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Kwapień and Woyczyński asked in their monograph (1992) whether their notion of

superstrong domination is inherited when taking sums of independent symmetric

random vectors (one vector dominates another if, essentially, tail probabilities of any

norm of the two vectors compare up to some scaling constants). We answer this question

positively. As a by-product of our methods, we establish that a certain notion of weak

concentration is also preserved by taking sums of independent symmetric random

vectors.

1 Introduction

Stochastic orderings quantitatively capture the notion of one random variable being

greater than another one. Common examples include U-stochastic orderings. If U is a

family of real valued functions defined on, say a real separable Banach space E, we say

for E-valued random vectors X and Y that X is U-dominated by Y, written X ≺U Y,

if Ef (X) ≤ Ef (Y), for all functions f in U . For instance, taking U to be the family of

nonnegative convex functions on E results in the usual convex stochastic ordering,

or considering U to be the family of the exponents of bounded linear functionals,

exp{x∗(·)}, x∗ ∈ E∗, can be used to define sub-Gaussian random vectors, just to name

several important examples. An inductive argument shows that these two orderings are
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inherited for sums: if Xi ≺U Yi, for i = 1, . . . , n and the Xi and Yi are independent, then∑n
i=1 Xi ≺U

∑n
i=1 Yi. This is a significant property of a stochastic ordering as it allows

to compare sums in presence of the comparison for independent summands. The main

goal of this article is to establish such a tensorisation property for symmetric random

vectors of a stochastic ordering called superstrong domination, which we shall now

define.

Let X and Y be symmetric random vectors with values in a real separable Banach

space E. We say in this paper that Y dominates X with constants κ, λ ≥ 1 ((κ, λ)-

dominates, in short) if for every closed convex and symmetric set K in E we have

P (X /∈ K) ≤ κP (λY /∈ K) .

We sometimes write X ≺(κ,λ) Y. Equivalently, X is (κ, λ)-dominated by Y if for every

continuous norm ‖ · ‖ on E, we have

P (‖X‖ > 1) ≤ κP (λ‖Y‖ > 1) .

(The inequality for convex sets clearly implies the inequality for norms. Conversely,

given a closed convex and symmetric set K in E, take Kδ,R to be the δ-enlargement of K,

{x ∈ E, dist(x, K) ≤ δ} intersected with the closed ball of radius R in E. The Minkowski

functional of Kδ,R defines a continuous norm on E. Letting δ go to 0 and R to ∞ finishes

the argument.)

This notion appears as superstrong domination in the monograph by Kwapień

and Woyczyński (see [10], Chapters 3.2 and 3.6). It can be viewed as a less restrictive

version of the U-stochastic ordering for the family U comprising the indicators of

complements of convex symmetric sets. The special case, κ = λ = 1 and E = R
d is known

as peakedness and was first introduced by Birnbaum (univariate case, d = 1, see [6]), by

Sherman (multivariate case, d ≥ 1, see [14]), and by Kanter (see [9]), which has found

numerous applications in convex geometry (see, for instance, [2], [13], [15]). In this case,

by considering symmetric strips, if X ≺(1,1) Y, then necessarily E|〈t, X〉|2 ≤ E|〈t, Y〉|2,

for all vectors t in R
d. For symmetric Gaussian random vectors X and Y, this simple

necessary condition is also sufficient! (Since the matrix [E(YiYj − XiXj)]i,j is positive

semi-definite, there is an independent symmetric Gaussian random vector Z such that

Y = X + Z and Anderson’s inequality, see [1], finishes the argument.)

Kwapień and Woyczyński posed a question whether superstrong domination is

preserved by taking sums of independent symmetric random vectors. They remarked
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that the answer is positive for vectors taking values in one-dimensional subspaces,

crediting this result to Jain and Marcus (see [7] and Theorem 3.2.1 in [10]). Kanter’s

result says that the peakedness of log-concave measures in R
d tensorises (see Corollary

3.2 in [9]), supporting the “yes” answer in this case. Our 1st main result provides the

positive answer in full generality.

