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Abstract

We survey connections of the Grothendieck inequality and its variants to com-

binatorial optimization and computational complexity. © 2011 Wiley Periodi-

cals, Inc.

1 Introduction
The Grothendieck inequality asserts that there exists a universal constant K 2

.0; 1/ such that for every m; n 2 N and every m � n matrix A D .aij / with real

entries we have

(1.1) max
n mX

iD1

nX
j D1

aij hxi ; yj i W fxigm
iD1; fyj gn

j D1 � SnCm�1
o

�

K max
n mX

iD1

nX
j D1

aij "iıj W f"igm
iD1; fıj gn

j D1 � f�1; 1g
o
:

Here and in what follows, the standard scalar product on Rk is denoted hx; yi DPk
iD1 xiyi and the euclidean sphere in Rk is denoted

Sk�1 D
n
x 2 Rk W

kX
iD1

x2
i D 1

o
:

We refer to [36, 58] for the simplest known proofs of the Grothendieck inequal-

ity; see Section 2.2 for a proof of (1.1) yielding the best-known bound on K.

Grothendieck proved inequality (1.1) in [47], though it was stated there in a differ-

ent but equivalent form. The formulation of the Grothendieck inequality appearing

in (1.1) is due to Lindenstrauss and Pełczyński [85].

The Grothendieck inequality is of major importance to several areas, ranging

from Banach space theory to C � algebras and quantum information theory. We will
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not attempt to indicate here this wide range of applications of (1.1), and refer in-

stead to [1, 20, 35, 36, 39, 42, 57, 85, 102, 103, 104, 116] and the references therein.

The purpose of this survey is to focus solely on applications of the Grothendieck

inequality and its variants to combinatorial optimization, and to explain their con-

nections to computational complexity. The link between the Grothendieck inequal-

ity and combinatorial optimization stems from the fact that (1.1) can be viewed as

a bound on a tractable vector relaxation (the left-hand side of (1.1)) of a certain

integer program (the right-hand side of (1.1)); this will be explained in detail later.

The infimum over those K 2 .0; 1/ for which (1.1) holds for all m; n 2 N
and all m � n matrices A D .aij / is called the Grothendieck constant, and is de-

noted KG . Evaluating the exact value of KG remains a longstanding open problem,

posed by Grothendieck in [47]. In fact, even the second digit of KG is currently

unknown, though clearly this is of lesser importance than the issue of understand-

ing the structure of matrices A and spherical configurations fxigm
iD1; fyj gn

j D1 �
SnCm�1, which make the inequality (1.1) “most difficult.” Following a series of

investigations [47, 79, 80, 85, 109], the best-known upper bound [23] on KG is

(1.2) KG <
�

2 log.1 C p
2/

D 1:782 : : : ;

and the best-known lower bound [107] on KG is

(1.3) KG � �

2
e�2

0 D 1:676 : : : ;

where �0 D 0:25573 : : : is the unique solution of the equation

1 � 2

r
2

�

Z �

0

e�´2=2 d´ D 2

�
e��2

:

In [106] the problem of estimating KG up to an additive error of " 2 .0; 1/ was

reduced to an optimization over a compact space, and by exhaustive search over an

appropriate net it was shown that there exists an algorithm that computes KG up to

an additive error of " 2 .0; 1/ in time exp.exp.O.1="3///. It does not seem likely

that this approach can yield computer-assisted proofs of estimates such as (1.2)

and (1.3), though to the best of our knowledge this has not been attempted.

Above we focused on the classical Grothendieck inequality (1.1). However,

the literature contains several variants and extensions of (1.1) that have been intro-

duced for various purposes and applications in the decades following Grothendieck’s

original work. In this survey we describe some of these variants, emphasizing rel-

atively recent developments that yielded Grothendieck-type inequalities that are a

useful tool in the design of polynomial-time algorithms for computing approxi-

mate solutions of computationally hard optimization problems. In doing so, we

omit some important topics, including applications of the Grothendieck inequality

to communication complexity and quantum information theory. While these re-

search directions can be viewed as dealing with a type of optimization problem,

they are of a different nature than the applications described here, which belong
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to classical optimization theory. Connections to communication complexity have

already been covered in the survey of Lee and Shraibman [83]; we refer in addition

to [82, 86, 87, 88] for more information on this topic.

An explanation of the relation of the Grothendieck inequality to quantum me-

chanics is contained in section 19 of Pisier’s survey [103], the pioneering work in

this direction being that of Tsirelson [116]. An investigation of these questions

from a computational complexity point of view was initiated in [30], where it was

shown, for example, how to obtain a polynomial-time algorithm for computing the

entangled value of an XOR game based on Tsirelson’s work. We hope that the

developments surrounding applications of the Grothendieck inequality in quantum

information theory will eventually be surveyed separately by experts in this area.

Interested readers are referred to [1, 24, 30, 39, 56, 63, 82, 88, 100, 103, 104, 108,

116].

Perhaps the most influential variants of the Grothendieck inequality are its non-

commutative generalizations. The noncommutative versions in [51, 101] were con-

jectured by Grothendieck himself [47]; additional extensions to operator spaces are

extensively discussed in Pisier’s survey [103]. We will not describe these develop-

ments here, even though we believe that they might have applications to optimiza-

tion theory.

Finally, multilinear extensions of the Grothendieck inequality have also been in-

vestigated in the literature; see, for example, [21, 22, 111, 114, 117] and especially

Blei’s book [20]. We will not cover this research direction since its relation to

classical combinatorial optimization has not (yet?) been established, though there

are recent investigations of multilinear Grothendieck inequalities in the context of

quantum information theory [82, 100].

Being a mainstay of functional analysis, the Grothendieck inequality might at-

tract to this survey readers who are not familiar with approximation algorithms

and computational complexity. We wish to encourage such readers to persist be-

yond this introduction so that they will be exposed to, and hopefully eventually

contribute to, the use of analytic tools in combinatorial optimization. For this rea-

son we include Sections 1.1 and 1.2 below: two very basic introductory sections

intended to quickly provide background on computational complexity and convex

programming for nonexperts.

1.1 Assumptions from Computational Complexity
At present there are few unconditional results on the limitations of polynomial-

time computation. The standard practice in this field is to frame an impossibility

result in computational complexity by asserting that the polynomial-time solvabil-

ity of a certain algorithmic task would contradict a benchmark hypothesis. We

briefly describe below two key hypotheses of this type.

A graph G D .V; E/ is 3-colorable if there exists a partition fC1; C2; C3g of V

such that for every i 2 f1; 2; 3g and u; v 2 Ci we have fu; vg … E. The P ¤ NP

hypothesis asserts that there is no polynomial-time algorithm that takes an n-vertex



GROTHENDIECK-TYPE INEQUALITIES IN COMBINATORIAL OPTIMIZATION 995

graph as input and determines whether it is 3-colorable. We are doing an injustice

to this important question by stating it this way, since it has many far-reaching

equivalent formulations. We refer to [33, 41, 110] for more information, but for

nonexperts it suffices to keep the above simple formulation in mind.

When we say that assuming P ¤ NP no polynomial-time algorithm can perform

a certain task T (e.g., evaluating the maximum of a certain function up to a prede-

termined error) we mean that given an algorithm ALG that performs the task T ,

one can design an algorithm ALG0 that determines whether any input graph is 3-

colorable while making at most polynomially many calls to the algorithm ALG,

with at most polynomially many additional Turing machine steps. Thus, if ALG

were a polynomial-time algorithm, then the same would be true for ALG0, con-

tradicting the P ¤ NP hypothesis. Such results are called hardness results. The

message that nonexperts should keep in mind is that a hardness result is nothing

more than the design of a new algorithm for 3-colorability, and if one accepts the

P ¤ NP hypothesis, then it implies that there must exist inputs on which ALG

takes superpolynomial time to terminate.

The unique games conjecture (UGC) asserts that for every " 2 .0; 1/ there exists

a prime p D p."/ 2 N such that no polynomial-time algorithm can perform

the following task: The input is a system of m linear equations in n variables

x1; : : : ; xn, each of which has the form xi � xj � cij mod p (thus the input is

S � f1; : : : ; ng�f1; : : : ; ng and fcij g.i;j /2S � N). The algorithm must determine

whether there exists an assignment of an integer value to each variable xi such that

at least .1 � "/m of the equations are satisfied, or whether no assignment of such

values can satisfy more than "m of the equations. If neither of these possibilities

occurs, then an arbitrary output is allowed.

As in the case of P ¤ NP, saying that assuming the UGC no polynomial-time

algorithm can perform a certain task T is the same as designing a polynomial-time

algorithm that solves the above linear equations problem while making at most

polynomially many calls to a “black box” that can perform the task T . The UGC

was introduced in [64], though the above formulation of it, which is equivalent

to the original one, is due to [66]. The use of the UGC as a hardness hypothesis

has become popular over the past decade; we refer to the survey [65] for more

information on this topic.

To simplify matters (while describing all the essential ideas), we allow polyno-

mial-time algorithms to be randomized. Most (if not all) of the algorithms de-

scribed here can be turned into deterministic algorithms, and corresponding hard-

ness results can be stated equally well in the context of randomized or determinis-

tic algorithms. We will ignore these distinctions, even though they are important.

Moreover, it is widely believed that in our context these distinctions do not exist;

i.e., randomness does not add computational power to polynomial-time algorithms;

see, for example, the discussion of the NP 6� BPP hypothesis in [11].
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1.2 Convex and Semidefinite Programming
An important paradigm of optimization theory is that one can efficiently opti-

mize linear functionals over compact convex sets that have a “membership oracle.”

A detailed exposition of this statement is contained in [48], but for the sake of com-

pleteness we now quote the precise formulation of the results that will be used in

this article.

Let K � Rn be a compact convex set. We are also given a point ´ 2 Qn and

two radii r; R 2 .0; 1/ \ Q such that B.´; r/ � K � B.´; R/, where B.´; t/ D
fx 2 Rn W kx � ´k2 � tg. In what follows, stating that an algorithm is polynomial

means that we allow the running time to grow at most polynomially in the number

of bits required to represent the data .´; r; R/. Thus, if, say, ´ D 0, r D 2�n, and

R D 2n, then the running time will be polynomial in the dimension n. Assume that

there exists an algorithm ALG with the following properties: The input of ALG

is a vector y 2 Qn and " 2 .0; 1/ \ Q. The running time of ALG is polynomial in

n, and the number of bits required to represent the data ."; y/. The output of ALG

is the assertion that either the distance of y from K is at most " or that the distance

of y from the complement of K is at most ". Then there exists an algorithm ALG0
that takes as input a vector c D .c1; : : : ; cn/ 2 Qn and " 2 .0; 1/ \ Q, and outputs

a vector y D .y1; : : : ; yn/ 2 Rn that is at distance at most " from K; for every

x D .x1; : : : ; xn/ 2 K that is at distance greater than " from the complement of K,

we have
Pn

iD1 ciyi � Pn
iD1 cixi � ". The running time of ALG0 is allowed to

grow at most polynomially in n and the number of bits required to represent the

data .´; r; R; c; "/. This important result is due to [59]; we refer to [48] for an

excellent account of this theory.

The above statement is a key tool in optimization, as it yields a polynomial-time

method to compute the maximum of linear functionals on a given convex body

with arbitrarily good precision. We note the following special case of this method,

known as semidefinite programming. Assume that n D k2 and think of Rn as

the space of all k � k matrices. Assume that we are given a compact convex set

K � Rn that satisfies the above assumptions, and that for a given k � k matrix

.cij / we wish to compute in polynomial time (up to a specified additive error)

the maximum of
Pk

iD1

Pk
j D1 cij xij over the set of symmetric positive semidefi-

nite matrices .xij / that belong to K. This can indeed be done, since determining

whether a given symmetric matrix is (approximately) positive semidefinite is an

eigenvalue computation and hence can be performed in polynomial time.

The use of semidefinite programming to design approximation algorithms is

by now a deep theory of fundamental importance to several areas of theoretical

computer science. The Goemans-Williamson MAX-CUT algorithm [44] was a

key breakthrough in this context. It is safe to say that after the discovery of this

algorithm the field of approximation algorithms was transformed, and many sub-

sequent results, including those presented in the present article, can be described
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as attempts to mimic the success of the Goemans-Williamson approach in other

contexts.

