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2.3 Prékopa-Leindler inequality . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Basic properties of log-concave functions . . . . . . . . . . . . . . . . . . 23

2.5 Further properties of log-concave functions . . . . . . . . . . . . . . . . 25

2.6 Ball’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Concentration 30

3.1 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Gaussian space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Discrete cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Log-concave measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Khinchin–Kahane’s inequality . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Isotropic position 42

4.1 Isotropic constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Why “slicing”? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Inradius and outerradius . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Isotropic log-concave measures . . . . . . . . . . . . . . . . . . . . . . . 48

5 John’s position 50

5.1 Maximal volume ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Almost Euclidean sections 59

6.1 Dvoretzky’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Critical dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Example: `np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2



6.4 Proportional dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Distribution of mass 72

7.1 Large deviations bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Small ball estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Brascamp-Lieb inequalities 80

8.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Geometric applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.3 Applications in analysis: Young’s inequalities . . . . . . . . . . . . . . . 87

8.4 Applications in information theory: entropy power . . . . . . . . . . . . 89

8.5 Entropy and slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 Coverings with translates 95

9.1 A general upper bound for covering numbers . . . . . . . . . . . . . . . 96

9.2 An asymptotic upper bound for covering densities . . . . . . . . . . . . 97

9.3 An upper bound for the volume of the difference body . . . . . . . . . . 100

A Appendix: Haar measure 102

B Appendix: Spherical caps 104

C Appendix: Stirling’s Formula for Γ 106

3



1 Convexity

We shall work in the n-dimensional Euclidean space Rn equipped with the standard

scalar product which is defined for two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)

in Rn as 〈x, y〉 = x1y1 + . . . + xnyn, which gives rise to the standard Euclidean

norm |x| =
√
〈x, x〉=

√
x2

1 + . . .+ x2
n. The (closed) Euclidean unit ball is of course

defined as Bn2 = {x ∈ Rn, |x| ≤ 1} and its boundary is the (Euclidean) unit sphere

Sn−1 = ∂Bn2 = {x ∈ Rn, |x| = 1}.

1.1 Sets

For two nonempty subsets A and B of Rn, their Minkowski sum is defined as A +

B = {a + b, a ∈ A, b ∈ B}. The dilation of A by a real number t is defined as

tA = {ta, a ∈ A}. In particular, −A = {−a, a ∈ A} and A is called symmetric if

−A = A, that is a point a belongs to A if and only if its symmetric image −a belongs

to A. For example, the Minkowski sum of a singleton {v} and a set A, abbreviated

as A + v is the translate of A by v. The Minkowski sum of the set A and the ball

of radius r is the r-enlargement of A, that is the set of points x whose distance to A,

dist(x,A) = inf{|x− a|, a ∈ A} is at most r, Ar = A+ rBn2 = {x ∈ Rn,dist(x,A) ≤ r}.
The Minkowski sum of two segments [a, b] and [c, d] is the parallelogram at a+c spanned

by b − a and d − c, that is [a, b] + [c, d] = a + c + {s(b − a) + t(d − c), s, t ∈ [0, 1]} (a

segment joining two points a and b is of course the set {λa+ (1− λ)b, λ ∈ [0, 1]}.
A subset A of Rn is called convex if along with every two points in the set, the

set contains the segment joining them: for every a, b ∈ A and λ ∈ [0, 1], we have

λa + (1 − λ)b ∈ A. In other words, A is convex if for every λ ∈ [0, 1], the Minkowski

sum λA + (1 − λ)A is a subset of A. By induction, A is convex if and only if, for any

points a1, . . . , ak in A and weights λ1, . . . , λk ≥ 0,
∑
λi = 1, the convex combination

λ1a1 + . . . + λkak belongs to A. For example, subspaces as well as affine subspaces

are convex; particularly, hyperplanes, that is co-dimension one affine subspaces, H =

{x ∈ Rn,〈x, v〉= t}, v ∈ Rn, t ∈ R. Moreover, half-spaces H− = {x ∈ Rn,〈x, v〉≤ t},
H+ = {x ∈ Rn,〈x, v〉≤ t} are convex.

Straight from definition, intersections of convex sets are convex, thus it makes sense

to define the smallest convex set containing a given set A ⊂ Rn as

convA =
⋂
{B, B ⊃ A, B convex},

called its convex hull. For instance, the convex hull of the four points (±1,±1) on the

plane is the square [−1, 1]2. Plainly,

convA =

{
k∑
i=1

λiai, k ≥ 1, ai ∈ A, λi ≥ 0,
∑

λi = 1

}
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(convA is contained in any convex set containing A, particularly the set on the right is

such a set; conversely, if B ⊃ A for a convex set B, then the set on the right is contained

in B, thus it is contained in the intersection of all such sets, which is convA). This can

be compared with the notion of the affine hull,

aff(A) =

{
k∑
i=1

λiai, k ≥ 1, ai ∈ A, λi ∈ R,
∑

λi = 1

}
,

which is the smallest affine subspace containing A.

The intersection of finitely many closed half-spaces is called a polyhedral set, or

simply a polyhedron. The convex hull of finitely many points is called a polytope.

In particular, the convex hull of r+ 1 affine independent points is called an r-simplex.

A basic theorem in combinatorial geometry due to Carathéodory asserts that points

from convex hulls can in fact be expresses as convex combinations of only dimension

plus one many points.

1.1 Theorem (Carathéodory). Let A be a subset of Rn and let x belong to convA.

Then

x = λ1a1 + . . .+ λn+1an+1

for some points a1, . . . , an+1 from A and nonnegative weights λ1, . . . , λn+1 adding up

to 1.

Proof. For y ∈ Rn and t ∈ R by [ yt ] we mean the vector in Rn+1 whose last component

is t and the first n are given by y. Since x belongs to convA, we can write for some

a1, . . . , ak from A and nonnegative λ1, . . . , λk,

[ x1 ] =

k∑
i=1

λi [ ai1 ]

(the last equation taking care of
∑
λi = 1). Let k be the smallest possible for which

this is possible. We can assume that the λi used for that are positive. We want to show

that k ≤ n+1. If not, k > n+2, the vectors [ a11 ] , . . . , [ ak1 ] are not linearly independent,

thus there are reals µ1, . . . , µk, not all zero, such that

[ 0
0 ] =

k∑
i=1

µi [ ai1 ] .

Therefore, for every t ∈ R we get

[ x1 ] =

k∑
i=1

(λi + tµi) [ ai1 ] .

Notice that the weights λi + tµi are all positive for t = 0, so they all remain positive

for small t and there is a choice for t so that (at least) one of the weights becomes zero

with the rest remaining positive. This contradicts the minimality of k.
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In particular, Carathéodory theorem says that convex sets can be covered with n-

simplices. On the other hand, convex sets are nothing but intersections of half-spaces.

To show this, we start with the fact that closed convex sets admit unique closest points,

which lies at the heart of convexity.

1.2 Theorem. For a closed convex set K in Rn and a point x outside K, there is a

unique closest point to x in K (closest in the Euclidean metric).

Proof. The existence of a closest point follows since K is closed (if d = dist(x,K), then

d = dist(x,K ∩ RBn2 ) for a large R > 0, say R = |x| + d + 1, consequently there is a

sequence of points yn in K ∩ RBn2 such that |x − yn| → d and by compactness we can

assume that yn converges to, say y which is in K ∩RBn2 and |x− y| = d).

The uniqueness of a closest point follows since K is convex and Euclidean balls are

round (strictly convex): if y and y′ are two different points in K which are closest to x,

then the point y+y′

2 is in K and is closer to x because by the parallelogram identity,∣∣∣∣y − x2
+
y′ − x

2

∣∣∣∣2 +

∣∣∣∣y − x2
− y′ − x

2

∣∣∣∣2 = 2

(∣∣∣∣y − x2

∣∣∣∣2 +

∣∣∣∣y′ − x2

∣∣∣∣2
)

= dist(x,K)2

and note that the second term on the left
∣∣∣y−x2 −

y′−x
2

∣∣∣2 =
∣∣∣y−y′2

∣∣∣2 is positive, which

gives that the first term
∣∣∣y−x2 + y′−x

2

∣∣∣2 =
∣∣∣y+y′

2 − x
∣∣∣2 has to be smaller than dist(x,K)2,

that is y+y′

2 is closer to x.

This theorem allows to easily construct separating hyperplanes. A hyperplane H =

{x ∈ Rn, 〈x, v〉= t} is called a supporting hyperplane for a closed convex set K in

Rn, if K lies entirely on one side of H, that is K is in either H− = {x ∈ Rn, 〈x, v〉≤ t}
or H+ = {x ∈ Rn, 〈x, v〉 ≥ t}, and H touches K, that is H ∩ K 6= ∅. Then the set

H ∩K of contact points is called a support set.

1.3 Theorem. Let K be a closed and convex set in Rn, let x be a point outside K.

Then x can be separated from K by a supporting hyperplane.

Proof. Let y be the closest point in K to x and let H be the hyperplane which passes

through y and is perpendicular to y−x. We claim that K lies entirely on the other side

of H than x (for if not, there is a closer point in K to x than y – picture).

1.4 Corollary. Every closed convex set in Rn is an intersection of closed half-spaces.

Proof. For every x /∈ K, let Hx be the supporting separating hyperplane constrcuted

in Theorem 1.3 and say K ⊂ H+
x . Then clearly, K ⊂

⋂
x∈K H

+
x , but also Kc ⊂⋃

x∈K(H+
x )c because x ∈ (H+

x )c, which together proves that K =
⋂
x∈K H

+
x .

By virtue of Theorem 1.3, it makes sense to define the closest point function, a

sort of projection: for a closed convex set K, let PK : Rn → Rn be defined by

PK(x) = the closest point in K to x.
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We remark that this function is 1-Lipschitz.

1.5 Theorem. Let K be a closed and convex set in Rn. Then the closest point function

PK is 1-Lipschitz (with respect to the Euclidean metric).

Proof. Suppose that x is not in K. By the construction of separating hyperplanes in the

proof of Theorem 1.3, for every z ∈ K, we have 〈z − PK(x), x− PK(x)〉 ≤ 0. Putting

z = y, we get 〈PK(y)− PK(x), x− PK(x)〉 ≤ 0. If x is in K, PK(x) = x and this

inequality is trivially true. Thus in any case,

〈PK(y)− PK(x), x− PK(x)〉≤ 0.

Changing the roles of x and y gives

〈PK(x)− PK(y), y − PK(y)〉≤ 0.

Adding the last two inequalities gives

〈PK(y)− PK(x), x− PK(x)− y + PK(y)〉≤ 0,

hence, rearranging and using the Cauchy-Schwarz inequality yields

|PK(y)− PK(x)|2 ≤〈PK(y)− PK(x), y − x〉≤ |PK(y)− PK(x)| · |y − x|,

which finishes the proof.

It is sometimes convenient to take a supporting hyperplane of a convex set at its

boundary point. The existence of such hyperplanes follows from a limiting argument.

1.6 Theorem. Let K be a closed and convex set in Rn and let x be a point on its

boundary. There is a supporting hyperplane for K at x.

Proof. Since x is on the boundary of K, there is a sequence of points xn outside K

convergent to x. Let Hxn = {y ∈ Rn, 〈y − PK(xn), vn〉= 0} be the supporting hyper-

planes from Theorem 1.3 and, say K ⊂ H−xn = {y ∈ Rn, 〈y − PK(xn), vn〉≤ 0} contain

K. We can assume that the vectors vn are unit, so by compactness we can also assume

that that they converge to a unit vector v. Since PK is continuous (Theorem 1.5),

PK(xn) → PK(x). Let H = {y ∈ Rn, 〈y − x, v〉= 0}. This is a supporting hyperplane

at x because: of course x ∈ H and if y ∈ K, we know 〈y − PK(xn), vn〉 ≤ 0, so in the

limit 〈y − x, v〉≤ 0, which proves that K ⊂ H−.

Recall that a support set for K is the set K ∩ H for some supporting hyperplane.

For polytopes support sets are called faces. They can be 0 to n − 1 dimensional. The

n− 1 dimensional faces are called facets and 1 dimensional faces are called edges. For

polytopes, faces are again polytopes, which we describe in the following theorem.
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1.7 Theorem. Let P = conv{xi}Ni=1 be a polytope in Rn and let F be its face. Then

F = conv{{xi} ∩ F}. In particular, P has finitely many faces.

Proof. Let H be the supporting hyperplane associated with the face F , F = P ∩H, say

H = {x ∈ Rn, 〈x, v〉= t} and H− = {x ∈ Rn, 〈x, v〉≤ t} ⊃ P . Let k be the index such

that x1, . . . , xk ∈ F and xk+1, . . . , xN /∈ F (after relabeling the xi if needed). Take a

positive number δ such that 〈xl, v〉≤ t− δ for all l ≥ k + 1. If we take x ∈ F , we write

it as x =
∑N
i=1 λixi, but then

t =〈x, v〉=
N∑
i=1

λi〈xi, v〉≤
k∑
i=1

λit+

N∑
i=k+1

λi(t− δ) = t− δ
N∑

i=k+1

λi

and the right hand side is strictly less than t unless the λi are zero for all i > k (or the

sum is in fact empty). In any case, this shows that F = conv{{xi}ki=1}.

