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Vector Balancing in Lebesgue Spaces

Victor Reis * Thomas Rothvoss †

Abstract

A tantalizing conjecture in discrete mathematics is the one of Komlós, suggest-
ing that for any vectors a1, . . . , an ∈ Bm

2 there exist signs x1, . . . , xn ∈ {−1,1} so that
‖
∑n

i=1 xi ai ‖∞ ≤ O(1). It is a natural extension to ask what ℓq -norm bound to ex-
pect for a1, . . . , an ∈ Bm

p . We prove that, for 2 ≤ p ≤ q ≤ ∞, such vectors admit frac-
tional colorings x1, . . . , xn ∈ [−1,1] with a linear number of ±1 coordinates so that
‖
∑n

i=1 xi ai ‖q ≤ O(
√

min(p, log(2m/n))) ·n1/2−1/p+1/q , and that one can obtain a full

coloring at the expense of another factor of 1
1/2−1/p+1/q

. In particular, for p ∈ (2,3] we

can indeed find signs x ∈ {−1,1}n with ‖
∑n

i=1 xi ai‖∞ ≤ O(n1/2−1/p · 1
p−2 ). Our result

generalizes Spencer’s theorem, for which p = q =∞, and is tight for m = n.
Additionally, we prove that for any fixed constant δ > 0, in a centrally symmet-

ric body K ⊆ R
n with measure at least e−δn one can find such a fractional coloring

in polynomial time. Previously this was known only for a small enough constant —
indeed in this regime classical nonconstructive arguments do not apply and partial
colorings of the form x ∈ {−1,0,1}n do not necessarily exist.

1 Introduction

The celebrated Spencer’s Theorem in discrepancy theory [Spe85] shows that "six standard
deviations suffice" for balancing vectors in the ℓ∞-norm: for any a1, . . . , an ∈ [−1,1]n , there
exist signs x ∈ {−1,1}n such that ‖

∑n
i=1 xi ai‖∞ ≤ 6

p
n. More generally, Spencer showed

that for vectors in [−1,1]m with n ≤m one can achieve a bound of O(
√

n log(2m/n)). While
his proof used a nonconstructive form of the partial coloring lemma based on the pigeon-
hole principle, in the past decade several approaches starting with the breakthrough work
of Bansal [Ban10] did succeed in computing such signs in polynomial time [LM12, Rot14,
LRR16, ES18].

As for balancing vectors of bounded ℓ2-norm, the situation has been more delicate. In
the same paper, Spencer [Spe85] showed a nonconstructive bound of O(log n) for the ℓ∞
discrepancy of vectors a1, . . . , an ∈ B m

2 and also stated a conjecture of Komlós that this may
be improved to O(1). This was improved to O(

√

log n) by Banaszczyk [Ban98] who showed
that in fact for any set of n vectors of ℓ2-norm at most 1 and any convex body K ⊆ R

m
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of Gaussian measure at least 1/2, some ±1 combination of such vectors lies in 5 ·K . For
the more general setting of ℓq discrepancy, the work of Barthe, Guédon, Mendelson and
Naor [BGMN05] shows that, for q ≥ 2, a O(

p
q ·n1/q ) scaling of n-dimensional slices of

the ℓq ball in R
m does have Gaussian measure at least 1/2, thus implying a corresponding

O(
p

q ·n1/q ) upper bound for balancing vectors from ℓ2 to ℓq . For q = log n, this matches
the ℓ2 to ℓ∞ bound of O(

√

log n). Banaszczyk’s proof was nonconstructive and the first
polynomial time algorithm in the general convex body setting was found only recently
by Bansal, Dadush, Garg and Lovett [BDGL18], while the Komlós conjecture remains an
open problem. The work of [BDGL18] actually shows that for any vectors a1, . . . , an ∈ B m

2
there exists an efficiently computable distribution over signs x ∈ {−1,1}n so that the sum
∑n

i=1 xi ai is O(1)-subgaussian and will be in O(1) ·K with good probability. Interestingly,
this means their algorithm is oblivious to the body K , which is a striking difference to the
regime of γn(K ) = e−Θ(n) where any algorithm needs to be dependent on K . The connec-
tion between Banaszczyk’s theorem and subgaussianity is due to Dadush et al. [DGLN16].

For the general setting of balancing vectors from ℓp to ℓq norms, not much was known
beyond Spencer’s theorem (p =∞) or what can be deduced from Banaszczyk’s theorem as
above: any vector in B m

p also belongs to mmax(0,1/2−1/p) ·B m
2 , thus implying a discrepancy

bound of O(
p

q) ·mmax(0,1/2−1/p) ·n1/q . Even in the square case m = n, it has been an open
problem to remove the dependency on

p
q [DNTT18]. The goal of this paper is to provide

a unified approach for balancing from ℓp to ℓq via optimal constructive fractional partial
colorings, which yield optimal bounds for most of the range 1 ≤ p ≤ q ≤ ∞. We obtain
such fractional partial colorings by proving a new measure lower bound on the relevant
linear preimages of ℓq balls (Section 3) and an improved algorithm which works for sets
of Gaussian measure e−δn for any δ> 0 (Section 4), as opposed to previous work ([Rot14,
ES18]) which required measure e−δn for sufficiently small δ> 0.

As an application of our results, we show a slight improvement to the bounds for the
well-known Beck-Fiala conjecture [BF81], a discrete version of Komlós. It asks for a O(

p
t )

bound on the ℓ∞ discrepancy of any a1, . . . , an ∈ {0,1}m , each with at most t ones. We
establish the conjecture for t ≥ n and show slightly improved bounds when t is close to n

(Corollary 4).
Notation. Let B m

p := {x ∈ R
m : ‖x‖p ≤ 1} denote the unit ball in the ℓp -norm. The

Gaussian measure of a measurable set K ⊆ R
n is given by γn(K ) := Prx∼N(0,In )[x ∈ K ]. We

denote the mean width of a convex set as w (K ) := Eθ∈Sn−1 [supx∈K 〈θ, x〉]. The Euclidean
distance to a set S ⊆ R

n is denoted by d (x ,S) := min{‖x − y‖2 : y ∈ S}. If A ∈ R
m×n is a

matrix, we denote its rows by A1, . . . , Am ∈R
n and its columns by a1, . . . , an ∈R

m . Naturally,
a matrix can also be interpreted as a (not necessarily invertible) linear map. Then for any
set K ⊆R

m , we use the notation A−1(K ) := {x ∈R
n : Ax ∈ K }.
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1.1 Our contribution

Our main contribution is a tight bound on partial colorings for balancing from ℓp to ℓq :

Theorem 1. Let n ≤ m and 1 ≤ p ≤ q ≤ ∞. Then for any a1, . . . , an ∈ B m
p , there exists a

polynomial-time computable partial coloring x ∈ [−1,1]n with |{i : x2
i
= 1}| ≥ n/2 so that

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

q
≤C

√

min
(

p, log
(2m

n

))

·nmax(0,1/2−1/p)+1/q ,

for some universal constant C > 0.