2 Applications of the Classical Grothendieck Inequality
The classical Grothendieck inequality (1.1) has applications to algorithmic ques-

tions of central interest. These applications will be described here in some detail.

In Section 2.1 we discuss the cut norm estimation problem, whose relation to the

Grothendieck inequality was first noted in [8]. This is a generic combinatorial op-

timization problem that contains well-studied questions as subproblems. Examples

of its usefulness are presented in Sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4. Section 2.2

is devoted to the rounding problem, including the (algorithmic) method behind the

proof of the best-known upper bound on the Grothendieck constant.

2.1 Cut Norm Estimation
Let A D .aij / be an m�n matrix with real entries. The cut norm of A is defined

as follows:

(2.1) kAkcut D max
S�f1;:::;mg
T �f1;:::;ng

ˇ̌̌ X
i2S
j 2T

aij

ˇ̌̌
:

We will now explain how the Grothendieck inequality can be used to obtain a

polynomial-time algorithm for the following problem. The input is an m�n matrix

A D .aij / with real entries, and the goal of the algorithm is to output in polynomial

time a number ˛ that is guaranteed to satisfy

(2.2) kAkcut � ˛ � C kAkcut;

where C is a (hopefully not too large) universal constant. A closely related al-

gorithmic goal is to output in polynomial time two subsets S0 � f1; : : : ; mg and

T0 � f1; : : : ; ng satisfying

(2.3)
ˇ̌̌ X

i2S0

j 2T0

aij

ˇ̌̌
� 1

C
kAkcut:

The link to the Grothendieck inequality is made via two simple transformations.

First, define an .m C 1/ � .n C 1/ matrix B D .bij / as follows:

(2.4) B D

0
BBBBBBB@

a11 a12 : : : a1n �Pn
kD1 a1k

a21 a22 : : : a2n �Pn
kD1 a2k

:::
:::

: : :
:::

:::

am1 am2 : : : amn �Pn
kD1 amk

�Pm
`D1 a`1 �Pm

`D1 a`2 : : : �Pm
`D1 a`n

Pn
kD1

Pm
`D1 a`k

1
CCCCCCCA

:
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Observe that

(2.5) kAkcut D kBkcut:

Indeed, for every S � f1; : : : ; m C 1g and T � f1; : : : ; n C 1g, define S� �
f1; : : : ; mg and T � � f1; : : : ; ng by

S� D
(

S if m C 1 … S;

f1; : : : ; mg n S if m C 1 2 S;

and

T � D
(

T if n C 1 … T;

f1; : : : ; ng n T if n C 1 2 T:

One checks that for all S � f1; : : : ; m C 1g and T � f1; : : : ; n C 1g we haveˇ̌̌ X
i2S
j 2T

bij

ˇ̌̌
D
ˇ̌̌ X

i2S�

j 2T �

aij

ˇ̌̌
;

implying (2.5).

We next claim that

(2.6) kBkcut D 1

4
kBk1!1;

where

(2.7) kBk1!1 D max

�mC1X
iD1

nC1X
j D1

bij "iıj W f"igmC1
iD1 ; fıj gnC1

j D1 � f�1; 1g
�

:

To explain this notation observe that kBk1!1 is the norm of B when viewed as

a linear operator from `n1 to `m
1 . Here and in what follows, for p 2 Œ1; 1� and

k 2 N the space `k
p is Rk equipped with the p̀-norm k � kp, where kxkp

p DPk
`D1 jx`jp for x D .x1; : : : ; xk/ 2 Rk (for p D 1 we set as usual kxk1 D

maxi2f1;:::;ng jxi j). Though it is important, this operator-theoretic interpretation of

the quantity kBk1!1 will not have any role in this survey, so it may be harmlessly

ignored at first reading.

The proof of (2.6) is simple: for f"igmC1
iD1 ; fıj gnC1

j D1 � f�1; 1g define SC; S� �
f1; : : : ; mC1g and T C; T � � f1; : : : ; nC1g by setting S˙ D fi 2 f1; : : : ; mC1g W
"i D ˙1g and T ˙ D fj 2 f1; : : : ; n C 1g W ıj D ˙1g. Then

(2.8)

mC1X
iD1

nC1X
j D1

bij "iıj D
X

i2SC

j 2T C

bij C
X

i2S�

j 2T �

bij �
X

i2SC

j 2T �

bij �
X

i2S�

j 2T C

bij � 4kBkcut:

This shows that kBk1!1 � 4kBkcut (for any matrix B , actually, not just the

specific choice in (2.4); we will use this observation later, in Section 2.1.3). In the
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reverse direction, given S � f1; : : : ; m C 1g and T � f1; : : : ; n C 1g, define for

i 2 f1; : : : ; m C 1g and j 2 f1; : : : ; n C 1g,

"i D
(

1 if i 2 S;

�1 if i … S;
and ıj D

(
1 if j 2 T;

�1 if j … T:

Then, since the sum of each row and each column of B vanishes,

X
i2S
j 2T

bij D
mC1X
iD1

nC1X
j D1

bij
1 C "i

2
� 1 C ıj

2
D 1

4

mC1X
iD1

nC1X
j D1

bij "iıj � 1

4
kBk1!1:

This completes the proof of (2.6). We summarize the above simple transformations

in the following lemma:

LEMMA 2.1. Let A D .aij / be an m�n matrix with real entries, and let B D .bij /

be the .m C 1/ � .n C 1/ matrix given in (2.4). Then

kAkcut D 1

4
kBk1!1:

A consequence of Lemma 2.1 is that the problem of approximating kAkcut in

polynomial time is equivalent to the problem of approximating kAk1!1 in poly-

nomial time in the sense that any algorithm for one of these problems can be used

to obtain an algorithm for the other problem with the same running time (up to

constant factors) and the same (multiplicative) approximation guarantee.

Given an m � n matrix A D .aij /, consider the following quantity:

(2.9) SDP.A/ D max

� mX
iD1

nX
j D1

aij hxi ; yj i W fxigm
iD1; fyj gn

j D1 � SnCm�1

�
:

The maximization problem in (2.9) falls into the framework of semidefinite pro-

gramming as discussed in Section 1.2. Therefore SDP.A/ can be computed in poly-

nomial time with arbitrarily good precision. It is clear that SDP.A/ � kAk1!1,

because the maximum in (2.9) is over a bigger set than the maximum in (2.7). The

Grothendieck inequality says that SDP.A/ � KGkAk1!1, so we have

kAk1!1 � SDP.A/ � KGkAk1!1:

Thus, the polynomial-time algorithm that outputs the number SDP.A/ is guaran-

teed to be within a factor of KG of kAk1!1. By Lemma 2.1, the algorithm that

outputs the number ˛ D 1
4

SDP.B/, where the matrix B is as in (2.4), satisfies (2.2)

with C D KG .

Section 7 is devoted to algorithmic impossibility results. But it is worthwhile to

make at this juncture two comments regarding hardness of approximation. First

of all, unless P D NP, we need to introduce an error C > 1 in our require-

ment (2.2). This was observed in [8]: the classical MAXCUT problem from al-

gorithmic graph theory was shown in [8] to be a special case of the problem of

computing kAkcut, and therefore by [53] we know that unless P D NP there does
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not exist a polynomial-time algorithm that outputs a number ˛ satisfying (2.2)

with C strictly smaller than 17
16

. In fact, by a reduction to the MAX DICUT prob-

lem, one can show that C must be at least 13
12

unless P D NP; we refer to Section 7

and [8] for more information on this topic.

Another (more striking) algorithmic impossibility result is based on the unique

games conjecture (UGC). Clearly the above algorithm cannot yield an approxima-

tion guarantee strictly smaller than KG (this is the definition of KG). In fact, it was

shown in [106] that unless the UGC is false, for every " 2 .0; 1/ any polynomial-

time algorithm for estimating kAkcut whatsoever, and not only the specific algo-

rithm described above, must make an error of at least KG � " on some input ma-

trix A. Thus, if we assume the UGC, then the classical Grothendieck constant

has a complexity theoretic interpretation: it equals the best approximation ratio of

polynomial-time algorithms for the cut norm problem. Note that [106] manages to

prove this statement despite the fact that the value of KG is unknown.

We have thus far ignored the issue of finding in polynomial time the subsets S0

and T0 satisfying (2.3); i.e., we only explained how the Grothendieck inequality

can be used for polynomial-time estimation of the quantity kAkcut without actually

finding efficiently subsets at which kAkcut is approximately attained. In order to

do this, we cannot use the Grothendieck inequality as a black box: we need to look

into its proof and argue that it yields a polynomial-time procedure that converts

vectors fxigm
iD1; fyj gn

j D1 � SnCm�1 into signs f"igm
iD1; fıj gn

j D1 � f�1; 1g (this

is known as a rounding procedure). It is indeed possible to do so, as explained

in Section 2.2. We postpone the explanation of the rounding procedure that hides

behind the Grothendieck inequality in order to first give examples why one might

want to efficiently compute the cut norm of a matrix.

2.1.1 Szemerédi Partitions
The Szemerédi regularity lemma [113] (see also [74]) is a general and very

useful structure theorem for graphs, asserting (informally) that any graph can be

partitioned into a controlled number of pieces that interact with each other in a

pseudorandom way. The Grothendieck inequality, via the cut norm estimation al-

gorithm, yields a polynomial-time algorithm that, when given a graph G D .V; E/

as input, outputs a partition of V that satisfies the conclusion of the Szemerédi

regularity lemma.

To make the above statements formal, we need to recall some definitions. Let

G D .V; E/ be a graph. For every disjoint X; Y � V , denote the number of edges

joining X and Y by e.X; Y / D jf.u; v/ 2 X � Y W fu; vg 2 Egj. Let X; Y � V be

disjoint and nonempty, and fix "; ı 2 .0; 1/. The pair of vertex sets .X; Y / is called

."; ı/-regular if for every S � X and T � Y that are not too small, the quantity
e.S;T /
jS j�jT j (the density of edges between S and T ) is essentially independent of the

pair .S; T / itself. Formally, we require that for every S � X with jS j � ıjX j and
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every T � Y with jT j � ıjY j we have

(2.10)

ˇ̌̌
ˇ e.S; T /

jS j � jT j � e.X; Y /

jX j � jY j
ˇ̌̌
ˇ � ":

The almost uniformity of the numbers e.S;T /
jS j�jT j as exhibited in (2.10) says that the

pair .X; Y / is “pseudorandom,” i.e., it is similar to a random bipartite graph where

each .x; y/ 2 X � Y is joined by an edge independently with probability e.X;Y /
jX j�jY j .

The Szemerédi regularity lemma says that for all "; ı; � 2 .0; 1/ and k 2 N
there exists K D K."; ı; �; k/ 2 N such that for all n 2 N any n-vertex graph

G D .V; E/ can be partitioned into m-sets S1; : : : ; Sm � V with the following

properties:

� k � m � K,

� jSi j � jSj j � 1 for all i; j 2 f1; : : : ; mg,

� the number of i; j 2 f1; : : : ; mg with i < j such that the pair .Si ; Sj / is

."; ı/-regular is at least .1 � �/
�
m
2

�
.

Thus every graph is almost a superposition of a bounded number of pseudorandom

graphs, the key point being that K is independent of n and the specific combinato-

rial structure of the graph in question.

It would be of interest to have a way to produce a Szemerédi partition in poly-

nomial time with K independent of n (this is a good example of an approximation

algorithm: one might care to find such a partition into the minimum possible num-

ber of pieces, but producing any partition into boundedly many pieces is already

a significant achievement). Such a polynomial-time algorithm was designed in [5]

(see also [75]). We refer to [5, 75] for applications of algorithms for constructing

Szemerédi partitions, and to [5] for a discussion of the computational complex-

ity of this algorithmic task. We shall now explain how the Grothendieck inequality

yields a different approach to this problem, which has some advantages over [5, 75]

that will be described later. The argument below is due to [8].

Assume that X and Y are disjoint n-point subsets of a graph G D .V; E/.

