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Concentration of measures supported on the cube

Bo‘az Klartag∗

Abstract

We prove a log-Sobolev inequality for a certain class of log-concave measures in high
dimension. These are the probability measures supported onthe unit cube[0, 1]n ⊂ R

n

whose density takes the formexp(−ψ) where the functionψ is assumed to be convex
(but not strictly convex) with bounded pure second derivatives. Our argument relies on a
transportation-cost inequality á la Talagrand.

1 Introduction

Consider a cubeQ ⊂ R
n of sidelengthℓ parallel to the axes, that is,Q is a translation of

the set(0, ℓ)n ⊂ R
n (or of its closure, equivalently). In this paper we prove a concentration

inequality for a class of probability measures supported onQ.

Write | · | for the standard Euclidean norm inRn andBn = {x ∈ R
n; |x| ≤ 1} is

the Euclidean unit ball centered at the origin. For a subsetA ⊂ R
n denoteA + εBn =

{x+ εy;x ∈ A, y ∈ Bn}, theε-neighborhood of the setA.

Theorem 1.1 Let ℓ > 0,M ≥ 0 and letQ ⊂ R
n be a cube of sidelengthℓ parallel to the

axes. Letµ be a probability measure supported onQ with densityexp(−ψ) for a convex
functionψ : Q → R such that

∂iiψ(x) ≤M for all x ∈ Q, i = 1, . . . , n. (1)

Suppose thatA ⊆ R
n is a measurable set withµ(A) ≥ 1/2. Then, for allt > 0,

µ (A+ tBn) ≥ 1− exp
(

−t2/α2
)

(2)

whereα = α(ℓ,M) = 3ℓeMℓ2/8.

Theorem 1.1 is equivalent to a logarithmic Sobolev inequality and to a concentration in-
equality for Lipschitz functions, see Section 4 below. In probabilistic terminology, we con-
sider uniformly bounded random variablesX1, . . . ,Xn, possibly dependent, whose joint
distribution satisfies the convexity/concavity assumptions of Theorem 1.1. Our results cor-
respond to bounds for the variance and tail distribution off(X1, . . . ,Xn) wheref is a
Lipschitz function onRn.

We emphasize that we are not assuming any product structure,any symmetries nor
strict convexity for the functionψ from Theorem 1.1. There is a vast body of literature
pertaining to the case in which the measureµ is an arbitrary product measure in the cube,
see Talagrand [24], Marton [17], Dembo and Zeitouni [8], Ledoux [15] and others. When
the functionψ from Theorem 1.1 admits a uniform positive lower bound for the Hessian,
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the conclusion of Theorem 1.1 is well-known and essentiallygoes back to Bakry and́Emery
[1].

How can we produce probability measures satisfying the assumptions of Theorem 1.1
with, say,M = 1? One may begin with the standard Gaussian density inR

n, the function

γn(x) = (2π)−(n/2) exp(−|x|2/2) (x ∈ R
n).

The restriction ofγn to any cubeQ ⊂ R
n, normalized to be a probability density, surely

satisfies the assumptions of Theorem 1.1 withM = 1. Furthermore, begin with any prob-
ability densityρ : R

n → [0,∞) which is log-concave (that is, the function− log ρ is
convex). Consider the convolution

f(x) = (ρ ∗ γn)(x) =
∫

Rn

ρ(y)γn(x− y)dy.

Then f is a smooth, log-concave probability density according to the Prékopa-Leindler
inequality. Furthermore, it is straightforward to verify that for anyx ∈ R

n,

(∇2 log f)(x) ≥ −Id (3)

in the sense of symmetric matrices, whereId is the identity matrix and∇2 log f is the
Hessian oflog f . We conclude that the probability measure on the cubeQ whose density
is proportional to the restriction off to Q, satisfies the assumptions of Theorem 1.1 with
M = 1. It is also possible to view the probability densities that appear in Theorem 1.1 as
convex perturbations of probability densities proportional to x 7→ exp(x · v) on the cube.
Herex · v is the standard scalar product ofx, v ∈ R

n.

One cannot replaceα(ℓ,M) in Theorem 1.1 by a dimension-free expression that is
subexponential inMℓ2, see Remark 4.4 below. We say that a vectorx ∈ R

n is proportional
to one of the standard unit vectors when it has at most one non-zero entry. A unit cube has
sidelength one. Theorem 1.1 will be deduced from the following result:

Theorem 1.2 LetR ≥ 1 and letQ ⊂ R
n be a unit cube parallel to the axes. Letµ be a

probability measure supported onQ with a log-concave densityf such that

f (λx+ (1− λ)y) ≤ R [λf(x) + (1− λ)f(y)] (4)

for any0 < λ < 1 and anyx, y ∈ Q for whichx− y is proportional to one of the standard
unit vectors. Suppose thatA ⊆ R

n is a measurable set withµ(A) ≥ 1/2. Then for all
t > 0,

µ (A+ tBn) ≥ 1− exp
(

−t2/α2
)

whereα = α(R) = 3R.

The inequality (4) holds true withR = 1 whenf is a convex function. By degenerating
Theorem 1.2 to the petty case whereR = 1 we arrive at the following peculiar corollary:

Corollary 1.3 LetQ ⊂ R
n be a unit cube. Letµ be a probability measure onQ whose

density is both log-concave and convex inQ. Then for any measurableA ⊆ R
n andt > 0,

µ(A) ≥ 1/2 =⇒ µ (A+ tBn) ≥ 1− exp
(

−t2/9
)

.
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A moment of reflection reveals that there do exist positive, integrable functions on the
cube that are simultaneously log-concave and convex, such asx 7→ [b+ (x · v)]p for p ≥ 1.
It is also evident that one cannot eliminate neither the log-concavity assumption nor the
convexity assumption from Corollary 1.3.