We would like to mention that, as noted by Banaszczyk [Ban93], the condition n ≤ m

does not weaken the theorem: in fact for n > m the upper bound can only be larger than
that of n = m by a factor of two. On the other hand, the condition p ≤ q is natural, for
otherwise if p > q we would need a polynomial dependence on the dimension m, even
for n = 1. By iteratively applying Theorem 1 we can obtain a full coloring at the expense of
another factor of 1

max(0,1/2−1/p)+1/q , with the caveat that p > 2 whenever q =∞:

Theorem 2. Let n ≤ m and 1 ≤ p ≤ q ≤∞ with max(0,1/2−1/p)+1/q > 0. Then for any
a1, . . . , an ∈ B m

p , there exist polynomial-time computable signs x ∈ {−1,1}n so that

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

q
≤

C

√

min
(

p, log
(

2m
n

))

max(0,1/2−1/p)+1/q
·nmax(0,1/2−1/p)+1/q ,

for some universal constant C > 0.

This significantly improves upon the general
p

q ·mmax(0,1/2−1/p) ·n1/q bound from Ba-
naszczyk’s theorem in [DNTT18] when p = 2+ε for (not too small) ε> 0 and q ≫ 1.

When p = q and m =n, we get the following corollary which matches, up to a constant,
the lower bound Ω(

p
n) of [Ban93] known to hold for any norm:

Corollary 3 (ℓp version of Spencer’s theorem). Let 2 ≤ p ≤ ∞ and n ∈ N. Then for any
a1, . . . , an ∈ B n

p , there exist polynomial-time computable signs x ∈ {−1,1}n so that

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

p
≤C

p
n,

for some universal constant C > 0.

The following corollary shows the Beck-Fiala conjecture holds for t ≥ n and slightly
improves upon the best known bound of O(

√

t logn) [Ban98] when t is close to n:

Corollary 4 (Bound for Beck-Fiala). Let n ≤ m and a1, . . . , an ∈ {0,1}m , each with at most
t ∈ [m] ones. Then there exist polynomial-time computable signs x ∈ {−1,1}n so that

3



∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥
∞

≤C
p

t log
(2max(n, t )

t

)

,

for some universal constant C > 0.

Finally, we show the partial coloring bound in Theorem 1 is tight at least when m = n:

Theorem 5. Let 1 ≤ p ≤ q ≤∞. There exist infinitely many positive integers n for which we
can find a1, . . . , an ∈ B n

p such that for any x ∈ [−1,1]n with |{i : x2
i
= 1}| ≥ n/2 one has

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

q
≥C ·nmax(0,1/2−1/p)+1/q ,

for some universal constant C > 0.

As we mentioned earlier, the result of Gluskin [Glu89] and Giannopoulos [Gia97] shows
that for a small enough constant, a symmetric convex body K with γn(K ) ≥ e−αn contains
a partial coloring x ∈ {−1,0,1}n \ {0} with a linear number of entries in ±1. We can prove
that for fractional colorings any constant α > 0 suffices. Our argument even works for
intersections with a large enough subspace.

Theorem 6. For all α,β,γ > 0, there is a constant C := C (α,β,γ) > 0 so that the following
holds: There is a randomized polynomial time algorithm which for a symmetric convex set
K ⊆ R

n with γn(K ) ≥ e−αn , a shift y ∈ [−1,1]n and a subspace H ⊆ R
n with dim(H ) ≥ βn,

finds an x ∈ (C ·K ∩H ) with x + y ∈ [−1,1]n and |{i ∈ [n] : (x + y )i ∈ {±1}}| ≥ (β−γ)n.

2 Preliminaries

We will use two elementary inequalities dealing with ℓp -norms. The first one estimates
the ratio between different norms:

Lemma 7. For any z ∈R
m and 1 ≤ p ≤ q ≤∞, we have ‖z‖q ≤ ‖z‖p ≤ m1/p−1/q‖z‖q .

It is instructive to note that this bound implies ‖z‖∞ ≤ ‖z‖log2(m) ≤ 2‖z‖∞. If one has
an upper bound on the largest entry in a vector — say ‖z‖∞ ≤ 1 — then one can strengthen
the first inequality to ‖z‖q

q ≤ ‖z‖p
p . More generally:

Lemma 8. For any z ∈R
m and 1 ≤ p ≤ q ≤∞, we have ‖z‖q

q ≤ ‖z‖p
p · ‖z‖q−p

∞ .

We will also need the following version of Khintchine’s inequality, see e.g. the excellent
textbook of Artstein-Avidan, Giannopoulos and Milman [AAGM15].

Lemma 9 (Khintchine’s inequality). Given p > 0, a1, . . . , an ∈R and x ∼ N (0, In), we have

E

[∣
∣
∣

n∑

i=1
xi ai

∣
∣
∣

p]

≤C
p

p ·
( n∑

i=1
a2

i

)p/2

4



where C > 0 is a universal constant.

This fact can be derived from a standard Chernov bound which guarantees that for
a vector with ‖a‖2 = 1 one has Pr[| 〈a, x〉 | > λ] ≤ 2e−λ2/2; then one can analyze that the
regime of λ = Θ(

p
p) dominates the contribution to E[| 〈a, x〉 |p ]. We use it to show the

following:

Lemma 10. Given p ≥ 1 and a1, . . . , an ∈ B m
p and x ∼ N (0, In), we have

E

[∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

p

]

≤O(
p

p ·nmax(1/2,1/p)).

Proof. By convexity of z 7→ |z|p , Jensen’s inequality in (∗) and Khintchine’s inequality in
(∗∗) (Lemma 9) we have

E

[∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

p

] (∗)
≤ E

[∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

p

p

]1/p

=
( ∑

j∈[m]
E

[∣
∣
∣

∑

i∈[n]
xi ai j

∣
∣
∣

p])1/p

(∗∗)
≤ C

p
p ·

( ∑

j∈[m]

( ∑

i∈[n]
a2

i j

)p/2)1/p
.

