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Chapter 1

The Magical Mystery Tour

Notes taken by Ran Gilad-Bachrach

Summary:

Since the introduction oExpander Graphsluring the 1970’s they turn to be a significant tool both in
theory and practice. They have been used in solving problems in communication and construction of error
correcting codes as well as a tool for proving results in number theory and computational complexity. In
this course we will exploré&xpander Graphsboth the properties and the use of such graphs will be
studied.

The goal of this lecture is to sample the wide range of applications for expander graphs. This should serve
as a motivation for the rest of the course.

1.1 Some Problems

To begin our tour we will look at three questions from three very different domains. Note that in these problems the
connection to graph theory, and especially to expander graphs is not clear.

1.1.1 Hardness results for linear transformation

Maybe the most important open problem in mathematics these days is the f&nreus P (or P # N P) problem.

Although it has been studied for decades now, almost no significant progress has been made. One of the reasons lies
in the fact that we have very few problems that are known to be hard. During the 1970'th, Leslie Valiant [Val76]
addressed this problem. He defined the following simple problem:

Problem 1. Let F be a finite field. Letd be a linear transformation ovéf, i.e. A is ann x n matrix. We would
like to build a circuit which computes the transformation— Az. Each gate of this circuit computes addition or
multiplication. How many gates do we need in this network?

Assume for instance that the transformatibmepresent the Fourier Transform. Cooley and Tukey [CW65] pre-
sented the Fast Fourier Transform (FFT) which computes the transformation((sirigg n) gates. However there
is no matching lower bound so it might be possible to do the computation using¢nlygates. The implications of
a Very Fast Fourier Transform, i.e &n) algorithm for computing the transform are hard to over estimate.

By counting the number of circuits and comparing to the number of linear transformations it could be verified that
the average size of such circuit@(nz/ log n) gates, however we don’'t know of any transformation which needs
more therO(n) gates.

Valiant [Val76] tried to present transformations for which the number of gates needed is greatéxtherHe
suggested that super regular transformation have this property:

Definition 1.1 (Super Regular Matrix). A matrix A is Super Regulaif any rectangular sub-matrix od has full
rank.
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Figure 1.1: Leslie G. Valiant

The main observation of Valiant was that if we look at the graph layout of a circuit which computes a super regular
matrix then this graph is &uper Concentrator

Definition 1.2 (Super Concentrator). A graphG is aSuper Concentrataf it hasn input vertexes denoted byand
n output vertexes denoted I8y such that for every and everyS C I andT C O of sizek (i.e. |S| = |T'| = k) there
existsk paths inG from S to T" which are vertexes disjoint.

Valiant conjectured that aruper Concentratagraph must have> n edges and hence any circuit which computes
a super regular matrix must hage n gates. However, Valiant himself disproved the conjecture and presented super
concentrators witl® (n) edges, and as you might have guessed this is where expanders come into the picture.

For the moment we will skip to a totally different problem.

1.1.2 Error Correcting Codes

One of the most fundamental problems in communication is noise. Assume that Alice has a megdaigewiich
she would like to deliver to Bob over some communication channel. The problem is that the channel might interfere
in the way and thus the message that Bob receives might be different then the one that Alice sent.

During the 1940’s Clude Elwood Shannon has developed the theory of communication which is called Information
Theory. In his innovative paper “A Mathematical Theory of Communication” [Sha48] the problem of communication
over noisy channel is one of the problems he addressed. Let us first define the problem

Problem 2 (communication over noisy channel).Alice and Bob can communicate over a noisy channel that might
change a proportiop of the bits sent through it. How can Alice send Bob a messageoits?

Shannon presented an answer to the above given question. He suggested building a dictionary (@rcode)
{0,1}" such thaiC| = 2*. Everyk-bits message is encoded by a code word'iand transmitted. Bob receives
bits and finds the closest code worddrin terms of hamming distance and determinesittts associated with it. If
the minimal distance between two words(his greater theRpn it is guaranteed that thie-bits that Bob will find is
exactly the bits Alice encoded.

Therefore the problem of communicating over noisy channel is reduced to the problem of finding a good dictionary
(code). A good dictionary is one that is both big (i|€ is big) and at the same time the length of the word€'iis
small. This is seen from the next definition:

1The problem as described here is a simplification of the original problem presented by Shannon.
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Figure 1.2: Clude Shannon.

Definition 1.3 (the rate and distance of a dictionary).Let C' C {0, 1}" be a dictionary. Theate of the dictionary
is defined as
log |C|

n

R=

while thedistanceof the code is
minC17éCz eC dH(Cl ) 02)
n

§ =
wheredy is the hamming distance.

As we saw before the distance of a dictionary governs it’s ability to overcome noisy channels while the rate counts
the efficiency of the code. At this point we can refine the problem just state:

Problem 3 (refined communication problem). Is it possible to design a series of dictionar{es, }3° , such that
|C| = 2% , the distance of each dictionary is greater than- 0 and the rate of each code is greater tifian> 0.

We will see that a solution to this problem can be found using expander graphs. However, we will now present yet
another problem.

1.1.3 De-randomizing Algorithms

Rabin [Rab80] presented in 1980 an algorithm for checking primality. Given an intege¥: bits and a set ok
random bits- the algorithm computes a functigifx, ) such that ifz is primal f (z, ) = 1, on the other hand if is

not primal f (z, ) = 1 with probability smaller ther /4. Applying this algorithm over and over again can reduce the
error to be arbitrary small. However this process involves the use of more and more random bits.

The primality test is a special case of a Random Polynomial algorithm (RPY. ket{0, 1}* be a language. An
algorithm which decides on € {0, 1}* weather it is inL or not is Random Polynomial, if it runs in polynomial time
and using polyk) random bits and gives an answer which is always omedfL and has probability smaller thar4
togivelif z ¢ L.

Problem 4 (Saving Random Bits). Assume that that. C {0, 1}* has a random polynomial algorithm. How many
random bits are needed in order to give an answer with probability of mistake smalldr/d#n
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Figure 1.3: Michael Rabin

1.2 Magical Graphs
In the previous section we presented three problems which seems to be unrelated. We will now present a new object
called Magical Graph which will enable us to find a solution for all these problems.
Definition 1.4 (Magical Graph). Let G be a two sided graph with vertexes on each side. L&tbe the vertexes on
the left side andR the vertexes on the right. Assume that any vertek lrasd neighbors inR. We say thatd is (d, n)
magical graphif it has the following two properties

1. ForanyS C L suchtha{S| < & = |T(S)| > |S| 4

2. ForanyS C L suchthaty < [S| < § = |[T'(S)| > [S| + 34
wherel'(S) is the set of neighbors ¢f in G.

We will now turn to explore some properties of magical graphs.
Lemma 1.5. For eachd > 8 and sufficiently large: there exists dd, n) magical graph.

Proof. Construct a random graph as follows: for each veftex L choose randomly vertexes ink and connect
them withv. We claim that with high probability the graph generated by this process is a magical graph.

LetS C L besuchthat = |S| < . LetT C R be such that = |T| < |S| 4.

Let Xs 1 be an indicator random variable for the event that all the edges ffayo toT'. It is clear that if
> X1 = 0 then the first property in the definition of magical graphs hold.

The probability of the evenX's 1 is ( )Sd and therefore using a union bound
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Whenn is sufficiently largen?2—"/8 is smaller then 0.25 and therefore the probability that requirement 1 in the
definition of magical graph will holds is greater thaTs.

We use the same technique to bound the probability that requirement 2 in the definition of magic graph hold. For
everyS C L suchthat; < |S| < § andT C R such thalT| < |S| + 3} letYs 7 be an indicator random variable
for the event that all the edges frafhgo toT'. As in the previous case, . Ys r = 0 then the second property in the
definition of magical graphs hold.

The probability of the everity 1 is ( )Sd and therefore using a union bound

t
n

Pr ZYS,T>0 < ZPr[Y&T:l]
S, T S, T
Z<t>sd
- S, T n
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< n22n(27§)

For n sufficiently Iargen22”(2*%) < 0.25 and hence the second property of magical graph holds with probability
0.75 at least.
Finally if we chose a sufficiently large we get that the two requirements of magical graphs hold with probability
greater tha).5. Therefore not only that there exist am, d) magic graph but there are many of those.
O

Before introducing the solutions to the above mentioned problems, we will present a small variation on magical
graphs. We will deletg’; vertexes fromi, i.e. the right side of the graph such that the main properties of the graph
will remain:

Lemma 1.6. LetG be a magical graph then there exigsC R such thai B| > ;5> and for each vertex € L there
is at most one neighbor iB.

Proof. We will present an algorithm which constructs the BetWe begin by holding the two sets of vertexgs= L
andRy, = R and we reseB to be the empty set.

At each iteration we choose € R; with degree at mostd. We addv to B and then construdt;;; such that
Liy1 =L;\T (v) andR;41 = R; \ T (T (v)), i.e. we delete all the neighborsefrom L; and delete all the second-
degree neighbors af from R;. We keep the process running as long as there is a vertex; with degree at most
2d.

From the way we constructed the ¢&it is clear that any, € L has at most one neighbor i®. We would like to
count how many iterations can we do with the above algorithm, this will give us a lower bound on the Bize of

At each step we have thak;| > n — 2di since the vertex which we add toB has degree at mo8tl. Also we
have that R;| > n — d(n — |L;|) since each vertex il has degred. Since the number of vertexes in the graph
induced onl; U R; is at mostd | L;|, the average degree of the vertexe®jns at most

d|L;| d|L;|
<
|Ri| — n—d(n—|Li|)

2d—1
exist a vertex with degree at maxf.
1

Since|L;| > n — 2di we have that as long ds< 7 that|L;| > (1 - m—_1) n as required. Therefore we can
build a setB of size at;.

and hence as long &&;| > (1 — #) n the average degree of the vertexeginis at most2d and therefore there

O
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We will call modified magical grapha magical graph that a set of siz& of vertexes were deleted from the right
side as described in lemma 1.6.

Since magical graphs exists as we saw in lemma 1.5 and can be modified as we saw in lemma 1.6 we now turn to
use this construction to solve the problems presented in the first section of this lecture.

1.2.1 A Super Concentrator withO(n) edges

As we saw in section 1.1.1 Valiant's conjecture was that a super concentrator must have many edges. This sounds
reasonable from the definition of super concentrators (see definition 1.2). However we will see that using magical
graphs it is possible to build such graphs with o) edges.

Let G be a modified magical graph such that thereraw@rtexes on the left side @f but onlyn — ;7 vertexes
on the right side as we saw in lemma 1.6.

By the construction ofs we have that for each C L such thatS| < % has|I'(S)| > |S|. Hence by Hall's
theorem [Die97, Theorem 2.1.2] for affy| < 7 in L there is a perfect matching frofito I'(S). We will use these
facts to build a super concentrator.

The construction can be presented recursively.rigelbe the minimal size of modified magical graph. If we are
required to build a super concentrator with less thgwertexes we just return the full two sided graph. The full two
sided graph is a concentrator witfj edges (we will use notatiofi(n) for the number of edges).

Assume we would like to build a super concentrator with- ny vertexes. LetZ be a modified magical graph
with n vertexes on the left side and— ;> vertexes on the right. Lef’ be a super concentrator with— ;7> input
and output edges. Such a concentrator exists according to our induction assumption.

UsingG andC we will construct a new concentrator withinputs and outputs. The inputs of the new concentrator
will be the left side ofG. We connect the right hand side Gfto the inputs ofC. We will place another copy af
on the outputs of’, this is illustrated in figure 1.4(a). Finally we add direct edges between the two coggie®ath
vertex on the left side off we placed in the input is connected to the matching vertex on the left sidenef placed
in the output as illustrated in figure 1.4(b).

We would like to show that the graph constructed is indeed concentrator and count the number of edges in this
graph. LetS be a set of vertexes from the input of the new graph&ruk vertexes on the output such thét =
|T| = k. If & < n/2 then due to the properties of the modified magical grépive know thatT’ (S)| > |S| and
T (T)| > |T'|. Using Halls marriage theorem it is possible to construct a perfect matching besisel’(S) and
on the other side betwednandI'(T"). SinceC is a super concentrator, the matchessah I'(S) and ofT" in I'(T")
can be connected bydisjoint paths and hencgandT" can be connected by disjoint paths.

If the two setsS andT are big, i.e|S| = |T| = k > n/2 then there must exists at ledst n/2 vertexes inS that
are matched to vertexes by direct edges. These edges form paths and hence we can exclude these vertexes from
S and their matches froffi. After doing so we are left with groups of sizg'2 at most which we already know how
to treat.

After we proved that the graph we constructed is a super concentrator we turn to count the number of edges. Let
S(n) be the number of edges in the graph witmputs. From the construction we know i) = |C| + 2 |G|. We
also know thatG| = nd and|C| = S (n (1 — 3z ) ). Hence we obtain a recursive formula f§(n):

1. forn > ng we have tha (n) < 2nd+ S (n (1 - 12)).

2. forn < no we have that (n) < n?.

Solving this recursive formula we get
S(n) <en

such that = ng + 8d°.
Therefore, using magical graphs it is possible to construct super concentratoé(wjtiedges.

1.2.2 Error Correcting Codes

We now turn to present a solution to Shannon’s problem of correcting errors over communication channels. Again let
G be a modified magical graph, i.e. a magical graph such that it’s right side consist of Iese{lheai%) vertexes.
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Figure 1.4: A construction of Super Concentrators using Magical Graphs

L R R L

~—  — — /

C
(a) first stage (b) second stage

LetS C L be such thatS| < g4 then there exists € S andu € R such thaw is the only neighbor of; in the
groupS, i.e.u € T'(S) \ I'(S \ {v}). This follows sincel'(S)| > (3¢ —1)|S| > 4 |S|. To prove the existence af
andv, consider the se of edges betweefi andl (S). Thend|S| > |E| > 2|['(S)| and so'(S)| < £ |S| which is
a contradiction.

We use this construction to build a co@ec {0, 1}" of size2* such that the hamming distance between any two
distinct code words is at leag} so the code has distange and the rate isj,‘Z =

Let G be a modified magical graph. We will view the gra@has a function from{0, 1}" to {0, 1}”(1‘«%2) by
assigning a parity function to each vertex in the right side G.€r),, = @ ,cr(u)Tv-

C={ze{0,1)" |Gz)=0}

l.e. a wordz is in the codeC' if the parity assigned to each vertex on the right side is zero. Figure 1.5 demonstrates
the code.
C'is a linear sub space df), 1}" defined byn(1 — ;) linear equations and hen¢@| > 2n/4d*  SinceC is a
linear code (i.e. a linear sub-space) the minimal distance between two code wards the minimal weight of a
non-zero code word if. Letz € {0,1}"™. We can look at: as an indicating function of vertexesin Let S be the
set of vertexes to which assigns the value 1. |5| < 3% then there exists a unique neighbor, i.e there existsi?
andv € S such thaw is the only neighbor ofi in S. Hence the parity function associated withvill assign the value
1toz and hence: ¢ C. Therefore the minimal distance between two code word$ is at least:/3d.

Therefore we presented a way to construct “good” dictionaries (codes) using magical graphs.

1.2.3 De-randomizing Random Algorithms

The last problem we presented was that of random algorithms. Let LANG be a language such that there exists an
algorithm such that when it receivesof sizek and a string: of £ random bits, it calculates a functigifz, ) such
that if - € LANG then f(z,r) = 1 butif 2 ¢ LANG then f(z,r) = 1 with probability at mostl /12 over the choice
of r.
Let G be a magical graph over = 2* vertexes. By the definition of such graphs we know that for exery L

such thatS| > % we have thatl'(S)| > 5. Now assume that ¢ LANG. Let B be the “bad” seti.e.B =

{re{0,1}" | f(z,r) = 1}. We know tha( | < .
For each string ok random bits we assign a vertexin The graphG then direct us t@ string of & bits which are
associated to vertexes iR, we will call these strings, ..., r4. Our algorithm will apply the functiorf (z, -) with
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Figure 1.5: A construction of an error correcting code
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r,...,rq. If all the values we receive weiethen we will predict that: € LANG. If f(z,r;) = 0 for somej then
we know for sure that ¢ LANG.

Our algorithm will fail only if z ¢ LANG andry,...,rq € B,i.e.I'(r) C B. LetS C L be the set of vertexes for
which all their neighbors are i?, soS = {v € L |I'(v) C B}. Since|B| < {5 we have thatS| < g4 and therefore
our algorithm will fail with probability% at most, using only random bits.

1.3 Conclusions

In the first section of this lecture we presented three problems of different nature. All these problem had no direct
connection to graph theory. However we saw that by constructing magical graphs we could find a solution to these
problems. During our discussion we explored some of the features of magical graphs.
What other magic can these graphs do? what properties do they have. Can we construct these graphs efficiently?
All these questions are the topic of this course. We will explore both the theory and applications of magical graphs.
And one last word, the magical graphs we used in this lecture are a special case of the exciting farunafers



Chapter 2

Graph Expansion & Eigenvalues

Notes taken by Danny Harnik

Summary: After defining families of expander graphs and giving some examples of such families, we
discuss some algebraic properties of graphs. Mainly, we discuss the connection between the expansion
property of a graph to the eigenvalues of the graph’s adjacency matrix. We also see an application of
expander graphs for error amplification with a small amount of random bits.

2.1 Definitions

We begin with some notes and notations:

e Throughout this lecture (and course) we disctigsegular graphs (graphs in which all vertices have the same
degreel). denote a graph b§ = (V, E) and|V| = n. We allow self loops and multiple edges in the graph.

e Unlike the previous lecture, we discuss general graphs and not only bipartite graphs.
e ForS,T C V denote the set of all edges betweandT by E(S,T) = {(u,v)|u € S,v € T, (u,v) € E}.
Definition 2.1.

1. TheEdge Boundaryof a setS, denotedS, is S = E(S, S). This is actually the set of outgoing edges from
S.

2. TheExpansion Parameterof GG, denotedh(G), is defined as:

= min @
{s151<z1 |S]

hG)
We note that there are other notions of expansion that can be studied. The most popular is counting the number of
neighboring vertices of any small sg¢trather than the number of outgoing edges.

Definition 2.2. Family Of Expander Graphs
A family of Expander graph$G;} wherei € N is a collection of graphs with the following properties:

e The graph; is ad-regular graph of size; (d is the same constant for the whole family):;} is a monotone
growing series that doesn’t grow too fast (exgy1 < n?).

e Foralli, h(G;) > e > 0.

When discussing a family of expander graphs one should also consider the time required to construct such a graph.
There are two natural versions for the requirement on the constructibility of graphs:

15
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Definition 2.3.

