Exercise 12.11, we may assume that T has stopping state g,. We are
going to use the group %(T), constructed in Boone’s lemma, arising from the
semigroup T'(T). Now the original Markov—Post semigroup y(T) was rewrit-
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ten as I'(T) for the convenience of the proof of the unsolvability of the word
problem. For Higman’s theorem, we shall rewrite y(T) another way. Of
course, this will engender changes in the generators and relations of %(T),
and so we review the construction. Beginning with a Turing machine T with
stopping state q,, we constructed y(T) with generators g, h, g, - .., qx» Sos - - .,
sy, and certain relations. The semigroup I'(T) renamed # as the last s-letter;
thus, I'(T') has generators ¢’s and s’s and relations those of y rewritten ac-
cordingly. Returning to the original notation (with & no longer an s-letter)
gives a group %(T) with generators:

QN dos - s Qu»Sos--sSasTi€l, x, k, t

and relations those of the original %(T) but with the relations A, rewritten
accordingly:

Ay forall f=0,....,M and iel,
-1 2 -1 2
55 XS5 = x%, h™'xh = x?,

1 tsgxr; = x5, r7thxr; = xh7},

r ' F?*q;, Gr, = H*q,K,.

By Corollary 12.9, a positive s-word o lies in E if and only if w(h™'q,0h) = 1
in %(T); that is, w € E if and only if

6) k(h o lqithth™'q wh) = (W o™ qi hth™ q, wh)k in B(T).

Let us introduce new notation to simplify this last equatlon First, define
%,(T) as the group with the presentation :

B(T)=1(q, 1, qos---» x> Sos - --» Sars i L € T|A).
- Now introduce new symbols:
T=gqithth™q, and  «=hkh L.
Define a new group %5(7T) by the presentation
3(T) = (B,(T); tlv™ (g7 hrch ™ q)T = g7 hrih ™l gy,
Mg hxh T gy)T = g hxh™ qy).
Note that %5(T) is just another presentation of the group
By = (B,(T); titr, =rit, i € I, tx = xt),
as can be quickly seen by replacing t by its definition. Similarly, we define
B(T) = (B5(T); x|~  (hr;h~ Vi = hrsh ™, k™t (hxh ™YY = hxh ™!,
Kk hg  hTig taqithgh ™ ic = g7 h g, toqi hghY).
Replacing x by its definition shows that #'(T) is another presentation of

B(T) = (B5(T); klkr; = r;k, i e I, kx = xk, k(g™ tq) = (g tq)k).
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Lemma 12.19.

(1)) #5(T)is an HNN extension with base #,(T) and stable letter t.
(i) #'(T) = B(T), and &'(T) is an HNN extension with base %5(T) and sta-
ble letter k.

Proof. As the proof of Lemma 12.11. W
The next lemma shows how %'(T) simplifies (6).

Lemma 12.20. If w is a positive word on s, ..., Sy, then o € E if and only if
k(@ ttw) = (0™ tw)x in B'(T).

Proof. The equation w(h™'q,wh) = 1 in B(T) has this simpler form in %'(T)
once t and k are replaced by 7 and «, respectively. M

Form the free product #'(T)*R. Recall that R is generated by
{uy, ..., u,}. At the outset, the Turing machine T enumerating the relations
of R was chosen so that its alphabet {so, ..., sy} contains {u,,..., u,}. Of
course, the generating sets of the free factors of %4'(T)* R must be disjoint.
Let us, therefore, introduce new letters {a,, ..., a,} < {so,-.., Sy} = #'(T)
for the replica of {u, ..., u,,} = R. Henceforth, we will regard the r.e. set E as
comprised of certain positive words on {ay, ..., a,} < {So, ..., S }. Our re-
writing is completed.

Now define new groups %, %5, and %, as follows (these also depend on
T, but we abbreviate notation):

By = (B (T)*R; by, ..., b|b7 ' u;b, = u;, b7 a;b, = a;,
bilxb, = xu alli,j=1,...,m);

Bs=(Byudld'kd=x,d'a;bd=aqa,i=1,...,m);

Bs =(Bs:0lc"'t6 =1d, 6 'k =K, 067 a0 =a,i=1,...,m)
Aanderaa’s proof of Higman’s theorem is in two steps. The first step shows
that each of these groups is an HNN extension of its predecessor:

R<#(T)*R < B, < Bs < Be;

by Theorem 11.78, each group is imbedded in its successor, and so R is a
subgroup of %,. The second step shows that %, is finitely presented. After the
proof is completed, we shall see that the diagram in Plate 4 partially explains
how the generators and relations of the groups %, %;, and % arise.

Lemma 12.21. The subgroups {ay, ..., @y, Ky and {a,, ..., a,,, Ty of B'(T)* R
‘are free groups with respective bases the displayed generating sets.

Proof. Recall our analysis of Z(T) in Lemma 12.11: 4, is an HNN extension
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with base %, and stable letters {s,, ..., 5)}; in our present notation, %, has
stable letters {h, s, ..., Sp}. It follows from Lemma 11.76 that <h, s,, ...,
sy > is a free group with basis {h, s, ..., s }. Since B, < #'(T), this last
statement holds in #'(T)*R. But {a;,...,a,} < {sg,.--, Sy}, 5O that
{ay, ..., ayy is free with basis {ay, ..., a,}.

We now show that {a, ..., a,, k} freely generates its subgroup (a similar
argument that {a,, ..., a,,, 7} freely generates its subgroup is left to the read-
er). Otherwise, there is a word

W = cok®eyk® ..., k=1 in % (T)=*R,

where e, = +1 and c, are (possibly empty) freely reduced words on
{a,, ..., a,}; we may further assume, of all such words w, that n is chosen
minimal. Since w involves no u-letters, we have w = 1 in #'(T). As #'(T) is
an HNN extension with base %;(T) and stable letter «, Britton’s lemma says
that either w does not involve k or @ contains a pinch x®c,k™°, where ¢,
is a word on {hr;h™',ie I, hxh™, hg™*h™*q,tq7 hgh™'}. But the relations
in %#'(T) show that ¥ commutes with ¢,, so that k®c,k™* =c, in #'(T) <
Z#'(T)* R, and this contradicts the minimality of n. It follows that w does not
involve x; that is, w is a reduced word on {a,, ..., a,,}. But we have already
seen that (a,, ..., a,,» is free with basis {a,, ..., a,,},sothato = 1. B

Lemma 12.22. 8, in an HNN extension with base %'(T) * R and stable letters
{by,..., b}
Proof. It suffices to show there are isomorphisms ¢,: A; — B;, where
A;=Uyy eyl Qyyenny Gy, K,
Bi=Clyy ey Uy Qpy ey Gy kUi,

and ,(4;) = u;, ¢(a;) = a;, and @y(x) = xu; '. Note that 4; = B,
It is easy to see, in #'(T) * R, that ,

Ai = <al""’am’ ’C>*<u1,--'aum>
=<{ay, > 4y, k) *R.

By Lemma 12.21, <a,, ..., a,, k) is freely generated by {dl, wees Oy K}, SO
that ¢, is a well defined homomorphism. Similarly, the map ;: A; — A;, giv-
en by y,(;) = u;, ¥i(a;) = a;, and (k) = xu;, is a well defined homomor-
phism. But i; is the inverse of ¢;, so that ¢; is an isomorphism and %, is an
HNN extension. B

Lemma 12.23. 4, is an HNN extension with base 8, and stable letter d.

Proof. 1t suffices to show that there is an isomorphism
@:A={x,a;b,...,a,b,>>B={Kx,a,...,a,>
with ¢(x) = k and ¢(a;b,) = a; for all i.
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Since x7'bx = bu; in %,, the function §: B, — B'(T)*R, defined by
sending each b, to 1, each u; to 1, and all other generators to themselves, is
a well defined homomorphism (it preserves all the relations: b, = 1 implies

= k7'b;x = bu; = u;). The map @ takes each of {x,a;b,,...,a,b,> and
{x, ay, ..., a,,) onto the subgroup {x, a,, ..., a,> < & (T)* R which, by the
preceding lemma, is free on the displayed generators. By Exercise 11.8, each
of the two subgroups 4 and B of 4, is free on the displayed generators, and
so the map ¢: A — B given above is a well defined isomorphism. %

The next lemma will be needed in verifying that %, is an HNN extension
of 8.

Lemma 12.24. The subgroup A = (x, a,, ..., Gy, Ty < B'(T) has.the presenta-
tion
A=(1,0a1,..., dp, 1| 07 t00K = 0 10, € E).

Remark. Recall our change in notation: although E was originally given as a
set of positive words on {u,, ..., u,}, it is now comprised of positive words
on{a,...,au}.

Proof. By Lemma 12.20, the relations ko™ tox = o™ tw, for all w € E, do
hold in #'(T), and hence they hold in the subgroup 4 < %#'(T). To see that
no other relations are needed, we shall show that if { is a freely reduced word
on {x, ay, ..., a,, 7} with { =1 in A, then { can be transformed into 1 via
elementary operations using only these relations.

Step 1. { contains no subword of the form t°wk", where e = +1, 5= +1,
and w € E.

It is easy to see that the given relations imply
0K = wk"0 .
If { contains a subwqrd téwk", then
{=¢tfor", - (oo 0,

is an elementary operation. Cancel all subwords (if any) of the form yy™! or
y~'y, where y = 1, k, or some g;. With each such operation, the total number
of occurrences of ¢ which precede some k" goes down. Therefore, we may
assume that { is freely reduced and contains no subwords of the form t°wx”.

Step 2. { involves both k and 7.

If { does not involve x, then it is a word on {ay, ..., a,, t}. But this set
“freely generates its subgroup, by Lemma 12.21, and so { being freely reduced
and { = 1 imply { = 1. A similar argument shows that { involves 7 as well.

Since %#'(T) is an HNN extension with base %;(T) and stable letter x,
Britton’s lemma says that { contains a pinch x°Vk™¢, where ¢ = +1, and



456 12. The Word Problem

there is a word D on {hr;h™,ie I, hxh™', hg*h™*q,1q7 hgh™} with
V=D in%5(T).
Choose D so that the number of occurrences of 7 in it is minimal.

Step 3. D is t-reduced.

