Vector Balancing in Lebesgue Spaces

Victor Reis * Thomas Rothvoss ${ }^{\dagger}$

Abstract

A tantalizing conjecture in discrete mathematics is the one of Komlós, suggesting that for any vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{2}^{m}$ there exist signs $x_{1}, \ldots, x_{n} \in\{-1,1\}$ so that $\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{\infty} \leq O(1)$. It is a natural extension to ask what ℓ_{q}-norm bound to expect for $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$. We prove that, for $2 \leq p \leq q \leq \infty$, such vectors admit fractional colorings $x_{1}, \ldots, x_{n} \in[-1,1]$ with a linear number of ± 1 coordinates so that $\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \leq O(\sqrt{\min (p, \log (2 m / n))}) \cdot n^{1 / 2-1 / p+1 / q}$, and that one can obtain a full coloring at the expense of another factor of $\frac{1}{1 / 2-1 / p+1 / q}$. In particular, for $p \in(2,3]$ we can indeed find signs $\boldsymbol{x} \in\{-1,1\}^{n}$ with $\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{\infty} \leq O\left(n^{1 / 2-1 / p} \cdot \frac{1}{p-2}\right)$. Our result generalizes Spencer's theorem, for which $p=q=\infty$, and is tight for $m=n$.

Additionally, we prove that for any fixed constant $\delta>0$, in a centrally symmetric body $K \subseteq \mathbb{R}^{n}$ with measure at least $e^{-\delta n}$ one can find such a fractional coloring in polynomial time. Previously this was known only for a small enough constant indeed in this regime classical nonconstructive arguments do not apply and partial colorings of the form $\boldsymbol{x} \in\{-1,0,1\}^{n}$ do not necessarily exist.

1 Introduction

The celebrated Spencer's Theorem in discrepancy theory [Spe85] shows that "six standard deviations suffice" for balancing vectors in the ℓ_{∞}-norm: for any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in[-1,1]^{n}$, there exist signs $\boldsymbol{x} \in\{-1,1\}^{n}$ such that $\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{\infty} \leq 6 \sqrt{n}$. More generally, Spencer showed that for vectors in $[-1,1]^{m}$ with $n \leq m$ one can achieve a bound of $O(\sqrt{n \log (2 m / n)})$. While his proof used a nonconstructive form of the partial coloring lemma based on the pigeonhole principle, in the past decade several approaches starting with the breakthrough work of Bansal [Ban10] did succeed in computing such signs in polynomial time LM12, Rot14, LRR16, ES18].

As for balancing vectors of bounded ℓ_{2}-norm, the situation has been more delicate. In the same paper, Spencer [Spe85] showed a nonconstructive bound of $O(\log n)$ for the ℓ_{∞} discrepancy of vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{2}^{m}$ and also stated a conjecture of Komlós that this may be improved to $O(1)$. This was improved to $O(\sqrt{\log n})$ by Banaszczyk [Ban98] who showed that in fact for any set of n vectors of ℓ_{2}-norm at most 1 and any convex body $K \subseteq \mathbb{R}^{m}$

[^0]of Gaussian measure at least $1 / 2$, some ± 1 combination of such vectors lies in $5 \cdot K$. For the more general setting of ℓ_{q} discrepancy, the work of Barthe, Guédon, Mendelson and Naor BGMN05] shows that, for $q \geq 2$, a $O\left(\sqrt{q} \cdot n^{1 / q}\right)$ scaling of n-dimensional slices of the ℓ_{q} ball in \mathbb{R}^{m} does have Gaussian measure at least $1 / 2$, thus implying a corresponding $O\left(\sqrt{q} \cdot n^{1 / q}\right)$ upper bound for balancing vectors from ℓ_{2} to ℓ_{q}. For $q=\log n$, this matches the ℓ_{2} to ℓ_{∞} bound of $O(\sqrt{\log n})$. Banaszczyk's proof was nonconstructive and the first polynomial time algorithm in the general convex body setting was found only recently by Bansal, Dadush, Garg and Lovett [BDGL18], while the Komlós conjecture remains an open problem. The work of [BDGL18] actually shows that for any vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{2}^{m}$ there exists an efficiently computable distribution over signs $\boldsymbol{x} \in\{-1,1\}^{n}$ so that the sum $\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}$ is $O(1)$-subgaussian and will be in $O(1) \cdot K$ with good probability. Interestingly, this means their algorithm is oblivious to the body K, which is a striking difference to the regime of $\gamma_{n}(K)=e^{-\Theta(n)}$ where any algorithm needs to be dependent on K. The connection between Banaszczyk's theorem and subgaussianity is due to Dadush et al. [DGLN16].

For the general setting of balancing vectors from ℓ_{p} to ℓ_{q} norms, not much was known beyond Spencer's theorem $(p=\infty)$ or what can be deduced from Banaszczyk's theorem as above: any vector in B_{p}^{m} also belongs to $m^{\max (0,1 / 2-1 / p)} \cdot B_{2}^{m}$, thus implying a discrepancy bound of $O(\sqrt{q}) \cdot m^{\max (0,1 / 2-1 / p)} \cdot n^{1 / q}$. Even in the square case $m=n$, it has been an open problem to remove the dependency on \sqrt{q} DNTT18]. The goal of this paper is to provide a unified approach for balancing from ℓ_{p} to ℓ_{q} via optimal constructive fractional partial colorings, which yield optimal bounds for most of the range $1 \leq p \leq q \leq \infty$. We obtain such fractional partial colorings by proving a new measure lower bound on the relevant linear preimages of ℓ_{q} balls (Section 3) and an improved algorithm which works for sets of Gaussian measure $e^{-\delta n}$ for any $\delta>0$ (Section 4), as opposed to previous work (Rotl4, ES18]) which required measure $e^{-\delta n}$ for sufficiently small $\delta>0$.

As an application of our results, we show a slight improvement to the bounds for the well-known Beck-Fiala conjecture [BF81], a discrete version of Komlós. It asks for a $O(\sqrt{t})$ bound on the ℓ_{∞} discrepancy of any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in\{0,1\}^{m}$, each with at most t ones. We establish the conjecture for $t \geq n$ and show slightly improved bounds when t is close to n (Corollary 4).

Notation. Let $B_{p}^{m}:=\left\{\boldsymbol{x} \in \mathbb{R}^{m}:\|\boldsymbol{x}\|_{p} \leq 1\right\}$ denote the unit ball in the ℓ_{p}-norm. The Gaussian measure of a measurable set $K \subseteq \mathbb{R}^{n}$ is given by $\gamma_{n}(K):=\operatorname{Pr}_{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}[\boldsymbol{x} \in K]$. We denote the mean width of a convex set as $w(K):=\mathbb{E}_{\boldsymbol{\theta} \in S^{n-1}}\left[\sup _{\boldsymbol{x} \in K}\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle\right]$. The Euclidean distance to a set $S \subseteq \mathbb{R}^{n}$ is denoted by $d(\boldsymbol{x}, S):=\min \left\{\|\boldsymbol{x}-\boldsymbol{y}\|_{2}: \boldsymbol{y} \in S\right\}$. If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is a matrix, we denote its rows by $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{m} \in \mathbb{R}^{n}$ and its columns by $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in \mathbb{R}^{m}$. Naturally, a matrix can also be interpreted as a (not necessarily invertible) linear map. Then for any set $K \subseteq \mathbb{R}^{m}$, we use the notation $\boldsymbol{A}^{-1}(K):=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x} \in K\right\}$.

1.1 Our contribution

Our main contribution is a tight bound on partial colorings for balancing from ℓ_{p} to ℓ_{q} :
Theorem 1. Let $n \leq m$ and $1 \leq p \leq q \leq \infty$. Then for any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$, there exists a polynomial-time computable partial coloring $\boldsymbol{x} \in[-1,1]^{n}$ with $\left|\left\{i: x_{i}^{2}=1\right\}\right| \geq n / 2$ so that

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \leq C \sqrt{\min \left(p, \log \left(\frac{2 m}{n}\right)\right)} \cdot n^{\max (0,1 / 2-1 / p)+1 / q},
$$

for some universal constant $C>0$.
We would like to mention that, as noted by Banaszczyk [Ban93], the condition $n \leq m$ does not weaken the theorem: in fact for $n>m$ the upper bound can only be larger than that of $n=m$ by a factor of two. On the other hand, the condition $p \leq q$ is natural, for otherwise if $p>q$ we would need a polynomial dependence on the dimension m, even for $n=1$. By iteratively applying Theorem 1 we can obtain a full coloring at the expense of another factor of $\frac{1}{\max (0,1 / 2-1 / p)+1 / q}$, with the caveat that $p>2$ whenever $q=\infty$:

Theorem 2. Let $n \leq m$ and $1 \leq p \leq q \leq \infty$ with $\max (0,1 / 2-1 / p)+1 / q>0$. Then for any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$, there exist polynomial-time computable signs $\boldsymbol{x} \in\{-1,1\}^{n}$ so that

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \leq \frac{C \sqrt{\min \left(p, \log \left(\frac{2 m}{n}\right)\right)}}{\max (0,1 / 2-1 / p)+1 / q} \cdot n^{\max (0,1 / 2-1 / p)+1 / q},
$$

for some universal constant $C>0$.
This significantly improves upon the general $\sqrt{q} \cdot m^{\max (0,1 / 2-1 / p)} \cdot n^{1 / q}$ bound from Banaszczyk's theorem in [DNTT18] when $p=2+\varepsilon$ for (not too small) $\varepsilon>0$ and $q \gg 1$.