1. A family of expander graphs is callédildly Explicit if there is a Polynomial-Time algorithm that giveh
createss;.

2. Afamily of expander graphs is call&ry Explicit if there is a Polynomial-Time algorithm that givéh v, k)
(wherei € N,v € V andk € {1, --- ,d}) computes théth neighbor of vertex in the graphG;.

The second definition is useful for very large graphs, where one cannot construct the whole graph, but rather works
locally on a small part of the graph.

2.2 Examples of Expander Graphs

1. This family of graph&7,, lies on a grid:V,,, = Z,,, X Z,.
The degree igd = 4 and the edges are described as follows:
Vertex(z,y) has edges t@x + y,y), (z — v,y), (z,y + =) and(z, z — y) (all operations are done modute).
Margulis (73) showed that this is an expander family.
Gaber & Galil 80) showed that this is arexpander family ( for a specific).

2. This family has graphs of size(for all primep). HereV,, = Z, andd = 3. Each vertex: is connected to its
neighbors and its inverse (i.2.+ 1,z — 1 andz~1).
This was shown to be anexpander family by Lubotsky, Philips and Sarnak (88).

2.3 The Spectrum of a Graph

The Adjacency Matrix of a graphG, denotedA(G), is ann x n matrix that for eacu, v) contains the number of
edges i@ between vertex. and vertex. Since the graph ig-regular, the sum of each row and column4() is d.

By definition the matrix4A(G) is symmetric and therefore has an orthonormal kgse - , v,,_1, with eigenvalues
o, l1, -+, n—1 SUCh that for alk we haveAv; = p;v;. Without loss of generality we assume the eigenvalues are
sorted in descending ordgg > py > --- > p,—1. The eigenvalues ol (G) are called th&pectrumof the graplG.

The spectrum of a graph contains a lot of information regarding the graph. Here are some examples of observations
that demonstrate this connection between the spectrurd-oégular graph and its properties:

[ ] ,UO = d
e The graph is connected iffy > 11
e The graph is bipartite iffip = —pp—1

In the rest of the lecture we will discuss the connection between the expansion of a graph and its spectrum. In particular,
the graphs second eigenvalue is related to the expansion parameter of the graph.

Theorem 2.4.

T < (@) < V2l m)

This Theorem is due to Cheeger & Buser in the continuous case, and to Tamner, Alon & Milman in the discrete
case.

The theorem actually proves thdt— yu;, also known as th&pectral Gap can give a good estimate on the
expansion of a graph. Moreover, the graph is an expardé¥)( > ¢) if and only if the spectral gap is bounded
(d — p1 > €'). We do not prove this theorem at this stage (will be proved later in the course). Instead we show a
Lemma that allows us to find connections between the expansion property and the second eigenvalue.
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2.4 The Expander Mixing Lemma and Applications

DenoteX = max(|u1], |pn—1])-
Since the eigenvalues are already sorted, this meana fedarger than the absolute value of all eigenvalues (except

po = d).

Lemma 2.5. Expander Mixing Lemmafor all S,7 C V:

d|S||T
s, 1) - P20 < 3 1T

This lemma can be viewed as relating the second eigenvalue to the question of how "random" the graph is. The
left hand side compares the expected number of edges beffvardT in a random graph%ﬂ) and the actual
number of edges between the two sefs(S, T")|). This difference is small wheh is small. So a smalk (or large

spectral graph) means a graph with allot of "randomness".

Proof. Denote byys andy the characteristic vectors 6fandT (s is a vector with ones for alt € S and zeros in
all other places). Lets = X;a4v; andxr = X;3;v; be their representation as linear combinations of the orthonormal
basevg, - - ,vn—1, Wherevy = 1/y/n. We have:

|E(S,T)] = xsAxr
= (Sii) A(S;B;0;)

and since the;'s are eigenvectors and orthonormal:

|E(S,T)| = (Zioivi) (X558 Av;)
= (Ziaivi) (2585 15v5)
= Tipiaif;
Sinceaq = (xs, f> l“}' andg, = %
S||T _
|E(S,T)| = OM“‘E?:inaiﬁi
S||T
= | || |+En 1”1041/81'
Due to the triangle inequality and the definition)of
S||IT
181 - a2 = jstasg
< En 1|,Ufz zﬂz|
S /\E?:11|a262|

And by the Cauchy-Schwartz inequality:

IE(S,T)| —d

IN

Mlel2]1B81l2
Mlxsll2llxll2

= AWISIIT|

ISIITI|
n

Following is an example of an application of the lemma above:
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2.4.1 Deterministic Error Amplification for BPP

In this example we are given a function BPP. This means a functiofi : {0,1}" — {0, 1} and a probabilistic
polynomial time algorithm4 that approximateg in the sense that for randome {0, 1}™ we have:

RN

Pro[A(z,r) # f(z)] <

Our goal is to reduce the probability of error. This can be achieved by simply repehtiith different random
coinsr, and taking a majority vote. Usingcalls to.4 one can reduce the error to? for some constant. However
this requires a large number of coin tossesr( in this case). The question is: can we make the error smaller with a
small number of random coins?

We introduce an algorithn that uses justn random coins:B uses ad-regular expander grapfi,- (of size
N = 2™). The algorithm chooses a random verteg G>~ and takes a majority vote on the outputéfon each of
the neighbors of (denote byl'(v) the set of the neighbors ofin G5 ).

B(z,v) = Majority,cr(v)Alz,u)

Claim 2.6.
PrBle,v) # f(@)] < 4(3)”

Proof. Let S be the set of vertices that algorithfhmakes errors on, arnfl be the set of vertices that algorithrh
makes errors on = {v|B(z,v) # f(z)} andT = {u|A(z,u) # f(z)}). By definition, every € S has at leas
neighborsirl". So:|E(S,T)| > |S|4 On the other hand, due to the Expander Mixing Lemma and $ifice. &'

d|S||T
msnl < B s

d|S| F
< 2= -
< A
d|S| [N
gl Vg -
R

PriB(z,v) # f(x)] =

Combined together we get:

And finally:

IN
N
—
Ul >
N
(V)

O

The above claim shows that error amplification can be done, but gives a rather poor amplification rate. There are a
few ways to improve this:

e One can take instead 6f,~., with adjacency matrixi, the graph with matrixA*. In this new graph (containing
an edge for any path of lengthin the original graph) we have degré®, but also second eigenvaldé giving
areduced error of3 ).

¢ |tis worth noting that in a good expander we can achigeve ﬁ giving an error of about. So to get an error
smaller than a giveaone should use graphs of degﬂge

e We will see in the next lecture constructions with better amplification using random walks on expander graphs.
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2.5 How Big Can the Spectral Gap be?

We conclude with the question of how small cabe.

As an example we can check the most connected graph - The Clique.
The n-clique K,, is the graph were every vertex is connected to all its neighbors and has degree— 1. The
spectrum of the Clique can be easily calculated by viewing the Clique’s matsixa were J is the all ones matrix
andI is the identity matrix. The spectrum &f,, is[n — 1,—1,—1,---,—1]. hence\ = 1.

But this is ford ~ n and we are interested in the behaviotokhend is much smaller (usually a constant). This
case is discussed in the following Theorem due to Alon-Boppana:

Theorem 2.7. for everyd-regular graph:

A>2vd—1—o0,(1)
We will not prove this theorem here, but instead show a weaker statement:

Claim 2.8. for everyd-regular graph:

A > Vd(1 - 0,(1))

Proof.
note: In this discussion we don't allow multiple edges (the Adjacency matrix contains only zeros and ones).
Given ad-regular graphG with adjacency matrix4, we look at the trace afi? (trace is the sum of the values in
the diagonal) . On one hand, since the matrix is symmetric, and the sum of each row/coliweligve( A?);; = d
for all i:
Trace(A®) =n -d.

On the other hand:
Trace(A?) = Z u?
< d? 4 (n— 1A

together we get

and:
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Chapter 3

Random Walks on Expander Graphs

Notes taken by Boaz Barak and Udi Wieder

Summary: In this lecture we consider random walks on expander graphs. We will see thatdhees

on a lengtht random walk on a expander graph “look like” (in some respectandom independently
chosen vertices. This occurs even though sampling a lengtiilk on a (constant-degree) expander
requires a significantly smaller number of random bits than samplizigdom vertices. We will use these
properties for two applications. The first application is a randomness-efficient error reduction procedure
for randomized algorithms. The second application is proving a strong hardness-of-approximation result
for the maximum clique problem.

3.1 Preliminaries

(n,d,«) graphs. For a graphG onn vertices we denote by (G), . . ., A\n—1(G) the eigenvalues of the adjacency
matrix of G, whereAo(G) > A (G) > ... > X\,—1(G) (recall that all the eigenvalues are real numbers s{rds
undirected and so the adjacency matrix is symmetric). We say that a Grap vertices is ar(n, d)-graphif it is
d-regular. In this cas@o(G) = d. For a numbety < 1, we say that7 is an(n, d, «)-graphif G is an(n, d)-graph
andmax(|A1 (G)], | An-1(G)]) < ad.

Vectorsand norms. For two vectorsi, 7 € R, we define thelot producbf @ and#, denoted, ) to be)" " | i, 7;.
For a vectori € R" we define thé,, [, andi, norms ofi as:

n

o def -
], = Jil

" 1/2
o def — .
lall, = v/(@,d) = ( Uf>

1<i<n

Probability vectors. We say that a vectgF € R™ is a probability vectorif for every1 < i < n, p; > 0 and
>, P = 1. We denote byi the probability vector that corresponds to the uniform distribution. That is;

1
I(1,...,1).

3.2 Arandom walk on an expander is rapidly mixing.

In this section we show that a random walk on the vertices of an expander mixes rapidly towards the stationary
distribution. LetG be an(n, d, «) expander, and led be it's adjacency matrix.

21
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Definition 3.1. Arandom walk over the vertices 6f is a stochastic process defining a series of ver(idgs X, . . .)
in which X is a vertex ofG' chosen by some initial distribution and;,; is chosen uniformly at random from the
neighbors ofX;.

A random walk is in fact a Markov chain where the set of states of the chain is the set of vertices of the graph.
Definition 3.2. Thenormalized adjacency matrdf G is defined to bédA and is denoted by.

The following facts are easy to verify:

1. A is double stochastic; i.e. every column and every row sums Up to

2. Denote by, ..., A, the eigenvalues of, then), = 1 andmax{|\],|\,|} = c.

A can be viewed as the transition matrix of the Markov chain defined by the random walk over the verfices of
In other words letY’ be a random vertex i@ with probability vectory. LetY be a uniformly chosen neighbor &f.
We claim that the probability vector &f is given byAp. To see this write the Bayesian equation:

PﬂY:ﬂ::E:PHYzﬂX=JLPﬂX=j]

= > Ayp;
j

- (ip),

A similar argument shows that! is the transition matrix of the Markov chain defined by random walks of letigth
i.e. (A");; is the probability a random walk startingiateached in exactlyt steps.
Clearly A@ = 4 therefore the following theorem holds:

Theorem 3.3. The stationary distribution of the random walk 6his the uniform distribution.
The main result of this section is the following:
Theorem 3.4. ||Atg — ||, < v/n - o for any distribution vectop.

In other words theorem 3.4 states that it doesn’t matter what the initial distribution of the random walk is (it might
be concentrated in one vertex)qif< 1 we need to take only a logarithmic number of steps to get a distribution which
is close to the uniform up to a polynomial factor.

Proof. SinceA is symmetric, it has an orthonormal basg, v, . . . , v,).
Decomposg’ into the sum of the uniform distributiofiand an error vecta? = p— @. The sum of the coordinates
of p is 1, and the same is true fat therefore we have that the sum of the coordinategisf0. This means that

(i, €) = 0. In other word<’is spanned byﬁ, ... ,vfl). So we have:
ip—ad=AlG+&) —a
= Ad+ Ae—a
=i+ Ae—a
= Ae

Therefore we have:
|Ap — |, =[|A€]],
<all€]],
<allp]l,

where in the first inequality we used the fact tBés spanned by an orthonormal set of vectors for which the largest
eigenvalue igv. We deduce that R
|A"p — ], < of
and therefore that .
1A% —dll, <Vn-af



3.3. ARANDOM WALK ON AN EXPANDER YIELDS A SEQUENCE OF “GOOD SAMPLES” 23

3.3 Arandom walk on an expander yields a sequence of “good samples”

Consider the following problem: In am, d, «)-graphG there is a large set of good vertices (satisfying some condi-
tion) and we wish to find one of them. L& C V' be the set of bad vertices, and assume iﬁht: B.Letxy,... x

be ! vertices chosen uniformly at random frovfy then Pr[Vi z; € B] < 3'. This approach usddogn random
bits. We will show that by choosing one vertex randomly, and then performing a random walkfitengthi, the
probability that the random walk is confined&is exponentially small ir.

First some intuition. Recall the expander mixing lemma, proven in the previous lecture:

Theorem 3.5 (Expander Mixing Lemma). LetG be an(n, d, «)-graph, then for eveng, T' C V(G) it holds that

T
‘% _B(S, T)‘ < ady/[S][T] < adn

Previously the expander mixing lemma was interpreted as saying that the number of edges between any two sets
of vertices is not far from the expected for sets of those sizes. Now divide the inequalitytbyeceive the following
inequality:

< a (3.2)

‘ISIITI _ E(S,T)‘

n? dn

Consider the following test: select uniformly at rand@hyy) two vertices ofG. Check whethei € S andj € T'.
The term% can be interpreted as the probability that this test succeeds.
Now consider a different test: select uniformly at rand@try) anedgein G. Check whethei € S andj € T.
The term% can be interpreted as the probability that this test succeeds. Note that the size of the probability
domain of the first test is? while the size of the probability domain of the second test is anlyyet the difference
between success probabilities is only a small constamh other words a random walk of lengthcan be viewed as
discrepancy sets over sets of two vertices. Next we will show that random walks of keagthn fact discrepancy
sets for sets of vertices.
Let G be an(n,d,a)-graph, andB C V with densitys = EI. ChooseXy €r V uniformly at random and let
Xo, ..., X be arandom walk of¥ starting atX,. Denote by(B, t) the event that the random walk is confinedgp
i.e. thatvi X; € B.

Theorem 3.6. Pr[(B,t)] < (B + a)t
Let P = Pg be a projection on the space of vectors supportdd,ine.

1 ifi=j€eB
P = :
0 otherwise

If v is a distribution vector, theRv is the residual distribution vector of the distributiorwonditioned on being in
the setB. We need two lemmas:

Lemma 3.7. Pr[(B,t)] = ||(PA)*Pi],

Proof. The action ofP over a probability vecto? is to nullify all the coordinated outside the g8t this transforms
a probability vector into the residual probability vector of the same distribution, but conditioned on bénghus
Pii is the residual probability of the uniform distribution conditioned to be3in AP is the residual distribution
after a random step has been tak&nl P is the residual probability conditioned on the random step remainify in
Repeating this we see th@PA)tPﬁ is the residual probability vector of the random initial point and alieps being
in B. Since we don't care where iB we end up, we need to sum the coordinates of this vector, her¢®, T')] is
indeed given by|(PA)! Pii|, . O

Lemma 3.8. For any non negative vectar.

IPAP#|, < (8 +a) - ||3]l,
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Proof. The idea of the proof is that shrinks all components of a vector except the uniform distribution component,
whereasP shrinks the uniform component without increasing anything else. Together they reduce all parts of the
vector.

DecomposePv into Py = (Pv) + (Pv) 1. where(Pv)) is the projection o7 ona and((Pv)), (PV) 1) = 0. By

the triangle inequality we know that

IPAP||, < [|[PA(PD)ll, + [[PA(PE) .||,
First we look howP affects(P#). Sincei is an eigenvector aofl with eigenvaluel we know:

IPAPD) I, = IP(PT)ll, = v/B - (POl

where the second equality is true sir(@&’) is of the form(a, a, . .. ,a) wherea is some scalar.
If we fix ||v]|, then||(Pv), ||, is maximized wherv, i) is maximized. In other word$(P%) ||, is maximized when
¥ is some scalar multiple af. Therefore R

IPAPT)yll, < Bllall,-

Next we look at the effect o%) .. P’s effect is to multiply some coordinates bywithout changing the others,
so P can only shrink a vector. Sindé¥) , is perpendicular t@, it is spanned by the remaining eigenvectorsiof
all with eigenvalues at most. This implies that

IPAPE)L|l, < AP L], < ol|(PD)Ll,

We note that]|(P#) .||, < ||#|, and conclude thafPA(P%). ||, < «a||#],. Adding the two parts together we
conclude that: .
IPAPD||, < (8 + o) - [|d],

O
Now we use the lemma to prove theorem 3.6:
Proof. (theorem 3.6)
I(PA)' P, < v/n- II(PA) Pl

= Vn - [|(PAP)"|,

<V (B +a)ldl,

=(B+a)
O

3.3.1 Application: amplifying the success probability of random algorithms

Let L be some language iRP and assume that is a randomized algorithm that decides whetheg L with a
one sided error. Assume thdttossesn coins and has an error probability 8f Build an(n, d, «)-graph such that
VvV ={0,1}™; i.e. the vertex set of the graph is the probability domairiisfcoin tosses. Fix some inputand letB
be all the coin tosses for whict(z) is wrong. Now letd’ be the following algorithm:

1. pick a vertexyy € V uniformly and at random.
2. perform a random walk of lengttresulting with the set of verticesy, v1, . . ., v¢).
3. returnJ!_, A(z, v;)
A direct implication of theorem 3.6 yields that
Pr[A’ fails] = Pr[Viv; € B] < (8 + a)*

The error probability is reduced exponentially while the number of random bits used iswAlilog d = m + O(t).
Next we will show that the same trick can amplify the success probability of a two-sided error algorithm. In order to
show this we need to restate theorem 3.6 in a stronger version.
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Theorem 3.9. Let By, By, . .., B; be subsets of such that% = (;. Define(B,t) to be the event that a random
walk (Xo, X1, ..., X;) has the property thati X; € B;. It holds that

t—1

Pr((B,1)] < [[(VBiBit1 +a)

i=0

Note that one should be able to strengthen that by a factergf, 5;, but our simple argument used in the proof
of Lemma 3.8 seems to lose that.

The proof of theorem 3.9 is indeed similar to the proof of theorem 3.6PLbé the projection matrix correspond-
ing to the sefB;. Lemma 3.7 should be restated such that

Pr((B,1)] = I T(Pi4)Pol],

i=1
The analouge of Lemma 3.8 is R
|1 Pir1 APT|| (v BiBiv1 + )],

and therefore theorem 3.9 follows.

