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ON DIMENSION–DEPENDENT CONCENTRATION FOR CONVEX LIPSCHITZ

FUNCTIONS IN PRODUCT SPACES

HAN HUANG AND KONSTANTIN TIKHOMIROV

Abstract. Let n ≥ 1, K > 0, and let X = (X1,X2, . . . , Xn) be a random vector in Rn with independent K–

subgaussian components. We show that for every 1–Lipschitz convex function f in R
n (the Lipschitzness with

respect to the Euclidean metric),

max
(

P
{

f(X) − Med f(X) ≥ t
}

,P
{

f(X) − Med f(X) ≤ −t
})

≤ exp

(

−
c t2

K2 log
(

2 + n
t2/K2

)

)

, t > 0,

where c > 0 is a universal constant. The estimates are optimal in the sense that for every n ≥ C̃ and t > 0 there exist
a product probability distribution X in R

n with K–subgaussian components, and a 1–Lipschitz convex function f ,
with

P
{
∣

∣f(X) − Med f(X)
∣

∣ ≥ t
}

≥ c̃ exp

(

−
C̃ t2

K2 log
(

2 + n
t2/K2

)

)

.

The obtained deviation estimates for subgaussian variables are in sharp contrast with the case of variables with
bounded ‖Xi‖ψp–norms for p ∈ [1, 2).

1. Introduction

Concentration in product probability spaces is an active research direction with numerous available results (see,
in particular, monographs [18, 7]). Among classical examples of such results are Bernstein–type inequalities [7,
Chapter 2] for linear combinations of independent random variables, and the isoperimetric inequality in the Gauss
space which implies subgaussian dimension–free concentration [25, 6] (see also [9, 3] as well as [21, Theorem V.1]).

Let (Ωi,Σi, µi), i ≥ 1, be probability spaces, and for a given n ≥ 1, let Fn be a subset of real valued measurable
functions f on the product space (

∏n
i=1 Ωi,

∏n
i=1 Σi, µ1 × · · · × µn). A question is to estimate for every t > 0 the

quantity

(1) sup
f∈Fn

max
(
(µ1 × · · · × µn)

{
f −Med f ≥ t

}
, (µ1 × · · · × µn)

{
f −Med f ≤ −t

})

(we focus on deviation from the median, for concreteness).

First, let Fn be the class of 1–Lipschitz functions in R
n (here and further in this note, the Lipschitzness is with

respect to the standard Euclidean metric in R
n), and µ1, . . . , µn be Borel probability measures in R. In particular,

it is known that whenever measures µi satisfy a Poincaré inequality with a non-trivial constant λ > 0, i.e

λVarµi h ≤ Eµi |h′|2, 1 ≤ i ≤ n, for every smooth function h : R → R,

then the product measure µ1×· · ·×µn satisfies the Poincaré inequality in R
n with the same constant, which in turn

implies subexponential dimension–free upper bound exp(−ct) for (1), where c > 0 depends only on the Poincaré
constant [14] (see also, for example, [29, Chapter 2]). Conversely, if µ = µ1 = µ2 = . . . is a probability measure on
R, and for some t > 0, (1) is uniformly (over n) upper bounded by a quantity strictly less than 1/2 then necessarily
µ satisfies a Poincaré inequality with a non-trivial constant [11].

A connection between concentration and measure transport inequalities was first highlighted in [19, 20]. In
particular, it has been established in the literature (see [23, Section 7], [10, Section 5], [4, Corollary 5.1]) that
exponential dimension–free concentration for µ×n, n ≥ 1, is equivalent to the inequality

inf
X∼µ, Y∼ν

E min
(
|X − Y |, |X − Y |2

)
≤ C

∫

R

dν

dµ
log

(dν

dµ

)
dµ for every probab. measure ν absolutely cts w.r.t µ,

where the infimum is taken over all pairs of random variables X , Y , with X ∼ µ and Y ∼ ν.
A complete characterization of product measures which enjoy dimension–free subgaussian concentration was

obtained in [10] (see also earlier work [28]). It was shown in [10] that given a measure µ on R, the quantity in (1) is
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upper bounded by C exp(−ct2) for some C, c > 0 (independent of n) if and only if there is a constant D > 0 such
that µ satisfies the following measure transportation inequality (the T2–inequality):

inf
X∼µ, Y∼ν

E |X − Y |2 ≤ 2D

∫

R

dν

dµ
log

(dν

dµ

)
dµ for every probability measure ν absolutely continuous w.r.t µ,

where the infimum is over all pairs of random variables X,Y on R with X ∼ µ and Y ∼ ν. We refer to [10] for a
more general statement.

We would like to mention the logarithmic Sobolev inequality as a well known sufficient condition for subgaussian
concentration [8], [18, Chapter 5], as well as inequalities interpolating between log–Sobolev and Poincaré [17] as
sufficient conditions for dimension–free concentration estimates of the form exp(−ctp) for the quantities in (1).

Following works of Talagrand [26, 27], it has been shown in various settings that by restricting the class of
Lipschitz functions to convex (or concave) functions, the worst–case concentration estimates can be significantly
improved. As an illustration, it is well known that for every n ≥ 1, there exists a (non-convex) 1–Lipschitz function
fn in R

n such that for the random vector X(n) uniformly distributed on vertices of the cube {−1, 1}n, one has
Var fn(X

(n)) = θ(
√
n) (see, for example, [29, Problem 4.9]). On the other hand, a classical result of Talagrand

[26, 27] asserts that there is a universal constant c > 0 such that, with Fn := {Convex 1–Lipschitz functions in R
n},

and with µ1 = µ2 = · · · = µn being the uniform measure on {−1, 1}, the quantity in (1) is upper bounded
by 2 exp(−c t2), for a universal constant c > 0. An extension of Talargand’s argument shows that (1) can be
upper bounded by 2 exp(−c t2) for the class of convex 1–Lipschitz functions whenever µ1, . . . , µn are measures with
bounded supports (then the constant c > 0 depends on the largest support diameter) [18, Chapter 4]. A complete
characterization of probability measures µ on R such that (1) admits dimension–free subgaussian concentration for
convex 1–Lipschitz functions with µ = µ1 = µ2 = . . . , was obtained in [12, 13] (see also [1] for an earlier result in
this direction). Both necessary and sufficient condition in that setting is µ((t + s,∞)) ≤ 2 exp(−cs2)µ((t,∞)) and
µ((−∞,−t− s)) ≤ 2 exp(−cs2)µ((−∞,−t)) for all s, t > 0 for some constant c > 0, which can be interpreted as the
condition that the distribution µ has “no gaps”. The convex subgaussian concentration, in turn, is implied by the
convex log–Sobolev inequality (see [24]). For results dealing with dimension–free subexponential–type concentration
for convex Lipschitz functions, we refer to [5, 13, 2].

Whereas necessary and sufficient conditions for dimension–free concentration are well understood, those condi-
tions are rather strong. For example, it is easy to construct a sugaussian distribution which does not satisfy the condi-
tion for dimension–free subgaussian concentration mentioned above. As another illustration, take n i.i.d Bernoulli(q)
random variables b1, b2, . . . , bn, where q > 0 is a small parameter. Talagrand’s convex distance concentration in-
equality then implies that for every 1–Lipschitz convex function f in R

n, P
{
|f(b1, . . . , bn) −Med f(b1, . . . , bn)| ≥

t
}
≤ 2 exp(−ct2), t > 0, for a universal constant c > 0. However, when q → 0 as n → ∞ and t is sufficiently large,

it can be checked that the bound is suboptimal.
The main purpose of this note is to give optimal dimension–dependent concentration bound in the class of

subgaussian product measures for convex 1–Lipschitz functions. However, we would like to start with a discussion
of ‖ · ‖ψp–bounded variables for p ∈ [1, 2), to emphasize the difference in tail behaviour. We recall the definition of
the ‖ · ‖ψp–norm. Given a real valued random variable Y , we set

‖Y ‖ψp := inf
{
λ > 0 : E exp(|Y |p/λp) ≤ 2

}
, p ≥ 1.