When $p=q$ and $m=n$, we get the following corollary which matches, up to a constant, the lower bound $\Omega(\sqrt{n})$ of Ban93] known to hold for any norm:

Corollary 3 (ℓ_{p} version of Spencer's theorem). Let $2 \leq p \leq \infty$ and $n \in \mathbb{N}$. Then for any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{n}$, there exist polynomial-time computable signs $\boldsymbol{x} \in\{-1,1\}^{n}$ so that

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p} \leq C \sqrt{n},
$$

for some universal constant $C>0$.
The following corollary shows the Beck-Fiala conjecture holds for $t \geq n$ and slightly improves upon the best known bound of $O(\sqrt{t \log n}$ [Ban98] when t is close to n :

Corollary 4 (Bound for Beck-Fiala). Let $n \leq m$ and $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in\{0,1\}^{m}$, each with at most $t \in[m]$ ones. Then there exist polynomial-time computable signs $\boldsymbol{x} \in\{-1,1\}^{n}$ so that

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{\infty} \leq C \sqrt{t} \log \left(\frac{2 \max (n, t)}{t}\right)
$$

for some universal constant $C>0$.

Finally, we show the partial coloring bound in Theorem 1 is tight at least when $m=n$:
Theorem 5. Let $1 \leq p \leq q \leq \infty$. There exist infinitely many positive integers n for which we can find $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{n}$ such that for any $\boldsymbol{x} \in[-1,1]^{n}$ with $\left|\left\{i: x_{i}^{2}=1\right\}\right| \geq n / 2$ one has

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \geq C \cdot n^{\max (0,1 / 2-1 / p)+1 / q}
$$

for some universal constant $C>0$.
As we mentioned earlier, the result of Gluskin Glu89 and Giannopoulos Gia97] shows that for a small enough constant, a symmetric convex body K with $\gamma_{n}(K) \geq e^{-\alpha n}$ contains a partial coloring $\boldsymbol{x} \in\{-1,0,1\}^{n} \backslash\{\boldsymbol{0}\}$ with a linear number of entries in ± 1. We can prove that for fractional colorings any constant $\alpha>0$ suffices. Our argument even works for intersections with a large enough subspace.

Theorem 6. For all $\alpha, \beta, \gamma>0$, there is a constant $C:=C(\alpha, \beta, \gamma)>0$ so that the following holds: There is a randomized polynomial time algorithm which for a symmetric convex set $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geq e^{-\alpha n}$, a shift $\boldsymbol{y} \in[-1,1]^{n}$ and a subspace $H \subseteq \mathbb{R}^{n}$ with $\operatorname{dim}(H) \geq \beta n$, finds an $\boldsymbol{x} \in(C \cdot K \cap H)$ with $\boldsymbol{x}+\boldsymbol{y} \in[-1,1]^{n}$ and $\left|\left\{i \in[n]:(\boldsymbol{x}+\boldsymbol{y})_{i} \in\{ \pm 1\}\right\}\right| \geq(\beta-\gamma) n$.

2 Preliminaries

We will use two elementary inequalities dealing with ℓ_{p}-norms. The first one estimates the ratio between different norms:

Lemma 7. For any $z \in \mathbb{R}^{m}$ and $1 \leq p \leq q \leq \infty$, we have $\|z\|_{q} \leq\|z\|_{p} \leq m^{1 / p-1 / q}\|z\|_{q}$.
It is instructive to note that this bound implies $\|z\|_{\infty} \leq\|z\|_{\log _{2}(m)} \leq 2\|z\|_{\infty}$. If one has an upper bound on the largest entry in a vector - say $\|z\|_{\infty} \leq 1$ - then one can strengthen the first inequality to $\|z\|_{q}^{q} \leq\|z\|_{p}^{p}$. More generally:

Lemma 8. For any $z \in \mathbb{R}^{m}$ and $1 \leq p \leq q \leq \infty$, we have $\|z\|_{q}^{q} \leq\|z\|_{p}^{p} \cdot\|z\|_{\infty}^{q-p}$.
We will also need the following version of Khintchine's inequality, see e.g. the excellent textbook of Artstein-Avidan, Giannopoulos and Milman AAGM15.

Lemma 9 (Khintchine's inequality). Given $p>0, a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$, we have

$$
\mathbb{E}\left[\left|\sum_{i=1}^{n} x_{i} a_{i}\right|^{p}\right] \leq C \sqrt{p} \cdot\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{p / 2}
$$

where $C>0$ is a universal constant.
This fact can be derived from a standard Chernov bound which guarantees that for a vector with $\|\boldsymbol{a}\|_{2}=1$ one has $\operatorname{Pr}[|\langle\boldsymbol{a}, \boldsymbol{x}\rangle|>\lambda] \leq 2 e^{-\lambda^{2} / 2}$; then one can analyze that the regime of $\lambda=\Theta(\sqrt{p})$ dominates the contribution to $\mathbb{E}\left[|\langle\boldsymbol{a}, \boldsymbol{x}\rangle|^{p}\right]$. We use it to show the following:

Lemma 10. Given $p \geq 1$ and $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$ and $\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$, we have

$$
\mathbb{E}\left[\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p}\right] \leq O\left(\sqrt{p} \cdot n^{\max (1 / 2,1 / p)}\right)
$$

Proof. By convexity of $z \mapsto|z|^{p}$, Jensen's inequality in (*) and Khintchine's inequality in (**) (Lemma9) we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p}\right. & \stackrel{(*)}{\leq} \mathbb{E}\left[\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p}^{p}\right]^{1 / p} \\
& =\left(\sum_{j \in[m]} \mathbb{E}\left[\left|\sum_{i \in[n]} x_{i} a_{i j}\right|^{p}\right]\right)^{1 / p} \\
& \stackrel{(* * \in)}{=} C \sqrt{p} \cdot\left(\sum_{j \in[m]}\left(\sum_{i \in[n]} a_{i j}^{2}\right)^{p / 2}\right)^{1 / p}
\end{aligned}
$$

If $p \in[1,2]$, write $\boldsymbol{A}_{j} \in \mathbb{R}^{n}$ as $\left(\boldsymbol{A}_{j}\right)_{i}:=a_{i j}$. Then by Lemma 7 ,

$$
\left(\sum_{j \in[m]}\left(\sum_{i \in[n]} a_{i j}^{2}\right)^{p / 2}\right)^{1 / p}=\left(\sum_{j \in[m]}\left\|\boldsymbol{A}_{j}\right\|_{2}^{p}\right)^{1 / p} \leq\left(\sum_{j \in[m]}\left\|\boldsymbol{A}_{j}\right\|_{p}^{p}\right)^{1 / p}=\left(\sum_{i \in[n]}\left\|\boldsymbol{a}_{i}\right\|_{p}^{p}\right)^{1 / p} \leq n^{1 / p}
$$

Now suppose that $p \geq 2$. Define $\left(\boldsymbol{a}_{i}\right)^{2} \in \mathbb{R}^{m}$ to be the vector with j th coordinate $a_{i j}^{2}$. Since $\|\cdot\|_{p / 2}$ is a norm, we can use the triangle inequality to get

$$
\left(\sum_{j \in[m]}\left(\sum_{i \in[n]} a_{i j}^{2}\right)^{p / 2}\right)^{1 / p}=\left\|\sum_{i \in[n]}\left(\boldsymbol{a}_{i}\right)^{2}\right\|_{p / 2}^{1 / 2} \leq\left(\sum_{i \in[n]}\left\|\left(\boldsymbol{a}_{i}\right)^{2}\right\|_{p / 2}\right)^{1 / 2}=\left(\sum_{i \in[n]}\left\|\boldsymbol{a}_{i}\right\|_{p}^{2}\right)^{1 / 2} \leq n^{1 / 2} .
$$

Either way, we conclude that $\mathbb{E}\left[\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p}\right] \leq O\left(\sqrt{p} \cdot n^{\max (1 / 2,1 / p)}\right)$, as desired.
A well-known correlation inequality for Gaussian measure is the following:
Lemma 11 (Šidak Šid67] and Kathri Kha67]). For any symmetric convex set $K \subseteq \mathbb{R}^{n}$ and strip $S=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:|\langle\boldsymbol{a}, \boldsymbol{x}\rangle| \leq 1\right\}$, one has $\gamma_{n}(K \cap S) \geq \gamma_{n}(K) \cdot \gamma_{n}(S)$.

It is worth noting that a recent result of Royen [Roy14] extends this to any two arbitrary symmetric sets, though its full power will not be needed. We refer to the exposition of Latała and Matlak [LM17]. We also need a one-dimensional estimate:

Lemma 12. For a strip $S=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:|\langle\boldsymbol{a}, \boldsymbol{x}\rangle| \leq 1\right\}$, one has

$$
\gamma_{n}(S)=\gamma_{1}\left(\left\{x \in \mathbb{R}:|x| \leq\|\boldsymbol{a}\|_{2}^{-1}\right\}\right) \geq 1-\exp \left(-\|\boldsymbol{a}\|_{2}^{-2} / 2\right) .
$$

We use the following scaling lemma to deal with constant factors:
Lemma 13. Let $K \subset \mathbb{R}^{n}$ be a measurable set and B be a closed Euclidean ball such that $\gamma_{n}(K)=\gamma_{n}(B)$. Then $\gamma_{n}(t K) \geq \gamma_{n}(t B)$ for all $t \in[0,1]$. In particular, if $\gamma_{n}(C \cdot K) \geq 2^{-O(n)}$ for some constant $C>1$ then also $\gamma_{n}(K) \geq 2^{-O(n)}$.

For Section 4 we also need two helpful results. For the first one, see vH14].
Theorem 14. If $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is 1 -Lipschitz, then for $t \geq 0$ one has

$$
\operatorname{Pr}_{\boldsymbol{y} \sim N\left(\mathbf{0}, \boldsymbol{I}_{m}\right)}[F(\boldsymbol{y})>\mathbb{E}[F(\boldsymbol{y})]+t] \leq e^{-t^{2} / 2} .
$$

The classical Urysohn Inequality states that among all convex bodies of identical volume, the Euclidean ball minimizes the width. We will need a variant that is phrased in terms of the Gaussian measure rather than volume. For a proof, see Eldan and Singh [ES18].