Now let L be a language i3 PP and assume that is a randomized algorithms that decides whether L with a
two sided error probability of < %. As before assume thalt tossesn coins and build arin, d, «)-graph such that
V ={0,1}™; i.e. the vertex set of the graph is the probability domairisfcoin tosses. Fix some inputand letB
be all the coin tosses for which(z) is wrong. Now letd’ be the following algorithm:

1. pick a vertexy, € V uniformly and at random.
2. perform a random walk of lengttresulting with the set of verticesy, vy, . . ., vt).
3. returnmajority{ A(z,v;)}

A’ fails iff a majority of thev;’s are inB. Fix a set of indices< C [t] such thafK| > L. For eachi € K let
B; = B. We deduce from Theorem 3.6 that

Privie Kv, € B|< (B+ )% < (8+a)

(note that sometimes the walk makes more that one transition before testing for membeishiBynassuming that
a is small enough such that+ g < % and applying the union bound we deduce that:

| : 1N (1\2
Pr[A'fails] <2t (B +a)2 <2 <§> = <§>
We achieve an exponential reduction in the error probability using enly O(¢) random bits. The following table
sums up the parameters of the techniques presented for error reduction:

Method Error Probability | No. of random bits
random algorithmd & m
t independent repetitions of 2-t t-m
Sampling a point and it's neighbors in ém, ¢, %)-graph. 1 m
[
A random walk of lengtht on an(n, d, %)—graph 272 m+ O(t)

3.4 Using expanders for hardness of approximation.

In this section we show another application for random walks on expanders. We will show that we can use such
walks in order to establish a hardness of approximation result fo¥ Broptimization problem - the maximum clique
problem.
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For a graph@, we definew(G) to be thecligue numberf G. That is,w(G) is the size of the maximum set
S C V(@) such that all vertices il§' are neighbors of each other. Computing exactly the clique number of a graph is
NP-hard. Using th@®CP Theorem, it is possible to prove that it is even har@pproximatehe clique number to
within a constant factor. That is, we have the following theorem:

Theorem 3.10. There exists a numbér< a < 1, such that it isV P-hard to distinguish between the following cases:

1. w(@) <an

and
2. w(G@) > 1.1an

In this section we will show that even obtainingery roughapproximation foro(G) is NP-hard. That is, we
will show that it isSNP-hard to approximate (G) even within a factor of. for somee > 0. That is, we will prove
the following theorem:

Theorem 3.11. There exists a number> 0, such that if there is a polynomial-time algorithinsuch that for every
graphG with n vertices

n ¢ < @ <nf
w(@) ~

thenNP = P.

Note: The results of this section have been superseded by a result of Hastad tisBthsird to approximate
w(G) even within a factor.! = for everya > 0. However, our approach will involve simpler analysis (and of course,
expander graphs).

3.4.1 Proof of Theorem 3.11.

To illustrate the main ideas behind the proof of Theorem 3.11, we will prove a weaker version of this theorem. In the
weak version we will prove under the same assumption the weaker conclusidfifhat RP (instead ofNP = P).

Lemma 3.12 (Theorem 3.11, weak version)There exists a number> 0, such that if there is a polynomial-time
algorithm A such that for every grap&' with n vertices

n < —=<nf

AG)
w(G) ~

thenNP C RP.

After we prove Lemmag3.12, we will use the ideas of the proof, along with random walks on expanders to obtain
Theorem 3.11, which can be looked at as a derandomized version of Lemma 3.12.

Proof of Lemma 3.12

(Since this proof will be superseded by the proof of Theorem 3.11, we allow ourselves some slackness.)

We will let e be some constant, whose value will be determined later. Suppose that there exists a polynomial-time
algorithm A that distinguishes between the two cases of Theorem 3.11. We will show that there exists a probabilistic
polynomial-time algorithnB to distinguish between the two cases of Theorem 3.10, thus showinlyihat RP.!

Our algorithmB will work as follows:

11t may seem as if we only show thaiP C BPP but it is not hard to show (using the self-reducibility fP-complete problems) that if
NP C BPP thenNP C RP.
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Algorithm B
e Input: A graphG onn vertices.

1. Construct the grapli/, whereH is the followingt-th power of G, for ¢t =
O(logn): The vertex set’ (H) is the sefl’? of all ¢-tuples inV. The edge set
E(H) is defined as follows{(vy, ..., vt), (u1,...,us)) is an edge inE(H) iff
the sef{vy, ..., v} U {uq,...,us}is acliqueinG.

2. Let H' be the graph obtained frof by samplingm = 0(a*t) (= n®W)
vertices fromH at random and taking their induced graph.

3. Returnl if A(H') > n® and0 otherwise. € will be determined later.)

It may seem like Algorithm B runs in time© (&) instead of polynomial-time because the size of the gtEph
will be n@Uegn)  However the construction df in Step 1 can be donieplicitly (that is, we don’t to write out the
full graph H) and so Algorithm B can be implemented in probabilistic polynomial-time.

We have the following claim:

Claim 3.12.1. w(H) = w(G)!

Proof. Clearly if S is a clique inG then the sef! is a clique. Therefore(H) > w(G)?.
On the other hand we claim that H) < w(G)*. Indeed, ifS’ is a clique inH then the union of all tuples if’ is

a clique inG. If |S’| > k! then it must be that this union contains more tkaglements. O

For every cliques C V (H), the expected fraction of vertices iy that are inS is Il‘f\li . With high probability we
will have that foreveryclique S C V (H), the fraction of vertices ir$ chosen to be i’ is @(%). Therefore we
have that with high probability we will have tha H') = @(4/22 - m) = 024 . ). We see that:

1. fw(G@) < anthenw(H') < alm = O(1).

2. Ifw(@) > 1.1lan thenw(H') > 1.1'O(1) ~ m™ (for e ~ 13E1:1).
We see that with high probability Algorithm B will returhif w(G) > 1.1an and0 if w(G) < an which is what
we wanted to prove.

The Actual Proof

Now that we have proved Lemma 3.12, we will now use the ideas of this proof, along with random walk on expander
graphs, to prove Theorem 3.11. We will againdee some constant, whose value will be determined later, and assume
that there exists a polynomial-time algorithdnthat distinguishes between the two cases of Theorem 3.11. We will
useA this time to show that there existglaterministicpolynomial-time algorithmB’ to distinguish between the two
cases of Theorem 3.10, thus showing tN& = P.

The only difference between Algorith®’ and Algorithm B, described in Section 3.4.1, is that in Step 2, Al-
gorithm B’ will use aderandomized sampling construct the grapff’. The sampling will work in the following
way. We will construct dn, d, «)-expandeg such tha’’ (G) = V(G). We will then choose the set oftuples to be
sampled inH’ as the set of all-tuples that representengtht walkin the graph. We again lein denote the number
of vertices inH', note thatn = nd'~! (whered is the degree of). If t = ©(logn) andd is constant then this value
is polynomial inn. What we have already seen is that a random lengthalk in G does sometimes behave similarly
to a randont-tuple. We need to show that this holds also in this context.

We start with the following claim:

Claim 3.13. Suppose that(G) < an. For every cliqueS C V(@) in G, the probability that a length random walk
in G doesn't leaves (i.e., is contained irt?) is at most(a + «)*.

Proof. This is a direct application of Theorem 3.6. O

As a corollary we obtain the following:
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Corollary 3.14. If w(G) < an thenw(H') < (a + a)'m

Proof. AsetU C V(H') is a clique inH' if and only if all tuples inU are part of the same clique &. Since we
assume that(G) < an, this means thalt%‘ can be at moga + «a)?. O

For the other direction, we need to prove the following claim:

Claim 3.15. Suppose that(G) > 1.1an. LetS C V(G) be a maximum sized clique @& (i.e., |S| > 1.1an). The
probability that a lengtht random walk inG doesn't leaveS (i.e., is contained irt?) is atleast(1.1a — 2a)?.

Proof. This is an application of the following theorem that is analogous to Theorem 3.6:
Theorem 3.16. In the notation of Theorem 3.6, suppose that 6. Then,
Pr{(B,t)] > (8 - 20)"

Theorem 3.16 provides a lower bound on the probability that a random walk does not leave a specified set of
fraction 3. It shows that this probability is not much smaller than th#r(which is what happens if we choose
independent random vertices). The proofs of Theorem 3.6, 3.16 can be found in the paper “Derandomized Graph
Products” by Alon, Feige, Wigderson and Zuckermiawe remark that an analogous theorem to Theorem 3.9 also
holds (i.e., a lower bound on the probability to staghangingsets).

O

We now have the following corollary:
Corollary 3.17. If w(G) > 1.1an thenw(H') > (1.1a — a)'m.

Using both corollaries we see that if we choassmall enough such that < 1 — a anda < a/30 (we can take
the graphg¢ for some constantto ensure this) then we get that

1. fw(G) < anthenw(H') < Btm for some constant < 1.
2. If w(G) > 1.1an thenw(H') > vtm for some constant > 3.

Since(y/f)t = n¢ = m?® for some constants, e we see that we can uskto distinguish between the two cases.

2Available from Avi Wigderson's homepage tittp://www.math.ias.edu/ ~avi/PUBLICATIONS/



Chapter 4

A Geometric View of Expander Graphs

Notes taken by Eran Ofek and Erez Waisbard

Summary: In the previous lectures we dealt with expander graphs in the combinatorial aspect (algo-
rithmic and complexity applications), the algebraic aspect (spectral gap) and probabilistic aspect (rapidly
mixing random walks). In this lecture we start dealing with the geometric/differential aspect of expander
graphs. We introduce the construction of Margulis for expander graphs which is in fact a continuous graph
with an expansion property. We show an analogy between expansion in graphs and the Cheeger constant
which is defined for Riemannian surfaces. We also show the connection between the expansion constant
and the spectral gap.

4.1 The Classical Isoperimetric Problem

A very natural (and ancient) question in geometry is the following:
Of all simple closed curves in the plane of a given length, which curve encloses the greatest area?

The solution to this question is obviously a circle. Although this fact was already known to the Greeks, they could
not prove it. The first proof for this fact (which can be considered rigorous) is the proof of Jacob Steiner (1800’s). This
proof uses a method called Steiner Symmetrization. We will briefly sketch the idea of this methédbked closed
plane curve, let be a line inR?. Thesymmetrizationf K with respect td which we denote byK* is a region ink?
which is symmetric aboutsuch that any line perpendicularitontersectss iff it intersectsK™*, and the intersections
have the same length; furthermore the intersections of lines perpendiculaitto K * are connected. It can shown
(via calculus) thaf{* has the same area &Sand it's boundary length does not increase with respect to K. In fact, if
[ is not parallel to a line of symmetry df then symmetrization decreases boundary length.

To gain some intuition for the correctness of this statement, we will show it for the special case inAvliéch
polygon which is composed of parallel trapezoids as demonstrated in figure 4.1.

In this casei(* is accepted fronk’ if we transform each trapezoid into a symmetric trapezoid (a trapezoid of equal
sides length) with the same bases and height as illustrated in figure 4.1. The area of the new trapezoid remains the
same. Furthermore, the sum of the side lengths can only decrease (this fact can be easily verified). It follows that the
boundary length of{* is less or equal to that df’.

We remark that the area and boundary length of any closed curve is accepted by considering the limit of the area
and boundary length of shapes of this special form (see figure 4.2). This gives intuition for the correctness of the claim
in general case.

4.2 Graph Isoperimetric problems

In the spirit of the last section, one can define an analogous problem in graphs (rather than in the Euclidean space). The
graph is analogous to the plane, closed curves are analogous to subsets of vertices, the "area" of a subset of vertices is

29
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K*

W Symmetry linel

Figure 4.1: Steiner Symmetrization

T

Figure 4.2:

it's cardinality and the "boundary length" of a subset is the number of edges which go out from it (or the vertices of
these edges which are outside the set). More specifically we define the following isoperimetric problems:

Definition 4.1. The edge isoperimetric problergiven a graptz and a numbek find

@5(G,k) = min{|E(S,5)] : IS =k}

Definition 4.2. The vertex isoperimetric problergiven a graplG and a numbek find

ey (G, k) = min{|T(S)\ S| : [S] =k}

4.2.1 The discrete cube

Let us consider first a well known graph for which the isoperimetric problem is partially solved. The discrete cube
graphGy is formally defined as:
V(Gq) = {0,1}¢

E(G4) = {(v1,v2) : v1,v2 € {0,1}%,the Hamming distance between v, is 1}

An equivalent definition for thed-dimensional cube graph is by recursion:
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e (7 equalsK (i.e. two vertices connected by an edge).

e (G441 is accepted by taking two copiesGf; and connecting verteiin the first copy to vertexin the second
copy (for allz).

It is known that ifk = 2! then® (G4, k) is achieved by a set @ vertices which induces ardimensional cube.
In this caseb (G4, 2') = 2! (n —1).

Fork = (g) + (f) +...+ (f) the vertex expansio®y (Gy, k) is achieved by any s&& which is a ball of radius
around some vertex:

S = {v: v € {0,1}¢, The Hamming distance betweenv, < r}

4.3 The construction of Margulis, Gabber-Galil

In this section we describe one of the first explicit construction of an expander graph. In contrast to the expanders we
encountered so far in this course, the construction they give is over a continuous set.

We denote byl the interval(0,1). The set of vertices is all the points in the continuous clibel. Two linear
transformations define the edges:

T(z,y) = (z +y,y) mod 1
S(z,y) = (z,z +y) mod 1

The neighbors of a pointz, y) are the pointsT'(x,y), S(x,y), T~ (z,y), S~ (x,y). Thus the graph ig-regular.
The expansion property of this graph is described by the following theorem:

Theorem 4.3. (Margulis,Gabber-Galil)
There exists some> 0 such that for any measurable sétC I x I with u(A) <
the following holds:

% (1 denotes the Lebegue measure)
u(T(A) U A) > (1+ e)u(A),

wherel'(4) = S(A)UT(A) U S~ (A)UT1(A) is the set of all points which are neighbors of pointsiin

It s worthwile to mention here the following conjecture:

Conjecture 4.4. (Linial) For any measurable subset, such thafu(A4) < %

pAUS(A)UT(A)) = cp(A),

W =~

with equality achieved by the hexagon whose vertices@re), (a,0), (a, —a), (0, —a), (—a,0), (—a,a) for some
smalla > 0.

4.4 The Cheeger constant, Cheeger inequality

In this section we introduce the Cheeger constant. Loosely speaking, this constant represents the "expansion” of a
curve.

Definition 4.5. Let M (™ be ann-dimensional Riemann surface. TBaeeger constanbf M is defined to be:

Nn—l(c)

h(M) = min —_—
(M) Cisan min; o, (M;)
(n — 1)-dimensional
surface which divides
M into M1, ...M;
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Figure 4.3: C divides M intd/y, M»

whereu,,_1(C) is the area o andu,, (M;) is the volume of\/;.

An intuitive demonstration of the definition is illustrated in figure 4.3

The analogy between the Cheeger constant and expansion is as follows:
M ~ G,

C'is analogous to a cut if¥,

M, M, are analogous t, S,

pno1(C) ~ [e(S,9)],

min; g, (M;) ~ min{|S|, |S|}.

Given ann-dimensional Riemann surfade (n), and a functionf : M(n) — R, then its Laplacian i&\(f) =
div(grad f)). The Laplacian is a linear operator, and its eigenvalues are all the nurtkb@swhich there is a
functionf : M(n) — R satisfyingAf = Af. All its eigenvalues are non-negative, and its lowest eigenvalue is zero,
corresponding to the constant function.

Theorem 4.6. Let M be a Riemann surface as described before, denote e lowest positive eigenvalue of the
Laplacian of M, then)\ > h;.

We will now explain the discrete analogs for the gradient and divergence operators in grapis=L@f, E) be
an undirected graph. Select an orientation for the edgés diet M be thel” x E adjacency matrix ofs where the
entry M, . equalsl (—1) if the edgee enters (leaves) and0 otherwise.

The gradient: Let f : V' — R be a function on the vertices 6f. f can be thought of as a row vector with
entries. The gradient operatorfs— fA . The gradient off is a vector withE entries which tells us how doé’s
change along the edges of the graphs. |.e.jsfthe edge fromu to v, then(f M), = f, — fu.

The divergence:Letg : E — R be a function on the edges 6f. g is a column vector withE entries. The
divergence operator ig — Mg. The divergence of is a V' dimensional vector with/g, = ", crers W(€) —

Ze leaves \g(e).

The Laplacian: If we go through with the analogy between real function®ihand functions on the vertices of
a graph, then the discrete analog of the Laplacian willpe> MM f (for f : V — R). The matrixL. = MM is
called the Laplacian aff. A simple calculation shows that L is the following symmetric matrix:

_]-, (Z,.]) €Ll
L= .
deg(), i=j
In the case thaf? is ad-regular graph (withd it's corresponding adjacency matrix):
e L=d-1-Ag.

e The spectrum oL is in [0, 4+2d] (since the spectrum of is in [—d, +d]).
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e )\ (Ag) = dcorrespondstd,, (L) = 0and in generak;(Ag) =d — A\—it1(L).
e The spectral gap a (A1 (Ag) — A2(Ag)) equals to the lowest positive eigenvaluelof

Notice the similarity between Theorem 4.6 and the upper bouridgiven by Theorem 4.9.

4.5 Expansion and the spectral gap

In this section we show the that a graph has high expansion (high Cheeger constant) iff it has a large spectral gap.

4.5.1 The Rayleigh quotient

For a real symmetric matrid one can obtain the eigenvalues4fusing a special quotient known as the Rayleigh
quotient.

Theorem 4.7. Let A be a real symmetric matrix and lag > A\, > ... > A, be its corresponding eigenvalues. Then:

r Azt rAxt r Azt
Al = max ——, 5 = max n = max
llzl|=1 ||z]] [|z||=1,zLa: ||| llz]|=1,2La1,z Lo, 1 ||Z]]

wherez; is an eigenvector corresponding AQ.