The proof of Theorem 1.2 uses transportation of measure in order to analyze the deficit
in the Prékopa-Leindler inequality, an idea proposed alsoin Eldan and Klartag [9]. Rather
than working directly with the supremum-convolution, we prefer to analyze another ex-
pression that somewhat resembles the relative-entropy functional. Let us shed some light
on this expression. Suppose thatf andg are non-negative functions defined onRn. For a
point x ∈ R

n in which f is positive and differentiable, and for a pointy ∈ R
n in which g

is positive, we set

Sy{g, f}(x) = f(x) log
g(y)

f(x)
−∇f(x) · (y − x). (5)

DenoteSupp(f) = {x; f(x) 6= 0}. For functionsf, g : Rn → [0,∞) and a mapT :
Supp(f) → Supp(g) abbreviate

ST{g, f}(x) = ST (x){g, f}(x) (x ∈ Supp(f)), (6)

assuming that the right-hand side is well-defined. Next, suppose thatf andg have a finite,
positive integral. A measurable mapT : Supp(f) → Supp(g) is called atransportation
map fromf to g if for any measurable setA ⊆ Supp(g),

(

1
∫

g

)
∫

A
g =

(

1
∫

f

)
∫

T−1(A)
f.

That is,T pushes forward the probability measure whose density is proportional tof , to
the probability measure whose density is proportional tog. Two important examples of
transportation maps inRn are the Brenier map [4] and the Knothe map [14].

Definition 1.4 Letf, g be two non-negative functions onRn with a finite, positive integral.
Assume thatf is differentiable almost-everywhere inSupp(f). Set

T ire(g || f) = sup
T

[

∫

Supp(f)
ST{g, f}(x)dx −

(∫

f

)

log

∫

g
∫

f

]

, (7)

where the supremum runs over all transportation mapsT fromf to g for which the integral
of ST {g, f} is well-defined. Here, Tire is an acronym of “Translation-Invariant Relative
Entropy”.

The notion is indeed translation-invariant: For functionsf, g as in Definition 1.4 and
for x0 ∈ R

n, denotingτx0(g)(x) = g(x− x0) we have

T ire(g || f) − T ire(τx0(g) || f) =
∫

Rn

(∇f(x) · x0) dx = 0,

where we assume thatf is locally-Lipschitz and vanishes at infinity in order to justify the
integration by parts. In the log-concave case, the quantityT ire(g || f) is indeed related to
relative entropy as is demonstrated in Lemma 4.1 below.

The remainder of this paper is devoted to the proofs of the aforementioned theorems
and to related results. We writeA for the closure of the setA, and log stands for the
natural logarithm. By “measurable” we always mean Borel-measurable. Needless to say, it
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is certainly possible to considerT ire(g || f) for non-negative functions defined only on a
subset ofRn by treating such functions as zero outside their original domain of definition.

Acknowledgements.I thank Dario Cordero-Erausquin and Ronen Eldan for interesting,
related discussions. I am grateful to Nathael Gozlan and to the anonymous referee for their
valuable suggestions and for correcting a mistake in an earlier version of this manuscript.
The research was supported in part by the Israel Science Foundation and by a Marie Curie
Reintegration Grant from the Commission of the European Communities.

2 Convex functions on an interval

Let I, J ⊂ R be two intervals of finite, positive length and letf, g be positive, integrable
functions defined onI, J respectively. Themonotone transportation map fromf to g is the
mapT : I → J defined via

(

1
∫

I f

)∫

I
f(t)1{t<x}dt =

(

1
∫

J g

)∫

J
g(t)1{t<T (x)}dt (x ∈ I)

where1{t<x} equals one whent < x and vanishes otherwise. The mapT is uniquely
defined, asf, g are positive and integrable. Furthermore,T is an absolutely-continuous,
strictly-increasing function. Observe that the monotone transportation in one dimension is
indeed a transportation map and that for almost everyx ∈ I,

T ′(x) =

(

∫

J g
∫

I f

)

f(x)

g(T (x))
. (8)

We will frequently encounter the case whereI = J . Clearly, in this caseT (x) = x for
x ∈ ∂I, where∂I are the two endpoints of the intervalI. Our goal in this section is to
prove the following transportation-cost inequality in onedimension:

Proposition 2.1 LetR ≥ 1 and letI ⊂ R be an interval of length one. Letf : I → (0,∞)
be an absolutely-continuous function which satisfies

f(λx+ (1− λ)y) ≤ R [λf(x) + (1− λ)f(y)] for all x, y ∈ I, 0 < λ < 1.

Letg be a positive, integrable function onI, and letT be the monotone transportation map
from f to g. Then,

∫

I
|T (x)− x|2 f(x)dx ≤ CR2

[∫

I
ST {g, f} −

(∫

I
f

)

log

∫

I g
∫

I f

]

(9)

≤ CR2 · T ire(g || f),

whereC ≤ 40/9 is a universal constant.

The proof of Proposition 2.1 requires a few lemmata. Our firstlemma is essentially
an infinitesimal version of the Prékopa-Leindler inequality, and its proof follows the trans-
portation proofs given by Barthe [2], Cordero-Erausquin [6], Henstock-Macbeath [11] and
Talagrand [23]. Fort ∈ R denote

Λ(t) = min{|t|, t2}.