Theorem 1.1. For every p ∈ [1, 2) there is a cp > 0 depending only on p with the following property. Let K > 0,
n ≥ 2, and let X = (X1, X2, . . . , Xn) be a vector of independent random variables with ‖Xi‖ψp ≤ K, 1 ≤ i ≤ n.
Then for every 1–Lipschitz convex function f in R

n, we have

P
{
|f(X)−Med f(X)| ≥ t

}
≤ 2 exp

(
− cp t

p/Kp
)
+ 2 exp

(
− cp t

2/
(
K2(log n)2/p

))
, t > 0.

We were not able to locate the above theorem in the literature, and provide its proof for completeness. Theo-
rem 1.1 is obtained by a simple reduction to Talagrand’s inequality for bounded variables. We note here that the
two–level tail behavior for functions of independent variables is a common phenomenon within high–dimensional
probability, starting with the classical Bernstein’s inequality. It can be informally justified by saying that while
deviation of individual variables from the above theorem are controlled by exp(−Θ(tp)), linear combinations of
variables of the form

∑n
i=1 aiXi (with ‖a‖∞ ≪ ‖a‖2) exhibit subgaussian behaviour in a certain range. No-

tice that, in the above statement, 2 exp
(
− cp t

2/
(
K2(logn)2/p

)
is the dominating term on the right hand side

when t
K = O

(
(log n)

2
p(2−p)

)
. Further, there is no concentration phenomenon when t

K = O((log n)1/p). For

t ≫ K(logn)
2

p(2−p) , the tail is estimated by O
(
exp

(
− cp t

p/Kp
))
.

It can be verified that the statement of Theorem 1.1 is optimal in the following sense:
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Proposition 1.2. For every p ∈ [1, 2) there is a Cp > 0 depending only on p with the following property. Let

n ≥ Cp, t > 0, and K > 0. Then there exist a random vector X = (X1, X2, . . . , Xn) of independent random

variables with ‖Xi‖ψp ≤ K, 1 ≤ i ≤ n, and a convex 1–Lipschitz function f such that

P
{
f(X)−Med f(X) ≥ t

}
≥ c̃max

(
exp

(
− C̃ t2/

(
K2(logn)2/p

)
, exp

(
− C̃ tp/Kp

))

and

P
{
f(X)−Med f(X) ≤ −t

}
≥ c̃max

(
exp

(
− C̃ t2/

(
K2(logn)2/p

)
, exp

(
− C̃ tp/Kp

))
.

Here, c̃, C̃ > 0 are universal constants.

Now, let X = (X1, . . . , Xn) be a vector of independent K–subgaussian random variables, that is, ‖Xi‖ψ2 ≤ K,
1 ≤ i ≤ n. It is elementary to see that ‖X‖∞ := max

i≤n
|Xi| = O(

√
log n) with probability, say, 1 − n−10, where the

implicit constant in O(·) depends on K. By considering the vector of truncations
(
Xi 1{|Xi|≤C

√
logn}

)n

i=1
(for an

appropriate choice of C) and applying the Talagrand convex distance inequality, it is elementary to deduce that for
every 1–Lipschitz convex function f in R

n,

Var f(X1, . . . , Xn) = O(log n),

where the implicit constant depends on K only. However, getting optimal upper estimates for P{|f(X1, . . . , Xn)−
Med f(X1, . . . , Xn)| ≥ t} in the entire range t ∈ (0,∞) appears to require additional arguments rather than the
straightforward reduction to the case of bounded variables.

The main statement of this note is

Theorem 1.3. There is a universal constant c > 0 with the following property. Let K > 0, n ≥ 2, and let

X = (X1, X2, . . . , Xn) be a vector of independent K–subgaussian random variables. Then for every 1–Lipschitz
convex function f in R

n, we have

max
(
P
{
f(X)−Med f(X) ≥ t

}
,P

{
f(X)−Med f(X) ≤ −t

})
≤ exp

(

− c t2

K2 log
(
2 + K2n

t2

)

)

, t > 0.

The estimate provided by the theorem is optimal in the following sense:

Proposition 1.4. Let K > 0, n ≥ C̃, and t > 0. Then there exist a vector X = (X1, X2, . . . , Xn) of independent

K–subgaussian random variables, and a convex 1–Lipschitz function f such that

P
{
f(X)−Med f(X) ≥ t

}
≥ c̃ exp

(

− C̃ t2

K2 log
(
2 + K2n

t2

)

)

,

and

P
{
f(X)−Med f(X) ≤ −t

}
≥ c̃ exp

(

− C̃ t2

K2 log
(
2 + K2n

t2

)

)

.

Here, c̃, C̃ > 0 are universal constants.

The structure of the note is as follows. In Section 2, we provide a proof of Theorem 1.1. Section 3 is devoted to
proving Propositions 1.2 and 1.4. Finally, in Section 4 we consider the main result of the note, Theorem 1.3.

2. Proof of Theorem 1.1

Fix p ∈ [1, 2), K > 0, a natural number n ≥ 2, and a 1–Lipschitz convex function f in R
n. To prove the theorem,

it is sufficient to verify a deviation inequality for the parameter t ≥ CK(logn)1/p, where C > 0 is a large constant
depending on p. Let X = (X1, . . . , Xn) be a vector of independent variables with ‖Xi‖ψp ≤ K, 1 ≤ i ≤ n.

For each number k ≥ 1, denote

Y
(k)
i := Xi 1{|Xi|≤2·2kK(logn)1/p}.

Further, let m ≥ 1 be the largest integer such that

t2

22m+6 K2(logn)2/p
≥ 1,

and define

uk := c̃ 2−(2−p)|m−k|/4, k ≥ 1,
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where the constant c̃ = C̃(p) > 0 is defined via the relation

c̃

∞∑

k=1

2−(2−p)|m−k|/4 =
1

2
.

We start by writing

P
{
|f(X)−Med f(X)| ≥ t

}

≤ P
{
|f(Y (1)

1 , . . . , Y (1)
n )−Med f(X)| ≥ t/2

}
+

∞∑

k=1

P
{
|f(Y (k+1)

1 , . . . , Y (k+1)
n )− f(Y

(k)
1 , . . . , Y (k)

n )| ≥ uk t
}
.

To estimate the probability P
{
|f(Y (1)

1 , . . . , Y
(1)
n )−Med f(X)| ≥ t/2

}
, we observe that

min
(
P
{
f(Y

(1)
1 , . . . , Y (1)

n ) ≥ Med f(X)
}
,P

{
f(Y

(1)
1 , . . . , Y (1)

n ) ≤ Med f(X)
})

≥ 1

2
− n max

i≤n
P
{
|Xi| ≥ 4K(logn)1/p

}
≥ 1

2
− 2

n3
≥ 1

4
.

Hence, applying Talagrand’s convex distance inequality for bounded variables, we get

P
{
|f(Y (1)

1 , . . . , Y (1)
n )−Med f(X)| ≥ t/2

}
≤ 2 exp

(

− ct2

K2(logn)2/p

)

,

for a universal constant c > 0.
Further, for every k ≥ 1 we have

P
{
|f(Y (k+1)

1 , . . . , Y (k+1)
n )− f(Y

(k)
1 , . . . , Y (k)

n )| ≥ uk t
}

≤ P
{∥
∥
(
Y

(k+1)
i − Y

(k)
i

)n

i=1

∥
∥
2
≥ uk t

}

≤ P

{ n∑

i=1

1{Y (k+1)
i −Y (k)

i 6=0} ≥ max
(

1,
u2
k t

2

22k+6 K2(logn)2/p

)}

,

where 1{Y (k+1)
i −Y (k)

i 6=0}, 1 ≤ i ≤ n, are independent Bernoulli random variables with

P
{
Y

(k+1)
i − Y

(k)
i 6= 0

}
≤ P

{
|Xi| ≥ 2 · 2kK(logn)1/p

}
≤ 2

exp(2p · 2kp logn) , 1 ≤ i ≤ n.