4.5.2 The main theorem
Before stating the theorem, we formally define the expansion constant:

Definition 4.8. The expansion constant of a gragh= (V, E), is

|1E(S,9)|

h(G) = mi
(@) =minscy s g

Theorem 4.9. LetG = (V, E) be a finite, connected, k-regular graph without loops. L&ie the second eigenvalue

of G. Then
P22 < @) < VaRGE— N

Proof. In this lecture we only prove the lower bound bnshowing that a large gap implies high expansion. In order

to prove that\ > k — 2h(G), we will give a vectorf L T for which %ﬂt > k — 2h(G). ForS C V we definef to
be the following weighted cut function: B
f=1Sts — IS5

using the Rayleigh quotient we get:
fAf!
A> .
— AP
We will evaluate the rhs. Starting with the denominator we get that:
117 =1SP?IS] + [S°IS| = |SIIS|(IS] + |S]) = n|S]|S|
moving on to the numerator we get:
FAfE =2IE(S)I[SI* +2|E(S)]IS|* - 2SI[S||E(S, )] (4.1)
SinceG is a k-regular graph B
kS| = 2|E(S)| +|E(S,S)|

and B . .
k|S| = 2|E(S)| + |E(S, )]
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substituting2| E(S)| and2|E(S)] in (4.1) yields:

FAF' = nk|S||S| - n?|E(S,3S)

We now plug it in and get

t Q2 < <
s JASC kSIS - nIESS) _, _ nlE(S,5)

AP n|S|IS] SIIS]
Fix S to be a set for which _
[E(S,5)I
h(G) =
(@) 5]
it follows that: WG
A>k— "é' ) S k- 2n(G)

(since|S| > 2). O
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Expander graphs have a large spectral gap

Notes taken by Yael Vinner

Summary: In the previous lecture we started proving upper and lower bounds(@1), defined as

hG) = min‘s‘gg(e(f’;c)). We proved a lower bound ¢f2 < h(G). In this lecture we will prove

an upper bound ok(G) < +/2d(d — X). We will also discuss thé-regular infinite tree, which is the
optimal expander, and show that its spectrufi8v/d — 1,2+/d — 1].

5.1 Comments about the previous lecture

Given a graphG, we choose an arbitrary orientation for its edges, and define the nidirix,, wheren = |V(G)]
andm = |E(G)|. The entries\/,. foru = 1...nande = 1...m, are defined as follows:

1 e=(u—wv)
Mye=< -1 e=(w—u)
0 otherwise
The Laplacian of7 is defined as the matrik = M - M ™. Then for anyf : V — R, we have
FLIT = fMMT [T =< fM, fM >=| fM ||?
where|| - || is thel, norm. Furthermore,f M).—(,—,) = f(z) — f(y), and therefore we can write
1M P= Y (f(@) - f)
(z,y)€E
Another comment, is about the variational description of the eigenvalues of a matrix, which is

arA;rT>

zlxq,..., Tr—1 || T ||2

A = max <

This can be re-written in the following way:

L zAzT >

- F,dim(rzgl)iiln—kﬂ pry <|| x ||?
5.2 An upper bound onh(G)

Theorem 5.1. For any connected grapti, defineh(@) = min‘s‘g%(e(f’;c) ). Then

h(G) < /2d(d — \)

35
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Proof.
Definition 5.2. Given a functionf : V' — R, define
Br= Y |f(@)~ W)
(z,y)€E

Definition 5.3. Let By < 51 < --- < B, be the different values achieved fyover V. Then we define_; for
i=1,...,r as follows:

Li={z e V|f(z) > B}
This definitionleads td.g D L; D --- D L,.
We will use the three following claims.
Claim5.4. By =>._, e(L;, LY)(B? — B2_,).
Proof. For(z,y) € E, if f(z) = 8, > By = f(y), (z,y)’s contribution toB; is
By = B3) = (By = B 1) + By 1 = By z) + - + (B0 — B7)

When we sum ovefl, (3? — 3? |) appears once for every edge, y) such thatf(z) = 8, > 8, = f(y) and
p > i > q. In other words(3? — 32_,) appears exactly once for every edgey) such that: € L; andy ¢ L;, and
in totale(L;, L¢') times, which gives us the desired result. O

Claim5.5. By < V2d- || fM || - || ||

Proof. Using the Cauchy-Schwartz inequality, we have

By = EE:IfZ’(w) -yl = EE:If(w) + 1)1 (2) = fly)l <

We know that

and evaluating the second term in the product gives us
\/Z )+ fly 2<\/Zf2 )+ P2y \/2de2 —V3d | f |

from which we can conclude the inequality in the claim. O

Claim 5.6. If f > 0 and|Supp(f)| < &, whereSupp(f) is the subset of wheref(x) # 0, then
By > hG) | 1P

Proof. Since f equals zero on more than half of the coordinates, and is positive on th&gest,0, and for every

i>1|L;| <2 ThereforeL‘L—Ll) > h(@). Plugging this inequality into claim 5.4 yields

”

By =3 e(Li, L{)(B7 = B1.1) > h(G) Y ILil(B] = BE.) =

i=1

262 |Lil = |Lisal) ZBQ {alf(z) = Bi}| = M(G) || £ I
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For each eigenvalug; of A, d — )\; is an eigenvalue of the Laplaciah,= dI — A. Let g be an eigenvector df
(and A) with eigenvaluel — A, where) is the second largest eigenvaluef Definef = ¢g*, i.e. equal tay where
g is positive, and zero elsewhere. Without loss of generdlitypp(f)| < %, since otherwise we would look atg
which is also an eigenvector with the same eigenvalue. Dé&fine= Supp(f). Then for everyr € V+ we can write

(Lf)(z =y fy) =dg(z) = Y asyg(y) <
yev yevt
= aayg(y) = (Lg)(x) = (d — Ng(x)
yev

Sincef(z) = 0 foranyz ¢ V+, we can write

| fM|P=fLF" = f(a) <@d-X ) gl = (5.1)
zeV zeV+
d=XN> fFPla)y=d-N|fIP
eV

From claim 5.5 we have

By <V2d- || fM |- £l

and from claim 5.6 we have
By > k(@) | f?

If we combine these results we get

WG || FIP<V2d- || M-l
If we square this equation and combine with (5.1) we get
R(G) || fIP<2d || FM|P< 2d(d = N) || £ 17

and therefore
h2(G) < 2d(d — \)

5.3 The Infinite d-Regular Tree
Let us look at the infinite adjacency mattit of the infinited-regular treel’. The infinite vectors we work with are
those inl (V' (T)):

LWV(T)={z:V(T) > R Z z2 < oo}

veV (T)

Defines(Ar) to be the set of alk’s such tha{ A — AI) is non invertible. This is the set of alls such tha{ Ay — AI)
is not one to one, i.e. there is a vectoe [ such tha{ A7 — A\I)u = 0, or (A7 — A\I) is not ontals.

Theorem 5.7.
o(Ar) =[-2vVd—-1,2vd - 1]

Givenv € V(T') (the root of the tree),
A€o(A) < 6, ¢ Range(A\] — A)
whered, is defined as follows:

1 u=vw
51,(u):{ 0 u#vw

The direction<= is easy. The other direction requires a proof which will not be given here.
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We wish to find out for which values of, 6, € Range(\] — Ar).
We are trying to find a functiogf € I» such that

6y = (M —A)f (5.2)

Without loss of generalityf is spherical, meaning if,, w are the same distance fromthen f(u) = f(w). This is
true since ifg is a solution to (5.2) then so jswhich is the spherical symmetrization @ffor all vertices with a given
distance fromv, f will be the average of on these vertices). Therefor&u) depends only on the distande(u, v).
We need to define a sequence of numhgtsey, . .. such that all vertices with dy(u,v) = r will have f(u) = z,.
Substituting the sequende; } ;, for f in (5.2), we get the following recursion:

)\1‘0 :dl'l +1

Ar; =xi_1 + (d - 1)«%’-&-1

We will try to find two numbers,, p2, such that for every, z; = Apt + Bp. To find these numbers, we need to
solve the equation
Ap=1+(d—1)p?

The solutions to this equation are

1
P12 = m@ VA —4(d-1))

If A2 < 4(d - 1) (A € o(A)) thenp, » are complex andp:| = |p2| = ﬁ. In this case,f is not ir\IQ:
|zi| = ©((d — 1)~ 2), and for every z; appear®((d — 1)) times in|| f ||, each time contributin®(((d — 1)~ 2)?)
to the sum. This means that each leiiel the tree contribute®(1) to the sum, which results in the sum being infinite.

On the other hand, ik?> > 4(d — 1), then one of the roots,, p», sayp, is less than\/% in absolute value, in
which case we can chood¢ = 0, so the contribution of thé&th level of the tree tof’s norm will be exponentially
small in4, and thereforg € [,. Also, there is a solution tAA = dAp + 1, since\ # dp:

? d 5
A oA - VARSI D)

4d-1) 2 2d-1)
X2 d

This equality cannot hold faf > 2, since the r.h.s. is negative.

1-—




Chapter 6

Upper Bound on Spectral Gap

Notes taken by Yishai Beeri

Summary: This lecture presents a lower bound #gr, the second-largest eigenvalue efeegular graph:
A1 > 24/(d—1)(1 — s%), which is related to the graph’s diamet&r As the diameter grows, so does
the lower bound foi\;. This can also be viewed as an upper bound on the graph’s spectral gap.

6.1 Reminder to previous lecture

In the previous lecture we discussed the infialteegular tree and the spectrum of its (infinite) adjacency matrix
We defined the spectrus( A) as follows:

o(A) := {\|(AI — A) is not invertible }
And we showed that for thé-regular infinite tree:
o(A) =[-2vd—-1,2Vd—-1]

In this lecture we will use the finitektall) d-regular tree to prove a lower bound an for general graphs.

6.2 Lower bound on)\;

We show a lower bound oky for generald-regular graphs:

Theorem 6.1. 2 There exists a constants.t. for anyd-regular graphG of sizen and diameterA:

M2 2/[d=1)(1 - 55)

Where)\; is the second largest eigenvalue(@f

Notes:

e Itis easy to show that in the above grapliam(G) > Q(log,_, n), and hence it follows that for

any fixedd > 2:
1

log”n

A > 20/(d—1)(1 - Of

1The original statement of the lower bound is due to N. Alon and R. Boppana, and appears in @rNifle second eigenvalue of a graph
Discrete Math., 91(2):207-210, 1991

2This stronger statement and proof is taken from J. Fried®ame geometric aspects of graphs and their eigenfunciiae Math. J.
69(3):487-525, 1993.

39
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¢ Inthe case that = d + 1 (G is then-clique) the eigenvalues ¢f are {n —1,—1,...,—11}, since
if A isthe adjacency matrix fax, thenA+ I = J andJ’s eigenvalues are, naturallyp, 0, . . ., 0}.
While at first this may seem to be a counter-example to our theorem, note that the theorem deals
with the case wheré is fixed andn, A are going to infinity.

e Since\; = malef{%} we expect a proof for the above bound might use a specific "test

function” (=eigenvector), e.g. find a vectprs.t. 3-, (g f(x) = 0 and% >2/d—1(1 -

a7):

Proof Sketch:Taking two nodes, ¢ with d(s,t) = A, we build a spherical functioyf that will be positive for the
nodes within a distance éf = L%J — 1 from s, and negative on the nodes that are within a distantem ¢. The
values off will be derived from the spherical functignwith maximal eigenvalug for the d-regular tree of height,

treatings andt as roots of (separaté}tall trees. We will show that for the positive part pfwe haveAf > uf, and

likewise for the negative part of we havedf < —puf, so thatf Aft > uf f* = pl|f||?, giving % > . Finally,

the positive and negative parts ffwill be normalized to ensurg’ f(z) = 0, letting 1 apply as a lower bound for
A1 O

Proof. Setk = L%J — 1. Select two nodes, t € G with distancel(s,t) = A. For all0 < i < k define:
S; = {vld(s,v) =i}

and
T; := {v|d(t,v) = i}

and in addition define

Q=V(\ (| sium)

0<i<k

Note:This is simply a breadth-first-search dividing the graph into layers according to the distance from
s andt. @ represents the "middle ground” with at leddayer of nodes. There are, of course, no edges
between anys; and anyT;.

DenoteT to be the finite tree of heiglit, and mark4 to be its adjacency matrix.

Claim 6.2. There is a single spherical functign: [0, ...,k + 1] — R onT that satisfies:
gk+1)=0
(we extendy’'s domain in include: + 1 even though it is not part ol ), and

Arg = pg
(g is an eigenfunction ofir with eigenvalug:), wherey is the maximal eigenvalue affr.

This claim can be proved using the same technique as shown in the previous lecture dealing with thé-infiaite
We will not prove this claim here, but will show a specific functigthat displays these properties.

Definition 6.3. Definef : V(G) — R as follows:

cg(i) 3Ji,ves;
flv) = —cog(i) FveT;

0 otherwise
wherecy, co > 0.

Sincef is spherical, it will be convenient to defifé: [0, ..., k] — R with f(v) = F(i) < v € S;. We will
next show thaif gives us the desired properties:
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Lemma 6.4. If g above is non-negative and monotonically non-increasing, then:
v € Si => (Af)(v) > pf(v)

and
veT; => (Af)(v) < pf(v)

Proof. Letv € S; for somei. G is d-regular, saw hasl < p < d neighborsinlevel — 1, anothe) < ¢ <d—-p-1
neighbors in the same levgland the remaining — p — ¢ neighbors in level + 1, giving:

(Af)v) = pF(i—1)+qF@)+(d-p—q)F(i+1)
= pag(i—1)+qeg(@) + (d—p—q)erg(i+1)
but for g and the matrix4 (of the k-tall d-tree), we know that for a nodeof leveli:
png(i) = (Arg)(i) = g(i = 1) + (d = 1)g(i + 1)

since each node has exactly one neighbor in the previous level] antineighbors in the next level. Agis non-
negative and non-increasing we get:

(Af)(v) = cilpg(i—1)+qg(@) + (d—p—q)g(i +1)]
cfg(i—1) + (d - 1)g(i + 1)]

c1(Arg)(i) = c1pg(i)

uf(v)

The same argument is used foe T;, with the approriate redefinition of the functidfy and using:.

v

Corollary 6.5. % > pandf LT

Proof. The previous lemma givd$Af)(v)| > |uf(v)| forv € V(G) \ Q. Forv € @, note thatf(v) = 0, in which
case|(Af)(v)| > |uf(v)| is trivial. From this follows:

FAFT = <fAf>= Y fO)ANW)
veV(G)

= > AN+ D FOAHD) + D f)(AF)()
Ji,veS; i,veT; vEQ

> Y f@uf@)+ Y f@pfv)
3i,wES; Ji,weT;

= uff"

since forv € T; f(v) > 0 and forv € @ f(v) = 0. From this we get:

FAST
Vi

Next, we show thaf L T, (namely:>" f(v) = 0). This is easily achieved by selectingandc, such that

S fw) ==Y fv)

vES; veT;

FAFT > pf T =>
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Definition 6.6. Finally, we will find the spherical functiog that is non negative, non-increasing, that satisfigs+
1) = 0, and that has the maximal eigenvajue/e'll also show that thig yields the desired bound:

g(i) := (d—1)"/?sin(A(k + 1 — i)

— s
wheref = 7

It is easy to check that is non-negative, non increasing, and thét + 1) = 0. We now show thatlyg = ug
with i = 2+/d — 1 cos(f). For allj:

(Arg)(j) = 190 - 1) (d—1)g
= (d-=1)"UD26in@k+1—(j — 1))+ (d—1)(d— 1)~V 2sin(0(k + 1 — (j + 1))
= (d—1D)TH 2600k 4+ 2 - j)) + (d — 1) 2 sin(0(k — 5)
d—1(d—1)7/*(sin(0(k + 2 — j)) +sin(8(k — j)))

(j+1)

And sincesin(«) + sin(8) = 2 sm("‘*ﬁ) cos (25~ a—B) we get for allj:

(Arg)(j) = 2Vd—1cos(8)(d —1)"7/2sin(0(k + 1 — 7))
= 2vd—1cos(9)g(j)

To arrive at our bound, we need to show that(f) > (1 — <% ). Recall:

™ . T

To%+2 A

sincek = L%J — 1, and use the Taylor expansion for the fucntion(z):
2

cos(z) =1 — % + o(z?)

cos(f) >1— —



Chapter 7

The Margulis construction

Notes taken by Statter Dudu

Summary: We define an explicit family of-regular graphs on the tords, x Z,,, and prove that this is
a family of expander graphs.

1 2 1 0 1 0
T1_<0 1>7T2_<2 1>7el_<0>762_<1>7

and define the following-regular graph G=(V,E) on the vertex ét= Z,, x Z,,. Each vertex = (z,y) is adjacent
to the four vertices

Construction 7.1. Let

T1U, TZU, Tlv + €1, TZU + €2,

where all the calculations are performed mad The other four neighbours af are obtained by the four inverse
transformations. (Note that this is &fregular undirected graph, that may have multiple edges and self loops.)

Theorem 7.2. X\»(G) < 5v/2 < 8

We have already seen thatGf is a d-regular graph of size and eigenvalues (of its adjacency matrik) >
Az ... > Ap, then); = d, then its Cheeger constant satisfi€6’) > (d — A2)/2. Therefore, a lower bound on the gap
betweem\, andd that is independent of implies that this is a family of expanding graphs. Margulis proved a similar
resultin 1973 but couldn’t give an explicit lower bound on the gap. Galil and Gabber (1981) used continuous harmonic
analysis to derive a lowerbound on the gap. Boppana simplified the proof, and Jimbo, Marouka (1985) improved it
furthermore using discrete Fourier transform.

As we have seen before, by the Rayleigh quotient Theorem,

max{[A2|, [An]} = max{| <Af, f> | i< f,Ul >=0,||fl| =1}
= 2max{] Z FOFG) < f,o0 >=0,]|f]| = 1},
(i,j)EE

wherev; = 1/4/n is the eigenvector correspondingXp, and the maxima are taken over flt Z2 — C. It follows,
that it is sufficient to prove that for every complex functipnZ2 — C satisfying}_, f(z) = 0,

Y @) |<—Z|f

(z,y)€EE
By the definition of our graph, this is equivalent to:

Theorem 7.3. Forany f : Z2 — C satisfying)_, f(¢) = 0, the following inequality holds:

| > FO)(F(T00) + F(T10 + e1) + f(To0) + f(T20 + €3))| < —Z|f )| (7.1)

YeL2
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Discrete Fourier transform It is hard to use the conditiop, f(z) = 0 so we will move to a new space using
the discrete Fourier transform.

A character of an abelian group G is a homomorphisnG — C, mapping addition ir7 to multiplication inC.
It can be seens, that the character&ffare: x;, : Z% — Cfor b € Z%, wherey;(a) = w<®*>. Here,w is thenth
root of the unity { = e>7%/™), and for anyu, b € Z* their inner productis< a,b >= Z;‘T:l azb;.

Since the charactefg are an orthonormal basis, we can expressfanf.* — C asf = > f(b)xb, where
N 1 ) 1 Ty ., <a,b>
fla) =< fixn >=W;f<b)-xb(a>= W;f(bw :

f:Z* - Cis called the Discrete Fourier Transform - (DFT)fof Z% — C.