Lemma 2.2 Let I ⊂ R be an interval of finite, positive length. Letf, g be positive, inte-
grable functions onI with f being absolutely continuous. Then,

∫

I
Λ
(

T ′(x)− 1
)

f(x)dx ≤ 10

3

[∫

I
ST {g, f} −

(∫

I
f

)

log

∫

I g
∫

I f

]

whereT is the monotone transportation map fromf to g.
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Proof: We use (8) and compute
∫

I
ST {g, f} =

∫

I

[

f(x) log
g(T (x))

f(x)
− f ′(x)(T (x) − x)

]

dx

=

(∫

f

)

log

∫

g
∫

f
+

∫

I

[

f(x) log
1

T ′(x)
− f ′(x)(T (x) − x)

]

dx

=

(
∫

f

)

log

∫

g
∫

f
+

∫

I

[

−f(x) log T ′(x) + f(x)(T ′(x)− 1)
]

dx

where the integration by parts is legitimate asf(x)(T (x)− x) is an absolutely-continuous
function inI that vanishes on∂I. In order to complete the proof of the lemma it remains to
show that for allx > 0,

− log x+ (x− 1) ≥ 3

10
·min{|x− 1|, (x− 1)2}. (10)

Indeed, for0 < x ≤ 2 we use the Cauchy-Schwartz inequality and obtain

(x− 1)− log x =

∫ x

1

t− 1

t
dt =

∫ |x−1|

0

t

1 + sgn(x− 1)t
dt ≥

∫ |x−1|

0

t

1 + t
dt

≥
(

∫ |x−1|

0
tdt

)2/(

∫ |x−1|

0
(1 + t)tdt

)

=
(x− 1)2

2(1 + 2|x− 1|/3) ≥ 3(x− 1)2

10
,

wheresgn(x) = 1 for x > 0 andsgn(x) = −1 for x < 0. The inequality (10) is valid in
particular forx = 2. Forx > 2 the derivative of the left-hand side in (10) exceeds that of
the right-hand side. Hence (10) holds true for allx > 0.

Remark 2.3 The proof of Lemma 2.2 admits a generalization ton dimensions, in which
one utilizes the Brenier map in place of the transportation map T . See Barthe [3] and
McCann [18] for related arguments. In this way one obtains the inequality

T ire(g || f) ≥ 0, (11)

which is valid for any Lipschitz, non-negative, compactly-supported functionsf andg on
R
n with a finite, positive integral.

Lemma 2.4 LetR ≥ 1 and letI ⊂ R be an interval of length one. Assume thatρ is a
positive, integrable function onI that satisfies

ρ(λx+ (1− λ)y) ≤ R [λρ(x) + (1− λ)ρ(y)] for all x, y ∈ I, 0 < λ < 1. (12)

Then for anya, b ∈ I with a < b,
∫ b

a
ρ(x)dx ≤ R

2
[ρ(a) + ρ(b)] .

Proof: We simply integrate (12) overλ ∈ [0, 1]. Sinceb− a ≤ 1, then
∫ b

a
ρ ≤

∫ 1

0
ρ(λa+ (1− λ)b)dλ ≤ R

∫ 1

0
[λρ(a) + (1− λ)ρ(b)] dλ = R

ρ(a) + ρ(b)

2
,

and the lemma is proven.

The following lemma is a one-dimensional Poincaré-type inequality. The proof closely
follows the argument by Cheeger [5]. Recall thatΛ(t) = min{|t|, t2}.
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Lemma 2.5 Let I ⊂ R be an interval of length one and letR ≥ 1. Let ρ be a positive,
integrable function onI with

ρ(λx+ (1− λ)y) ≤ R [λρ(x) + (1− λ)ρ(y)] for all x, y ∈ I, 0 < λ < 1.

Then for any absolutely-continuous functionf : I → R with f |∂I = 0,
∫

I
Λ (f) ρ ≤ 4

3
R2

∫

I
Λ
(

f ′
)

ρ. (13)

Here,∂I consists of the two endpoints of the intervalI.

Proof: Multiplying ρ by a constant, we may assume that
∫

I ρ = 1. Let g be an
absolutely-continuous, non-negative function withg|∂I = 0. In the first step of the proof
we show that

∫

I
gρ ≤ R

2

∫

I

∣

∣g′
∣

∣ ρ. (14)

DenoteJ = g(I) = {g(x);x ∈ I}, an interval whose left boundary point is zero. We apply
the change of variablesy = g(x) and conclude that

∫

I

∣

∣g′(x)
∣

∣ ρ(x)dx =

∫

J





∑

x∈g−1(y)

ρ(x)



 dy. (15)

See, e.g., Leoni [16, Theorem 3.65] for a proof of this changeof variables formula. For any
0 6= y ∈ J consider the open setIy = {x ∈ I; g(x) > y}. Wheny is a regular non-zero
value ofg, the open setIy is a finite union of intervals with disjoint closures. According to
Lemma 2.4, for any suchy,

∫

Iy

ρ ≤ R

2





∑

x∈g−1(y)

ρ(x)



 .

The one-dimensional Sard’s lemma for absolutely-continuous functions (see, e.g., Leoni
[16, Remark 8.9]) implies that almost anyy ∈ J is a regular value ofg. Therefore, from
(15) we obtain

∫

I

∣

∣g′(x)
∣

∣ ρ(x)dx ≥ 2

R

∫

J

(

∫

{x;g(x)>y}
ρ(x)dx

)

dy =
2

R

∫

I
gρ

where the last equality follows from application of Fubini’s theorem. Thus (14) is proven.
In order to prove (13), observe that for anyx ≥ 0 and0 ≤ y ≤ 1,

xy ≤ RΛ(x) +
y2

4R
. (16)

Indeed, (16) holds forx ≥ 1 since the coefficient in front ofΛ(x) is at least one, and (16)
may be directly proven for0 ≤ x ≤ 1 by completing a square. Letf : I → R be an
absolutely-continuous function withf |∂I = 0. Applying (14) withg = Λ(|f |) and using
(16) we see that

∫

I
Λ(|f |)ρ ≤ R

2

∫

I
Λ′(|f |)|f ′|ρ ≤ R

∫

I

∣

∣f ′
∣

∣min{|f |, 1}ρ

≤ R ·
[

R

∫

I
Λ(|f ′|)ρ+ 1

4R

∫

I
min{|f |2, 1}ρ

]

≤ R2

∫

I
Λ(|f ′|)ρ+ 1

4

∫

I
Λ(|f |)ρ.