Now #5(T) is an HNN extension with base %,(T) and stable letter . Let

us write
5 = hq—lh_lq19

so that
hq~*h™'q,tq7 hgh™ = 51671

If D, which is now a word on {hr;h™,i eI, hxh™, 6167}, is not t-reduced,
then it contains a pinch. Since an occurrence of ¢ can only arise from an
occurrence of 51671, it follows that

D =D,;6t767' D5t/ 571D,

where D, does not involve the stable letter T (just check the cases f = 1 and
f = —1 separately); moreover, there is a word W on {q7'hrh1q,, iel,
qi'hxh™tq,} with

371D, =W in%,(T)
(the subgroups 4 and B in the HNN extension are here equal, and so we need

not pay attention to the sign of f). From the presentatlon of #,(T), we see
that T and W commute. Therefore,

D=D6t'Witl67 Dy =D, 6W6™'D, in %B,(T),
contradicting our choice of D having the minimal number of occurrences of
7. It follows that D is 7-reduced.

Step 4. V is t-reduced.
Otherwise, V contains a pinch t?Ct ™9, where
C=W in%,(T)

and W, a word on {q;'hr;h™q,,i€l, qi hxh™"q,} (as above), commutes
with 7 in %,(T). Now V does not involve , so its subword C involves neither
k nor t. Since {, hence its subword ¥, is a word on {x, a,, ..., a,,, 7}, it follows
that C is a word on {ay,..., a,}. But {t,a,,...,a,»> < #'(T)*R is a free
group with basis the displayed generators, by Lemma 12.21, and so C
commutes with 7 if and only if C = 1. Therefore, the pinch t9Ct™¢ = 19179,
contradicting { being freely reduced.

Step 5. Both V and D involve 7.

Since V' = D in %5(T) and both are t-reduced, Corollary 11.82 applies to
show that both of them involve the same number of occurrences of the stable
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letter 7. Assume now that neither ¥ nor D involves 7. Then V is a word on
{a,,...,a,}and D is a word on {hr;h™%, i e I, hxh™'}; we may assume that D
has been chosen so that the total number of occurrences of r-letters is mini-
mal; moreover, we may assume that all adjacent factors equal to hxh™! are
collected as hx™h™'. It follows that the equation ¥ = D holds in the subgroup
%,(T), which is an HNN extension with base &, * {(q, qo, ---, gy » and stable
letters {r;, i e I}. ‘

Now V is ri-reduced for all i because ¥, being a word on {ay, ..., a,}, does
not even involve any r-letters. We claim that D is also r-reduced for all i.
Otherwise, D (a word on {hr;h™', i € I, hxh™'}) contains a pinch: there is thus
an index i with

D= A bt A b hTEA,,

where I = +1 and A, involves no r-letters (just check the cases I = 1 and
I = —1 separately); hence, A, = hx™h™! (since it is freely reduced), and

D = A hrix™rT A,

The pinch in D is thus r!x™r, and Britton’s lemma concludes, depending on
the sign of [, that x™ is equal in %, *<{q, 4o, -..,qy, €ither to a word on
{F*4:,G;, 50X, ..., 5pux} or to a word on {H7q; K;,sox7", ..., syx"'}. As D
does not involve g-letters, x™ is equal in 2, to a word on either {s¢Xx,...,
spX}or {sox7%, ..., spx "'}, and we have already seen, in the proof of Lemma
12.14, that this forces m = 0. Therefore, the pinch is r/r;’", contradicting our
choice of D having the minimal number of r-letters. We conclude that both V'
and D are r-reduced for all i. By Corollary 11.82, D involves no r-letters
(because ¥V involves none), and D is a word on hxh™'; that is, D = hx"h™! in
2, . In this step, V is assumed to be aword on {a,, ..., .} < {So, .-, Spr}, SO
that the equation ¥ = D holds in %, and

Vhix™h™' =1 in4,.

Recall that 4, is an HNN extension with base (x> and stable letters
{h, so, ..., 5p}. If Vinvolves a; for some j, then Britton’s lemma gives a pinch
a’Ua;>, where v = +1 and U is a power of x (for g; is a stable letter). Now
h # a;, for h ¢ {sg,..., Sy}, so that this pinch must be a subword of V. But V'
does not involve x, and so U = 1; therefore a/a;" is a subword of ¥, contra-
dicting { and its subword ¥V being freely reduced. It follows that ¥ involves no
a; as V is now assumed to be a word on a-letters, we have V = 1. Recall that
V arose in the pinch x® ¥k ™%, a subword of {, and this, too, contradicts { being
freely reduced.

Step 6. V contains a subword 7V, where V, is a positive a-word lying in the
r.e. set E.

_ Since D, a word on {hr;h™*,ie I, hxh™, hq  h™'q,tq7 hgh™'}, involves T,
it must involve hg *h™1q,tq7  hgh™'. Write

D= N(hg™'h™'q,t*q  hgh™)A,
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where & = + 1 and the word in parentheses is the final occurrence of the long
word involving t in D; thus, A is a word on {hr,h ™%, i€ I, hxh™}.
Since V involves t, we may write

M V=Voth V...V, %V,
p p

where ¢; = +1 and each V; is a freely reduced word on a-letters. By Steps 2
and 3, both D and V are t-reduced, so that Corollary 11.82 says that

©2V,A"thgT h71 g, "

is a pinch. Thus, there is a word Z on {q7'hrh™'q,, q;*hxh™'q,} with

VAT hg™ h™'q, = Z  in B,(T),
of course, we may choose

Z=q;'hL;h7'q,,
where L, is a word on {x, r;, i € I}; similarly, since A is a word on {hr;h™!,
iel, hxh™}, we may write
Al =hL,h™' in B,(T),
where L, is a word on {x, r;, i € I}. Substituting, we see that
VphLzh_lhq_lh_l‘h =qi'hLih™'q, in B,(T),

and we rewrite this equation as

Li'h™'q,V,hL, = q in B,(T).

Note that V,h is freely reduced, for ¥, is a freely reduced word on a-letters,
and h is not an s-letter, hence not an a-letter. By Lemma 12.15 (with X = h
and Y = V,h), we have Y a positive word, so that its subword V,, is a positive
word on a-letters; moreover,

hq,V,h=q iny(T).

By Lemma 124, V, € E. Returning to (7), the birthplace of ¥,, we see that
t*7 ¥, is a subword of V. Indeed, V = V't** V1, where V' is the initial segment
of V.

Step 7. Conclusion.

Recall that V arose inside the pinch k¢ Vk™¢, which is a subword of {. From
the previous step, we see that k°¥V’1° ¥,k ¢ is a subword of {. In particular, {
contains a subword of the form t®w«”, where e = +1, 7= +1, and w € E.
But we showed, in Step 1, that { contains no such subword. This completes
the proof. M

Lemma 12.25.

{i) B is an HNN extension with base %5 and stable letter o.
(i) R is imbedded in .
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Proof. (i) It suffices to show that there is an isomorphism
o:A={K,1,ay,...,0,y >B=<{x,1d,a,,...,0,»
with @(x) = x, @(r) = td, and ¢(g;) = g; for all j. Since
RB(T)< By < Bs,

the subgroup A is precisely the subgroup whose presentation was determined
in the previous lemma:

A=(xay,...,a, 11 o tox = 0 1w, w € E).

To see that ¢ is a well defined homomorphism, we must show that it
preserves all the relations; that is, if w € E, then

ko ltdox = o ltdw in B.

We shall show that this last equation does hold in %5, and hence it holds in
B < %s.

Let us introduce notation. If @ is a word on {a,, ..., a,}, write w, to
denote the word obtained from w by replacing each a; by b;, and let o, denote
the word obtained from w by replacing each a; by u;. If w € E, then w, = 1,
for w, is one of the original defining relations of R. For w € E, each of the
following equations holds in %:

ko tdok = ko t(dod ! )dx
=k o  tow,dk

(for da;d™! = a;b; in &5 and a; and b; commute in %, < %;). Since x and 7
commute in %5, we have

ko tow,dc = kT o oo, kd

=k o tor(c " wyx)d

= ko roko,0,d
(because b; and y; commute and Kbk = bu)

=k lo tokw,d
(because w, = 1). We have shown that

ko rowydk = (kT o tor)w,d
= o tow,d.

On the other hand, .
o ttdo = o™ ([dod™)d

= o rww,d,
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as we saw above. Therefore,
ko ttdox = o ltdo  in By

and ¢: A — B is a well defined homomorphism.

To see that ¢ is an isomorphism, we construct a homomorphism /: %5 —
A5 whose restriction | B is the inverse of ¢. Define ¥ by setting | %'(T) to
be the identity map and

Y(d) =y(b) =y(uw) = 1.
Inspection of the various presentations shows that i is a well defined
homomorphism. Since ¥(x) = k, Y(a;) = a;, and (zd) = 1, we see that /{B is
the inverse of .
(ii) This follows from several applications of Theorem 11.78. W

The following lemma completes the proof of the Higman imbedding
theorem:

Lemma 12.26. %, is finitely presented.

Proof. The original presentation of R is
R=(uy,...,u,Jo =1, 0eE),

where E is an r.e. set of positive words on {u,,..., u,}. Recall the notation
introduced in the proof of Lemma 12.25: if w is a word on {a,, ..., a,,}, then
w, and o, are obtained from w by replacing each g; by u; or b,, respectively.
With this notation, the presentation of R can be rewritten:

R=(uy,..., upylw, = L, 0 € E).

Now #'(T)* R is a finitely generated group. having a finite number of rela-
tions occurring in the presentation of %'(T) together with the (possibly infi-
nitely many) relations above for R. Each step of the construction of % from
% (T) * R contributes only finitely many new generators and relations. Thus,
% is finitely generated, and it is finitely presented if we can show that every
relation of the form w, =1, for w € E, is a consequence of the remaining
relations in %.
By Lemma 12.20, « *o ™ 'twx = o 't for all w € E. Hence

6 ko toKe = 6" o twe.
Since ¢ commutes with x and with all g;, this gives

kK lo o toox = w to T tow.
As 6710 = 1d, this gives

Kk lo  rdok = o 1dw.
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Inserting wrx ™ ™! and wo ™ gives
(ko tor) o dok = (0™ tw)o Hdo.
T_he terms in parentheses are equal (Lemma 12.20 again), so that canceling
gives
®) ko ldox = o™ do.
Now the relations da,d™! = a;b; and a;b; = b;a;, all i, j, give
dod™ = ow,,

hence
o = d low,d,

for every word w on {ay, ..., a,}, and so
©) o ldo = o™ dd ow,d = w,d.
Substituting (9) into (8) gives

o, =k Yo tdo)kd™ = k w,drd ™.
Since x and d commute,
(i()) | Kk ok = wy.