How can we determine in polynomial time whether the pair .X; Y / is close to

being ."; ı/-regular? It turns out that this is the main bottleneck in constructing

Szemerédi partitions in polynomial time. To this end consider the following n � n

matrix A D .axy/.x;y/2X�Y :

(2.11) axy D
(

1 � e.X;Y /
jX j�jY j if fx; yg 2 E;

�e.X;Y /
jX j�jY j if fx; yg … E:

By the definition of A, if S � X and T � Y , then

(2.12)
ˇ̌̌X
x2S
y2T

axy

ˇ̌̌
D jS j � jT j �

ˇ̌̌
ˇ e.S; T /

jS j � jT j � e.X; Y /

jX j � jY j
ˇ̌̌
ˇ:
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Hence if .X; Y / is not ."; ı/-regular, then kAkcut � "ı2n2. The approximate cut

norm algorithm based on the Grothendieck inequality, together with the rounding

procedure in Section 2.2, finds in polynomial time subsets S � X and T � Y such

that

min

�
njS j; njT j; n2

ˇ̌̌
ˇ e.S; T /

jS j � jT j � e.X; Y /

jX j � jY j
ˇ̌̌
ˇ
�

(2.12)�
ˇ̌̌X
x2S
y2T

axy

ˇ̌̌
� 1

KG
"ı2n2 � 1

2
"ı2n2:

This establishes the following lemma:

LEMMA 2.2. There exists a polynomial-time algorithm that takes as input two
disjoint n-point subsets X and Y of a graph and either decides that .X; Y / is
."; ı/-regular or finds S � X and T � Y with

jS j; jT j � 1

2
"ı2n and

ˇ̌̌
ˇ e.S; T /

jS j � jT j � e.X; Y /

jX j � jY j
ˇ̌̌
ˇ � 1

2
"ı2:

From Lemma 2.2 it is quite simple to design a polynomial algorithm that con-

structs a Szemerédi partition with bounded cardinality; compare Lemma 2.2 to

corollary 3.3 in [5] and theorem 1.5 in [75]. We will not explain this deduction

here since it is identical to the argument in [5]. We note that the quantitative

bounds in Lemma 2.2 improve over the corresponding bounds in [5, 75], yield-

ing, say, when " D ı D �, an algorithm with the best-known bound on K as a

function of " (this bound is nevertheless still huge, as must be the case due to [46];

see also [32]). See [8] for a precise statement of these bounds. In addition, the

algorithms of [5, 75] worked only in the “dense case,” i.e., when kAkcut, for A as

in (2.11) is of order n2, while the above algorithm does not have this requirement.

This observation can be used to design the only known polynomial-time algorithm

for sparse versions of the Szemerédi regularity lemma [4] (see also [43]). We

will not discuss the sparse version of the regularity lemma here and refer instead

to [73, 74] for a discussion of this topic. We also refer to [4] for additional appli-

cations of the Grothendieck inequality in sparse settings.

2.1.2 Frieze-Kannan Matrix Decomposition
The cut norm estimation problem was originally raised in the work of Frieze and

Kannan [40], which introduced a method to design polynomial-time approximation

schemes for dense constraint satisfaction problems. The key tool for this purpose

is a decomposition theorem for matrices that we now describe.

An m � n matrix D D .dij / is called a cut matrix if there exist subsets S �
f1; : : : ; mg and T � f1; : : : ; ng, and d 2 R such that for all .i; j / 2 f1; : : : ; mg �
f1; : : : ; ng we have

(2.13) dij D
(

d if .i; j / 2 S � T;

0 if .i; j / … S � T:
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Denote the matrix D defined in (2.13) by CUT.S; T; d/. In [40] it is proved that

for every " > 0 there exists an integer s D O.1="2/ such that for any m � n matrix

A D .aij / with entries bounded in absolute value by 1, there are cut matrices

D1; : : : ; Ds satisfying

(2.14)
���A �

sX
kD1

Dk

���
cut

� "mn:

Moreover, these cut matrices D1; : : : ; Ds can be found in time C."/.mn/O.1/. We

shall now explain how this is done using the cut norm approximation algorithm of

Section 2.1.

The argument is iterative. Set A0 D A and, assuming that the cut matrices

D1; : : : ; Dr have already been defined, write Ar D .aij .r// D A � Pr
kD1 Dk .

We are done if kArkcut � "mn, so we may assume that kArkcut > "mn. By the cut

norm approximation algorithm, we can find in polynomial time S � f1; : : : ; mg
and T � f1; : : : ; ng satisfying

(2.15)
ˇ̌̌X

i2S
j 2T

aij .r/
ˇ̌̌

� ckArkcut � c"mn;

where c > 0 is a universal constant. Set

d D 1

jS j � jT j
X
i2S
j 2T

aij .r/:

Define DrC1 D CUT.S; T; d/ and ArC1 D .aij .r C 1// D Ar � DrC1. Then by

expanding the squares we have

mX
iD1

nX
j D1

aij .r C 1/2 D
mX

iD1

nX
j D1

aij .r/2 � 1

jS j � jT j
�X

i2S
j 2T

aij .r/
�2

(2.15)�
mX

iD1

nX
j D1

aij .r/2 � c2"2mn:

It follows inductively that if we can carry out this procedure r times then

0 �
mX

iD1

nX
j D1

aij .r/2 �
mX

iD1

nX
j D1

a2
ij � rc2"2mn � mn � rc2"2mn;

where we used the assumption that jaij j � 1. Therefore the above iteration

must terminate after d1=.c2"2/e steps, yielding (2.14). We note that the bound

s D O.1="2/ in (2.14) cannot be improved [6]; see also [32, 91] for related lower

bounds.

The key step in the above algorithm was finding sets S and T as in (2.15).

In [40] an algorithm was designed that, given an m � n matrix A D .aij / and
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" > 0 as input, produces in time 21="O.1/

.mn/O.1/ subsets S � f1; : : : ; mg and

T � f1; : : : ; ng satisfying

(2.16)
ˇ̌̌X

i2S
j 2T

aij

ˇ̌̌
� kAkcut � "mn:

The additive approximation guarantee in (2.16) implies (2.15) only if kAkcut �
".c C 1/mn, and similarly the running time is not polynomial if, say, " D n��.1/.

Thus the Kannan-Frieze method is relevant only to “dense” instances, while the cut

norm algorithm based on the Grothendieck inequality applies equally well for all

values of kAkcut. This fact, combined with more work (and, necessarily, additional

assumptions on the matrix A), was used in [31] to obtain a sparse version of (2.14):

with "mn in the right-hand side of (2.14) replaced by "kAkcut and s D O.1="2/

(importantly, here s is independent of m and n).

We have indicated above how the cut norm approximation problem is relevant

to Kannan-Frieze matrix decompositions, but we did not indicate the uses of such

decompositions since this is beyond the scope of the current survey. We refer

the reader to [6, 16, 31, 40] for a variety of applications of this methodology to

combinatorial optimization problems.

2.1.3 Maximum Acyclic Subgraph
In the maximum acyclic subgraph problem we are given as input an n-vertex

directed graph G D .f1; : : : ; ng; E/. Thus E consists of a family of ordered pairs

of distinct elements in f1; : : : ; ng. We are interested in the maximum of

jf.i; j / 2 f1; : : : ; ng2 W �.i/ < �.j /g \ Ej
� jf.i; j / 2 f1; : : : ; ng2 W �.i/ > �.j /g \ Ej

over all possible permutations � 2 Sn (Sn denotes the group of permutations of

f1; : : : ; ng). In words, the quantity of interest is the maximum over all orderings

of the vertices of the number of edges going “forward” minus the number of edges

going “backward.” Note that it is trivial to get at least half of the edges to go

forward by considering a random permutation, so in essence we are measuring

here the advantage of the best possible ordering over a random ordering. The

best-known approximation algorithm for this problem was discovered in [28] as an

application of the cut norm approximation algorithm.

It is most natural to explain the algorithm of [28] for a weighted version of the

maximum acyclic subgraph problem. Let W W f1; : : : ; ng � f1; : : : ; ng ! R be

skew-symmetric, i.e., W.u; v/ D �W.v; u/ for all u; v 2 f1; : : : ; ng. For � 2 Sn

define

W.�/ D
X

u;v2f1;:::;ng
u<v

W.�.u/; �.v//:

Thus W.�/ is the sum of the entries of W that lie above the diagonal after the rows

and columns of W have been permuted according to the permutation � . We are
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interested in the quantity MW D max�2Sn
W.�/: The case of a directed graph

G D .f1; : : : ; ng; E/ described above corresponds to the matrix

W.u; v/ D 1f.u;v/2Eg � 1f.v;u/2Eg:
THEOREM 2.3 ([28]). There exists a polynomial-time algorithm that takes as in-
put an n � n skew-symmetric W W f1; : : : ; ng � f1; : : : ; ng ! R and outputs a
permutation � 2 Sn satisfying1

W.�/ & MW

log n
:

PROOF. The proof below is a slight variant of the reasoning of [28]. By the

cut norm approximation algorithm one can find in polynomial time two subsets

S; T � f1; : : : ; ng satisfying

(2.17)
X
u2S
v2T

W.u; v/ � ckW kcut;

where c 2 .0; 1/ is a universal constant. Note that we do not need to take the

absolute value of the left-hand side of (2.17) because W is skew-symmetric. Ob-

serve also that since W is skew-symmetric we have
P

u;v2S\T W.u; v/ D 0 and

thereforeX
u2S
v2T

W.u; v/ D
X

u2SnT
v2T nS

W.u; v/ C
X

u2SnT
v2S\T

W.u; v/ C
X

u2S\T
v2T nS

W.u; v/:

By replacing the pair of subsets .S; T / by one of

f.S n T; T n S/; .S n T; S \ T /; .S \ T; T n S/g
and replacing the constant c in (2.17) by c

3
, we may assume without loss of gen-

erality that (2.17) holds with S and T disjoint. Set R D f1; : : : ; ng n .S [ T /

and write S D fs1; : : : ; sjS jg, T D ft1; : : : ; tjT jg, and R D fr1; : : : ; rjRjg, where

s1 < � � � < sjS j, t1 < � � � < tjT j, and r1 < � � � < rjRj.
Define two permutations �1; �2 2 Sn as follows:

�1.u/ D

8̂<
:̂

su if u 2 f1; : : : ; jS jg;
tu�jS j if u 2 fjS j C 1; : : : ; jS j C jT jg;
ru�jS j�jT j if u 2 fjS j C jT j C 1; : : : ; ng;

and

�2.u/ D

8̂<
:̂

rjRj�uC1 if u 2 f1; : : : ; jRjg;
sjRjCjS j�uC1 if u 2 fjRj C 1; : : : ; jRj C jS jg;
tn�uC1 if u 2 fjRj C jS j C 1; : : : ; ng:

1 Here and in what follows, the relations & and . indicate the corresponding inequalities up to an

absolute factor. The relation 	 stands for & ^ ..
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In words, �1 orders f1; : : : ; ng by starting with the elements of S in increasing

order, then the elements of T in increasing order, and finally the elements of R

in increasing order. At the same time, �2 orders f1; : : : ; ng by starting with the

elements of R in decreasing order, then the elements of S in decreasing order,

and finally the elements of T in decreasing order. The quantity W.�1/ C W.�2/

consists of a sum of terms of the form W.u; v/ for u; v 2 f1; : : : ; ng, where if

.u; v/ 2 .S � S/ [ .T � T / [ .R � f1; : : : ; ng/, then both W.u; v/ and W.v; u/

appear exactly once in this sum, and if .u; v/ 2 S � T , then W.u; v/ appears twice

in this sum and W.v; u/ does not appear in this sum at all. Therefore, using the

fact that W is skew-symmetric we have the following identity:

W.�1/ C W.�2/ D 2
X
u2S
v2T

W.u; v/:

It follows that for some ` 2 f1; 2g we have

W.�`/ �
X
u2S
v2T

W.u; v/
(2.17)� ckW kcut:

The output of the algorithm will be the permutation �`, so it suffices to prove that

(2.18) kW kcut & MW

log n
:

We will prove below that

(2.19) kW kcut & 1

log n

X
u;v2f1;:::;ng

u<v

W.u; v/:

Inequality (2.18) follows by applying (2.19) to W 0.u; v/ D W.�.u/; �.v// for

every � 2 Sn.