Theorem 15 (Gaussian Variant of Urysohn's Inequality). Let $K \subseteq \mathbb{R}^{n}$ be a convex body and let $r>0$ be so that $\gamma_{n}(K)=\gamma_{n}\left(r B_{2}^{n}\right)$. Then $w(K) \geq w\left(r B_{2}^{n}\right)=r$.

3 Main technical result

In this section we show our measure lower bound for balancing vectors from ℓ_{p} to ℓ_{q} :
Theorem 16. Let $n \leq m$ and $1 \leq p \leq q \leq \infty$. Then for any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$,

$$
\gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \leq \sqrt{\min \left(p, \log \left(\frac{2 m}{n}\right)\right)} \cdot n^{\max (0,1 / 2-1 / p)+1 / q}\right\}\right) \geq 2^{-O(n)}
$$

In order to show Theorem 16 roughly speaking it will suffice to show the corresponding bounds for the two special cases of $q \in\{p, \infty\}$, which can be bootstrapped into a general bound. First we address the simpler case $p=q$ which at heart is based on Khintchine's inequality:

Lemma 17. Let $n \leq m$ and $p \geq 1$. Then for any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$,

$$
\gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p} \leq \sqrt{p} \cdot n^{\max (1 / 2,1 / p)}\right\}\right) \geq 2^{-O(n)} .
$$

Proof. By Lemma 10 we know that, for some constant $C>0$,

$$
\underset{x \sim N\left(\mathbf{0}, I_{n}\right)}{\mathbb{E}}\left[\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p}\right] \leq C \sqrt{p} \cdot n^{\max (1 / 2,1 / p)} .
$$

By Markov's inequality it follows that

$$
\gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{p} \leq 2 C \sqrt{p} \cdot n^{\max (1 / 2,1 / p)}\right\}\right) \geq 1 / 2,
$$

so that the result follows by Lemma 13 ,
Next, we deal with the crucial case $q=\infty$:
Lemma 18. Let $n \leq m$ and $p \geq 1$. Then for any $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with columns $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$ and rows $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{m} \in \mathbb{R}^{n}$, the body $K:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{\infty} \leq \sqrt{p} \cdot n^{\max (0,1 / 2-1 / p)}\right\}$ satisfies

$$
\gamma_{n}(K) \geq \prod_{j \in[m]} \gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left|\left\langle\boldsymbol{x}, \boldsymbol{A}_{j}\right\rangle\right| \leq \sqrt{p} n^{\max (0,1 / 2-1 / p)}\right\}\right) \geq 2^{-O(n)} .
$$

Proof. The main idea in the proof is that we can convert the bound on the ℓ_{p}-norm of the columns \boldsymbol{a}_{i} into information about the ℓ_{2}-norm of the rows \boldsymbol{A}_{j}. Namely,

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{j \in[m]}\left\|\boldsymbol{A}_{j}\right\|_{2}^{p}\right)^{1 / p \operatorname{Lem}]^{\boldsymbol{Z}}} n^{\max (0,1 / 2-1 / p)} \cdot(\frac{1}{n} \underbrace{\sum_{j \in[m]}\left\|\boldsymbol{A}_{j}\right\|_{p}^{p}}_{\leq n})^{1 / p} \leq n^{\max (0,1 / 2-1 / p)} . \tag{1}
\end{equation*}
$$

We rescale the row vectors to $\boldsymbol{V}_{j}:=\left(\sqrt{p} n^{\max (0,1 / 2-1 / p)}\right)^{-1} \boldsymbol{A}_{j}$ and abbreviate $y_{j}:=\left\|\boldsymbol{V}_{j}\right\|_{2}^{2}$, so that Eq. (1) simplifies to $\sum_{j=1}^{m} y_{j}^{p / 2} \leq n \cdot p^{-p / 2}$. We may then apply Šidak's Lemma 11] and bound the one-dimensional measure:

$$
\begin{array}{rll}
\gamma_{n}(K) & = & \gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left|\left\langle\boldsymbol{x}, \boldsymbol{V}_{j}\right\rangle\right| \leq 1 \forall j \in[m]\right\}\right) \\
& \stackrel{\text { Lem }}{\geq}(11] & \prod_{j \in[m]} \gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left|\left\langle\boldsymbol{x}, V_{j}\right\rangle\right| \leq 1\right\}\right) \\
& \stackrel{\text { Lem }}{\geq} \mathrm{IL2]} & \prod_{j \in[m]}\left(1-\exp \left(-y_{j}^{-1} / 2\right)\right) \\
& \stackrel{\text { Claim I }}{\geq} & \prod_{j \in[m]} \exp \left(-C^{\prime} p^{p / 2} y_{j}^{p / 2}\right)=\exp \left(-C^{\prime} p^{p / 2} \sum_{j \in[m]} y_{j}^{p / 2}\right) \geq \exp \left(-C^{\prime} n\right)
\end{array}
$$

Here we have used an estimate that remains to be proven:
Claim I. For any $p \geq 1$ and $y>0$ one has $1-\exp \left(-\frac{1}{2 y}\right) \geq \exp \left(-C^{\prime} p^{p / 2} y^{p / 2}\right)$ where $C^{\prime}>0$ is a universal constant.
Proof of Claim I. It will suffice to show for any $y>0$:

$$
-\log \left(1-\exp \left(-y^{-1} / 2\right)\right) \leq O\left(p^{p / 2} y^{p / 2}\right)
$$

To see this, let $z=y^{-1} / 2$ and note that it suffices to show

$$
-\log (1-\exp (-z)) \cdot z^{p / 2} \leq O\left((p / 2)^{p / 2}\right)
$$

For $z \leq 1$ we can use the inequality $-\log (1-\exp (-z)) \leq z^{-1 / 2}$ to see that the left side is at most 1 . For $z>1$ we use instead $-\log (1-\exp (-z)) \leq \exp (-z / 2)$ to get

$$
\begin{aligned}
-\log (1-\exp (-z)) \cdot z^{p / 2} & \leq z^{p / 2} \cdot \exp (-z / 2) \\
& \leq z^{p / 2} \cdot\lceil p / 2\rceil!/\left((z / 2)^{p / 2}\right) \\
& =2^{p / 2} \cdot\lceil p / 2\rceil!\leq O\left((p / 2)^{p / 2}\right),
\end{aligned}
$$

where in the last step we use the Stirling bound $a!\leq O\left(\sqrt{a} \cdot(a / e)^{a}\right)$ for $a:=\lceil p / 2\rceil$.

Remark 1. This argument is largely motivated by the result of Ball and Pajor [BP90] which bounds volume instead of Gaussian measure. More specifically, [BP90] prove that for $1 \leq$ $p \leq \infty$ and any matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, the set

$$
K=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left|\left\langle\boldsymbol{A}_{j}, \boldsymbol{x}\right\rangle\right| \leq \sqrt{p} \cdot\left(\frac{1}{n} \sum_{j=1}^{m}\left\|\boldsymbol{A}_{j}\right\|_{2}^{p}\right)^{1 / p} \forall j \in[m]\right\}
$$

satisfies $\operatorname{vol}_{n}(K) \geq 1$. In contrast, our Lemma 18 provides a simpler proof of a stronger result (up to a constant scaling), since the volume of a convex body is always at least its Gaussian measure.

We are now ready to show Theorem [16]
Proof of Theorem [16, Let $1 \leq p \leq q \leq \infty$ and let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ denote the matrix with columns $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$. By Lemma8 8 we know that for any $\boldsymbol{z} \in \mathbb{R}^{m}$ with $\|\boldsymbol{z}\|_{p} \leq n^{1 / p}$ and $\|\boldsymbol{z}\|_{\infty} \leq 1$ one has $\|z\|_{q} \leq\left(\|z\|_{p}^{p} \cdot\|z\|_{\infty}^{q-p}\right)^{1 / q} \leq n^{1 / q}$. Phrased in geometric terms this means $n^{1 / q} B_{q}^{m} \supseteq$ $n^{1 / p} B_{p}^{m} \cap B_{\infty}^{m}$. We would like to point out that this is a crucial point to obtain a dependence solely on n rather than the larger parameter m. Next, note the fact that $A^{-1}(S \cap T)=$ $\boldsymbol{A}^{-1}(S) \cap \boldsymbol{A}^{-1}(T)$ for any sets S and T which we use together with the inequality of Šidak and Kathri (Lemma 11) to obtain the estimate

$$
\begin{aligned}
& \gamma_{n}\left(\boldsymbol{A}^{-1}\left(\sqrt{p} \cdot n^{\max (0,1 / 2-1 / p)+1 / q} B_{q}^{m}\right)\right) \\
\geq & \gamma_{n}\left(\boldsymbol{A}^{-1}\left(\sqrt{p} \cdot n^{\max (0,1 / 2-1 / p)}\left(n^{1 / p} B_{p}^{m} \cap B_{\infty}^{m}\right)\right)\right) \\
\geq & \gamma_{n}\left(\boldsymbol{A}^{-1}\left(\sqrt{p} \cdot n^{\max (1 / 2,1 / p)} B_{p}^{m}\right)\right) \cdot \prod_{j \in[m]} \gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left|\left\langle\boldsymbol{x}, \boldsymbol{A}_{j}\right\rangle\right| \leq \sqrt{p} n^{\max (0,1 / 2-1 / p)}\right\}\right) \\
\geq & 2^{-O(n)} \cdot 2^{-O(n)}=2^{-O(n)},
\end{aligned}
$$

where we have used the measure lower bounds from Lemmas 17 and 18, This shows the claimed bound whenever $p \leq O\left(\log \left(\frac{2 m}{n}\right)\right)$, where the hidden constant can be removed by scaling the corresponding convex body, see Lemma 13 ,

It remains to prove that we can bootstrap the existing bound for the regime of large p. So let us assume that $p \geq 2 \cdot \max \{1, \log (m / n)\}$. Let $p_{0} \in[2, p]$ be a parameter to be determined and remark that Lemma 7 gives $\left\|\boldsymbol{a}_{i}\right\|_{p_{0}} \leq m^{1 / p_{0}-1 / p} \cdot\left\|\boldsymbol{a}_{i}\right\|_{p} \leq m^{1 / p_{0}-1 / p}$. Applying the above measure lower bound for p_{0} implies

$$
\gamma_{n}\left(\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \leq \sqrt{p_{0}} \cdot n^{1 / 2-1 / p_{0}+1 / q} \cdot m^{1 / p_{0}-1 / p}\right\}\right) \geq 2^{-O(n)}
$$

We can rewrite the above upper bound on ℓ_{q}-norm as

$$
\sqrt{p_{0}} \cdot n^{1 / 2-1 / p_{0}+1 / q} \cdot m^{1 / p_{0}-1 / p}=n^{1 / 2-1 / p+1 / q} \cdot \underbrace{\left(\frac{m}{n}\right)^{-1 / p}}_{\leq 1} \cdot \sqrt{p_{0}} \cdot\left(\frac{m}{n}\right)^{1 / p_{0}}
$$

Taking $p_{0}:=2 \cdot \max \{1, \log (m / n)\}$ gives the desired result as then $(m / n)^{1 / p_{0}} \leq \sqrt{e}$ and Lemma 13 can again deal with such constant scaling.