On the other hand, the relations k™' b;x = bu; and bu; = u;b;, all i, j, give

T
Kk ok = wyw,.
This last equation coupled with (10) gives
Wy @, = Wy,

and so w, = 1, as desired. 5

Let us review the proof of Higman’s theorem to try to understand
Aanderaa’s construction. Certainly, some of the relations of %, are present to
guarantee a chain of HNN extensions, for this gives an imbedding of R into
_ AB,. The proof of the last lemma, showing that %, is finitely presented,
amounts to proving, for @ € E, that o, = 1 follows from the other relations;
that is, one can subdivide the labeled directed polygon with boundary word
o, into relator polygons corresponding to the other relations in %,. E. Rips
has drawn a diagram (Plate 4) that helps explain the construction of %,.

Before we examine Plate 4, let us discuss diagrams in the plane from a
different viewpoint. Regard the plane as lying on the surface of a sphere, and
assume that the north pole, denoted by oo, lies outside a given diagram.
Otherwise said, we may regard a given planar diagram D having n regions to
actually have n + 1 regions, the new “unbounded” region (containing co)
being the outside of D. We now propose redrawing a diagram so that the
unbounded region is drawn as an interior region. For example, assume that
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b
Figure 12.12

Figure 12.13

Figure 12.12 shows that @ = aba™'b* = 1 in some group. Figure 12.13 is
a redrawn version of Figure 12.12 with co marking the old unbounded
region.

To redraw, first number all the vertices, then connect them as they are
connected in the original diagram. Note that all the (bounded) regions are
relator regions corresponding to the inverses of the original relations, with
the exception of that containing co. The boundary word of the region with co
is sbt, as in the original diagram. In general, every (not necessarily bounded)
region in the redrawn diagram is a relator polygon save the new region
containing co whose boundary word is w. Such a diagram will show that
o = 1 if every region (aside from that contammg o) is a relator polygon and
the boundary word of the diagram is 1 in the group.

Let us return to %s. For a word w € E, draw a diagram, new version,
showing that @, = 1 in % (using only the other relations of %;). By Lemma
12.20, w € E gives

ko ltox ot lo = 1.
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ko
Figure 12.14

Figure 12.15

We begin, therefore, with a labeled directed octagon for this word as well
as with a “balloon” region (containing co) inside having boundary word
w,. To subdivide, draw a second octagon inside it, and yet a third octagon
perturbed by two d-edges. Now complete this picture, adding o-edges and the
subdivision of the bottom, to obtain Plate 4, the diagram showing that w, =
1 follows from the other relations.

Let us indicate, briefly, how the Novikov—Boone—Britton theorem follows
from the Higman theorem. It is not difficult to construct a recursively
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presented group G having an unsolvable word problem. For example, let G
be a variant of the group in Theorem 11.85: if F is a free group with basis
{a, b}, let

G =(a, b, plp~w,p = w, for all n e E),

where the commutator subgroup F’ is free with basis {wg, w4, ..., @, ...}
and E is an r.e. set in Z that is not recursive. By Higman’s theorem, there is a
finitely presented group G* containing G. If G* had a solvable word problem,
then so would all its finitely generated subgroups, by Exercise 12.4, and this
contradicts the choice of G. '

Some Applications

Higman’s theorem characterizes those finitely generated groups G that can
be imbedded in finitely presented groups. Of course, any (perhaps nonfinitely
generated) group G that can be so imbedded must be countable. In Theorem
11.71, we saw that every countable group G can be imbedded in a two-
generator group G'..

Lemma 12.27. If G is a countable group for which G™ is recursively presented,
then G can be imbedded in a finitely presented group.

Proof, Higman’s theorem shows that G can be imbedded in a finitely
presented group. @

At this point, we omit some details which essentially require accurate
bookkeeping in order to give an explicit presentation of G'' from a given
presentation of G. We assert that there is a presentation of the abelian group

G=)> D,
i=1
where D, = Q @ (Q/Z) for all i, such that G'! is recursively presented.

Theorem 12.28. There exists a finitely presented group containing an isomor-
phic copy of every countable abelian group as a subgroup.

Proof. By Exercise 10.29, every countable abelian group can be imbedded in
G=)2,D,whereD,=2Q® (@/Z) for all i. Lemma 12.27, with the assertion
that G is recursively presented, gives the result. &

There are only countably many finitely presented groups, and their free
product is a countable group H having a presentation for which H' is
recursively presented.



Some Applications 465

Theorem 12.29. There exists a universal finitely presented group U; that is, %
is a finitely presented group and % contains an isomorphic copy of every fi-
nitely presented group as a subgroup.

Proof. The result follows from Lemma 12.27 and our assertion about the
group H'!. &

Groups with a solvable word problem admit an algebraic characterization.
In the course of proving this, we shall encounter groups which are not finitely
generated, yet over whose presentations we still have some control. Let G be
a group with presentation

G =(x;,i > 0|A)

in which each 6 € A is a (not necessarily positive) word on {x;,i > 0}, let Q be
the set of all words on {x;,i > 0}, and let R = {w € Q: w = 1 in G}. Encode
Q in N using G6del numbers: associate to the word w = x{...x/" the
positive integer g(w) = [ ]2, pi p3ics, where p, < p; < -*- is the sequence of
primes (note that 1 + e, > 0). The Gddel image of this presentation is

g(R) = {g(w): w € R}.

Definition. A presentation (x;, i > 0|A) is r.e. if its G6del image g(R) is an r.e.
subset of N; this presentation has a solvable word problem if g(R) is recursive.

Definition. A group G is r.e. or has a solvable word problem if it has some
presentation which is either r.e. or has a solvable word problem.

We remarked at the beginning of this chapter that a finitely generated
group G having a solvable word problem relative to one presentation with a
finite number of generators has a solvable word problem relative to any other
such presentation. The analogue of this statement is no longer true when we
allow nonfinitely generated groups. For example, let G be a free group of
infinite rank with basis {x;, i > 0}. Now g(R) is recursive (this is not instantly
obvious, for R is an-infinite set of nonreduced words; list its elements lexico-
graphically and according to length), and so this presentation, and hence G,
has a solvable word problem. On the other hand, if E is an r.e. subset of N
that is not recursive, then

(x;, i =0|x; =1 if and only if i € E)

is another presentation of G, but g(R) is not recursive; this second presenta-
tion has an unsolvable word problem.

We wish to avoid some technicalities of Mathematical Logic (this is not the
appropriate book for them), and so we shall shamelessly declare that certain
groups arising in the next proof are either r.e. or have a solvable word prob-
lem; of course, the serious reader cannot be so cavalier.
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A.V. Kuznetsov (1958) proved that every recursively presented simple
group has a solvable word problem.

Theorem 12.30 (Boone—Higman, 1974). A finitely generated group G has a
solvable word problem if and only if G can be imbedded in a simple subgroup
of some finitely presented group.

Sketch of Proof. Assume that
G = <g19"-9 gn> < S < H9

where S is a simple group and H is finitely presented; say,

H= (hl, srey hmlpla LERS ] Pq)'

Let Q' denote the set of all words on {h,, ..., h,},andlet R’ = {0’ € Q: o' =
1}; let Q denote the set of all words on {g;, ..., d,},andlet R={w e v =
1}. Theorem 12.2 shows that R’ is r.e. If one writes each g; as a word in the
then one sees that R = Q n R’; since the intersection of r.e. sets is r.e. (Exer-
cise 12.8), it follows that R is r.e. We must show that its complement {w € Q:
 # 1} is also r.e. Choose s € S with s # 1. For each w € Q, define N(w) to be
the normal subgroup of H generated by {w, p;, ..., p,}. Since S is a simple
group, the following statements are equivalent for v e QL w # 1 in G;
N@w)nS#1; S < N(w); s=1in H/N(w). As H/N(w) is finitely presented,
Theorem 12.2 shows that the set of all words in Q which are equal to 1 in
H/N(w)is an r.e. set. A decision process determining whether w = 1 in G thus
consists in checking whether s = 1 in H/N(w).

To prove the converse, assume that G = (g, ..., g,,» has a solvable word
problem. By Exercise 12.10,

{u,v)e Q@ x Lu#*1landv+#1}

is a recursive set; enumerate this set (4y, vg), (uy, v1), - .. (éach word u or v has
many subscripts in this enumeration). Define G, = G, and define

. ; -1, 1 -1 .
Gy = (G5 Xy, 15, 1 2 O)t; ", X7 upX £y = 0;X7 Xy, 1 2 0).

It is plain that G, has base G * {x, ) and stable letters {t;, i > 0}; it is an HNN
extension because, for each i, both 4; = (u;x7 u;x;> and B; = {v;x7 u;x,)
are infinite cyclic. Thus, G < G,. One can show that this presentation of G,
has a solvable word problem (note that G, is no longer finitely generated).
We now iterate this construction. For each k, there is an HNN extension G,
with base G,_, * {x,, and we define § = | J,5; G;; clearly G < S. To see that
S is simple, choose u, v € S with u # 1 and v # 1. There is an integer k with
u, v € G,_;. By construction, there is a stable letter p in G, with

prux; tux,p = vx; tux,.

Therefore,
v =(p"up)(p™ xg  wxyp) (g u ™t xy)



Some Applications 467

lies in the normal subgroup generated by u. Since u and v are arbitrary
nontrivial elements of S, it follows that S is simple.

It can be shown that S is recursively presented. By Theorem 11.71, there
is a two-generator group SY containing S; moreover, S is recursively
presented. The Higman imbedding theorem shows that S*/, hence S, and
hence G, can be imbedded in a finitely presented group H. W

It is an open question whether a group with a solvable word problem can
be imbedded in a finitely presented simple group (the simple group S in the
proof is unlikely to be finitely generated, let alone finitely presented).

Our final result explains why it is often difficult to extract information
about groups from presentations of them. Before giving the next lemma, let
us explain a phrase occurring in its statement. We will be dealing with a set
of words Q on a given alphabet and, for each w € Q, we shall construct a
presentation 2(w) involving the word w. This family of presentations is uni-
form in w if, for each @’ € Q, the presentation #(w’) is obtained from 2(w) by
substituting w’ for each occurrence of w. A presentation (X |A) is called finite
if both X and A are finite sets; of course, a group is finitely presented if and
only if it has such a presentation.

Lemma 12.31 (Rabin, 1958). Let G = (Z|A) be a finite presentation of a group
and let Q be the set of all words on I. There are finite presentations {P(w):
€ Q}, uniform in w, such that if R(w) is the group presented by P(w), then

(i) if v # 1in G, then G < R(w); and
(il) if @ = 1 in G, then P(w) presents the trivial group 1.