To prove Theorem 7.3, we express the condition of equation (7.1) using the Fourier coefficiertdiefcondition

~

> ¢ f(¥) = 0is equivalent tof (0,0) = 0. Using identities 2,4 in appendix 1, one can easily prove that Theorem 7.3
reduces to:

Theorem 7.4. Any functionF" : Z2 \ (0,0) — C must satisfy
FRTET —1 -0 —1 -0 5V2 2
| > F@)-[F(T; )1 +w™™) + F(IT )1 +w™™)]| < —= > IF@)”.
9=(91,92)€Z3\(0,0) 9E€Z3\(0,0)

LetG = |F|. ThenG is a real functiorG : Z2 — (0,0) — R. Moving the absolute value inside the summation,
and using the equality

Ta
1+ w™% = 2|cos(—)I,
n
it follows that it is sufficient to prove:

Theorem 7.5. Any functionG : Z2 — (0,0) — R, must satisfy

n

%:G(ﬁ) - [G(T5 1) cos ”Tﬁﬂ + G(T7'9)| cos 7T—192|] < ¥ > GW).

We would like to convert the LHS into a sum of squares that will match the RHS. To do this we use the following
inequality, valid for any reat, b, v

1
2ab < va® + —b°.
Y
Lety : (Z2)? — R be a function satisfying for alt,y € Z2
v(z,y) v(y,2) =1, (7.2)

and in addition, that for al} = (91, 492) € Z2 \ (0,0)

(7.3)

]
w%
o

T _ T _
|cos —| - [y (9, To0) + 49, T, 1)) + | cos —=| - [y(0, T10) +9(9, T 1)) <

Since for any, q € Z2 \ (0,0)

2G(p)G(q) < v(p, 9)G*(p) + 7(q,p)G*(q),

it follows that
2 LHS < %, leos ™| b0, 15 )G(0) +4(T; 0, 9)C (T )]

T _ _ _
+ Jeos 2 Y@, T )G W) + (I, 90)G (T O))
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SinceT; doesn’'t changé,, andT; doesn’'t changé,, it follows that:

2 LHS < 3 G09) - cos T4 (9, Tod) + (0, T )] + G2(0) - |eos ™02 |- [3(0, T19) ++(9, 717 9)]
9

IN

5v/2 )
— %:G (0).

Therefore, if we just find a functio satisfying the requirements (7.2) and (7.3), Theorem 7.2 would follow, and
we are done. To defing we first define a partial order ¢&2. So, let

T if
o) = {n —x if

(Notice thata(z) is invariant under moa, i.e. a(z mod n) = a(z).) Then we say thad,,92) > (9¥],9%) if
a(¥1) > a(¥)) anda(¥2) > a(¥,) and at least one of the inqualities is strong. That is the distance to the X axis and/or

to the Y axis is bigger.
The definition ofy is:

S w3

Vv
=

>
>x

e

if 5(1917192) > ( I171912)
if, (91,72) < (97,95)
otherwise

Y((91,92), (91,03)) =

= o=

This definition of~ obviously satisfies (7.2). We will show that far = % also (7.3) is satisfied for any <
Z2\ (0,0). We define the diamond to be the set ofihl:= (91, 92) € Z2 \ (0,0), satisfying

CL('[91) + CL('[92) S

|3

n/2,0)

(-n/2 (n/2,0)
8,

0,-n/2)

Figure 7.1: The diamond

We analyze the case whefes outside or inside the diamond separately.

e Outside the diamond
(7.3) will follow from the fact that the cosines are small. So, it is sufficient to prove that

or that

Y Y
|c05%|+|cos%|§\/§. (7.4)
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We can assume w.l.0.g. that we are in the first quadrant. S'm;c—’ég—z is decreasing, for any given value®#f,
the LHS of (7.4) is maximized, whef, = n/2 — ¥;. Therefore, using the convexity ofs we get that

(5 — V1) m

s i s
cos—1+cos—2§cos—1+cos < 2cos =V2.
n n n

S~

¢ Inside the diamond
In this case, we just bound the cosines by 1, and would like to prove that

YW, T109) + (9, Ty M0) + (9, Tod) + y(9, Ty '0) < : (7.5)

ot
w%
[N}

Itis not difficult to verify that for every) satisfyinga(v:) + a(¥2) < %, one of the following two cases must
hold:

1. Three of the four point®, 4, Tx9, T, 19 andT; ¢ are> ¢ and one i< ¥.
2. Two of the four pointd; 4, 159, Tflﬁ andT;lﬁ are> ¢ and two are incomparable with

In the first case, the LHS of (7.5) 1§ % + «, while in the second case it 1 % + 2. Substitutingy = 5/4, this

gives a upper bound 65 or the LHS of (7.3). This is not as good &¢2/2 = 3.53.. .., but it does prove that
the graphs are a family of good expanders.

Appendix

Using the same definitions as before the following properties of the discrete Fourier transform can by easily concluded
from the definitions:

~

S, f@)=0& f(0)=0

2. The dot product of two functions remains invariant under the transform i.e fof gny

> F@)gla) =" fla)g(a).

=

3. Parseval’s identity: A special case of 2, whére: g
Y@ =Y 1f @)

4. The shift property : If A is a non-singulérx k matrix with entries oveZ,, b € Zk andg(z) = f(Az + b)
then

y) = w™ AP F((ATYYy).
5. Theinverse formula :

f@) = = Y Flaym=et.
b



Chapter 8

The Zig Zag Product

Notes taken by Eyal Bigman

Summary: In this lecture we shall introduce a new kind of graph product calle@ip&@ag Product We

shall analyze the expansion properties of the zig zag product of expanding graphs and use them to create
an explicit recursive construction of a family of good expanders. Furthermore we will connect the entropy
of a random walk on the graph and its expansion.

8.1 Introduction

We begin with some standard definitions: ét=< V, E > be ad-regular graph|{/| = n). The adjacency matrix
A(G) = (aij)i;=, of the graph is a symmetrio» x n non-negative integer matrix such that = k iff there are
k edges between verticesindj. It follows from regularity that the sum of every rowds The matrixG@ = %A is
the normalized adjacency matrii is the transition matrix of a random walk @i Thus ifp € R™ is a probability
distribution on the vertices at timethenGp is the distribution at time + 1.

G is a(n, d, a)-expander ifa is an upper bound on the second eigenvalue of the normalized adjacency matrix
Az < a (A = 1). It follows from the spectral gap theorem that— a)d/2 < h(G) whereh(G) is the expansion of
G. ThusG is a better expander whenis close ta0).

ThesquareG? = (V, E') is a graph on the same vertices angw) € E' iff there is a path of length 2 i/
from v tow. If A is the adjacency matrix af then A2 is the adjacency matrix a2. It is easy to see thak? is a
(n,d?, o?)-expander.

The zig zag product will be an unsymmetric binary function, that givemaegular graph of size and ad-regular
graph of sizen, it yields ad?-regular graph of sizewn. After we define the zig zag product we will prove:

Theorem 8.1 (The Zig Zag Theorem).LetG be a(n, m, a)-expander and{ be a(m, d, 3)-expander theit: @ H
is a(nm,d?, f(a, B))-expander wherg (o, ) = a + 5 + 2.

We will present a proof that uses only elementary linear algebra. With some more algebra this bound is improved
in [RVWO2] to f(a + ) = a + 3, and ifa, B3 < 1, it can be showrf (a + ) < 1.

Before we proceed with the definition let us show how it can be used for an explicit construction of a family of
expanders with constant degree. Haonstant led be a(d*, d, i)-expander, there is a probabilistic proof that such
an expander exists and sinéé constant we can find such a graph by an exhaustive search in constant time, there are
also efficient constructions of such graphs - see [RVWO02]. Define recursively:

G, = H?
Gn+1 = (Gn)2®H

Proposition 8.2. G, is a(d*", d?, 1)-expander for all

Proof. By induction. The case = 1 follows from the definition. If we assume the proposition fothenG? is a
(d*",d*, L)-expander and from theorem 8.1 it follows tigat ., is a(d*"*+1), d2, 1) graph O

47
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8.2 The Construction

Let G be a(n,m,a)-expander andd be a(m,d, 3)-expander. For every vertax € V(G) letel,...e™ be the
edges connected to the vertex. Also, we regard the verticBsax the integers, . .., m, denoted bym]. To obtain

G @ H, we replace every vertexwith a cloud ofm vertices(v, 1),. .. (v,m) one for every edge connected. The
vertices within a cloud are connected by “miniedges” so that every cloud forms a mini cépyTife edges of7 are
augmented on both sides by these miniedges to form the edG&®di. More formally:

Definition 8.3. G@ H =< V(G) x [m], E" >, where((v,i), (u,j)) € E'iff there are somé:,l € [m] such that
(i7k)’ (l,.j) € V(E) andeﬁ = el

Itis essential of course for the sake of well definedness that the degféeaials the size off .

Proof of the Zig Zag theoremit is easy to see th&t@H is a graph of sizenn and degred?. The expansion constant
of G@ H is a bound on the second eigenvalue of the transition matrix of the random walk on the graph. Each step of
the random walk on an edge 6f2 H can be regarded as a random step on a miniedge within a cloud, a deterministic
step on an edge connecting two clouds and another random step within a cloud. Thus, the transit{en:ijreon
(u, j) consists of a random step frofn, ) to (v, k) for somek € [m], a deterministic step frorfv, k) to (u,[) and
another random step frofw, 1) to (u, j).

The transition matrix of the random walk 6#2 H will therefore be the product of the transition matrices of these

three steps, i.62@H = HGH, whereH = H ® I,, is the transition matrix of a random step in each cloud, and

~ {1 if ek = el

Gl wh =9 0 otherwise
is a matrix of transpositions. It is easy to see thaf ||, || G ||< 1.
G @ H is a regular graph thus the constant vedtgy, is an eigenvector, it follows from Rayleigh’s theorem that
Ao =mazysia,,, % Therefore it suffices to show% <a+ B+ p%foreveryf L 1,,.
We can write any vectof asf = fI| + Hf+, wheref!l is a vector that is constant within each cloud, dhd"-

sums up to zero within each cloud. Sirigg is an eigenvector off with eigenvalue one, we get thatf!l = £l
Therefore, for every L 1,,,:

fG@HS| = |fHGH|
= |flHGHf| +2|fI{HGHf*| + |f-HGH f*|
= |fIGfI| + 2 f\GHF*| + | FrEGHF

Now, sincef!l L 1,,,, we know that| GfIl [|< a || fI ||. Also, sincef* sums up to zero in each cloud, we have
| Hf 1< B 1| £+ ||. Therefore:

IFIGFI <al fIH]1?
IGHEF <G NEFN<BI -1
\FFHEGHY |G- | Hf 1P< B 117

The inequalities follow from Cauchy Schwartz and the definition of the operator norm.

FG@HS > | <al U2 +28 1 f1 - F- 11 +82 0 £ IP
<all fIP+28 1 /NI 1 +82 0 F 112
=all FIP+8-U P+ 012 == D2+ 821 7 1P
—(@+B+8) N FIP=B-(L =1 £ 1)
<(a+B+8) 1 FIP
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8.3 Entropy Analysis

There are several different definitions of entropy for distributicthe classical definitiond (p) = — Y., p;log(pi),
the H, entropyH, (p) = —log(|| p ||2) and the min-entrop¥ . (p) = —log(|| p ||). FOr any transition matrixd
with expansion constaiat and distributiorp = %ln + f

1 1
1A [P=ll — 1o+ Af [P —Tn [P + | AF IP< (1= X%) +”X) [ p |

H,(Ap) = Ha(p) +log((1 = A?) + a®A?) = Ha(p) +log(1 — (1 = a*)A?) = Ha(p) — Ap

0<1-a?<1implies0 <1—(1—a?)X2 < 1henceAr = —log((1 - A2) + a?)2) > 0 as long as\ > 0. This
shows that the entropy increases by at leagtas long as there is a positive nonuniform component. It follows that
for better expandersysmaller) theH, entropy grows faster. It can be shown that fiigand theH ., are correlated,
therefore the same increase is true for the min-entropy.

We will show next that the classical entropy also grows whes 0 but we shall make very different considera-
tions. It is currently unknown how fast the entropy grows and how the growth rate relates to the expansion constant.
We note that for all the definitions of entropy, the increase of entropy for nonuniform distributions is essentially the
second law of thermodynamics.

For random variableX andY with some joint distribution we have the standard entropy equdfioN,Y") =
H(X) + H(Y|X) thus the entropy of the joint distribution f andY” is the sum of the entropy ok and the
conditioned entropy of'| X . In the case of the zig zag graph the set of verticds is [m], the random variables we
will analyze will be the projectionX” andY” to the first and second coordinates. We will see that a random step on the
zig zag graph will increase both the entropyXfand the conditioned entrogy (Y| X') and thus increase the entropy
of the joint distribution.

As we mentioned before a random step consists of a random step within a cloud (zig) a deterministic step between
clouds and another random step within a cloud (zag). Since the zig and the zag steps are within a cloud, they only
affect the second coordinate. They are random steps therefore they increase the conditioned eYitt&ipysabng
as that is less than maximal. For a distribution which is uniform on every cloud the zig and zag steps have no effect.

We can think of X andY” as basins of entropy, taking either a zig or a zag step is like pouring entropy from an
external source into the basin. How much entropy can be poured in? Well that depends on the capacity of the random
variable (maximum entropy) and the amount of entropy present in the basin, i.e. how far is the distribution on every
cloud from uniform.

What about the deterministic step between the clouds? Well this step is deterministic and therefore it does not
change the total amount of entropy in the system, but that does not mean it cannot change the division of the entropy
betweenX andY'.

Let us think of the extreme cage= ¢, ® %lm where the entropy oX is zero and the entropy af is maximal,

i.e. the distribution is concentrated uniformly on the vertices of the clo(mbviouslyp remains unchanged by the
zig step). In this cas& (Y| X) = log(m) andH(X,Y) = H(X) + H(Y|X) = 0 + log(m). After the deterministic
step there is equal probability to be in any onevsf neighboring clouds, but within these clouds the distribution
is concentrated on the vertex that is actually connected to a vertex ifihe entropy in these clouds s The
entropy of clouds not connected toremains zero, and the entropynis zero. Thus we see that the entropy of
X goes from zero tdog(m) and the entropy of” plummets to zero. We still have the same entropy in the system
H(X,Y)=H(X)+H(|X) = log(m)+0, but the division betweeX and}” changes, all the entropy bfis passed

to X. In the general case the same thing happens, entropy is exchanged bh&taad®™. Since deterministic steps
are reversible, not necessarily is the entropy transfered ¥famX, or from a variable with high entropy to a variable
with low entropy. Nevertheless, it can be shown that if the entrogyf|df is maximal and the joint distribution is
not uniform then the deterministic step reduces the entrofy§| &f. Thus we see that the deterministic step does not
change the entropy in the systems but pours entropy from one vessel to another, and in the tasefthlednd X is

not, some entropy is poured fromto X.

We can see now the effect of a random step, first entropy is poured’intbit is not full then some entropy
is added to the joint distribution. Next entropy is exchanged betwéamdY’, necessarily making room for more
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entropy inY ifitis full and X is not. Finally yet more entropy is poured iritband again if it is not full already then
the entropy of the joint distribution is increased.
Thus we see that the total amount of entropy in the system necessarily increases unless the two basins are full
already. Why do we have to pour in entropy from an external source twice? Because in cagedbbke, whatever
entropy was poured whil¥ was full will be wasted and the entropy of the whole system will remain the same. Only
the second step will make room In for more entropy, thus if we avoid the zag step the entropy in the system will
not increase. On the other hand, since the deterministic step is reversible it could also be the ¢asélttbatfilled
from X and thus the entropy poured in the zag step will be wasted. It can be shown (or follows immediatly form
reversability) that in such a cadéis not full from the start. Thus if we don’t pour entropy dhat the beginig it
may not be possible later. Therefore both the zig and the zag steps are essential in order to assure that the entropy will
actually increase.



Chapter 9

Metric Embedding

Notes taken by Tamir Hazan

Summary: We can embed any metric space ifit®, but with some distortion of the distances. We show
that the graph metric of expander graphs is the hardest metrics to embed, in the sense that of all finite
metric spaces on a given number of points, expanders require the largest distortion.

9.1 Basic Definitions

(X, d) is a metric space if

e d: X xX — Rt.

d(z,y) =0ifandonly ifx = y.

d(z,y) = d(y,z).
d(z,y) <d(z,z) +d(z,y).

In this lecture we will examine how to approximate a finite metiAc d) by the metric spack. I, is the metric
space(R", || - ||) such that for every, z € R", ||ly — 2||> = >0, (i — 2:)%
Given the metric spacésX, d) and(R",l>) and a transformatiofi : X — R" we define:

[f(z)—f(z2)]l

o expansion(f) = maxy, z,ex Torars)

. d(n,
e contraction(f) = maxwhmexm

e distortion(f) = expansion(f) - contraction(f)

Itis clear that there are metric spaces that need to be embedded with distortion. E.g thé{rexri®, 4}, d) with
d(1,4) = d(2,4) = d(3,4) = 1, andd(i,j) = 2 otherwise, sincd1,2,4}, {1, 3,4}, {2,3,4} must be on the same
linein R™.

9.2 Finding the Minimal Distortion

In this section we will present some of the properties of embeddint}s @iven a metric spacgX, d) we denote its
minimal distortion byCs (X, d).

Theorem 9.1. Bourgain (1985) Any n-point metric spa¢&’, d) can be embedded intO(log n) dimensional Eu-
clidean space witl)(logn) distortion.

Theorem 9.2. Linial, London, and Rabinovich (1995) There is a polynomial time algorithm which comPu(és d).
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Proof. The proof is based on semi definite programming.(2étd) be a metric space withfX| = n. Let f : X — [5.
Since we can assume that without loss of generalitydvatraction(f) = 1, thendistortion(f) < if and only if
foreveryl <i< j<n:

(%) d(wi, ;) <|If(z:) = fz)lI* < vPd(wi, 7))

We say that a matri¥Z is positive semi definite (denotedlSD) if Z is symmetric and:” Zz > 0 for every
z € R

Letu; = f(z;) be the rows of the matri&’. Let Z = U - U7 Itis clear thatZ € PSD since it is symmetric, and
foreveryr € R?, 21 Zx = 27U - U2 = (UTz)T - (UTz) = ||[UTz|)? > 0.

But also the converse is true, # € PSD thenZ = U - UT for some matrixU. To see that, note tha is
symmetric, and therefore diagonizable. THus- AAAT for some matrix4 and a diagonal matrix. Let /A be the
diagonal matrix whict{v/A);; = /(A)s. ThenZ = AVAVA' AT = (AVA) - (AVA)T.