Now our main result on existence of partial colorings easily follows:
Proof of Theorem [1] Apply Theorem [6]to the set

$$
K:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \leq \sqrt{\min \left(p, \log \left(\frac{2 m}{n}\right)\right)} \cdot n^{\max (0,1 / 2-1 / p)+1 / q}\right\},
$$

which by Theorem 16indeed has a Gaussian measure of $\gamma_{n}(K) \geq 2^{-O(n)}$.
Next, we show how to obtain a full coloring by iteratively finding partial colorings.
Proof of Theorem[2, Let again $1 \leq p \leq q \leq \infty$ and let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$. We begin with $\boldsymbol{x}^{(0)}:=\mathbf{0}$ and given $\boldsymbol{x}^{(0)}, \ldots, \boldsymbol{x}^{(t)}$ we set $S^{(t)}:=\left\{i \in[n]:-1<x_{i}^{(t)}<1\right\}$ as the active variables. Then combining Theorem 6 and Theorem 16 we can find a partial coloring $\boldsymbol{x}^{(t+1)} \in[-1,1]^{n}$ in polynomial time so that $\left|S^{(t+1)}\right| \leq\left|S^{(t)}\right| / 2$ and $\left\|\sum_{i=1}^{n}\left(x_{i}^{(t+1)}-x_{i}^{(t)}\right) \boldsymbol{a}_{i}\right\|_{q} \leq C_{1} \sqrt{\min \left(p, \log \left(\frac{2 m}{\left.\left|S^{(t)}\right|\right)}\right)\right.}$. $\left|S^{(t)}\right|^{\max (0,1 / 2-1 / p)+1 / q}$. Let $\boldsymbol{x}^{(T)}$ be the first iterate with $\boldsymbol{x}^{(T)} \in\{-1,1\}^{n}$. Clearly $\left|S^{(t)}\right| \leq n 2^{-t}$ and $T \leq \log _{2}(n)$. Using the triangle inequality we get

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} x_{i}^{(T)} \boldsymbol{a}_{i}\right\|_{q} & \leq \sum_{t=0}^{T-1}\left\|\sum_{i=1}^{n}\left(x_{i}^{(t+1)}-x_{i}^{(t)}\right) \boldsymbol{a}_{i}\right\|_{q} \\
& \leq C_{1} \sum_{t=0}^{T-1} \sqrt{\min \left(p, \log \left(\frac{2 m}{2^{-t} \cdot n}\right)\right)} \cdot\left(2^{-t} \cdot n\right)^{\max (0,1 / 2-1 / p)+1 / q} \\
& \leq \frac{C_{1} C_{2} \sqrt{\min \left(p, \log \left(\frac{2 m}{n}\right)\right)}}{\max (0,1 / 2-1 / p)+1 / q} \cdot n^{\max (0,1 / 2-1 / p)+1 / q} . \square
\end{aligned}
$$

The intuition behind the extra factor for obtaining a full coloring is as follows: abbreviate the exponent as $\beta:=\max (0,1 / 2-1 / p)+1 / q$. Then it takes $\frac{1}{\beta}$ iterations until the term $\left|S^{(t)}\right|^{\beta}$ decreases by a factor of $1 / 2$ which dominates the miniscule growth of the logarithmic term. Then indeed the overall discrepancy is dominated by the discrepancy from the first $\frac{1}{\beta}$ iterations.

We can now demonstrate how a nontrivial choice of ℓ_{p}-norms can be beneficial in classical discrepancy settings:

Proof of Corollary 4 . Consider column vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in\{0,1\}^{m}$ with at most t nonzero entries per \boldsymbol{a}_{i}. First let us study the case $t \geq n / 10$. Since for each column $\left\|\boldsymbol{a}_{i}\right\|_{4} \leq t^{1 / 4}$, Theorem 2 provides a coloring $\boldsymbol{x} \in\{-1,1\}^{n}$ with $\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{\infty} \leq O\left(n^{1 / 4} \cdot t^{1 / 4}\right)=O(\sqrt{t})$. ${ }^{1}$

Now if $t<n / 10$, we take $p \in[2,16)$ with $1 / 2-1 / p=1 / \log (n / t)$. Then $\left\|\boldsymbol{a}_{i}\right\|_{p} \leq t^{1 / p}$ and TheoremZgives $\boldsymbol{x} \in\{-1,1\}^{n}$ with

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{\infty} \leq \frac{C \cdot n^{1 / 2-1 / p} \cdot t^{1 / p}}{1 / 2-1 / p}=C \sqrt{t} \log (n / t) \cdot \underbrace{(n / t)^{1 / \log (n / t)}}_{=e} .
$$

[^1]We conclude this section by showing that the term $n^{\max (0,1 / 2-1 / p)+1 / q}$ in our bounds is necessary:

Proof of Theorem 5, Consider the case $p \geq 2$. Consider an $n \times n$ Hadamard matrix, which is a matrix $\boldsymbol{H} \in\{-1,1\}^{n \times n}$ so that all rows and columns are orthogonal. Such matrices are known to exist at least whenever n is a power of 2 . The columns satisfy $\left\|\boldsymbol{h}_{i}\right\|_{p}=n^{1 / p}$ and for any $\boldsymbol{x} \in[-1,1]^{n}$ with $\left|\left\{i: x_{i}^{2}=1\right\}\right| \geq n / 2$ we know that $\|\boldsymbol{x}\|_{2} \geq \Omega(\sqrt{n})$ and $\|\boldsymbol{H} \boldsymbol{x}\|_{2} \geq \Omega(n)$, so that by Lemma7 we have

$$
\|\boldsymbol{H} \boldsymbol{x}\|_{q} \geq\|\boldsymbol{H} \boldsymbol{x}\|_{2} \cdot n^{1 / q-1 / 2}=\Omega\left(n^{1 / 2+1 / q}\right)
$$

For $p \in[1,2]$, take an identity matrix \boldsymbol{I}_{n}. For every $\boldsymbol{x} \in[-1,1]^{n}$ with $\left|\left\{i: x_{i}^{2}=1\right\}\right| \geq n / 2$ we have $\left\|\boldsymbol{I}_{n} \boldsymbol{x}\right\|_{q}=\|\boldsymbol{x}\|_{q} \geq \Omega\left(n^{1 / q}\right)$, and the columns of \boldsymbol{I}_{n} are certainly in B_{p}^{m}.

4 Partial coloring via measure lower bound

In this chapter, we want to show the existence of partial fractional colorings for bodies K with $\gamma_{n}(K) \geq e^{-\alpha n}$ as promised in Theorem6. The main innovation of this work compared to e.g. Rotl4 is to handle an arbitrarily small constant $\alpha>0$. For the sake of a simpler exposition we first prove such a result without the shift y, without the hyperplane H and with a small fraction δ of colored elements.

Theorem 19. For any $\alpha>0$, there are constants $\varepsilon:=\varepsilon(\alpha), \delta:=\delta(\alpha)>0$ so that the following holds: There is a polynomial time algorithm that for a symmetric convex set $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geq e^{-\alpha n}$ finds an $\boldsymbol{x} \in\left(\frac{1}{\varepsilon} K\right) \cap[-1,1]^{n}$ so that $\left|\left\{i \in[n]: x_{i} \in\{-1,1\}\right\}\right| \geq \delta n$.

Note that the standard nonconstructive proof by Gluskin Glu89 and Giannopoulos Gia97] requires a small enough constant $\alpha>0$ to guarantee a partial coloring $\boldsymbol{x} \in$ $\{-1,0,1\}^{n}$ with support $\Omega(n)$. Moreover, the statement of Theorem 19 does not hold if $\boldsymbol{x} \in[-1,1]^{n}$ is replaced by $\boldsymbol{x} \in\{-1,0,1\}^{n}$. In fact, it is not hard to construct a thin strip K with $\gamma_{n}(K) \geq e^{-\Omega(n)}$ so that K does not intersect $\{-1,0,1\}^{n} \backslash\{\mathbf{0}\}$ (even after a subexponential scaling). We show the construction in Appendix B,

For our proof we make use of the mean width $w(Q):=\mathbb{E}_{\boldsymbol{\theta} \in S^{n-1}}\left[\sup _{\boldsymbol{x} \in Q}\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle\right]$ of a body. We should point out that the connection between partial coloring arguments and mean width is due to Eldan and Singh [ES18]. Several of the claims require that n is chosen large enough.