If p ∈ [1,2], write A j ∈R
n as (A j )i := ai j . Then by Lemma 7,

( ∑

j∈[m]

( ∑

i∈[n]
a2

i j

)p/2)1/p
=

( ∑

j∈[m]
‖A j‖

p
2

)1/p
≤

( ∑

j∈[m]
‖A j‖

p
p

)1/p
=

( ∑

i∈[n]
‖ai‖

p
p

)1/p
≤ n1/p .

Now suppose that p ≥ 2. Define (ai )2 ∈R
m to be the vector with j th coordinate a2

i j
. Since

‖ ·‖p/2 is a norm, we can use the triangle inequality to get

( ∑

j∈[m]

( ∑

i∈[n]
a2

i j

)p/2)1/p
=

∥
∥
∥

∑

i∈[n]
(ai )2

∥
∥
∥

1/2

p/2
≤

( ∑

i∈[n]
‖(ai )2‖p/2

)1/2
=

( ∑

i∈[n]
‖ai‖2

p

)1/2
≤ n1/2.

Either way, we conclude that E[‖
∑n

i=1 xi ai‖p ] ≤O(
p

p ·nmax(1/2,1/p)), as desired.

A well-known correlation inequality for Gaussian measure is the following:

Lemma 11 (Šidak [Šid67] and Kathri [Kha67]). For any symmetric convex set K ⊆ R
n and

strip S = {x ∈R
n : | 〈a, x〉 | ≤ 1}, one has γn(K ∩S)≥ γn(K ) ·γn(S).

It is worth noting that a recent result of Royen [Roy14] extends this to any two arbitrary
symmetric sets, though its full power will not be needed. We refer to the exposition of
Latała and Matlak [LM17]. We also need a one-dimensional estimate:

Lemma 12. For a strip S = {x ∈R
n : | 〈a, x〉 | ≤ 1}, one has

γn(S)=γ1({x ∈R : |x| ≤ ‖a‖−1
2 }) ≥ 1−exp(−‖a‖−2

2 /2).

5



We use the following scaling lemma to deal with constant factors:

Lemma 13. Let K ⊂ R
n be a measurable set and B be a closed Euclidean ball such that

γn(K ) = γn(B ). Then γn(t K )≥ γn(t B ) for all t ∈ [0,1]. In particular, if γn(C ·K ) ≥ 2−O(n) for
some constant C > 1 then also γn(K ) ≥ 2−O(n).

For Section 4 we also need two helpful results. For the first one, see [vH14].

Theorem 14. If F : Rm →R is 1-Lipschitz, then for t ≥ 0 one has

Pr
y∼N(0,Im )

[

F (y )> E[F (y )]+ t
]

≤ e−t 2/2.

The classical Urysohn Inequality states that among all convex bodies of identical vol-
ume, the Euclidean ball minimizes the width. We will need a variant that is phrased in
terms of the Gaussian measure rather than volume. For a proof, see Eldan and Singh [ES18].

Theorem 15 (Gaussian Variant of Urysohn’s Inequality). Let K ⊆ R
n be a convex body and

let r > 0 be so that γn(K )= γn(r B n
2 ). Then w (K )≥ w (r B n

2 ) = r .

3 Main technical result

In this section we show our measure lower bound for balancing vectors from ℓp to ℓq :

Theorem 16. Let n ≤ m and 1 ≤ p ≤ q ≤∞. Then for any a1, . . . , an ∈ B m
p ,

γn

({

x ∈R
n :

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

q
≤

√

min
(

p, log
(2m

n

))

·nmax(0,1/2−1/p)+1/q
})

≥ 2−O(n).

In order to show Theorem 16, roughly speaking it will suffice to show the correspond-
ing bounds for the two special cases of q ∈ {p,∞}, which can be bootstrapped into a gen-
eral bound. First we address the simpler case p = q which at heart is based on Khintchine’s
inequality:

Lemma 17. Let n ≤m and p ≥ 1. Then for any a1, . . . , an ∈ B m
p ,

γn

({

x ∈R
n :

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

p
≤p

p ·nmax(1/2,1/p)
})

≥ 2−O(n).

Proof. By Lemma 10 we know that, for some constant C > 0,

E
x∼N(0,In )

[∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

p

]

≤C
p

p ·nmax(1/2,1/p).

By Markov’s inequality it follows that

γn

({

x ∈R
n :

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

p
≤ 2C

p
p ·nmax(1/2,1/p)

})

≥ 1/2,

6



so that the result follows by Lemma 13.

Next, we deal with the crucial case q =∞:

Lemma 18. Let n ≤ m and p ≥ 1. Then for any A ∈R
m×n with columns a1, . . . , an ∈ B m

p and

rows A1, . . . , Am ∈R
n , the body K := {x ∈R

n : ‖
∑n

i=1 xi ai‖∞ ≤p
p ·nmax(0,1/2−1/p)} satisfies

γn(K ) ≥
∏

j∈[m]
γn({x ∈R

n : |〈x , A j 〉| ≤
p

pnmax(0,1/2−1/p)}) ≥ 2−O(n).

Proof. The main idea in the proof is that we can convert the bound on the ℓp -norm of the
columns ai into information about the ℓ2-norm of the rows A j . Namely,

( 1

n

∑

j∈[m]
‖A j‖

p
2

)1/p Lem 7
≤ nmax(0,1/2−1/p) ·

( 1

n

∑

j∈[m]
‖A j‖

p
p

︸ ︷︷ ︸

≤n

)1/p
≤ nmax(0,1/2−1/p). (1)

We rescale the row vectors to V j := (
p

pnmax(0,1/2−1/p))−1 A j and abbreviate y j := ‖V j‖2
2, so

that Eq. (1) simplifies to
∑m

j=1 y
p/2
j

≤ n ·p−p/2. We may then apply Šidak’s Lemma 11 and
bound the one-dimensional measure:

γn(K ) = γn

({

x ∈R
n : | 〈x ,V j 〉 | ≤ 1 ∀ j ∈ [m]

})

Lem 11
≥

∏

j∈[m]
γn

({

x ∈R
n : |〈x ,V j 〉| ≤ 1

})

Lem 12
≥

∏

j∈[m]

(

1−exp(−y−1
j /2)

)

Claim I
≥

∏

j∈[m]
exp

(

−C ′pp/2 y
p/2
j

)

= exp
(

−C ′pp/2
∑

j∈[m]
y

p/2
j

)

≥ exp(−C ′n)

Here we have used an estimate that remains to be proven:
Claim I. For any p ≥ 1 and y > 0 one has 1−exp(− 1

2y ) ≥ exp(−C ′pp/2 y p/2) where C ′ > 0 is a

universal constant.

Proof of Claim I. It will suffice to show for any y > 0:

− log(1−exp(−y−1/2)) ≤O(pp/2 y p/2).