Proof (C.F. Miller, TIT). Let (x> be an infinite cyclic group; by Corollary
11.80, G {x)> can be imbedded in a two-generator group 4 = {a,;,a,) in
which both generators have iniinite order. Moreover, one can argue, as in
Exercise 11.80, that 4 can be chosen to be finitely presented: there is a finite
set, A of words on {a, a,} with

A = (ay, a,|A).
Define .
B = (4; by, by|bi*a, by = ai, by ayb, = a3).
It is easy to see that B is an HNN extension with base A and stable letters
{by, b}, so that G < A < B. Define

C =(B;clc™'b,c = bZ, ¢ th,c = b2).
Clearly C has base B and stable letter c; C is an HNN extension because b;
and b,, being stable letters in B, have infinite order. Thus, G < 4 < B < C.
If w e Qand o # 1in G, then the commutator

[w, x] = oxo tx™!

has infinite order in 4 (because G * (x> < A).
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We claim that {c, [w, x]) < C is a free group with basis {c, [w, x]}. Sup-
pose that V is a nontrivial freely reduced word on {c, [0, x]} with ¥ = 1in
C. If ¥ does not involve the stable letter c, then V = [w, x]" for some n # 0,
and this contradicts [w, x] having infinite order. If V does involve ¢, then
Britton’s lemma shows that ' contains a pinch ¢®*Wc™¢ as a subword, where
e= +1and We (b, b,). But V involves neither b, nor b,, so that W = {
and ¢*We™® = c°c”%, contradicting V being freely reduced. Therefore, ¥ must
be trivial.

We now construct a second tower of HNN extensions. Begin with an
infinite cyclic group {r), define

S =(r,s{s"lrs =r?),
and define
T =(S; t|t7 st = s?).

Since both r and s have infinite order, S is an HNN extension with base {r)
and stable letter s, and T is an HNN extension with base S and stable letter
t. Britton’s lemma can be used, as above, to show that {r, ¢} freely generates
its subgroup in T.

Since both {r, t) < T and {c, [w, x]> < C are free groups of rank 2, there
is an isomorphism ¢ between them with ¢(r) = c and ¢(t) = [w, x]. Form the
amalgam R(w) = T, C with presentation

Plw)y=(T+Clr=c¢, t =[w, x]).

We conclude from Theorem 11.67(i) that if w # 1 in. G, then-G'< C < R(w).
If o = 1 in G, the presentation 2(w) is still defined (though it need not be
an amalgam). The presentations #(w) are uniform in w:

?(CO) = (al, Qs, bla bZa C s, tIA’ bi—laibi = afz’ c—lbic = bzza
i=1L2strs=r " st=5%r=ct=[w x])

We claim that #(w) is a presentation of the trivial group if = 1 in G. Watch
the dominoes fall: © = 1=[a),x] =l=t=1l=s=1=r=1=c=1=
byj=1=b,=a, =1=a,.

Definition. A property .# of finitely presented groups is calied a Markov
property if:

{i) every group isomorphic to a group with property .# also has property
M
(ii) there exists a finitely presented group G, with property .#; and
(iii) there exists a finitely presented group G, which cannot be imbedded in a
finitely presented group having property ./.

Here are some examples of Markov properties: order 1; finite; finite expo-
nent; p-group; abelian; solvable; nilpotent; torsion; torsion-free; free; having a
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solvable word problem. Being simple is also a Markov property, for the
Boone—Higman theorem shows that finitely presented simple groups must
have a solvable word problem (and hence so do all their finitely presented
subgroups). Having a solvable conjugacy problem is also a Markov property:
a finitely presented group G, with an unsolvable word problem cannot be
imbedded in a finitely presented group H having a solvable conjugacy prob-
lem, for H and all its finitely presented subgroups have a solvable word
problem. It is fair to say that most interesting group-theoretic properties are
Markov properties.
The following result was proved for semigroups by Markov (1950).

Theorem 12.32 (Adian—Rabin, 1958). If ./ is a Markov property, then there
does not exist a decision process which will determine, for an arbitrary finite
presentation, whether the group presented has property .

Proof. Let G; and G, be finitely presented groups as in the definition of
Markov property, and let 4 be a finitely presented group with an unsolvable
word problem. Define G = G, * %, construct groups R(w) as in Rabin’s
lemma, and define (finitely presented) groups 2(w) = G, * R(w).

Restrict attention to words w on the generators of 4. If such a word w # 1
in 4, then G, < G < R(w) < 2(w). But the defining property of G, implies
that 2(w) does not have property .. If, on the other hand, w = 1 in 4, then
R(w) =1 and 2(w) = G, which does have property .#. Therefore, any deci-
sion process determining whether 2(w) has property .# can also determine
whether w = 1 in 4, that is, any such decision process would solve the word
problemin 4. &

e

Corollary 12.33. There is no decision process to determine, for an arbitrary
finite presentation, whether the presented group has any of the following
properties: order 1; finite; finite exponent; p-group; abelian; solvable; nil-
potent; simple; torsion; torsion-free; free; solvable word problem; solvable
conjugacy problem.

Proof. Each of the listed properties is Markov. B

Corollary 12.34. There is no decision process to determine, for an arbitrary pair
of finite presentations, whether the two presented groups are isomorphic.

Proof. Enumerate the presentations 2,, %,,... and the groups G;, G,, ...
they present. If there were a decision process to determine whether G; = G;
for all i and j, then, in particular, there would be a decision process to
determine whether &, presents the trivial group. ®

While a property of finitely presented groups being Markov is sufficient for
the nonexistence of a decision process as in the Adian—Rabin theorem, it is



470 12. The Word Problem

not necessary. For example, the property of being infinite is not a Markov
property. However, a decision process that could determine whether the
group given by an arbitrary finite presentation is infinite would obviously
determine whether the group is finite, contradicting Corollary 12.33. Indeed,
this example generalizes to show that the Adian—Rabin theorem also holds
for the “complement” of a Markov property.

Does every finitely presented group have some Markov property?

Theorem 12.35. A finitely presented group H satisfies no Markov property
if and only if it is a universal finitely presented group (i.e., H contains an
isomorphic copy of every finitely presented group as a subgroup).

Proof. Recall that the existence of universal finitely presented groups was
proved in Theorem 12.29.

Let H be a universal finitely presented group, and assume that H has some
Markov property .#. There is some finitely presented group G, that cannot
be imbedded in a finitely presented group with property .#. But G, can be
imbedded in H, and this is a contradiction. The converse follows from the
observation that “not universal” is a Markov property. M



Epilogue

Any reader wanting to study Group Theory more deeply must first learn
Representation Theory, the analysis of homomorphisms ¢: G - GL(n, K),
where K is an algebraically closed field. There are two initial approaches to
this subject, and both approaches must eventually be mastered. One ap-
proach, historically the first, is character theory. If ¢: G - GL(n,C) is a
homomorphism, then ¢(g) is an n x n complex matrix for each g € G; its
character (). G — C is defined to be the trace function gr>tr(p(g)) (the
values of y(¢) are actually algebraic integers). Of course, if g and g’ are
conjugate in G, then tr(¢g(g)) = tr(e(g’)), so that y(¢)is really a class function;
that is, ¥(¢) can be regarded as a complex-valued function on the family of
conjugacy classes of G. Each character can be uniquely written as a linear
combination of irreducible characters, and the number ¢ of such irreducible
characters is equal to the number of conjugacy classes of G. The ¢ x ¢ matrix
containing the values of all the irreducible characters is called the character
table of G. It contains much important information about G, and sufficient
machinery has been developed to allow explicit calculation, in many cases, of
its entries. There are wonderful applications that arise quite early: Burnside’s
pqP-theorem: Every group of order p*q”, where p and q are primes, is solv-
able; a theorem of Frobenius: If H is a subgroup of a finite group G such that
HnxHx' =1 for all x¢ H, then N={1}U(G—(J,ccxHx™) is a
(normal) subgroup of G (in a Frobenius group G, this shows that the
Frobenius kernel is actually a subgroup). The further one goes into Group
Theory, the more Representation Theory arises, and many of the best
theorems involve some use of representations. -

The theory still works when C is replaced by any algebraically closed field
K whose characteristic does not divide |G[; this is the so-called ordinary
representation theory. When the characteristic p of K divides |G|, the study,
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called modular representation theory, becomes more intricate, but it, too, is an
essential tool.

Let us now discuss the second approach to representations. If K is a field,
then the group algebra K G of a finite group G over K is the vector space over
K having the elements of G as a basis and which is equipped with the multi-
plication (called convolution) determined by the given (group) multiplication
of its basis elements. If ¢: G — GL(n, K) is a homomorphism and if V is an
n-dimensional vector space over K, then one may view V as a KG-module
(and conversely). When K = C, one sees, for example, that y(¢) is irreducible
if and only if ¥ is an indecomposable module. This point of view is quite
valuable; for example, it allows ideas and techniques of Homological Algebra
to be used. .

There are many excellent books on Representation Theory. For example:
Alperin, Benson, Curtis and Reiner, Dornhoff, Feit (1967 and 1982), Isaacs,
James and Liebeck, Puttaswamaiah and Dixon, and Serre (1977).

A Personal Note. If Representation Theory is so important, why have I not
included it in this book? It is not because the beginnings of the subject require
greater sophistication on the part of the reader.

Let me explain with an analogy. I have long felt that many entering univer-
sity students who have seen some Calculus in high school are at a disadvan-
tage. There are, to be sure, good Calculus courses taught in high schools, and
those students who have done well in such courses are well prepared. But, too
often, high school Calculus courses are inadequate, so that, upon completion,
even good students (with good teachers) are poorly prepared. As a conse-
quence, many students must start learning the subject anew when they enter
the university. Their time has been wasted and their enthusiasm has been
dampened.

I feel that one chapter on Representation Theory is necessarily inadequate;
it is like a bad high school Calculus course that leaves one unprepared. After
alongish excursion into Ring Theory (including the theorems of Wedderburn
and Maschke), one learns the first properties of characters and how to
compute them, and one proves the theorems of Burnside and Frobenius
mentioned above. However, a group theorist must have a more thorough
course in order to feel comfortable with both characters and modules. Most
likely, a student having read only one chapter in a text like this one would
still have to begin the subject anew, and this would be a waste of valuable
time.