Lemma 20. Let $Q \subseteq \mathbb{R}^{n}$ be a symmetric convex body with $\gamma_{n}(Q) \geq e^{-\alpha n}$ for $\alpha>0$. Then $w(Q) \geq \frac{1}{2} e^{-\alpha} \sqrt{n}$.

Proof. Let $r>0$ be the radius $\gamma_{n}\left(r B_{2}^{n}\right)=\gamma_{n}(Q)$. By Urysohn's Inequality (Theorem(15) one has $w(Q) \geq w\left(r B_{2}^{n}\right)=r$ so it suffices to give a lower bound on the radius r. A simple but useful estimate is that $2^{n} \leq \operatorname{Vol}_{n}\left(\sqrt{n} B_{2}^{n}\right) \leq 5^{n}$ for any $n \geq 1$. Moreover, the Gaussian density
is maximized at $\gamma_{n}(\mathbf{0})=\frac{1}{(\sqrt{2 \pi})^{n}}$. Then for $\beta:=2 e^{\alpha} \geq 2$ we have

$$
\gamma_{n}\left(\frac{\sqrt{n}}{\beta} B_{2}^{n}\right) \leq \operatorname{Vol}_{n}\left(\frac{\sqrt{n}}{\beta} B_{2}^{n}\right) \cdot \gamma_{n}(\mathbf{0}) \leq\left(\frac{5}{\beta}\right)^{n} \cdot \frac{1}{(\sqrt{2 \pi})^{n}} \leq\left(\frac{2}{\beta}\right)^{n} \stackrel{\beta=2 e^{\alpha}}{\leq} e^{-\alpha n}
$$

and so $r \geq \frac{\sqrt{n}}{\beta}=\frac{\sqrt{n}}{2 e^{\alpha}}$.
The key modification of our work in contrast to $\overline{\text { Rot14] }}$ is a finer upper bound on the distance of a Gaussian to K :

Lemma 21. Let $K \subseteq \mathbb{R}^{n}$ be a symmetric convex set with $\gamma_{n}(K) \geq e^{-\alpha n}$ where $\alpha \geq 1$ and n is large enough. Then

$$
\underset{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}{\mathbb{E}}[d(\boldsymbol{x}, K)] \leq \sqrt{n} \cdot\left(1-\frac{1}{512 \alpha e^{4 \alpha}}\right)
$$

Proof. Note that by Theorem [14]we have $\operatorname{Pr}_{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}\left[\|\boldsymbol{x}\|_{2} \geq 4 \sqrt{\alpha n}\right] \leq e^{-2 \alpha n}$, hence the restriction $Q:=K \cap 4 \sqrt{\alpha n} B_{2}^{n}$ still has $\gamma_{n}(Q) \geq \gamma_{n}(K)-e^{-2 \alpha n} \geq e^{-2 \alpha n}$ for n large enough. Then by the previous Lemma we know that $w(Q) \geq \frac{\sqrt{n}}{2 e^{2 \alpha}}$. For a vector \boldsymbol{x}, let $\boldsymbol{z}(\boldsymbol{x}):=\operatorname{argmax}\{\langle\boldsymbol{z}, \boldsymbol{x}\rangle$: $\boldsymbol{z} \in Q\}$. As we just showed, $\mathbb{E}_{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}\left[\left\langle\boldsymbol{z}(\boldsymbol{x}), \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_{2}}\right\rangle\right] \geq \frac{\sqrt{n}}{2 e^{2 \alpha}}$. Let $\lambda \in[0,1]$ be a parameter that we determine later. Note that the point $\lambda \cdot \boldsymbol{z}(\boldsymbol{x})$ lies in Q.

This point can be used to bound

$$
\begin{aligned}
\underset{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}{\mathbb{E}}\left[\|\boldsymbol{x}-\lambda \boldsymbol{z}(\boldsymbol{x})\|_{2}^{2}\right] & =\mathbb{E}\left[\|\boldsymbol{x}\|_{2}^{2}\right]-2 \lambda \boldsymbol{\mathbb { E }}[\langle\boldsymbol{x}, \boldsymbol{z}\rangle]+\mathbb{E}\left[\lambda^{2}\|\boldsymbol{z}\|_{2}^{2}\right] \\
& =\underbrace{\mathbb{E}\left[\|\boldsymbol{x}\|_{2}^{2}\right]}_{=n}-2 \lambda \underbrace{\mathbb{E}\left[\|\boldsymbol{x}\|_{2}\right]}_{\geq \frac{1}{2} \sqrt{n}} \cdot \underbrace{\underbrace{\mathbb{E}}_{\boldsymbol{\theta} \in S^{n-1}}[\langle\boldsymbol{\theta}, \boldsymbol{z}(\boldsymbol{\theta})\rangle]}_{\geq \sqrt{n} /\left(2 e^{2 \alpha}\right)}+\mathbb{E}[\lambda^{2} \underbrace{\|\boldsymbol{z}\|_{2}^{2}}_{\leq 16 \alpha n}] \\
& \leq n-\frac{1}{2} e^{-2 \alpha} \lambda n+\lambda^{2} \cdot 16 \alpha n^{\lambda:=\frac{1}{6_{4}^{6 \alpha e^{2 \alpha}}} n \cdot\left(1-\frac{1}{256 \alpha e^{4 \alpha}}\right)}
\end{aligned}
$$

Then
$\mathbb{E}[d(\boldsymbol{x}, Q)] \stackrel{\lambda z \in Q}{\leq} \mathbb{E}\left[\|\boldsymbol{x}-\lambda \boldsymbol{z}\|_{2}\right] \stackrel{\text { Jensen }}{\leq} \mathbb{E}\left[\|\boldsymbol{x}-\lambda \boldsymbol{z}\|_{2}^{2}\right]^{1 / 2} \leq \sqrt{n} \cdot \sqrt{1-\frac{1}{256 \alpha e^{4 \alpha}}} \leq \sqrt{n} \cdot\left(1-\frac{1}{512 \alpha e^{4 \alpha}}\right)$
using $\sqrt{1-x} \leq 1-\frac{x}{2}$ for $0 \leq x \leq 1$.

Next, we show the average distance of a Gaussian to the cube $[-\varepsilon, \varepsilon]^{n}$ is $\sqrt{n} \cdot(1-\Theta(\varepsilon))$.
Lemma 22. Let $\varepsilon>0$. Then for n large enough one has

$$
\operatorname{Pr}_{\boldsymbol{x} \sim N\left(\mathbf{0}, I_{n}\right)}\left[d\left(\boldsymbol{x},[-\varepsilon, \varepsilon]^{n}\right) \geq(1-5 \varepsilon) \sqrt{n}\right] \geq 1-\exp \left(-\frac{\varepsilon^{2}}{2} n\right)
$$

Proof. Let $\boldsymbol{y}:=\boldsymbol{y}(\boldsymbol{x}):=\operatorname{argmin}\left\{\|\boldsymbol{x}-\boldsymbol{y}\|_{2}: \boldsymbol{y} \in[-\varepsilon, \varepsilon]^{n}\right\}$ be the closest point in the cube to \boldsymbol{x}. For an individual coordinate $i \in[n]$ the expected contribution to the distance is

$$
\mathbb{E}\left[d\left(x_{i},[-\varepsilon, \varepsilon]\right)^{2}\right]=\mathbb{E}\left[\left|x_{i}-y_{i}\right|^{2}\right]=\underbrace{\mathbb{E}\left[x_{i}^{2}\right]}_{=1}-2 \underbrace{\mathbb{E}\left[x_{i} y_{i}\right]}_{\left.\leq \varepsilon \mathbb{E} \|\left|x_{i}\right|\right]}+\underbrace{\mathbb{E}\left[y_{i}^{2}\right]}_{\geq 0} \geq 1-2 \sqrt{\frac{2}{\pi}} \cdot \varepsilon \geq 1-2 \varepsilon .
$$

Then by linearity $\mathbb{E}\left[d\left(x,[-\varepsilon, \varepsilon]^{n}\right)^{2}\right]^{1 / 2} \geq \sqrt{n \cdot(1-2 \varepsilon)} \geq \sqrt{n} \cdot(1-2 \varepsilon)$. Recall that the distance function $F(\boldsymbol{x}):=d\left(\boldsymbol{x},[-\varepsilon, \varepsilon]^{n}\right)$ is 1-Lipschitz and for such functions the difference $\left|\mathbb{E}[F(\boldsymbol{x})]-\mathbb{E}\left[F(\boldsymbol{x})^{2}\right]^{1 / 2}\right|$ is bounded by an absolute constant. Then $\mathbb{E}[F(\boldsymbol{x})] \geq \sqrt{n} \cdot(1-4 \varepsilon)$ for n large enough. Finally by Theorem 14 one has $\operatorname{Pr}[F(\boldsymbol{x})<\mathbb{E}[F(\boldsymbol{x})]-\varepsilon \sqrt{n}] \leq e^{-\varepsilon^{2} n / 2}$ for $\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$ which then gives the claim as $\mathbb{E}[F(\boldsymbol{x})]-\varepsilon \sqrt{n} \geq(1-5 \varepsilon) \sqrt{n}$.

We will now prove Theorem [19, Let $K \subseteq \mathbb{R}^{n}$ be a symmetric convex body with $\gamma_{n}(K) \geq$ $e^{-\alpha n}$. Instead of providing a vector $\boldsymbol{x} \in\left(\frac{1}{\varepsilon} K\right) \cap[-1,1]^{n}$ directly, we will instead find an $\boldsymbol{x} \in K \cap[-\varepsilon, \varepsilon]^{n}$ with $\left|\left\{i \in[n]: x_{i} \in\{-\varepsilon, \varepsilon\}\right\}\right| \geq \delta n$ where $\varepsilon, \delta>0$ will be chosen small enough, depending on α - the result in Theorem 19then follows by scaling x by $\frac{1}{\varepsilon}$. We will use the following algorithm:
(1) Pick $\boldsymbol{x}^{*} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$ at random.
(2) Compute $\boldsymbol{y}^{*}:=\operatorname{argmin}\left\{\left\|\boldsymbol{x}^{*}-\boldsymbol{y}\right\|_{2}: \boldsymbol{y} \in K \cap[-\varepsilon, \varepsilon]^{n}\right\}$.