1.8 Corollary. Polytopes are polyhedra.

Proof. For each of finitely many faces of a polytope P , take its supporting hyperplane

and take the intersection of the closed half-spaces containing P those hyperplanes de-

termine. The resulting set is P (check this!).

The generalisation of vertices of polytopes are extremal points of general convex sets.

For a closed convex set K in Rn, a point x in K is called extremal if x = λy+ (1−λ)z

with y, z ∈ K and λ ∈ (0, 1) implies that y = z = x (in other words, x is not a nontrivial

convex combination of other points from K). The set of the extremal points of K is

denoted ext(K). A point x is called exposed if {x} = K ∩ H for some supporting

hyperplane H. The set of the exposed points of K is denoted expo(K). Note that

1) expo(K) ⊂ ext(K) (exposed points are extremal: say x is exposed and lies on the

hyperplane {〈y, v〉= t}, so for every other point z in K we have 〈z, v〉< t).

2) Closed half-spaces have no extremal points.

3) expo(Bn2 ) = ext(Bn2 ) = Sn−1.

4) For a stadium shaped convex body expo(K) ( ext(K).

5) Compact convex sets have exposed points (let K be compact and convex, consider

a ball B which contains K and has the smallest possible radius; then a tangency

point y ∈ ∂K ∩ ∂B is exposed because the supporting hyperplane for B at y is also

supporting for K).

6) For a polytope, the exposed and extremal points are the same and they are the

vertices of the polytope.

Minkowski’s theorem (a finite dimensional version of the Krein-Milman theorem)

generalises the last remark to arbitrary compact convex sets.
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1.9 Theorem (Minkowski). Let K be a compact convex set in Rn. If A is a subset of

K, then K = convA if and only if A ⊃ ext(K). In particular, K = conv(ext(K)).

Proof. If K = convA and there was a point x which is extremal but not in A, then

A ⊂ K \ {x}, but since x is extremal, K \ {x} is still convex, so K = convA ⊂ K \ {x},
a contradiction.

For the converse, it is enough to show that K = conv ext(K). We do it by induction

on the dimension. For n = 1, K is a closed (bounded) interval and everything is clear.

Let n ≥ 2 and take x ∈ K \ ext(K). Our goal is to write x as a convex combination of

extremal points. We can write x as a convex combination of two boundary points, λx1 +

(1−λ)x2 for x1, x2 ∈ ∂K, λ ∈ (0, 1) (x as not being extremal is in an interval contained

in K, so extend the interval until it hits the boundary). Take a supporting hyperplane

H at x1 and consider K ∩H. By induction, x1 can be written as a convex combination

of extremal points of K∩H which are also extremal for K (check!). Similarly for x2.

We can now complement Corollary 1.8 and show that bounded polyhedra are poly-

topes.

1.10 Corollary. Bounded polyhedra are polytopes.

Proof. Let P be a bounded polyhedron. In view of Theorem 1.9, we only want to

show that P has finitely many extremal points. Let P = ∩mi=1H
+
i for some closed half-

spaces H+
i determined by hyperplanes Hi. Let x ∈ ext(P ), say x ∈ H1 ∩ . . . ∩Hk and

x /∈ Hk+1, . . . ,Hm. Consider the following subset of P ,

H1 ∩ . . . ∩Hk ∩ (H+
k+1 \Hk+1) ∩ . . . (H+

m \Hm).

It contains x, it is relatively open, that is it is open in its affine span (as an intersection

of open sets). Since x is extremal, this set cannot contain any neighbourhood of x, so

this set has to be the singleton {x}. Since there are only 2m sets of such form, there are

only at most 2m extremal points of P .

We also establish the following analogue of Minkowski’s theorem for exposed points.

1.11 Theorem. For a compact convex set K in Rn, we have K = conv expo(K).

Proof. Let L = conv expo(K), which is clearly in K. If there was a point which is in K

but not in L, separate it from L by a ball, say x′ +R′Bn2 (first do it with a hyperplane

and then choose a ball with a big enough radius). Let R be minimal such that x′+RBn2

contains K. A tangency point y of the ball x′ +RBn2 and K is exposed, but it is not in

L.

We finish by providing a reverse statement to the obvious one expo(K) ⊂ ext(K),

mentioned earlier.
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1.12 Theorem (Straszewicz). For a compact convex set K in Rn, we have

ext(K) ⊂ expo(K).

Proof. Let A = expo(K). Since for a bounded set S, convS = convS (check!), we have

convA = conv expo(K) = conv expo(K) = K,

(the last equality follows from Theorem 1.11). By Theorem 1.9, A ⊃ ext(K).

1.2 Functions

A function f : Rn → (−∞,+∞] is called convex if its epigraph,

epi(f) = {(x, y) ∈ Rn × R, f(x) ≤ y}

is a convex subset of Rn+1. Equivalently, for every x, y ∈ Rn and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The domain of a convex function is the set where it is finite,

dom(f) = {x ∈ Rn, f(x) <∞}.

Note that it is a convex set.

Convex functions are important in optimisation because local minima are global.

Note that the pointwise supremum of a family of convex functions is convex (taking

supremum corresponds to intersecting epigraphs). If the epigraph of a convex function

is closed, we can view it as an intersection of closed half-spaces. This gives a sometimes

useful representation of a convex function as a supremum of affine functions.

1.13 Theorem. Let f : Rn → (−∞,+∞] be convex with closed epigraph. Then f =

supα hα for some affine functions hα.

By induction, f is convex if and only if for every x1, . . . , xm ∈ Rn and nonnegative

λ1, . . . , λm adding up to one,

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi).

Jensen’s inequality generalises this statement to arbitrary probability measures. A short

proof is available thanks to the previous theorem.

1.14 Theorem (Jensen’s inequality). For a probability measure µ on Rn and a convex

function f : Rn → (−∞,+∞], we have

f

(∫
Rn
xdµ(x)

)
≤
∫
Rn
f(x)dµ(x).

Equivalently, for a random vector X in Rn,

f(EX) ≤ Ef(X).
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Proof. Suppose the epigraph of f is closed (if it is not, an extra argument is needed,

but we omit this). With the aid of Theorem 1.13, we have

Ef(X) = E sup
α
hα(X) ≥ sup

α
Ehα(X) = sup

α
hα(EX) = f(EX),

where the last but one equality holds since the hα are affine.

Convex functions have good regularity properties. We summarise them in the next

two theorems and omit their proofs.

1.15 Theorem. Let f : Rn → (−∞,+∞] be a convex function. Then f is continuous

in the interior of its domain and Lipschitz continuous on any compact subset of that

interior.

1.16 Theorem. Let A be an open convex subset of Rn and let f : A→ R. Then

(i) for n = 1: if f is differentiable, then f is convex if and only if f ′ is nondecreasing;

if f is twice differentiable, then f is convex if and only if f ′′ is nonnegative

(ii) for n ≥ 1: if f is differentiable, then f is convex if and only if for every x, y in A,

we have

f(y) ≥ f(x) +〈∇f(x), y − x〉;

if f is twice differentiable, then f is convex if and only if for every x in A, Hess f (x)

is positive semi-definite.

1.3 Sets and functions

For a nonempty convex set K in Rn we define its support function hK : Rn →
(−∞,+∞] as

hK(u) = sup
x∈K
〈x, u〉.

Note several properties

1) hK is positively homogeneous, that is hK(λu) = λhK(u) for every u ∈ Rn and λ ≥ 0

2) hK is convex (as a supremum of linear functions)

3) hK is finite if and only if K is bounded

4) for a unit vector u, hK(u) + hK(−u) is the width of K in direction u

5) hK = hK

6) if K ⊂ L, then hK ≤ hL

7) if hK ≤ hL, then K ⊂ L (if there was a point x0 in K but not in L, then separate it

from L by a hyperplane, say H = {x, 〈x, v〉= t} such that H− = {x,〈x, v〉≤ t} ⊃ L

and then hL(v) = supx∈L〈x, v〉≤ t <〈x0, v〉≤ supx∈K〈x, v〉= hK(v))

11



8) in particular, closed convex sets are uniquely determined by their support functions

9) hλK = λhK , for λ ≥ 0

10) h−K(u) = hK(−u) for every vector u

11) 0 ∈ K if and only if hK ≥ 0 (this is because {0} ⊂ K if and only if 0 = h{0} ≤ hK)

12) hK+L = hK + hL

13) hconvKi = supi hKi

For example, for a polytope P = conv{xi}Ni=1, hP (x) = maxi≤N 〈xi, x〉 (polytopes’

support functions are piecewise linear, which is in fact an “if and only if” statement).

Support functions can be characterised by simple conditions: every positively homo-

geneous, convex function on Rn with closed epigraph is the support function of a unique

closed convex set in Rn. We leave it without proof.

We finish by explaining the name of the support function of a convex set K in Rn.

For u ∈ Rn consider the hyperplane Hu = {x ∈ Rn, 〈x, u〉 = hK(u)}. Then Hu ∩ K
are the points in K attaining the supremum in the definition of hK(u). If this set is

nonempty, then it is a supporting set and Hu is a supporting hyperplane.

1.4 Norms

A function p : Rn → [0,+∞) is a norm if it satisfies

1. p(λx) = |λ|p(x), x ∈ Rn, λ ∈ R (homogeneity)

2. p(x+ y) ≤ p(x) + p(y), x, y ∈ Rn (the triangle inequality)

3. p(x) = 0 if and only if x = 0.

If p satisfies only 1) and 2), it is called a semi-norm. Note also that these two conditions

together imply that p is convex.

Let p be a norm on Rn. Define its unit ball K = {x ∈ Rn, p(x) ≤ 1}. Then

K is closed (because p is continuous on Rn). Moreover, K is symmetric by 1), K is

convex by the convexity of p and K is bounded thanks to 3). The continuity of p at 0

implies that K contains a small centred Euclidean ball, in particular it has a nonempty

interior. In other words, closed unit balls (with respect to norms on Rn) are symmetric

compact convex sets with nonempty interior. This and the next theorem saying that

the converse is true as well motive the following definition: a convex body in Rn is a

compact convex set with nonempty interior.

1.17 Theorem. Every symmetric convex body in Rn is the closed unit ball of a norm

on Rn.
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Proof. Given a symmetric convex body K in Rn we define its (so-called) Minkowski

functional

pK(x) = inf{t > 0, x ∈ tK}.

It is clear that {pK(x) ≤ 1} = K, so it remains to check that pK is a norm (exercise).

An identical argument argument gives a characterisation of unit balls of semi-norms.

1.18 Theorem. Every symmetric closed convex set in Rn with nonempty interior is

the closed unit ball of a semi-norm on Rn.

Let us discuss basic examples and properties.

1) for p > 0 and x = (x1, . . . , xn) ∈ Rn define

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

When p ≥ 1, this is a norm. Its unit ball is denoted as Bnp ,

Bnp = {x ∈ Rn, ‖x‖p ≤ 1}.

The space `np is sometimes referred to as the pair (Rn, ‖ · ‖p), that is Rn equipped

with the p-norm. In particular, Bn1 is the n-dimensional cross-polytope (in R3: a

symmetric piramid), that is

Bn1 = conv{−e1, e1, . . . ,−en, en},

where as usual ej is the standard basis vector whose jth component is one and the

rest are zero. Moreover,

Bn∞ = [−1, 1]n

is the symmetric cube. Of course, ‖ · ‖2 is just the Euclidean norm and Bn2 is the

(closed) centred Euclidean unit ball in Rn.

2) For 1 ≤ p ≤ q we have Bnp ⊂ Bnq and ‖x‖p ≥ ‖x‖q, x ∈ Rn.

3) In general, for two symmetric convex bodies K and L in Rn,

K ⊂ L if and only if ‖x‖K ≥ ‖x‖L, x ∈ Rn

where ‖ · ‖K is the Minkowski functional of K (the norm associated with K whose

unit ball is K).

4) ‖x‖λK = 1
λ‖x‖K , x ∈ Rn, λ > 0.

5) For instance, ‖x‖ = |x1| is a semi-norm whose unit ball is the strip {x ∈ Rn, |x1| ≤
1}. More generally, given v ∈ Rn, p(x) = |〈x, v〉|, x ∈ Rn defines a semi-norm whose

unit ball is the strip {x ∈ Rn, −1 ≤〈x, v〉≤ 1}.
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6) Let K be a symmetric convex body. Then by the symmetry of K, the support

functional of K, hK is even, so homogeneous, hK(λx) = |λ|hK(x), x ∈ Rn, λ ∈ R.