6



By subtracting the right-most summand from the left-hand side, we deduce (13).

Proof of Proposition 2.1: SinceT (x) = x for x ∈ ∂I we may invoke Lemma 2.5 and
conclude that

∫

I
Λ (T (x)− x) f(x)dx ≤ 4

3
R2

∫

I
Λ
(

T ′(x)− 1
)

f(x)dx

≤ 40

9
R2

[∫

I
ST {g, f} −

(∫

I
f

)

log

∫

I g
∫

I f

]

where we used Lemma 2.2 in the last passage. SinceI is an interval of length one and
T : I → I , then for anyx ∈ I we have|T (x)− x| ≤ 1. Consequently, for anyx ∈ I,

Λ (T (x)− x) = min
{

|T (x)− x|2, |T (x)− x|
}

= |T (x)− x|2.

This completes the proof of (9). The proposition now followsfrom the definition of
T ire(g || f).

3 Induction on the dimension

In this section we obtain higher-dimensional analogs of Proposition 2.1.

Theorem 3.1 LetR ≥ 1 and letQ ⊂ R
n be a unit cube parallel to the axes. Assume that

f : Q → (0,∞) is a Lipschitz function with

f (λx+ (1− λ)y) ≤ R [λf(x) + (1− λ)f(y)] (17)

for any 0 < λ < 1 and anyx, y ∈ Q for which x − y is proportional to one of the
standard unit vectors inRn. Letg be a positive, integrable function onQ. Then there exists
a transportation mapT fromf to g such that

∫

Q
|T (x)− x|2 f(x)dx ≤ CR2

[

∫

Q
ST {g, f} −

(
∫

Q
f

)

log

∫

Q g
∫

Q f

]

(18)

≤ CR2 · T ire(g || f),

whereC ≤ 40/9 is a universal constant.

The requirement thatf be a Lipschitz function should not be taken too seriously, as
it may easily be replaced by other types of regularity assumptions. Theorem 3.1 will be
proven by induction on the dimension, where the induction step is going to be Proposition
2.1 in disguise. Throughout this section we use

x = (y, r) ∈ R
n−1 × R

as coordinates inRn. For a functionf defined on a subset ofRn and fory ∈ R
n−1, we

write
fy(r) = f(y, r)

whenever(y, r) is in the domain of definition off . Abbreviateπ(y, r) = y. For a subset
A ⊆ R

n denoteπ(A) = {π(x);x ∈ A}. For a non-negative, integrable functionf defined
on a subsetA ⊆ R

n, we set

π(f)(y) =

∫ ∞

−∞
fy(r)1{(y,r)∈A}dr (y ∈ π(A)).

7



Let K ⊆ R
n be a convex set. Letf, g be positive, integrable functions onK. We say

that a mapT : K → K transports the last coordinate monotonicallyif there exists a map
P : π(K) → π(K) such that for almost anyy ∈ π(K), the functiongP (y) is integrable and
furthermore

T (y, r) = (P (y), Ty(r)) (19)

for anyr with (y, r) ∈ K, whereTy is the monotone transportation map fromfy to gP (y).
The following lemma is a corollary to Proposition 2.1.

Lemma 3.2 LetR ≥ 1. LetQ = A × I ⊂ R
n whereI ⊂ R is an interval of length one

andA ⊂ R
n−1 is a convex set. Assume thatf is a positive, Lipschitz function onQ, and

that
f (λx1 + (1− λ)x2) ≤ R [λf(x1) + (1− λ)f(x2)] (20)

for any 0 < λ < 1 and anyx1, x2 ∈ Q for which x1 − x2 is proportional to one of
the standard unit vectors. Letg be a positive, integrable function onQ. Assume that
T : Q→ Q is a measurable map that transports the last coordinate monotonically. Then,

∫

Q
|Ty(r)− r|2 f(y, r)dydr ≤ CR2

[

∫

Q
ST {g, f} −

∫

π(Q)
SP{π(g), π(f)}

]

(21)

whereP andTy are as in (19), andC ≤ 40/9 is a universal constant.

Proof: According to the definitions (5) and (6), for almost any(y, r) ∈ Q,

ST {g, f}(y, r) = STy{gP (y), fy}(r)−∇yf(y, r) · (P (y)− y) (22)

where∇y is the gradient in they-variables. Thanks to our assumptions onf we may safely
differentiate under the integral sign, thus

∇π(f)(y) · (P (y)− y) =

∫

I
∇yf(y, r) · (P (y)− y)dr (23)

for almost any choice ofy. From (22) and (23),
∫

I
STy{gP (y), fy}(r)dr =

∫

I
ST{g, f}(y, r)dr +∇π(f)(y) · (P (y)− y) (24)

for almost any choice ofy. The equality (24) may be reformulated as

∫

I
STy{gP (y), fy} −

(∫

I
fy

)

log

∫

I gP (y)
∫

I fy
=

∫

I
ST {g, f}(y, r)dr − SP{π(g), π(f)}(y).

