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Concentration of measures supported on the cube

Bo‘az Klartag

Abstract

We prove a log-Sobolev inequality for a certain class ofdogcave measures in high
dimension. These are the probability measures supportédeonnit cubel0, 1] C R™
whose density takes the foraxp(—1) where the function) is assumed to be convex
(but not strictly convex) with bounded pure second denwegti Our argument relies on a
transportation-cost inequality a la Talagrand.

1 Introduction

Consider a cubé) C R"™ of sidelength? parallel to the axes, that i§) is a translation of
the set(0, /)" c R"™ (or of its closure, equivalently). In this paper we prove aantration
inequality for a class of probability measures supported)on

Write | - | for the standard Euclidean norm R* and B” = {x € R"™;|z| < 1} is
the Euclidean unit ball centered at the origin. For a subdset R" denoteA + ¢B™ =
{x +ey;x € A,y € B"}, thee-neighborhood of the set.

Theorem 1.1 Let/ > 0, M > 0 and letQ) C R" be a cube of sidelengthparallel to the
axes. Lefu be a probability measure supported ghwith densityexp(—1)) for a convex
functionvy : @ — R such that

'ip(x) < M forallz € Q,i=1,...,n. (1)
Suppose thatl C R"™ is a measurable set with(A) > 1/2. Then, for allt > 0,
pw(A+tB") > 1—exp (—t2/a2) (2)

wherea = a(l, M) = 30eM?/8,

Theorent 111 is equivalent to a logarithmic Sobolev inedqualnd to a concentration in-
equality for Lipschitz functions, see Sectidn 4 below. lokbilistic terminology, we con-
sider uniformly bounded random variablég, ..., X,,, possibly dependent, whose joint
distribution satisfies the convexity/concavity assummiof Theoreni 1]1. Our results cor-
respond to bounds for the variance and tail distributionf @Ky, ..., X,,) where f is a
Lipschitz function orR™.

We emphasize that we are not assuming any product stru@nyesymmetries nor
strict convexity for the function) from Theoreni_1]1. There is a vast body of literature
pertaining to the case in which the measuris an arbitrary product measure in the cube,
see Talagrand [24], Martoh [17], Dembo and Zeitolni [8], duaxi [15] and others. When
the functiony) from Theoreni_1]1 admits a uniform positive lower bound fa Hessian,
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the conclusion of Theore 1.1 is well-known and essentigolys back to Bakry arimery
[1].

How can we produce probability measures satisfying themagsans of Theorerh 111
with, say,M = 1? One may begin with the standard Gaussian densii/*irthe function

Yal(z) = (2m) "2 exp(—|z|*/2) (z € R").

The restriction ofy, to any cubel) C R", normalized to be a probability density, surely
satisfies the assumptions of Theorleni 1.1 with= 1. Furthermore, begin with any prob-
ability densityp : R™ — [0,00) which is log-concave (that is, the functionlog p is
convex). Consider the convolution

£@) = (pxm)@) = [ pwhle - )y

Then f is a smooth, log-concave probability density accordinghi Prékopa-Leindler
inequality. Furthermore, it is straightforward to verifyat for anyx € R",

(V?log f)(x) > ~Id 3)

in the sense of symmetric matrices, whéris the identity matrix andv?log f is the
Hessian oflog f. We conclude that the probability measure on the abehose density

is proportional to the restriction of to (), satisfies the assumptions of Theorlerd 1.1 with
M = 1. ltis also possible to view the probability densities thapear in Theorern 1.1 as
convex perturbations of probability densities proporibto = — exp(z - v) on the cube.
Herezx - v is the standard scalar productaafv € R™.

One cannot replace(¢, M) in Theorem_1ll by a dimension-free expression that is
subexponential id/¢?, see Remark4l4 below. We say that a veetar R is proportional
to one of the standard unit vectors when it has at most oneammentry. A unit cube has
sidelength one. Theorem 1.1 will be deduced from the folhgariesult:

Theorem 1.2 Let R > 1 and let@Q C R™ be a unit cube parallel to the axes. Lete a
probability measure supported @pwith a log-concave densitf such that

fQAz+ (1 =Ny <R (z)+ (1 =2)f(y)] (4)

forany0 < A < 1 and anyz,y € Q for whichz — y is proportional to one of the standard
unit vectors. Suppose that C R” is a measurable set with(A) > 1/2. Then for all
t >0,

w(A+tB") >1—exp (—t2/a2)

wherea = o(R) = 3R.