Theorem 1. Let X1, . . . , Xn and Y1, . . . , Yn be independent symmetric random vectors

with values in separable Banach space. Suppose that Xi is (κ, λ)-dominated by Yi for

each i = 1, . . . , n. Then the sum X1 + . . . + Xn is (16α−1�κ�, (1 + α)�κ�λ)-dominated by the

sum Y1 + . . . + Yn for any 0 < α ≤ 1.

The crux of our argument is to devise a proxy, a quantity that mimics tail

probabilities P (‖X‖ > 1), but, as opposed to them, gives rise to inequalities that are

easy to tensorise. With the aid of the proxy as well as several tools for random signs,

we first establish the tensorisation of (1, 1)-domination. Then we show how to deduce

the theorem for arbitrary κ and λ from the case κ = 1 = λ.

Using similar tools and techniques, we derive a tensorisation property for a

certain notion of weak concentration, which can be of independent interest. We say

that a symmetric random vector X with values in a separable Banach space E satisfies

the weak Borell inequality (or the weak concentration) with constants C ≥ 1, δ > 0,

and 0 < θ < 1 (WB(C, δ, θ) for short), if for every continuous norm ‖ · ‖ on E such that

P (‖X‖ > 1) < θ , we have

P (‖X‖ > λ) ≤ Cλ−δ
P (‖X‖ > 1) , λ ≥ 1. (WB)

Again, this is the same as saying that for λ ≥ 1 and every closed symmetric convex

subset K of E such that P (X /∈ K) < θ , we have P (X /∈ λK) ≤ Cλ−δ
P (X /∈ K).

For instance, if X is a κ-concave random vector in R
d, κ < 0, and θ < 1/2, then X

satisfies WB(C, −1/κ, θ) with C dependent only on κ and θ (see [4] and [5]). Even though

in general κ-concavity with negative κ is not preserved by taking sums of independent

vectors, the WB inequality is (modulo a slight change of constants), which is our 2nd

main result.

Theorem 2. Suppose that symmetric random vectors X1, . . . , Xn in separable Banach

space are independent and each satisfies WB(C, δ, θ). Then X1 + . . . + Xn satisfies

WB(C′, δ, θ ′), where C′ = 12 · 9δC and θ ′ = min{θ/2, (96C · 9δ)−1}.
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As an application of this result, we establish superstrong domination for

weighted sums of i.i.d. symmetric random vectors satisfying the weak Borell inequality

when the sequences of weights are comparable in terms of majorisation. Recall that one

sequence of real numbers a = (a1, . . . , an) is majorised by another one b = (b1, . . . , bn),

usually denoted a ≺ b, if the nonincreasing rearrangements a∗
1 ≥ . . . ≥ a∗

n and

b∗
1 ≥ . . . ≥ b∗

n of a and b satisfy the inequalities

k∑
j=1

a∗
j ≤

k∑
j=1

b∗
j for each 1 ≤ k ≤ n − 1 and

n∑
j=1

aj =
n∑

j=1

bj.

Equivalently, a is a convex combination of the permutations (b′
1, . . . , b′

n) of b (see for

example Theorem II.1.10 in [3]).

Theorem 3. Let X1, X2, . . . be i.i.d. symmetric random vectors in separable Banach

space. Assume that for some C > 0, 0 < θ < 1, and δ > 1, each Xi satisfies WB(C, δ, θ).

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be sequences of real numbers such that a is

majorised by b. Then

n∑
i=1

aiXi ≺(κ,λ)

n∑
i=1

biXi

with κ = max{2θ−1, 96C · 9δ, 12C · 9δ(δ − 1)−1} and λ = 2.