Recall that hK is convex, so combined with its homogeneity, hK satisfies the triangle

inequality. Since K is bounded, hK is finite. Finally, since K has nonempty interior,

hK(x) = 0 if and only if x = 0. Therefore, hK is a norm. Its unit ball will be

described in the next section.

7) A norm ‖ · ‖ on Rn is called 1-unconditional or simply unconditional in a basis

(ui)
n
i=1 if ‖

∑
εixiui‖ = ‖

∑
xiui‖ for any choice of signs εi ∈ {−1, 1} and any

xi ∈ R. If, in addition, ‖
∑
xσ(i)ui‖ = ‖

∑
xiui‖ for any permutation σ of {1, . . . , n}

and any xi ∈ R, the norm is called 1-symmetric. For instance, the `p norms are

1-symmetric in the standard basis (ei)
n
i=1. For convex bodies, we simplify these

notions restricting it just to the standard basis. Thus, a convex body K in Rn is

called unconditional if (ε1x1, . . . , εnxn) ∈ K whenever (x1, . . . , xn) ∈ K for any

choice of signs εi ∈ {−1, 1} and any x ∈ Rn. If, in addition, (xσ(1), . . . , xσ(n)) ∈ K
whenever (x1, . . . , xn) ∈ K for any permutation σ of {1, . . . , n} and any x ∈ K, then

K is called 1-symmetric.

1.5 Duality

For a convex set K in Rn containing the origin, we define its polar by

K◦ = {y ∈ Rn, sup
x∈K
〈x, y〉≤ 1},

sometimes referred to as the dual of K. Equivalently,

K◦ = {y ∈ Rn, hK(y) ≤ 1}

= {y ∈ Rn, ∀x ∈ K 〈x, y〉≤}

=
⋂
x∈K
{y ∈ Rn, 〈x, y〉≤ 1},

that is K◦ is the closed unit ball of the support functional of K (since 0 ∈ K, hK ≥ 0

and recall that hK is positively homogeneous and convex, so it is a semi-norm, possibly

taking infinite values). The last inequality expresses K◦ as the intersection of closed

half-spaces, so K◦ is closed and convex.

Let us have a look at some simple examples and properties.

1) (Bnp )◦ = Bnq , for p, q ∈ [1,∞] such that 1
p + 1

q = 1 (this follows from Hölder’s

inequality).

2) The polar of a segment is a strip, for instance ([−1, 1]× {0}n−1)◦ = [−1, 1]× Rn−1,

and vice versa.

3) (conv(K ∪ L))◦ = K◦ ∩ L◦

14



4) If K ⊂ L, then K◦ ⊃ L◦.

5) (K◦)◦ ⊃ K, with equality for closed convex sets containing the origin.

6) For A ∈ GLn, (AK)◦ = (AT )−1K◦.

7) If K is a symmetric convex body, then hK is a norm whose unit ball is K◦, so we

have hK = ‖ · ‖K◦ . Since (K◦)◦ = K, we get that the support functional of K◦ is

the norm given by K, hK◦ = ‖ · ‖K . Therefore,

‖x‖K = hK◦(x) = sup
y∈K◦

〈x, y〉,

which gives an expression for a norm as a supremum of linear functions. Finally, note

that this representation also implies a Cauchy-Schwarz type inequality: for y ∈ K◦,
we have 〈x, y〉≤ ‖x‖K , which by homogeneity extends to

〈x, y〉≤ ‖x‖K‖y‖K◦ , x, y ∈ Rn.

This notion of duality agrees with the one known from functional analysis: if a norm

‖ · ‖ has a unit ball K, then its dual norm ‖ · ‖′ (the operator norm on the space of

functionals) has the unit ball which is the polar of K◦.

1.6 Distances

For two convex bodies K and L in Rn, we define their Hausdorff distance by

δH(K,L) = max{max
x∈K

dist(x, L),max
x∈L

dist(x,K)}

= inf{δ > 0, K ⊂ L+ δBn2 and L ⊂ K + δBn2 }.

Since K ⊂ L+δBn2 if and only if hK ≤ hL+δ for all unit vectors, the Hausdorff distance

δH(K,L) is the smallest number δ such that hK ≤ hL + δ and hL ≤ hK + δ, that is

|hK − hL| ≤ δ, hence

δH(K,L) = sup
u∈Sn−1

|hK(u)− hL(u)|

(the Hausdorff distance is the supremum distance on the unit sphere for support func-

tions, which also shows that the Hausdorff distance is a metric on the convex bodies).

We also recall the Banach-Mazur distance for symmetric convex bodies

dBM (K,L) = inf{t > 0, ∃A ∈ GLn AK ⊂ L ⊂ tAK},

which is linearly invariant: dBM (SK, TL) = dBM (K,L), for any S, T ∈ GLn.

Similarly, the Banach-Mazur distance between two normed spaces X = (Rn, ‖ · ‖K)

and Y = (Rn, ‖ · ‖L) can be defined as

dBM (X,Y ) = inf{t > 0, ∃A ∈ GLn ∀x ‖x‖K ≤ ‖Ax‖L ≤ t‖x‖K}.
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Note that log dBM satisfies the triangle inequality. A part of asymptotic convex geom-

etry is concerned with questions about (Banach-Mazur) distances to various spaces, for

instance what is the dependence on n of dBM (`n1 , `
n
2 )? For any n-dimensional normed

space X, how large can dBM (X, `n2 ) be? How about dBM (X, `n∞)?

1.7 Volume

The n-dimensional volume (Lebesgue measure) of a measurable set A in Rn is denoted

by |A| = voln(A). For a linear map T : Rn → Rn, |TA| = |detT ||A|. In particular,

|tA| = tn|A|, t ≥ 0. If A is in a lower dimensional affine subspace, say a k-dimensional H,

then the k-dimensional volume of A (on H) is denoted by volk(A) = volH(A), sometimes

also by |A|, if it does not lead to any confusion.

Let σ be the normalised (surface) measure on Sn−1. It is a probability measure

which can be defined using Lebesgue measure on Rn by

σ(A) =
|cone(A)|
|Bn2 |

,

for A ⊂ Sn−1, where cone(A) = {ta, a ∈ A, t ∈ [0, 1]}. It is a unique rotationally

invariant probability measure on the sphere, that is σ(UA) = σ(A), for any orthogonal

map U ∈ O(n) and measurable subset A of the sphere.

Let us recall integration in polar coordinates. For an integrable function f : Rn → R

we have ∫
Rn
f(x)dx =

∫
Sn−1

∫ ∞
0

f(rθ)rn−1|Sn−1|dσ(θ)dr

because (informally) the volume element dx becomes |rSn−1|dσ(θ)dr and the (n −
1-dimensional) surface measure of the sphere scales like |rSn−1| = rn−1|Sn−1|. In

particular, if we apply this to the indicator function 1K of a star-shaped set K in Rn

with the radial function ρK(θ) = sup{r ≥ 0, rθ ∈ K}, θ ∈ Sn−1, we obtain

|K| =
∫
Rn

1K =

∫
Sn−1

∫ ∞
0

1K(rθ)rn−1|Sn−1|dσ(θ)dr

=

∫
Sn−1

(∫ ρK(θ)

0

rn−1dr

)
|Sn−1|dσ(θ)

=
|Sn−1|
n

∫
Sn−1

ρK(θ)ndσ(θ).

If K is a symmetric convex body, then its radial function can be expressed using its

norm,

ρK(θ) = sup{r ≥ 0, rθ ∈ K} =
1

inf{ 1
r , rθ ∈ K}

=
1

inf{r, rθ ∈ K}
=

1

‖θ‖K
,

thus

|K| = |S
n−1|
n

∫
Sn−1

‖θ‖−nK dσ(θ).
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In particular, for K = Bn2 , we get |Bn2 | =
|Sn−1|
n .

For instance, how to compute the volume of the Bnp balls? The above formula is not

useful. We can do another trick. Using the homogeneity of volume, for a symmetric

convex body K in Rn and p > 0, we have∫
Rn
e−‖x‖

p
Kdx =

∫
Rn

(∫ ∞
‖x‖pK

e−tdt

)
dx =

∫
Rn

∫ ∞
0

1{t>‖x‖pK}e
−tdtdx

=

∫ ∞
0

e−t
∫
Rn

1{x∈Rn, ‖x‖K<t1/p}dxdt = |K|
∫ ∞

0

tn/pe−tdt

= |K|Γ
(

1 +
n

p

)
.

In particular,

Γ(1 + n/p)|Bnp | =
∫
Rn
e−‖x‖

p
pdx =

∫
Rn

n∏
i=1

e−|xi|
p

dx =

(∫
R
e−|t|

p

dt

)n
=

(
2Γ

(
1 +

1

p

))n
.

Setting p = 2 gives us a formula for the volume of the unit Euclidean ball

|Bn2 | = 2n
Γ(3/2)n

Γ(1 + n/2)
=

√
π
n

Γ(1 + n/2)
. (1.1)

By Stirling’s formula,

|Bn2 | = (1 + o(1))
1√
2πn

√
2πe

n

n

.

This gives us that the radius rn of the Euclidean ball with volume one,

rn =
1√
π

Γ(1 + n/2)1/n = (1 + o(1))

√
n

2πe
.

We also get |Bn∞| = 2n and |Bn1 | = 2n

n! . Using our previous formula for volume, we

have

2n = |Bn∞| = |Bn2 |
∫
Sn−1

ρBn∞(θ)ndσ(θ)

which means that the radial function of the cube on average equals

ρBn∞ ≈ 2|Bn2 |−1/n ≈
√

2n

πe
.

Similarly,

ρBn1 ≈
2

n!1/n
|Bn2 |−1/n ≈

√
2e

πn
.

1.8 Ellipsoids

An ellipsoid E in Rn is a set of the form

E =

{
x ∈ Rn,

n∑
i=1

〈x, vi〉2

α2
i

≤ 1

}
,
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where {vi}ni=1 is an orthonormal basis of Rn and the αi are positive numbers. Since〈
x, (
∑
α−2
i viv

T
i )x

〉
=
∑
α−2
i 〈x, vi〉2, we can also write

E = {x ∈ Rn, 〈x,Ax〉≤ 1} ,

where A =
∑
α−2
i viv

T
i = V diag(α−2

i )V T with V being the orthogonal matrix whose

columns are the vectors vi. Note that any positive semi-definite matrix is of this form.

The vectors vi are the directions of the axes of E and the αi are the lengths of the

axes. Let T be the linear map on Rn sending vi to αivi. Then, E = TBn2 . In particular,

we find that the volume is

|E| = (α1 · . . . · αn)|Bn2 | = (detA)−1/2|Bn2 |. (1.2)

The norm ‖ · ‖E can be expressed explicitly because ‖x‖E = inf{t > 0, x ∈ tE} =

inf{t > 0, 〈x,Ax〉≤ t2}, so

‖x‖E =
√
〈x,Ax〉=

√∑ 〈x, vi〉2
α2
i

. (1.3)

Any linear image ABn2 of the unit Euclidean ball is an ellipsoid (possibly lower-

dimensional). To see that, consider the singular value decomposition A = V DU with

D being a nonnegative diagonal matrix and U, V orthogonal. Of course UBn2 = Bn2 , so

ABn2 = V DBn2 . DBn2 is an ellipsoid with the axes along the standard basis and the

lengths given the diagonal elements of D, so V DBn2 is the ellipsoid with the axes along

the columns of V of such lengths.
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2 Log-concavity

2.1 Brunn-Minkowski inequality

Brunn discovered the following concavity property of the volume: for a convex set K in

Rn the function f(t) = voln−1(K ∩ (tθ+ θ⊥), t ∈ R, of the volumes of the sections of K

along a direction θ ∈ Sn−1 is 1
n−1 concave on its support, that is f(t)

1
n−1 is concave on

its support. Minkowski turned this into a powerful tool.

2.1 Theorem (Brunn-Minkowski inequality). For nonempty compact sets A, B in Rn

we have

|A+B|1/n ≥ |A|1/n + |B|1/n.

There are many different proofs. We shall deduce the Brunn-Minkowski inequality

from a more general result for functions, the functional inequality due to Prékopa and

Leindler. Before that, let us point out several remarks.

2.2 Remark. Thanks to the inner regularity of Lebesgue measure (that is, the Lebesgue

measure of a measurable set is the supremum of the Lebesgue measure of its compact

subsets), the Brunn-Minkowski inequality extends to arbitrary nonempty measurable

sets A and B such that A + B is also measurable: for such sets, let K and L be

compact subsets of A and B respectively and then A + B contains K + L, so |A +

B|1/n ≥ |K + L|1/n ≥ |K|1/n + |L|1/n and taking the supremum over K and L yields

|A+B|1/n ≥ |A|1/n + |B|1/n.

2.3 Remark. The proof of the Brunn-Minkowski inequality in dimension one is easy.

Let A and B be two nonempty compact subsets of R. Thanks to the translation invari-

ance of Lebesgue measure, we can assume that the furthest most right point of A and

the furthest left point of B are at the origin. Then the Minkowski sum A+B contains

A∪B whose measure is |A|+ |B| because A∩B = {0}, so |A+B| ≥ |A∪B| = |A|+ |B|.