Note that the step (2) is a convex program which can be solved in polynomial time, see [GLS88]. Now we can finish the proof of Theorem 19 .

Lemma 23. If $\varepsilon, \delta>0$ are chosen small enough (depending on α), then with probability $1-e^{-\Omega_{\varepsilon, \delta}(n)}$ one has $\left|\left\{i \in[n]: y_{i}^{*} \in\{-\varepsilon, \varepsilon\}\right\}\right| \geq \delta n$.

Proof. For a set of indices $I \subseteq[n]$ we abbreviate $K(I):=\left\{\boldsymbol{x} \in K:\left|x_{i}\right| \leq \varepsilon \forall i \in I\right\}$ as the intersection of K with the slabs corresponding to coordinates in I. Consider the two events

$$
\begin{aligned}
& \mathcal{E}_{1}:=" d\left(\boldsymbol{x}^{*}, K \cap[-\varepsilon, \varepsilon]^{n}\right) \geq(1-5 \varepsilon) \cdot \sqrt{n} " \\
& \mathcal{E}_{2}:=\text { "for all } I \subseteq[n] \text { with }|I| \leq \delta n \text { one has } d\left(\boldsymbol{x}^{*}, K(I)\right) \leq(1-10 \varepsilon) \sqrt{n} "
\end{aligned}
$$

We will see that both events \mathcal{E}_{1} and \mathcal{E}_{2} happen with overwhelming probability.
Claim I. One has $\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\exp \left(-\frac{\varepsilon^{2}}{2} n\right)$.
Proof of Claim I. Follows from Lemman2as $d\left(\boldsymbol{x}^{*}, K \cap[-\varepsilon, \varepsilon]^{n}\right) \geq d\left(\boldsymbol{x}^{*},[-\varepsilon, \varepsilon]^{n}\right)$.
Claim II. If $\varepsilon:=\varepsilon(\alpha), \delta:=\delta(\alpha)>0$ are small enough, then $\operatorname{Pr}\left[\mathcal{E}_{2}\right] \geq 1-e^{-\Theta_{\varepsilon}(n)}$.
Proof of Claim II. For an index set I with $|I| \leq \delta n$ one can lower bound the measure as

$$
\gamma(K(I)) \stackrel{\text { Šidak-Kathri }(\operatorname{Lem}[1]}{\geq} \gamma_{n}(K) \cdot \gamma_{1}([-\varepsilon, \varepsilon])^{|I|} \geq e^{-\alpha n} \cdot(\varepsilon / 2)^{|I|} \geq e^{-\alpha n-\ln \left(\frac{2}{\varepsilon}\right) \cdot \delta n} \geq e^{-2 \alpha n},
$$

assuming $\delta>0$ is chosen small enough so that $\ln \left(\frac{2}{\varepsilon}\right) \cdot \delta \leq \alpha$. Here we use that $\gamma_{1}([-\varepsilon, \varepsilon]) \geq$ $2 \varepsilon \cdot \gamma_{1}(1 / 2) \geq 2 \varepsilon \frac{1}{\sqrt{2 \pi}} e^{-(1 / 2)^{2} / 2} \geq \frac{\varepsilon}{2}$ for $0<\varepsilon \leq \frac{1}{2}$. Let us abbreviate $\mathcal{I}:=\{I \subseteq[n]:|I| \leq \delta n\}$ as the family of small index sets. Then by Lemma 21 we know that a fixed $I \in \mathcal{I}$ has $\mathbb{E}_{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}[d(\boldsymbol{x}, K(I))] \leq \sqrt{n} \cdot\left(1-\frac{1}{512 \cdot(2 \alpha) e^{8 \alpha}}\right) \leq(1-20 \varepsilon) \sqrt{n}$, if we choose $\varepsilon \leq \frac{1}{20 \cdot 512 \alpha e^{8 \alpha}}$. Then by concentration one has $\operatorname{Pr}[d(\boldsymbol{x}, K(I))>(1-10 \varepsilon) \sqrt{n}] \leq \exp \left(-50 \varepsilon^{2} n\right)$, see Theorem[14] A useful bound is $|\mathcal{I}| \leq e^{2 \delta \log _{2}\left(\frac{1}{\delta}\right) n} \leq e^{\varepsilon^{2} n}$ if we choose δ small enough compared to ε. Then
$\operatorname{Pr}\left[\mathcal{E}_{2}\right] \stackrel{\text { union bound }}{\leq} \sum_{I \in \mathcal{I}} \operatorname{Pr}\left[d\left(\boldsymbol{x}^{*}, K(I)\right)>(1-10 \varepsilon) \sqrt{n}\right] \leq e^{\varepsilon^{2} n} \cdot \exp \left(-50 \varepsilon^{2} n\right) \leq \exp \left(-40 \varepsilon^{2} n\right)$.
Now we have everything to finish the proof. Fix an outcome of the vector \boldsymbol{x}^{*} so that the events \mathcal{E}_{1} and \mathcal{E}_{2} are both true, and abbreviate $I^{*}:=\left\{i \in[n]: y_{i}^{*} \in\{-\varepsilon, \varepsilon\}\right\}$. Suppose for the sake of contradiction that $\left|I^{*}\right|<\delta n$. Then

$$
(1-10 \varepsilon) \sqrt{n} \stackrel{\mathcal{E}_{2} \text { true } \& I^{*} \in \mathcal{I}}{\geq} d\left(\boldsymbol{x}^{*}, K\left(I^{*}\right)\right) \stackrel{(*)}{=} d\left(\boldsymbol{x}^{*}, K \cap[-\varepsilon, \varepsilon]^{n}\right){ }^{\mathcal{E}_{1} \text { true }} \underset{\geq}{\geq}(1-5 \varepsilon) \sqrt{n}
$$

which is a contradiction. Here the crucial argument for (*) is that $d\left(\boldsymbol{x}^{*}, K \cap[-\varepsilon, \varepsilon]^{n}\right)=$ $\min \left\{\left\|\boldsymbol{x}^{*}-\boldsymbol{y}\right\|_{2}: \boldsymbol{y} \in K\right.$ and $\left.\left|y_{i}\right| \leq \varepsilon \forall i \in[n]\right\}$ is a convex minimization problem and the optimum value will not change if linear constraints are discarded that are not tight for the optimum \boldsymbol{y}^{*}, and the cube constraints for coordinates $I^{*} \backslash[n]$ are indeed not tight.

In order to obtain a full coloring $\boldsymbol{x} \in\{-1,1\}^{n}$ one typically applies the partial coloring lemma $O(\log n)$ times. This requires a slight variant of Theorem 19 where the set K is shifted (and the shift corresponds to the sum of vectors from previous iterations). It can also be convenient for applications to allow the intersection of K with a subspace, so we incorporate that feature as well:

Theorem 24. For all $\alpha, \beta>0$, there are constants $\varepsilon:=\varepsilon(\alpha, \beta)$ and $\delta:=\delta(\alpha, \beta)>0$ so that the following holds: There is a randomized polynomial time algorithm which for a symmetric convex set $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geq e^{-\alpha n}$, a shift $\boldsymbol{y} \in[-1,1]^{n}$ and a subspace $H \subseteq \mathbb{R}^{n}$ with $\operatorname{dim}(H) \geq \beta n$, finds an $\boldsymbol{x} \in\left(\frac{1}{\varepsilon} K \cap H\right)$ with $\boldsymbol{x}+\boldsymbol{y} \in[-1,1]^{n}$ and $\left|\left\{i \in[n]:(\boldsymbol{x}+\boldsymbol{y})_{i} \in\{ \pm 1\}\right\}\right| \geq \delta n$.

The proof is very similar to the arguments presented above; see Appendix A for details. Another extension which can be often convenient in applications is to color close to ($1-$ β) n many elements rather than δn for some small constant δ. We stated such a result earlier in Theorem6. Now we are ready to prove it:

Proof of Theorem 6. The idea is to simply apply Theorem[24 a constant number of times until the desired number of elements is colored. We assume $\beta>\gamma$ since otherwise there is nothing to prove. We set $\boldsymbol{y}^{(0)}:=y$ and for $t \geq 0$ we set $S^{(t)}:=\left\{i \in[n]:-1<y_{i}^{(t)}<1\right\}$. Suppose for some t we have constructed a sequence $\boldsymbol{y}^{(0)}, \ldots, \boldsymbol{y}^{(t)}$ and still $\left|S^{(t)}\right| \geq(1-\beta+\gamma) n$. Let $K_{S^{(t)}}:=\left\{\overline{\boldsymbol{x}} \in \mathbb{R}^{S^{(t)}}:(\overline{\boldsymbol{x}}, \mathbf{0}) \in K\right\}$ and note that $\gamma_{\left|S^{(t)}\right|}\left(K_{S^{(t)}}\right) \geq \gamma_{n}(K) \geq e^{-\alpha n} \geq \exp \left(-\frac{\alpha}{1-\beta+\gamma}\left|S^{(t)}\right|\right)$. Moreover $\operatorname{dim}\left(H_{S^{(t)}}\right) \geq \operatorname{dim}(H)-\left(n-\left|S^{(t)}\right|\right) \geq \beta n-(\beta-\gamma) n=\gamma n$. Hence by Theorem 24 there exists a $\boldsymbol{x}^{(t)}$ so that $\boldsymbol{y}^{(t+1)}:=\boldsymbol{y}^{(t)}+\boldsymbol{x}^{(t)} \in[-1,1]^{n}$ with $\boldsymbol{x}^{(t)} \in\left(C^{\prime} \cdot K \cap H\right)$ and $\left|S^{(t+1)}\right| \leq$ $(1-\delta)\left|S^{(t)}\right|$ for some constants $C^{\prime}, \delta>0$. As soon as we reach an iteration t with $\left|S^{(t)}\right|<$ $(1-\beta+\gamma) n$ we stop and return the desired vector $\boldsymbol{x}:=\boldsymbol{x}^{(0)}+\ldots+\boldsymbol{x}^{(t-1)}$.