This theorem does not hold under the weaker assumption that the Xi satisfy

the weak concentration with δ < 1. To see that, fix δ ∈ (0, 1) and take Xi to be

independent real valued symmetric δ-stable random variables. Then P
(|X1| > t

) ∼ t−δ,

for large t, hence, the Xi satisfy WB(C, δ′, θ) if and only if δ′ ≤ δ. Consider the sequences

a = (1/n, . . . , 1/n) and b = (1, 0, . . . , 0). Then a ≺ b and
∑

aiXi has the same distribution

as n1/δ−1X1, so
∑n

i=1 aiXi ≺(κ,λ)

∑n
i=1 biXi would particularly imply that P

(|X1| > 1
) ≤

κP
(
λ|X1| > n1/δ−1

)
, which is not true for large n. We suspect that our assumption of

δ > 1 can be weakened to δ ≥ 1.

2 Auxiliary Results

In this section, we collect several well-known inequalities that will be needed in our

proofs. We begin with three results for random signs. Here and throughout, ε1, ε2, . . .

are independent random signs each taking the value ±1 with probability 1/2. Let

v1, . . . , vn be vectors in a separable Banach space (E, ‖ · ‖). Kahane’s inequality (see [8] or
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Proposition 1.4.1. in [10]) says that for s, t > 0, we have

P

(∥∥∥∑
εivi

∥∥∥ > s + t
)

≤ 4P
(∥∥∥∑

εivi

∥∥∥ > s
)
P

(∥∥∥∑
εivi

∥∥∥ > t
)

. (1)

We also recall the optimal L1 − L2 moment comparison due to Latała and Oleszkiewicz

(see [11]), that is

E

∥∥∥∑
εivi

∥∥∥2 ≤ 2
(
E

∥∥∥∑
εivi

∥∥∥)2
. (2)

This, combined with the Paley–Zygmund inequality yields that for any θ ∈ (0, 1), we have

P

(∥∥∥∑
εivi

∥∥∥ > θE

∥∥∥∑
εivi

∥∥∥)
≥ 1

2
(1 − θ)2. (3)

The contraction principle (see for instance Theorem 4.4 in [12]) in particular asserts that

for two sequences of real numbers (ai)
n
i=1 and (bi)

n
i=1 such that |ai| ≤ |bi| for each i ≤ n,

we have

E

∥∥∥∑
εiaivi

∥∥∥ ≤ E

∥∥∥∑
εibivi

∥∥∥ . (4)

Let us recall several classical inequalities for sums of symmetric independent

random vectors X1, . . . , Xn with values in the separable Banach space (E, ‖ · ‖). Denote

as usual Sj = X1 + . . . + Xj, j ≤ n, X∗
n = maxj≤n ‖Xj‖, and S∗

n = maxj≤n ‖Sj‖. The Lévy

inequality says that

P
(
S∗

n > t
) ≤ 2P

(‖Sn‖ > t
)

, t ≥ 0. (5)

Moreover, we have

P
(
X∗

n > t
) ≤ 2P

(‖Sn‖ > t
)

, t ≥ 0. (6)

The Hoffmann–Jørgensen inequality asserts that

P
(
S∗

n > s + t + u
) ≤ P

(
X∗

n > s
) + 2P

(
S∗

n > t
)
P

(‖Sn‖ > u
)

, s, t, u ≥ 0. (7)

Lastly, even without the symmetry of the Xi, we have

n∑
j=1

P

(
‖Xj‖ > t

)
≤ P

(
X∗

n > t
)

1 − P
(
X∗

n > t
) , t ≥ 0. (8)

(All of these inequalities can be found for instance in Chapter 1 of [10]).
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3 Proof of Theorem 1.1

The goal of the 1st three sections is to show Theorem 1 when κ = 1 = λ. In the last

section, we show how to deduce the general case.

3.1 Conditional convexity and a proxy

We start with a simple lemma that lies at the heart of our tensorisation argument.

Lemma 4. Let X1, . . . , Xn and Y1, . . . , Yn be independent symmetric random vectors

with values in a separable Banach space E such that Xi is (1, 1)-dominated by Yi for

each i = 1, . . . , n. Let ϕ : En → [0, ∞) be a continuous function, convex with respect to

each coordinate. Then for t ≥ 0, we have

P
(
Eεϕ(ε1X1, . . . , εnXn) > t

) ≤ P
(
Eεϕ(ε1Y1, . . . , εnYn) > t

)
.