To prove (2.19) first note that kW kcut � 1
4
kW k1!1; we have already proved

this inequality as a consequence of the simple identity (2.8). Moreover, we have

(2.20) kW k1!1 &

max
n nX

uD1

nX
vD1

W.u; v/ sin.˛u � ˇv/ W f˛ugn
uD1; fˇvgn

vD1 � R
o
:

Inequality (2.20) is a special case of (1.1) with the choice of vectors

xu D .sin ˛u; cos ˛u/ 2 R2 and yv D .cos ˇv; � sin ˇv/ 2 R2:

We note that this two-dimensional version of the Grothendieck inequality is trivial

with the constant in the right-hand side of (2.20) being 1
2

, and it is shown in [80]

that the best constant in the right-hand side of (2.20) is actually 1=
p

2.



GROTHENDIECK-TYPE INEQUALITIES IN COMBINATORIAL OPTIMIZATION 1007

For every choice of �1; : : : ; �n 2 R, an application of (2.20) when ˛u D ˇu D
�u and ˛u D ˇu D ��u yields the inequality

kW kcut &
ˇ̌̌ nX
uD1

nX
vD1

W.u; v/ sin.�u � �v/
ˇ̌̌

D 2
ˇ̌̌ X
u;v2f1;:::;ng

u<v

W.u; v/ sin.�u � �v/
ˇ̌̌
;

(2.21)

where for the equality in (2.21) we used the fact that W is skew-symmetric. Con-

sequently, for every k 2 N we have

(2.22) kW kcut &
ˇ̌̌
ˇ X
u;v2f1;:::;ng

u<v

W.u; v/ sin

�
�.v � u/k

n

	ˇ̌̌
ˇ:

By the standard orthogonality relation for the sine function, for every u; v 2
f1; : : : ; ng such that u < v we have

(2.23)
2

n

n�1X
kD1

n�1X
`D1

sin

�
�.v � u/k

n

	
sin

�
�k`

n

	
D 1:

We refer to the derivation of (2.23) in the appendix of [28]; it can be proved by

substituting

sin

�
�.v � u/k

n

	
D ei�.v�u/k=n � e�i�.v�u/k=n

2i

and

sin

�
�k`

n

	
D ei�k`=n � e�i�k`=n

2i

into the left-hand side of (2.23) and computing the resulting geometric sums ex-

plicitly. Now,X
u;v2f1;:::;ng

u<v

W.u; v/

(2.23)D 2

n

X
u;v2f1;:::;ng

u<v

W.u; v/

n�1X
kD1

n�1X
`D1

sin

�
�.v � u/k

n

	
sin

�
�k`

n

	

� 2

n

n�1X
kD1

ˇ̌̌
ˇ
n�1X
`D1

sin

�
�k`

n

	ˇ̌̌
ˇ �
ˇ̌̌
ˇ X
u;v2f1;:::;ng

u<v

W.u; v/ sin

�
�.v � u/k

n

	ˇ̌̌
ˇ

(2.22)

.

Pn�1
kD1

ˇ̌̌Pn�1
`D1 sin

�
�k`

n

�ˇ̌̌
n

kW kcut:
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The desired inequality (2.19) will follow from
Pn�1

kD1 jPn�1
`D1 sin.�k`=n/j . n log n.

To establish this estimate, note that by writing

sin

�
�k`

n

	
D ei�k`=n � e�i�k`=n

2i

and computing geometric sums explicitly, one sees that
Pn�1

`D1 sin.�k`=n/ D 0 if

k is even and
Pn�1

`D1 sin.�k`=n/ D cot.�k=.2n// if k is odd (see the appendix

of [28] for the details of this computation). Hence, since cot.�/ < 1
�

for every

� 2 .0; �=2/, we have

n�1X
kD1

ˇ̌̌
ˇ
n�1X
`D1

sin

�
�k`

n

	ˇ̌̌
ˇ D

b n
2

�1cX
j D0

cot

�
�.2j C 1/

2n

	
� 2n

�

b n
2

�1cX
j D0

1

2j C 1
. n log n:

�
2.1.4 Linear Equations Modulo 2

Consider a system E of N linear equations modulo 2 in n Boolean variables

´1; : : : ; ´n such that in each equation only three distinct variables appear. De-

fine MAXSAT.E/ to be the maximum number of equations in E that can be sat-

isfied simultaneously. A random f0; 1g assignment of these variables satisfies

in expectation N=2 equations, so it is natural to ask for a polynomial-time ap-

proximation algorithm to the quantity MAXSAT.E/ � N=2. We describe below

the best-known [67] approximation algorithm for this problem, which uses the

Grothendieck inequality in a crucial way. The approximation guarantee thus ob-

tained is O.
p

n= log n/. While this allows for a large error, it is shown in [54] that

for every " 2 .0; 1/ if there were a polynomial-time algorithm that approximates

MAXSAT.E/ � N=2 to within a factor of 2.log n/1�"

in time 2.log n/O.1/

, then there

would be an algorithm for 3-colorability that runs in time 2.log n/O.1/

, a conclusion

that is widely believed to be impossible.

Let E be a system of linear equations as described above. Write aijk D 1 if the

equation ´i C j́ C ´k D 0 is in the system E . Similarly, write aijk D �1 if the

equation ´i C j́ C ´k D 1 is in E . Finally, write aijk D 0 if no equation in E
corresponds to ´i C j́ C ´k . Assume that the assignment .´1; : : : ; ´n/ 2 f0; 1gn

satisfies m of the equations in E . Then

nX
iD1

nX
j D1

nX
kD1

aijk.�1/´i C j́ C´k D m � .N � m/ D 2

�
m � N

2

	
:

It follows that

(2.24) max
n nX

iD1

nX
j D1

nX
kD1

aijk"i"j "k W f"ign
iD1 � f�1; 1g

o
D

2

�
MAXSAT.E/ � N

2

	
defD M:
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We will now present a randomized polynomial algorithm that outputs a number

˛ 2 R that satisfies with probability at least 2
3

(2.25)
1

20KG

r
log n

n
M � ˛ � M:

Fix m 2 N, which will be determined later. Choose "1; : : : ; "m 2 f�1; 1gn inde-

pendently and uniformly at random and consider the following random variable:

(2.26) ˛ D 1

10KG
max

`2f1;:::;mg
max

n nX
iD1

nX
j D1

nX
kD1

aijk"`
i hyj ; ´ki W

fyj gn
j D1; f´kgn

kD1 � S2n�1
o
:

By the Grothendieck inequality we know that

(2.27) ˛ � 1

10
max

n nX
iD1

nX
j D1

nX
kD1

aijk"iıj �k W

f"ign
iD1; fıj gn

j D1; f�kgn
kD1 � f�1; 1g

o
� M:

The final step in (2.27) follows from an elementary decoupling argument; see [67,

lemma 2.1].

We claim that

(2.28) Pr



˛ � 1

20KG

r
log n

n
M

�
� 1 � e�cm= 4

p
n:

Once (2.28) is established, it would follow that for m 	 4
p

n we have

˛ � 1

20KG

r
log n

n
M

with probability at least 2
3

. This combined with (2.27) would complete the proof

of (2.25) since ˛ as defined in (2.26) can be computed in polynomial time, being

the maximum of O. 4
p

n/ semidefinite programs.

To check (2.28), let k�k be the norm on Rn defined for every x D .x1; : : : ; xn/ 2
Rn by

kxk D max
n nX

iD1

nX
j D1

nX
kD1

aijkxi hyj ; ´ki W fyj gn
j D1; f´kgn

kD1 � S2n�1
o
:

Define K D fx 2 Rn W kxk � 1g and let Kı D fw 2 Rn W supx2Khx; wi � 1g
be the polar of K. Then maxfkwk1 W w 2 Kıg D maxfkxk W kxk1 � 1g �
M , where the first equality is straightforward duality and the final inequality is a
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consequence of the definition of k � k and M . It follows that there exists w 2 Kı
with kwk1 � M . Hence, recalling that ˛ D 1

10KG
max`2f1;:::;mg k"`k, we have

Pr



˛ � 1

20KG

r
log n

n
M

�
(2.26)D 1 �

mY
`D1

Pr



k"`k <

1

2

r
log n

n
M

�

� 1 �
�

Pr


 nX
iD1

"1
i wi <

1

2

r
log n

n

nX
iD1

jwi j
�	m

:

In order to prove (2.28) it therefore suffices to prove that if " is chosen uniformly

at random from f�1; 1gn and a 2 Rn satisfies kak1 D 1, then

Pr


 nX
iD1

"iai �
r

log n

4n

�
� 1 � c

4
p

n
;

where c 2 .0; 1/ is a universal constant. This probabilistic estimate for i.i.d.

Bernoulli sums can be proved directly; see [67, lemma 3.2].

2.2 Rounding
Let A D .aij / be an m � n matrix. In Section 2.1 we described a polynomial-

time algorithm for approximating kAkcut and kAk1!1. For applications it is

also important to find in polynomial time signs "1; : : : ; "m; ı1; : : : ; ın 2 f�1; 1g
for which

Pm
iD1

Pn
j D1 aij "iıj is at least a constant multiple of kAk1!1. This

amounts to a “rounding problem”: we need to find a procedure that, given input

vectors x1; : : : ; xm; y1; : : : ; yn 2 SmCn�1, produces signs "1; : : : ; "m; ı1; : : : ; ın

2 f�1; 1g whose existence is ensured by the Grothendieck inequality, namely,Pm
iD1

Pn
j D1 aij "iıj , is at least a constant multiple of

Pm
iD1

Pn
j D1 aij hxi ; yj i.

For this purpose one needs to examine proofs of the Grothendieck inequality,

as done in [8]. We will now describe the rounding procedure that gives the best-

known approximation guarantee. This procedure yields a randomized algorithm

that produces the desired signs; it is also possible to obtain a deterministic algo-

rithm, as explained in [8].
The argument below is based on a clever two-step rounding method due to

Krivine [79]. Fix k 2 N and assume that we are given two centrally symmet-

ric measurable partitions of Rk , or, equivalently, two odd measurable functions

f; g W Rk ! f�1; 1g. Let G1; G2 2 Rk be independent random vectors that are

distributed according to the standard Gaussian measure on Rk , i.e., the measure

with density x 7! e�kxk2
2=2=.2�/k=2. For t 2 .�1; 1/ define

(2.29) Hf;g.t/
defD E



f

�
1p
2

G1

	
g

�
tp
2

G1 C
p

1 � t2

p
2

G2

	�
D

1

�k.1 � t2/k=2

Z
Rk

Z
Rk

f .x/g.y/ exp

��kxk2
2 � kyk2

2 C 2thx; yi
1 � t2

	
dx dy:
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Then Hf;g extends to an analytic function on the strip f´ 2 C W <.´/ 2 .�1; 1/g.

The pair of functions ff; gg is called a Krivine rounding scheme if Hf;g is in-

vertible on a neighborhood of the origin, and if we consider the Taylor expansion

H �1
f;g

.´/ D P1
j D0 a2j C1´2j C1, then there exists c D c.f; g/ 2 .0; 1/ satisfyingP1

j D0 ja2j C1jc2j C1 D 1.

For .f; g/ as above and unit vectors fxigm
iD1, fyj gn

j D1 � SmCn�1, one can find

new unit vectors fuigm
iD1; fvj gn

j D1 � SmCn�1 satisfying the identities

(2.30) 8.i; j / 2 f1; : : : ; mg � f1; : : : ; ng; hui ; vj i D H �1
f;g .c.f; g/hxi ; yj i/:

We refer to [23] for the proof that fuigm
iD1 and fvj gn

j D1 exist. This existence proof

is not via an efficient algorithm, but as explained in [8]; once we know that they

exist the new vectors can be computed efficiently provided H �1
f;g

can be computed

efficiently; this simply amounts to computing a Cholesky decomposition or, alter-

natively, solving a semidefinite program corresponding to (2.30). This completes

the first (preprocessing) step of a generalized Krivine rounding procedure. The

next step is to apply a random projection to the new vectors thus obtained, as in

Grothendieck’s original proof [47] or the Goemans-Williamson algorithm [44].