The inequality[(#) holds true witkR = 1 whenf is a convex function. By degenerating
Theoreni 1P to the petty case whéte= 1 we arrive at the following peculiar corollary:

Corollary 1.3 Let@ C R"™ be a unit cube. Let be a probability measure o whose
density is both log-concave and convexinThen for any measurablé C R™ andt > 0,

p(A) >1/2 — p(A+tB") >1—exp (—t*/9).



A moment of reflection reveals that there do exist positimgggrable functions on the
cube that are simultaneously log-concave and convex, suchab + (z - v)]* for p > 1.
It is also evident that one cannot eliminate neither thedogeavity assumption nor the
convexity assumption from Corollafy 1.3.

The proof of Theorern 112 uses transportation of measuredier @0 analyze the deficit
in the Prékopa-Leindler inequality, an idea proposed mdfildan and Klartag [9]. Rather
than working directly with the supremum-convolution, wefer to analyze another ex-
pression that somewhat resembles the relative-entromtifural. Let us shed some light
on this expression. Suppose thfaandg are non-negative functions defined Bfi. For a
pointz € R™ in which f is positive and differentiable, and for a poipte R™ in which g
is positive, we set

5,40, F}(x) = f(z)log % ~ Vi) (y - 2). (5)

DenoteSupp(f) = {z; f(x) # 0}. For functionsf,g : R" — [0,00) and a magl’ :
Supp(f) — Supp(g) abbreviate

Stig, [ }(x) = Sp@ {9, [} (z) (z € Supp(f)), (6)

assuming that the right-hand side is well-defined. Nextpeap thatf andg have a finite,
positive integral. A measurable m&p: Supp(f) — Supp(g) is called atransportation
map fromf to g if for any measurable set C Supp(g),

(573) L= (7)o

That is, T pushes forward the probability measure whose density isgutional to f, to
the probability measure whose density is proportionad.toTwo important examples of
transportation maps iR™ are the Brenier map [4] and the Knothe map [14].

Definition 1.4 Let f, g be two non-negative functions &% with a finite, positive integral.
Assume thaf is differentiable almost-everywhere $fupp(f). Set

Tire(g|| f) = sup [ /S L Srlo e - ( / f> log %] @)

where the supremum runs over all transportation mageom f to ¢ for which the integral
of St{g, f} is well-defined. Here, Tire is an acronym of “Translatiorvémiant Relative
Entropy”.

The notion is indeed translation-invariant: For functiogfg as in Definition 1.4 and
for zo € R™, denotingr,,(g9)(z) = g(z — x¢) we have

Tire(g|| 1) = Tire(ray(9) 1) = [ (V7(z)-a0)do =0,

where we assume thdtis locally-Lipschitz and vanishes at infinity in order totjfis the
integration by parts. In the log-concave case, the quafitity(g || f) is indeed related to
relative entropy as is demonstrated in Lenima 4.1 below.

The remainder of this paper is devoted to the proofs of theeafentioned theorems
and to related results. We writé for the closure of the setl, andlog stands for the
natural logarithm. By “measurable” we always mean Boreksugable. Needless to say, it



is certainly possible to considétire(g || f) for non-negative functions defined only on a
subset ofR™ by treating such functions as zero outside their originahdim of definition.
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2 Convex functions on an interval

Let I, J C R be two intervals of finite, positive length and I&tg be positive, integrable
functions defined od, J respectively. Thenonotone transportation map frofito g is the
mapT : I — J defined via

(ff )/f Mooyt = (fjg>/ O t<r @y d (zeT)

wherely, ., equals one when < x and vanishes otherwise. The mapis uniquely
defined, asf, g are positive and integrable. Furthermolejs an absolutely-continuous,
strictly-increasing function. Observe that the monotgaegportation in one dimension is
indeed a transportation map and that for almost ewesy!,

T (z) = <M> /(z) ) 8)
D=\77) @)

We will frequently encounter the case whdre= .J. Clearly, in this casd’(z) = x for

x € 0I, wheredI are the two endpoints of the interval Our goal in this section is to

prove the following transportation-cost inequality in alimension:

Proposition 2.1 LetR > 1 and let/ C R be an interval of length one. Lgt: I — (0, 00)
be an absolutely-continuous function which satisfies

FOz+ 1 =Ny) <RMf(@)+ (1 —=Nf(y)] foral z,yel,0< <1

Letg be a positive, integrable function dnand letT be the monotone transportation map
from f to g. Then,

/\T ) —z|? f( )dm<CR2UST{g,f} (/ >log£} (9)

< CR? - Tire( (gl f),
whereC' < 40/9 is a universal constant.