Proof. We condition on X2, . . . , Xn and define the set

K =
{
x ∈ E, Eεϕ(ε1x, ε2X2, . . . , εnXn) ≤ t

}
,

which is closed, convex, and symmetric. Using X1 ≺(1,1) Y1, we get P
(
X1 /∈ K

) ≤
P

(
Y1 /∈ K

)
, which means that

PX1

(
Eεϕ(ε1X1, ε2X2, . . . , εnXn) > t

) ≤ PY1

(
Eεϕ(ε1Y1, ε2X2, . . . , εnXn) > t

)
,

so taking the expectation of both sides against X2, . . . , Xn gives

P
(
Eεϕ(ε1X1, ε2X2, . . . , εnXn) > t

) ≤ P
(
Eεϕ(ε1Y1, ε2X2, . . . , εnXn) > t

)
.

Similarly, we condition on Y1, X3, . . . , Xn to swap X2 for Y2, etc. and finally arrive at the

desired inequality. �

Note that the function u �→ (u−1)+ = max{u−1, 0} is convex and nondecreasing.

Therefore, for a normed space (E, ‖ · ‖) the function ϕ : En → [0, ∞) defined by

ϕ(x1, . . . , xn) = (‖∑n
i=1 xi‖ − 1)+ is convex (and continuous). From Lemma 4 we thus get

the following corollary.
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Stochastic Dominance and Weak Concentration 9003

Corollary 5. Let X1, . . . , Xn and Y1, . . . , Yn be independent symmetric random vectors

with values in a separable Banach space E such that Xi is (1, 1)-dominated by Yi for each

i = 1, . . . , n. Let ‖ · ‖ be a continuous norm on E. Then for t ≥ 0, we have

P

(
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ > t
)

≤ P

(
Eε

(∥∥∥∑
εiYi

∥∥∥ − 1
)

+ > t
)

.

In particular,

∫ 1

0
P

(
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ > t
)

dt ≤
∫ 1

0
P

(
Eε

(∥∥∥∑
εiYi

∥∥∥ − 1
)

+ > t
)

dt. (9)

For a nonnegative random variable Y, we plainly have

Emin{Y, 1} =
∫ ∞

0
P (min{Y, 1} > t) dt =

∫ ∞

0
P (Y > t, 1 > t) dt =

∫ 1

0
P (Y > t) dt.

Therefore, in view of this corollary, the following quantity

∫ 1

0
P

(
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ > t
)

dt = Emin
{
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ , 1
}

tensorises as well. This is our proxy and we will show that it is comparable to

P
(‖∑

Xi‖ > 1
)
. This is where the assumption of symmetry and the aforementioned tools

for random signs come into play.

3.2 Upper and lower bounds for the proxy

Lemma 6. Suppose that X1, . . . , Xn are independent symmetric random vectors in a

normed space (E, ‖ · ‖). Then for 0 < α ≤ 1, we have

Emin
{
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ , 1
}

≥ αP
(∥∥∥∑

Xi

∥∥∥ > 1 + α
)

.

Proof. Denote U = Eε(‖
∑

εiXi‖ − 1)+. Notice that for a positive parameter α, we have

U ≥ Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ 1{‖∑
εiXi‖>1+α} ≥ αPε

(∥∥∥∑
εiXi

∥∥∥ > 1 + α
)

.

Thus,

Emin{U, 1} ≥ Emin{αPε

(∥∥∥∑
εiXi

∥∥∥ > 1 + α
)

, 1}.
When α ≤ 1, the last expression becomes αP

(‖∑Xi‖ > 1 + α
)
. �
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Lemma 7. Let X1, . . . , Xn be independent symmetric random vectors in a normed space

(E, ‖ · ‖). Then we have

Emin
{
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ , 1
}

≤ 16P
(∥∥∥∑

Xi

∥∥∥ > 1
)

.