Applying Chernoff’s inequality, we get

P
{
|f(Y (k+1)

1 , . . . , Y (k+1)
n )− f(Y

(k)
1 , . . . , Y (k)

n )| ≥ uk t
}

≤
(

2en

exp(2p · 2kp logn)max(1,
u2
k t

2

22k+6K2(logn)2/p
)

)max
(
1,

u2
k

t2

22k+6 K2(log n)2/p

)

≤ exp

(

− c 2p · 2kp logn max
(

1,
u2
k t

2

22k+6 K2(logn)2/p

))

,

for some universal constant c > 0.
For k ≤ m, we write

exp

(

− c 2p · 2kp logn max
(

1,
u2
k t

2

22k+6 K2(log n)2/p

))

≤ exp

(

− c c̃2 2p 2mp · (log n) 2kp−mp−(2−p)(m−k)/2 t2

22(k−m)22m+6K2(logn)2/p

)

= exp

(

− c c̃2 2p 2mp · (log n) 2(2−p)(m−k)/2 t2

22m+6K2(logn)2/p

)

≤ exp
(
− c c̃2 2p 2mp · (logn) 2(2−p)(m−k)/2).

Using the definition of m and assuming the constant C in the assumption for t is sufficiently large, we get

∑

k≤m
P
{
|f(Y (k+1)

1 , . . . , Y (k+1)
n )− f(Y

(k)
1 , . . . , Y (k)

n )| ≥ uk t
}
≤ exp

(

− ĉ tp

Kp

)

for some ĉ > 0 depending only on p.
For k > m, we simply write

P
{
|f(Y (k+1)

1 , . . . , Y (k+1)
n )− f(Y

(k)
1 , . . . , Y (k)

n )| ≥ uk t
}
≤ exp

(
− c 2p · 2(k−m)p2mp logn

)
,



DIMENSION–DEPENDENT CONCENTRATION FOR CONVEX LIPSCHITZ FUNCTIONS 5

and essentially repeating the above computations, get
∑

k>m

P
{
|f(Y (k+1)

1 , . . . , Y (k+1)
n )− f(Y

(k)
1 , . . . , Y (k)

n )| ≥ uk t
}
≤ exp

(

− c′′ tp

Kp

)

for some c′′ > 0 depending only on p.
The result follows.

3. Proof of Propositions 1.2 and 1.4

First, consider the following basic example. Let p ∈ [1, 2], K̃ > 0, and let µ be the probability measure on R

defined via the relation

µ([t,∞)) = µ((−∞,−t]) =
1

2
exp

(
− (t/K̃)p

)
, t ≥ 0.

It is easy to see that, with the random vector X in R
n distributed according to µ×n, the components of X have

‖ · ‖ψp–norms bounded by O(K̃) (with the absolute implicit constant). On the other hand, with the function
f : Rn → R given by

f(x1, x2, . . . , xn) := x1, (x1, x2, . . . , xn) ∈ R
n,

we have

P{f(X) ≤ −t} = P{f(X) ≥ t} =
1

2
exp

(
− (t/K̃)p

)
, t > 0,

which gives the required estimates for t ≥ K̃(log n)
2

p(2−p) in the statement of Proposition 1.2, and for t ≥ K̃
√
n in

Proposition 1.4.

The main statement of this section is the following:

Proposition 3.1. There exists a universal constant C > 1 so that the following holds: Let n ≥ C, p ∈ [1, 2],
K > 0. Further, let 0 ≤ t ≤ K

C

√
n. Then there exists a random vector X = (X1, . . . , Xn) with i.i.d components

whose ‖ · ‖ψp–norm is bounded above by K such that

P
{
‖X‖2 −Med ‖X‖2 ≥ t

}
≥ 1

C
exp

(

− C · t2

K2
(
log

(
2 + K2n

t2

))2/p

)

, and

P
{
‖X‖2 −Med ‖X‖2 ≤ −t

}
≥ 1

C
exp

(

− C · t2

K2
(
log

(
2 + K2n

t2

))2/p

)

.

Together with the above example, Proposition 3.1 implies Propositions 1.2 and 1.4. The “test” distribution we
use to prove Proposition 3.1 is the n–fold product of a 2–point probability measure defined by µ({0}) = 1 − θ and
µ({K log(1/θ)1/p}) = θ where θ = θ(t) is an appropriately chosen parameter.

The proof of the proposition relies on a precise lower bound for the tail probability of a Binomial random variable.
We need the following result:

Lemma 3.2. There exists universal constants cb > 0 and Cb > 1 so that the following holds. Let n be a sufficiently

large integer. For θ ∈
[

1
cb n

, cb

]

, let Y1, . . . , Yn be i.i.d Bernoulli random variables with a parameter θ > 0. Then,

for any 0 ≤ r ≤ n− θn, we have

P

{ n∑

i=1

Yi ≥ θn+ r
}

≥ 1

Cb
exp

(

−Cb log

(

2 +
θn+ r

θn

)
r2

θn+ r

)

.(2)

Remark 3.3. The term r2

θn+r corresponds to the usual Bernstein–type tail estimate, and log
(
2 + θn+r

θn

)
is the

“extra” factor emerging when θn = o (r).

Although the above statement is based on completely standard calculations, we provide its proof for completeness.

Proof of Lemma 3.2. We will assume that
√
θn (and θn) is greater than a sufficiently large universal constant

and at the same time θ is smaller than another small universal constant. Those conditions on θ can be imposed
by adjusting the constant cb in the statement of the lemma. For every k ≤ n, let Pk := P {

∑n
i=1 Yi = k} and

P≥k := P {
∑n

i=1 Yi ≥ k}.
We claim that in order to prove the lemma it is sufficient to establish the following inequalities:

∀ 0 ≤ r ≤ n− θn with θn+ r ∈ N, P≥θn+r ≥







1
C̄
exp

(

− C̄ log
(

2 + r
θn

)

r
)

if r ≥ 1
10θn,

1
C̃
exp

(

− C̃ r2

θn+r

)

if 0 ≤ r < 1
10θn,

(3)
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for some universal constants C̃, C̄ > 1.
To verify the claim, fix any θ (satisfying assumptions from the beginning of the proof) and any r with 0 < r ≤

n− θn. We have P≥θn+r = P≥⌈θn+r⌉.
First, consider the case ⌈θn + r⌉ − θn ≥ 1

10θn. Since θn is greater than a large universal constant, we have
⌈θn+ r⌉ ≤ θn+ 2r, whence, applying (3) with parameters θ and ⌈θn+ r⌉ − θn,

P≥⌈θn+r⌉ ≥
1

C̄
exp

(

− C̄ log
(

2 +
2r

θn

)

· 2r
)

≥ 1

C̄
exp

(

− 4C̄ log
(

2 +
r

θn

)

r
)

,

where the last inequality holds since log(2 + 2x) ≤ log
(
(2 + x)2

)
= 2 log(2 + x) for x ≥ 0. Further, under the

condition ⌈θn + r⌉ − θn ≥ θn
10 and assuming that θn is larger than a big universal constant, we have 12r

θn+r ≥ 1.
Therefore,

P≥⌈θn+r⌉ ≥
1

C̄
exp

(

− 4C̄ log
(

2 +
r

θn

)

r
)

≥ 1

C̄
exp

(

− 4 · 12C̄ log
(

2 +
θn+ r

θn

) r2

θn+ r

)

.

Next, consider the case 0 < r, ⌈θn+ r⌉ − θn < θn
10 . Clearly, ⌈θn+ r⌉ − θn ≤ r + 1, and hence

P≥⌈θn+r⌉ ≥
1

C̃
exp

(

− C̃
(r + 1)2

θn+ r

)

≥ 1

C̃
exp

(

− C̃
r2

θn+ r
− C̃

)

,

where the last inequality holds since r ≤ θn
10 and θn is sufficiently large. As log

(

2 + r
θn

)

≥ log(2), we obtain

P≥⌈θn+r⌉ ≥
1

C̃
exp(−C̃) exp

(

− C̃

log(2)
log

(

2 +
r

θn

) r2

θn+ r

)

,

and derivation of (2) from (3) is complete.