The proof of Proposition 211 requires a few lemmata. Our festma is essentially
an infinitesimal version of the Prékopa-Leindler inegyatnd its proof follows the trans-
portation proofs given by Barthel[2], Cordero-Erausquil Fenstock-Macbeath [11] and
Talagrand([23]. Fot € R denote

A(t) = min{|t|, t?}.

Lemma 2.2 Let/ C R be an interval of finite, positive length. Lgtg be positive, inte-
grable functions o with f being absolutely continuous. Then,

[ = 2 [ [ ([1)os 15

whereT is the monotone transportation map frofrto g.
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Proof: We use[(8) and compute

[srta.ny = [ |r@og 208 — ) - o) ao

([ 1) % [ |08 s = @) — ) as
- ( / f) log % + [ [ @) log T'(@) + £(a)(T'(a) - 1] da

where the integration by parts is legitimatefds)(7'(x) — x) is an absolutely-continuous
function in[ that vanishes of)/. In order to complete the proof of the lemma it remains to
show that for alke > 0,

—logz+ (x —1) > %-min{\x—l\,(m—l)z}. (10)

Indeed, for0 < x < 2 we use the Cauchy-Schwartz inequality and obtain
(x—1)—logz = —dt:/ dtz/ —dt
1t 0 1+ sgn(z— 1)t 0 1+t

|x—1] 2 |x—1| (QL’ _ 1)2 3($ _ 1)2
= (/0 tdt) /(/0 (1+t)tdt> T 201+ 2z — 1]/3) T

wheresgn(z) = 1 for x > 0 andsgn(xz) = —1 for z < 0. The inequality[(ID) is valid in
particular forz = 2. Forxz > 2 the derivative of the left-hand side in_{10) exceeds that of
the right-hand side. Hencle_(10) holds true forzaft 0. O

Remark 2.3 The proof of Lemma 212 admits a generalizatiomtdimensions, in which
one utilizes the Brenier map in place of the transportatiap ffi. See Barthe [3] and
McCann [18] for related arguments. In this way one obtaierslequality

Tire(g|| f) = 0, (11)

which is valid for any Lipschitz, non-negative, compadlypported functiong andg on
R™ with a finite, positive integral.

Lemma2.4 LetR > 1 and let/ C R be an interval of length one. Assume that a
positive, integrable function ohthat satisfies

pAx + (1 =Ny) < R[Mp(x) + (1 —A)p(y)] forall z,yeI,0<A<1l. (12)
Then for anyu, b € I witha < b,

b
/ p(w)dr < 5 [ola) + p(b)].

Proof: We simply integratel (12) ovex € [0, 1]. Sinceb — a < 1, then
b 1 1
[ o= [ovara-xmar<r [ Do)+ - 0] ir = RADZLO,
a 0 0
and the lemma is proven. O

The following lemma is a one-dimensional Poincaré-typairality. The proof closely
follows the argument by Cheegét [5]. Recall tAdt) = min{|¢|, t2}.
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Lemma 2.5 Let] C R be an interval of length one and I& > 1. Letp be a positive,
integrable function o with

pAz 4+ (1= Ny) < RMp(z)+ (1= Np(y)]  forall z,y e 1,0 < X < 1.

Then for any absolutely-continuous functipn I — R with f|5; = 0,
4
[anp=gre [ 13)

Here,dI consists of the two endpoints of the interyal

Proof: Multiplying p by a constant, we may assume ttfqtp = 1. Letg be an
absolutely-continuous, non-negative function wjth; = 0. In the first step of the proof

we show that R
/9,0 < 5/!9’\/). (14)
I I

DenoteJ = g(I) = {g(z); = € I}, an interval whose left boundary point is zero. We apply
the change of variables= g(x) and conclude that

/l|g’(w)|p(w)dw/]( > p(%)) dy. (15)

zeg1(y)

See, e.g., Leoni [16, Theorem 3.65] for a proof of this chasfgariables formula. For any
0 # y € J consider the open sé}, = {x € I;g(x) > y}. Wheny is a regular non-zero
value ofg, the open sef, is a finite union of intervals with disjoint closures. Accorgl to

Lemmd 2.4, for any such,
R
/1'0<2{ > p(w)]

Y zeg™ (y)

The one-dimensional Sard’s lemma for absolutely-contisufunctions (see, e.g., Leoni
[16, Remark 8.9]) implies that almost agye J is a regular value of. Therefore, from
(@I5) we obtain