Proof. For p ∈ (0, 1), define the event

Ap =
{
Pε

(∥∥∥∑
εiXi

∥∥∥ > 1
)

> p
}

.

Clearly, we have

Emin
{
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ , 1
}

≤ E1Ap
+ EEε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ 1Ac
p
.

We handle the 1st term directly by Markov’s inequality,

P(Ap) ≤ 1

p
EPε

(∥∥∥∑
εiXi

∥∥∥ > 1
)

= 1

p
P

(∥∥∥∑
Xi

∥∥∥ > 1
)

.

To deal with the 2nd term, first notice that by Kahane’s inequality (1), we have

Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ =
∫ ∞

0
Pε

(∥∥∥∑
εiXi

∥∥∥ > 1 + t
)

dt ≤ 4Pε

(∥∥∥∑
εiXi

∥∥∥ > 1
)
Eε

∥∥∥∑
εiXi

∥∥∥ .

Second, notice that the quantity Eε‖
∑

εiXi‖ is bounded on the event Ac
p. Indeed, suppose

that Eε‖
∑

εiXi‖ > 1 and set θ = (Eε‖
∑

εiXi‖)−1. Then on Ac
p, by (3),

p ≥ Pε

(∥∥∥∑
εiXi

∥∥∥ > 1
)

= Pε

(∥∥∥∑
εiXi

∥∥∥ > θEε

∥∥∥∑
εiXi

∥∥∥)
≥ 1

2
(1 − θ)2,

so θ ≥ 1 − √
2p and provided that p < 1/2, we get

Eε

∥∥∥∑
εiXi

∥∥∥ ≤ 1

1 − √
2p

.

Putting these together yields

EEε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ 1Ac
p

≤ 4

1 − √
2p

EPε

(∥∥∥∑
εiXi

∥∥∥ > 1
)

= 4

1 − √
2p

P

(∥∥∥∑
Xi

∥∥∥ > 1
)

.
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Altogether,

Emin
{
Eε

(∥∥∥∑
εiXi

∥∥∥ − 1
)

+ , 1
}

≤
(

1

p
+ 4

1 − √
2p

)
P

(∥∥∥∑
Xi

∥∥∥ > 1
)

.

Choosing p = 1/8 finishes the proof (the optimal choice p ≈ 0.16 gives the constant

≈ 15.45). �

3.3 Proof in the case κ = 1 = λ

Suppose that X1, . . . , Xn and Y1, . . . , Yn are independent symmetric random vectors with

values in a separable Banach space E. Let Xi be (1, 1)-dominated by Yi for each i ≤ n. Fix

a continuous norm ‖·‖ on E. We would like to show that P
(‖∑Xi‖ > 1

) ≤ κP
(
λ‖∑Yi‖ > 1

)
for some universal constants κ and λ. Fix 0 < α ≤ 1. Applying consecutively Lemma 6,

Corollary 5, and Lemma 7 yield

αP
(∥∥∥∑

Xi

∥∥∥ > 1 + α
)

≤ 16P
(∥∥∥∑

Yi

∥∥∥ > 1
)

.

Rescaling the norm gives the desired bound with κ = 16α−1 and λ = 1 + α.

3.4 Reduction to the case κ = 1 = λ

We describe two arguments leading to the conclusion that it suffices to prove Theorem 1

when κ = 1 = λ, thus, finishing the whole proof.

The 1st argument is based on the following lemma whose proof is essentially

given in the 2nd step of the proof of Theorem 3.2.1 in [10]. We sketch it for completeness.

Lemma 8. Suppose that for every n ≥ 1 and independent symmetric random vectors

X1, . . . , Xn and Y1, . . . , Yn in separable Banach space, the following is true: “If Xi is

(1, 1)-dominated by Yi, i ≤ n, then
∑

Xi is (κ0, λ0)-dominated by
∑

Yi.”Then for every

κ, λ ≥ 1, n ≥ 1 and independent symmetric random vectors X1, . . . , Xn and Y1, . . . , Yn in

separable Banach space such that Xi is (κ, λ)-dominated by Yi, i ≤ n, we have that
∑

Xi

is (�κ�κ0, �κ�λλ0)-dominated by
∑

Yi.