Let G W RmCn ! Rk be a random k � .m C n/ matrix whose entries are i.i.d.

standard Gaussian random variables. Define random signs f"igm
iD1 and fıj gn

j D1 �
f�1; 1g by

(2.31) 8.i; j / 2 f1; : : : ; mg � f1; : : : ; ng;
"i

defD f

�
1p
2

Gui

	
and ıj

defD g

�
1p
2

Gvj

	
:

Now,

E


 mX
iD1

nX
j D1

aij "iıj

�
.�/D E


 mX
iD1

nX
j D1

aij Hf;g

�
hui ; vj i

	�

(2.30)D c.f; g/

mX
iD1

nX
j D1

aij hxi ; yj i;
(2.32)

where (
) follows by rotation invariance from (2.31) and (2.29). The identity (2.32)

yields the desired polynomial-time randomized rounding algorithm, provided one

can bound c.f; g/ from below. Identity (2.32) also gives a systematic way to bound

the Grothendieck constant from above: for every Krivine rounding scheme f; g W
Rk ! f�1; 1g we have KG � 1=c.f; g/. Krivine used this reasoning to obtain

the bound KG � �=.2 log.1 C p
2// by considering the case k D 1 and f0.x/ D

g0.x/ D sign.x/. With Hf0;g0
.t/ D 2

�
arcsin.t/ (Grothendieck’s identity) and

c.f0; g0/ D 2
�

log.1Cp
2/, one checks that ff0; g0g is a Krivine rounding scheme.

Since the goal of the above discussion is to round vectors fxigm
iD1 and fyj gn

j D1 �
SmCn�1 to signs f"igm

iD1; fıj gn
j D1 � f�1; 1g, it seems natural to expect that the
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FIGURE 2.1. The partition of R2 used in [23] to show that KG is smaller

than Krivine’s bound; the shaded regions are separated by the graph y D
c.x5 � 10x3 C 15x/.

best possible Krivine rounding scheme occurs when k D 1 and f .x/ D g.x/ D
sign.x/. If true, this would imply that KG D �=.2 log.1 C p

2//; a longstanding

conjecture of Krivine [79]. Over the years additional evidence supporting Krivine’s

conjecture was discovered, and a natural analytic conjecture was made in [78] as a

step towards proving it. We will not discuss these topics here since in [23] it was

shown that actually KG � �=.2 log.1 C p
2// � "0 for some effective constant

"0 > 0.

It is known [23, lemma 2.4] that among all one-dimensional Krivine rounding

schemes f; g W R ! f�1; 1g, we indeed have c.f; g/ � 2
�

log.1 C p
2/; i.e., it

does not pay off to take partitions of R that are more complicated than the half-

line partitions. Unexpectedly, it was shown in [23] that a certain two-dimensional

Krivine rounding scheme f; g W R2 ! f�1; 1g satisfies c.f; g/ > 2
�

log.1 C p
2/.

The proof of [23] uses a Krivine rounding scheme f; g W R2 ! f�1; 1g when

f D g corresponds to the partition of R2 as the subgraph and supergraph of the

polynomial y D c.x5 � 10x3 C 15x/, where c > 0 is an appropriately chosen

constant. This partition is depicted in Figure 2.1.

As explained in [23, sec. 3], there is a natural guess for the “best” two-dimen-

sional Krivine rounding scheme based on a certain numerical computation, which

we will not discuss here. For this (conjectural) scheme we have f ¤ g, and the

planar partition corresponding to f is depicted in Figure 2.2. Of course, once

Krivine’s conjecture has been disproved and the usefulness of higher-dimensional
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FIGURE 2.2. The “tiger partition” restricted to the square Œ�20; 20�2.

This is the conjectured [23] optimal partition of R2 for the purpose of

Krivine-type rounding.

rounding schemes has been established, there is no reason to expect that the situ-

ation won’t improve as we consider k-dimensional Krivine rounding schemes for

k � 3. A positive solution to an analytic question presented in [23] might even

lead to an exact computation of KG ; see [23, sec. 3] for the details.

3 Grothendieck Constant of a Graph
Fix n 2 N and let G D .f1; : : : ; ng; E/ be a graph. We assume throughout

that G does not contain any self-loops, i.e., E � fS � f1; : : : ; ng W jS j D 2g.

Following [7], define the Grothendieck constant of G, denoted K.G/, to be the

smallest constant K 2 .0; 1/ such that every n � n matrix .aij / satisfies

(3.1) max
x1;:::;xn2Sn�1

X
i;j 2f1;:::;ng

fi;j g2E

aij hxi ; xj i � K max
"1;:::;"n2f�1;1g

X
i;j 2f1;:::;ng

fi;j g2E

aij "i"j :

Inequality (3.1) is an extension of the Grothendieck inequality since (1.1) is the

special case of (3.1) when G is a bipartite graph. Thus

(3.2) KG D sup
n2N

fK.G/ W G is an n-vertex bipartite graphg:

The opposite extreme of bipartite graphs is G D Kn, the n-vertex complete

graph. In this case (3.1) boils down to the following inequality:
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(3.3) max
x1;:::;xn2Sn�1

X
i;j 2f1;:::;ng

i¤j

aij hxi ; xj i �

K.Kn/ max
"1;:::;"n2f�1;1g

X
i;j 2f1;:::;ng

i¤j

aij "i"j :

It turns out that K.Kn/ 	 log n. The estimate K.Kn/ . log n was proved in [29,

62, 93, 96]. In fact, as shown in [7, theorem 3.7], the following stronger inequality

holds true for every n � n matrix .aij /; it implies that K.Kn/ . log n by the

Cauchy-Schwartz inequality:

max
x1;:::;xn2Sn�1

X
i;j 2f1;:::;ng

i¤j

aij hxi ; xj i .

log

 P
i2f1;:::;ng

P
j 2f1;:::;ngnfig jaij jqP

i2f1;:::;ng
P

j 2f1;:::;ngnfig a2
ij

!
max

"1;:::;"n2f�1;1g
X

i;j 2f1;:::;ng
i¤j

aij "i"j :

The matching lower bound K.Kn/ & log n is due to [7], which improves on a

result of [62].

How can we interpolate between the two extremes contained in inequalities (3.2)

and (3.3)? The Grothendieck constant K.G/ depends on the combinatorial struc-

ture of the graph G, but at present our understanding of this dependence is incom-

plete. The following general bounds are known:

(3.4) log ! . K.G/ . log #

and

(3.5) K.G/ � �

2 log

�
1C

p
.#�1/2C1

#�1

	 ;

where (3.4) is due to [7] and (3.5) is due to [25]. Here ! is the clique number of G,

i.e., the largest k 2 f2; : : : ; ng such that there exists S � f1; : : : ; ng of cardinality k

satisfying fi; j g 2 E for all distinct i; j 2 S , and

(3.6) # D min

�
max

i2f1;:::;ng
1

hxi ; yi2
W

x1; : : : ; xn; y 2 Sn ^ 8fi; j g 2 E; hxi ; xj i D 0

�
:

The parameter # is known as the Lovász theta function of the complement of G,

an important graph parameter that was introduced in [89]. We refer to [61] and [7,

theorem 3.5] for alternative characterizations of # . It suffices to say here that it was

shown in [89] that # � �, where � is the chromatic number of G, i.e., the smallest

integer k such that there exists a partition fA1; : : : ; Akg of f1; : : : ; ng such that
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fi; j g … E for all .i; j / 2 Sk
`D1 A` � A`. Note that the upper bound in (3.4) is

superior to (3.5) when # is large, but when # D 2 the bound (3.5) implies Krivine’s

classical bound [79] KG � �=.2 log.1 C p
2//.

The upper and lower bounds in (3.4) are known to match up to absolute constants

for a variety of graph classes. Several such sharp Grothendieck-type inequalities

are presented in sections 5.2 and 5.3 of [7]. For example, as explained in [7], it

follows from (3.4), combined with combinatorial results of [9, 89], that for every

n � n � n 3-tensor .aijk/ we have

max
fxij gn

i;j D1
�Sn2�1

X
i;j;k2f1;:::;ng

i¤j ¤k

aijkhxij ; xjki .

max
f"ij gn

i;j D1
�f�1;1g

X
i;j;k2f1;:::;ng

i¤j ¤k

aijk"ij "jk :

While (3.4) is often a satisfactory asymptotic evaluation of K.G/, this isn’t al-

ways the case. In particular, it is unknown whether K.G/ can be bounded from

below by a function of # that tends to 1 as # ! 1. An instance in which (3.4) is

not sharp is the case of Erdős-Rényi [38] random graphs G.n; 1
2
/. For such graphs

we have ! 	 log n almost surely as n ! 1; see [92] and [10, sec. 4.5]. At the

same time, for G.n; 1
2
/ we have [60] # 	 p

n almost surely as n ! 1. Thus (3.4)

becomes in this case the rather weak estimate log log n . K.G.n; 1
2
// . log n.

It turns out [3] that K.G.n; 1
2
// 	 log n almost surely as n ! 1; we refer

to [3] for additional computations of this type of the Grothendieck constant of

random and pseudorandom graphs. An explicit evaluation of the Grothendieck

constant of certain graph families can be found in [81]; for example, if G is

a graph of girth g that is not a forest and does not admit K5 as a minor, then

K.G/ D g cos.�=g/=.g � 2/.

3.1 Algorithmic Consequences
Other than being a natural variant of the Grothendieck inequality, and hence

of intrinsic mathematical interest, (3.1) has ramifications to discrete optimization

problems, which we now describe.

3.1.1 Spin Glasses
Perhaps the most natural interpretation of (3.1) is in the context of solid state

physics, specifically the problem of efficient computation of ground states of Ising

spin glasses. The graph G represents the interaction pattern of n particles; thus

fi; j g … E if and only if the particles i and j cannot interact with each other.

Let aij be the magnitude of the interaction of i and j (the sign of aij corre-

sponds to attraction/repulsion). In the Ising model each particle i 2 f1; : : : ; ng
has a spin "i 2 f�1; 1g, and the total energy of the system is given by the quan-

tity �Pfi;j g2E aij "i"j . A spin configuration ."1; : : : ; "n/ 2 f�1; 1gn is called a

ground state if it minimizes the total energy. Thus the problem of finding a ground
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state is precisely that of computing the maximum appearing in the right-hand side

of (3.1). For more information on this topic, see [90, pp. 352–355].

Physical systems seek to settle at a ground state, and therefore it is natural to

ask whether it is computationally efficient (i.e., polynomial time computable) to

find such a ground state, at least approximately. Such questions have been studied

in the physics literature for several decades; see [13, 15, 17, 19]. In particular, it

was shown in [17] that if G is a planar graph, then one can find a ground state in

polynomial time, but in [13] it was shown that when G is the three-dimensional

grid, then this computational task is NP-hard.

Since the quantity in the left-hand side of (3.1) is a semidefinite program and

therefore can be computed in polynomial time with arbitrarily good precision, a

good bound on K.G/ yields a polynomial-time algorithm that computes the energy

of a ground state with correspondingly good approximation guarantee. Moreover,

as explained in [7], the proof of the upper bound in (3.4) yields a polynomial-time

algorithm that finds a spin configuration .�1; : : : ; �n/ 2 f�1; 1gn for which

(3.7)
X

i;j 2f1;:::;ng
fi;j g2E

aij �i�j & 1

log #
� max

f"i gn
iD1

�f�1;1g
X

i;j 2f1;:::;ng
fi;j g2E

aij "i"j :

An analogous polynomial-time algorithm corresponds to the bound (3.5). These

algorithms yield the best-known efficient methods for computing a ground state of

Ising spin glasses on a variety of interaction graphs.

3.1.2 Correlation Clustering
A different interpretation of (3.1) yields the best-known polynomial-time ap-

proximation algorithm for the correlation clustering problem [14, 27]; this con-

nection is due to [29]. Interpret the graph G D .f1; : : : ; ng; E/ as the “sim-

ilarity/dissimilarity graph” for the items f1; : : : ; ng in the following sense: For

fi; j g 2 E we are given a sign aij 2 f�1; 1g, for which if aij D 1, then i and

j are deemed to be similar, and if aij D �1 then i and j are deemed to be dif-

ferent. If fi; j g … E, then we do not express any judgment on the similarity or

dissimilarity of i and j .