(25)
We may apply Proposition 2.1 thanks to our assumption (20) and obtain that

∫

I
|Ty(r)− r|2 fy(r)dr ≤ CR2

[
∫

I
STy{gP (y), fy} −

(
∫

I
fy

)

log

∫

I gP (y)
∫

I fy

]

. (26)

By combining (25) and (26) we see that for almost anyy ∈ π(Q),
∫

I
|Ty(r)− r|2 fy(r)dr ≤ CR2

[∫

I
ST {g, f}(y, r)dr − SP{π(g), π(f)}(y)

]

. (27)

We now integrate (27) overy ∈ π(Q) and deduce (21).

Remark: The identity (23) is the only place in the proof of Theorem 3.1where we use
the assumption thatQ is a cube or a box, rather than, say, a parallelepiped.
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Lemma 3.3 Let R ≥ 1 and letQ ⊂ R
n be a cube parallel to the axes. Assume that

f : Q → R is a Lipschitz function onQ, such that

f (λx1 + (1− λ)x2) ≤ R [λf(x1) + (1− λ)f(x2)] (28)

for any 0 < λ < 1 and anyx1, x2 ∈ Q for whichx1 − x2 is proportional to one of the
standard unit vectors inRn. Then also

π(f) (λy1 + (1− λ)y2) ≤ R [λπ(f)(y1) + (1− λ)π(f)(y2)]

for any0 < λ < 1 and anyy1, y2 ∈ π(Q) for whichy1 − y2 is proportional to one of the
standard unit vectors inRn−1.

Proof: Fix i = 1, . . . , n − 1 and letei be theith standard unit vector. Condition (28)
implies that for anyy ∈ R

n−1, t1, t2, r ∈ R, 0 < λ < 1 such that(y + t1ei, r) ∈ Q and
(y + t2ei, r) ∈ Q,

f (y + (λt1 + (1− λ)t2) ei, r) ≤ R [λf (y + t1ei, r) + (1− λ)f (y + t2ei, r)] .

Let I be the interval for whichQ = π(Q)× I. Integrating with respect tor we have

π(f) (y + (λt1 + (1− λ)t2) ei) =

∫

I
f (y + (λt1 + (1− λ)t2) ei, r) dr

≤ R

∫

I
[λf (y + t1ei, r) + (1− λ)f (y + t2ei, r)] dr

= R [λπ(f)(y + t1ei) + (1− λ)π(f)(y + t2ei)] ,

and the lemma is proven.

Proof of Theorem 3.1:We will prove by induction on the dimensionn that there exists
a transportation mapT from f to g such that

∫

Q
|T (x)− x|2f(x)dx ≤ 40

9
R2

[

∫

Q
ST {g, f} −

(
∫

Q
f

)

log

∫

Q g
∫

Q f

]

. (29)

The casen = 1 is Proposition 2.1. Assume that the induction hypothesis was proven for
dimensionn − 1, and let us prove it for dimensionn. Thus, suppose that we are given a
cubeQ ⊂ R

n and functionsf, g which satisfy the assumptions of the theorem. In view of
Lemma 3.3, we may apply the induction hypothesis for

π(Q), π(f), π(g).

Thus, there exists a transportation mapP : π(Q) → π(Q) from π(f) to π(g) such that
∫

π(Q)
|P (y)− y|2π(f)(y)dy (30)

≤ 40

9
R2

[

∫

π(Q)
SP{π(g), π(f)} −

(

∫

π(Q)
π(f)

)

log

∫

π(Q) π(g)
∫

π(Q) π(f)

]

.

For y ∈ π(Q) let Ty be the monotone transportation map fromfy to gP (y), a strictly-
increasing function which is well-defined for almost anyy ∈ π(Q). We set

T (y, r) = (P (y), Ty(r)) for (y, r) ∈ Q.

9



ThenT transports the last coordinate monotonically. Hence, according to Lemma 3.2,

∫

Q
|Ty(r)− r|2 f(y, r)dydr ≤ 40

9
R2

[

∫

Q
ST{g, f} −

∫

π(Q)
SP{π(g), π(f)}

]

. (31)

It is straightforward to verify that the mapT is a transportation map fromf to g. In fact, the
mapT is precisely the Knothe transportation map from [14]. By summing (30) and (31),
we conclude that

∫

Q

[

|P (y)− y|2 + |Ty(r)− r|2
]

f(y, r)dydr (32)

≤ 40

9
R2

[

∫

Q
ST {g, f} −

(

∫

π(Q)
π(f)

)

log

∫

π(Q) π(g)
∫

π(Q) π(f)

]

=
40

9
R2

[

∫

Q
ST {g, f} −

(∫

Q
f

)

log

∫

Q g
∫

Q f

]

.

All that remains is to note that whenx = (y, r),

|T (x)− x|2 = |P (y)− y|2 + |Ty(r)− r|2 .

The bound (29) follows from (32), and the theorem is proven.

4 Log-concavity

We begin this section with a discussion of Definition 1.4. As we shall see, this definition
fits very nicely with log-concave functions. Given two probability densitiesf andg in R

n

we write

D(g || f) =
∫

Rn

[

log
g(y)

f(y)

]

g(y)dy

for the relative entropy or the Kullback-Leibler divergence of g from f .

Lemma 4.1 Let f, g : R
n → [0,∞) be probability densities. Assume thatf is log-

concave. Then,
T ire(g || f) ≤ D(g || f).

Proof: The functionf is differentiable almost-everywhere in the convex setSupp(f)
as it is a log-concave function. Denotef = e−ψ. From the convexity ofψ we see that for
any pointx ∈ Supp(f) in whichf is differentiable,

ψ(x) +∇ψ(x) · (y − x) ≤ ψ(y) (y ∈ Supp(f)).