5 Open problems

We conjecture that Theoremn can be improved to match Theorem 1
Conjecture $1\left(\ell_{p} \rightarrow \ell_{q}\right.$ version of Komlós conjecture). Given $n \leq m, 1 \leq p \leq q \leq \infty$ and $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} \in B_{p}^{m}$, do there always exist signs $\boldsymbol{x} \in\{-1,1\}^{n}$ so that

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}\right\|_{q} \leq C \sqrt{\min \left(p, \log \left(\frac{2 m}{n}\right)\right)} \cdot n^{\max (0,1 / 2-1 / p)+1 / q}
$$

for some universal constant $C>0$?
Since Conjecture 1 is at least as hard as the Komlós conjecture, a more realistic goal would be to improve the full coloring of Theorem 2 by a factor of $(1 / 2-1 / p+1 / q)^{-1 / 2}$ so as to match the best known bound of $O(\sqrt{\log n})$ for Komlós.

Recall that for a matrix $A \in \mathbb{R}^{n \times n}$ and $1 \leq p \leq \infty$, the Schatten-p norm is defined as $\|\boldsymbol{A}\|_{S(p)}:=\left(\sum_{i=1}^{n} \sigma_{i}(\boldsymbol{A})^{p}\right)^{1 / p}$ where $\sigma_{i}(\boldsymbol{A}) \geq 0$ is the i th singular value of the matrix. In particular $\|\boldsymbol{A}\|_{S(\infty)}$ is the maximum singular value and $\|\boldsymbol{A}\|_{S(1)}$ is known as Trace norm or $N u$ clear norm. One might wonder whether Theorem 1 could be extended for matrices instead of vectors in the corresponding Schatten norms. In fact this is not possible: even for $p=2$ and $q=\infty$, there exist n rank-one matrices $\boldsymbol{A}_{i}:=\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top} \in \mathbb{R}^{n \times n}$ with unit \boldsymbol{v}_{i} for which any fractional coloring has discrepancy $\Omega(\sqrt{n})$ in the operator norm (Wea02], Section 3). It is still possible nevertheless that Corollary 3 extends in the following way:

Conjecture $2\left(\ell_{p}\right.$ version of Matrix Spencer). Given $2 \leq p \leq \infty$ and symmetric $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{n} \in$ $\mathbb{R}^{n \times n}$ with Schatten-p norm at most 1 , can we always find signs $\boldsymbol{x} \in\{-1,1\}^{n}$ so that

$$
\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{A}_{i}\right\|_{S(p)} \leq C \sqrt{n}
$$

for some universal constant $C>0$?
This is a more general form of the Matrix Spencer conjecture Zou12], and one can show a weaker bound of $O(\sqrt{p n})$ with random signs similar to Lemma 10 using matrix
concentration. In fact, it is an open problem to show even a partial coloring for Conjecture 2. This would be implied by the following measure lower bound:

Conjecture 3. Given $1 \leq p \leq \infty$ and symmetric $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{n} \in \mathbb{R}^{n \times n}$, can we show that

$$
K:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\|\sum_{i=1}^{n} x_{i} \boldsymbol{A}_{i}\right\|_{S(p)} \leq\left\|\left(\sum_{i=1}^{n} \boldsymbol{A}_{i}^{2}\right)^{1 / 2}\right\|_{S(p)}\right\}
$$

satisfies $\gamma_{n}(K) \geq 2^{-O(n)}$?
The reader may notice our techniques establish Conjecture 3 in the case where the matrices \boldsymbol{A}_{i} are all diagonal.

References

[AAGM15] S. Artstein-Avidan, A. Giannopoulos, and V. Milman. Asymptotic Geometric Analysis. Part I. 2015.
[Ban93] W. Banaszczyk. Balancing vectors and convex bodies. Studia Mathematica, 106(1):93-100, 1993.
[Ban98] W. Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Structures Algorithms, 12(4):351-360, 1998.
[Ban10] N. Bansal. Constructive algorithms for discrepancy minimization. In FOCS, pages 3-10, 2010.
[BDGL18] N. Bansal, D. Dadush, S. Garg, and S. Lovett. The gram-schmidt walk: a cure for the banaszczyk blues. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 587-597, 2018.
[BF81] J. Beck and T. Fiala. Integer-making theorems. Discrete Applied Mathematics, 3(1):1-8, 1981.
[BGMN05] F. Barthe, O. Guédon, S. Mendelson, and A. Naor. A probabilistic approach to the geometry of the ℓ_{p}^{n}-ball. Ann. Probab., 33(2):480-513, 032005.
[BP90] K. Ball and A. Pajor. Convex bodies with few faces. Proceedings of the American Mathematical Society, 110(1):225-231, 1990.
[DGLN16] D. Dadush, S. Garg, S. Lovett, and A. Nikolov. Towards a constructive version of banaszczyk's vector balancing theorem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, pages 28:1-28:12, 2016.
[DNTT18] D. Dadush, A. Nikolov, K. Talwar, and N. Tomczak-Jaegermann. Balancing vectors in any norm. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 1-10, 2018.
[ES18] R. Eldan and M. Singh. Efficient algorithms for discrepancy minimization in convex sets. Random Struct. Algorithms, 53(2):289-307, 2018.
[Gia97] A. Giannopoulos. On some vector balancing problems. Studia Mathematica, 122(3):225-234, 1997.
[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.
[Glu89] E. D. Gluskin. Extremal properties of orthogonal parallelepipeds and their applications to the geometry of banach spaces. Mathematics of the USSRSbornik, 64(1):85, 1989.
[Kha67] C. G. Khatri. On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist., 38:1853-1867, 1967.
[LM12] S. Lovett and R. Meka. Constructive discrepancy minimization by walking on the edges. In FOCS, pages 61-67, 2012.
[LM17] R. Latala and D. Matlak. Royen's proof of the gaussian correlation inequality. Geometric Aspects of Functional Analysis, page 265âĂŞ275, 2017.
[LRR16] A. Levy, H. Ramadas, and T. Rothvoss. Deterministic discrepancy minimization via the multiplicative weight update method. CoRR, abs/1611.08752, 2016.
[Rot14] T. Rothvoß. Constructive discrepancy minimization for convex sets. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 140-145, 2014.
[Royl4] T. Royen. A simple proof of the gaussian correlation conjecture extended to multivariate gamma distributions, 2014.
[Šid67] Z. Šidák. Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc., 62:626-633, 1967.
[Spe85] J. Spencer. Six standard deviations suffice. 1985.
[vH14] R. van Handel. Probability in high dimension. 2014.
[Wea02] N. Weaver. The kadison-singer problem in discrepancy theory, 2002.
[Zou12] A. Zouzias. A matrix hyperbolic cosine algorithm and applications. In Au tomata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 846-858, 2012.

A Partial colorings in shifted sets

In this section we show the postponed proof of Theorem 24] It turns out that we need only an extension that can handle the intersection with a subspace - the shift can be obtained by a scaling argument. Hence in this section we will prove the following main technical theorem:

Theorem 25. For any $\alpha, \beta>0$, there are constants $\varepsilon:=\varepsilon(\alpha, \beta)>0$ and $\delta:=\delta(\alpha, \beta)>0$ so that the following holds: Let $K \subseteq \mathbb{R}^{n}$ be a symmetric convex body with $\gamma_{n}(K) \geq e^{-\alpha n}$ and let $H \subseteq \mathbb{R}^{n}$ be a subspace with $\operatorname{dim}(H) \geq \beta n$. Then there is a randomized polynomial time algorithm that finds an $\boldsymbol{x} \in K \cap H$ so that $\left|\left\{i \in[n]: x_{i} \in\{-\varepsilon, \varepsilon\}\right\}\right| \geq \delta n$ with probability $1-e^{-\Omega_{\varepsilon, \delta}(n)}$.

Before we prove Theorem 25]we argue how it implies the desired Theorem 24.
Proof of Theorem [24. Consider the input of Theorem[24] which is a set $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geq$ $e^{-\alpha n}$ and a subspace $H \subseteq \mathbb{R}^{n}$ with $\operatorname{dim}(H) \geq \beta n$. Instead of working with a translate \boldsymbol{y}, we allow asymmetric bounds $-2 \leq L_{i}<0<R_{i} \leq 2$ with $\left|R_{i}-L_{i}\right| \leq 2$ and the goal will be to find a vector $\boldsymbol{x} \in \frac{1}{\varepsilon^{\prime}} K \cap H$ with a linear number of coordinates i satisfying $x_{i} \in\left\{L_{i}, R_{i}\right\}$. For symmetry reasons we may assume that $\left|R_{i}\right| \leq\left|L_{i}\right|$ for all $i \in[n]$, meaning that the upper boundary is the closer one for every coordinate. Note that then $0<R_{i} \leq 1$. Now consider the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $T(\boldsymbol{x}):=\left(\frac{x_{1}}{R_{1}}, \ldots, \frac{x_{n}}{R_{n}}\right)$. Intuitively, this map stretches the i th coordinate axis by a factor of $\frac{1}{R_{i}} \geq 1$, which implies that $\gamma_{n}(T(K)) \geq \gamma_{n}(K)$. Now we apply Theorem 25 to the body $T(K)$ and the subspace $T(H)$. Let us suppose that the randomized algorithm is successful and delivers a vector $\boldsymbol{x} \in T(K) \cap T(H) \cap[-\varepsilon, \varepsilon]^{n}$ with $\left|x_{i}\right|=\varepsilon$ for at least δn many coordinates, where $\varepsilon, \delta>0$ are the constants depending on α and β that make Theorem 25 work. Transforming this vector back to $\boldsymbol{y}:=\frac{1}{\varepsilon} T^{-1}(\boldsymbol{x})$, we see that $\boldsymbol{y} \in$ $\frac{1}{\varepsilon}(K \cap H)$ with $-R_{i} \leq y_{i} \leq R_{i}$ and $\left|y_{i}\right|=R_{i}$ for at least δn many coordinates $i \in[n]$. Then for at least one choice $\boldsymbol{z} \in\{-\boldsymbol{y}, \boldsymbol{y}\}$ one has $z_{i}=R_{i}$ for at least $\frac{\delta n}{2}$ many coordinates $i \in[n]$, while still $L_{i} \leq z_{i} \leq R_{i}$ for all $i \in[n]$. This concludes the claim.