To see this, let z = y−1/2 and note that it suffices to show

− log(1−exp(−z)) · zp/2 ≤O((p/2)p/2).

For z ≤ 1 we can use the inequality − log(1−exp(−z)) ≤ z−1/2 to see that the left side is at
most 1. For z > 1 we use instead − log(1−exp(−z)) ≤ exp(−z/2) to get

− log(1−exp(−z)) · zp/2 ≤ zp/2 ·exp(−z/2)

≤ zp/2 · ⌈p/2⌉!/((z/2)p/2 )

= 2p/2 · ⌈p/2⌉! ≤O((p/2)p/2),

where in the last step we use the Stirling bound a!≤O(
p

a · (a/e)a ) for a := ⌈p/2⌉.

7



Remark 1. This argument is largely motivated by the result of Ball and Pajor [BP90] which
bounds volume instead of Gaussian measure. More specifically, [BP90] prove that for 1 ≤
p ≤∞ and any matrix A ∈R

m×n , the set

K =
{

x ∈R
n : | 〈A j , x〉 | ≤p

p ·
( 1

n

m∑

j=1
‖A j‖

p
2

)1/p
∀ j ∈ [m]

}

satisfies voln(K ) ≥ 1. In contrast, our Lemma 18 provides a simpler proof of a stronger
result (up to a constant scaling), since the volume of a convex body is always at least its
Gaussian measure.

We are now ready to show Theorem 16:

Proof of Theorem 16. Let 1 ≤ p ≤ q ≤∞ and let A ∈R
m×n denote the matrix with columns

a1, . . . , an ∈ B m
p . By Lemma 8 we know that for any z ∈ R

m with ‖z‖p ≤ n1/p and ‖z‖∞ ≤ 1

one has ‖z‖q ≤ (‖z‖p
p ·‖z‖q−p

∞ )1/q ≤ n1/q . Phrased in geometric terms this means n1/q B m
q ⊇

n1/p B m
p ∩B m

∞. We would like to point out that this is a crucial point to obtain a depen-

dence solely on n rather than the larger parameter m. Next, note the fact that A−1(S∩T )=
A−1(S)∩ A−1(T ) for any sets S and T which we use together with the inequality of Šidak
and Kathri (Lemma 11) to obtain the estimate

γn

(

A−1(pp ·nmax(0,1/2−1/p)+1/q B m
q

))

≥ γn

(

A−1(pp ·nmax(0,1/2−1/p)(n1/p B m
p ∩B m

∞)
))

≥ γn

(

A−1(pp ·nmax(1/2,1/p)B m
p

))

·
∏

j∈[m]
γn

({

x ∈R
n : |〈x , A j 〉| ≤

p
pnmax(0,1/2−1/p)})

≥ 2−O(n) ·2−O(n) = 2−O(n),

where we have used the measure lower bounds from Lemmas 17 and 18. This shows the
claimed bound whenever p ≤ O(log( 2m

n )), where the hidden constant can be removed by
scaling the corresponding convex body, see Lemma 13.

It remains to prove that we can bootstrap the existing bound for the regime of large p .
So let us assume that p ≥ 2 ·max{1, log(m/n)}. Let p0 ∈ [2, p] be a parameter to be deter-
mined and remark that Lemma 7 gives ‖ai‖p0 ≤ m1/p0−1/p · ‖ai‖p ≤ m1/p0−1/p . Applying
the above measure lower bound for p0 implies

γn

({

x ∈R
n :

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

q
≤p

p0 ·n1/2−1/p0+1/q ·m1/p0−1/p
})

≥ 2−O(n).

We can rewrite the above upper bound on ℓq -norm as

p
p0 ·n1/2−1/p0+1/q ·m1/p0−1/p = n1/2−1/p+1/q ·

(m

n

)−1/p

︸ ︷︷ ︸

≤1

·pp0 ·
(m

n

)1/p0
.

Taking p0 := 2 ·max{1, log(m/n)} gives the desired result as then (m/n)1/p0 ≤
p

e and
Lemma 13 can again deal with such constant scaling.
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Now our main result on existence of partial colorings easily follows:

Proof of Theorem 1. Apply Theorem 6 to the set

K :=
{

x ∈R
n :

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

q
≤

√

min
(

p, log
(2m

n

))

·nmax(0,1/2−1/p)+1/q
}

,

which by Theorem 16 indeed has a Gaussian measure of γn(K )≥ 2−O(n).

Next, we show how to obtain a full coloring by iteratively finding partial colorings.

Proof of Theorem 2. Let again 1 ≤ p ≤ q ≤∞ and let a1, . . . , an ∈ B m
p . We begin with x (0) := 0

and given x (0), . . . , x (t ) we set S(t ) := {i ∈ [n] : −1 < x(t )
i

< 1} as the active variables. Then
combining Theorem 6 and Theorem 16 we can find a partial coloring x (t+1) ∈ [−1,1]n in

polynomial time so that |S(t+1)| ≤ |S(t )|/2 and ‖
∑n

i=1(x(t+1)
i

−x(t )
i

)ai‖q ≤C1

√

min(p, log( 2m
|S(t)| ))·

|S(t )|max(0,1/2−1/p)+1/q . Let x (T ) be the first iterate with x (T ) ∈ {−1,1}n . Clearly |S(t )| ≤ n2−t

and T ≤ log2(n). Using the triangle inequality we get

∥
∥
∥

n∑

i=1
x(T )

i
ai

∥
∥
∥

q
≤

T−1∑

t=0

∥
∥
∥

n∑

i=1
(x(t+1)

i
−x(t )

i
)ai

∥
∥
∥

q

≤ C1

T−1∑

t=0

√

min
(

p, log
( 2m

2−t ·n

))

· (2−t ·n)max(0,1/2−1/p)+1/q

≤
C1C2

√

min
(

p, log
(

2m
n

))

max(0,1/2−1/p)+1/q
·nmax(0,1/2−1/p)+1/q .