LetT be any transportation map fromf to g. Denotingϕ = − log g we find that for almost
anyx ∈ Supp(f),

ST{g, f}(x) =

[

f(x) log
g(T (x))

f(x)
−∇f(x) · (T (x)− x)

]

= f(x) [ψ(x)− ϕ(T (x)) +∇ψ(x) · (T (x)− x)]

≤ f(x) [ψ(T (x)) − ϕ(T (x))] = f(x) log
g(T (x))

f(T (x))
.

10



SinceT is a transportation map fromf to g, then by applying the change of variables
y = T (x) we obtain

∫

Supp(f)
ST {g, f} ≤

∫

Supp(f)
log

g(T (x))

f(T (x))
f(x)dx

=

∫

Supp(g)

[

log
g(y)

f(y)

]

g(y)dy = D(g || f)

and the lemma is proven.

For a log-concave densityf , we may think aboutT ire(g || f) as a parameter measuring
the proximity ofg to a translate off . Let us mention here additional upper bounds for
T ire(g || f). Let f, g : Rn → [0,∞) have finite, positive integrals and denoteψ = − log f
andϕ = − log g. According to (5),

sup
y∈Supp(g)

Sy{g, f}(x) = [∇f(x) · x− f(x) log f(x)] + f(x)ϕ∗(∇ψ(x)) (33)

whereϕ∗(v) = supy∈Supp(g) [v · y − ϕ(y)] is the usual Legendre transform ofϕ. Con-
sequently, whenf is locally-Lipschitz andx 7→ |x|f(x) vanishes at infinity, we have the
bound

T ire(g || f) ≤
∫

Rn

[

ϕ∗ (∇ψ(x)) − log

(
∫

g
∫

f
· f(x)

)

− n

]

f(x)dx. (34)

Inequality (34) is perhaps less appealing than Lemma 4.1, yet it is applicable also in the
non log-concave case.

Our original motivation for Definition 1.4 is that at least inthe smooth, log-concave
case, the expression in (33) equals∂hε(x) /∂ε |ε=0 where

hε(x) = sup
y∈Rn

f(x+ εy)1−εg(x − (1− ε)y)ε (x ∈ R
n).

In other words,T ire(g || f) is related to a kind of “mixed volume” of log-concave func-
tions, see [12, Section 3] for further explanations.

Suppose thatµ1 andµ2 are Borel probability measures onRn. Thetransportation cost
betweenµ1 andµ2 is defined to be

W 2
2 (µ1, µ2) = inf

γ

∫

Rn×Rn

|x− y|2dγ(x, y)

where the infimum runs over all couplingsγ of µ1 andµ2, i.e., all Borel probability mea-
suresγ onRn ×R

n whose first marginal isµ1 and whose second marginal isµ2. See, e.g.,
Villani’s book [25] for more information about the transportation metricW2. The follow-
ing theorem reminds us of Talagrand’s transportation-costinequalities for product measures
from [23].

Theorem 4.2 LetR ≥ 1 and letQ ⊂ R
n be a unit cube parallel to the axes. Suppose that

µ is a probability measure onQ with a log-concave densityf . Assume that

f (λx+ (1− λ)y) ≤ R [λf(x) + (1− λ)f(y)] (35)

for any0 < λ < 1 and anyx, y ∈ Q for whichx− y is proportional to one of the standard
unit vectors inRn. Letν be a probability measure onQ that is absolutely continuous with
respect toµ. Then,

W 2
2 (µ, ν) ≤ CR2D (ν ||µ)

whereD (ν ||µ) =
∫

g(log g)dµ for g = dν/dµ, the usual relative entropy functional, and
whereC ≤ 40/9 is a universal constant.
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Proof: By a standard approximation argument (e.g., convolveµ with a tiny gaussian
and restrict to the cubeQ), we may assume thatf andg are positive andC1-smooth up to
the boundary inQ, and in particular both functions are positive and Lipschitz. According
to Theorem 3.1 and Lemma 4.1,

W 2
2 (µ, ν) ≤ CR2 · T ire (g || f) ≤ CR2 ·D (ν ||µ) .

Transportation-cost inequalities such as Theorem 4.2 are the subject of the compre-
hensive survey by Gozlan and Léonard [10]. The fact that transportation-cost inequalities
imply concentration inequalities goes back to Marton [17].The following proof reproduces
her argument, and is included here for completeness.

Proof of Theorem 1.2:DenoteE = Q \ (A+ tBn). If µ(E) = 0 then there is nothing
to prove. Otherwise, we apply Theorem 4.2 for the measureν = µ|E. Thus there exists a
couplingγ of µ andµ|E with

∫

Q×E
|y − x|2 dγ(x, y) ≤ 40

9
R2D(ν ||µ) = 40

9
R2 · log 1

µ(E)
.

According to the Markov-Chebyshev inequality, there exists a subsetF ⊆ Q × E with
γ(F ) ≥ 41/81 such that for any(x, y) ∈ F ,

|y − x|2 ≤ 9R2 log
1

µ(E)
. (36)

Sinceγ is a coupling andµ(A) ≥ 1/2 with γ(F ) ≥ 41/81, there exists(x, y) ∈ F with
x ∈ A. For such(x, y),

x ∈ A, y ∈ E and |x− y| ≤ 3R ·
√

log
1

µ(E)

where we used (36). However, all points inE are of distance at leastt from all points ofA.
Consequently,

t ≤ 3R ·
√

log
1

µ(E)
.

Thereforeµ(E) ≤ exp(−t2/α2) for α = 3R andµ(A + tBn) ≥ 1 − exp(−t2/α2), as
required.

Proof of Theorem 1.1: Let T > 0. Observe that the validity of both the assumptions
and the conclusions of the theorem is not altered under the scaling

ℓ 7→ Tℓ, M 7→ T−2M.