Assume that A1; : : : ; Ak is a partition (or “clustering”) of f1; : : : ; ng. An agree-

ment between this clustering and our similarity/dissimilarity judgments is a pair

i; j 2 f1; : : : ; ng such that aij D 1 and i; j 2 Ar for some r 2 f1; : : : ; kg or aij D
�1 and i 2 Ar , j 2 As , for distinct r; s 2 f1; : : : ; kg. A disagreement between

this clustering and our similarity/dissimilarity judgments is a pair i; j 2 f1; : : : ; ng
such that aij D 1 and i 2 Ar , j 2 As , for distinct r; s 2 f1; : : : ; kg or aij D �1

and i; j 2 Ar for some r 2 f1; : : : ; kg. Our goal is to cluster the items while

encouraging agreements and penalizing disagreements. Thus, we wish to find a

clustering of f1; : : : ; ng into an unspecified number of clusters that maximizes the

total number of agreements minus the total number of disagreements.
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It was proved in [29] that the case of clustering into two parts is the bottleneck

for this problem. Namely, assume that there were a polynomial-time algorithm that

finds a clustering into two parts for which the total number of agreements minus

the total number of disagreements is at least a fraction ˛ 2 .0; 1/ of the maximum

possible (over all bipartitions) total number of agreements minus the total number

of disagreements. Then one could find in polynomial time a clustering that is at

least a fraction ˛
2C˛

of the analogous maximum that is defined without specifying

the number of clusters.

One checks that the problem of finding a partition into two clusters that maxi-

mizes the total number of agreements minus the total number of disagreements is

the same as the problem of computing the maximum in the right-hand side of (3.1).

Thus the upper bound in (3.4) yields a polynomial-time algorithm for correlation

clustering with approximation guarantee O.log #/, which is the best-known ap-

proximation algorithm for this problem. Note that when G is the complete graph,

then the approximation ratio is O.log n/. As will be explained in Section 7, it is

known [71] that for every � 2 .0; 1
6
/, if there were a polynomial-time algorithm

for correlation clustering that yields an approximation guarantee of .log n/� , then

there would be an algorithm for 3-colorability that runs in time 2.log n/O.1/

, a con-

clusion that is widely believed to be impossible.

4 Kernel Clustering and the Propeller Conjecture
Here we describe a large class of Grothendieck-type inequalities that is moti-

vated by algorithmic applications to a combinatorial optimization problem called

“kernel clustering.” This problem originates in machine learning [112], and its only

known rigorous approximation algorithms follow from Grothendieck inequalities

(these algorithms are sharp assuming the UGC). We will first describe the inequal-

ities and then the algorithmic application.

Consider the special case of the Grothendieck inequality (1.1) where A D .aij /

is an n � n positive semidefinite matrix. In this case we may assume without loss

of generality that in (1.1) xi D yi and "i D ıi for every i 2 f1; : : : ; ng since

this holds for the maxima on either side of (1.1) (see also the explanation in [8,

sec. 5.2]). It follows from [47, 109] (see also [97]) that for every n � n symmetric

positive semidefinite matrix A D .aij / we have

(4.1) max
x1;:::;xn2Sn�1

nX
iD1

nX
j D1

aij hxi ; xj i � �

2
� max

"1;:::;"n2f�1;1g

nX
iD1

nX
j D1

aij "i"j ;

and that �
2

is the best possible constant in (4.1).

A natural variant of (4.1) is to replace the numbers �1 and 1 by general vectors

v1; : : : ; vk 2 Rk; namely, one might ask for the smallest constant K 2 .0; 1/
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such that for every symmetric positive semidefinite n � n matrix .aij / we have

(4.2) max
x1;:::;xn2Sn�1

nX
iD1

nX
j D1

aij hxi ; xj i �

K max
u1;:::;un2fv1;:::;vkg

nX
iD1

nX
j D1

aij hui ; uj i:

The best constant K in (4.2) can be characterized as follows: Let

B D .bij D hvi ; vj i/
be the Gram matrix of v1; : : : ; vk . Let C.B/ be the maximum over all partitions

fA1; : : : ; Akg of Rk�1 into measurable sets of the quantity

kX
iD1

kX
j D1

bij h´i ; j́ i;

where for i 2 f1; : : : ; kg the vector ´i 2 Rk�1 is the Gaussian moment of Ai , i.e.,

´i D 1

.2�/.k�1/=2

Z
Ai

xe�kxk2
2=2 dx:

It was proved in [69] that (4.2) holds with K D 1=C.B/ and that this constant is

sharp.

Inequality (4.2) with K D 1=C.B/ is proved via the following rounding pro-
cedure: Fix unit vectors x1; : : : ; xn 2 Sn�1. Let G D .gij / be a .k � 1/ � n

random matrix whose entries are i.i.d. standard Gaussian random variables. Let

A1; : : : ; Ak � Rk�1 be a measurable partition of Rk�1 at which C.B/ is at-

tained (for a proof that the maximum defining C.B/ is indeed attained, see [69]).

Define a random choice of ui 2 fv1; : : : ; vkg by setting ui D v` for the unique

` 2 f1; : : : ; kg such that Gxi 2 A`. The fact that (4.2) holds with K D 1=C.B/

is a consequence of the following fact, whose proof we skip (the full details are

in [69]):

(4.3) E


 nX
iD1

nX
j D1

aij hui ; uj i
�

� C.B/

nX
iD1

nX
j D1

aij hxi ; xj i:

Determining the partition of Rk�1 that achieves the value C.B/ is a nontrivial

problem in general, even in the special case when B D Ik is the k � k identity

matrix. Note that in this case one desires a partition fA1; : : : ; Akg of Rk�1 into

measurable sets so as to maximize the quantity

kX
iD1

���� 1

.2�/.k�1/=2

Z
Ai

xe�kxk2
2=2 dx

����
2

2

:
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As shown in [68, 69], the optimal partition is given by simplicial cones centered

at the origin. When B D I2 we have C.I2/ D 1
�

, and the optimal partition of R
into two cones is the positive and the negative axes. When B D I3, it was shown

in [68] that C.I3/ D 9
8�

, and the optimal partition of R2 into three cones is the

propeller partition, i.e., into three cones with angular measure 120ı each.

Though it might be surprising at first sight, the authors posed in [68] the pro-
peller conjecture: for any k � 4, the optimal partition of Rk�1 into k parts is

P � Rk�3, where P is the propeller partition of R2. In other words, even if one

is allowed to use k parts, the propeller conjecture asserts that the best partition

consists of only three nonempty parts. Recently this conjecture was solved pos-

itively [55] for k D 4, i.e., for partitions of R3 into four measurable parts. The

proof of [55] reduces the problem to a concrete finite set of numerical inequalities

that are then verified with full rigor in a computer-assisted fashion. Note that this is

the first nontrivial (surprising?) case of the propeller conjecture; i.e., this is the first

case in which we indeed drop one of the four allowed parts in the optimal partition.

We now describe an application of (4.2) to the kernel clustering problem; a gen-

eral framework for clustering massive statistical data so as to uncover a certain

hypothesized structure [112]. The problem is defined as follows. Let A D .aij / be

an n � n symmetric positive semidefinite matrix that is usually normalized to be

centered, i.e.,
Pn

iD1

Pn
j D1 aij D 0. The matrix A is often thought of as the corre-

lation matrix of random variables .X1; : : : ; Xn/ that measure attributes of certain

empirical data, i.e., aij D EŒXiXj �. We are also given another symmetric positive

semidefinite k � k matrix B D .bij / that functions as a hypothesis, or test, matrix.

Think of n as huge and k as a small constant. The goal is to cluster A so as to ob-

tain a smaller matrix that most resembles B . Formally, we wish to find a partition

fS1; : : : ; Skg of f1; : : : ; ng so that if we write cij D P
.p;q/2Si �Sj

apq , then the

resulting clustered version of A has the maximum correlation
Pk

iD1

Pk
j D1 cij bij

with the hypothesis matrix B . In words, we form a k � k matrix C D .cij / by

summing the entries of A over the blocks induced by the given partition, and we

wish to produce in this way a matrix that is most correlated with B . Equivalently,

the goal is to evaluate the number

(4.4) Clust.AjB/ D max
� Wf1;:::;ng!f1;:::;kg

kX
iD1

kX
j D1

aij b�.i/�.j /:

The strength of this generic clustering framework is based in part on the flexi-

bility of adapting the matrix B to the problem at hand. Various particular choices

of B lead to well-studied optimization problems, while other specialized choices

of B are based on statistical hypotheses that have been applied with some empir-

ical success. We refer to [68, 112] for additional background and a discussion of

specific examples.
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In [68] it was shown that there exists a randomized polynomial-time algorithm

that takes as input two positive semidefinite matrices A and B and outputs a num-

ber ˛ that satisfies Clust.AjB/ � EŒ˛� � .1 C 3�
2

/ Clust.AjB/. There is no

reason to believe that the approximation factor of 1 C 3�
2

is sharp, but nevertheless

prior to this result, which is based on (4.2), no constant-factor, polynomial-time

approximation algorithm for this problem was known.

Sharper results can be obtained if we assume that the input matrices are normal-

ized appropriately. Specifically, assume that k � 3 and consider only inputs A that

are centered, i.e.,
Pn

iD1

Pn
j D1 aij D 0, and inputs B that are either the identity

matrix Ik or satisfy
Pk

iD1

Pk
j D1 bij D 0 (B is centered as well) and bi i D 1 for

all i 2 f1; : : : ; kg (B is “spherical”). Under these assumptions the output of the al-

gorithm of [68] satisfies Clust.AjB/ � EŒ˛� � 8�
9

.1� 1
k

/ Clust.AjB/. Moreover,

it was shown in [68] that if the propeller conjecture and the UGC are assumed, no

polynomial-time algorithm can achieve an approximation guarantee that is strictly

smaller than 8�
9

.1 � 1
k

/ (for input matrices normalized as above). Since the pro-

peller conjecture is known to hold true for k D 3 [68] and k D 4 [55], we know

that the UGC hardness threshold for the above problem is exactly 16�
27

when k D 3

and 2�
3

when k D 4.

A finer, and perhaps more natural, analysis of the kernel clustering problem can

be obtained if we fix the matrix B and let the input be only the matrix A, with the

goal being, as before, to approximate the quantity Clust.AjB/ in polynomial time.

Since B is symmetric and positive semidefinite, we can find vectors v1; : : : ; vk 2
Rk such that B is their Gram matrix, i.e., bij D hvi ; vj i for all i; j 2 f1; : : : ; kg.

Let R.B/ be the smallest possible radius of a euclidean ball in Rk that contains

fv1; : : : ; vkg, and let w.B/ be the center of this ball. We note that both R.B/ and

w.B/ can be efficiently computed by solving an appropriate semidefinite program.

Let C.B/ be the parameter defined above.

It is shown in [69] that for every fixed symmetric positive semidefinite k � k

matrix B there exists a randomized polynomial-time algorithm which, given an

n�n symmetric positive semidefinite centered matrix A, outputs a number Alg.A/

such that

Clust.AjB/ � EŒAlg.A/� � R.B/2

C.B/
Clust.AjB/:

As we will explain in Section 7, if we assume the UGC, no polynomial-time algo-

rithm can achieve an approximation guarantee strictly smaller than R.B/2=C.B/.

The algorithm of [69] uses semidefinite programming to compute the value

SDP.AjB/ D max
n nX

iD1

nX
j D1

aij hxi ; xj i W x1; : : : ; xn 2 Rn ^ kxi k2 � 1 8i 2 f1; : : : ; ng
o

.|/D max
n nX

iD1

nX
j D1

aij hxi ; xj i W x1; : : : ; xn 2 Sn�1
o
;
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where .|/ holds since the function .x1; : : : ; xn/ 7! Pn
iD1

Pn
j D1 aij hxi ; xj i is

convex (by virtue of the fact that A is positive semidefinite).