The intuition behind the extra factor for obtaining a full coloring is as follows: abbre-
viate the exponent as β := max(0,1/2−1/p)+1/q . Then it takes 1

β iterations until the term

|S(t )|β decreases by a factor of 1/2 which dominates the miniscule growth of the logarith-
mic term. Then indeed the overall discrepancy is dominated by the discrepancy from the
first 1

β iterations.
We can now demonstrate how a nontrivial choice of ℓp -norms can be beneficial in

classical discrepancy settings:

Proof of Corollary 4. Consider column vectors a1, . . . , an ∈ {0,1}m with at most t nonzero
entries per ai . First let us study the case t ≥ n/10. Since for each column ‖ai‖4 ≤ t 1/4,
Theorem 2 provides a coloring x ∈ {−1,1}n with ‖

∑n
i=1 xi ai‖∞ ≤O(n1/4 · t 1/4) =O(

p
t). 1

Now if t < n/10, we take p ∈ [2,16) with 1/2−1/p = 1/log(n/t ). Then ‖ai‖p ≤ t 1/p and
Theorem 2 gives x ∈ {−1,1}n with

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥
∞

≤
C ·n1/2−1/p · t 1/p

1/2−1/p
=C

p
t log(n/t ) · (n/t )1/log(n/t )

︸ ︷︷ ︸

=e

.

1In fact for t ≥ n a more careful choice of p = log(2t/n) gives a better ℓ∞ discrepancy bound of
O(

√

n log(2t/n)), even though the Beck-Fiala conjecture asks only for O(
p

t ).
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We conclude this section by showing that the term nmax(0,1/2−1/p)+1/q in our bounds is
necessary:

Proof of Theorem 5. Consider the case p ≥ 2. Consider an n ×n Hadamard matrix, which
is a matrix H ∈ {−1,1}n×n so that all rows and columns are orthogonal. Such matrices are
known to exist at least whenever n is a power of 2. The columns satisfy ‖hi‖p = n1/p and
for any x ∈ [−1,1]n with |{i : x2

i
= 1}| ≥ n/2 we know that ‖x‖2 ≥Ω(

p
n) and ‖H x‖2 ≥Ω(n),

so that by Lemma 7 we have

‖H x‖q ≥ ‖H x‖2 ·n1/q−1/2 =Ω(n1/2+1/q ).

For p ∈ [1,2], take an identity matrix In . For every x ∈ [−1,1]n with |{i : x2
i
= 1}| ≥ n/2 we

have ‖In x‖q = ‖x‖q ≥Ω(n1/q ), and the columns of In are certainly in B m
p .

4 Partial coloring via measure lower bound

In this chapter, we want to show the existence of partial fractional colorings for bodies K

with γn(K ) ≥ e−αn as promised in Theorem 6. The main innovation of this work compared
to e.g. [Rot14] is to handle an arbitrarily small constant α > 0. For the sake of a simpler
exposition we first prove such a result without the shift y , without the hyperplane H and
with a small fraction δ of colored elements.

Theorem 19. For any α> 0, there are constants ε := ε(α),δ :=δ(α) > 0 so that the following
holds: There is a polynomial time algorithm that for a symmetric convex set K ⊆ R

n with
γn(K )≥ e−αn finds an x ∈ ( 1

εK )∩ [−1,1]n so that |{i ∈ [n] : xi ∈ {−1,1}}| ≥ δn.

Note that the standard nonconstructive proof by Gluskin [Glu89] and Giannopou-
los [Gia97] requires a small enough constant α > 0 to guarantee a partial coloring x ∈
{−1,0,1}n with support Ω(n). Moreover, the statement of Theorem 19 does not hold if
x ∈ [−1,1]n is replaced by x ∈ {−1,0,1}n . In fact, it is not hard to construct a thin strip K

with γn(K ) ≥ e−Ω(n) so that K does not intersect {−1,0,1}n \{0} (even after a subexponential
scaling). We show the construction in Appendix B.

For our proof we make use of the mean width w (Q) := Eθ∈Sn−1 [supx∈Q 〈θ, x〉] of a body.
We should point out that the connection between partial coloring arguments and mean
width is due to Eldan and Singh [ES18]. Several of the claims require that n is chosen large
enough.

Lemma 20. Let Q ⊆ R
n be a symmetric convex body with γn(Q) ≥ e−αn for α > 0. Then

w (Q)≥ 1
2 e−αpn.

Proof. Let r > 0 be the radius γn(r B n
2 ) = γn(Q). By Urysohn’s Inequality (Theorem 15) one

has w (Q) ≥ w (r B n
2 ) = r so it suffices to give a lower bound on the radius r . A simple but

useful estimate is that 2n ≤Voln(
p

nB n
2 ) ≤ 5n for any n ≥ 1. Moreover, the Gaussian density

10



is maximized at γn(0) = 1
(
p

2π)n
. Then for β := 2eα ≥ 2 we have

γn

(
p

n

β
B n

2

)

≤ Voln

(
p

n

β
B n

2

)

·γn(0) ≤
( 5

β

)n
·

1

(
p

2π)n
≤

( 2

β

)n β=2eα

≤ e−αn

and so r ≥
p

n
β

=
p

n
2eα .

The key modification of our work in contrast to [Rot14] is a finer upper bound on the
distance of a Gaussian to K :

Lemma 21. Let K ⊆R
n be a symmetric convex set with γn(K ) ≥ e−αn where α≥ 1 and n is

large enough. Then

E
x∼N(0,In )

[d (x ,K )]≤
p

n ·
(

1−
1

512αe4α

)

Proof. Note that by Theorem 14 we have Prx∼N(0,In )[‖x‖2 ≥ 4
p
αn] ≤ e−2αn, hence the re-

striction Q := K ∩4
p
αnB n

2 still hasγn(Q) ≥γn(K )−e−2αn ≥ e−2αn for n large enough. Then

by the previous Lemma we know that w (Q)≥
p

n
2e2α . For a vector x , let z(x) := argmax{〈z , x〉 :

z ∈ Q}. As we just showed, Ex∼N(0,In )[〈z(x), x
‖x‖2

〉] ≥
p

n
2e2α . Let λ ∈ [0,1] be a parameter that

we determine later. Note that the point λ · z(x) lies in Q .

Q

4
p
αnB n

2

0
x

z(x)

λz(x)

This point can be used to bound

E
x∼N(0,In )

[‖x −λz(x)‖2
2] = E[‖x‖2

2]−2λE[〈x , z〉]+E[λ2‖z‖2
2]

= E[‖x‖2
2]

︸ ︷︷ ︸

=n

−2λE[‖x‖2]
︸ ︷︷ ︸

≥ 1
2

p
n

· E
θ∈Sn−1

[〈θ, z(θ)〉]
︸ ︷︷ ︸

≥
p

n/(2e2α)

+E[λ2 ‖z‖2
2

︸︷︷︸

≤16αn

]

≤ n −
1

2
e−2αλn +λ2 ·16αn

λ:= 1
64αe2α= n ·

(

1−
1

256αe4α

)

Then

E[d (x ,Q)]
λz∈Q
≤ E[‖x−λz‖2]

Jensen
≤ E[‖x−λz‖2

2]1/2 ≤
p

n ·
√

1−
1

256αe4α
≤
p

n ·
(

1−
1

512αe4α

)

using
p

1−x ≤ 1− x
2 for 0 ≤ x ≤ 1.
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Next, we show the average distance of a Gaussian to the cube [−ε,ε]n is
p

n · (1−Θ(ε)).