/I g ()] p(x)dz > % /J ( /{ oo p(m)dm) dy = % /l gp

where the last equality follows from application of Fubsniheorem. Thus (14) is proven.
In order to prove[(13), observe that for any> 0 and0 < y < 1,
y2
< =

xy < RA(x) + 1R (16)
Indeed, [(16) holds fox > 1 since the coefficient in front ok (z) is at least one, and_(1L6)
may be directly proven foé < x < 1 by completing a square. Let: I — R be an
absolutely-continuous function withls; = 0. Applying (14) withg = A(|f|) and using
(@8) we see that

[ 0o < 5 [ XA < B [ 17 ming 1,000
<R |R [MIFDo+ g [mindlfP 1))
<R [Af Do+ [ AP
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By subtracting the right-most summand from the left-hale sive deducd (13). O

Proof of Proposition[2.1: SinceT'(x) = « for 2 € I we may invoke Lemma 2.5 and
conclude that

/A (T(x) —z) f(x)dz < éRQ/A (T'(z) — 1) f(z)dx

I 1

< [ srton = () ]

where we used Lemma 2.2 in the last passage. Sinsean interval of length one and
T : 1 — I,then foranyr € I we have|T (x) — z| < 1. Consequently, for any € I,

A(T(z) — z) = min {|T(z) — x|, |T(x) — x|} = —z/%

This completes the proof of](9). The proposition now follofwsm the definition of
Tire(g|| f)- O

3 Induction on the dimension
In this section we obtain higher-dimensional analogs opBsiion[2.1.

Theorem 3.1 Let R > 1 and letQ) C R"™ be a unit cube parallel to the axes. Assume that
f:@Q — (0,00) is a Lipschitz function with

fQAz+ (1 =Ny <R (z)+ (1 =2)f(y)] (17

forany0 < A < 1 and anyz,y € @ for which z — y is proportional to one of the
standard unit vectors ifR™. Letg be a positive, integrable function @p. Then there exists
a transportation mag" from f to g such that

/ Srio [} - (/ )bgfﬂ (18)

< CR*-Tire(g|| f),

/|T ) — z|? f(z)dz < CR?

whereC' < 40/9 is a universal constant.

The requirement thaf be a Lipschitz function should not be taken too seriously, as
it may easily be replaced by other types of regularity assiomg. Theorend 3|1 will be
proven by induction on the dimension, where the inductiep & going to be Proposition
(2.1 in disguise. Throughout this section we use

r=(y,r) ER" I xR

as coordinates ifR™. For a functionf defined on a subset &" and fory ¢ R"~!, we
write

fy(r) = fy,r)

whenever(y, r) is in the domain of definition of . Abbreviater(y,r) = y. For a subset
A C R™ denoter(A) = {n(x);x € A}. For a non-negative, integrable functigrdefined
on a subsetl C R", we set

D= [ HOlenend e,
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Let K C R™ be a convex set. Lef, g be positive, integrable functions di. We say
that amapl’ : K — K transports the last coordinate monotonicaifythere exists a map
P :m(K) — m(K) such that for almost any € 7(K), the functiongp, is integrable and
furthermore

T(y,r) = (P(y),T,(r)) (19)

for anyr with (y,r) € K, whereT), is the monotone transportation map frgfipto gp ).
The following lemma is a corollary to Propositibn2.1.

Lemma3.2 LetR > 1. LetQ = A x I c R™" wherel C R is an interval of length one
and A ¢ R"!is a convex set. Assume thats a positive, Lipschitz function o, and
that

[z + (1= Az2) < R[Af(z1) + (1 = A)f(22)] (20)

forany0 < XA < 1 and anyxy,z9 € Q for which z; — x5 is proportional to one of
the standard unit vectors. Let be a positive, integrable function of. Assume that
T : Q — Q is a measurable map that transports the last coordinate rwmcally. Then,

/ T, (r) — r[? f(y,r)dydr < CR?
Q

/ST{g,f}—/ SP{W(Q),W(f)}] (21)
Q Q)

whereP and T, are as in [19), and” < 40/9 is a universal constant.