From now on, we assume r ≥ and θn+ r ∈ N. Obviously,

Pθn+r =

(
n

θn+ r

)

θθn+r (1− θ)n−θn−r .(4)

Case 1: θn
10 ≤ r ≤ n− θn.

By the standard estimate,
(

n
θn+r

)
≥

(
n

θn+r

)θn+r
, and so

Pθn+r ≥
(

θn

θn+ r

)θn+r

(1− θ)n−θn−r = exp

(

− log

(
θn+ r

θn

)

(θn+ r)

)

(1− θ)n−θn−r.

Since (1− θ) ≥ exp(−2θ) whenever θ > 0 is small enough, we get

(1− θ)n−θn−r ≥ (1− θ)n ≥ exp(−2θn),

and therefore

P≥θn+r ≥ Pθn+r ≥ exp

(

− log

(
θn+ r

θn

)

(θn+ r)− 2θn

)

≥ exp

(

− C log

(
θn+ r

θn

)

r

)

for a universal constant C > 1. This completes the proof of (3) in the regime r ≥ θn
10 .

Case 2: 0 ≤ r < θn
10 .

In view of Stirling’s formula,

Pθn+r ≥c

√
n

(θn+ r) (n− θn− r)

(
n

θn+ r

)θn+r (
n

n− θn− r

)n−θn−r
θθn+r(1− θ)n−θn−r

≥ c√
θn+ r

(
θn

θn+ r

)θn+r (
n− θn

n− θn− r

)n−θn−r
,

where c > 0 is a universal constant. Since log (1 + x) ≥ x− x2 for x > 0, we get
(

n− θn

n− θn− r

)n−θn−r
=

(

1 +
r

n− θn− r

)n−θn−r
≥ exp

(

r − r2

n− nθ − r

)

.

Similarly, since log (1− x) ≥ −x− 2x2 for x ∈ [0, 1
2 ] and

r
θn+r ∈ [0, 1

2 ] for 0 ≤ r ≤ 1
10θn,

(
θn

θn+ r

)θn+r

=

(

1− r

θn+ r

)θn+r

≥ exp

(

−r − 2r2

θn+ r

)

.
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Hence, together using that 1
n−θn−r ≤ 1

n− 11
10 θn

≤ 1
11
10 θn

≤ 1
θn+r when 0 < θ < 1

3 , we get

Pθn+r ≥
c√

θn+ r
exp

(

− 3r2

θn+ r

)

.(5)

The bound P≥θn+r ≥ Pθn+r is insufficient to get (3) when r is small. We will bound P≥θn+r by comparing it with
the sum of a geometric sequence starting with Pθn+r.

For r′ > 0 with θn+ r′ ∈ N and n− θn− r′ > 0, by (4) we have

Pθn+r′+1

Pθn+r′
=

n− θn− r′

θn+ r′ + 1

θ

1− θ
=

1− r′

(1−θ)n
1 + 1+r′

θn

.

Since 1
1+x ≥ 1− x for all x ≥ 0,

Pθn+r′+1

Pθn+r′
≥

(

1− r′

(1 − θ)n

)(

1− 1 + r′

θn

)

≥ 1− r′

(1− θ)n
− 1 + r′

θn
.

Next, with θ
1−θ ≤ cb

1−cb ≤ 1
3 when cb > 0 is small enough,

Pθn+r′+1

Pθn+r′
≥ 1− 1 + 4

3r
′

θn
.

Notice that for 0 ≤ i ≤ max(⌈r⌉, ⌈
√
θn⌉) := u, we have 1 − 1+ 4

3 (r+i)

θn ≥ 1 − 4u
θn where we used that

√
θn is greater

than a large absolute constant. Hence, for 1 ≤ i ≤ u,

Pθn+r+i ≥ Pθn+r

(

1− 4u

θn

)i

.

Then,

P≥θn+r ≥
u∑

i=0

Pθn+r+i ≥ Pθn+r ·
( u∑

i=0

(

1− 4u

θn

)i
)

= Pθn+r ·
1−

(
1− 4u

θn

)u+1

4u
θn

≥ Pθn+r ·
θn

8u

where the last inequality holds since
(
1− 4u

θn

)u+1 ≤ exp
(
− 4u2

θn

)
≤ exp(−4) ≤ 1

2 since u ≥
√
θn. Together with (5),

we obtain

P≥θn+r ≥
θn

8u

c√
θn+ r

exp

(

− 3r2

θn+ r

)

.

With θn ≥ θn+r
2 (since r ≤ θn

10 ) and u ≤ 2max(r,
√
θn) (if θn is large enough), θn8u

c√
θn+r

≥ c
32

√
θn+r

max(r,
√
θn)

. Finally,

it is easy to check that √
θn+ r

max(r,
√
θn)

≥ exp
(

− r2

θn+ r

)

.

Now we conclude that

P≥θn+r ≥
c

32
exp

(

− 4r2

θn+ r

)

,

and the proof of (3) is finished. �

Lemma 3.4. There exist constants cb > 0 and C̃b > 1 so that the following holds. Let n be a sufficiently large

integer and let α > 0. For θ ∈
[

1
cbn

, cb

]

, let Y1, . . . , Yn be i.i.d Bernoulli random variables with parameter θ. Set

X = (X1, X2, . . . , Xn), with Xi = αYi, i ≤ n. Then, for all t ∈
[

0, α
√
n

4

]

,

P
{
‖X‖2 ≥ Med‖X‖2 + t

}
≥ 1

C̃b
exp

(

− C̃b log

(

2 +
t2

θnα2

)
t2

α2

)

.(6)

Proof. Clearly,

‖X‖2 = α

√
√
√
√

n∑

i=1

Yi.

Since the mapping y 7→ α
√
y is monotone increasing for y ≥ 0, the median estimate for Binomial random variable

⌊θn⌋ ≤ Med
( n∑

i=1

Yi

)

≤ ⌈θn⌉
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(see [16]) implies

α
√

⌊θn⌋ ≤ Med‖X‖2 ≤ α
√

⌈θn⌉.(7)

Thus,

|Med‖X‖2 − α
√
θn| ≤ α

√

⌈θn⌉ − α
√

⌊θn⌋ ≤ α,

where the last inequality holds when θn ≥ 1.
We claim that in order to verify the lemma, it is sufficient to establish the following bound:

∀t ∈
[

0, α

√
n

2

]

, P
{
‖X‖2 ≥ α

√
θn+ t

}
≥ 1

C
exp

(

− C log

(

2 +
t2

θnα2

)
t2

α2

)

(8)

for a universal constant C > 1. Indeed, suppose (8) holds. For t ∈ [0, α
√
n

4 ],

P
{
‖X‖2 ≥ Med‖X‖2 + t

}
≥ P

{
‖X‖2 ≥ α

√
θn+ α+ t} ≥ 1

C
exp

(

− C log

(

2 +
1

θn

(
t

α
+ 1

)2)(
t

α
+ 1

)2)

,

where the last inequality follows from (8) since α + t ∈
[

0, α
√
n
2

]

, under the assumption n ≥ 16. Since ( tα + 1)2 ≤
2( tα )

2 + 2, we get

log

(

2 +
1

θn

(
t

α
+ 1

)2)

≤ log

(

2 +
2

θn
+

2

θn

(
t

α

)2)

≤ log

(

2 ·
(

2 +
t2

θnα2

))

≤ 2 log

(

2 +
t2

θnα2

)

,

where we used 1
θn ≤ 1 in the second inequality. Then, applying the bounds ( tα +1)2 ≤ 2( tα )

2 +2 and 1
θn ≤ 1 again,

we obtain

log

(

2 +
1

θn

(
t

α
+ 1

)2)(
t

α
+ 1

)2

≤ 4 log

(

2 +
t2

θnα2

)((
t

α

)2

+ 1

)

≤ 4 log(3) + 8 log

(

2 +
t2

θnα2

)(
t

α

)2

,

where we applied the inequality log
(

2 + t2

θnα2

)

≤ max
(

log(3), log
(

2 + t2

θnα2

)(
t
α

)2)

. Therefore,

P
{
‖X‖2 ≥ Med‖X‖2 + t

}
≥ 1

C
exp(−4 log(3)C) exp

(

− 8C log

(

2 +
t2

θnα2

)(
t

α

)2)

,

and (6) follows from (8) with Cb = max(C exp(4 log(3)C), 8C). The claim is established.