Therefore instead of finding; = f(z;) which satisfiegx) we can find & € PSD that satisfies
(**) d(xi,xj)Z < Zzi+ zj5 — QZij < ’)/zd(xi,x]’)Z,

Since||ui — Uj||2 = Zi + 255 — QZij forZ=U-UT.

Thus we conclude that',(X,d) < « if and only if there is a positive semi definite mat such that for all
i,J (**) holds. This is a linear programming problem (more precisely a convex programming problem) which can be
solved in polynomial time by the ellipsoid algorithm. O

The algorithm above constructs a primal problem and solves it by the ellipsoid algorithm. Looking at the dual
problem gives us an interesting characterizatio@'gfX, d). When we transform a primal problem to its dual we take
a non negative combination of its constraints. But how do we look at the constrainP S D?

Lemma9.3. Z € PSDifandonly if forallQ € PSD, }; ; aijzij > 0.

Proof. Let ) be a matrix such tha®;; = ¢; - ¢;. Previously we showed that such a matrixi$D. Therefore
q"Zq =Y, ; qijzi; > 0implying thatZ € PSD.

It can be easily seen that a@y € PSD of rank 1 must have the for@;; = g¢; - g; for some valuegy, ..., g,.
Thus, if Z is PSD then for every symmetric matrigg € PSD of rank l,zm. gijzi; > 0. The lemma follows
from the fact that any?SD matrix is a non negative linear combination of ranlP® D matrices. To see this, note
that anyP € PSD can be written asiAA”, whereA is a diagonal matrix of the same rank & Therefore
P =Y k) g7 AT

O

Our primal problemis:

® > i qjzij > 0forall@ € PSD.

o d(z;,z;)? < 2 + zj; — 2z forall i, j.

o zii +2j; — 225 < ¥d(z;,z;)* foralld, 5.

We proceed by deriving an explicit formula f6% (X, d) from the dual problem:
Theorem 9.4,

% oo Pz,
Cs(X,d) = max pi 2070 0T 5
PePSD, P-T=0 \| — Zpij@ pijd(zi, ;)

Proof. In the following proof we shall assume that C5(X, d). Therefore when we inspect a non negative combi-
nation of the constraints of the primal problem (the dual problem) we must get a contradiction.

Let us look at the constraints of the first type (for@lle PSD, < ¢,z >= Zij gijzi; > 0). Since the collection
of PSD matrices is convex, a non negative combinatjon a;, < ¢,z > is equal to< p,z > for some matrix
p € PSD. Thus the combination of the first type constraints givegi;pijzij > 0 for someP € PSD.

A contradiction can be reached if a combination of all the constraints resuitio. Unfortunately so far we have
>_ij Pijzij > 0forsomeP € PSD. So to eliminate the;; for i # j, we take the following linear combination of
the rest of the constraints:
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e If py; = 0 then we multiply the constraints involving,; by zero.
e If pi; > 0 then we multiply bypy; /2 the constraint(zy,, 7;)? < 2k, + 21 — 224
e If pi; < 0 then we multiply bypy, /2 the constraintyy, + 2 — 22 < Y2d(x, 71)?

To eliminatez;;, we have to choosP such that

Pii + Zpij =0.

J#i

Therefore the combination of all the constraints gives

(%) Z pijd(l‘i,l‘j)Z + 72 Z pijd(l‘i,l‘j)Z <0.
pi; >0 pij <0

We get our contradiction ifx) is violated. Thus we conclude the theorem.

9.3 Embeddings inl,

9.3.1 Embedding the cube

Given a cubg0,1}" we can easily find an embeddinglinwith distortion/r. Given the embeddingl : {0,1}" —
R” such thatd(xz) = z, we get thatontraction(id) = /r andezpansion(id) = 1. Using our main theorem we can
show that this is the best embedding of the cube. Let defin2"tke2” matrix P:

o P(i,j) = —1if d(i,j) = 1.

o P(i,j)=r—1ifi=j.

o P(i,j)=1if d(i,j) =r.

e P(i,j) = 0 otherwise.

It is easy to check thaPT = 0, and thatP € PSD (the later holds, sinc® has the same eigenvectors as the
cube). Sincg", o pijd(zi,x;)® = 2" -r®, and—= 30 o pijd(w;, z;)* = 2" - r, we getthalCy (X, d) > /r.
9.3.2 Embedding expander graphs

LetG = (V, E) be a k-regular graphy’| = n, with A2 > k — €. As before it is simple to see that an expander can
be embedded with distortiof(logn) in l>. Indeed, take the expander and put it as a simpleR”in Since every
two nodes of the simplex have distariceve get thatexpansion = 1, andcontraction = diam(G). SinceG is an
expander thediam(G) = O(logn). As before this result is tight.

Lemma 9.5. Let H = (V, E') be a graph with the same vertex set(&s2 vertices are adjacent ifi if their distance
in G is at leastlog,, n — 2. ThenH has a matching3 of n/2 edges.

Proof. GG is k-regular graph thus every vertex has at migstvertices at distance r fromit. If » = log,, n — 2 then
there are at most/2 nodes at this distance. Since all the vertice&lofiave degree n/2 then it has a matching of

the desired size. This follows from Dirac’s sufficient condition for a Hamiltonian circuit. (Modern Graph Theory B.
Bollobas p. 106-107). O

Theorem 9.6. LetG = (V, E) be a k-regular graph|V'| = n, with Ay > k —e. ThenC>2(G) = Q(logn).
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Proof. Let B be the adjacency matrix of the matching we foundlinFor simplicity we assume thd is a complete
matching inH. LetP = kI — Ag + 5(B —I) in H. Itis easy to see thal = 0. P € PSD since for every: L1,

eTPx = 2T (kI — Ag)x + 27 (¢/2)(B — Iz

oI (kI — Ag)z > €||z||? sinceq is expander.

eT(B -1z = Z (2ziw; — 27 — x?) > -2 Z(w? + x?) = 2||z|?
(i,4) edge in B
To get the lower bound o5 (G) we note that

.. €

Z d(i, j)*pij > B -n(logy n — 2)?

pij >0

since the distances of the entriesBrare at leaslog;,, n — 2.
— > d(i,j)’pij = kn

pi; <0

ThusCs(G) = Q(logn).



Chapter 10

Error Correcting Codes

Notes taken by Elon Portugaly

Summary: An error correcting code is set of words {0,1}". Its distance is the minimal Hamming
distance between two codewords. Therefore, if we transmit a codeword through a noisy channel that flips
some of the bits, then we can correct the errors, as long as the number of bits flipped is bounded by half
the distance. There is a trade-off between the size of the code and the number of errors it can correct.

There are lower bounds (Gilbert Varshamov) and upper bounds (The Balls Bound, MRRW) on the size
and correction capabilities of codes.
A linear code is an error correcting code that is also linear subspgce bf™.

Expanders can be used to build error correcting codes, that have large size and distance. These codes are
also efficiently decodable.

10.1 Definition of Error Correcting Codes

Definition 10.1. A Code is ase€' C {0,1}™.

Definition 10.2. The distance o€ is d = dist(C) = min ,, du(x,y), wheredy (z,y) is thehammingdistance
z,yeC

betweern: andy (the number of coordinatasandy differ on%.

Definition 10.3. The rate ofC is r = rate(C) = 2611,

n

When defining a code, we desire bl andd to be as large as possible.

10.1.1 Motivation

The setting we look at, is as follows:

We would like to send information through a noisy channel, that may flip some of the bits we send. We code our
information using a set of words C {0, 1}™ that we transmit through the channel, and assume that the number of
bits the channel may flip in the transmitted word is bounded from above.

In this setting, it is clear that we would like the number of codewords available to be as large as possible, therefore
we want|C| to be large. We also would like to be able to reconstruct the codeword that was sent from the corrupted
codeword received. Therefore, we would like that no two codewords could appear the same after they have been
corrupted by the noise. If the number of bits the channel can flip is limitefd ypndd > 2k, the last requirement is
fulfilled. Whend is larger, we can deal with noisier channels.

|C| strings can be encoded using Therefore, we can transniitg |C| information bits, using: channel bits.

This achieves channel utilization éﬂ‘%‘—c‘ which is the rate of the code.

Note: A Code refers to the set of codewords and not to the process of encoding/decoding. However, in
any practical aplication, we would like the code to be efficiently encodable and decodable.

55
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10.2 Asymptotic bounds

10.2.1 A lower bound: Gilbert Varshamov

This bound shows that good codes can be built.

Theorem 10.4. One can build a length code with distance and size> o2 Ramming balt

Proof. Following is an exponential time greedy algorithm that builds such a code:

e Initiate S = {0,1}",C = 0.
e Repeat untilS is empty:
— Pick any pointz € S, and add it in the code.
— Remove all the points i§ that are within distancé from z.

Analysis: The volume of a hamming ball of radién {0,1}"is ¢, (*). Therefore, at mosE.?_, (%) points
are removed fronf' in each iteration, and since the number of pomtsSlat the beglnmng 2", the number of
iterations and thus the size 6fat the end of the process must be at Igggi—n = O

A ( ) volume of a radiugl ball

Defined = £. Ford < 2 we have)}_, (7) = () ~ 2"7(9), whereH is the binary entropy function

H(z) = —zlogz — (1 — x)log(l — z).

Therefore

on
grn >~ 2n(17H(6))’
(5m)

implying that for larges, the rate of the above code satisfies 1 — H(J).

r A

balls bound

Figure 10.1: lllustrating Upper and Lower Bounds on rate vs. the relative distance
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10.2.2 An Upper Bound - The Balls Bound

Theorem 10.5. For any lengt, distanced codeC we havd(C| < 2"

volume of a ball of radiu§ *

This theorem implies the asymptotic boumd< 1 — H(4/2).

Proof. Given a distance codeC', a draw ball of radiug/2 around each of the points 6f. If any two balls intersect,
then the distance between them is smaller thamhich contradicts the definition @f Therefore, the balls are disjoint,
and their number is limited by the overall volume divided by the volume of each ball. O

A much stronger upper bound was shown by McEliece, Rodemich, Rumsey and Welsh 77 (MRRW). The relations
between the three bounds is illustrated in Figure 10.1.

10.3 Linear Codes

A linear code is a code that is a linear subspace ofitldémensional spacf0, 1}™. (In other words, it is closed under
coordinate-wise addition mdd) Such codes have a polynomial size«{indescription. (For instance by specifying a
basis.)

The Gilbert Varshamov algorithm can be modified to generate linear codes, and thus the Gilbert Varshamov bound
applies to linear codes. Obviously, any general upper bound applies to linear codes as well.

Observation 10.6. Since any linear cod€’ must include thé® codeword, then for linear codes,

dist(C) = quér;igo weight(x),

where wight(z) is the number of non-zero coordinatesmof

Note: Although, for a linear code, the encoding can be done in polynomial time, the decoding is in general
NP-hard. l.e., given a linear codé (using some reasonable representation), and a vectbe problem
of finding the element of’ that is closest ta: is an NP-hard problem.

10.4 Using Expanders to generate Error Correcting Codes

10.4.1 Defining Codes using Bipartite Graphs

Consider a bipartite graph with vertices on the left aneh vertices on the right side. We call the vertices on left
variables and the vertices on the righbnstraints Each variable may assume the valuéaifr 1, and we say that a
constraint is satisfied if the sum of all the variables adjacent to it is zero2nod

Example 10.7. The graph in Figure 10.2 illustrates such a variables and constraints graph. For this graph, constraint
y4 is satisfied iffx3 + 26 + 29 + 214 = 0 while constrainty10 is satisfied iffz12 + 14 = 0. Note that the same
variable may appear in more than one constraint.

To define the code we refer to the variables as the coordinates of a xeetfd, 1}". A vectorz is in the code iff
it satisfies all the constraints defined by the graph. We denof&(b¥), the code defined b§. The code then, is the
set of all solutions ofn linear equations on variables. Thereforg('| > 2"~™ orr > 21,
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variables constraints
x1
X2 .
x3 . yi
X4 - . y2
x5 - y3
X6 . y4
X7 . ys
x8 - . ye
x9 vt
x10 - . y8
x11 - yo
x12 . yio
x13 * . yit
x14 yiz
x15 *

Figure 10.2: A Variables and Constraints Graph

10.4.2 Codes Using Left Side Expanders

Theorem 10.8. Sipser and Spielman (95)LetG = (Vi; Vg, E) be a bipartite graph of siz8/1,| = n, |[Vg| = m,
that is k-regular on the left. Assume furthermore, that for 8yC V;, of size at mostwn, |T'(S)| > £[S|. Then
dist(C(G)) > an.

Proof.

Lemma 10.9. Every setS C V, of size at mostin satisfies theJnique Neighbor Propertyl.e, there existy € Vg
such thail'(y) N S| =1

Proof: Consider a sef C V;, of size< an. If the Unique Neighbor Propertgdoes not hold foiS, then eachy €
I'(S) has at least two neighbors 1 Therefore the number of edges leavifigs at least2I'(S) > 2%|S| = k|S|,
which contradicts the left regularity @f. a

Assume for the purpose of contradiction thattdC') < an. Then there exists a nonzero codeword whose weight
is at mostan (Observation 10.6). Lew be such a codeword, andl be its support (the set of coordinatesvhere

x, = 1), and lety € T'(X) be a vertex guaranteed by the Unique Neighbor PropertifoFhe constraint defined by

y is that the sum of all the variables that are neighborg isfeven, but in the assignment definedusyonly one of
those variables is assigned the value 1. Therefore, the constraint cannot be satisfiedaandt be a codeword. A
contradiction. O

Theorem 10.10. Efficient Decoding, Sipser and Speilman (95)n the above conditions, if the expansion of sets of
size at mostwn is > %k and if the distance of the input woud from a codewordv is at mostg n, then the following
decoding algorithm will returnw in a linear number of iterations:

While there exists a variable such that most of its neighboring constraints are not satisfied, flip it.

Proof. Let A be the set of errors in’, i.e. A = {v : w), # w,}. If Ais empty, we are done. Otherwise, assume
that|A| < an. (We need the assumption to guaranty the expansion, and we will prove later that this assumption holds
throughout the running of the algorithm.)

PartitionI'(A) to satisfied neighborS and unsatisfied neighbot& Then:

3
Ul +1S] = IT(A)] > k|4l (10.1)
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Now, count the edges betwednandI'(4) = U U S. There are at lea$¥| edges leaving/, and at leas?|S| edges
leavingS (every vertex inS must have at least two neighbors4n. Therefore,

Ul +2[S| < K| Al
Combining this with (10.1) we get that
3
kAl = UL > 28] > 2(3klA] = [U1),
and therefore,
1
|U]| > §k|A|. (10.2)

So more thar k| 4| neighbors of théA| members of4 are unsatisfied. Therefore there is a variabld ithat has
> %k unsatisfied neighbors. That means that as long as there are errors, there is a variable that most of its neighbors
are unsatisfied. Since by definitidf]| decreases with every step, we deduce that:

Corollary 10.11. If the distance fromw does not exceedn throughout the run of the algorithm, thén will reach
the empty set, and the algorithm will halt with the codeword

To show thatd is always< an, note that in the beginningd,| < $n, and therefor¢ly| < [I'(Ap)| < kgn.
Therefore, sincgl| is decreasing, throughout the running of the algorithm

U| < k%n (10.3)

We know that at any stejpd;| changes byt1. Therefore, if at any timgA| exceedsyn, there must be a timewhen
|A;| = an (we can assume that is an integer). Then by (10.2)J/| > k§n, which is a contradiction to (10.3).0



60

CHAPTER 10. ERROR CORRECTING CODES



Chapter 11

Lossless Conductors and Expanders

Notes taken by Ariel Elbaz, Yuval Filmus and Michal Igell
Summary: In this lecture we define conductors, a generalization of expanders. Extractors, dispersers

and condensers are all types of conductors. We use the new structures to explicitly construct lossless
expanders.

11.1 Min-entropy

Min-entropy measures the rarity of the most probable event. If all events occur at probability at thosten the
min-entropy is at most, and vice versa. For a random variaBde(or a distribution) over some finite sét let

Supp(X) ={z € S: Pr[X = z] > 0}.

Definition 11.1. The min-entropy of a distributioX

. 1
Hyo(X) = min { log Py

g} = e =)

where minimum and maximum are taken oxeg Supp(X).

Note: throughout this worKpg is always taken to base

Definition 11.2. The Rényi entropy of a distributioN is

Hy(X) = —log 3 (Pr[X = a])* = —logE[Pr[X - ar]].

Lemma 11.3. The min-entropy and Rényi entropy of a distributiSrobey the following inequality:
Hoo(X) < Hp(X) < 2Hoo(X)
The left inequality is tight iffX is uniformly distributed on some sgt
Proof. Sincelog is a monotone increasing function, we have
Hy(X) = —logE[ Pr[X = z]]

> _Ingng?;((X) Pr[X =z] = Hy(X)

61
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and equality holds iffX is uniformly distributed oveSupp(X).
On the other hand, lety; = argmax, Pr[X = z]. We have

Hy(X) = —log (Y (Pr{X =2])?)

T

= —log ( 3 (Pr[X =] + (P[X = z))?)

TFT M

IN

—log ((Pr[X = xM])Q)

= —2log (Pr[X = l‘M]) = 2H(X)
O

A distribution which is uniformly distributed on some sgis called a flat distribution, and both its min-entropy
and its Rényi entropy areg |S|. These are maximal among distributions with supgort
Flat distributions combine to make the most general distributions:

Lemma 11.4. Every distribution over a finite set is a convex combination of a finite number of flat distributions. In
other words, ifX is a distribution thenX = " p;U(S;), whereS; C Supp(X),p; > 0and)_p; = 1.

Proof. The proof goes by induction ofsupp(X)|. If Supp(X) = {z} thenX = U(z). Otherwise, letz,,
argmin Pr[X = z], and letp,, = Pr[X = xz,,]. We haveX = p,,U(Supp(X)) + (1 — p;n)Y, whereSupp(Y)
Supp(X) sincex,, ¢ Supp(Y).

N I

If we combine a distributiod” with a flat distributionX, the joint distribution has min-entropy equalkb,, (Y) +
Hy(X):

Lemma 11.5. Suppos«X is a flat distribution, withH ., (X') = ¢, and letY” be another distribution. TheH,(X,Y") <
k iff for everyz € Supp(X), we haveH(YV|X =z) <k —c.