Proof: According to the definitions {5) anl(6), for almost gmyr) € Q,

Srig, f}(,r) = St,{9p), fy}(r) = Vyf(y,7) - (P(y) —y) (22)

whereV, is the gradient in thg-variables. Thanks to our assumptionsfowe may safely
differentiate under the integral sign, thus

V() - (P) = 9) = [ V) (P) —)ir @3)
for almost any choice aof. From [22) and[(23),

| St4ap £)0)r = [ Srlg. ) niar + VRO (PW) -v) @9

for almost any choice aof. The equality[(Z4) may be reformulated as

e ( / fy> 1og% — [ Selo. 1w r)ar = Sp{x(0) 7 () 0)
(25)

We may apply Propositidn 2.1 thanks to our assumpfioh (26)odntain that

[ 1) =+ i < CR? [ [ s tan. 1) - ( / fy> log %] (26)

By combining [(25) and (26) we see that for almost any 7(Q),
[t =2 nar < o | [ Seta pyniar - sein(a)m (D} - @
We now integrate (27) over € 7(Q) and deduce (21). O

Remark: The identity [2B) is the only place in the proof of Theoreni 8Here we use
the assumption tha is a cube or a box, rather than, say, a parallelepiped.
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Lemma3.3LetR > 1 and letQQ C R" be a cube parallel to the axes. Assume that
f : @Q — Ris a Lipschitz function o), such that

fQz1+ (1= Nz2) < RAf(z1) + (1 = ) f(z2)] (28)

forany0 < A < 1 and anyxz,,z2 € @ for whichxz; — x5 is proportional to one of the
standard unit vectors iiR"™. Then also

m(f) Q1+ (1 = Aya) < RAT(f)(y1) + (1 = M7(f)(y2)]

forany0 < A < 1 and anyy;,y2 € 7(Q) for whichy; — ys is proportional to one of the
standard unit vectors iR" 1.

Proof: Fixi = 1,...,n — 1 and lete; be thei*" standard unit vector. Conditioh_(28)
implies that for anyy € R ¢1,t5,7 € R,0 < XA < 1 such that(y + tie;,7) € Q and
(y + t26i’r) € Q!

fly+ M+ (1= Mta) e, r) < RIAS (y + tiei,r) + (1= A)f (y + taei, )]

Let I be the interval for whiclf) = 7(Q) x I. Integrating with respect towe have
m(f) (y+ M+ (1 = Mta) e;) = /f (y+ At + (1= Nt2) e, 7) dr
1
< R [ Mo+ i) + (1 N5 (0 + b)) dr
I
= RAm(f)(y +tiei) + (1 = N (f)(y + t2ei)]
and the lemma is proven. O

Proof of Theorem[3.1: We will prove by induction on the dimensionthat there exists
a transportation map from f to g such that

Srig, f} — f logM . (29
fysetans = ([ ) me ]

The casenr = 1 is Propositiori_ ZJ1. Assume that the induction hypothesis praven for
dimensionn — 1, and let us prove it for dimensiom. Thus, suppose that we are given a
cube@ C R™ and functionsf, g which satisfy the assumptions of the theorem. In view of
Lemmd 3.3, we may apply the induction hypothesis for

W(Q)7 W(f)? 7T(g).

Thus, there exists a transportation map = (Q) — 7(Q) from 7(f) to 7(g) such that

[ 17@) s < TR
Q 9

/ P) — yPx(f)(y)dy (30)
m(Q)

Jr@™(9)
PROCURIE ( Lo, w<f>> os P |

Fory € 7(Q) let T, be the monotone transportation map frgfipto gp(,,), a strictly-
increasing function which is well-defined for almost ang 7(Q). We set

40
< 2 R?
-9

T(y,r) = (P(y), Ty(r)) for (y,7) € Q.



ThenT transports the last coordinate monotonically. Hence, raieg to Lemma 3.2,

40
15,00 =2 f(w )y < G2
Q

/ST{g,f}—/ Sp{ﬂ(g)m(f)}]- (31)
Q (Q)

It is straightforward to verify that the mapis a transportation map frorfito g. In fact, the
mapT is precisely the Knothe transportation map fram/ [14]. By suing (30) and[(31),
we conclude that

| [P =9+ 1,00) =] 0,y (32)
~ fw(Q)”(g)]
| srton) ( L. 7T(f)> o P

/QST{g,f}— (/Qf) 1g£‘jfﬁ]

All that remains is to note that when= (y, ),

40
< R?
-9

40
= _—_R?
9

T () =z = |P(y) = yI” + T, (r) —r[*.

The bound[(29) follows fron{ (32), and the theorem is proven. O

4 Log-concavity

We begin this section with a discussion of Definitionl 1.4. Aes shall see, this definition
fits very nicely with log-concave functions. Given two probiy densitiesf andg in R™

we write
D(gll f) = / [log %} 9(y)dy

for the relative entropy or the Kullback-Leibler divergenaf g from f.