Now we prove (8). First, since ‖X‖2 = α
√∑n

i=1 Yi,

P
{
‖X‖2 ≥ α

√
θn+ t

}
=P

{ n∑

i=1

Yi − θn ≥ 2
√
θn

t

α
+

t2

α2
︸ ︷︷ ︸

r

}

.

For 0 ≤ t
α ≤

√
θn, we have 0 ≤ r ≤ 3θn. We apply Lemma 3.2 and use that log(2 + θn+r

θn ) ≤ log(6), to conclude

P
{
‖X‖2 ≥

√
αθn+ t

}
≥ 1

Cb
exp

(

− Cb log(6) ·
r2

θn

)

≥ 1

Cb
exp

(

− Cb log(6) · 9
t2

α2

)

≥ 1

Cb
exp

(

− Cb
9 log(6)

log(2)
log

(

2 +
t2

θnα2

)
t2

α2

)

.

For
√
θn ≤ t

α ≤ 1
2

√
n, we have θn ≤ r ≤ 3t2

α2 ≤ 3
4n ≤ n− θn where the last inequality holds when cb > 0 is chosen

small enough. Applying Lemma 3.2 again, we obtain

P
{
‖X‖2 ≥ α

√
θn+ t

}
≥ 1

Cb
exp

(

− Cb log

(

2 +
6t2

θnα2

)

· 3t
2

α2

)

.

We have log
(

2 + 6t2

θnα2

)

≤ 3 log
(

2 + t2

θnα2

)

, and hence

P
{
‖X‖2 ≥ α

√
θn+ t

}
≥ 1

Cb
exp

(

− 9Cb log

(

2 +
t2

θnα2

)
t2

α2

)

.

Now (8) follows by choosing C := max
( 9 log(6)

log(2) , 9
)
Cb. �
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Proof of Proposition 3.1. Let X(θ) = (X1(θ), . . . , Xn(θ)) be the random vector defined in Lemma 3.4 with parame-
ters θ ∈ [ 1

cbn
, cb] and α := K(log(1/θ))1/p (the actual choice of θ will be made later in the proof). Then, {Xi(θ)}ni=1

are i.i.d random variables with the ‖ · ‖ψp-norm bounded above by K. We want to emphasize that the distribution
of X depends on the parameter θ, and that our future choice of θ will also depend on t.

Applying Lemma 3.4 with 0 ≤ t ≤ K
√
n

4 ≤ α
√
n

4 and any θ ∈ [ 1
cbn

, cb], we get

P
{
‖X(θ)‖2 ≥ Med‖X(θ)‖2 + t

}
≥ 1

C̃b
exp

(

− C̃b log

(

2 +
t2

K2θn(log(1/θ))2/p

)
t2

K2(log(1/θ))2/p

)

.(9)

Case 1: t ∈
[
√

K2(logn)2/p

3cb
,
√

cbK2n
3

]
. In this case, we define

θ := θ(t) =

(
K2n

3t2

(

log
(K2n

3t2

))2/p
)−1

.

Since t 7→ θ(t) is a monotone increasing function for t ≤ K
√

n/3, our choice of θ satisfies

1

cbn
≤ (log n)2/p

cbn
(

log
(

cbn
(logn)2/p

))2/p

︸ ︷︷ ︸

when t=

√

K2(log n)2/p

3cb

≤ θ ≤ cb
(

log
(

1
cb

))2/p

︸ ︷︷ ︸

when t=

√

cbK
2n

3

≤ cb,

which conforms to the conditions in Lemma 3.4, and therefore the estimate (9) is valid. Our choice of θ implies

log(1/θ) ≥ log
(
K2n
3t2

)
and thus

log

(

2 +
3t2

K2θn(log (1/θ))2/p

)
3t2

K2(log (1/θ))2/p
= log

(

2 +

(
log

(
K2n
3t2

))2/p

(log(1/θ))2/p

)
3t2

K2(log(1/θ))2/p

≤ 3 log(3) t2

K2
(
log

(
K2n
3t2

))2/p
.

Further, the assumption that t ≤
√

cbK2n
3 and cb > 0 is sufficiently small implies that K2n

t2 ≥ 9 and therefore

log
(K2n

3t2

)

≥ 1

2
log

(K2n

t2

)

=
1

4
log

((K2n

t2

)2)

≥ 1

4
log

(

2 +
K2n

t2

)

.(10)

We conclude that

P
{
‖X(θ(t))‖2 ≥ Med‖X(θ(t))‖2 + t

}
≥ 1

C̃b
exp

(

− C̃b
3 log(3) t2

K2
(
log

(
K2n
3t2

))2/p

)

≥ 1

C̃b
exp

(

− 3 · 42/pC̃b log(3)
t2

K2
(
log

(
2 + K2n

t2

))2/p

)

.

Next, we will handle the lower tail estimate. We can assume that ⌊θn⌋ ≥ θn/3 since θn ≥ 1
cb

and cb > 0 is

sufficiently small. Then, by (7) we have

Med‖X(θ(t))‖2 ≥ K(log(1/θ))1/p
√

⌊θn⌋ ≥ K(log(1/θ))1/p
√

θn/3

=

√
(

log
(K2n

3t2

(

log
(K2n

3t2

))2/p)
)2/p

t2

(log(K2n/3t2))2/p
≥ t.

As a consequence,

P
{
‖X(θ(t))‖2 ≤ Med‖X(θ(t))‖2 − t

}
≥ P {‖X(θ(t))‖2 = 0} = (1− θ)n ≥ exp

(
− 2θn

)

= exp

(

− 6t2

K2
(
log(K2n/3t2)

)2/p

)

.

Finally, by (10),

P
{
‖X(θ(t))‖2 ≤ Med‖X(θ(t))‖2 − t

}
≥ exp

(

− 6 · 42/p t2

K2
(
log

(
2 + K2n

t2

))2/p

)

.
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We have shown that for
√

K2(logn)2/p

3cb
≤ t ≤

√
cbK2n

3 , the proposition holds with C = max(48C̃b log(3), 6 ·16), since
p ≥ 1.

Case 2: 0 ≤ t ≤
√

K2(log n)2/p

3cb
. Set t0 :=

√
K2(logn)2/p

3cb
, and let X̃ := X(θ(t0)). We have, by the above,

P
{
‖X̃‖2 −Med ‖X̃‖2 ≥ t0

}
≥ 1

C
exp

(

− C · t20

K2
(
log

(
2 + K2n

t20

))2/p

)

.

When n is greater than a sufficiently large constant,

t20

K2
(
log

(
2 + K2n

t20

))2/p
=

(logn)2/p

3cb

(

log
(

2 + 3cbn
(logn)2/p

))2/p
≤ (log n)2/p

3cb
(
log(

√
n)
)2/p

≤ 2

3cb
,

where we used that p ≥ 1. We conclude that for t ∈ [0, t0],

P
{
‖X̃‖2 −Med ‖X̃‖2 ≥ t

}
≥ P

{
‖X̃‖2 −Med ‖X̃‖2 ≥ t0

}
≥ 1

C
exp

(

− 2C

3cb

)

.