Here are some suggestions of other topics in Group Theory that the reader
may wish to pursue. For general group theory, see Huppert, Huppert and
Blackburn (1981 and 1982), Robinson (1982), and Suzuki (1982 and 1986).

Simple Groups. All finite simple groups were classified by the 1980s, and
there is an explicit description of them all. This is the most profound and
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sophisticated part of Group Theory, using every known technique. Introduc-
tions to this study are Artin (1957), Aschbacher (1994), Borel, Carter (1972
and 1985), Conway et al., Dieudonné, and Gorenstein (1982 and 1983). For
some applications of the classification theorem, see P.J. Cameron, Finite
permutation groups and finite simple groups, Bull. London Math. Soc. 13
(1981), pp. 1-22.

Solvable Groups. See Doerk and Hawkes, Huppert and Blackburn (1981),
and Robinson (1972).

p-Groups. We recommend P. Hall’s notes “Nilpotent Groups” in his Col-
lected Works, Dixon and du Sautoy and Mann and Segal, Huppert, Huppert
and Blackburn (1981), Khukhro, and Vaughan-Lee.

Cohomology of Groups. For a general account of Homological Algebra, the
reader may look at Cartan and Eilenberg, Mac Lane, and Rotman (1979).
For Cohomology of Groups, which is Homological Algebra specialized to a
group-theoretic context, see Benson, Brown, Evens, Karpilovsky, and Weiss.

Combinatorial Group -Theory. This is the study of presentations of groups.
Suggested books are Coxeter and Moser, Johnson, Lyndon and Schupp,
Magnus and Karrass and Solitar, and Zieschang and Vogt and Coldewey.
There is another aspect involving groups acting on trees; we suggest Dicks
and Dunwoody, and Serre (1980). The Cayley graph of a finitely generated
group can be made into a metric space, and the hyperbolic groups introduced
by Gromov can be found in Gersten.

See Higman for further development of his imbedding theorem, Miller for
group-theoretic decision problems, and Epstein et al. for a treatment of auto-
matic groups. :

Abelian Groups. We suggest Fuchs (1970 and 1973), Griffith, and Kaplansky.

Finitely Generated Groups. We suggest Kegel and Wehrfritz, Kurosh, Rob-
inson (1972), and Wehrfritz.

History. We suggest Chandler and Magnus, and Wussing.

There are several computer systems devoted to group theory: for example,
MAGMA (nee CAYLEY) and GAP.

Certainly, there are other valuable books, as well as other valuable areas of
Group Theory (e.g., crystallographic groups, Mobius groups, knot groups,
varieties of groups) that I have not even mentioned. I apologize to their
authors and their practitioners.

Primary Sources. One must always look at the masters. The following
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books contain extensive bibliographies of journal articles: Carter, Coxeter
and Moser, Curtis and Reiner, Fuchs, Gorenstein (1982), Huppert, Huppert
and Blackburn, Lyndon and Schupp, Magnus and Karass and Solitar,
Robinson (1982), Scott, and Suzuki. Both Baumslag, and Gorenstein (1974)
contain reviews of the all the articles on Group Theory written between 1940
and 1970.



APPENDIX I
Some Major Algebraic Systems

Semigroup
Group
Abelian group Operator group
Ring
Commutative ring
R-module
Domain
Division ring
Field Vector space

A ring (always containing 1 # 0) is a set with two operations, addition and
multiplication. It is an abelian group under addition, a semigroup with 1
under multiplication, and the two operations are linked by the distributive
laws.

A commutative ring is a ring in which multiplication is commutative.
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A domain (or integral domain) is a commutative ring in which ab =0
implies a = 0 or b = 0; equivalently, the cancellation law holds: if ab = ac and
a#0,thenb=c.

A division ring (or skew field) is a (not necessarily commutative) ring in
which every nonzero element has a multiplicative inverse: if a # 0, then there
is b € K with ab = 1 = ba. The set of nonzero elements K* = K — {0} is thus
a multiplicative group.

A field K is a commutative division ring.

It is a theorem of Wedderburn (1905) that every finite division ring is a
field.



APPENDIX II

Equivalence Relations and
Equivalence Classes

A relation on a set X is a subset = of X x X. One usually writes x =y
instead of (x, y) € =; for example, the relation < on the set of real numbers
R consists of all points in the plane R x R lying above the line with equation
y = x, and one usually writes 2 < 3 instead of (2, 3) € <.

A relation = on a set X is reflexive if x = x for all x € X; it is symmetric if,
forall x, y € X, x = y implies y = x; it is transitive if, for all x, y, ze X, x = y
and y = z imply x = z. A relation = on a set X is an equivalence relation if it
is reflexive, symmetric, and transitive.

If = is an equivalence relation on a set X and if x € X, then the equivalence
class of x is

[xX]={yeX:y=x}c X.

Proposition IL.1. Let = be an equivalence relation on a set X. If x, a € X, then
[x] = {a] if and only.if x = a.

Proof. If [x] = [a], then x € [x], by reflexivity, and so x € [a] = [x]; that is,
x=a.

Conversely, if x = g, then a = x, by symmetry. If y € [x], then y = x. By
transitivity, y = a, y € [a], and [x] < [a]. For the reverse inclusion, if z € [a],
then z = a. By transitivity, z = x, so that z € [x] and [a] < [x], as desired.

]

A partition of a nonempty set X is a family of nonempty subsets {S;:iel}
such that X = J;.;S; and the subsets are pairwise disjoint: if i # j, then
Si ) Sj = Q.
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Proposition H.2. If = is an equivalence relation on a nonempty set X, then the
family of all equivalence classes is a partition of X.

Proof. For each x € X, reflexivity gives x € [x]; this shows that the equiva-
lence classes are nonempty and that X = J,.x[x]. To check pairwise
disjointness, assume that [x] N [y] # . Therefore, there exists an element
ze [x] n[y]; thatis, z = x and z = y. By the first proposition, [z] = [x] and
[zZ]=[y),sothat[x]=[y]. M

Proposition IL3. If {S;: i € I} is a partition of a nonempty set X, then there is
an equivalence relation on X whose equivalence classes are the S,.

Proof. If x, y € X, define x = y to mean that there exists S; containing both x
and y. It is plain that = is reflexive and symmetric. To prove transitivity,
assume that x = y and y = z; thatis, x, ye S; and y, z€ §;. Since y € §;n §},
pairwise disjointness gives S; = S;; hence x, z€ S;and x = z.

If x € X, then x € §; for some i. If y € §;, then y, x € §; and y = x; that is,
S; = [x]. For the reverse inclusion, if z € [x], then z = x, and so z, x € S;; that
is,[x]<cS;. W

Proposition I1.1 signals the importance of equivalence relations. If = is an
equivalence relation on a set X and if E is the family of equivalence classes,
then x = y in X if and only if [x] = [y] in E; equivalence of elements in X
becomes equality of elements in E. The construction of the new set E thus
identifies equivalent elements.

For example, the fractions £ and 2 are called equal if the numerators and
denominators satisfy “cross multiplication.” In reality, one defines a relation
=onX={(a b)eZ x Z:b # 0} by {a, b) =(c, d) if ad = bc, and a straight-
forward calculation shows that = is an equivalence relation on X. The equiv-
alence class containing (a, b) is denoted by a/b, and the set of all rational
numbers Q is defined as the family of all such equivalence classes. In particu-
lar, (1, 2) and (2, 4) are identified in Q, because (1, 2) = (2, 4), and so 1 = 2.
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Functions

If X and Y are sets, a relation from X to Yis asubset fof X x Y(if X =Y,
one also says that f is a relation on X). A function from X to Y, denoted by
f: X - Y,is arelation f from X to Y such that for each x € X, there exists a
unique y € Y with (x, y) € f. If x € X, then the unique element y in the defini-
tion is denoted by f(x), and it is called the value of f at x or the image of x
under f. With this notation, the relation f consists of all (x, f(x)) e X x Y;
that is, a function is what is usually called its graph.

The set X is called the domain of f and the set Y is called the target of f.
One defines two functions f and g to be equal if they have the same domain
X, the same target Y, and f(x) = g(x) for all x € X (this says that their graphs
are the same subset of X x Y).

In practice, one thinks of a function f as something dynamic: f assigns a
value f(x) in Y to each element x in X. For example, the squaring function
f:R— R is the parabola consisting of all (x, x2) € R x R, but one usually
thinks of f as assigning x? to x; indeed, we often use a footed arrow to denote
the value of fon a typical element x in the domain: for example, f: x> x2.
Most elementary texts define a function as “a rule which assigns, to each x in
X, a unique value f(x) in Y.” The idea is correct, but not good enough.
For example, consider the functions f, g: R — R defined as follows: f(x) =
(x + 1)%; g(x) = x* + 2x + 1. Are f and g different functions? They are differ-
ent “rules” in the sense that the procedures involved in computing each of
them are different. However, the definition of equality given above shows
that f = g.

If X is a nonempty set, then a sequence in X is a function f: P — X, where
P is the set of positive integers. Usually, one writes x, instead of f(n) and
one describes_f by displaying its values: x;, x5, X3, ... . It follows that two
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Sequences X,, X,, X3, ... and yy, ¥, ¥, ... are equal if and only if x, = y, for
alln> 1.

The uniqueness of values in the definition of function deserves more com-
ment: it says that a function is “single valued” or, as we prefer to say, it is well
defined. For example, if x is a nonnegative real number, then f(x) = \/; is
usually defined so that f(x) > 0; with no such restriction, it would not be
a function (if \/4‘1 =2 and \/Z = —2, then a unique value has not been
assigned to 4). When attempting to define a function, one must take care that
it is well defined lest one define only a relation.

The diagonal {(x, x) € X x X: x € X} is a function X — X; it is called the
identity function on X, it is denoted by 1y, and 14: x+—x for all x e X. If
X is a subset of Y, then the inclusion function i: X — Y (often denoted by
i X < Y) is defined by x> x for all x € X. The only difference between 1,
and i is that they have different targets, but if X is a proper subset of Y, this
is sufficient to guarantee that 1, # i.