Proof. Suppose that Xi ≺(κ,λ) Yi. The main idea is to take auxiliary random variables

δi,k, i ≤ n, k ≤ �κ�, independent of the Xi such that for each i, k, we have P
(
δi,k = 1

) =
1

�κ� = 1 −P
(
δi,k = 0

)
; moreover,

∑�κ�
k=1 δi,k = 1 for each i, and the variables δ1,k, . . . , δn,k are

independent for each k. For instance, we can define them on the probability space [0, 1]n
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9006 W. Bednorz and T. Tkocz

with Lebesgue measure by the formula

δi,k(t1, . . . , tn) = 1[
k−1
�κ� , k

�κ�
](ti).

We check that for every i and k, we have δi,kXi ≺(1,1) λYi, so for every k, we obtain the

comparison
∑

i δi,kXi ≺(κ0,λ0) λ
∑

i Yi and thus,

P

(∥∥∥∥∥
∑

i

Xi

∥∥∥∥∥ > 1

)
= P

(∥∥∥∥∥
∑

i

∑
k

δi,kXi

∥∥∥∥∥ > 1

)
≤

�κ�∑
k=1

P

(
�κ�

∥∥∥∥∥
∑

i

δi,kXi

∥∥∥∥∥ > 1

)

≤ �κ�κ0P

(
�κ�λλ0

∥∥∥∥∥
∑

i

Yi

∥∥∥∥∥ > 1

)
.

�

The 2nd argument is based on the observation that if for some symmetric

independent random vectors Xi and Yi we have Xi ≺(κ,λ) Yi, i ≤ n, then taking δi to be

independent Bernoulli random variables such that P
(
δi = 1

) = 1/κ, P
(
δi = 0

) = 1 − 1/κ

and defining X ′
i = δiXi, Y ′

i = λYi we get X ′
i ≺(1,1) Y ′

i. To obtain
∑

Xi ≺ ∑
Yi, we first apply

(1) from Corollary 5 to the X ′
i and Y ′

i, which gives

∫ 1

0
P

(
Eε

(∥∥∥∑
εiX

′
i

∥∥∥ − 1
)

+ > t
)

dt ≤
∫ 1

0
P

(
Eε

(∥∥∥∑
εiY

′
i

∥∥∥ − 1
)

+ > t
)

dt.

Then we bound the right-hand side by Lemma 7, but before using Lemma 6 for the lower

bound of the left-hand side, we would like to pass from the X ′
i to Xi. This can be achieved

if we have an inequality like the following:

P

(
Eε

∥∥∥∑
εiδiXi

∥∥∥ > u
)

≥ cP
(
c′
Eε

∥∥∥∑
εiXi

∥∥∥ > u
)

, u > 0,

where c and c′ are some constants. This is possible thanks to a simple lemma that is in

the spirit of the Paley–Zygmund inequality.

Lemma 9. Let v1, . . . , vn be vectors in a separable Banach space (E, ‖ · ‖), p ∈ (0, 1] and

let δ1, . . . , δn be independent Bernoulli random variables with P
(
δi = 1

) = p, P
(
δi = 0

) =
1 − p. Then

Pδ

(
Eε

∥∥∥∑
εiδivi

∥∥∥ > 1
)

≥ p

4
1{Eε‖∑

εivi‖>2/p}.
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By virtue of this lemma, we can take above c = 1
4κ

and c′ = 1
2κ

. After passing

through Lemma 6 applied to the Xi, we conclude that
∑

Xi ≺(κ ′,λ′)
∑

Yi with κ ′ = 64α−1κ

and λ′ = 2(1 + α)κλ for every α ∈ (0, 1]. We finish this section by showing the lemma.