The lower tail is treated the same way. By adjusting the constant C, it implies the proposition for t ∈ [0, t0], and
completes the proof. �

4. Proof of Theorem 1.3

Our proof of Theorem 1.3 is based on a modification of the induction method of Talagrand. In fact, the first part
of the proof which deals with setting up a recursive relation for a modified convex distance, essentially repeats, up
to minor changes, the standard account of the method (see, for example, [18]).

Definition 4.1. Given a point x ∈ R
n and a non-empty subset A of Rn, we define the modified convex distance

between x and A as

distc(x,A) := max
a: ‖a‖2=1

min
y∈A

n∑

i=1

ai |xi − yi|.

Remark 4.2. In the standard notion of the convex distance, the indicators 1{xi 6=yi} are considered instead of the
differences |xi − yi|. Since we work with measures with (possibly) unbounded supports, it is crucial for us to track
the “quantitative” distance between xi and yi, i ≤ n.

Given a non-empty A ⊂ R
n and x ∈ R

n, we denote by U(x,A) the set of all vectors in R
n
+ of the form

U(x,A) :=

{(

|xi − yi|
)n

i=1
: y ∈ A

}

,

and let V (x,A) ⊂ R
n be the convex hall of U(x,A).

Lemma 4.3. We have

distc(x,A) = dist(0, V (x,A)),

where the distance on the right hand side is the usual Euclidean distance in R
n. Furthermore, when A is convex,

distc(x,A) = dist(x,A).

Proof. We will provide the proof for the second assertion of the lemma for Reader’s convenience. Let A be a
non-empty convex set. Without loss of generality, A is closed. There exists a vector y ∈ x − A such that for all
z ∈ x−A, we have z · y ≥ y · y, so that dist(x,A) = dist(0, x−A) = ‖y‖2.

Now, for any z ∈ R
n, let z̃ be the vector obtained from z by replacing each component of z by its absolute value.

For each point z′ ∈ U(x,A), there exists z ∈ x − A such that z′ = z̃. Since z̃ · ỹ ≥ z · y ≥ ‖y‖22, the set U(x,A) is
contained in the half-space {w ∈ R

n : w · ỹ ≥ ‖y‖22}, and the same is true for its convex hall V (x,A). Therefore,
we conclude that dist(0, V (x,A)) = ‖ỹ‖2 = ‖y‖2 since ỹ ∈ V (x,A). �

The main technical result in this section is the following:

Proposition 4.4. Let K > 0, and let µ1, µ2, . . . , µn be K–subgaussian probability measures in R. Let X =
(X1, X2, . . . , Xn) be distributed in R

n according to µ1 ×µ2 × · · · ×µn, and let A ⊂ R
n be a non-empty Borel subset.

Then, for any δ ∈ (0, 12 ],

E exp

(
c̃ (distc(X,A))2

K2 log
(
2 + n

log(2+1/δ)

)

)

≤ 4

P
{
X ∈ A

}
δ
,

where c̃ > 0 is a universal constant.
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Before we consider the proof, let us show how to derive Theorem 1.3 from the above proposition.

Proof of Theorem 1.3. First, note that it is sufficient to prove the statement for t ≥ C′K
√
logn for a large constant

C′ > 1. For the upper tail, we let A := {x ∈ R
n : f(x) ≤ Med f(X)}. By Proposition 4.4, for any δ ∈ (0, 12 ],

E exp

(
c̃ (distc(X,A))2

K2 log
(
2 + n

log(2+1/δ)

)

)

≤ 8

δ
.

Let At := {x ∈ R
n : distc(x,A) < t}. Observe that, since f is convex, so is the set A, and therefore At = {x ∈ R

n :
dist(x,A) < t}, in view of Lemma 4.3. Applying Markov’s inequality, we get

P{f(X) ≥ Med f(X) + t} ≤ P{X /∈ At}

≤ 8

δ
exp

(

− c̃ t2

K2 log
(
2 + n

log(2+1/δ)

)

)

.

We choose δ := exp
(
− c̃ t2/4

K2 log(2+ K2n
c̃ t2/4

)

)
(we can assume that δ ≤ 1/2 if C′ is sufficiently large). Observe that

log(2 + 1
δ ) ≥ log(1/δ) = c̃ t2/4

K2 log(2+ K2n
c̃ t2/4

)
, and hence

log
(

2 +
n

log(2 + 1/δ)

)

≤ log

(

2 +
K2n

c̃ t2/4
log

(

2 +
K2n

c̃ t2/4

))

≤ 2 log
(

2 +
K2n

c̃ t2/4

)

.

Therefore,

P{f(X) ≥ Med f(X) + t} ≤ 8 exp

(
c̃ t2/4

K2 log(2 + K2n
c̃ t2/4 )

− c̃ t2

2K2 log
(
2 + K2n

c̃ t2/4

)

)

= 8 exp

(

− ct2

K2 log(2 + K2n
ct2 )

)

,

where c := 1
4 c̃. By assuming C′ > 1 to be sufficiently large, we get

8 exp

(

− ct2

K2 log(2 + K2n
ct2 )

)

≤ exp

(

− ct2/2

K2 log(2 + K2n
t2 )

)

,

which completes treatment of the upper tail.

For the lower tail, we take A := {x ∈ R
n : f(x) ≤ Med f(X)− t} and define At := {x ∈ R

n : distc(x,A) < t} =
{x ∈ R

n : dist(x,A) < t} (with the last equality due to convexity of A). Then {x ∈ R
n : f(x) ≥ Med f(X)} ⊂ Act

and therefore P{X ∈ Act} ≥ 1
2 . For δ ∈ (0, 1

2 ], we have, in view of Proposition 4.4 and Markov’s inequality,

1

2
≤ P{X ∈ Act} ≤ 4

P{X ∈ A}δ exp

(

− c̃ t2

log
(
2 + n

log(2+1/δ)

)

,

which implies

P{f(X) ≤ Med f(X)− t} = P{X ∈ A}

≤ 8

δ
exp

(

− c̃ t2

log
(
2 + n

log(2+1/δ)

)

)

.

Now, the same choice of δ leads to the desired bound. �

As we have mentioned above, the proof of Proposition 4.4 is based on the inductive argument (with the dimension
as a parameter of the induction). The next proposition sets up the argument:

Proposition 4.5. Let n ≥ 1, and let µ1, µ2, . . . , µn+1 be probability measures in R. Let A ⊂ R
n+1 be a non-empty

subset, and for each α ∈ R, denote

A(α) :=
{
v ∈ R

n : (v, α) ∈ A
}
.

Let X = (X1, X2, . . . , Xn+1) be distributed in R
n+1 according to µ1 × µ2 × · · · × µn+1, and X ′ be the vector of first

n components of X. Then for every κ > 0,

E exp
(
κ · (distc(X,A))2

)

≤ E inf
ν

[

exp

(

κ ·
(∫

R

|Xn+1 − α| dν(α)
)2) ∏

α∈R

(
E exp

(
κ · (distc(X ′, A(α)))2

))dν(α)
]

,

where the infimum is taken over all discrete probability measures ν in R with a finite support.
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Proof. Take arbitrary element (x, s) ∈ R
n × R = R

n+1. Observe that

U((x, s), A) =
⋃

α∈R:A(α) 6=∅

(
U(x,A(α)) ⊕ (|s− α|)

)
,

where the notation “⊕” should be understood as vector-wise concatenation producing vectors in R
n+1. Therefore,

every vector of the form

∫

R

(
v(α)⊕ (|s− α|)

)
dν(α) =

(∫

R

v(α) dν(α),

∫

R

|s− α| dν(α)
)

∈ R
n+1,

where v(α) ∈ V (x,A(α)), α ∈ R, and ν is a discrete probability measure on R with a finite support, belongs to the
convex hull V ((x, s), A) of U((x, s), A).