2.4 Remark. To obtain Brunn’s concavity principle for the volume of sections of a

convex set K in Rn along a direction θ ∈ Sn−1, define Kt = {x ∈ θ⊥, x + tθ ∈ K},
t ∈ R and let f(t) be the n − 1-dimensional volume (on θ⊥) of Kt. Take λ ∈ [0, 1], s, t

in the support of f and set A = λKs and B = (1 − λ)Kt. By convexity, Kλs+(1−λ)t

contains λKs + (1− λ)Kt = A+B, thus

f(λs+ (1− λ)t)
1

n−1 ≥ |A+B|
1

n−1 ≥ |A|
1

n−1 + |B|
1

n−1 = λ|Ks|
1

n−1 + (1− λ)|Kt|
1

n−1

= λf(s)
1

n−1 + (1− λ)f(t)
1

n−1 ,

which shows that f is 1
n−1 -concave on its support.

2.5 Remark. The Brunn-Minkowski inequality gives an effortless proof of the isoperi-

metric inequality.
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2.6 Theorem. For a compact set A in Rn take a Euclidean ball B with the same volume

as A. Then for every ε > 0,

|A+ εB| ≥ |B + εB|.

In particular, |∂A| ≥ |∂B|.

Proof. By the Brunn-Minkowski inequality and the scaling properties of volume,

|A+ εB|1/n ≥ |A|1/n + |εB|1/n = |B|1/n + ε|B|1/n = |(1 + ε)B|1/n = |B + εB|1/n.

Since, |∂A| = c lim infε→0+
|A+εB|−|A|

ε , where c is a scaling constant which depends only

on the volume of A, the second part follows.

2.7 Remark. By the AM-GM inequality and homogeneity, the Brunn-Minkowski in-

equality applied to λA and (1−λ)B gives |λA+(1−λ)B|1/n ≥ λ|A|1/n+(1−λ)|B|1/n ≥
|A|λ/n|B|(1−λ)/n, that is:

for compact sets A, B in Rn and λ ∈ [0, 1],

|λA+ (1− λ)B| ≥ |A|λ|B|1−λ. (2.1)

In fact, this dimension free statement is equivalent to the Brunn-Minkowski inequality:

apply it to the sets A/|A|1/n, B/|B|1/n and λ = |A|1/n
|A|1/n+|B|1/n to get

|A+B|1/n

|A|1/n + |B|1/n
=

∣∣∣∣ A+B

|A|1/n + |B|1/n

∣∣∣∣1/n =

∣∣∣∣λ A

|A|1/n
+ (1− λ)

B

|B|1/n

∣∣∣∣1/n
≥
∣∣∣∣ A

|A|1/n

∣∣∣∣λ/n ∣∣∣∣ B

|B|1/n

∣∣∣∣(1−λ)/n

= 1.

2.2 Log-concave measures

A Borel measure µ on Rn is called log-concave if for every Borel sets A, B in Rn and

λ ∈ [0, 1], we have

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

The dimension free version (2.1) of the Brunn-Minkowski inequality says that Lebesgue

measure is log-concave. Another crucial example of a log-concave measure is the uniform

measure on a convex body K in Rn, that is

µK(A) =
|A ∩K|
|K|

, A ⊂ Rn.

The reason being that thanks to the convexity of K, (λA + (1 − λ)B) ∩ K contains

λ(A ∩K) + (1− λ)(B ∩K), thus the log-concavity of Lebesgue measure gives

µK(λA+ (1− λ)B) =
1

|K|
|(λA+ (1− λ)B) ∩K|

≥ 1

|K|
|λ(A ∩K) + (1− λ)(B ∩K)|

≥ 1

|K|
|A ∩K|λ|B ∩K|1−λ = µK(A)λµK(B)1−λ.
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Note that the density of µK (with respect to Lebesgue measure), f(x) = 1
|K|1K(x),

plainly satisfies the pointwise inequality

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ, x, y ∈ Rn, λ ∈ [0, 1]. (2.2)

In other words, the function ψ : Rn → (−∞,+∞], ψ = − log f =

− log |K|, x ∈ K

+∞, x /∈ K
is convex.

We say that a function f : Rn → [0,+∞) is log-concave if it satisfies (2.2), that is

f = e−ψ for some convex function ψ : Rn → (−∞,+∞].

Summarising, for the two examples of log-concave measures we looked at: Lebesgue

measure as well as the uniform measure on a convex body, their densities are log-concave

functions. As we shall see in the next two sections, this is not accidental. First we

need to discuss the Prékopa-Leindler inequality and, incidentally, finish the proof of the

Brunn-Minkowski inequality.

2.3 Prékopa-Leindler inequality

2.8 Theorem (Prékopa-Leindler inequality). Let λ ∈ [0, 1]. For measurable functions

f, g, h : Rn → [0,+∞) such that

h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ, x, y ∈ Rn, (2.3)

we have ∫
Rn
h ≥

(∫
Rn
f

)λ(∫
Rn
g

)1−λ

. (2.4)

2.9 Remark. For compact sets A, B in Rn and λ ∈ [0, 1], consider f = 1A, g = 1B and

h = 1λA+(1−λ)B . Then clearly these functions satisfy the assumption of the Prékopa-

Leindler inequality, h(λx + (1 − λ)y) ≥ f(x)λg(y)1−λ for all x, y ∈ Rn. Indeed, if

the right hand side is 0, there is nothing to show. Otherwise, x ∈ A and y ∈ B, so

λx+ (1− λ)y ∈ λA+ (1− λ)B, so the left hand side is 1, equal to the right hand side.

Since
∫
f = |A|,

∫
g = |B| and

∫
h = |λA+(1−λ)B|, the Prékopa-Leinder inequality thus

implies (2.1), the dimension free version of the Brunn-Minkowski inequality (equivalent

to Theorem 2.1, see Remark 2.7).

Proof of Theorem 2.8. First we prove the theorem in dimension one, that is for n = 1

and then, by an inductive argument, we will obtain the theorem for every n.

Let f, g, h be nonnegative measurable functions on R satisfying (2.3). Without loss

of generality, we can assume that f and g are bounded (if not, consider fM = min{f,M}
and gM = min{g,M} which still satisfy the assumption and the conclusion will carry

over to f and g by the monotone convergence theorem). Moreover, we can assume that
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‖f‖∞ = ‖g‖∞ = 1 (otherwise, consider f/‖f‖∞, g/‖g‖∞ and h/(‖f‖λ∞‖g‖1−λ∞ )). Then,∫
R
f(x)dx =

∫
R

∫ f(x)

0

dtdx =

∫
R

∫ ‖f‖∞
0

1{f(x)>t}dtdx =

∫ 1

0

|{x ∈ R, f(x) > t}|dt

and similarly for g. Fix t ∈ (0, 1) and consider the sets A = {x ∈ R, f(x) > t} and

B = {x ∈ R, g(x) > t}. Note they are nonempty because ‖f‖∞ = 1 = ‖g‖∞. Note also

that by (2.3), we have λA + (1 − λ)B ⊂ {x ∈ R, h(x) > t}. By the Brunn-Minowski

inequality in dimension one proved in Remark 2.3,

λ|A|+ (1− λ)|B| = |λA|+ |(1− λ)B| ≤ |λA+ (1− λ)B| ≤ |{x ∈ R, h(x) > t}|

(see also Remark 2.2 to go about a possible lack of compactness of A and B)). Thus,

by the AM-GM inequality,(∫
R
f

)λ(∫
R
g

)1−λ

≤ λ
∫
R
f + (1− λ)

∫
R
g =

∫ 1

0

(λ|A|+ (1− λ)|B|)dt

≤
∫ 1

0

|{x ∈ R, h(x) > t}|dt

≤
∫ ∞

0

|{x ∈ R, h(x) > t}|dt =

∫
R
h,

which finishes the proof for n = 1.

Let n > 1 and suppose the theorem holds in any dimension less than n. For t ∈ R

define three functions on Rn−1 with parameter t being the restrictions of f , g and h:

ft(x
′) = f(t, x′), gt(x

′) = g(t, x′) and ht(x
′) = h(t, x′), x′ ∈ Rn−1.

Fix s, t ∈ R. From (2.3), for every x′, y′ ∈ Rn−1,

hλs+(1−λ)t(λx
′ + (1− λ)y′) ≥ fs(x′)λgt(y′)1−λ.

Thus, by the inductive assumption,∫
Rn−1

hλs+(1−λ)t ≥
(∫

Rn−1

fs

)λ(∫
Rn−1

gt

)λ
.

This however says that the three functions F,G and H on R defined as

F (t) =

∫
Rn−1

ft, G(t) =

∫
Rn−1

gt and H(t) =

∫
Rn−1

ht, t ∈ R

satisfy H(λs + (1 − λ)t) ≥ F (s)λG(t)1−λ for every s, t ∈ R. Therefore, by the n = 1

case of the theorem proved earlier,∫
R
H ≥

(∫
R
F

)λ(∫
R
G

)1−λ

,

which is exactly
∫
Rn h ≥

(∫
Rn f

)λ (∫
Rn g

)1−λ
, as needed.
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2.4 Basic properties of log-concave functions

Let us point out several important consequences of the Prékopa-Leindler inequality.

Firstly, log-concave functions form a class of functions closed with respect to taking

marginals and convolutions.

2.10 Corollary. If a function f : Rm×Rn → [0,+∞) is log-concave, then the function

h(x) =

∫
Rn
f(x, y)dy, x ∈ Rm

is also log-concave.

Proof. This follows directly from the Prékopa-Leindler inequality: to see that h(λx1 +

(1 − λ)x2) ≥ h(x1)λh(x2)1−λ, it suffices to consider three functions F (y) = f(x1, y),

G(y) = f(x2, y), H(y) = f(λx1 + (1− λ)x2, y), y ∈ Rn.

2.11 Corollary. If functions f, g : Rn → [0,+∞) are log-concave, then their convolution

f ? g is also log-concave.

Proof. Apply Corollary 2.10 to Rn×Rn 3 (x, y) 7→ f(y)g(x−y) which is log-concave.

Secondly, measures with log-concave densities are log-concave.

2.12 Corollary. If f : Rn → [0,+∞) is log-concave, then the Borel measure µ with

density f , defined for Borel subsets A in Rn by

µ(A) =

∫
A

f,

is log-concave.

Proof. Given two Borel sets A, B in Rn and λ ∈ [0, 1], apply the Prékopa-Leindler

inequality to the three functions f1A, f1B and f1λA+(1−λ)B to see that µ(λA + (1 −
λ)B) ≥ µ(A)λµ(B)1−λ.

2.13 Remark. The same argument shows that for a log-concave function f : Rn →
[0,+∞) which is supported on a lower-dimensional affine subspace H of Rn (f is zero

outside H), the measure µ on Rn defined by

µ(A) =

∫
A∩H

f(x)dvolH(x), A ⊂ Rn

is log-concave.

This says that absolutely continuous measures (with respect to Lebesgue measure

on a possibly lower dimensional affine subspace) whose densities are log-concave are

log-concave measures. In particular, uniform measures on convex sets are log-concave,

as we have already observed in the case of convex bodies. Note that this includes point

masses, a.k.a. Dirac delta measures. Moreover, Gaussian measures are log-concave.
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Another examples of log-concave measures are the products of exponential or Gamma

measures.

The converse to the above corollary is also true, which is a deep result of Borell (we

omit its proof).

2.14 Theorem (Borell). If a finite inner-regular measure (a finite measure approx-

imable from below by compact sets) µ on Rn is log-concave, then there is an affine

subspace H of Rn and a log-concave function f : Rn → [0,+∞) which is zero outside H

and such that

µ(A) =

∫
A∩H

f(x)dvolH(x).

In particular, the support of µ, that is the set {x ∈ Rn, µ(x+rBn2 ) > 0 for every r > 0}
is contained in H.

Together with Corollary 2.12, Borell’s theorem provides the characetrisation saying

that (finite) log-concave measures are absolutely continuous measures (on the affine span

of their support) with log-concave densities.

Let us recapitulate this discussion in the probabilistic language. A random vector

X in Rn is called log-concave if its distribution

µ(A) = P (X ∈ A) , A ⊂ Rn,

is a log-concave measure. As we saw, by the Prékopa-Leindler and Borell’s theorems,

a random vector is log-concave if and only if it is supported on some affine subspace,

continuous on it, with a log-concave density.

For instance, a random vector X in R3 uniformly distributed on the square [−1, 1]2×
{0} is log-concave. Even though X is not continuous (as a vector in R3), it has a density

on R2 × {0} which is uniform, 1
41[−1,1]2 .

2.15 Corollary. If X is a log-concave random vector in Rn, then its marginals are

also log-concave. Even more, for any affine map A : Rn → Rm, the vector AX is also

log-concave.