Lemma4.l Let f,g : R" — [0,00) be probability densities. Assume thatis log-
concave. Then,

Tire(g|l f) < D(gll f)-

Proof: The functionf is differentiable almost-everywhere in the convex.Sepp(f)
as it is a log-concave function. Dengfe= ¢~%. From the convexity of) we see that for
any pointz € Supp(f) in which f is differentiable,

Y(x) + V() - (y —2) < P(y) (y € Supp(f)).

LetT" be any transportation map frofito g. Denotingy = — log g we find that for almost
anyx € Supp(f),

Srig. fHa) = | f@)og L — V(@) (T() - )




SinceT is a transportation map fronfi to g, then by applying the change of variables
y = T'(x) we obtain

S lo x)dz
/Sum?(f) o, f} < /Sum?(f) & f(T(x))f( )

— /Supp(g) [log ;EZH g(y)dy = D(g|| f)

and the lemma is proven. O

For a log-concave densitf, we may think about’ire(g || f) as a parameter measuring
the proximity of g to a translate off. Let us mention here additional upper bounds for
Tire(g|| f). Letf,g : R™ — [0, 00) have finite, positive integrals and denate= — log f
andyp = —log g. According to[(b),

sup  Sy{g, f}(@) = [Vf(2) 2 — f(z)log f(x)] + f(z)¢" (Vi(2)) (33)
ye€Supp(g)
wherep*(v) = supycgup(q) [V - ¥ — ¢(y)] is the usual Legendre transform of Con-
sequently, whery is locally-Lipschitz andr — |z|f(x) vanishes at infinity, we have the
bound

riretal1 )< [ [ @0~ tou (14 5@) - 0] s @0

Inequality [34) is perhaps less appealing than Lerhmia 41lif y&applicable also in the
non log-concave case.

Our original motivation for Definitiom_114 is that at leasttile smooth, log-concave
case, the expression in(33) equéls. (x) /0 |._, Where
he(a) = sup f(z +ey)' gz — (1 - e)y)* (z € R").
yeR™
In other words,Tire(g || f) is related to a kind of “mixed volume” of log-concave func-
tions, seel[12, Section 3] for further explanations.

Suppose thati; andus are Borel probability measures @&¥. Thetransportation cost
betweery,; andys is defined to be

W3 (1, o) = inf/ |z — y[*dvy(z,y)
7 JRrxR"

where the infimum runs over all couplingsof 11 andyus, i.e., all Borel probability mea-
suresy onRR™ x R™ whose first marginal ig; and whose second marginaliis. See, e.g.,
Villani’s book [25] for more information about the transpation metriciW,. The follow-
ing theorem reminds us of Talagrand’s transportation-cesiualities for product measures
from [23].

Theorem 4.2 Let R > 1 and letQ c R™ be a unit cube parallel to the axes. Suppose that
1 is a probability measure o with a log-concave densitf. Assume that

fQOz+ (1 =XNy) <RAf(x)+ (1= A)f(y)] (35)

forany0 < A < 1 and anyz,y € Q for whichz — y is proportional to one of the standard
unit vectors iNR™. Letr be a probability measure o that is absolutely continuous with
respect tqu. Then,

W3 (u,v) < CR*D (v || )

whereD (v || u) = [ g(log g)du for g = dv/dp, the usual relative entropy functional, and
whereC' < 40/9 is a universal constant.
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Proof: By a standard approximation argument (e.g., convelweith a tiny gaussian
and restrict to the cub@), we may assume thgtandg are positive and’'*-smooth up to
the boundary inQ, and in particular both functions are positive and LipschAccording
to Theoreni 3]1 and Lemma4.1,

W3(u,v) < CR®-Tire(g|| f) < CR*- D (v]| ). m

Transportation-cost inequalities such as Theorem 4.2heestbject of the compre-
hensive survey by Gozlan and Léondrd![10]. The fact thaispartation-cost inequalities
imply concentration inequalities goes back to Marton [TTfe following proof reproduces
her argument, and is included here for completeness.

Proof of Theorem[1.2:DenoteE = Q \ (A+¢B™). If u(E) = 0 then there is nothing
to prove. Otherwise, we apply Theorém]4.2 for the measurep|s. Thus there exists a
coupling~y of x andy|g with

1
n(E)

40 40
/ ly —2|* dy(z,y) < = R*D(v||p) = —R*-log
QXE 9 9

According to the Markov-Chebyshev inequality, there exstsubsef’ C @ x E with
~v(F') > 41/81 such that for anyz,y) € F,

ly — 2|* < 9R?log (36)

n(E)

Since~ is a coupling andi(A) > 1/2 with v(F') > 41/81, there existgz,y) € F with
x € A. For such(z,y),

1
re€AyeFE and z—y| <3R-,/log
oy W(E)

where we used (36). However, all pointshAhare of distance at leasfrom all points ofA.
Consequently,

1
t<3R-|log :
n(E)
Thereforeu(E) < exp(—t?/a?) for a = 3R andu(A + tB™) > 1 — exp(—t?/a?), as
required. O

Proof of Theorem[1.1: Let T' > 0. Observe that the validity of both the assumptions
and the conclusions of the theorem is not altered under tilingc
(— T, Mw— T 2M.