We claim that

(4.5)
Clust.AjB/

R.B/2
� SDP.AjB/ � Clust.AjB/

C.B/
;

which implies that if we output the number R.B/2SDP.AjB/ we will obtain a

polynomial-time algorithm that will approximate Clust.AjB/ up to a factor of

R.B/2=C.B/. To verify (4.5), let x�
1 ; : : : ; x�

n 2 Sn�1 and �� W f1; : : : ; ng !
f1; : : : ; kg be such that

SDP.AjB/ D
nX

iD1

nX
j D1

aij hx�
i ; x�

j i and Clust.AjB/ D
nX

iD1

nX
j D1

aij b��.i/��.j /:

Write .aij /n
i;j D1 D .hui ; uj i/n

i;j D1 for some u1; : : : ; un 2 Rn. The assumption

that A is centered means that
Pn

iD1 ui D 0. The rightmost inequality in (4.5)

is just the Grothendieck inequality (4.2). The leftmost inequality in (4.5) follows

from the fact that
v��.i/�w.B/

R.B/
has norm at most 1 for all i 2 f1; : : : ; ng. Indeed,

these norm bounds imply that

SDP.AjB/ �
nX

iD1

nX
j D1

aij

�
v��.i/ � w.B/

R.B/
;
v��.j / � w.B/

R.B/



D 1

R.B/2

nX
iD1

nX
j D1

aij hv��.i/; v��.j /i

� 2

R.B/2

nX
iD1

hw.B/; v��.i/i
D
ui ;

nX
j D1

uj

E
C kw.B/k2

2

R.B/2

nX
iD1

nX
j D1

aij

D Clust.AjB/

R.B/2
:

This completes the proof that the above algorithm approximates efficiently the

number Clust.AjB/ but does not address the issue of how to efficiently compute an

assignment � W f1; : : : ; ng ! f1; : : : ; kg for which the induced clustering of A has

the required value. The issue here is to find efficiently a conical simplicial partition

A1; : : : ; Ak of Rk�1 at which C.B/ is attained. Such a partition exists and may

be assumed to be hardwired into the description of the algorithm. Alternately, the

partition that achieves C.B/ up to a desired degree of accuracy can be found by

brute force for fixed k (or k D k.n/ growing sufficiently slowly as a function of n);

see [69]. For large values of k the problem of computing C.B/ efficiently remains

open.
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5 The Lp Grothendieck Problem
Fix p 2 Œ1; 1� and consider the following algorithmic problem. The input is an

n � n matrix A D .aij / whose diagonal entries vanish, and the goal is to compute

(or estimate) in polynomial time the quantity

(5.1) Mp.A/ D max
t1;:::;tn2RPn
kD1 jtk jp�1

nX
iD1

nX
j D1

aij ti tj D max
t1;:::;tn2RPn
kD1 jtk jpD1

nX
iD1

nX
j D1

aij ti tj :

The second equality in (5.1) follows from a straightforward convexity argument

since the diagonal entries of A vanish. Some of the results described below hold

true without the vanishing diagonal assumption, but we will tacitly make this as-

sumption here since the second equality in (5.1) makes the problem become purely

combinatorial when p D 1. Specifically, if G D .f1; : : : ; ng; E/ is the complete

graph, then

M1.A/ D max
"1;:::;"n2f�1;1g

X
fi;j g2E

aij "i"j :

The results described in Section 3 therefore imply that there is a polynomial-time

algorithm that approximates M1.A/ up to an O.log n/ factor, and that it is com-

putationally hard to achieve an approximation guarantee smaller than .log n/� for

all � 2 .0; 1
6
/.

There are values of p for which the above problem can be solved in polynomial

time. When p D 2 the quantity M2.A/ is the largest eigenvalue of A and hence

can be computed in polynomial time [45, 84]. When p D 1 it was shown in [2]

that it is possible to approximate M1.A/ up to a factor of 1 C " in time nO.1="/. It

was also shown in [2] that the problem of .1C"/-approximately computing M1.A/

is W Œ1� complete; we refer to [37] for the definition of this type of hardness result

and just say here that it indicates that a running time of c."/nO.1/ is impossible.

The algorithm of [2] proceeds by showing that for every m 2 N there exist

y1; : : : ; yn 2 1
m

Z with
Pn

iD1 jyi j � 1 and

nX
iD1

nX
j D1

aij yiyj �
�

1 � 1

m

	
M1.A/:

One checks that the number of such vectors y is

1 C
mX

kD1

kX
`D1

2`

 
n

`

! 
k � 1

` � 1

!
� 4nm:

An exhaustive search over all such vectors will then approximate M1.A/ to within

a factor of m=.m � 1/ in time O.nm/. To prove the existence of y, fix t1; : : : ; tn 2
R with

Pn
kD1 jtkj D 1 and

Pn
iD1

Pn
j D1 aij ti tj D M1.A/. Let X 2 Rn be a

random vector given by PrŒX D sign.tj /ej � D jtj j for every j 2 f1; : : : ; ng.

Here e1; : : : ; en is the standard basis of Rn. Let fXs D .Xs1; : : : ; Xsn/gm
sD1 be
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independent copies of X and set Y D .Y1; : : : ; Yn/ D 1
m

Pm
sD1 Xs . Note that if

s; t 2 f1; : : : ; mg are distinct, then for all i; j 2 f1; : : : ; ng we have EŒXsiXtj � D
sign.ti / sign.tj /jti j � jtj j D ti tj . Also, for every s 2 f1; : : : ; mg and every distinct

i; j 2 f1; : : : ; ng, we have XsiXsj D 0. Since the diagonal entries of A vanish, it

follows that

(5.2) E
h nX

iD1

nX
j D1

aij YiYj

i
D

1

m2

X
s;t2f1;:::;mg

s¤t

X
i;j 2f1;:::;ng

i¤j

aij EŒXsiXtj � D
�

1 � 1

m

	
M1.A/:

Noting that the vector Y has `1-norm at most 1 and all of its entries are integer

multiples of 1
m

, it follows from (5.2) that with positive probability Y will have the

desired properties.

How can we interpolate between the above results for p 2 f1; 2; 1g? It turns

out that there is a satisfactory answer for p 2 .2; 1/, but the range p 2 .1; 2/

remains a mystery. To explain this write �p D .EŒjGjp�/1=p, where G is a standard

Gaussian random variable. One computes that

(5.3) �p D p
2

�
	.pC1

2
/p

�

	1=p

:

Also, Stirling’s formula implies that �2
p D p

e
C O.1/ as p ! 1. It follows

from [50, 94] that for every fixed p 2 Œ2; 1/ there exists a polynomial-time

algorithm that approximates Mp.A/ to within a factor of �2
p , and that for every

" 2 .0; 1/ the existence of a polynomial-time algorithm that approximates Mp.A/

to within a factor �2
p � " would imply that P D NP. These results improve over the

earlier work [72], which designed a polynomial-time algorithm for Mp.A/ whose

approximation guarantee is .1 C o.1//�2
p as p ! 1, and which proved a �2

p � "

hardness results if the UGC is assumed rather than P ¤ NP.

The following Grothendieck-type inequality was proved in [94] and indepen-

dently in [50]. For every n � n matrix A D .aij / and every p 2 Œ2; 1/ we have

(5.4) max
x1;:::;xn2RnPn
kD1 kxkkp

2 �1

nX
iD1

nX
j D1

aij hxi ; xj i � �2
p max

t1;:::;tn2RPn
kD1 jtk jp�1

nX
iD1

nX
j D1

aij ti tj :

The constant �2
p in (5.4) is sharp. The validity of (5.4) implies that Mp.A/ can be

computed in polynomial time to within a factor �2
p . This follows since the left-hand

side of (5.4) is the maximum of
Pn

iD1

Pn
j D1 aij Xij , which is a linear functional

in the variables .Xij /, given the constraint that .Xij / is a symmetric positive semi-

definite matrix and
Pn

iD1 X
p=2
ii � 1. The latter constraint is convex since p � 2,

and therefore this problem falls into the framework of convex programming that
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was described in Section 1.2. Thus the left-hand side of (5.4) can be computed in

polynomial time with arbitrarily good precision.

Choosing the specific value p D 3 in order to illustrate the current satisfactory

state of affairs concretely, the NP-hardness threshold of computing

maxPn
iD1 jxi j3�1

nX
iD1

nX
j D1

aij xixj

equals 2= 3
p

� . Such a sharp NP-hardness result (with transcendental hardness

ratio) is quite remarkable, since it shows that the geometric algorithm presented

above probably yields the best possible approximation guarantee even when one

allows any polynomial-time algorithm whatsoever. Results of this type have been

known to hold under the UGC, but this NP-hardness result of [50] seems to be the

first time that such an algorithm for a simple-to-state problem was shown to be

optimal assuming P ¤ NP.

When p 2 Œ1; 2� one can easily show [94] that

(5.5) max
x1;:::;xn2RnPn
kD1 kxkkp

2 �1

nX
iD1

nX
j D1

aij hxi ; xj i D max
t1;:::;tn2RPn
kD1 jtk jp�1

nX
iD1

nX
j D1

aij ti tj :

While the identity (5.5) seems to indicate the problem of computing Mp.A/ in

polynomial time might be easy for p 2 .1; 2/, the above argument fails since the

constraint
Pn

iD1 X
p=2
ii � 1 is no longer convex. This is reflected by the fact that

despite (5.5) the problem of .1 C "/-approximately computing M1.A/ is W Œ1�

complete [2]. It remains open whether for p 2 .1; 2/ one can approximate Mp.A/

in polynomial time up to a factor O.1/, and no hardness-of-approximation result

is known for this problem as well.

Remark 5.1. If p 2 Œ2; 1�, then for positive semidefinite matrices .aij / the con-

stant �2
p in the right-hand side of (5.4) can be improved [94] to ��2

p� , where here

and in what follows p� D p=.p � 1/. For p D 1 this estimate coincides with

the classical bound [47, 109] that we have already encountered in (4.1), and it is

sharp in the entire range p 2 Œ2; 1�. Moreover, this bound shows that there exists

a polynomial-time algorithm that takes as input a positive semidefinite matrix A

and outputs a number that is guaranteed to be within a factor ��2
p� of Mp.A/. Con-

versely, the existence of a polynomial-time algorithm for this problem whose ap-

proximation guarantee is strictly smaller than ��2
p� would contradict the UGC [94].

Remark 5.2. The natural bilinear variant of (5.4) is an immediate consequence of

the Grothendieck inequality (1.1). Specifically, assume that p; q 2 Œ1; 1� and

x1; : : : ; xm; y1; : : : ; yn 2 RmCn satisfy
Pm

iD1 kxikp
2 � 1 and

Pn
j D1 kyj kq

2 � 1.

Write ˛i D kxik2 and ǰ D kyj k2. For an m � n matrix .aij / the Grothendieck
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inequality provides "1; : : : ; "m; ı1; : : : ; ın 2 f�1; 1g such that

mX
iD1

nX
j D1

aij hxi ; yj i � KG

mX
iD1

nX
j D1

aij ˛i ǰ "iıj :

This establishes the following inequality:

(5.6) max
fxi gm

iD1
;fyj gn

j D1
�RnCmPm

iD1 kxi kp
2 �1Pn

j D1 kyj kq
2�1

mX
iD1

nX
j D1

aij hxi ; yj i �

KG � max
fsi gm

iD1
;ftj gn

j D1
�RPm

iD1 jsi jp�1Pn
j D1 jtj jq�1

mX
iD1

nX
j D1

aij si tj :

Observe that the maximum on the right-hand side of (5.6) is kAkp!q� , the operator

norm of A acting as a linear operator from .Rm; k � kp/ to .Rn; k � kq�/. Moreover,

if p; q � 2, then the left-hand side of (5.6) can be computed in polynomial time.

Thus, for p � 2 � r � 1, the generalized Grothendieck inequality (5.6) yields

a polynomial-time algorithm that takes as input an m � n matrix A D .aij / and

outputs a number that is guaranteed to be within a factor KG of kAkp!r . This

algorithmic task has been studied in [98] (see also [95, sec. 4.3.2]), where for

p � 2 � r � 1 a polynomial-time algorithm was designed that approximates

kAkp!r up to a factor 3�=.6
p

3 � 2�/ 2 Œ2:293; 2:294�.

The above argument yields the approximation factor KG < 1:783 as a formal

consequence of the Grothendieck inequality. The complexity of the problem of

approximating kAkp!r has been studied in [18], where it is shown that if either

p � r > 2 or 2 > p � r , then it is NP-hard to approximate kAkp!r up to

any constant factor, and unless 3-colorability can be solved in time 2.log n/O.1/

,

for any " 2 .0; 1/ no polynomial-time algorithm can approximate kAkp!r up to

2.log n/1�"

.