Proof. For Borel subsets U , V of Rm and λ ∈ [0, 1], we have

P (AX ∈ λU + (1− λ)V ) = P
(
X ∈ A−1(λU + (1− λ)V )

)
= P

(
X ∈ λA−1U + (1− λ)A−1V

)
≥ P

(
X ∈ A−1U

)λ P (X ∈ A−1V
)1−λ

= P (AX ∈ U)
λ P (AX ∈ V )

1−λ
.

2.16 Corollary. If X is a log-concave random vector in Rn and Y is an independent

log-concave random vector in Rm, then (X,Y ) is a log-concave random vector in Rn+m.
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Proof. By Borell’s theorem, X has a density f on an affine subspace F of Rn and Y

has a density g on an affine subspace H of Rm. Then (X,Y ) has the product density

f(x)g(y) on {(x, y), x ∈ F, y ∈ H} = F × H, which is a log-concave function. By the

Prékopa-Leindler inequality (as in Remark 2.13), (X,Y ) is log-concave.

2.17 Corollary. If X and Y are independent log-concave random vectors on Rn, then

X + Y is also log-concave.

Proof. Since X + Y is the linear image of (X,Y ), the assertion follows directly from

Corollaries 2.15 and 2.16.

We finish with a useful fact for log-concave random variables (random vectors in R)

saying that their PDFs and tails are also log-concave.

2.18 Corollary. If X is a log-concave random variable, then the functions R 3 t 7→
P (X ≤ t) and R 3 t 7→ P (X > t) are log-concave.

Proof. It follows immediately from the definition (note that {X ≤ t} = {X ∈ (−∞, t]}
and {X > t} = {X ∈ (t,∞)}).

2.5 Further properties of log-concave functions

Log-concave functions decay at least exponentially fast; particularly, they have good

integrability properties, for instance, their moments are finite (we skip the standard

proof).

2.19 Theorem. Let f : Rn → [0,+∞) be an integrable log-concave function. Then there

are positive constants A,α such that f(x) ≤ Ae−α|x|, for all x ∈ Rn. In particular, for

every p > −n,
∫
Rn |x|

pf(x)dx <∞.

Centred log-concave functions have their value at the origin comparable to the max-

imum.

2.20 Theorem. Let f : Rn → [0,+∞) be a centred log-concave function, that is∫
Rn xf(x)dx = 0. Then,

f(0) ≤ ‖f‖∞ ≤ enf(0).

Proof. Without loss of generality we can assume that
∫
f = 1. By log-concavity, for

every x, y ∈ Rn and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ.

First integrating over y and then taking the supremum over x yields

(1− λ)−n ≥ ‖f‖λ∞
∫
f1−λ.
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We have equality at λ = 0, thus differentiating at λ = 0 gives

n ≥ log ‖f‖∞ −
∫
f log f.

Rearranging and using Jensen’s inequality (for the concave function log f and probability

measure with density f) finishes the proof

log
(
e−n‖f‖∞

)
≤
∫
f(x) log f(x)dx ≤ log f

(∫
xf(x)dx

)
= log f(0).

The next result is the monotonicity of some sort of moments of log-concave functions

on the half-line. This gives the optimal moment comparison for log-concave random

variables, which can be viewed as a reverse Hölder-type inequality.

2.21 Theorem. Let f : [0,∞)→ [0,∞) be a log-concave function with f(0) > 0. Then

the function

(0,∞) 3 p 7→
(

1

Γ(p)

1

f(0)

∫ ∞
0

f(x)xp−1dx

)1/p

is nonincreasing.

2.22 Corollary. For a nonnegative random variable X with a log-concave tail,

(EXq)
1/q ≤ Γ(q + 1)1/q

Γ(p+ 1)1/p
(EXq)

1/q
, 0 < p < q.

Equality holds for X ∼ Exp(1) (one-sided standard exponential).

Proof. Apply Theorem 2.21 to f(x) = P (X ≥ x) and note that f(0) = 1 as well as(
1

Γ(p+ 1)
EXp

)1/p

=

(
1

Γ(p)p

1

f(0)

∫ ∞
0

pxp−1f(x)dx

)1/p

.

In view of Corollary 2.18, the above moment comparison holds for nonnegative log-

concave random variables and consequently, for symmetric random variables.

Proof of Theorem 2.21. Without loss of generality, f(0) = 1. Fix 0 < p < q. The idea

is to compare any log-concave function f to the extremal one (exponential) with the

same value at 0. Take α > 0 such that∫ ∞
0

e−αxxp−1dx =

∫ ∞
0

f(x)xp−1dx.

By looking at the logs, f(x) and e−αx intersect at some point, say x = c and f(x)−e−αx

is nonnegative on [0, c] and nonpositive on [c,∞). Thus,∫ ∞
0

f(x)xq−1 −
∫ ∞

0

e−αxxq−1 =

∫ ∞
0

xq−p
[
f(x)− e−αx

]
xp−1.
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On [0, c], xq−p ≤ cq−p and f(x)− e−αx is nonnegative, whereas on [c,∞), xq−p ≥ cq−p

but f(x)− e−αx is nonpositive, thus∫ ∞
0

f(x)xq−1 −
∫ ∞

0

e−αxxq−1

≤ cq−p
(∫ c

0

[
f(x)− e−αx

]
xp−1 +

∫ ∞
c

[
f(x)− e−αx

]
xp−1

)
= 0.

Computing the integrals with e−αx finishes the proof.

There is also a useful reverse monotonicity result which holds for all functions.

2.23 Theorem. Let f : [0,∞)→ [0,∞) be a measurable function. Then the function

(0,∞) 3 p 7→
(

p

‖f‖∞

∫ ∞
0

f(x)xp−1dx

)1/p

is nondecreasing.

Proof. Without loss of generality, ‖f‖∞ = 1. Let F (p) =
(
p
∫∞

0
f(x)xp−1dx

)1/p
. Fix

0 < p < q. For any a > 0,

F (q)q

q
=

∫ ∞
0

f(x)xq−1 =

∫ a

0

f(x)xq−1 +

∫ ∞
a

xq−pf(x)xp−1

≥
∫ a

0

f(x)xq−1 + aq−p
∫ ∞
a

f(x)xp−1

=

∫ a

0

f(x)xq−1 + aq−p
∫ ∞

0

f(x)xp−1 − aq−p
∫ a

0

f(x)xp−1

= aq−p
F (p)p

p
+ aq−1

∫ a

0

f(x)

[(x
a

)q−1

−
(x
a

)p−1
]
.

Note that (x/a)q−1 − (x/a)p−1 ≤ 0 on [0, a]. Thus bounding in the last integral f by 1

(its supremum) yields

F (q)q

q
≥ aq−pF (p)p

p
+ aq

(
1

q
− 1

p

)
.

Putting a = F (p) finishes the proof.

We finish with a corollary saying that the variance of a log-concave function is compa-

rable to the square of the reciprocal of its value at its centre (which is in turn comparable

to its maximal value, as we already know).

2.24 Corollary. Let f : R→ [0,∞) be a centred log-concave function. Then,

1

12e2
≤
f(0)2

∫
x2f(x)dx(∫
f
)3 ≤ 2.

Proof. The right inequality follows from Theorem 2.21. The left inequality follows from

Theorems 2.20 and 2.23.
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2.6 Ball’s inequality

We conclude this chapter with a functional inequality due to Ball, which is of a similar

flavour as the Prékopa-Leindler inequality. It is also a good excuse to present a different

proof-technique of such inequalities, based on transport of mass. This technique can

be applied to give another proof of the one dimensional case of the Prékopa-Leindler

inequality.

2.25 Theorem (Ball’s inequality). Let p > 0 and λ ∈ [0, 1]. If three integrable functions

u, v, w : (0,+∞)→ [0,+∞) satisfy for all positive r, s,

w
(

(λr−1/p + (1− λ)s−1/p)−p
)
≥ u(r)

λr−1/p

λr−1/p+(1−λ)s−1/p v(s)
(1−λ)s−1/p

λr−1/p+(1−λ)s−1/p , (2.5)

then ∫ ∞
0

w ≥

(
λ

(∫ ∞
0

u

)−1/p

+ (1− λ)

(∫ ∞
0

v

)−1/p
)−p

. (2.6)

Proof. Without loss of generality, we can modify u, v, w as follows: first we can assume

that u, v are bounded and supported in a compact subset of (0,+∞) (otherwise consider

uM = min{u,M}1[1/M,M ] which monotonely converges to u and similar modifications

for v and w). Now, we can assume that u, v, w are strictly positive on [1/M,M ] (oth-

erwise consider u + ε, v + ε and w + ε′). Moreover, we can also assume that u and v

are continuous (otherwise approximate from below u and v by monotone sequences of

continuous functions). Having established the assertion for such modified functions, it

yields the assertion for initial functions by Lebesgue’s monotone convergence theorem.

Define two strictly increasing functions α, β : [0, 1]→ (0,∞) by∫ α(t)

0

u = t

∫ ∞
0

u and

∫ β(t)

0

v = t

∫ ∞
0

v.

They are differentiable and satisfy

α′(t)u(α(t)) =

∫
u and β′(t)v(β(t)) =

∫
v.

Set

γ(t) =
(
λα(t)−1/p + (1− λ)β(t)−1/p

)−p
, t > 0.

This is a strictly increasing differentiable function mapping (0, 1) onto (0,∞), thus by

the change of variables we have∫ ∞
0

w =

∫ 1

0

w(γ(t))γ′(t)dt.

Our goal is to estimate γ′ from below. We have

γ′(t) = −pγ(t)−p−1

(
−1

p
λα(t)−1/p−1α′(t)− 1

p
(1− λ)β(t)−1/p−1β′(t)

)
= γ1+1/p

(
λα′

α1+1/p
+

(1− λ)β′

β1+1/p

)
= λ

(γ
α

)1+1/p
∫
u

u(α)
+ (1− λ)

(
γ

β

)1+1/p ∫
v

v(β)
.
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Note that (γ
α

)1/p

=
α−1/p

λα−1/p + (1− λ)β−1/p
,

thus setting

θ =
λα−1/p

λα−1/p + (1− λ)β−1/p
,

the expression for γ′ becomes

γ′ = θ

(
θ

λ

)p ∫
u

u(α)
+ (1− θ)

(
1− θ
1− λ

)p ∫
v

v(β)

and by the AM-GM inequality we get

γ′ ≥
[(

θ

λ

)p ∫
u

u(α)

]θ [(
1− θ
1− λ

)p ∫
v

v(β)

]1−θ

.

This, assumption (2.5) and the inequality xθy1−θ ≥ (θx−1/p + (1− θ)y−1/p)−p allow to

finish the proof,∫
w =

∫ 1

0

w(γ)γ′ ≥
∫ 1

0

u(α)θv(β)1−θ
[(

θ

λ

)p ∫
u

u(α)

]θ [(
1− θ
1− λ

)p ∫
v

v(β)

]1−θ

≥
∫ 1

0

[
θ
λ

θ

(∫
u

)−1/p

+ (1− θ)1− λ
1− θ

(∫
v

)−1/p
]−p

=

[
λ

(∫
u

)−1/p

+ (1− λ)

(∫
v

)−1/p
]−p

.
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3 Concentration

Concentration of measure is a powerful and influential idea in high dimensional analysis

and probability. In essence, this is a phenomenon when in a certain probability space

with a metric structure, decent size sets rapidly become of almost full measure, when

enlarging them just a little bit. We shall analyse in detail three basic examples of the

sphere, Gaussian space and discrete cube. We shall also establish concentration for

log-concave measures and as applications show moment comparison inequalities.

3.1 Sphere

We treat the unit Euclidean sphere Sn−1 in Rn as a probability space with its Haar

measure σ and a metric space with simply the Euclidean distance (see the appendix).

For a subset A of Sn−1 and t ≥ 0, we define its t-enlargement At by

At = {x ∈ Sn−1, dist(x,A) ≤ t}.

Note that for t ≥ 2, At becomes the whole sphere. The concentration of measure

phenomenon on the sphere is expressed in the following result.

3.1 Theorem. For a Borel subset A of the unit Euclidean sphere Sn−1 with measure

at least one-half, σ(A) ≥ 1/2, we have for positive t,

σ(At) ≥ 1− 2e−nt
2/4.

Proof. We can assume that t < 2. Let B be the complement of the t-enlargement At of

A, B = Sn−1 \At. For x ∈ A and y ∈ B, we have |x− y| ≥ t, so

∣∣∣∣x+ y

2

∣∣∣∣ =

√
1−

(
|x− y|

2

)2

≤
√

1− t2

4
≤ 1− t2

8
.