The algorithm for Theorem 25is simply the previous one where K is replaced by $K \cap H$. We restate it for the sake of readability:
(1) Pick $\boldsymbol{x}^{*} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$ at random.
(2) Compute $\boldsymbol{y}^{*}:=\operatorname{argmin}\left\{\left\|\boldsymbol{x}^{*}-\boldsymbol{y}\right\|_{2}: \boldsymbol{y} \in K \cap H \cap[-\varepsilon, \varepsilon]^{n}\right\}$.

Luckily it suffices to prove one additional lemma to guarantee that a random Gaussian is close to the intersection $K \cap H$.

Lemma 26. For any $\alpha, \beta>0$ there are small enough constants $\varepsilon, \delta>0$ so that the following holds for a convex symmetric body $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geq e^{-\alpha n}$ and any subspace $H \subseteq \mathbb{R}^{n}$ with $\operatorname{dim}(H) \geq \beta n$. Let $I \subseteq[n]$ with $|I| \leq \delta n$ and abbreviate $K(I):=\left\{\boldsymbol{x} \in K:-\varepsilon \leq x_{i} \leq \varepsilon \forall i \in\right.$ I\}. Then

$$
\underset{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}{\mathbb{E}}[d(\boldsymbol{x}, K(I) \cap H)] \leq(1-20 \varepsilon) \sqrt{n} .
$$

Proof. We denote γ_{H} as the Gaussian measure restricted to a subspace H. Moreover, let $N(H)$ be the standard Gaussian in that same subspace. We can again lower bound the Gaussian measure of $K(I)$. We abbreviate $S_{i}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left|x_{i}\right| \leq \varepsilon\right\}$ as the strip in i th coordinate direction.

$$
\begin{array}{cll}
\gamma_{H}(K(I) \cap H) & \begin{array}{c}
\text { Šidak-Kathri (Lem[1] } \\
\geq
\end{array} & \gamma_{H}(K \cap H) \cdot \prod_{i \in I} \gamma_{H}\left(S_{i} \cap H\right) \\
\stackrel{(*)}{\geq} & \gamma_{n}(K) \cdot \prod_{i \in I} \gamma_{n}\left(S_{i}\right) \\
& \geq & \gamma_{n}(K) \cdot(\varepsilon / 2)^{|I|} \geq e^{-2 \alpha n} \geq e^{-\frac{2 \alpha}{\beta} \cdot \operatorname{dim}(H)}
\end{array}
$$

assuming we choose ε, δ small enough. In (*) we have used that $\gamma_{H}(K \cap H) \geq \gamma_{n}(K)$, as slices through the origin of a symmetric convex body maximize Gaussian measure.

Next, we use that by orthogonality one has

$$
\begin{aligned}
\underset{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}{\mathbb{E}}\left[d(\boldsymbol{x}, K(I) \cap H)^{2}\right] & =\underbrace{\underset{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}{\mathbb{E}}\left[d(\boldsymbol{x}, H)^{2}\right]}_{=n-\operatorname{dim}(H)}+\underbrace{\underset{\operatorname{x\sim N}(H)}{\mathbb{E}}\left[d(\boldsymbol{x}, K(I) \cap H)^{2}\right]}_{\leq \operatorname{dim}(H) \cdot\left(1-\frac{1}{25 \cdot \frac{2 \alpha}{\beta} \cdot \exp \left(4 \frac{2 \alpha}{\beta}\right)}\right)} \\
& \stackrel{(* *)}{\leq} n-\frac{1}{256 \cdot \frac{2 \alpha}{\beta} \exp \left(4 \cdot \frac{2 \alpha}{\beta}\right)} \cdot \operatorname{dim}(H) \stackrel{(* * *)}{\leq} n \cdot(1-40 \varepsilon)
\end{aligned}
$$

where we had proven the inequality for $(* *)$ already in Lemma21, Morever ($* * *$) follows from $\operatorname{dim}(H) \geq \beta n$ and choosing ε small enough. Consequently $\mathbb{E}_{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}[d(\boldsymbol{x}, K(I) \cap H)] \leq$ $\mathbb{E}_{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}\left[d(\boldsymbol{x}, K(I) \cap H)^{2}\right]^{1 / 2} \leq \sqrt{n \cdot(1-40 \varepsilon)} \leq \sqrt{n} \cdot(1-20 \varepsilon)$ by Jensen's Inequality.

Now, let us revisit the proof of Lemma 23 and observe that the only properties for a body K that are needed for the projection algorithm to work are: (i) K is convex; (ii) one has $\mathbb{E}_{\boldsymbol{x} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)}[d(\boldsymbol{x}, K(I))] \leq(1-20 \varepsilon) \sqrt{n}$ for all $I \subseteq[n]$ with $|I| \leq \delta n$ for some constants $\varepsilon, \delta>0$. But as we have just proven in Lemma26, those same properties holds for $\tilde{K}:=K \cap H$. That concludes the proof of Theorem 25] and hence the proof of Theorem,24.

B Large convex sets without partial colorings

We have mentioned earlier that a symmetric convex set K with measure $\gamma_{n}(K) \geq e^{-\delta n}$ contains a partial coloring $\boldsymbol{x} \in\{-1,0,1\}^{n} \backslash\{0\}$ if the constant δ is small enough - but we
claimed that this is false for constants beyond a certain threshold, even if one is allowed to rescale the body by some parameter dependent on δ. The construction for such a set is a very thin strip that avoids any point in $\{-1,0,1\}^{n} \backslash\{\mathbf{0}\}$.

Lemma 27. For any $C \geq 1$, there exists a $\delta>0$ so that the following holds: for any $n \in \mathbb{N}$ large enough there is a symmetric convex body $K \subseteq \mathbb{R}^{n}$ so that (i) $\left(C^{n} K\right) \cap\left(\{-1,0,1\}^{n} \backslash\{\mathbf{0}\}\right)=\varnothing$ and (ii) $\gamma_{n}(K) \geq e^{-\delta n}$.

Proof. The construction is probabilistic. We sample a Gaussian $\boldsymbol{g} \sim N\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$ and for a tiny parameter $s>0$ that we determine later, we consider the strip $K:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:|\langle\boldsymbol{g}, \boldsymbol{x}\rangle| \leq s\right\}$. Consider the set of nontrivial partial colorings $X:=\{-1,0,1\}^{n} \backslash\{\boldsymbol{0}\}$ and recall that $|X| \leq 3^{n}$. For any $\boldsymbol{x} \in X$, the distribution of $\langle\boldsymbol{g}, \boldsymbol{x}\rangle$ is Gaussian with variance $\|\boldsymbol{x}\|_{2}^{2} \geq 1$ and hence the density of this 1-dimensional Gaussian is at most $\frac{1}{\sqrt{2 \pi}} e^{0} \leq \frac{1}{2}$ everywhere. In particular for a fixed $\boldsymbol{x} \in X$, one can obtain the simple estimate of $\operatorname{Pr}[|\langle\boldsymbol{g}, \boldsymbol{x}\rangle| \leq t] \leq 4 t$ for any $t>0$. Then choosing $s:=\frac{1}{16} \cdot C^{-n} 3^{-n}$ we obtain

$$
\begin{equation*}
\underset{\boldsymbol{g}}{\operatorname{Pr}}\left[\left(C^{n} K\right) \cap X \neq \varnothing\right] \leq \sum_{\boldsymbol{x} \in X} \operatorname{Pr}\left[|\langle\boldsymbol{g}, \boldsymbol{x}\rangle|>C^{n} s\right] \leq \frac{1}{4} \cdot|X| \cdot 3^{-n} \leq \frac{1}{4} \tag{*}
\end{equation*}
$$

Moreover using Markov's Inequality we obtain the (rather weak) estimate

$$
\operatorname{Pr}\left[\|\boldsymbol{g}\|_{2}^{2}>4 n\right] \leq \frac{1}{4} \quad(* *)
$$

Then with probability at least $1 / 2$ none of the events $(*)$ and $(* *)$ happen. We fix such an outcome of \boldsymbol{g} and estimate that the measure of our strip is

$$
\gamma_{n}(K)=\int_{-s /\|\boldsymbol{g}\|_{2}}^{s /\|\boldsymbol{g}\|_{2}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \geq \frac{1}{\sqrt{2 \pi}} e^{-1 / 2} \frac{2 s}{\sqrt{n}} \geq e^{-\delta n}
$$

for a suitable choice of δ using $\frac{s}{\|\boldsymbol{g}\|_{2}} \leq 1$.

[^0]: *University of Washington, Seattle. Email: voreis@uw .edu.
 ${ }^{\dagger}$ University of Washington, Seattle. Email: rothvoss@uw. edu. Supported by NSF CAREER grant 1651861 and a David \& Lucile Packard Foundation Fellowship.

[^1]: ${ }^{1}$ In fact for $t \geq n$ a more careful choice of $p=\log (2 t / n)$ gives a better ℓ_{∞} discrepancy bound of $O(\sqrt{n \log (2 t / n)})$, even though the Beck-Fiala conjecture asks only for $O(\sqrt{t})$.