Remark 5.3. Let K � Rn be a compact and convex set that is invariant under

reflections with respect to the coordinate hyperplanes. Denote by CK the smallest

C 2 .0; 1/ such that for every n � n matrix .aij / we have

(5.7) max
x1;:::;xn2Rn

.kx1k2;:::;kxnk2/2K

nX
iD1

nX
j D1

aij hxi ; xj i � C max
t1;:::;tn2R

.t1;:::;tn/2K

nX
iD1

nX
j D1

aij ti tj :

Such generalized Grothendieck inequalities are investigated in [94], where bounds

on CK are obtained under certain geometric assumptions on K. These assumptions

are easy to verify when K D fx 2 Rn W kxkp � 1g, yielding (5.4). More subtle

inequalities of this type for other convex bodies K are discussed in [94], but we

will not describe them here. The natural bilinear version of (5.7) is: if K � Rm

and L � Rn are compact and convex sets that are invariant under reflections with
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respect to the coordinate hyperplanes, then let CK;L denote the smallest constant

C 2 .0; 1/ such that for every m � n matrix .aij / we have

(5.8) max
fxi gm

iD1
;fyj gn

j D1
�RnCm

.kx1k2;:::;kxmk2/2K
.ky1k2;:::;kynk2/2L

mX
iD1

nX
j D1

aij hxi ; yj i �

C max
fsi gm

iD1
;ftj gn

j D1
�R

.s1;:::;sm/2K
.t1;:::;tn/2L

mX
iD1

nX
j D1

aij si tj :

The argument in Remark 5.2 shows that CK;L � KG . Under certain geometric

assumptions on K and L, this bound can be improved [94].

6 Higher-Rank Grothendieck Inequalities
We have already seen several variants of the classical Grothendieck inequal-

ity (1.1), including the Grothendieck inequality for graphs (3.1), the variant of

the positive semidefinite Grothendieck inequality arising from the kernel cluster-

ing problem (4.2), and Grothendieck inequalities for convex bodies other than the

cube (5.4), (5.6), (5.7), (5.8). The literature contains additional variants of the

Grothendieck inequality, some of which will be described in this section.

Let G D .f1; : : : ; ng; E/ be a graph and fix q; r 2 N. Following [25], define

K.q ! r; G/ to be the smallest constant K 2 .0; 1/ such that for every n � n

matrix A D .aij / we have

(6.1) max
x1;:::;xn2Sq�1

X
i;j 2f1;:::;ng

fi;j g2E

aij hxi ; xj i �

K max
y1;:::;yn2Sr�1

X
i;j 2f1;:::;ng

fi;j g2E

aij hyi ; yj i:

Set also K.r; G/ D supq2N K.q ! r; G/. We similarly define KC.q ! r; G/ to

be the smallest constant K 2 .0; 1/ satisfying (6.1) for all positive semidefinite

matrices A, and correspondingly KC.r; G/ D supq2N KC.q ! r; G/.

To link these definitions to what we have already seen in this article, observe

that KG is the supremum of K.1; G/ over all finite bipartite graphs G, and due to

the results described in Section 4 we have

(6.2) sup
n2N

KC.r; K�
n / D sup

n2N
sup

x1;:::;xn2Sr�1

1

C.hxi ; xj i/n
i;j D1/

;

where K�
n is the complete graph on n-vertices with self-loops. Recall that the

definition of C.B/ for a positive semidefinite matrix B is given in the paragraph

following (4.2).
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An important special case of (6.1) is r D 2, since the supremum of K.2; G/ over

all finite bipartite graphs G is at most the complex Grothendieck constant KC
G (de-

fined analogously to KG , but over the complex scalar field), a fundamental quantity

whose value has been investigated in [47, 52, 76, 85, 101]. The best-known bounds

on KC
G are 1:338 < KC

G < 1:4049; see [103, sec. 4] for more information on this

topic. We also refer to [34, 115] for information of the constants K.2q ! 2; G/

where G is a bipartite graph. The supremum of K.q ! r; G/ over all bipartite

graphs G was investigated in [80] for r D 1 and in [76] for r D 2; see also [77] for

a unified treatment of these cases. The higher-rank constants K.q ! r; G/ when G

is bipartite were introduced in [24]. Definition (6.1) in full generality is due to [25],

where several estimates on K.q ! r; G/ are given. One of the motivations of [25]

is the case r D 3 (and G a subgraph of the grid Z3), based on the connection to

the polynomial-time approximation of ground states of spin glasses as described

in Section 3.1.1; the case r D 1 was discussed in Section 3.1.1 in connection with

the Ising model, but the case r D 3 corresponds to the more physically realistic

Heisenberg model of vector-valued spins. The parameter supn2N KC.r; K�
n / (re-

call (6.2)) was studied in [24] in the context of quantum information theory, and

in [26] it was shown that

(6.3) KC.1; K�
n / � �

n

�
	..n C 1/=2/

	.n=2/

	2

D �

2
� �

4n
C O

�
1

n2

	
;

and

sup
n2N

KC.r; K�
n / D r

2

�
	.r=2/

	..r C 1/=2/

	2

D 1 C 1

2r
C O

�
1

r2

	
:

We refer to [26] for a corresponding UGC hardness result. Note that (6.3) improves

over (4.1) for fixed n 2 N.

7 Hardness of Approximation
We have seen some examples of how Grothendieck-type inequalities yield up-

per bounds on the best possible polynomial-time approximation ratio of certain

optimization problems. From the algorithmic and computational complexity view-

point, it is interesting to prove computational lower bounds as well, i.e., results

that rule out the existence of efficient algorithms achieving a certain approxima-

tion guarantee. Such results are known as hardness or inapproximability results,

and as explained in Section 1.1, at present the state of the art allows one to prove

such results while relying on complexity theoretic assumptions such as P 6D NP

or the unique games conjecture. A nice feature of the known hardness results for

problems in which a Grothendieck-type inequality has been applied is that often

the hardness results (lower bounds) exactly match the approximation ratios (upper

bounds). In this section we briefly review the known hardness results for optimiza-

tion problems associated with Grothendieck-type inequalities.

Let Kn;n-QP denote the optimization problem corresponding to the classical

Grothendieck inequality (the acronym QP stands for “quadratic programming”).
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Thus, in the problem Kn;n-QP we are given an n�n real matrix .aij /, and the goal

is to determine the quantity

max
n mX

iD1

nX
j D1

aij "iıj W f"igm
iD1; fıj gn

j D1 � f�1; 1g
o
:

As explained in [8], the MAX DICUT problem can be framed as a special case

of the problem Kn;n-QP. Hence, as a consequence of [53], we know that for every

" 2 .0; 1/, assuming P 6D NP there is no polynomial-time algorithm that approxi-

mates the Kn;n-QP problem within ratio 13
12

� ". In [70] it is shown that the lower

bound (1.3) on the Grothendieck constant can be translated into a hardness result,

albeit relying on the unique games conjecture. Namely, letting �0 be as in (1.3),

for every " 2 .0; 1/ assuming the UGC there is no polynomial-time algorithm that

approximates the Kn;n-QP problem within a ratio �
2

e�2
0 � ".

We note that all the hardness results cited here rely on the well-known paradigm

of dictatorship testing. A lower bound on the integrality gap of a semidefinite

program, such as the estimate KG � �
2

e�2
0 , can be translated into a probabilistic

test to check whether a function f W f�1; 1gn 7! f�1; 1g is a dictatorship, i.e., of

the form f .x/ D xi for some fixed i 2 f1; : : : ; ng. If f is indeed a dictatorship,

then the test passes with probability c and if f is “far from a dictator” (in a formal

sense that we do not describe here), the test passes with probability at most s. The

ratio c=s corresponds exactly to the UGC-based hardness lower bound. It is well-

known how to prove a UGC-based hardness result once we have the appropriate

dictatorship test; see the survey [65].

The above-quoted result of [70] relied on explicitly knowing the lower-bound

construction of [107] leading to the estimate KG � �
2

e�2
0 . On the other hand,

in [106], building on the earlier work [105], it is shown that any lower bound

on the Grothendieck constant can be translated into a UGC-based hardness result,

even without explicitly knowing the construction! Thus, modulo the UGC, the

best polynomial-time algorithm to approximate the Kn;n-QP problem is via the

Grothendieck inequality, even though we do not know the precise value of KG .

Formally, for every " 2 .0; 1/, given the UGC there is no polynomial-time algo-

rithm that approximates the Kn;n-QP problem within a factor KG � ".

Let Kn;n-QPPSD be the special case of the Kn;n-QP problem where the input

matrix .aij / is assumed to be positive semidefinite. By considering matrices that

are Laplacians of graphs, one sees that the MAX CUT problem is a special case of

the problem Kn;n-QPPSD (see [68]). Hence, due to [53], we know that for every " 2
.0; 1/, assuming P 6D NP there is no polynomial-time algorithm that approximates

the Kn;n-QPPSD problem within ratio 17
16

� ". Moreover, it is proved in [68] that

for every " 2 .0; 1/, if the UGC is assumed, there is no polynomial-time algorithm

that approximates the Kn;n-QPPSD problem within ratio �
2

�", an optimal hardness

result due to the positive semidefinite Grothendieck inequality (4.1). This follows

from the more general results for the kernel clustering problem described later.
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Let .aij / be an n � n real matrix with zeroes on the diagonal. The Kn-QP
problem seeks to determine the quantity

max
n mX

iD1

nX
j D1

aij "i"j W f"igm
iD1 � f�1; 1g

o
:

In [71] it is proved that for every � 2 .0; 1
6
/, assuming that NP does not have

a 2.log n/O.1/

-time deterministic algorithm, there is no polynomial-time algorithm

that approximates the Kn-QP problem within ratio .log n/� . This improves over [12],

where a hardness factor of .log n/c was proved, under the same complexity as-

sumption, for an unspecified universal constant c > 0.

Recall that, as explained in Section 3, there is an algorithm for Kn-QP that

achieves a ratio of O.log n/, so there remains an asymptotic gap in our understand-

ing of the complexity of the Kn-QP problem. For the maximum acyclic subgraph

problem, as discussed in Section 2.1.3, the gap between the upper and lower bounds

is even larger. We have already seen that an approximation factor of O.log n/ is

achievable, but from the hardness perspective we know due to [99] that there exists

"0 > 0 such that assuming P ¤ NP there is no polynomial-time algorithm for the

maximum acyclic subgraph problem that achieves an approximation ratio less than

1 C "0. In [49] it was shown that assuming the UGC there is no polynomial-time

algorithm for the maximum acyclic subgraph problem that achieves any constant

approximation ratio.

Fix p 2 .0; 1/. As discussed in Section 5, the Lp Grothendieck problem is as

follows: given an n � n real matrix A D .aij / with zeros on the diagonal, the goal

is to determine the quantity Mp.A/ defined in (5.1). For p 2 .2; 1/ it was shown

in [50] that for every " 2 .0; 1/, if P ¤ NP is assumed, there is no polynomial-time

algorithm that approximates the Lp Grothendieck problem within a ratio �2
p � ".

Here �p is defined as in (5.3). This result (nontrivially) builds on the previous

result of [72] that obtained the same conclusion while assuming the UGC rather

than P ¤ NP.

For the kernel clustering problem with a k � k hypothesis matrix B , an op-

timal hardness result is obtained in [69] in terms of the parameters R.B/ and

C.B/ described in Section 4. Specifically, for a fixed k � k symmetric positive

semidefinite matrix B and for every " 2 .0; 1/, assuming the UGC there is no

polynomial-time algorithm that, given an n � n matrix A, approximates the quan-

tity Clust.AjB/ within ratio R.B/2

C.B/
� ". When B D Ik is the k � k identity matrix,

the following hardness result is obtained in [68]: Let " > 0 be an arbitrarily small

constant. Assuming the UGC, there is no polynomial-time algorithm that approx-

imates Clust.AjI2/ within ratio �
2

� ". Similarly, assuming the UGC there is no

polynomial-time algorithm that approximates Clust.AjI3/ within ratio 16�
27

� ",

and, if the solution of the propeller conjecture in R3 given in [55] is also used,

there is no polynomial-time algorithm that approximates Clust.AjI4/ within ra-

tio 2�
3

� ". Furthermore, for k � 5, if the propeller conjecture and the UGC are
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assumed, there is no polynomial-time algorithm that approximates Clust.AjIk/

within ratio 8�
9

.1 � 1
k

/ � ".
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