Let Ã be the part in Bn2 of the cone built on A, Ã = {αx, α ∈ [0, 1], x ∈ A}, so that

σ(A) = |Ã|/|Bn2 |; similarly for B and B̃. Consider x̃ ∈ Ã and ỹ ∈ B̃, say x̃ = αx and

ỹ = βy, for some α, β ∈ [0, 1] and x ∈ A, y ∈ B. If, say α ≤ β, we have∣∣∣∣ x̃+ ỹ

2

∣∣∣∣ =

∣∣∣∣αx+ βy

2

∣∣∣∣ = β

∣∣∣∣ αβx+ y

2

∣∣∣∣ = β

∣∣∣∣αβ x+ y

2
+

(
1− α

β

)
y

2

∣∣∣∣
≤
∣∣∣∣αβ x+ y

2
+

(
1− α

β

)
y

2

∣∣∣∣
≤ α

β

∣∣∣∣x+ y

2

∣∣∣∣+

(
1− α

β

) ∣∣∣y
2

∣∣∣ .
Since

∣∣x+y
2

∣∣ ≤ 1− t2

8 and
∣∣y

2

∣∣ ≤ 1
2 ≤ 1− t2

8 , we get∣∣∣∣ x̃+ ỹ

2

∣∣∣∣ ≤ 1− t2

8
,
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thus
Ã+ B̃

2
⊂
(

1− t2

8

)
Bn2 .

By the Brunn-Minkowski inequality,(
1− t2

8

)n
|Bn2 | ≥

∣∣∣∣∣ Ã+ B̃

2

∣∣∣∣∣ ≥
√
|Ã| · |B̃| = |Bn2 |

√
σ(A)σ(B).

Using, σ(A) ≥ 1
2 , σ(B) = 1 − σ(At), 1 − t2

8 ≤ e−t
2/8 and rearranging finishes the

proof.

Concentration also means that Lipschitz functions are essentially constant; their

values concentrate around their median as well as mean and the two are comparable.

Recall that a median of a random variable X, denoted Med(X) is any number m

such that P (X ≥ m) ≥ 1
2 and P (X ≤ m) ≥ 1

2 .

3.2 Corollary. Let f : Sn−1 → R be a 1-Lipschitz function. Then for t > 0,

σ{f −Med(f) > t} ≤ 2e−nt
2/4 and σ{f −Med(f) < −t} ≤ 2e−nt

2/4.

In particular,

σ{|f −Med(f)| > t} ≤ 4e−nt
2/4.

Moreover, ∣∣∣∣Med(f)−
∫
Sn−1

fdσ

∣∣∣∣ ≤ 8√
n

and

σ

{
f −

∫
Sn−1

fdσ > t

}
≤ e16e−

nt2

16 and σ

{
f −

∫
Sn−1

fdσ < −t
}
≤ e16e−

nt2

16 .

Proof. Let A = {f ≤ Med(f)}. By the definition of a median, σ(A) ≥ 1
2 . Since f is

1-Lipschitz, for t > 0,

At ⊂ {f ≤ Med(f) + t}.

Indeed, if y ∈ At, say y = x+z with x ∈ A and |z| ≤ t, then f(y) = f(x)+f(y)−f(x) ≤
f(x) + |y − x| ≤ Med(f) + t). Therefore, Act ⊃ {f > Med(f) + t} and we get

σ{f > Med(f) + t} ≤ σ(Act) ≤ 2e−nt
2/4.

The estimate for the lower tail follows similarly by considering A = {f ≥ Med(f)} (or

taking −f in what we just proved).

Moreover,∣∣∣∣Med(f)−
∫
Sn−1

fdσ

∣∣∣∣ =

∣∣∣∣∫
Sn−1

(Med(f)− f)dσ

∣∣∣∣ ≤ ∫
Sn−1

|Med(f)− f |dσ

=

∫ ∞
0

σ {|f −Med(f)| > t} dt

≤
∫ ∞

0

4e−nt
2/4dt =

4
√
π√
n
<

8√
n
.
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Thus, for t > 16√
n

,

σ

{
f >

∫
Sn−1

fdσ + t

}
≤ σ

{
f > Med(f)− 8√

n
+ t

}
≤ σ

{
f > Med(f) +

t

2

}
≤ 2e−nt

2/16.

For t ≤ 16√
n

, e−nt
2/16 ≥ e−16, so trivially, σ

{
f >

∫
Sn−1 fdσ + t

}
≤ 1 ≤ e16e−nt

2/16.

3.3 Remark. In Corollary 3.2, we deduced the concentration for Lipschitz functions

from the concentration for sets. It is also possible to go the other way around: having

a statement about concentration for Lipschitz functions and applying it to the distance

function to a set which is 1-Lipschitz gives the concentration for sets.

Having seen what concentration of measure is about on the concrete example of

the sphere, let us say a few words about concentration in an abstract setting. If we

have a probability space (Ω,F ,P) such that (Ω, d) is also a metric space, we define

enlargements of measurable sets in the usual way: At = {x ∈ Ω, d(x,A) ≤ t}. We say

that (Ω,P, d) satisfies α-concentration with a (decay) function α : [0,∞)→ [0,∞) such

that α −→
t→∞

0 if for every measurable set A with P (A) ≥ 1
2 , we have P (At) ≥ 1− α(t),

t > 0. In particular, when α(t) ≈ e−t
2

, it is the so-called Gaussian concentration

and when α(t) ≈ e−t – exponential concentration. In Theorem 3.1 we proved that

the sphere satisfies Gaussian concentration.

3.2 Gaussian space

We consider Rn as a probability space equipped with the standard Gaussian measure

γn and as a metric space with the Euclidean distance. Recall that γn has the product

density 1√
2π
e−|x|

2/2. This setting is usually referred to as Gaussian space. We show

that Gaussian space satisfies Gaussian concentration.

3.4 Theorem. For a Borel subset A of Rn,∫
Rn
e

1
4 dist(x,A)2dγn(x) ≤ 1

γn(A)
.

In particular, if γn(A) ≥ 1
2 , then for t > 0,

γn(At) ≥ 1− 2e−t
2/4.

Proof. The second part follows from the main statement in one line,

et
2/4γn(Act) ≤

∫
Act

edist(x,A)2/4dγn(x) ≤ 1

γn(A)
≤ 2.

To prove the first part, fix A, let pn be the density of γn and consider three functions,

f(x) = edist(x,A)2/4pn(x), g(x) = 1A(x)pn(x), h(x) = pn(x).
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For x ∈ Rn, y ∈ A,

f(x)g(y) = edist(x,A)2/4pn(x)pn(y) =
1

(2π)n
e

1
4 dist(x,A)2− 1

2 |x|
2− 1

2 |y|
2

≤ 1

(2π)n
e

1
4 |x−y|

2− 1
2 |x|

2− 1
2 |y|

2

=
1

(2π)n
e−

1
4 |x+y|2 = pn

(
x+ y

2

)2

= h

(
x+ y

2

)2

,

so by the Prékopa-Leindler inequality,
∫
f ·
∫
g ≤ (

∫
h)2, which is the desired statement.

As for the sphere, we also obtain the concentration for Lipschitz functions. The

proof is identical.

3.5 Corollary. Let f : Rn → R be a 1-Lipschitz function. Then for t > 0,

γn{f −Med(f) > t} ≤ 2e−t
2/4 and γn{f −Med(f) < −t} ≤ 2e−t

2/4.

In particular,

γn{|f −Med(f)| > t} ≤ 4e−t
2/4.

Moreover, ∣∣∣∣Med(f)−
∫
Rn
fdγn

∣∣∣∣ ≤ 8

and

γn

{
f −

∫
Rn
fdγn > t

}
≤ e16e−

t2

16 and γn

{
f −

∫
Rn
fdγn < −t

}
≤ e16e−

t2

16 .

3.6 Remark. By a different, direct argument based on the rotational invariance of

the Gaussian measure, it is possible to obtain the concentration of Lipschitz functions

around the mean with better constants, namely

γn

{∣∣∣∣f − ∫
Rn
fdγn

∣∣∣∣ > t

}
≤ 4

π
e−

2
π2 t

2

.

3.3 Discrete cube

Consider the discrete cube Ωn = {−1, 1}n with the uniform probability measure Pn.

In other words, for any subset A of Ωn, Pn(A) = P (ε ∈ A) = |A|
2n , where ε = (ε1, . . . , εn)

is a random vector of independent (symmetric) random signs, that is the εi are i.i.d.

taking the values ±1 with probability 1
2 . We shall write P (A) = Pn(A).

The discrete cube, being a subset of Rn, is naturally equipped with the Euclidean

distance. There is also the notion of the Hamming distance which counts at how

many coordinates points differ,

dH(x, y) = |{i ≤ n, xi 6= yi}|, x, y ∈ Ωn.
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This distance is of course very natural, especially from a combinatorial point of view.

Plainly, for x, y ∈ Ωn,

|x− y|2 = 4dH(x, y).

Note also that

〈x, y〉= n− 2|{i ≤ n, xi 6= yi}| = n− 2dH(x, y),

or to put it differently, since n =〈x, x〉,

〈x, x− y〉= 2dH(x, y).

The main theorem we shall prove is the so-called infimum convolution on the discrete

cube for convex functions. Then we shall deduce Talagrand’s inequality on the discrete

cube. Finally, we shall present corollaries which lead to concentration.

3.7 Theorem. Let ϕ : Rn → R be a convex function. Then,

Eεeinf{ϕ(x)+ 1
8 |ε−x|

2, x∈Rn}Eεe−ϕ(ε) ≤ 1. (3.1)

3.8 Corollary (Talagrand’s inequality). Let A be a subset of {−1, 1}n. Then,

Eεe
1
8 dist(ε,conv(A))2P (A) ≤ 1.

In particular,

P ((convA)ct) · P (A) ≤ e−t
2/8 (3.2)

Proof. Consider the convex function ϕ(x) =

0, x ∈ conv(A)

+∞, x ∈ Rn \ conv(A)
. Since,

Ee−ϕ(ε) = E1conv(A)(ε) = P (conv(A)) ≥ P (A)

and

inf
x∈Rn

{
ϕ(x) +

1

8
|ε− x|2

}
= inf
x∈conv(A)

1

8
|ε− x|2 =

1

8
dist(ε, convA)2,

applying (3.1) gives the first result. The second part follows by Chebyshev’s inequality,

1

P (A)
≥ Ee

1
8 dist(ε,convA)2 ≥ Ee

1
8 t

2

1{dist(ε,convA)≥t} ≥ et
2/8P (dist(ε,A) ≥ t) .

We also obtain concentration for Lipschitz functions which are additionally convex.

3.9 Corollary. Let f : Rn → R be convex and 1-Lipschitz function (with respect to the

Euclidean distance). Then for t > 0,

P (|f(ε)−Med(f(ε))| ≥ t) ≤ 4e−t
2/8.
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Proof. Let M = Med(f(ε)) and consider A = {x ∈ {−1, 1}n, f(x) ≤ M}. We have

P (A) ≥ 1
2 . Since f is convex, A is convex and convA = A. Since f is 1-Lipschitz,

At ⊂ {f ≤M + t}. Thus, by (3.2),

P (f > M + t) ≤ P (Act) ≤
1

P (A)
e−t

2/8 ≤ 2e−t
2/8.

To control the lower tail, we cannot simply apply the upper tail to −f (because it is

not convex). Consider B = {x ∈ {−1, 1}n, f(x) ≤ M − t}. As before, B is convex and

Bs ⊂ {f ≤M − t+ s}. Thus,

P (f ≤M − t)P (f > M − t+ s) ≤ P (B)P (Bcs) ≤ e−s
2/2.

Letting s↗ t and using P (f ≥M) ≥ 1
2 gives the result.

3.10 Remark. As for the sphere and Gaussian space, we get from Corollary 3.9 concen-

tration around the mean: there are universal constants c, C > 0 such that for a convex

and 1-Lipschitz function f : Rn → R,

P (|f(ε)− Ef(ε)| ≥ t) ≤ Ce−ct
2

, t > 0.

Note that martingale methods (e.g. Azuma’s inequality) yields

P (|f(ε)− Ef(ε)| ≥ t) ≤ Ce−ct
2/n, t > 0,

for every 1-Lipschitz function f : Rn → R. Therefore convexity through Talagrand’s

inequality allows to significantly improve the exponent by removing 1
n . Moreover, this

improved concentration result really is specific to convex functions, as shown by the

following example due to Talagrand: let A = {{−1, 1}n,
∑
xi ≤ 0} and define f(x) =

inf{|x−y|, y ∈ A}, which is 1-Lipschitz. Then the median of f(ε) is 0, but by the central

limit theorem, P
(
f(ε) > cn1/4

)
≥ c for some absolute constant c > 0.

We can easily derive concentration for sets with enlargements in the Hamming dis-

tance. The point being however that Talagrand’s inequality is stronger than what we

really need to get such concentration (the latter can be obtained by classical martingale

methods as well).

3.11 Corollary. Let A be a subset of {−1, 1}n with P (A) ≥ 1
2 . Then,

P (dH(ε,A) > t) ≤ 2e−
t2

/
2n.