If f: X - Y and g: Y — Z are functions, then their composite go f: X — Z
is the function defined by xi— g(f(x)). If h: Z - W is a function, then the
associativity formula ho(go f) = (hog)o f holds, for both are functions
X - W with x— h(g(f(x))) forall xe X. If f: X - 4 and Y is a subset of X
with inclusion i: Y < X, then the restriction f|Y: Y — A is the composite
foi;foreach ye Y, one has (f|Y)(y) = f(»)

A function f: X — Y is injective (or one-to-one) if distinct elements of X
have distinct values; equivalently, if f(x) = f(x’), then x = x’ (this is the
converse. of f being well defined: if x = x’, then f(x) = f(x')). A function
f: X — Y is surjective (or onto) if each element of Y is a value; that is, for each
y € Y, there exists x € X with y = f(x). (If one did not insist, in the definition
of equality of functions, that targets must be the same, then every function
would be surjective!) A function is a bijection (or one-to-one correspondence)
if it is both injective and surjective. A function f: X — Y is a bijection if and
only if it has an inverse function: there is a function g: Y > X withgo f = 14
and f o g = 1, (g is usually denoted by f ™). One must have both composites
identity functions, for g o f = 1 impilies only that f is injective and g is
surjective.



APPENDIX IV

Zorn’s Lemma

A relation < on a set X is antisymmetric if x < y and y < x imply x = y, for
all x, y € X. A relation < on a nonempty set X is called a partial order if it is
reflexive, antisymmetric, and transitive. The best example of a partially or-
dered set is a family of subsets of a set, where < means —.

A partial order on X is a simple order (or total order) if, for each x, y € X,
either x < yor y < x.

If S is a nonempty subset of a partially ordered set X, then an upper bound
of S is an element x € X (not necessarily in S) with s < x for all s € S. Finally,
a maximal element in a partially ordered set X is an element m € X which is
smaller than nothing else: if x € X and m < x, then x = m. For example, if X
is the partially ordered set consisting of all the proper subsets of a set 4 under
inclusion, then a maximal element is the complement of a point. Thus, a
partially ordered set can have many maximal elements. On the other hand, a
partially ordered set may have no maximal elements at all." For example,
there are no maximal elements in the set of real numbers R regarded as a
partially ordered set under ordinary inequality (indeed, R is a simply ordered
set).

Zorn’s Lemma. If X is a partially ordered set in which every simply ordered
subset has an upper bound, then X has a maximal element.

Remember that partially ordered sets are, by definition, nonempty.

Zorn’s lemma is equivalent to a much more intuitive statement: the Axiom
of Choice, which states that the cartesian product of nonempty sets is itself
nonempty. (It is easy to prove (by induction) that a cartesian product of a
finite number of nonempty sets is nonempty, and so the Axiom of Choice
need be invoked only when there are infinitely many factors.) We regard both



482 Appendix IV. Zorn’s Lemma

of these statements as axioms of Mathematics, and we will not be ashamed to
use either of them when convenient.

There is a third statement, equivalent to these, which is also useful. A
partially ordered set X is well-ordered if every nonempty subset contains a
smallest element; that is, if S = X and S # J, then there is 5, € S with s, < s
for all s € S. (Well-ordered sets must be simply ordered, for every two-element
subset has a smallest element.) The set of natural numbers N = {ne Z:
n > 0} is well-ordered, but the set Z of all integers is not well-ordered.

Well-Ordering Principle. Given a nonempty set X, there exists a partial order
< on X which is a well-ordering.

Although Z is not well-ordered under the usual ordering, we can well-
order it: 0,1, —1,2, —2,...-. Here is an example of a well-ordered set in
which an element has infinitely many predecessors: define X to be the follow-
ing subset of R with the usual notion of <:

X={1-1/mn>0u{2—-1mn>0uv{3-1/mn>0u-.



APPENDIX V
Countability

It is well known that certain “paradoxes” arise if one is not careful about the
foundations of Set Theory. We now sketch some features of the foundations
we accept. Its primitive undefined terms are class, element, and membership,
denoted by e if X is a member of a class Y, one writes X € Y. A “set” is a
special kind of class, described below. Every usage of “set” in the preceding
appendices can be replaced by the word “class.” In particular, one may speak
of cartesian products of classes, so that functions from one class to another
are defined; functions between classes may or may not be injective or
surjective.

Classes X and Y are called equipotent, denoted by |X|=|Y], if there
exists a bijection f: X — Y. It is easy to see that equipotence is an equiva-
lence relation. Define a relation | X| < | Y| to mean that there is an injection
f: X - Y It is easy to see that this relation is reflexive and transitive, and
the Cantor—Schroeder—Bernstein theorem shows that it is antisymmetric:
|X| <|Y|and |Y| <|X|imply |X| =|Y][; thus, < is a partial order.

The foundations allow one to define the cardinal number of a set; some
classes have a cardinal number and they are called sets; some classes do not
have a cardinal (they are too big) and they are called proper classes. For
example, the class of all abelian groups is a proper class. The notion of
functor in Chapter 10 thus involves a function defined on a proper class.

A set X is finite if it is empty or if there is a positive integer n and a bijection
f{1,2,...,n} > X (in this case, we write |X| = n); otherwise, X is infinite.
There is an elementary, but useful, result here, sometimes called the pigeon-
hole principle.

Theorem. If X and Y are finite sets with | X| = |Y|, then a function f: X > Y
is injective if and only if it is surjective; in either case, therefore, f is a bijection.
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A set X is called countable if it is finite or if there is a bijection f: N — X
where N = {0, 1, 2, ...} is the set of natural numbers; otherwise X is uncount-
able. The sets Z and Q are countable, but the set R is uncountable.

If X is any infinite set, then the set ¥ of all its subsets is an uncountable set;
moreover, if Z is any set with at least two elements, then the set of all func-
tions X — Z is uncountable. In particular, the family of all sequences in Z is
uncountable.

Here are some facts about countable sets.

1. If X is any countable set, then the family Y of all its finite subsets is a
countable set.

. Every subset of a countable set is countable.

. If X is a countable set and if : X — Y is a surjection, then Y is countable.

. If X and Y are both countable, then so is X x Y.

. If A; and A4, are countable subsets of a set X, then A, U 4, is countable.
More generally, if {4,: n > 0} is a countable family of countable subsets of
X, then { J,, 4, is countable.

ok WwN
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Commutative Rings

It is assumed that the reader has seen an introduction to commutative rings
before beginning this book, and so this appendix is intended only as a re-
minder of perhaps half-forgotten ideas.

Let R be a commutative ring. In contrast to some authors, we assume that
R must contain an element 1 # 0 which, under multiplication, behaves like
the number 1: for allr € R, 1r = r. If R’ is a second commutative ring, then a
(ring) homomorphism is a function f: R — R’ such that f(1)=1, f(r +5) =
fr) + f(s), and f(rs) = f(r)f(s). An ideal I in R is an additive subgroup of R
(OeIlanda,belimpliesa — b el)such thataeland re R imply rae I. If
f: R—> R is a homomorphism, then its kernel = {r € R: f(r) = 0} is an ideal.
Here is another important example of an ideal: if a,, ..., a, € R, then the set
of all their &near combinations is called the ideal generated by a,, ..., a,; it is
denoted by (ay, ..., a,)

@y, .., a,) = {rya, + - +r,a, r,e Rforall i}.
In the special case n = 1, the ideal generated by a € R, namely,
(a) = {ra:reR},

is called the principal ideal generated by a. If R = Z[x], the ring of all polyno-
mials with coefficients in Z, one can show that the ideal I = (x, 2), consisting

of all polynomials with coefficients in Z having even constant term, is not a
principal ideal.

_ The following result, which merely states that long division is possible, can
be proved by the reader. Recall that the zero polynomial is the polynomial all
of whose coefficients are 0; if f(x) is not the zero polynomial, then we write
flx) #0.
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Division Algorithm.
() If a, b € Z with a # 0, then there exist unique g, r € Zwith0 < r < |a| and
b=ga+r.

(i) If k is a field and a(x), b(x) € k[x] are polynomials with a(x) # 0, then
there exist unique q(x), r(x) € k[x] with either r(x) = 0 or degree r(x) <
degree a(x) and

b(x) = g(x)a(x) + r(x).

One calls q (or q(x)) the quotient and r (or r(x)) the remainder.

A domain R is a principal ideal domain (or PID) if every ideal in R is a
principal ideal. Our example above shows that Z[x] is not a principal ideal
domain.

Theorem VL1.
(i) Z is a principal ideal domain.
(i) If k is a field, then k[x] is a principal ideal domain.

Proof. (i) Let I be an ideal in Z. If I consists of 0 alone, then I is principal,
generated by 0. If I 5 0, then it contains nonzero elements; indeed, it contains
positive elements (if a € I, then —a =(—1)a el also). If a is the smallest
positive integer in I, then (a) < I. For the reverse inclusion, let b € I. By the
division algorithm, there are g, r € Z with 0 <r < g and b = ga + r. Hence,
r=b — qa e L. If r # 0, then we contradict a being the smallest element in I.
Therefore, r = 0 and b = ga € (a); hence I = (a).

(ii) The proof for k[x] is virtually the same as for Z. If I is a nonzero ideal
in k[x], then a generator of I is any polynomial a(x) e I whose degree is
smallest among degrees of polynomials in I.

If I is an ideal in R and we forget the multiplication in R, then I is a
subgroup of the abelian additive group R. The quotient ring R/I is the quo-
tient group R/I (whose elements are all cosets r + I) made into a commuta-
tive ring by defining multiplication:

r+Ds+D=rs+ 1

Let us show that this definition does not depend on the choice of coset
representative. By Lemma 2.8 in the text, r + I =+’ + I if and only if
r—r'el.lfs+I=s"+1,then
rs—r's’=rs—r's+rs—r’s
=(r—r)s+r(E—s)
Sincer —r’,s —s'el,wehavers —r's'el,andsors+ I =r's"+ I
The natural map v: R — R/I is the function defined by v(r) =r + I; the
definition of multiplication in the quotient ring shows that v is a (surjective)
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ring homomorphism with kernel I. If f: R > R’ is a ring homomorphism,
then the first isomorphism theorem (Theorem 2.23) applies to the additive
groups if one forgets multiplication: if I is the kernel of f, then [ is a subgroup
of R, im f is a subgroup of R’, and there is an isomorphism ¢: R/ —im f
given by r + I'— f(r). If one now remembers the multiplication, then it is easy
to check that I is an ideal in R, im f is a subring of R’, and the group
isomorphism ¢ is also a ring isomorphism. The analogue of the correspon-
dence theorem (Theorem 2.27) is valid: If I is an ideal in R, then there is a
bijection between all intermediate ideas J with I < J <= R and all ideals of
R/I

If a, b € R, then a divides b in R (or b is a multiple of a), denoted by alb, if
there is r € R with ar = b. Note that a divides b if and only if b€ (a). If
a, ..., a, € R, then a common divisor is an element ¢ € R which divides each
a; a greatest common divisor (gcd), denoted by d = (a4, ..., a,), is a common
divisor which is divisible by every common divisor.