Further, we have for every Borel probability measure ν on R and every choice of v(α) ∈ V (x,A(α)):

∥
∥
∥
∥

∫

R

v(α) dν(α)

∥
∥
∥
∥

2

2

≤
(∫

R

‖v(α)‖2 dν(α)
)2

≤
∫

R

‖v(α)‖22 dν(α),

by Jensen’s inequality. Hence,

∥
∥
∥
∥

(∫

R

v(α) dν(α),

∫

R

|s− α| dν(α)
)∥
∥
∥
∥

2

2

≤
∫

R

‖v(α)‖22 dν(α) +
(∫

R

|s− α| dν(α)
)2

.

Recall that distc((x, s), A) = dist(0, V ((x, s), A)) and distc(x,A(α)) = dist(0, V (x,A(α))) (see Lemma 4.3). Thus,
taking v(α) ∈ V (x,A(α)) so that ‖v(α)‖2 = distc(x,A(α)) for all α, we obtain that

(
distc((x, s), A)

)2 ≤ inf
ν

(∫

R

(
distc(x,A(α))

)2
dν(α) +

(∫

R

|s− α| dν(α)
)2)

,

where the infimum is taken over all discrete probability measures ν on R with a finite support. Clearly, E exp
(
κ ·

(distc(X,A))2
)
= EXn+1EX′ exp

(
κ · (distc((X ′, Xn+1), A))

2
)
. Further, applying the above observation, we get

EX′ exp
(
κ · (distc((X ′, Xn+1), A))

2
)

≤ EX′ inf
ν
exp

(

κ ·
∫

R

(
distc(X ′, A(α))

)2
dν(α) + κ ·

(∫

R

|Xn+1 − α| dν(α)
)2)

≤ inf
ν

EX′ exp

(

κ ·
∫

R

(
distc(X ′, A(α))

)2
dν(α) + κ ·

(∫

R

|Xn+1 − α| dν(α)
)2)

= inf
ν

[

exp

(

κ ·
(∫

R

|Xn+1 − α| dν(α)
)2)

EX′ exp

(

κ ·
∫

R

(
distc(X ′, A(α))

)2
dν(α)

)]

.

In view of Holder’s inequality, the last expression is majorized by

inf
ν

[

exp

(

κ ·
(∫

R

|Xn+1 − α| dν(α)
)2) ∏

α∈R

(

EX′ exp
(
κ ·

(
distc(X ′, A(α))

)2
)dν(α)

]

,

and the result follows. �

Remark 4.6. The class of measures ν in the above proposition is restricted to discrete measures to avoid any
discussion of measurability.
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Remark 4.7. By considering two-point probability measures ν of the form λδXn+1 + (1 − λ)δy , we get from the
last proposition

E exp
(
κ · (distc(X,A))2

)

≤ E inf
ν=λδXn+1

+(1−λ)δy , λ∈[0,1], y∈R

[

exp

(

κ ·
(∫

R

|Xn+1 − α| dν(α)
)2)

·
∏

α∈R

(
E exp

(
κ · (distc(X ′, A(α)))2

))dν(α)
]

= E inf
ν=λδXn+1

+(1−λ)δy , θ∈[0,1], y∈R

[

exp

(

− λ log
1

E exp
(
κ · (distc(X ′, A(Xn+1)))2

)

− (1− λ) log
1

E exp
(
κ · (distc(X ′, A(y)))2

) + κ · (Xn+1 − y)2 (1− λ)2
)]

.

Next, we record an elementary fact:

Lemma 4.8. Let −∞ ≤ b ≤ a < +∞, and let c0 > 0, R > 0. Then

min
λ∈[0,1]

(

− λb− (1− λ)a+ c0R
2(1 − λ)2

)

=

{

−a+ c0R
2, if (a− b) ≥ 2c0R

2

−b− (a−b)2
4c0R2 , if (a− b) ≤ 2c0R

2.
(11)

Proof. We have

min
λ∈[0,1]

(

− λb− (1− λ)a+ c0R
2(1− λ)2

)

=− a+ min
λ∈[0,1]

(

c0R
2(1 − λ)2 + λ(a− b)

)

=− a+ c0R
2 min
λ∈[0,1]

(

1 +
(a− b

c0R2
− 2

)

λ+ λ2

)

.

The expression
(
1 +

(
a−b
c0R2 − 2

)
λ+ λ2

)
, λ ∈ [0, 1], is minimized at λ = max(0, 1− a−b

2c0R2 ). And (11) follows since

1 +

(
a− b

c0R2
− 2

)(

1− a− b

2c0R2

)

+

(

1− a− b

2c0R2

)2

= 1−
(

1− a− b

2c0R2

)2

=
a− b

c0R2
− (a− b)2

4c20R
4
.

�

As an immediate consequence of Remark 4.7 and Lemma 4.8, by considering two-point measures we get

Proposition 4.9. Let n ≥ 1, and let µ1, µ2, . . . , µn+1 be probability measures in R. Let A ⊂ R
n+1 be a non-empty

subset, and for each α ∈ R, denote

A(α) :=
{
v ∈ R

n : (v, α) ∈ A
}
.

Let X = (X1, X2, . . . , Xn+1) be distributed in R
n+1 according to µ1 × µ2 × · · · × µn+1, and X ′ be the vector of first

n components of X. Then for every κ > 0,

E exp
(
κ · (distc(X,A))2

)
≤ E inf

y∈R

exp
(
H(Xn+1, y)

)
,

where

H (t, y) := min
λ∈[0,1]

(
− λh(t) − (1− λ)h(y) + κ(1− λ)2 (y − t)

2 )
,

and h : R → R is any function satisfying

h (x) ≤ log
1

E exp
(
κ · (distc(X ′, A(x)))2

) , x ∈ R.

Moreover, the function H (t, y) can be represented as

H (t, y) :=







−h(y) + κ (y − t)
2
, if h (y)− h (t) ≥ 2κ (y − t)

2
,

−h (t)− (h(y)−h(t))2
4κ(y−t)2 , if 0 ≤ h (y)− h (t) ≤ 2κ (y − t)

2
,

−h (t) , if h (y)− h (t) ≤ 0.
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Remark 4.10. Repeating the optimization argument from [18, p. 74], we get for every pair numbers t, x with

h(y) ≥ h(t), and for every number Q ≥ 4κ (y − t)
2
:

H (t, y) = −h(y) + min
λ∈[0,1]

(

4κ (y − t)
2

(

(1 − λ)2/4− λ
h(t)− h(y)

4κ (y − t)
2

))

≤ −h(y) +Q log

(

2− exp

(
h(t)− h(y)

Q

))

.

The next lemma encapsulates the initial step of the induction:

Lemma 4.11. Let µ be a K–subgaussian probability measure on R, and X be distributed according to µ. Then for

any choice of the parameter L ≥
√
2K and any non-empty Borel subset A ⊂ R,

E exp

(
(distc(X,A))2

L2

)

≤ 4

µ(A)
.

Proof. WLOG, the set A is closed. Let x ∈ A be a point with distc(0, A) = dist(0, A) = ‖x‖2. Then

E exp

(
(distc(X,A))2

L2

)

≤ E exp

(
2X2 + 2x2

L2

)

≤ 2 exp

(
2x2

L2

)

.

It remains to note that

µ(A) ≤ P{|X | ≥ x} = P{exp(2X2/L2) ≥ exp(2x2/L2)} ≤ exp(−2x2/L2)E exp(2X2/L2).

The result follows. �

In the next lemma, we deal with “the main part” of the induction argument. The basic idea is to split the
argument into two cases, according to how much of the “total mass” of a set A is located far from the origin.

Lemma 4.12. Let m ≥ 2, and let A be a non-empty Borel subset of Rm. For each x ∈ R, let

A(x) :=
{
y ∈ R

m−1 : (y, x) ∈ A
}
.