Proof. For every x ∈ {−1, 1}n and y ∈ A,

〈x, x− y〉= 2dH(x, y) ≥ 2dH(x,A).

Since the left hand side is linear in y and the right hand side does not depend on y, the

same inequality is true for all y ∈ conv(A). By the Cauchy-Schwarz inequailty,

√
n|x− y| ≥ 2dH(x,A), y ∈ conv(A),
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which means that d(x, convA) ≥ 2√
n
dH(x,A), so

{x ∈ {−1, 1}n, dH(x,A) ≥ t} ⊂
{
x ∈ {−1, 1}n, d(x, convA) >

2√
n
t

}
and Corollary 3.8 finishes the argument.

Proof of Theorem 3.7. The strangely looking left hand side allows a natural inductive

proof on the dimension n (in fancy terms, the inequality tensorises, meaning that it

proves itself provided it is proved for n = 1 – similarly to the Prékopa-Leindler inequal-

ity).

Suppose Theorem 3.7 holds for n = 1. We first show how to inductively deduce it

for any n. To this end, let n ≥ 1 and suppose that the theorem holds for n and let

ϕ : Rn+1 → R be a convex function. For a vector x in Rn+1 we shall write x = (x1, x
′)

with x1 ∈ R being its first coordinate and x′ ∈ Rn. Consider the function ψ : R→ R,

ψ(x1) = logEε′einfx′∈Rn{ϕ(x1,x
′)+ 1

8 |ε
′−x′|2}.

By the convexity of ϕ and | · |2 as well as Hölder’s inequality, we check that ψ is also

convex: for x1, y1 ∈ R and λ ∈ [0, 1], we have

ψ(λx1 + (1− λ)y1)

= logEε′einfx′,y′∈Rn{ϕ(λx1+(1−λ)y1,λx
′+(1−λ)y′)+ 1

8 |λε
′+(1−λ)ε′−λx′−(1−λ)y′|}

≤ logEε′einfx′,y′{λ[ϕ(x1,x
′)+ 1

8 |ε
′−x′|2]+(1−λ)[ϕ(y1,y

′)+ 1
8 |ε
′−y′|2]}

= logEε′
[
eλ infx′{ϕ(x1,x

′)+ 1
8 |ε
′−x′|2}e(1−λ) infy′{[ϕ(y1,y

′)+ 1
8 |ε
′−y′|2]}

]
≤ λ logEε′einfx′{ϕ(x1,x

′)+ 1
8 |ε
′−x′|2} + (1− λ) logEε′einfy′{[ϕ(y1,y

′)+ 1
8 |ε
′−y′|2]}

= λψ(x1) + (1− λ)ψ(y1).

Applying (3.1) to ψ yields

Eε1einfx1{ψ(x1)+ 1
8 |ε1−x1|2}︸ ︷︷ ︸

A

·Eε1e−ψ(ε1)︸ ︷︷ ︸
B

≤ 1.

To lower bound A, we rewrite it, plug in the definition of ψ and simplify,

A = Eε1 inf
x1

[
eψ(x1)e

1
8 |ε1−x1|2

]
= Eε1 inf

x1

[
Eε′einfx′∈Rn{ϕ(x1,x

′)+ 1
8 |ε
′−x′|2}e

1
8 |ε1−x1|2

]
.

Using the simple inequality inft∈T EXt ≥ E inft∈T Xt valid for any family of random

variables {Xt}t∈T , we get

A ≥ Eε1,ε′e
infx′,x1{ϕ(x1,x

′)+ 1
8 |ε
′−x′|2+ 1

8 |ε1−x1|2} = Eεeinfx∈Rn+1{ϕ(x)+ 1
8 |ε−x|

2}.

To lower bound B, we first use (3.1) applied to the convex function x′ 7→ ϕ(x1, x
′) to

see that

e−ψ(x1) =
(
Eε′einfx′∈Rn{ϕ(x1,x

′)+ 1
8 |ε
′−x′|2}

)−1

≥ Eε′e−ϕ(x1,ε
′).
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Thus,

B = Eε1e−ψ(ε1) ≥ Eε1Eε′e−ϕ(ε1,ε
′) = Eεe−ϕ(ε).

Putting these two lower bounds into A · B ≤ 1 shows that (3.1) holds for ψ and hence

finishes the proof of the inductive step.

It remains to show (3.1) for n = 1. Let ϕ : R→ R be convex and set

ψ(x) = inf
y∈R

{
ϕ(y) +

1

8
|x− y|2

}
, x ∈ R.

Our goal is to show that

eψ(−1) + eψ(1)

2
· e
−ϕ(−1) + e−ϕ(1)

2
≤ 1.

By adding a constant to ϕ if necessary, without loss of generality we can assume that

ϕ(−1) = 0. Let a = ϕ(1). By considering x 7→ ϕ(−x) instead of x 7→ ϕ(x), we can also

assume that ϕ(−1) ≤ ϕ(1), that is a ≥ 0.

Putting y = −1 in the definition of ψ gives

ψ(−1) ≤ ϕ(−1) = 0.

Putting in y = (1− λ) · 1 + λ · (−1) = 1− 2λ for any λ ∈ [0, 1] gives

ψ(1) ≤ ϕ((1− λ) · 1 + λ · (−1)) +
1

8
|1− (1− 2λ)|2

≤ (1− λ)ϕ(1) + λϕ(−1) +
1

8
· 4λ2 = (1− λ)a+

λ2

2
.

Taking λ = a when a ≤ 1 and λ = 1 when a > 1 gives the estimate

ψ(1) ≤

−
a2

2 + a, a ≤ 1,

1
2 , a > 1.

Therefore, when a ≤ 1, it suffices to show

1 + e−a
2/2+a

2
· 1 + e−a

2
≤ 1.

In fact this holds for any a ≥ 0: note that the trivial inequality e−a
2/2(ea − 1) ≤ ea − 1

is equivalent to 1 + ea−a
2/2 ≤ ea + e−a

2/2, so

(1 + ea−a
2/2)(1 + e−a) = 1 + ea−a

2/2 + e−a(1 + ea−a
2/2)

≤ 1 + ea−a
2/2 + e−a(ea + e−a

2/2)

= 2 + 2e−a
2/2 cosh a ≤ 2 + 2 = 4,

by the well known inequality coshx ≤ ex2/2, x ∈ R.

When a > 1, it suffices to show

1 + e1/2

2
· 1 + e−a

2
≤ 1.
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The worst case is obviously a = 1 and then we have

1 + e1/2

2
· 1 + e−1

2
<

1 + 1.7

2
·

1 + 1
2.7

2
=

27

2 · 10
· 37

2 · 27
=

37

40
< 1.

3.4 Log-concave measures

Any log-concave measure satisfies a concentration type inequality for dilations of sym-

metric convex sets, as established in the following result often called Borell’s lemma.

3.12 Theorem (Borell’s lemma). Let µ be a log-concave probability measure on Rn and

let K be a convex symmetric set in Rn with θ = µ(K) > 1
2 . Then for t ≥ 1,

1− µ(tK) ≤ θ
(

1− θ
θ

) t+1
2

.

Proof. The key observation is that thanks to convexity and symmetry,

t− 1

t+ 1
K +

2

t+ 1
(Rn \ tK) ⊂ Rn \K.

Indeed, if for some a ∈ K, t−1
t+1a+ 2

t+1a
′ = b was in K, then a′ = t+1

2t b+ t−1
2t (−a) would

be in K, too. By log-concavity we thus get

µ(K)
t−1
t+1 µ(Rn \ tK)

2
t+1 ≤ µ(Rn \K),

hence

1− µ(tK) = µ(Rn \ tK) ≤
[

1− θ
θ
t−1
t+1

] t+1
2

= θ

(
1− θ
θ

) t+1
2

.

3.13 Remark. The right hand side of Borell’s lemma is sometimes rewritten as

θ

(
1− θ
θ

) t+1
2

= θ

√
1− θ
θ

(
1− θ
θ

) t
2

=
√
θ(1− θ)

√
1− θ
θ

t

≤ 1

2

√
1/θ − 1

t

and clearly shows the exponential decay since q =
√

1/θ − 1 < 1 for θ > 1/2.

3.14 Remark. Borell’s lemma equivalently says that for a log-concave random vector

X in Rn and a semi-norm ‖ · ‖ on Rn we have for t ≥ 1,

P (‖X‖ > t) ≤ θ
(

1− θ
θ

) t+1
2

,

provided that θ = P (‖X‖ ≤ 1) > 1
2 .

As an application of this concentration result, we show that the moments of any

semi-norm of log-concave vectors do not grow too fast (at most linearly).
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3.15 Theorem. Let X be a log-concave random vector Rn and let ‖ · ‖ be a semi-norm

on Rn. Then for 1 ≤ p < q,

(E‖X‖q)1/q ≤ 12
q

p
(E‖X‖p)1/p.

Proof. By homogeneity, we can assume that E‖X‖p = 1. Then,

P (‖X‖ > 4) = P (‖X‖p > 4p) ≤ 4−pE‖X‖p = 4−p.

Applying Borell’s lemma to 1
4‖ · ‖, θ = P

(
1
4‖X‖ ≤ 1

)
≥ 1− 4−p, yields

P
(

1

4
‖X‖ > t

)
≤
√
θ(1− θ)

(
1

θ
− 1

)t/2
≤
(

1

1− 4−p
− 1

)t/2
, t > 1.

Since, 1
1−4−p − 1 = 4−p

1−4−p = 1
4p−1 ≤

1
ep ,

P (‖X‖ > 4t) ≤ e−pt/2, t ≥ 1.

Thus,

E‖X‖q =

∫ ∞
0

qsq−1P (‖X‖ > s) ds ≤
∫ 4

0

qsq−1ds+

∫ ∞
4

qsq−1P (‖X‖ > s) ds.

Computing the first integral, changing the variable in the second integral s = 4t and

using the above estimate yields

E‖X‖q ≤ 4q +

∫ ∞
1

q4qtq−1e−pt/2dt = 4q + q4q
∫ ∞

1

(
2

p

)q
uq−1e−udu

≤ 4q
(

1 +

(
2

p

)q
qΓ(q)

)
.

Using qΓ(q) ≤ qq and (1 + x)1/q ≤ 1 + x1/q, we finish the proof

(E‖X‖q)1/q ≤ 4

(
1 +

(
2
q

p

)q)1/q

≤ 4

(
1 + 2

q

p

)
≤ 4

(
q

p
+ 2

q

p

)
= 12

q

p
.

3.5 Khinchin–Kahane’s inequality

We shall further explore the idea that concentration can be used to obtain moment

comparison inequalities and apply this to random signs. Recall classical Bernstein’s

inequality which says that a weighted sum
∑n
i=1 aiεi of independent random signs εi

with real coefficients ai concentrates around its mean (which is 0) with a Gaussian tail,

P

(
|
n∑
i=1

aiεi| > t

)
≤ 2e

− t2

2
∑n
i=1

a2
i , t ≥ 0. (3.3)

Recall also the following moment comparison which can be shown by a direct computa-

tion,

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
4

≤ 3

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
2

. (3.4)
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These two allow us to establish the classical Khinchin inequality. We denote the pth

moment of a random variable X by ‖X‖p = (E|X|p)1/p.

3.16 Theorem (Khinchin’s inequality). Let ε1, . . . , εn be independent symmetric ran-

dom signs. For real numbers a1, . . . , an, we have∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
p

≤
√

2p

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
2

, p ≥ 2, (3.5)∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
p

≥ 1√
3

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
2

, 1 ≤ p ≤ 2. (3.6)

3.17 Remark. Putting a1 = . . . = an = 1√
n

and letting n → ∞, the central limit

theorem and the behaviour of Gaussian moments show that the order
√
p of the constant

in (3.5) is best possible.

Proof of Theorem 3.16. By homogeneity, we can assume that E|
∑
aiεi|2 =

∑
a2
i = 1.

First consider p ≥ 2. By Bernstein’s inequality,

E|
∑

aiεi|p =

∫ ∞
0

ptp−1P (|
∑
aiεi| > t) dt

≤
∫ ∞

0

ptp−12e−t
2/2dt

= 2p/2p

∫ ∞
0

up/2−1e−udu

= 2p/2pΓ(p/2) ≤ 2p/22(p/2)p/2 = 2pp/2 ≤ (2p)p/2.

Thus,

‖
∑

aiεi‖p ≤
√

2p =
√

2p‖
∑

aiεi‖2.

Now consider 1 ≤ p ≤ 2. Let X = |
∑
aiεi|. Using Hölder’s inequality, we interpolate

the L2 − L4 moment comparison (3.4) to obtain the L2 − L1 moment comparison,

1 = EX2 = EX2/3X4/3 ≤ (EX)2/3(EX4)1/3 ≤ 31/3(EX)2/3

and we finish by crudely bounding the pth moment by the 1st moment,

‖
∑

aiεi‖p ≥ ‖
∑

aiεi‖1 = EX ≥ 3−1/2 =
1√
3
‖
∑

aiεi‖2.