Lemma 22. Let ε> 0. Then for n large enough one has

Pr
x∼N(0,In )

[

d (x , [−ε,ε]n)≥ (1−5ε)
p

n
]

≥ 1−exp
(

−
ε2

2
n

)

Proof. Let y := y (x) := argmin{‖x − y‖2 : y ∈ [−ε,ε]n} be the closest point in the cube to x .
For an individual coordinate i ∈ [n] the expected contribution to the distance is

E

[

d (xi , [−ε,ε])2]= E

[

|xi − yi |2
]

= E[x2
i ]

︸ ︷︷ ︸

=1

−2E[xi yi ]
︸ ︷︷ ︸

≤εE[|xi |]

+E[y2
i ]

︸ ︷︷ ︸

≥0

≥ 1−2

√

2

π
·ε≥ 1−2ε.

Then by linearity E[d (x , [−ε,ε]n)2]1/2 ≥
p

n · (1−2ε) ≥
p

n · (1 − 2ε). Recall that the dis-
tance function F (x) := d (x , [−ε,ε]n) is 1-Lipschitz and for such functions the difference
|E[F (x)]−E[F (x)2]1/2| is bounded by an absolute constant. Then E[F (x)] ≥

p
n · (1− 4ε)

for n large enough. Finally by Theorem 14 one has Pr[F (x) < E[F (x)]−ε
p

n] ≤ e−ε2n/2 for
x ∼ N (0, In) which then gives the claim as E[F (x)]−ε

p
n ≥ (1−5ε)

p
n.

We will now prove Theorem 19. Let K ⊆ R
n be a symmetric convex body with γn(K ) ≥

e−αn . Instead of providing a vector x ∈ ( 1
εK )∩ [−1,1]n directly, we will instead find an

x ∈ K ∩[−ε,ε]n with |{i ∈ [n] : xi ∈ {−ε,ε}}| ≥ δn where ε,δ> 0 will be chosen small enough,
depending on α — the result in Theorem 19 then follows by scaling x by 1

ε . We will use the
following algorithm:

(1) Pick x∗ ∼ N (0, In) at random.

(2) Compute y∗ := argmin{‖x∗− y‖2 : y ∈ K ∩ [−ε,ε]n}.

K
0

x∗

y∗

[−ε,ε]n

Note that the step (2) is a convex program which can be solved in polynomial time, see
[GLS88]. Now we can finish the proof of Theorem 19.

Lemma 23. If ε,δ > 0 are chosen small enough (depending on α), then with probability
1−e−Ωε,δ(n) one has |{i ∈ [n] : y∗

i
∈ {−ε,ε}}| ≥ δn.

Proof. For a set of indices I ⊆ [n] we abbreviate K (I ) := {x ∈ K : |xi | ≤ ε ∀i ∈ I } as the
intersection of K with the slabs corresponding to coordinates in I . Consider the two events

E1 := “d (x∗,K ∩ [−ε,ε]n) ≥ (1−5ε) ·
p

n”

E2 := “for all I ⊆ [n] with |I | ≤ δn one has d (x∗,K (I )) ≤ (1−10ε)
p

n”

12



We will see that both events E1 and E2 happen with overwhelming probability.
Claim I. One has Pr[E1] ≥ 1−exp(−ε2

2 n).

Proof of Claim I. Follows from Lemma 22 as d (x∗,K ∩ [−ε,ε]n) ≥ d (x∗, [−ε,ε]n).
Claim II. If ε := ε(α),δ := δ(α) > 0 are small enough, then Pr[E2] ≥ 1−e−Θε(n).

Proof of Claim II. For an index set I with |I | ≤ δn one can lower bound the measure as

γ(K (I ))
Šidak-Kathri (Lem 11)

≥ γn(K ) ·γ1([−ε,ε])|I | ≥ e−αn · (ε/2)|I | ≥ e−αn−ln( 2
ε

)·δn ≥ e−2αn,

assuming δ> 0 is chosen small enough so that ln( 2
ε

) ·δ≤α. Here we use that γ1([−ε,ε]) ≥
2ε ·γ1(1/2) ≥ 2ε 1p

2π
e−(1/2)2/2 ≥ ε

2 for 0 < ε ≤ 1
2 . Let us abbreviate I := {I ⊆ [n] : |I | ≤ δn}

as the family of small index sets. Then by Lemma 21 we know that a fixed I ∈ I has

Ex∼N(0,In )[d (x ,K (I ))]≤
p

n ·
(

1− 1
512·(2α)e8α

)

≤ (1−20ε)
p

n, if we choose ε≤ 1
20·512αe8α . Then

by concentration one has Pr[d (x ,K (I )) > (1−10ε)
p

n] ≤ exp(−50ε2n), see Theorem 14. A
useful bound is |I | ≤ e2δ log2( 1

δ
)n ≤ eε2n if we choose δ small enough compared to ε. Then

Pr[E2]
union bound

≤
∑

I∈I
Pr

[

d (x∗,K (I ))> (1−10ε)
p

n
]

≤ eε2n ·exp(−50ε2n)≤ exp
(

−40ε2n
)

.

Now we have everything to finish the proof. Fix an outcome of the vector x∗ so that
the events E1 and E2 are both true, and abbreviate I∗ := {i ∈ [n] : y∗

i
∈ {−ε,ε}}. Suppose for

the sake of contradiction that |I∗| < δn. Then

(1−10ε)
p

n
E2 true & I∗∈I

≥ d (x∗,K (I∗))
(∗)= d (x∗,K ∩ [−ε,ε]n)

E1 true
≥ (1−5ε)

p
n

which is a contradiction. Here the crucial argument for (∗) is that d (x∗,K ∩ [−ε,ε]n) =
min{‖x∗ − y‖2 : y ∈ K and |yi | ≤ ε ∀i ∈ [n]} is a convex minimization problem and the
optimum value will not change if linear constraints are discarded that are not tight for
the optimum y∗, and the cube constraints for coordinates I∗\[n] are indeed not tight.