We may thus normalize so thatℓ = 1. All that remains is to verify that the assumptions
of Theorem 1.2 are satisfied withR = eM/8. Fix i = 1, . . . , n andx ∈ Q and denote
h(t) = ψ(x + tei). Thenh is well-defined on a certain intervalI ⊂ R of length one, and
our goal is to show that for anya, b ∈ I and0 < λ < 1,

e−h(λa+(1−λ)b) ≤ eM/8
[

λe−h(a) + (1− λ)e−h(b)
]

. (37)

In view of the arithmetic/geometric means inequality, the desired inequality (37) would
follow once we establish that

− h(λa+ (1− λ)b) ≤M/8− λh(a)− (1− λ)h(b). (38)
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In order to prove (38), we use our assumption thath′′(t) ≤M in the intervalI. According
to the Taylor theorem, for anyx, y ∈ I,

h(y) − h(x)− h′(x)(y − x) ≤M
(x− y)2

2
. (39)

We will apply inequality (39) fory = a, b andx = λa + (1 − λ)b, then add the resulting
inequalities with coefficientsλ and1− λ. This yields

λh(a) + (1− λ)h(b)− h(λa+ (1− λ)b) ≤M
λ(1− λ)(b− a)2

2
≤ M

8
(40)

asλ(1− λ) ≤ 1/4 and|b− a| ≤ 1. The inequality (38) follows from (40).

It is well-known (see, e.g., V. Milman and Schechtman [20, Section 2 and Appendix
V]) that Theorem 1.1 implies a concentration inequality forLipschitz functions as follows:

Corollary 4.3 LetQ,µ, α be as in Theorem 1.1 (or as in Theorem 1.2). Letf : Q→ R be
a 1-Lipschitz function, i.e.,|f(x)−f(y)| ≤ |x−y| for anyx, y ∈ Q. DenoteE =

∫

Q fdµ.
Then, for anyt > 0,

µ {x ∈ Q ; |f(x)− E| ≥ t} ≤ Ce−ct
2/α2

wherec, C > 0 are universal constants.

In particular, we deduce from Corollary 4.3 that in the notation of Theorem 1.1,

Cov(µ) ≤ Cα2 · Id (41)

in the sense of symmetric matrices, whereCov(µ) is the covariance matrix of the probabil-
ity measureµ andC > 0 is a universal constant.

Remark 4.4 Regarding the dependence ofα(ℓ,M) onM in Theorem 1.1: LetX0, . . . ,Xn

be independent standard Gaussian random variables. Consider the random vector

Y =
(X1, . . . ,Xn)

100
√
log n

+
(X0, . . . ,X0)

100
√
log n

,

and letZ be the conditioning ofY to the cubeQ = [−1/2, 1/2]n . Denote byµ the
distribution ofZ, a probability measure onQ. It is not too difficult to verify thatµ satisfies
the requirements of Theorem 1.1 withℓ = 1 andM = C log n. SetA = {x ∈ Q;

∑

i xi ≤
0}. Thenµ(A) = 1/2. However, one may compute that for anyt ≤ cn1/2/

√
log n,

µ(A+ tBn) ≤ 2/3.

This shows thatα(1, C log n) ≥ cn1/2/
√
log n. Therefore the exponential dependence

of the dimension-free expressionα(ℓ,M) on ℓ2M is inevitable. A simple variant of this
example shows that it is also impossible to replace the cubeQ of sidelengthℓ in Theorem
1.1 by a Euclidean ball of radiusℓ

√
n. For another example in which the cube behaves

better than the Euclidean ball, see [13, Corollary 3].

It was explained by E. Milman [19] that in the log-concave case, Gaussian concentration
inequalities, quadratic transportation-cost inequalities, and log-Sobolev inequalities are all
essentially equivalent up to universal constants. In particular, by using the results of Otto
and Villani [21, Corollary 3.1], we deduce from Theorem 4.2 the following log-Sobolev
and Poincaré inequalities:
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Corollary 4.5 Let ℓ,M,Q, µ be as in Theorem 1.1 (or as in Theorem 1.2, withℓ = 1 and
R = eM/8). Then, for any locally-Lipschitz functionf : Q→ R with

∫

Q f
2dµ = 1,

∫

Q
f2 log

(

f2
)

dµ ≤ C1ℓ
2eMℓ2/4

∫

Q
|∇f |2dµ,

and for any integrable, locally-Lipschitz functionf : Q→ R with
∫

Q fdµ = 0,

∫

Q
f2dµ ≤ C2ℓ

2eMℓ2/4

∫

Q
|∇f |2dµ.

Here,C1 ≤ 160/9 andC2 ≤ 20/9 are universal constants.

It is conceivable that Theorem 1.1 and Corollary 4.5 will turn out to be relevant to the
analysis of lattice models in physics. For instance, one maysuggest an Ising model with
bounded, real spins as in Royer [22, Section 4.2] in which theassumptions of Theorem 1.1
are satisfied. Essentially, we require that the spins lie in the interval[−1, 1], that the entire
Hamiltonian is convex (just convex, not strictly-convex) and that the second derivatives
of the pairwise potentials and the self-interactions are bounded. Perhaps the logarithmic
Sobolev inequality of Corollary 4.5 may be of some use in thiscontext.

5 Yet another approach for Theorem 4.2

In this section we present a sketch of an alternative proof ofTheorem 4.2, in spirit of the
transportation arguments of Cordero-Erausquin [6]. The derivation below is applicable for
the two types of transportation maps, Brenier and Knothe.

Let f, g, µ andν satisfy the assumptions of Theorem 4.2. As is explained above, it
suffices to consider the case wheref andg are positive, Lipschitz functions. In particular,
it is well-known that both the Brenier map and the Knothe map fromµ to ν areC1-smooth
up to the boundary (see Cordero-Erausquin [7]).