Theorem VL2. If R is a PID, then every set of elements a,, ..., a,€ R has a
ged d; moreover, d is a linear combination of a, ..., a,.

Proof. The set of all linear combinations of a,, ..., a, is an ideal I in R. Since
Ris a PID, I is a principal ideal; let d be a generator. As any element of I, d
is a linear combination of a,, ..., a,. It follows that any common divisor ¢
of the g; also divides d. But d itself is a common divisor, for each g; lies in
d. »

We have just shown that (ay, ..., a,) = (d), where d is a gcd of a4, .. ., a,,.

An element u € R is a anit if u|1; that is, there exists v € R with uv = 1. Two
elements a, b € R are associates if there is a unit u with a = bu. An element in
R is irreducible if it is not a unit and its only factors are units and associates.
In Z, the irreducibles have the form +p, where p is a prime; if k is a field,
a polynomial p(x)e k[x] is irreducible if it is not constant and there
is no factorization p(x) = f(x)g(x) with degree f(x) < degree p(x) and
degree g(x) < degree p(x).

Theorem V1.3. If Ris a PID and a,, ..., a, € R, then any two gcd’s of ay, ...,
a, are associates.

Proof. We may assume that d # 0 (otherwise a; = O for all i). If d and d’ are
ged’s, then each divides the other: there are u, v € R withd = d'u and d’ = dv.
Hence, d = d'u = dvu, and the cancellation law gives 1 = vu. Therefore, uisa
unit and 4 and 4’ are associates. H

If R = Z, then the only units are 1 and — 1, so that two gcd’s of a4, ..., a,
differ only in sign. If R = k[x], where k is a field, then the only units are
nonzero constants; thus, only one ged d(x) of f,(x), ..., f,(x) is monic; that is,



488 Appendix VI. Commutative Rings

it has leading coefficient 1 (i.e., the coefficient of the highest power of x is 1),
Thus, if not all a;(x) = 0, any gcd of a,(x), ..., a,(x) in k[x] is an associate of
a monic polynomial.

In light of Theorem V1.3, we may speak of the gcd of elements in a PID,
and we change the definition, in the special cases of Z and of k[x], so that the
gcd is either positive or monic. The gcd of two elements a and b is denoted
by (a, b); we say that a and b are relatively prime if (a, b) = 1.

The euclidean algorithm shows how to compute gcd’s in Z and in k[x], but
we shall not need this here.

Two integers a and b are relatively prime if and only if there are integers s
and t with sa + tb = 1. In other words, a and b are relatively prime if and
only if [a b] is the first row of a matrix having determinant 1 (let the second
row be [—t s]). This result can be generalized. Call a matrix A unimodular if
det A =1

Theorem V1.4. 4 set a,, ..., a, of integers is relatively prime if and only if there
is a unimodular n x n matrix A with entries in Z whose first row is [a; ... a,].

Proof. We prove the theorem by induction on n > 2, the base step being our
observation above. For the inductive step, let d be the ged of a4, ..., a,_,
and let a; = db; for i <n — 1. The integers b,, ..., b, are relatively prime
(there is no common divisor ¢ > 1), and so there exists an (n — 1) x (n — 1)
unimodular matrix B with entries in Z whose first row is [b, ..., b,—; ]. Now
d and g, are relatively prime (lest there be a common divisor of a,, ..., a,), so
there are integers s and t with sd + ta, = 1. If C denotes the lower n — 2
rows of B, define A4 to be the n x n matrix

dby, ... db,_, a,
A= C 01,
—thy ... —th,_; s

note that the first row of A is [a; ... a,]. Expanding down the last column,

C db
d = _1n+1 det —1)2n .
et A =(—1)""qa,de |:—tb:|+( 1) sdet[c:lw

db C C
Now detl:c]—ddetB=d and detl:_tb]= —tdet[b:I—

(=5)(= 1™ (= 1y = ¢ (because [i

interchanging the top row b with each of the n — 2 rows below it). Hence,
det A = (—1)®"*2ta, + sd = ta, + sd = 1, so that A is unimodular. -

For the converse, let A be a unimodular n x n matrix with entries in Z
whose first row is [a; ... a,]. Evaluating the determinant by expanding
across the top row gives 1 = det 4 as a Z-linear combination of a, ..., a,,
and this shows that a,, ..., a, are relatively prime. W

:I is obtained from B by successively
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Theorem VLS. Let R be a PID and let p € R be irreducible. If I = (p) is the
principal ideal generated by p, then R/I is a field.

Proof. If f + I € R/I is not the zero element, then f ¢ I = (p); that is, p does
not divide f. Since p is irreducible, its only divisors are units and associates.
Therefore, d = ged(p, f) is either a unit or an associate of p. But if d were an
associate of p, then p would divide f, a contradiction. Hence, d = 1, and so
there are elements g, b € R with 1 = ap + bf. Thus, bf — 1 €(p) = I, so that
b+ D(f+I)=1+I;thatis,f + Iisaunitin R/[,and so R/I is a field. &

Corollary VL6.

() If pis a prime, then Z, = Z/(p) is a field.
(i) If kis a field and p(x) € k[x] is an irreducible polynomial, then k[x]/(p(x))
is a field.

When we say that an element a is a product of irreducibles we allow the
possibility that g itself is irreducible (there is only one factor).
A domain R is a unique factorization domain (or UFD) if:

(i) every r € R that is neither 0 nor a unit is a product of irreducibles; and

(i) if py--.Pm = 41 .- qn, Where the p; and g; are irreducible, then there i§ a
bijection between the sets of factors (so m = n) such that corresponding
factors are associates.

We are going to prove that every principal ideal domain R is a unique
factorization domain, and our first task is to show that if » € R is neither O
nor a unit, then it is a product of irreducibles.

Lemma VIL.7. If R is a PID, then there is no infinite strictly increasing sequence
of ideals
: L<L< <, <I@yg<--.

Proof. If such a sequence exists, then it is easy to check that J = | J,.5; I, is an
ideal. Since R is a PID, there is a € J with J = (a). Now a got into J by being
in some I,. Hence

J=@=<I, <l <J,

a contradiction. W

Lemma VL8. If Ris a PID and a € R is neither 0 nor a unit, then a is a product
of irreducibles.

Proof. If r € R has a factorization r = bc, where neither b nor ¢ is a unit, then
we say that b is a proper factor of a. It is easy to check, using the hypothesis
that R is a domain, that if b is a proper factor of a, then (a) < (b).

Call an element a € R good if it is a product of irreducibles; otherwise, a is
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bad. If a and b are good, then so is their product ab. Thus, if a is bad, then it
factors (for irreducibles are good), and at least one of its proper factors is bad.
Suppose there is a bad element a = a, which is neither 0 nor a unit. Assume
inductively that there exists a, a,, ..., a, such that each qa;,, is a proper bad
factor of a;. Since a, is bad, it has a proper bad factor a,,,. By induction,
there exist such a, for all n > 0. There is thus an infinite strictly increasing
sequence of ideals (a,) < (a;) <-** <(a,) <(a,+;) <---, contradicting the
previous lemma. Therefore, every a € R that is neither 0 nor a unit is good;
that is, a is a product of irreducibles. B

Theorem V1.9 (Euclid’s Lemma). Let R be a PID and let p € R be irreducible.
If a, b € R and p|ab, then p|a or p|b.

Proof. If pla, we are done. Otherwise, p does not divide a, and so the
gcdd = (p, a) = 1 (as we saw in the proof of Theorem VL5). By Theorem
VI.2, there are elements s, t € R with sp + ta = 1. Therefore, b = spb + t(ab).
Since p|ab, it follows that p|b. B

Theorem V1.10 (Fundamental Theorem of Arithmetic). Every principal ideal
domain R is a unique factorization domain.

Proof. By Lemma V1.8, every a € R that is neither O nor a unit is a product of
irreducibles. We have only to verify the uniqueness of such a factorization.

I p,...pm=4q1.--q,, where the p; and the gq; are irreducible, then
p:l4; ...q,. By Euclid’s lemma, p; divides some g;. Since g; is irreducible, p,
and g; are associates: there is a unit u € R with g; = up,. As R is a domain,
we may cancel p, to obtain

@p2)p3---Pm= 1] ass
1#]
and the proof is completed by an induction on max {m, n}.

A standard proof of Corollary VI.6 uses the notion of prime ideal, which
makes Euclid’s lemma into a definition. An ideal I in a commutative ring R
is called a prime ideal if I # R and abe I implies ae I or b e l. Note that
the ideal 0 is prime if and only if R is a domain.

Theorem VL.11. A nonzero ideal I in a PID R is prime if and only if I = (p),
where p is irreducible.

Proof. Since R is a PID, there is an element d with I = (d). Assume that [ is
prime. If d is not irreducible, then d = ab, where neither a nor b is a unit. By
hypothesis, either ae I or b € I. But if, say, a € I, then a = rd for some r € R,
and hence d = ab = rdb. Therefore 1 = rb, contradicting b not being a unit.

Conversely, assume that p is irreducible and that ab e (p). Thus, p|ab, so
that Euclid’s lemma gives p|a or p|b;thatis,ae(pjorbe(p). B
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Theorem VL12. An ideal I in a commutative ring R is prime if and only if R/I
is a domain.

Proof. Recall that the zero element of R/I is 0 + I = I. Assume that [ is
prime. IfI =(a+ I)(b + I) =ab + I, thenab e I,hence ae I or b € I; that is,
a+I=1Iorb+ I=1I Hence, R/l is a domain. Conversely, assume that R/I
is a domain and that ab € I. Thus, I = ab + I = (a + I)(b + I). By hypothe-
sis, one of the factors must be zero; that is, a+ I =1 or b + I = I. Hence,
aelorbel, sothat]isprime. B

An ideal I in a commutative ring R is a maximal ideal if I + R and there is
no ideal J with I & J & R. Note that the ideal 0 is maximal if and only if R is
a field, for if a € R is not zero, then the ideal (a) must be all of R. Hence 1 € (a),
so there is 7 € R with 1 = ra; that is, a is a unit.

Theorem VI1.13. An ideal I in a commutative ring R is maximal if and only if
R/I is a field.