In order to obtain a full coloring x ∈ {−1,1}n one typically applies the partial coloring
lemma O(log n) times. This requires a slight variant of Theorem 19 where the set K is
shifted (and the shift corresponds to the sum of vectors from previous iterations). It can
also be convenient for applications to allow the intersection of K with a subspace, so we
incorporate that feature as well:

Theorem 24. For all α,β> 0, there are constants ε := ε(α,β) and δ := δ(α,β) > 0 so that the
following holds: There is a randomized polynomial time algorithm which for a symmetric
convex set K ⊆ R

n with γn(K ) ≥ e−αn , a shift y ∈ [−1,1]n and a subspace H ⊆ R
n with

dim(H )≥βn, finds an x ∈ ( 1
εK ∩H ) with x+ y ∈ [−1,1]n and |{i ∈ [n] : (x+ y )i ∈ {±1}}| ≥ δn.

The proof is very similar to the arguments presented above; see Appendix A for details.
Another extension which can be often convenient in applications is to color close to (1−
β)n many elements rather than δn for some small constant δ. We stated such a result
earlier in Theorem 6. Now we are ready to prove it:

13



Proof of Theorem 6. The idea is to simply apply Theorem 24 a constant number of times
until the desired number of elements is colored. We assume β>γ since otherwise there is
nothing to prove. We set y (0) := y and for t ≥ 0 we set S(t ) := {i ∈ [n] : −1 < y (t )

i
< 1}. Suppose

for some t we have constructed a sequence y (0), . . . , y (t ) and still |S(t )| ≥ (1−β+γ)n. Let
KS(t) := {x̄ ∈ R

S(t)
: (x̄ ,0) ∈ K } and note that γ|S(t)|(KS(t) ) ≥ γn(K ) ≥ e−αn ≥ exp(− α

1−β+γ |S
(t )|).

Moreover dim(HS(t) ) ≥ dim(H )− (n − |S(t )|) ≥ βn − (β−γ)n = γn. Hence by Theorem 24
there exists a x (t ) so that y (t+1) := y (t ) + x (t ) ∈ [−1,1]n with x (t ) ∈ (C ′ ·K ∩H ) and |S(t+1)| ≤
(1−δ)|S(t )| for some constants C ′,δ > 0. As soon as we reach an iteration t with |S(t )| <
(1−β+γ)n we stop and return the desired vector x := x (0) + . . .+x (t−1).

5 Open problems

We conjecture that Theorem 2 can be improved to match Theorem 1:

Conjecture 1 (ℓp → ℓq version of Komlós conjecture). Given n ≤ m, 1 ≤ p ≤ q ≤ ∞ and
a1, . . . , an ∈ B m

p , do there always exist signs x ∈ {−1,1}n so that

∥
∥
∥

n∑

i=1
xi ai

∥
∥
∥

q
≤C

√

min
(

p, log
(2m

n

))

·nmax(0,1/2−1/p)+1/q ,

for some universal constant C > 0?

Since Conjecture 1 is at least as hard as the Komlós conjecture, a more realistic goal
would be to improve the full coloring of Theorem 2 by a factor of (1/2−1/p +1/q)−1/2 so
as to match the best known bound of O(

√

log n) for Komlós.
Recall that for a matrix A ∈ R

n×n and 1 ≤ p ≤ ∞, the Schatten-p norm is defined as
‖A‖S(p) := (

∑n
i=1σi (A)p )1/p where σi (A) ≥ 0 is the i th singular value of the matrix. In par-

ticular ‖A‖S(∞) is the maximum singular value and ‖A‖S(1) is known as Trace norm or Nu-

clear norm. One might wonder whether Theorem 1 could be extended for matrices instead
of vectors in the corresponding Schatten norms. In fact this is not possible: even for p = 2
and q =∞, there exist n rank-one matrices Ai := vi v⊤

i
∈ R

n×n with unit vi for which any
fractional coloring has discrepancy Ω(

p
n) in the operator norm ([Wea02], Section 3). It is

still possible nevertheless that Corollary 3 extends in the following way:

Conjecture 2 (ℓp version of Matrix Spencer). Given 2 ≤ p ≤∞ and symmetric A1, . . . , An ∈
R

n×n with Schatten-p norm at most 1, can we always find signs x ∈ {−1,1}n so that

∥
∥
∥

n∑

i=1
xi Ai

∥
∥
∥

S(p)
≤C

p
n

for some universal constant C > 0?

This is a more general form of the Matrix Spencer conjecture [Zou12], and one can
show a weaker bound of O(

p
pn) with random signs similar to Lemma 10 using matrix
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concentration. In fact, it is an open problem to show even a partial coloring for Conjecture
2. This would be implied by the following measure lower bound:

Conjecture 3. Given 1 ≤ p ≤∞ and symmetric A1, . . . , An ∈R
n×n , can we show that

K :=
{

x ∈R
n :

∥
∥
∥

n∑

i=1
xi Ai

∥
∥
∥

S(p)
≤

∥
∥
∥

( n∑

i=1
A2

i

)1/2∥∥
∥

S(p)

}

satisfies γn(K )≥ 2−O(n)?

The reader may notice our techniques establish Conjecture 3 in the case where the
matrices Ai are all diagonal.
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A Partial colorings in shifted sets

In this section we show the postponed proof of Theorem 24. It turns out that we need only
an extension that can handle the intersection with a subspace — the shift can be obtained
by a scaling argument. Hence in this section we will prove the following main technical
theorem:

Theorem 25. For any α,β > 0, there are constants ε := ε(α,β) > 0 and δ := δ(α,β) > 0 so
that the following holds: Let K ⊆ R

n be a symmetric convex body with γn(K ) ≥ e−αn and
let H ⊆R

n be a subspace with dim(H ) ≥ βn. Then there is a randomized polynomial time
algorithm that finds an x ∈ K ∩ H so that |{i ∈ [n] : xi ∈ {−ε,ε}}| ≥ δn with probability
1−e−Ωε,δ(n).

Before we prove Theorem 25 we argue how it implies the desired Theorem 24.