Denoteψ = − log f , a convex function. LetF be any smooth transportation map from
µ to ν. Then, similarly to (8) above, we have

log
∣

∣detF ′(x)
∣

∣ = −ψ(x) + ψ(F (x)) − log g(F (x)) (x ∈ Q)

whereF ′(x) is then × n matrix which is the derivative ofF . In the case whereF is the
Brenier map, the matrixF ′(x) is symmetric and positive-definite. In the case whereF is
the Knothe map, the matrixF ′(x) is upper-triangular with positive entries on the diagonal.
In both cases, denotingF = (F1, . . . , Fn),

log
∣

∣detF ′(x)
∣

∣ = log detF ′(x) ≤
n
∑

i=1

log ∂iFi(x) (x ∈ Q). (42)

Indeed, in the Knothe case (42) is simply an equality, while in the Brenier case we may
use Hadamard’s determinant inequality in order to establish (42). Next, denoteθ(x) =
F (x)−x, so that∂iFi(x) = 1+∂iθi(x). We use the elementary inequality for the logarithm
function in (10) and obtain

n
∑

i=1

log ∂iFi(x) ≤
n
∑

i=1

[

∂iθi(x)−
3

10
Λ
(

∂iθi(x)
)

]

.
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The convexity ofψ implies that

ψ(F (x)) − ψ(x) ≥ ∇ψ(x) · (F (x)− x) = ∇ψ(x) · θ(x) =
n
∑

i=1

θi(x)∂
iψ(x).

Combining all of the above, we arrive at the inequality

log g(F (x)) ≥ 3

10

n
∑

i=1

Λ
(

∂iθi(x)
)

−
n
∑

i=1

[

∂iθi(x)− ∂iψ(x) · θi(x)
]

, (43)

valid pointwise inQ. Here comes a fundamental property of both the Brenier map and the
Knothe map: In both cases, the mapF preserves each of the(n− 1)-dimensional facets of
the cubeQ. In other words, letA±

1 , . . . , A
±
n be an enumeration of all of the2n facets of

dimensionn− 1 of the cubeQ. Assume that±ei is the outer unit normal to the cubeQ at
the facetA±

i . We claim that for anyi,

x ∈ A±
i =⇒ θi(x) = 0. (44)

It is quite clear that (44) holds in the case of the Knothe map.In order to argue for (44) in
the Brenier case, recall that here

(F (x)− F (y)) · (x− y) > 0 (x, y ∈ Q, x 6= y)

asF is the gradient of a strictly-convex function. In particular, whenF (x) ∈ A±
i then

necessarilyx ± tei 6∈ Q for t ∈ (0, ε) for someε > 0. HenceF (x) ∈ A±
i implies that

x ∈ A±
i . Arguing similarly for the inverse mapF−1, which is the Brenier map fromν to

µ, we conclude that (44) holds true in the Brenier case as well.

We may now multiply (43) bye−ψ and integrate over the cubeQ. Observe that for any
i = 1, . . . , n,

∫

Q

[

∂iθi(x)− ∂iψ(x) · θi(x)
]

e−ψ =

∫

Q
∂i
(

θie
−ψ
)

= 0

thanks to the boundary condition (44). Furthermore, this boundary condition allows us to
use the one-dimensional Lemma 2.5, and conclude that

∫

Q
Λ (θi(x)) dµ(x) ≤

4R2

3

∫

Q
Λ
(

∂iθi(x)
)

dµ(x)

for i = 1, . . . , n. We therefore obtain

∫

Q

n
∑

i=1

Λ (θi(x)) dµ(x) ≤
40

9
R2

∫

Q
[log g(F (x))] dµ(x) =

40

9
R2

∫

Q
[log g(y)] dν(y).

It remains to note that always|θi(x)| = |Fi(x) − xi| ≤ 1 sinceQ is a unit cube. Conse-
quentlyΛ(θi(x)) = |θi(x)|2 and hence,
∫

Q
|F (x)−x|2dµ(x) =

∫

Q
|θ(x)|2dµ(x) ≤ 40

9
R2

∫

Q
[log g(y)] dν(y) =

40

9
R2·D (ν ||µ) .

This finishes the sketch of the alternative proof of Theorem 4.2.

15



References
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Math., Vol. 324., No. 8, (1997), 885–888.

[3] Barthe, F.,On a reverse form of the Brascamp-Lieb inequality.Invent. Math., Vol.
134, No. 2, (1998), 335–361.

[4] Brenier, Y.,Polar factorization and monotone rearrangement of vector-valued func-
tions. Comm. Pure Appl. Math., Vol. 44, No. 4, (1991), 375–417.

[5] Cheeger, J.,A lower bound for the smallest eigenvalue of the Laplacian.Problems in
analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Prince-
ton, NJ, (1970), 195–199.

[6] Cordero-Erausquin, D.,Some applications of mass transport to Gaussian-type in-
equalities.Arch. Ration. Mech. Anal., Vol. 161, No. 3, (2002), 257-269.

[7] Cordero-Erausquin, D.,Sur le transport de mesures périodiques.C. R. Acad. Sci.
Paris Sér. I Math., Vol. 329, No. 3, (1999), 199-202.

[8] Dembo, A., Zeitouni, O.,Transportation approach to some concentration inequalities
in product spaces.Electron. Comm. Probab., Vol. 1, No. 9, (1996), 83–90.

[9] Eldan, R., Klartag, B., Dimensionality and the stability of the Brunn-
Minkowski inequality.To appear in Ann. Sc. Norm. Super. Pisa. Available under
http://arxiv.org/abs/1110.6584
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