We may thus normalize so that= 1. All that remains is to verify that the assumptions
of Theoren LR are satisfied with = ¢*/8. Fixi = 1,...,n andz € Q and denote
h(t) = ¥(x + te;). Thenh is well-defined on a certain intervél C R of length one, and
our goal is to show that for any,b € I and0 < A < 1,

e—ha+(1-0)b) - M/ [)\e,h(a) F(1— A)e*h(b)] . (37)

In view of the arithmetic/geometric means inequality, thesiced inequality[(37) would
follow once we establish that

— h(Aa+ (1 = \)b) < M/8 — A(a) — (1 — A)h(b). (38)

12



In order to prove[(38), we use our assumption #igt) < M in the intervall. According
to the Taylor theorem, for any, y € I,

T — 2
(o) — h(e) ~ K@)y — ) < T (39)

We will apply inequality [(39) fory = a,b andx = Aa + (1 — \)b, then add the resulting
inequalities with coefficientd and1 — \. This yields

Ah(a) + (1 = A)h(db) — h(Aa + (1 — \)b) < Y A);b — o) < % (40)
asA(1 —A) <1/4and|b— a| < 1. The inequality[(3B) follows fron{(40). O

It is well-known (see, e.g., V. Milman and Schechtmanl [20ctBa 2 and Appendix
V]) that Theoreni_1]1 implies a concentration inequality lfgeschitz functions as follows:

Corollary 4.3 Let@, u, « be asin Theoreiin 1.1 (or as in Theoreml 1.2). fetQ) — R be
a 1-Lipschitz function, i.el,f (z) — f(y)| < |z —y| for anyz, y € Q. DenoteE = fQ fdu.
Then, for anyt > 0,

iz € Qs |f (@) — Bl 2 t} < Cem/
wherec, C' > 0 are universal constants.

In particular, we deduce from Corollary 4.3 that in the niotabf Theoreni_1J1,
Cov(p) < Ca? - Id (42)

in the sense of symmetric matrices, whéfev () is the covariance matrix of the probabil-
ity measureu andC' > 0 is a universal constant.

Remark 4.4 Regarding the dependencexd¥, M) on M in Theoreni Ll LeKy, ..., X,
be independent standard Gaussian random variables. @ottsiddrandom vector

(X1,...,X5) n (Xo,...,X0)
100+/log n 100y/logn '

and letZ be the conditioning oft” to the cubeQ = [-1/2,1/2]". Denote byu the
distribution of Z, a probability measure of. It is not too difficult to verify thafu satisfies
the requirements of Theordm 1.1 with= 1 andM = Clogn. SetA = {z € Q; >, z; <

0}. Thenu(A) = 1/2. However, one may compute that for ang cn'/?/\/logn,

(A +tB") < 2/3.

This shows thaty(1,C'logn) > en'/?/\/logn. Therefore the exponential dependence
of the dimension-free expressier(¢, M) on ¢>?M is inevitable. A simple variant of this
example shows that it is also impossible to replace the Gubésidelength? in Theorem
[1.1 by a Euclidean ball of radius/n. For another example in which the cube behaves
better than the Euclidean ball, seel[13, Corollary 3].

It was explained by E. Milman [19] that in the log-concaves;d3aussian concentration
inequalities, quadratic transportation-cost inequeditiand log-Sobolev inequalities are all
essentially equivalent up to universal constants. In @algi, by using the results of Otto
and Villani [21, Corollary 3.1], we deduce from Theoréml 42 following log-Sobolev
and Poincaré inequalities:
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Corollary 4.5 Lets, M, (Q, i be as in Theoreifn 1.1 (or as in Theorem| 1.2, with 1 and
R = ¢M/8). Then, for any locally-Lipschitz functiof: Q — R with fQ fPdp =1,

/Qf2 log (f?) dp < 01626””2/4/lef|2du,

and for any integrable, locally-Lipschitz functigh: @ — R with fQ fdu =0,

/Q Prdp < Cot*eMe ) /Q IV fPdp.

Here,C; < 160/9 andCsy < 20/9 are universal constants.