Proof of Lemma 9. Obviously, we can assume that Eε‖
∑

εivi‖ > 2/p since, otherwise,

there is nothing to prove. By Jensen’s inequality,

Eδ,ε

∥∥∥∑
δiεivi

∥∥∥ ≥ Eε

∥∥∥Eδ

∑
δiεivi

∥∥∥ = pEε

∥∥∥∥∥
∑

i

εivi

∥∥∥∥∥ ,

thus 1
2EδEε‖

∑
δiεivi‖ ≥ p

2Eε‖
∑

εivi‖ > 1, so

Pδ

(
Eε

∥∥∥∑
εiδivi

∥∥∥ > 1
)

≥ Pδ

(
Eε

∥∥∥∑
εiδivi

∥∥∥ >
1

2
EδEε

∥∥∥∑
δiεivi

∥∥∥)

≥ 1

4

(
EδEε

∥∥∑
δiεivi

∥∥)2

Eδ

(
Eε

∥∥∑
δiεivi

∥∥)2 ,

where in the last estimate we used the Paley–Zygmund inequality. Using the contraction

principle (4) we obtain (ε′
i denote independent copies of εi)

Eδ

(
Eε

∥∥∥∑
δiεivi

∥∥∥)2 = Eδ

(
Eε

∥∥∥∑
δiεivi

∥∥∥Eε′
∥∥∥∑

δiε
′
ivi

∥∥∥)

≤
(
Eε

∥∥∥∑
εivi

∥∥∥) (
Eδ,ε

∥∥∥∑
δiεivi

∥∥∥)
≤ 1

p

(
Eδ,ε

∥∥∥∑
δiεivi

∥∥∥)2
.

This, combined with the previous inequality, finishes the proof. �

4 Proof of Theorem 2

Suppose X1, . . . , Xn are independent symmetric random vectors and each satisfies

WB(C, δ, θ). Let Sn = X1 + . . .+Xn. Fix a continuous norm ‖ ·‖. We would like to show that

P
(‖Sn‖ > λ

) ≤ C′λ−δ
P

(‖Sn‖ > 1
)

, λ ≥ 1,

provided that P
(‖Sn‖ > 1

)
< θ ′. (We shall find the values of the constants C′ and θ ′ as

the argument goes along.) First observe that if θ ′ ≤ θ/2, then by (6) we also have that

P

(
‖Xj‖ > 1

)
≤ P

(
X∗

n > 1
) ≤ 2P

(‖Sn‖ > 1
)

< 2θ ′ ≤ θ ,

where X∗
n = maxj≤n ‖Xj‖. This will let us use the WB inequality for Xj, j = 1, . . . , n.
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Let pk = P
(‖Sn‖ > 3k

)
for k = 0, 1, . . .. Our 1st goal is to establish that pk ≤

C′ ·3−δkp0, assuming p0 ≤ θ ′. Then, possibly increasing C′, we will get that P
(‖Sn‖ > λ

) ≤
C′λ−δ

P
(‖Sn‖ > 1

)
for every λ ≥ 1. We begin with deriving a recursive inequality for the

pk. Fix k ≥ 1. By (5)–(8) and the union bound, we obtain

pk = P

(
‖Sn‖ > 3 · 3k−1

)
≤ P

(
X∗

n > 3k−1
)

+ 2P
(
S∗

n > 3k−1
)
P

(
‖Sn‖ > 3k−1

)

≤
n∑

j=1

P

(
‖Xj‖ > 3k−1

)
+ 4p2

k−1

≤ C · 3−δ(k−1)
n∑

j=1

P

(
‖Xj‖ > 1

)
+ 4p2

k−1

≤ C · 3−δ(k−1) 2p0

1 − 2p0
+ 4p2

k−1.

If we assume additionally that θ ′ ≤ 1/3, then 1
1−2p0

≤ 3, so

pk ≤ 6C · 3−δ(k−1)p0 + 4p2
k−1, k ≥ 1.