Proof. If I is maximal, then the correspondence theorem for rings shows that
R/I has no proper ideals. Hence the zero ideal is maximal and. R/I is a field.
Conversely, if there is an ideal J with I & J & R, then the correspondence
theorem shows that J/I is a proper nonzero ideal in R/I, contradicting the
hypothesis tht R/I is a field (the ideal 0 is maximal). B

Since every field is a domain, if follows that every maximal ideal in a
commutative ring is a prime ideal. The converse is not always true; for exam-
ple, the ideal I = (x) in Z[x] is prime (for Z[x]/I =~ Z is a domain), but it is
not maximal because Z is not a field (or, because (x) & (x, 2) & Z[x]).

Theorem VI.14. If R is a PID, then every nonzero prime ideal I is maximal.

Proof. Assume that J is an ideal with I & J. Since R is a PID, there are
elements a, b € R with I = (a) and J = (b). Now I & J gives ae J = (b), so
there is » € R with a = rb. But I is prime, so that be I or r e I. If b € I, then
J = (b) = I, contradicting I & J. Therefore, r € I, so there is s € R with r = sa.
Hence, a = rb = sab; as R is a domain, 1 = sb € (b) = J. Therefore, J = R
and [ is maximal. W

One can now give a second proof of Theorem VI.5. If Risa PID and p e R
is irreducible, then I = (p) is a nonzero prime ideal, by Theorem VI.11. By
Theorem VI.14, I is a maximal ideal, and so Theorem VI.13 shows that R/I
is a field.

Lemma VL15. Let k be a field and let p(x) € k[x] be irreducible. Then there is
a field K containing a subfield isomorphic to k and a root of p(x).
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Proof. Let I = (p(x)) and let K = k[x]/I; since p(x) is irreducible, Theorem
VL5 shows that K is a field. It is easy to check that the family of all cosets of
the form a + I, where a €k, is a subfield of K isomorphic to k. Let p(x) =
Y. a;x'. We claim that the element x + I € K is a root of p(x).

pix+ D=3 afx + Iy
=Y a(x' + 1)
=Y (ax'+ 1)
=X ax')y+1
=px)+I=1
The result follows, for I = 0 + I is the zero element of K. 1

Theorem VI.16. If k is a field and f(x) € k[x], then there is a field F containing
k over which f(x) is a product of linear factors; that is, F contains all the roots

of f(x).

Proof. The proof is by induction on n, the degree of f(x). If n = 1, then f(x)is
linear and we may set F = k. If n > 1, there is a factorization f(x) = p(x)g(x)
in k[x], where p(x) is irreducible (perhaps g(x) = 1). By Lemma VI.15, there
is a field K containing k and a root § of p(x). There is thus a factorization

p(x) = (x — B)h(x) in K[x]. Since degree h(x)g(x) < n, the inductive hypo-
thesis gives a field F containing K over which h(x)g(x), hence f (x)
(x — B)h(x)g(x), is a product of linear factors. W

If k is a field and f(x) = a"x” + an—-lx"—l + o+ ag € k[x], then its deriva-
tive is
f(x) =na,x" + (0 — Da,x" >+ +ay.

It is easy to check that the usual formulas of Calculus hold for derivatives
of sums and products of polynomials over arbitrary fields: (f(x) + g(x)) =

J'(x) + g’ () (f(x)g(x)) = f(x)g'(x) + ' (x)g(x).

Lemma VL.17. Let k be a field, let f(x) € k[x], and let F be a field containing
k which contains all the roots of f(x). Then f(x) has no repeated roots if and
only if f(x) and f'(x) are relatively prime.

Proof. If f(x) has a repeated root, then f(x) = (x — f)*g(x) in F[x]. Hence,
f(x) = 2(x — B)g(x) + (x — B)®g’(x), so that x — B is a common divisor of
f(x) and f’(x) and they are not relatively prime. Conversely, assume
that x — B is a common divisor of f(x) and f'(x): say, f(x) =(x — f)g(x)
and f’(x) = (x — B)h(x). By the product formula for derivatives, f'(x) =
(x — B)g'(x) + g(x), so that (x — B)g’(x) + g(x) = (x — B)h(x). Therefore,
x — B divides g(x), (x — B)? divides f(x), and f(x) has a repeated root. W
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Lemma VL18. If k is a field of characteristic p > 0, then for all a, b € k and
foralln>1,
(a+ b =a” + b7

Proof. The proof is by induction on n. If n = 1, expand (a + b)® by the bino-
mial theorem. Since p is prime, it divides all the middle binomial coefficients,
and hence each of them is 0 mod p. The inductive step is easy. B

Theorem V1.19 (Galois). For every prime p and every n > 1, there exists a field
having exactly p" elements.

Proof. Let g = p" and let f(x) = x? — x € Z,[x]. By Theorem VI.16, there is
afield F containing Z,, (so that F has characteristic p) and all the roots of f(x).
Define K to be the set of all the roots of f(x) in F. Since f(x) has degree g, it
follows that |K| < g, with equality if f(x) has no repeated roots. Now f”(x) =
qx?! — 1 = —1, because F has characteristic p and q = p". Therefore, f(x)
and f’(x) are relatively prime, and Lemma VL17 shows that f(x) has no
repeated roots.

We now show that K is a subfield of F. Let @ and b be roots of f(x), so that
a?=a and b?=b. Lemma VI.18 gives (a — b)? = a? — b?=a — b, so that
a — b e K; moreover, (ab)? = a%? = ab, so that abe K. Since 1€K, it
follows that K is a subring of F. Finally, if a # 0, then a? = a implies that
a®! = 1,so.that a™ = a2 € K (because K is a subring). Therefore, K is a
field. W

It is curious that the uniqueness of the finite fields was not established for
more than 60 years after their discovery.

Theorem VI1.20 (E.H. Moore, 1893). Any two fields having exactly p” elements
are isomorphic.

Proof. Let K be a field with exactly g = p" elements. Since the multiplicative
group K> of nonzero elements of K has order ¢ — 1, Lagrange’s theorem
gives a?™! = 1 for all nonzero a € K. Therefore, every element of K is a root
of f(x) =x7— x, so that K is a splitting field of f(x). The result follows
from the general fact that any two splitting fields of a given polynomial are
isomorphic (the reader may prove this by induction on the degree of f(x),
using Lemma 5.5 of the text). B

The following proof is the polynomial version of the fact that every con-
gruence class [a] € Z,, is equal to [r], where r is the remainder after dividing
a by m; moreover, any two “remainders,” that is, any distinct r and ' between
0 and  — 1 are not congruent.

Theorem VI.21. Let k be a field and let p(x) € k[x] be an irreducible polyno-
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mial of degree n. If k is a subfield of a field E and if a € E is aroot of p(x), then
[k(x) : k] = n. Indeed, every element in k(o) has a unique expression of the form

(*) bo + by + 4 by,

where b; € k for all i.

Proof. The map ¢: k[x] — E, defined by f(x)+ f(e), is a ring homomor-
phism with im ¢ = k(a) and ker ¢ = I # 0 (for p(x) € I). By Theorem VI.11,
I = (q(x)), where g(x) is irreducible. Hence g(x)|p(x), so that g(x) = cp(x) for
some nonzero ¢ € k; that is, I = (p(x)). We claim that X = {1, a,...,a" '} is
a basis of k() viewed as a vector space over k. If so, then [k(a): k] = n, as
desired. If there are b, not all 0, with Y /=3 bja’ = 0, then « is a root of
g(x) = Z’:;é b;x%, a nonzero polynomial of degree smaller than n. But g(x) €
ker ¢ = (p(x)), so that p(x)|g(x) and the degree of g(x) is at least n, a contra-
diction. Thus, X is linearly independent. To see that X spans k(«), we show,
by induction on m > n, that a™e W =1, a, ..., «"! ), the subspace over k
spanned by X. If p(x) = Y 7., ¢;x’, then 0 = p(a) = Y o c;t), so that o =
— Y123 c;a’ e W. For the inductive step, assume that o™ = Y 723 d;a, where
d;e k. Then o™ = aa™ = ay 123 dia' =Y 123 dio™* + d,_ja"c W. B
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Notation

Set Theory and Algebra

AcBorBo> A Aisasubsetof B

%] empty set

AxB cartesian product

f:A—>B fis a function from A4 to B

1, the identity function X — X

irA<B i is the inclusion map from the subset 4 = B

fra—f(a) fis a function whose value on the eiement a in its domain
is f(a)

fl4 the restriction of f to A; that is, if f: B— C and A < B,
then f|4 = f oi, wherei: 4 < B

| X]| the number of elements in a set X

(’7) binomial coefficient m!/il(m — i)!

UR) the group of units in the ring R

K* if K is a field, K* = K — {0}; the multiplicative group of
K ="U(K)

G* if G is a group, G* = G — {1} :
[x] equivalence class containing an element x; in particular,
the congruence class of an integer x € Z,,,

A =[a;] matrix whose entry in row i and column  is a;;
dy (Kronecker delta) if i # j, then §; = 0; if i = j, then &; = L.
E identity matrix [J;]

o and f are homotopic paths
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(4, Z,(4), 2)
PYK)

affine space
projective space over K of dimension n

Groups and Subgroups

A<B
A<B
(X5
Av B
AB

A< B
G/H

H char G
AxB
14
A®B
LA

A*B

A=y B

A xBor A x,B
A\Bor A\, B
b

[4, B]

G

Z(G)

Csla)
Co(H)
Ng(H)
Aut(G)
Inn(G)
0O(x) or Gx
G,

Hol(G)
Hom(G, B)
G*

U(R)
@(G)
dG
tG
(X14)

A is a subgroup of B

A is a proper subgroup of B

subgroup generated by a subset X

subgroup generated by subgroups 4 and B
{ablac Aand b € B}

A is a normal subgroup of B

the family of all left cosets of H in G (it is a group when
H<G)

H is a characteristic subgroup of G

direct product of groups

direct product of groups

direct sum of abelian groups

direct sum of abelian groups

free product of groups

amalgam

semidirect product

wreath product or regular wreath product
conjugacy class of element a € G

subgroup generated by all commutators [a, b] =aba™*b™!
commutator subgroup = [G, G]

center of G

centralizer of element a in G

centralizer of subgroup H < G

normalizer of subgroup H < G

automorphism group of group G

all inner automorphisms of G

orbit of element x in a G-set

stabilizer of element x in a G-set

holomorph of G

all homomorphisms from G to B

character group = Hom(G, C*) (= Hom(G, Q/Z) when G
is finite)

group of units in a ring R

Frattini subgroup

maximal divisible subgroup of abelian group G
torsion subgroup of abelian group G
presentation with generators X and relations A