It is conceivable that Theorelm 1.1 and Corollary 4.5 wilhtaut to be relevant to the
analysis of lattice models in physics. For instance, one suggest an Ising model with
bounded, real spins as in Royer[[22, Section 4.2] in whicta#simptions of Theorem 1.1
are satisfied. Essentially, we require that the spins ligénnterval[—1, 1], that the entire
Hamiltonian is convex (just convex, not strictly-convexjdathat the second derivatives
of the pairwise potentials and the self-interactions anended. Perhaps the logarithmic
Sobolev inequality of Corollary 4.5 may be of some use in tlistext.

5 Yet another approach for Theorem( 4.2

In this section we present a sketch of an alternative prodteforen{ 4.2, in spirit of the
transportation arguments of Cordero-Erausquin [6]. Thevalkon below is applicable for
the two types of transportation maps, Brenier and Knothe.

Let f, g, u and v satisfy the assumptions of Theoréml4.2. As is explained ebiov
suffices to consider the case whgrandg are positive, Lipschitz functions. In particular,
it is well-known that both the Brenier map and the Knothe mapf. to v areC''-smooth
up to the boundary (see Cordero-Erausquin [7]).

Denotey) = — log f, a convex function. Lel’ be any smooth transportation map from
wtov. Then, similarly to[(8) above, we have

log |det ()| = —t(x) + ¢(F(x)) — log g(F(x)) (z€Q)

whereF’(z) is then x n matrix which is the derivative of’. In the case wheré' is the
Brenier map, the matri¥”(x) is symmetric and positive-definite. In the case wheres
the Knothe map, the matrik’(z) is upper-triangular with positive entries on the diagonal.
In both cases, denoting = (F1,..., F,),

log |det F'(z)| = log det F'(z) < Zlog O'F(x) (x € Q). (42)
i=1

Indeed, in the Knothe caske {42) is simply an equality, whil¢hie Brenier case we may
use Hadamard’s determinant inequality in order to estalfid). Next, denotd(z) =
F(x)—z, sothat' F;(z) = 1+0'0;(xz). We use the elementary inequality for the logarithm
function in [10) and obtain

S logd'Fix) < 3 [‘o‘iexx) A (00:()
=1 =1
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The convexity of) implies that
W(F(2)) = d(x) > Vi (x) - (F(z) —x) = Vi (z) - 0(z) = Y _ 0i(2)0" ().
=1

Combining all of the above, we arrive at the inequality

n

log g(F(x)) > ZA (06:(x)) = > [0°0i(x) — Dp(x) - 0i(x)],  (43)
10

i=1

valid pointwise inQ. Here comes a fundamental property of both the Brenier mepten
Knothe map: In both cases, the mAppreserves each of the — 1)-dimensional facets of
the cube). In other words, IerA]—L, ..., AF be an enumeration of all of thn facets of
dimensionn — 1 of the cubel). Assume thatt-e; is the outer unit normal to the culdg at
the facetAii. We claim that for any,

reAF = 6i(x)=0. (44)

It is quite clear that[(44) holds in the case of the Knothe niamrder to argue fof(44) in
the Brenier case, recall that here

(F(z) = F(y) - (x—y) >0 (r,y €@, z#y)

as F' is the gradient of a strictly-convex function. In partiaulavhen F'(z) € Aj: then
necessarilyr + te; ¢ Q for t € (0,¢) for somes > 0. HenceF(z) € A implies that
x € Aii. Arguing similarly for the inverse map—!, which is the Brenier map from to
i, we conclude that(44) holds true in the Brenier case as well.

We may now multiply[[4B) by:—% and integrate over the culdg Observe that for any
1=1,...,n,

/Q 0°0;(x) — 0'p(z) - O3(x)] eV = /Q o' (Hie_w> ~0

thanks to the boundary condition {44). Furthermore, thisndary condition allows us to
use the one-dimensional Leminal2.5, and conclude that

4R? ;
/Q A(Bi(a)) du(a) < 2 /Q A (8%0,(x)) dpu(a)

fori =1,...,n. We therefore obtain

2 _ 0p 0 v
/ ZA R /Q log o(F(x))] di() = g R /Q llog g(y)] du(y).

It remains to note that alway$;(z)| = |F;(z) — x;| < 1 since( is a unit cube. Conse-
quently A(0;(z)) = |0;(z)|? and hence,

/\F Pyl /re ) Pdu(x ><—R2/Q[logg< N dv(y) = 5 BD (v ]| ).

This finishes the sketch of the alternative proof of Thedrezh 4 O
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