Proof. Suppose firstthall ., (X,Y) < k. If H(Y|X = z) > k — ¢ for somez € Supp(X), thenPr[Y = y|X =
x] < 2% for somey € Supp(Y). SinceX is flat, Pr[X = 2,V = y] < 2¢7%2~¢ = 2~* contradicting the promise
Hoo(X,Y) < k.
Next, suppose thall(Y|X = z) < k — cforall z € Supp(X). Then for ally € Supp(Y’), we have
Pr[Y = y|X = 2] > 2¢7F. SinceX is flat, Pr[Y" = y] > 2¢7%27¢ = 2%, Therefore Hoo (V) < k.
o

We complete this section with a technical lemma, showing how to divide a joint distribution according to condi-
tional min-entropy.

Definition 11.6. Two distributionsX and}” over the same sétare said to be-close if| Pr[X € P]-Pr[Y € P]| <€
for every subse C S. Alternatively, X andY aree-close if )" _|Pr[X = s] — Pr[Y = s]| < 2e. We leave the
reader to show that the two definitions are equivalent.

Lemma 11.7. Let X; and X> be two distributions. Givea> 0 anda, there exist distribution¥; andY> such that
e The joint distributiong X, X») and (Y7, Y>) are e-close;

e The joint distribution(Y7, Y3) is a convex combination of two other joint distributiofi§ , 3) and (Y1, V2),
both having min-entropy at lea&f.. (X1, X») — log %;
e Forall z € Supp(Y;) we haveH, (Y3|V; = ) > a;

e Forall z € Supp(Y;) we havel ., (Y»|Y; = z) < a;
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Proof. We begin by constructingi’;, Y2) and (Y7, Y2). We splitSupp(X;) according toH . (X,|X; = z):

X ={2: Ho(X2|X, = 2) > a},
X ={z: Ho(Xs|X, =1) < a}.

Now we can define

Pr[Y; = y1, Yo = yo] = Pr[X; = 21, Xo = 252 € X],
PI‘[E = yl;YZ = yz] = PI'[Xl = 1‘1,X2 = 1‘2|1’1 S X]
In other wordsY; gets only values itX, andY; is restricted taX.
If p=Pr[X; € X1, then the probability of each event (v, Y3) is multiplied by1/p, and the probability of each
eventin(Yy,Y5) is multiplied by1/(1 — p). Therefore, ife < p < 1 — e then the min-entropy oft;, Y3) and(Y7, Yz)
is reduced by at mosbg 1/¢. Since(X1, Xs) = p(¥1,Y3) + (1 — p)(¥3, Y>) we can takdY;, Y>) = (X1, Xs).

If, for examplep < ¢, (Y1,Y5) still has high enough min-entropy, and so we téke, ) = (Y1,Y3). This
distribution ise-close to( X, X>):

Z |PI‘[X1:J}1,X2:$2]—PI'[Y1 :xl,YgszH—l-
m1EX,m2

Z |PI‘[X1:J}1,X2:$2]—PI'[Y1 :xl,YQZxQHZ
216X ,x2

1
p+<——1> (1-p)=2p< 2e.
I—p

11.2 Conductors and lossless expanders

11.2.1 Conductors

Loosely speaking, a conductor is a function that transfers entropy from its inputs to its output. In other words, if the
input distributions have high min-entropy, then the output distribution will have high min-entropy.

Definition 11.8 (conductors). A function E: {0,1}" x {0,1}¢ — {0,1}™ is a (kmax, a, €)-conductor if for any
distribution X on {0, 1}" satisfyingH o (X) = k < kmax, the distributionE (X, Uy) is e-close to a distributiort”
whose min-entropy is at leakt+ a.

Remark:In this text we identify a distribution with a random variable sampled from it.

In other words E' gets two inputs: a distributioX with min-entropyk < knax, and the uniform distributio®’,
(with min-entropyd). The output is-close to a distribution with min-entropy at ledst- a.

The following definitions (definitions 3.4 to 3.7 from [CRSWO02]) are several special cases of conductors, which
we will later use.

Definition 11.9 (extracting conductors). A function E: {0,1}" x {0,1}" — {0,1}™ is an(e,a) extracting con-
ductor if for any0 < k < m — a, and anyk-sourceX over{0, 1}", the distributionE(X, Uy) is a(k + a, €)-source.

Note that ifE: {0,1}" x {0,1}" — {0,1}™ is an(e, a) extracting conductor, it is also &m — a, €) extractor.

Definition 11.10 (lossless conductors)A function E: {0, 1} x{0,1}" — {0,1}™ is an(kmax, €) lossless conductor
if for any 0 < k < kmax, and anyk-sourceX over{0,1}", the distribution® (X, Uy) is a(k + d, €)-source.

The next two definitions require that the prefix of the output is an extracting conductor:
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Definition 11.11 (buffer conductors). A pair of functions(E, C): {0,1}" x {0,1}* — {0,1}" x {0,1}" is an
(kmax, @, €) buffer conductor ifE is an(e, a) extracting conductor, an@, C) is an(kmax, €)-lossless conductor.

Definition 11.12 (permutation conductors). A pair of functions(E, C): {0,1}" x {0,1}* — {0,1}"™ x {0,1}’,
wheren + d = m + b is an (e, a) permutation conductor i is an (e, a) extracting conductor, anfE, C) is a
permutation ovef0,1}" .

11.2.2 Lossless expanders

Having defined conductors, we define lossless expanders and reveal the connection.

Definition 11.13. A d-regular bipartite graph is @max, €)-lossless expander if every setloK k... vertices on the
left side has at leagll — €)d - k neighbors.

That is, a lossless expander has almost the maximal expansion possibléfegualar graph, for small enough
subsets. An alternative view is that for every subset on the left side, most neighbors will be unique neighbors, i.e.
neighboring a single vertex of the set. Naturaklly,.x should be somewhat smaller tharyd for this to be possible,
wherem is the number of vertices on the right side.

Expanders, condensers and dispersers (which we don’t define here) can be viewed as special cases of conductors.
For example, a lossless conducEcan be viewed as 2f-regular bipartite graph with” vertices on the left side and
2™ vertices on the right side, where each seRbf< 2Fm=x vertices has at leagl — ¢)2*¥+¢ neighbors on the right
side. In other words, we get(@*==x, ¢)-lossless expander.

We can explicitly construct constant-degree lossless expanders which losslessly expand set® @¥/gizg,
whereM = 2™ is the number of right vertices, addl = 2¢ is the left degree.

Theorem 11.14.For anye > 0, there is an explicit family oD = (N/eM)¢-regular bipartite graphs which are

(O(eM/D),e)-lossless expanders, whelé is the number of vertices on the left sidd, < N is the number of

vertices on the right sidey = O(M) andc is a constant. Note that sind€ = O(M), the degree itself is bounded
by a constant depending only en

We will prove the theorem by constructing an explicit family(bfg %, log D, €)-conductors.

11.3 The Construction

The required lossless conductors will be constructed using a zigzag product. Let us recall the zigzag product for
expanders:

Definition 11.15 (The zigzag product of two regular bipartite graphs).Let H be ad-regular bipartite graph with
vertices on each side, and [@tbe ans-regular bipartite graph with vertices on each side.

The zigzag produadf @ H is ad?-regular bipartite graph witan vertices on each side, which we may conceive
asn copies ofH, one per each vertex ¢f. Pick a left verteXz, y) € [n] x [s]. The edges emanating frofa, y) are
labeled using labels frofa] x [d]. The edge labelefh, b) is determined as follows:

1. Take a left to right step in the local copy Hf (usea to choose an edge).
2. Take a left to right step off, that is between copies &f.
3. Take a left to right step in the new local copymf(useb to choose an edge).

We expand on the second step. Suppose after the first step wearg'atLetz’ € G be they’-th neighbor of,
and letz be thez-th neighbor of:’. Then the second step takes us framy’) to (2, 2).
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Figure 11.1: Zigzag product of bipartite graphs

11.3.1 The zigzag product for conductors

We now define the zigzag product for conductors, and show that composing conductors with carefully selected param-
eters, we get constant degree lossless expanders, as in theorem 11.14.

Recall that the zigzag theorem, proved in a previous lecture, show&'t@akl is an expander if botli and H
are such. Moreover, the degree®® H is related toH, while its size and expansion are related to h@tand H.
Unfortunately, whiledeg(G @ H) = deg®(H), the expansion off @ H is the minimum between the expansionfbf
and the expansion . That is, the expansion &f @ H is at most the square root dég(G @ H) (this can be seen
by considering a set consisting of a single copy)f This expansion is too low for lossless expanders, which require
expansion almost as big as the degree.

Recall also that in the proof of the zigzag theorem, of the two random steps (steps 1 and 3 in definition 11.15),
only one is "used" and contributes to the output entropy. That is, odit ohoices, onlyd are surely increasing the
entropy.

Here we try to avoid this loss of entropy by buffering the random choices made at each step, and then using a
lossless conductor, together with some fresh truly random bits, to condense the leftovers of entropy.

The name "conductor” suggests an analogy to electricity or water conductors. Another analogy to water is to think
of the lossless conductor construction as putting a bucket beneath each object, so that when we pour randomness
(water) into it, the leftovers (unused randomness, beyoné.the bound), are stored for later use.

In the zigzag product for conductors we make use of several objects. We remark that they can be explicitly
constructed using lemmas from [CRSWO02].

Let us then assume that we have in our hands the following objects:

1. (B1,Cy): {0,1}™ x {0,1}" — {0,1}™ x {0,1}", a permutation conductor that can be taken from lemma
4.4in [CRSWO02];

2. (Ey,Cy): {0,1}™ x {0,1}* — {0,1}** x {0, 1}", a buffer conductor;
3. E3: {0,1}"" x {0,1}"® — {0,1}™, a lossless conductor.

Both E> andE5 can be taken from lemma 4.13 in [CRSWO02].
We describe the zigzag product for conductors.
Setn = ny +no,d = dy +ds andm = m; + m3. Fora; € {0,1}n1, o € {0,1}n2, ro € {0,1}d2 and
rs € {0,1}%, define
E: {0,1}" x {0,1}* = {0,1}™
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by E(z122,7273) "2 133, where
* (y2,22) = (B, C2)(22,72)
* (y1,21) = (E1, C1)(21,92)
o y3 = E3(2122,73)

z1 andz, are buffers of £y, C1) and(E,, Cs).

Figure 2 shows an example of this construction.

Our notation in figure is that(y;, z;) are the output of E;, C;) on the inputyz;, r;) (except forEs which has
only one output). ASE;,C,) gets it's seed from{E-, Cs), we get that; = y», and sincel; gets it's input from
<E1, Cl> and(Ez, Cz), we get thates = 2725.

Recall that the zigzag product for bipartite grapi€?) H, usesH twice. In the new construction, the first use is
replaced withE,. This ensures that whery, has high min-entropy, is close to uniform, and is a good seed for.
The second use df is replaced withEs, which is a lossless conductor. The roleff is to transfer entropy lost in
E, andE; to the output.

| n | | d |

Figure 11.2: Entropy flow in a lossless conductor

11.3.2 A specific example of a lossless conductor

It will be constructive for the sake of explanation to look at a concrete example of the construction.
Seta = 10001log(L) andd = 2a. Then we have

o (Ey,C1): {0,117 x {0,1}"** = {0,1}"7%°* x {0,1}"**, an(n — 304, 6a, €) permutation conductor;
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o (Ey,Cy): {0,11% x {0,1}* — {0,1}"** x {0,1}*'", a(14a, 0, ¢)-buffer conductor;
o E3: {0,1}%° x {0,1}* = {0,1}'™ , a(15a, a, €) lossless conductor.

The result is
E:{0,1}" x {0,1}** — {0,1}"3*

which is a(n — 30a, 2a, 4¢)-lossless conductor.
Let us try and follow the entropy flow from the inp(it; z2, 7273) to the outputy; ys.
Letk = Ho (X1, X2), then we show that if we start with min-entropywe end up with min-entropy df + 2a.

Two main ideas for this example are emphasized:

1. The entropy is conserved B, , C1 ), (E», C2), becauséE;, C;) is a permutation conductor, afél», Cs) is
a buffer conductor. Therefore, we get

k+a=Hy(X1,X2,Re) = Hoo(X1,Y5,Zs) = Hoo (Y1, Z1, Zo)

2. We want to verify that enough entropy is transferred, ugingndEs, to Y;. We know thatH . (Y1, Z1, Z») =
k + a, and if we prove that (Y1) > k — 14a, thenH,(Z1, Z2|Y1) < 15a. In that caseEs, which is a
(15a, a, €)-conductor will conduct: bits of entropy fromR3 to Y;. That is, all the entropy of;, Z» will be
transferred to the outpdf, without any entropy loss, as we want.

To prove thatd (Y1) > k — 14a, we look at the two cases, which lemma 11.7 essentially shows that are sufficient to
prove the general case.

Case 1 Foralk; € Supp(X;), we haveH . (X2| X1 = z1) > 14a.

Inthis caseH (Y2| X1 = 1) = 14a, foranyz, € Supp(X;). Thereforey; can be used as a seed {ét;, C,)
foranyz; € Supp(X1). We know thatH . (X;) > k — 20a, and thereford?; conduct$a bits of entropy from

the seed intd;, and we get thal (Y1) > k — 14a.

Case 2 Foralk; € Supp(X;), we haveH . (X2| X1 = 1) < 14a.
Since Hy (X1, X2) = k, it follows that H..(X1) > k — 14a. Therefore, sincei, is a lossless extrac-
tor, Hoo(}/é|X1 = .’1,'1) > HOO(X2|X1 = :nl) for anyzr, € Supp(Xl) It follows thatHoo(Xl,Yg) >
H, (X, X2) = k. Since(E,,Ch) is a permutation, alsél (Y1, Z1) > k, and again we get thdf . (Y;) >
k — 14a.

To complete the example, for agy € Supp(Y7),
Hoo(Z17Z2|Y1 = yl) S Hoo(}/l,Zl,Zg) — Hoo(}/i) S (k‘ + (],) - (k — 14@) = 15a.

Therefore, the lossless extractBs transfersa bits of entropy fromR; to Y3, and we get thalH ., (Y3|Y: = y1) >
Hoo(Z1, Z5Y1 = y1) + a. Thisimplies thatH, (Y1,Y3) > k + 2a, as needed.
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Chapter 12

Cayley graph expanders

Notes taken by Eyal Rozenman

Summary: We describe ideas leading to an elementary construction of Cayley graphs which are ex-
panders with relatively small degree.

A set of element$ in a groupH is agenerating seif every element of, € H can be written ag = s;-s2...- s,
with s; € S.

Definition 12.1. The Cayley graphC(H, S) of a groupH and a generating sét is a graph whose vertices are the
elements of, and whereg, h) is an edge ify - s = h for somes € S.

This generally defines a directed graph. If the set of generétmsymmetric i.e. s € S iff s=! € S, then(g, h)
is an edge iff(h, g) is, and we have an undirected graph. Itis a regular graph of dégjree

Example 12.2.
e The additive cyclic grou’y = Z /dZ with generator$ = {+1, —1} is the cycle oni vertices.

e The additive group of the vector spad8, )¢ over the field with two elements is generated by the standard basis
vectorse; = (1,0,...,0),es,...,eq. The Cayley graph is the discrete cubed-gegular graph.

Consider the following construction, resulting in the graph depicted in figure 12.1. The degree of the discrete cube
is equal to the number of vertices in the d-cycle, so we can form a zigzag product of the two. Let’s look at the simpler
replacement product. In this product we replace every verté¥of! by a cloud ofd vertices representing;. On
each cloud we preserve the edges of the origifalWe also connect each vertex in the cloud to one ofitheighbors
of the cloud inFy. For example, let's connect vertéx, h) to (v + ey, h). Like the zigzag construction, this product
is an expander if the original two graphs are expanders.

We started with two Cayley graphs and created a third graph by a graph-theoretic construction. Is the resulting
graph also a Cayley graph of some group? The answer is yes. Iggthiglirect producof C; andF{. To define this
product we shall need (alas) some more definitions:

Definition 12.3. An actionof a groupB on a groupA is a group homomorphisgh: B — Aut(A). In other words,
each element € B corresponds to an automorphigmof A, and we demand thak, .., = s, P, -

Definition 12.4. Suppose a group acts on a groupl. Thesemidirect productl x B is a group whose elements are
pairs(a, b) wherea € A andb € B. We define

(a1,b1) : (a2,b2) = (a1 '¢b1 (G2),b1 : 52)-
Example 12.5.

e The direct product of two groupd x B is a special case of a semidirect product wheyds the identity
automorphism ofd for all b € B. In this cas€aq,b1) - (az,b2) = (a1 - as, by - ba).

69



70 CHAPTER 12. CAYLEY GRAPH EXPANDERS

Figure 12.1:A Cayley graph of5 x C3

e We have an action af; on F': the element € C; cyclically permutes the coordinates Bf by h places. We
can thus defingy x Cj.

It turns out that under certain conditions there is a close relation between the semidirect product of groups and the
replacement product of their Cayley graphs. Suppose a gBoagts on a groupi. Theorbit of an element € A
under the action oB is the set{¢;,(a)|b € B}. For example, the orbit af € F¢ under the action of; is the set of
all cyclic shifts ofv

Claim 12.6. Suppose we have two groupsB with sets of generatorS4, Sg, such thatB| = |S4|. Further, suppose
that B acts onA in such a way thatS4 is the orbit of one of the elementse S4. ThenS := (1,Sp) U {(z,1)}
generatesA x B, andC(A x B, S) is a replacement product 6f(A, S4) andC(B, Si).

Proof. To see thats indeed generate$ x B notice that the elemen{$ 4,1) U (1, Sg) generate it. Now observe that
(1,b) - (x,1)-(1,071) = (¢p(x), 1), so we can indeed generate all(6f,, 1) starting with(x, 1), so(1, Sg)U{(x,1)}

is generating. Look af'(A x B, S). It consists of clouds of the elementsBf with the graph o’ (B, Sg) on them,
since(a,b) - (1,s,) = (a,b- sp). Between clouds we have edges likgd) - (z,1) = (a - ¢»(x),d). So the cloud of
the element is indeed connected by one edge to each of the clouds of the neighlagrstbie graphC' (A, S4), and
this is a replacement product. O

Exercise 12.7.Under the assumptions of the claim, we can also describe the zigzag product of two Cayley graphs as
a Cayley graph ont x B. Which generating set do we need?

Example 12.8.Look at F§ andC’; with the generators used above. In the Cayley grapfjok Cs with generators
as in the claim, the neighbors of the cloudwof (1,0,0) € F3 are:

(’U,O) ) (6070) = (’U + 6070)
(v,1)-(e9,0) = (v+e,l)
(1),2) ) (6070) = (’U + 6272)

And this is indeed a replacement product.