Further, let µ1, µ2, . . . , µm be K–subgaussian measures on R, let X = (X1, . . . , Xm) be distributed according to

µ1×µ2×· · ·×µm, and let X ′ be the vector of first m− 1 components of X. Assume that for some R ≥ 1, L ≥ 16K
and every x ∈ R,

E exp

(
(distc(X ′, A(x)))2

L2

)

≤ R

P{X ′ ∈ A(x)} .

Then

E exp

(
(distc(X,A))2

L2

)

≤ R(1− exp(−L2/(64K2)))−2

P{X ∈ A} .

Proof. Without loss of generality, A is closed. Moreover, by an approximation argument, we can (and will) assume

that the measures µ1, . . . , µm−1 are supported on finitely many points. Define parameters L̃ := L/4 and M :=
L/(8K).

We consider two cases. First, assume that P{X ∈ A and Xm ∈ [−L̃, L̃])} ≥ (1 − exp(−M2))P{X ∈ A}. In this
case, we essentially repeat the standard “induction method” argument employed in the proof of dimension–free
subgaussian concentration on the cube. Let xb be a point in [−L̃, L̃] such that P{X ′ ∈ A(xb)} ≥ P{X ′ ∈ A(x)} for

all x ∈ [−L̃, L̃]. In view of Proposition 4.9,

E exp
(
(distc(X,A))2/L2

)
≤ E exp

(
H(Xm, xb)

)
,

where

H (t, xb) : = min
λ∈[0,1]

(
− λh(t)− (1− λ)h(xb) + (1− λ)2 (xb − t)

2
/L2

)

=







−h(xb) + (xb − t)
2
/L2, if h (xb)− h (t) ≥ 2 (xb − t)

2
/L2,

−h (t)− L2(h(xb)−h(t))2
4(xb−t)2 , if 0 ≤ h (xb)− h (t) ≤ 2 (xb − t)

2
/L2,

−h (t) , if h (xb)− h (t) ≤ 0,

and

(12) h (u) := log

(
P{X ′ ∈ A(u)}

R

)

≤ log
1

E exp
(
(distc(X ′, A(u)))2/L2

) , u ∈ R.
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Using the definition of xb, the equation 16L̃2

L2 = 1, and Remark 4.10 with parameter Q := 1, we get

H(Xm, xb) ≤ −h(xb) + log
(
2− exp

(
h(Xm)− h(xb)

))
, whenever Xm ∈ [−L̃, L̃].

On the other hand, for all realizations of Xm /∈ [−L̃, L̃] we can crudely bound the function as

H(Xm, xb) ≤ −h(xb) + (xb −Xm)
2
/L2.

Combining the relations, we get

E exp
(
(distc(X,A))2/L2

)

≤ E

[

exp(−h(xb))
(
2− exp

(
h(Xm)− h(xb)

))
1{Xm∈[−L̃,L̃]}

+ exp
(
− h(xb) + (xb −Xm)

2
/L2

)
1{Xm /∈[−L̃,L̃]}

]

≤ R

P{X ′ ∈ A(xb)}
E

((

2− PX′{X ′ ∈ A(Xm)}
P{X ′ ∈ A(xb)}

)

1{Xm∈[−L̃,L̃]} + exp
(
4X2

m/L
2
)
1{Xm /∈[−L̃,L̃]}

)

=
R

P{X ′ ∈ A(xb)}

(

2P{|Xm| ≤ L̃} − P{X ∈ A and Xm ∈ [−L̃, L̃]}
P{X ′ ∈ A(xb)}

+ E
[
exp

(
4X2

m/L
2
)
1{|Xm|>L̃}

]
)

.

Observe further that

E
[
exp

(
4X2

m/L
2
)
1{|Xm|>L̃}

]
≤ 2 exp

(
− L̃2/K2 + 4L̃2/L2

)
+ 2

∫ ∞

exp(4L̃2/L2)

s−
L2

4K2 ds

≤ 4 exp
(
− L̃2/K2 + 4L̃2/L2

)
,

since L2

4K2 ≥ 2. Moreover,

P{X ∈ A and Xm ∈ [−L̃, L̃]}
P{X ′ ∈ A(xb)}

≤ P{|Xm| ≤ L̃}.

Hence,

E exp
(
(distc(X,A))2/L2

)

≤ RP{|Xm| ≤ L̃}
P{X ′ ∈ A(xb)}

+
4R exp

(
− L̃2/K2 + 4L̃2/L2

)

P{X ′ ∈ A(xb)}

≤ R

P{X ∈ A and Xm ∈ [−L̃, L̃]}
+

4R exp
(
− L̃2/K2 + 4L̃2/L2

)

P{X ′ ∈ A(xb)}

≤ R(1− exp(−M2))−1

P{X ∈ A} +
4R(1− exp(−M2))−1 exp

(
− L̃2/K2 + 4L̃2/L2

)

P{X ∈ A}

≤ R(1− exp(−M2))−1

P{X ∈ A} +
R(1− exp(−M2))−1 exp

(
− 2M2

)

P{X ∈ A} ,

implying the result.

Now, consider the second case: P{X ∈ A and Xm /∈ [−L̃, L̃]} > exp(−M2)P{X ∈ A}. Observe that since

P{X ∈ A and Xm /∈ [−L̃, L̃]} =

∫

R\[−L̃,L̃]
PX′{X ′ ∈ A(s)} dµm(s) = EXm

(
PX′{X ′ ∈ A(Xm)}1{|Xm|>L̃}

)
,

there must exist a point xt ∈ R \ [−L̃, L̃] with PX′{X ′ ∈ A(xt)} ≥ 2P{X ∈ A} exp(2x2
t /L

2). Indeed, if we assume

the opposite then, by the above (using that L2

2K2 ≥ 2),

exp(−M2)P{X ∈ A} < P{X ∈ A and Xm /∈ [−L̃, L̃]}
≤ 2P{X ∈ A}EXm

(
exp(2X2

m/L2)1{|Xm|>L̃}
)

= 2P{X ∈ A}
(

exp(2L̃2/L2) · P{|Xm| > L̃}+
∫ ∞

exp(2L̃2/L2)

P{exp(2X2
m/L

2) ≥ s} ds
)

≤ 8P{X ∈ A} exp
(
− L̃2/K2 + 2L̃2/L2

)

≤ 8P{X ∈ A} exp
(
− L2/(32K2)

)
= 8 exp(−2M2)P{X ∈ A},

leading to contradiction.
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Applying again Proposition 4.9, we can bound

E exp
(
(distc(X,A))2/L2

)
≤ E exp

(
− h(xt) + (xt −Xm)

2
/L2

)
,

where h is given by (12). Hence,

E exp
(
(distc(X,A))2/L2

)
≤ R

P{X ′ ∈ A(xt)}
exp(2x2

t/L
2)E exp(2X2

m/L2)

≤ 2R exp(2x2
t /L

2)

2P{X ∈ A} exp(2x2
t/L

2)
,

and the result follows. �

Proof of Proposition 4.4. Let δ ∈ (0, 12 ] which could be an n–dependent parameter. Define a positive parameter L
via the relation

L2 = 512K2 log

(

2 +
n

log(2 + 1/δ)

)

.

Observe that this choice of L satisfies both Lemmas 4.11 and 4.12. Hence, applying Lemma 4.11 and then
Lemma 4.12 inductively n− 1 times, we get

E exp
(
(distc(X,A))2/L2

)
≤ 4(1− exp(−L2/(64K2)))−2(n−1)

P{X ∈ A} .

Note that

(1− exp(−L2/(64K2)))−2(n−1) =

(

1−
(

2 +
n

log(2 + 1/δ)

)−8)−2(n−1)

≤ exp

(

4n

(

2 +
n

log(2 + 1/δ)

)−8))

= exp

(
4n

2 + n
log(2+1/δ)

(

2 +
n

log(2 + 1/δ)

)−7))

≤
(
2 + 1/δ

)4
(
2+ n

log(2+1/δ)

)
−7

< (2 + 1/δ)
1
2 ≤ 1/δ,

since 1/δ ≥ 2. The result follows. �
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