Let us prove inductively that pk ≤ (12 · 3δC) · 3−kδp0, k ≥ 0. For k = 0 this is obvious.

Suppose it holds for k − 1, for some k ≥ 1. By the recursive inequality,

pk ≤ 6C · 3−δ(k−1)p0 + 4(12 · 3δC)2 · 3−2δ(k−1)p2
0

= (12 · 3δC) · 3−kδp0 ·
(

1

2
+ 48C · 3−δk+3δp0

)

≤ (12 · 3δC) · 3−kδp0 ·
(

1

2
+ 48C · 32δθ ′

)
,

and we get the inductive assertion as long as θ ′ ≤ (96C · 9δ)−1. Therefore, we set θ ′ =
min{θ/2, (96C · 9δ)−1}. Then, as we have shown,

P
(‖Sn‖ > λ

) ≤ (12 · 3δC) · λ−δ
P

(‖Sn‖ > 1
)

,

for λ = 3k, k ≥ 0. It remains to extend this to any λ ≥ 1. If 1 ≤ λ < 3, then trivially

P
(‖Sn‖ > λ

) ≤ P
(‖Sn‖ > 1

) ≤ 3δλ−δ
P

(‖Sn‖ > 1
)

.
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If 3k ≤ λ < 3k+1 for some k ≥ 1, we get

P
(‖Sn‖ > λ

) ≤ P

(
‖Sn‖ > 3k

)
≤ (12 · 3δC) · 3−kδ

P
(‖Sn‖ > 1

)
≤ (12 · 32δC) · λ−δ

P
(‖Sn‖ > 1

)
.

We set C′ = 12 · 9δC and the proof is complete.

5 Proof of Theorem 3

Since the sequence a is majorised by b, there are nonnegative weights λσ adding up to

1 indexed by all permutations σ of the n-element set {1, . . . , n} such that a = ∑
σ λσ bσ ,

where bσ = (bσ(1), . . . , bσ(n)) is the sequence b permuted according to σ . It easily follows

that for every convex function ϕ : E → R defined on the Banach space E, the Xi take

values in, we have

Eϕ
(∑

aiXi

)
= Eϕ

(∑
i

∑
σ

λσ bσ(i)Xi

)
≤

∑
σ

λσEϕ

(∑
i

bσ(i)Xi

)
= Eϕ

(∑
biXi

)

(provided the expectations exist).

Notice that since each biXi satisfies WB(C, δ, θ), by Theorem 2, the sum
∑

biXi

satisfies WB(C′, δ, θ ′), where C′ = 12 · 9δC and θ ′ = min{θ/2, (96C · 9δ)−1}.
Let ‖ · ‖ be a continuous norm on E. Denote Sa = ‖∑

aiXi‖ and Sb = ‖∑
biXi‖. We

want to show that P
(
Sa > 1

) ≤ κP
(
λSb > 1

)
. If P

(
Sb > 1

) ≥ θ ′, then we trivially get

P
(
Sa > 1

) ≤ 1 = 1

θ ′ θ
′ ≤ 1

θ ′P
(
Sb > 1

)
.

Suppose that P
(
Sb > 1

)
< θ ′. Using the initial observation for ϕ(x) = (‖x‖ − 1)+ we get

P
(
Sa > 2

) = P
(
(Sa − 1)+ > 1

) ≤ E(Sa − 1)+ ≤ E(Sb − 1)+.

By the weak Borell inequality for Sb, we get

E(Sb − 1)+ =
∫ ∞

1
P

(
Sb > λ

)
dλ ≤

∫ ∞

1
C′λ−δ

P
(
Sb > 1

)
dλ = C′

δ − 1
P

(
Sb > 1

)
.

In summary, we have showed that for any continuous norm ‖ · ‖ on E, we have

P

(∥∥∥∑
aiXi

∥∥∥ > 2
)

≤ κP
(∥∥∥∑

biXi

∥∥∥ > 1
)

with κ = max{ 1
θ ′ , C′

δ−1 }. Rescaling the norm finishes the proof.
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