Recall that a replacement product of two expander graphs is again an expander. So we can try to make an expander
graph which is also a Cayley graph using the semidirect product. As a starter, we look for generdtg@rthtdmake
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it an expander. Since this is an abelian group, then for every set of generators the eigenvectors of the graph are the
Fourier basis - which are vectors of the tyfigz) = (—1)<"¥~. For the standard basts, . . . e, the eigenvalues are

S fyle) = 3 (D)< = d -2y

i

Where|y| is the Hamming weight of the binary vectgr So\; = d, A = d — 2. The second normalized eigenvalue

is (d — 2)/d and obviously, this is not a good expander. How do we find another set of generators which does give an
expander? Suppose we have aset {v;,vo,..., v, } of generators. Write aff| x d matrix A whose rows are the
elements ofS. To be an expander, we need to satisfy, for eyesy 0

D fulwi) =3 (=)< <]

i

for some constant < 1, independent ofl. This means that the vectorke (with 2 # 0) don’t have too much
difference between the numbers of 0’'s and 1's. In particular, each word must have a sufficient number of 1's. In short
- a good expander in this case gives an error correcting code. Using this intuition, one would try a 2dndaem

matrix A, which we know gives a good code, and indeed

Claim 12.9. For a random2d x d binary matrix, almost sureld - § < |Az| < 2d - (1 — 4) for all nonzerox (for
some constant > 0).

So we have an expander. With two "small" flaws: (a) It's not explicit, and (b) The degree is too large. To get rid
of flaw (b) we want not just an arbitrary set of generating vectors. We want the generators to be one orbit under the
action ofC,,, for example. Luckily, this also turns out to work

Claim 12.10. Pick two random vectors, v € Fi. Consider the matrixi generated by the orbits afandv under the
action ofCy, that is, the2d x d matrix of the cyclic shifts af andv. ThenA (a.s.) satisfie@d-§ < |Az| < 2d-(1—9)
for all nonzeroz (for some constant > 0).

So now, by using a semidirect product with we get an expander. The only difference is that we used two orbits,
instead of one as in claim 12.6.

Exercise 12.11.Claim 12.6 still holds whet¥ 4 is a union ofk orbits under the action d8. The Cayley graph of the
semidirect will havdSg| + k generators.

We can now use this idea to give a counterexample to

Conjecture 12.12. If a group sequencé’,, is an expander with one set of generatéts of bounded size then it is
also an expander with any other set of generafgysof bounded size.

Recall that we have two matrices that (with their inverses) ntike(F},) an expanderSL»(p) acts on the + 1
elements of the projective plane ovgy, so just as we did witld'; we can form the semidirect prodd@jJ+1 XS La(p).
It also turns out that there are two orbits$if, that makeFZP+1 an expander (random orbits will do). So the semidirect
product is an expander withgenerators, for every. On the other hand, we have another set of generators for which
FP*' is not an expander - the standard basis. This gives a set of 3 generatéksfos SL,(p) which is not an
expander (recall that the replacement product is never a better expander than its components).

Can we iterate the semidirect product construction to get a sequence of Cayley expander graphs the same way we
did with the zigzag product? For a grotgplet F,,[G] be the group ring oveF,. we would like to make the additive
group an expander using a constant number of orbits under the actionlbfve could do that in general, we could
define a sequence iteratively 6.1 = F,,[G;] x G;. This is indeed possible with a proper choiceptndG:

Theorem 12.13.5(C(G,, Sn)) < 1/2 andS,, < log\"/?|G,,| wherelog("/?) is the iterated logarithm.

This is the (almost) best construction of this type we can hope to get using this construction, since ttié,g=soup
a solvable group with solvability index at mas(asG,,_; is a normal subgroup with abelian quotiént | [G,,—1]).
In this case it is known that any generating set which ghes< 1/2 has cardinality at leagog(™ |G, |

The property we need to malg [G] an expander with a constant number of orbits is
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Theorem 12.14.Letd,,ds, ..., d; be the dimensions of the irreducible representation§off |{i : d; < r}| < ¢"
for all integerr and some constawt then there is a constant number of orbitsF{G] that make it an expander.

Miraculously, F,[G] inherits this property ifG is amonomial group, which means all its irreducible represen-
tations are induced from one-dimensional representations of subséts Blirthermore F,[G] is also monomial!
Even better, we can find the generating orbits explicitly. This gives a sequence of explicit Cayley graphs which are
expanders with an "almost constant” number of generators.



Chapter 13

On eigenvalues of random graphs and the
abundance of Ramanujan graphs

Notes taken by Danny Gutfreund

Summary: In this lecture we will be looking at eigenvalue distributions of random graphs and matrices.
Our starting point is the question: Is it true that almost every graph is Ramanujan?

First, we consider generalizations of this question that look at the distribution of eigenvalues in general
(and not only the second eigenvalue). We state “Wigner’s semicircle law”, and give a partial proof to a
version of this law (By McKay) for regular graphs.

In the second part of the lecture, we define lifts of graphs and extend the definition of Ramanujan graphs
to general (non-regular) graphs. We then state some conjectures and results regarding the abundance of
Ramanujan graphs (under this new definition).

13.1 The eigenvalue distribution of random matrices and regular graphs
Open problem 13.1. Is it true that almost every-regular graph is Ramanujan? More formally, is it true that,

lim Pr(A(Gp)<2Vd-1)=1

n—oo
WhereG,, is a randomi-regular graph of size.
Friedman gave a positive answer uptoeaatdditive factor,

Theorem 13.2. For everye > 0,
lim Pr(A:(Gp) <2vVd—-1+¢ =1

n—o0

WhereG,, is a randomd-regular graph of size.

Extending this question to random symmetric matrices, and the distribution of all the eigenvalues, we have the
following theorem by Wigner, known as “Wigner's semicircle law”.

Theorem 13.3. Let A,, be an x n symmetric matrix oveR, wherea;; (i # j) are sampled independently from a
distribution F', anda;; from a distributionG'.

LetA (4,) > - - > M. (A,,) be the eigenvalues of,,.

Define the empiric distribution,

Wae) = 110 M40 < 2}
Let,
W(z) = lim W, (2zo/n)

n—o0
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wheres? = var(F) = var(G).
If it holds thatVk, [ |z|*dF, [ |z|*dG < oo, thenW (z) is continuous with densit¢v1 — z?2 if |z| < 1, and O
otherwise.

Going back to eigenvalues of adjacency matriceg-cégular graphs, we have the following version of Wigner’s
semicircle law, proven by McKay.

Theorem 13.4. Let G,, be an infinite sequence dfregular graphs, such that, for ak > 3, Ci.(G,) = o(|Gx|),
whereC}(G),) is the number of length cycles inG,,.
Define,

1

F(Gp,z) = Gl

{i: Xi(Gn) <z}

Then for every,

e d\/4(d — 1) — 22
F(z) = lim F(Gn,x):/ ( 2_)2 = dz
n—oo —2v/d—1 27r(d Z)

The idea of the proof is that under the assumption that there are very few short cycles, the neighborhood of almost
every node looks like a tree. So we can count the number of cycle-free paths from a node to itself. We state this
formally in the following lemma.

Lemma 13.5. Let G be ad-regular graph, and lety be a node such that there are no cycles inritseighborhood.
Then the number of paths of lengtlthat start and end i is O if » is odd, and ifr = 2s it is,

b(r) = Z (285_ j) %L'_jdf(d — 1)

Jj=1

Proof. Clearly, if ther-neighborhood ofr does not contain any cycles, then every lenggiath that starts and ends in
v is cycle-free, and hencemust be even.

Letr = 2s. Every length- path that starts and endsqn defines a sequencé,= dg,d1 - -- 6, = 0. Whered;
is the distance from after we didi steps on the path. Clearly, for every; > 0, and|d; — d;—1| = 1. We would
like to count the number of such sequences in which exaatiyt of d, - - - 4, are 0. This is a simple generalization of
Catalan numbers and the answer is,

25— 7
()55

We know that a path that defines such a sequence visitgactly j times. Each time it leaves it has exactlyd
possibilities for the next step. This gives the tetin In steps that go away from i.e. whend;; — J; = 1, we have

d — 1 different nodes that we can continue too (we cannot backtrack to the previous node). and for steps that go toward
v we have no choice because we have to go back on the same edge that we used before. §hefestaps of each

type, altogether we hav@ — 1)*~/ possibilities for such steps. O

If Cr(Gr) = o(|G,]) (foreveryk > 3), then for every constant almost every node has cycle-fre@eighborhood.
Let P,.(G,,) be the number of simple paths of lengtfrom a node to itself ir7,,. Then from Lemma 13.5 we conclude
that,

P.(Gr)

n

lim

n—o0

=(r)
Therefore, the functio’(z) must satisfy[ z"dF = ¢ (r), for everyr. In order to finish the proof of the theorem

we need some inverse transformation, that calculBtes out of its moments. This is achieved using the Chebyshev
polynomials, but we do not include the details in this lecture note.

13.2 Random lifts and general Ramanujan graphs

We start by defining the notion of coverings and lifts.
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Definition 13.6. Let G and H be two graphs. We say that a functign V(H) — V(G) is a covering, if for every
v € V(H), the restriction off to the set of neighbors af, 'z (v), is one to one and onfog (f(v)).
If a covering function fromH to GG exists, we say thatl lifts G.

Example 13.7. The zig-zag product aff and H (whereH is the smaller of the two) liftg12.

Remark 13.8. If G is connected then every covering function @rhas a covering number, such that for every
v € V(Q), |f~1(v)] =n, andfor every € E(G), |f~(e)| = n.

Definition 13.9. Let f be a covering function of. For a nodes € V(G), we say thatf ~(v) is the fiber ofv.

Let G be a connected graph. We denotelhy(G) the set of graphs that are lifts 6f with covering number..
We would like to characterize the memberslgf(G). If H € L, (G) thenV(H) = V(G) x [n]. That s, for every
v € V(G), the nodegv,1),---,(v,n) in V(H) are the fiber ob. Next we define the edges &f, for every edge
(v,u) € E(G) we take some permutation € S,, and define the following edges H, ((v, i), (u,n(7))) (for every
i € [n]). Thus every choice of permutations defines a membér,if). This also gives us a way to sample random
elements from this set.

What can we say about the eigenvalues of lift€:¢f We know that the eigenvalues@fare also the eigenvalues
of its lifts. To see this, leb : V(G) — R be an eigenfunction aff with eigenvalue\, and letH coverG with the
mapf : V(H) — V(G), thenh o f is an eigenfunction off with the same eigenvalue. ThusHf lifts G, we can
talk about itsold eigenvalues, i.e. those that were inherited fri@rand itsneweigenvalues, which are the rest of the
eigenvalues.

Definition 13.10. The universal covering space of a grapgls a graph that lifts all the lifts of7.
Example 13.11.The infinited-regular tree is the universal covering space of everggular graph.

Grienberg and Lubotzky gave the following definition which extends the definition of Ramanujan graphs to general
(non-regular) graphs.

Definition 13.12. We say that a grapfi is Ramanujan if the absolute value of every eigenvalu@ ekcept), is at
most the spectral radidsof the universal covering space Gf

Conjecture 13.13. For every graphs7, if we lift it high enough then almost surely we will get a Ramanujan graph.

Lubotzky and Nagnibeda falsified this conjecture by constructing an infinitdtréeat covers infinite number of
finite graphs such that none of them is Ramanujan.

Friedman showed that the construction of Lubotzky and Nagnibeda, in fact, constructs a singl&gtaph
is covered by all the graphs th@t covers and has large second eigenvalue (i.e. larger than the spectral radius of
T). Since all the other graphs inherit the eigenvalue&/df none of them can be Ramanujan. He then rephrased
Conjecture 13.13 as follows,

Conjecture 13.14. For every graphG, if we lift it high enough to a grapl#Z, then thenew eigenvalues of will
almost surely be at most the spectral radius of the universal coveriafy of

To support his conjecture, Friedman proved the following theorem.

Theorem 13.15. Let G be a graph with a largest eigenvalug, and letp be the spectral radius of its universal
covering space. Then in almost every (high enough) lift ofvery new eigenvalyesatisfies,

1< v/ Aop +o(1)
This is a generalization of the following result by Broder and Shamir.
Theorem 13.16.For almost everyi-regular graph, the second eigenvalue is at n(d(sdi%).

To see that Theorem 13.15 generalizes 13.16, note thatregular graphs), = d andp = V/d.

1We refer the reader to lecture 5. There we defined the speettuts) of the adjacency matrix of an infinite tr& The spectral radius is the
maximal (absolute) value in(Ar).
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Chapter 14

Some Eigenvalue Theorems

Notes taken by Yonatan Bilu

Summary: The last lecture in the course surveys several bounds on eigenvalues of symmetric matrices,
and in particular those of graphs. Throughout this summary, the eigenvalues of a graph refer to the
eigenvalues of its adjacency matrix, and are denotethby Ay > ... > A,,.

The class ended in a picnic, where juicy watermelon slices were served on Harry Potter plates, along side
Harry Potter napkins, to students wearing silly Harry Potter paper hats.

Theorem 14.1. For everyd ande there is ac = ¢(¢, d), such that ifG is a d-regular graph onn vertices, then the
number of its eigenvalues with absolute value greater thdd — 1 — € is at leastcn.

Proof. See “Elementary Number Theory, Group Theory and Ramanujan Graphs”, by G. Davidoff, P. Sarnak and A.
Vallete. The proof makes use of the notoridlebyshev Polynomials. O

Theorem 14.2. (Furedi & Komlas '81) : Let P, be a random distribution oft with expectation, and variancer?,
and P, a random distribution ofiR with expectation and variancer? as well. Assume further that both distributions
are bounded. Le#l be a real,n x n symmetric matrix, with off-diagonal entries chosen i.i.d. accordingtoand
diagonal entries chosen i.i.d. according 8. Then with probability tending td asn tends to infinity the following
holds:

1. max;>s |Ai| < 20m + O(n3 logn)
2 M ~N((n-Dp+v+ %2,20'2)1

Proof. The proof is derived by looking at moments of increasing order. An alternative approach, by Kahn and Sze-
meredi, relies on the Rayleigh quotient to understand the behavior of random matrices. O

Theorem 14.3. (Broder & Shamir '87): For almost alld-regular graphs\; = O(d%).

Proof. Let G be a randon2d-regular graph om vertices, generated by choosidgandom permutations;, ..., 74,
and defining an edg@, 7;(v)) for everyv € [n] andi € [d]. Let P be the transition matrix of the Markov chain
defined by the graph, i.e. it's adjacency matrix divided2dy Let u; > p2 > ... > u, be its eigenvalues, and
p = max{|ua|, |ptn|}. Sinceu; = 1, and for anyk, {u¥17_, are the eigenvalues @t*, we havep®* < tr(P?*) — 1,
and therefore:

E(p) < (E(p**))% < (E(tr(P?*)) — 1)7F, (14.1)

where the inequality on the left follows from Jansen’s inequality.
Let v be a vertex of7. A path in the graph that starts atis uniquely defined be a worfl over the alphabet
{7y, 7%, ...,rd,wgl} (these permutations label the edges of the path). Let us generate the graph by going along a

IN(u, 0%) refers to the Normal Distribution with expectatiprand variancer?.

77



78 CHAPTER 14. SOME EIGENVALUE THEOREMS

random path, and choosiag(u) uniformly among the currently allowed values. In other words, say we are currently
at a vertex:. We choose uniformly at randoine [d] ande € {—1,1}. If 7{(u) is already defined, we move to that
vertex. We call this a “forced move”. Otherwise, we choa$éu) uniformly at random among the values not yet
taken byr¢. We call this a “free move”.

Definered(S) to be the reduction of, that is, what remains of if we repeatedly remove all two consecutive
letters in it of the formr;, 7, "

Since we want to boung(P?*), we would like to bound the probability thatinduces a path that starts and ends
in v. We divide this event into three:

1. red(S) is the identity.
2. The path defined by has exactly one (simple) loop.
3. The path defined by has at least two loops.

We bound each of these in the following three lemmas:
Lemma 14.4. Let S be a word of lengtlk generated as above, then:

Prlred(S) = 0] < (%)k

Proof. The idea is to count closed paths in the infiriteregular tree, using Catalan numbers. O

Lemma 14.5. Let S’ be a word of lengti2k generated as above, and I8t= red(S’). Denotes = |S|, and assume
s > 1, then:

-1

Pr[S start at 1, has exactly one loop, and endsjr<l— + O(i)
n

Proof. Assume w.l.o.g. tha$ is a loop (otherwise, we argue for the loop, which is even shorter4jyaand denote
the vertices it visitd = vy, ...,vs; = 1. Since all these vertices are distinct, the choice made atis free. Therefore,
the probability that at this point vertéxis chosenis— = 1 + O(-%) O

n2

Lemma 14.6. Let S be a word of lengti2k generated as above,then:

k4
Pr[S has two loopk< O(ﬁ)

Proof. For S to have two loops there have to be two “free choices” where we choose a vertex that was already visited
before. The probability of choosing a vertex that was already chosen before, is aifmdﬁne probability of this

happening at two specific steps, is at mﬁgt. By the union bound, the probability that it happens at some two steps
is O(£). O

Note that Lemma 14.5 is not exactly what we need, since it deals with a reduced word. Broder and Shamir also

bound the probability that whell§| = 2k, |red(S)| = s. With this, they show that the probability of the second case
is bounded by: + O(£2;). This, together with the other two bounds yields:

nd*

1 K2k k*

Pr[S starts at v and returns t¢ ¥ (%)’c +o+ O(W + ﬁ) (14.2)

Finally, we need to choose the that minimizes the RHS, so we roughly negg)* = sz ork ~ (2 —

o(1))logg/, n. Putting this back in 14.1, we gél(p) < (%)%(1 + o(1)). The proof is finished by showing that
p is concentrated around its mean by using martingales. O

Note: Currently, the best result is by Joel Friedman, who showed /2d — 1 + ¢, for all e > 0.
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Note: The random model of Broder & Shamir, that of choosﬁ@mdom matchings, does not induce a
uniform distribution ond-regular graphs. However, this modeldgntiguoudo the uniform model, that

is, any graph property that occurs in one of them w.h.p., occurs w.h.p. in the other as well. For details see
chapter 9 in “Random Graphs” by S. Janson, T. Luczak and A.fRKCI

Another source of reference is Nick Wormald'’s survey, “Models of random regular graphs”, which appears
in “Surveys in Combinatorics”, 1999, J.D. Lamb and D.A. Preece, eds.
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