Proof of Theorem 24. Consider the input of Theorem 24 which is a set K ⊆R
n with γn(K ) ≥

e−αn and a subspace H ⊆ R
n with dim(H ) ≥ βn. Instead of working with a translate y , we

allow asymmetric bounds −2 ≤ Li < 0 < Ri ≤ 2 with |Ri −Li | ≤ 2 and the goal will be to
find a vector x ∈ 1

ε′ K ∩H with a linear number of coordinates i satisfying xi ∈ {Li ,Ri }. For
symmetry reasons we may assume that |Ri | ≤ |Li | for all i ∈ [n], meaning that the upper
boundary is the closer one for every coordinate. Note that then 0 < Ri ≤ 1. Now consider
the linear map T : Rn →R

n with T (x) := ( x1
R1

, . . . , xn

Rn
). Intuitively, this map stretches the i th

coordinate axis by a factor of 1
Ri

≥ 1, which implies that γn(T (K )) ≥ γn(K ). Now we apply
Theorem 25 to the body T (K ) and the subspace T (H ). Let us suppose that the randomized
algorithm is successful and delivers a vector x ∈ T (K )∩T (H )∩ [−ε,ε]n with |xi | = ε for at
least δn many coordinates, where ε,δ > 0 are the constants depending on α and β that
make Theorem 25 work. Transforming this vector back to y := 1

εT −1(x), we see that y ∈
1
ε (K ∩ H ) with −Ri ≤ yi ≤ Ri and |yi | = Ri for at least δn many coordinates i ∈ [n]. Then

for at least one choice z ∈ {−y , y } one has zi = Ri for at least δn
2 many coordinates i ∈ [n],

while still Li ≤ zi ≤Ri for all i ∈ [n]. This concludes the claim.

The algorithm for Theorem 25 is simply the previous one where K is replaced by K ∩H .
We restate it for the sake of readability:

(1) Pick x∗ ∼ N (0, In) at random.

(2) Compute y∗ := argmin{‖x∗− y‖2 : y ∈ K ∩H ∩ [−ε,ε]n}.

K
0

x∗

y∗

[−ε,ε]n

H
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Luckily it suffices to prove one additional lemma to guarantee that a random Gaussian
is close to the intersection K ∩H .

Lemma 26. For any α,β> 0 there are small enough constants ε,δ> 0 so that the following
holds for a convex symmetric body K ⊆ R

n with γn(K ) ≥ e−αn and any subspace H ⊆ R
n

with dim(H ) ≥βn. Let I ⊆ [n] with |I | ≤δn and abbreviate K (I ) := {x ∈ K : −ε≤ xi ≤ ε ∀i ∈
I }. Then

E
x∼N(0,In )

[

d (x ,K (I )∩H )
]

≤ (1−20ε)
p

n.

Proof. We denote γH as the Gaussian measure restricted to a subspace H . Moreover, let
N (H ) be the standard Gaussian in that same subspace. We can again lower bound the
Gaussian measure of K (I ). We abbreviate Si := {x ∈ R

n : |xi | ≤ ε} as the strip in i th coordi-
nate direction.

γH (K (I )∩H )
Šidak-Kathri (Lem 11)

≥ γH (K ∩H ) ·
∏

i∈I

γH (Si ∩H )

(∗)
≥ γn(K ) ·

∏

i∈I

γn(Si )

≥ γn(K ) · (ε/2)|I | ≥ e−2αn ≥ e
− 2α

β
·dim(H)

assuming we choose ε,δ small enough. In (∗) we have used that γH (K ∩ H ) ≥ γn(K ), as
slices through the origin of a symmetric convex body maximize Gaussian measure.

Next, we use that by orthogonality one has

E
x∼N(0,In )

[

d (x ,K (I )∩H )2] = E
x∼N(0,In )

[

d (x , H )2]

︸ ︷︷ ︸

=n−dim(H)

+ E
x∼N(H)

[

d (x ,K (I )∩H )2]

︸ ︷︷ ︸

≤dim(H)·(1− 1

256· 2α
β

·exp(4 2α
β

)
)

(∗∗)
≤ n −

1

256 · 2α
β exp(4 · 2α

β )
·dim(H )

(∗∗∗)
≤ n · (1−40ε)

where we had proven the inequality for (∗∗) already in Lemma 21. Morever (∗∗∗) follows
from dim(H ) ≥βn and choosing ε small enough. Consequently Ex∼N(0,In )[d (x ,K (I )∩H )]≤
Ex∼N(0,In )[d (x ,K (I )∩H )2]1/2 ≤

p
n · (1−40ε) ≤

p
n · (1−20ε) by Jensen’s Inequality.

Now, let us revisit the proof of Lemma 23 and observe that the only properties for a
body K that are needed for the projection algorithm to work are: (i) K is convex; (ii) one has

Ex∼N(0,In )[d (x ,K (I ))] ≤ (1−20ε)
p

n for all I ⊆ [n] with |I | ≤ δn for some constants ε,δ> 0.
But as we have just proven in Lemma 26, those same properties holds for K̃ := K ∩H . That
concludes the proof of Theorem 25 and hence the proof of Theorem 24.

B Large convex sets without partial colorings

We have mentioned earlier that a symmetric convex set K with measure γn(K ) ≥ e−δn

contains a partial coloring x ∈ {−1,0,1}n \ {0} if the constant δ is small enough — but we
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claimed that this is false for constants beyond a certain threshold, even if one is allowed to
rescale the body by some parameter dependent on δ. The construction for such a set is a
very thin strip that avoids any point in {−1,0,1}n \ {0}.

Lemma 27. For any C ≥ 1, there exists aδ> 0 so that the following holds: for any n ∈N large
enough there is a symmetric convex body K ⊆ R

n so that (i) (C nK )∩ ({−1,0,1}n \ {0}) = ;
and (ii) γn(K ) ≥ e−δn .

Proof. The construction is probabilistic. We sample a Gaussian g ∼ N (0, In) and for a tiny
parameter s > 0 that we determine later, we consider the strip K := {x ∈ R

n : | 〈g , x〉 | ≤ s}.
Consider the set of nontrivial partial colorings X := {−1,0,1}n \ {0} and recall that |X | ≤ 3n .
For any x ∈ X , the distribution of 〈g , x〉 is Gaussian with variance ‖x‖2

2 ≥ 1 and hence the
density of this 1-dimensional Gaussian is at most 1p

2π
e0 ≤ 1

2 everywhere. In particular for

a fixed x ∈ X , one can obtain the simple estimate of Pr[| 〈g , x〉 | ≤ t ] ≤ 4t for any t > 0. Then
choosing s := 1

16 ·C
−n3−n we obtain

Pr
g

[

(C n K )∩X 6= ;
]

≤
∑

x∈X

Pr
g

[

| 〈g , x〉 | >C n s
]

≤
1

4
· |X | ·3−n ≤

1

4
(∗)

Moreover using Markov’s Inequality we obtain the (rather weak) estimate

Pr
[

‖g‖2
2 > 4n

]

≤
1

4
(∗∗)

Then with probability at least 1/2 none of the events (∗) and (∗∗) happen. We fix such an
outcome of g and estimate that the measure of our strip is

γn(K )=
∫s/‖g‖2

−s/‖g‖2

1
p

2π
e−x2/2d x ≥

1
p

2π
e−1/2 2s

p
n
≥ e−δn

for a suitable choice of δ using s
‖g‖2

≤ 1.
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