Talagrand’s inequality can be applied to give a simple proof of a substantial general-

isation of Khinchin’s inequality due to Kahane to vector-valued weights in any normed

space.

3.18 Theorem (Kahane’s inequality). Let ε1, . . . , εn be independent symmetric random

signs. For vectors v1, . . . , vn in a Banach space (E, ‖ · ‖) and p ≥ 1, we have(
E‖
∑

viεi‖p
)1/p

≤ 2E‖
∑

viεi‖+ 8
√

2
√
p · σ, (3.7)
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where σ =

(
sup{

∑n
i=1 |ϕ(vi)|2, ϕ ∈ E∗, ‖ϕ‖ ≤ 1}

)1/2

. In particular,

(
E‖
∑

viεi‖p
)1/p

≤ (2 + 8
√

6
√
p)E‖

∑
viεi‖. (3.8)

Proof. Define f(x) = ‖
∑n
i=1 xivi‖, x ∈ Rn. This is clearly a convex function. It is also

Lipschitz with constant σ because by duality and the Cauchy-Schwarz inequality,

f(x)− f(y) ≤ ‖
∑

(xi − yi)vi‖ = sup
ϕ∈E∗,‖ϕ‖≤1

|ϕ
(∑

(xi − yi)vi
)
|

= sup
ϕ∈E∗,‖ϕ‖≤1

|
∑

ϕ(vi)(xi − yi)|

≤ sup
ϕ∈E∗,‖ϕ‖≤1

√∑
|ϕ(vi)|2

√∑
|xi − yi|2 = σ|x− y|.

Let M be the median of f(ε). By Corollary 3.9, P (|f(ε)−M | > t) ≤ 4e−t
2/(8σ2), so

E|f(ε)−M |p ≤ 4

∫ ∞
0

ptp−1e−t
2/(8σ2)dt = 4

√
8σ2

p
Γ
(

1 +
p

2

)
.

This, combined with the triangle inequality, gives∥∥∥‖∑ εivi‖
∥∥∥
p
−M = ‖f(ε)‖p−M ≤ ‖f(ε)−M‖p ≤ 41/p

√
8σ2Γ

(
1 +

p

2

)1/p

≤ 8
√

2σ
√
p.

It remains to estimate the median. By Chebyshev’s inequality, 1
2 ≤ P (f(ε) ≥M) ≤

1
MEf(ε), so M ≤ 2Ef(ε) = 2E‖

∑
εivi‖, which leads to (3.7).

To obtain (3.8), notice that we can upper bound the parameter σ using the classical

Khinchin’s inequality (3.6): for any functional ϕ ∈ X∗ with ‖ϕ‖ ≤ 1, applying (3.6) to

ai = ϕ(vi) yields

(∑
|ϕ(vi)|2

)1/2

=

(
E
∣∣∣∑ϕ(vi)εi

∣∣∣2)1/2

≤
√

3E
∣∣∣∑ϕ(vi)εi

∣∣∣ ≤ √3E‖
∑

εivi‖,

hence σ ≤
√

3E‖
∑
εivi‖.
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4 Isotropic position

4.1 Isotropic constant

Recall that the centre of mass (barycentre) of a subset A of Rn of positive volume

is 1
|A|
∫
A
xdx and the set A is called centred if its centre of mass is at the origin. A

convex body K in Rn is called isotropic if

1) |K| = 1 and K is centred

2) For every direction θ ∈ Sn−1,
∫
K
〈x, θ〉2dx = L2

K for a positive constant LK .

The constant LK is then called the isotropic constant of K. For example, every 1-

symmetric convex body with volume 1 is isotropic and every orthogonal image of an

isotropic convex body is isotropic.

4.1 Remark. Note that under 1), condition 2) is equivalent to each of the following

two conditions

2’) For every 1 ≤ i, j ≤ n,
∫
K
xixjdx = L2

Kδij ; in other words, the covariance matrix

of the uniform distribution on K equals L2
K · I

2”) For every n× n real matrix A,
∫
K
〈x,Ax〉dx = L2

Ktr(A).

Indeed, to see that 2) implies 2’), apply it first to θ = ei and then to θ =
ei+ej√

2
. 2’)

implies 2”) by 〈x,Ax〉 =
∑
Aijxixj and 2”) implies 2) by applying to the projection

A = θθT .

Intuitively, L2
K is the variance of K along any direction. We shall see shortly that

one of the central (and unresolved!) questions in asymptotic convex geometry is: “how

large can LK be?”

First we have to establish the existence of the isotropic position, meaning that

every convex body has an affine (invertible) image which is isotropic. (In general, a

position of a convex body is any of its affine invertible images). It turns out that

such an image is unique up to an orthogonal transformation, so the isotropic position is

unique. Of course, there is an affine image of every convex body which has volume one

and is centred (satisfies 1)).

4.2 Theorem (Existence). Let K be a centred convex body in Rn. Then there is an

invertible linear map T : Rn → Rn such that TK is isotropic.

Proof. We can assume that |K| = 1. Take A = [
∫
K
xixjdx]ni,j=1. This is a symmetric

positive definite matrix because

〈Au, u〉=
∑
i,j

Aijuiuj =

∫
K

∑
i,j

xixjuiujdx =

∫
K

〈x, u〉2dx,
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which is nonnegative and nonzero (K has nonempty interior). By the spectral theorem,

A = UTDU for an orthogonal matrix U and a positive diagonal matrix D. Take

T = D−1/2U to get that∫
TK

xixjdx = |detT |
∫
K

(Ty)i(Ty)jdy = |detT |
∫
K

∑
k,l

TikykTjlyldy

= |detT |[TATT︸ ︷︷ ︸
I

]i,j = |detT |δij ,

so TK is isotropic.

4.3 Theorem (Uniqueness). Let K be a centred convex body of volume 1 in Rn. Let

mK = inf
T∈SL(n)

∫
TK

|x|2dx.

Then for T ∈ SL(n), a position K ′ = TK of K is isotropic if and only if
∫
K′
|x|2dx =

mK . Moreover, if K1, K2 are two such positions, then K2 = UK1 for some U ∈ O(n).

Proof. Let K ′ be an isotropic position of K. Then for any T ∈ SL(n),∫
TK′
|x|2dx =

∫
K′
|Ty|2dy =

∫
K′

〈
y, TTTy

〉
dy = L2

Ktr(TTT )

≥ L2
Kn(det(TTT ))1/n

= L2
K · n =

∫
K′
|x|2dx,

so
∫
K′
|x|2dx achieves the infimum of the quantity

∫
TK′
|x|2dx over all T ∈ SL(n).

If some K1 and K2 are isotropic positions of K, then K2 = TK1 and in the above

AM-GM inequality for T , tr(TTT ) ≥ (det(TTT ))1/n we have equality, so TTT = I,

hence T ∈ O(n).

4.4 Remark. By the above characterision of the isotropic position as minimising the

second moment of the Euclidean norm, the isotropic position and hence the isotropic

constant depend only on the affine class of a convex body: two convex bodies have the

same isotropic position up to an orthogonal transformation, if and only if one is an

invertible affine image of the other. Moreover, for any convex body K,

L2
K =

1

n
min

T∈GL(n)

{
1

|TK̃|1+2/n

∫
TK̃

|x|2dx

}
, (4.1)

where K̃ is the translate of K with barycentre at the origin, K̃ = K − bar(K) =

K − 1
|K|
∫
K
xdx. Explanation: let positive λ be such that |λK̃| = 1; by Theorem 4.3,

any T0 ∈ SL(n) which minimises
∫
T0(λ)K̃

|x|2dx is such that T0(λK̃) is isotropic, so

L2
K = L2

T0(λK̃)
=

1

n

∫
T0(λK̃)

|x|2dx =
1

n
min

T∈SL(n)

{∫
T (λK̃)

|x|2dx

}

=
1

n
min

T∈SL(n)

{
λn+2

∫
T (K̃)

|x|2dx

}
.
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Since λ = 1/|K̃|1/n = 1/|TK̃|1/n for any T ∈ SL(n), the last expression can be written

as the right hand side of (4.1).

It is easy to give a sharp lower bound for the isotropic constant by pushing mass as

near the origin as possible.

4.5 Theorem. For a convex body K in Rn, we have LK ≥ LBn2 .

Proof. We can assume that K is isotropic. Let rn be such that B = rnB
n
2 be isotropic.

Note that since both K and B have the same volume, K \B and B \K have the same

volume. We have,

nL2
K =

∫
K

|x|2dx =

∫
K∩B

|x|2 +

∫
K\B
|x|2

≥
∫
K∩B

|x|2 +

∫
K\B

r2
n

=

∫
K∩B

|x|2 +

∫
B\K

r2
n

≥
∫
K∩B

|x|2 +

∫
B\K
|x|2 =

∫
B

|x|2 = nL2
Bn2
.

4.6 Remark. The isotropic constant of the Euclidean ball can be found using integra-

tion in polar coordinates,

L2
Bn2

=
1

n

∫
rnBn2

|x|2dx =
1

n

∫ rn

0

r2rn−1|Sn−1|dr =
1

n+ 2
rn+2
n |Bn2 |.

By the choice of rn, 1 = |rnBn2 | = rnn|Bn2 | and recall |Bn2 | =
√
πn

Γ(1+n
2 )

, so we obtain

L2
Bn2

=
1

n+ 2
|Bn2 |−2/n =

1

n+ 2

Γ
(
1 + n

2

)2/n
π

−→
n→∞

1

2eπ
≈ 0.058...

The fundamental conjecture in convex geometry called the slicing or hyperplane

conjecture says that the isotropic constant is bounded above by an absolute constant.

4.7 Conjecture (Slicing problem). There is a universal constant C > 0 such that for

every n ≥ 1 and every convex body K in Rn, the isotropic constant of K is bounded by

C, LK ≤ C.

There is no known example of a convex body K with LK > 1. It is suspected that

among symmetric convex bodies, the worst case (the one with largest isotropic constant)

would be the cube. Currently, the best known bound is due to Klartag from 2006 which

says that LK ≤ Cn1/4 for every convex body K in Rn, where C is a universal constant.

The slicing conjecture is known to hold for certain classes of convex bodies, for example

for the unconditional convex bodies. We shall see very soon (in the next chapter) a

proof of the weaker bound LK ≤ Cn1/2.
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4.2 Why “slicing”?

At first glance, it is not evident what Conjecture 4.7 or the isotropic constant has to

do with slicing a convex body. We shall see a reason by showing that Conjecture 4.7 is

equivalent to the following one.

4.8 Conjecture (Slicing/Hyperplane conjecture). There is a universal constant c > 0

such that for every n ≥ 1 and every centred convex body K in Rn with |K| = 1, there

is a direction θ ∈ Sn−1 such that |K ∩ θ⊥| ≥ c (there is a central hyperplane slice of

constant volume).

Given a centred convex body K of volume 1 and a direction θ ∈ Sn−1, consider the

function of the n − 1-dimensional volume of the slice of K with a hyperplane perpen-

dicular to θ passing through tθ, t ∈ R,

f(t) = |K ∩ (tθ + θ⊥)|.

By Brunn’s principle, this function is a 1
n−1 -concave on its support. In particular, f is

log-concave. Moreover, ∫ ∞
−∞

f(t)dt = |K| = 1,∫ ∞
−∞

tf(t)dt =

∫
K

〈x, θ〉dx = 0,∫ ∞
−∞

t2f(t)dt =

∫
K

〈x, θ〉2dx

f(0) = |K ∩ θ⊥|.

Recall that for a centred log-concave function, by Corollary 2.24, the three quantities∫
f ,
∫
t2f(t) and f(0) are related and we have

1

12e2

1

f(0)2
≤
∫
t2f(t)dt ≤ 2

1

f(0)2
.

This proves the following result.

4.9 Theorem. For a centred convex body K in Rn with volume 1 and θ ∈ Sn−1, we

have
1

2
√

3e

1

|K ∩ θ⊥|
≤
(∫

K

〈x, θ〉2dx

)1/2

≤
√

2
1

|K ∩ θ⊥|
.

In particular, if K is isotropic, the volumes of all central sections are essentially the

same, within absolute constants of 1/LK ,

1

2
√

3e

1

LK
≤ |K ∩ θ⊥| ≤

√
2

1

LK
.

This immediately shows that the existence of a section of large volume gives an upper

bound for the isotropic constant.
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Conjecture 4.8 implies Conjecture 4.7. SupposeK is isotropic. By Conjecture 4.8, there

is θ0 such that |K ∩ θ⊥0 | ≥ c with some absolute constant c > 0, so LK ≤
√

2
c .

To see the other implication, we need a lemma saying that centred convex bodies

have directions of variance not exceeding the isotropic constant squared.

4.10 Lemma. Let K be a centred convex body in Rn with volume 1. Then there is

θ ∈ Sn−1 such that ∫
K

〈x, θ〉2dx ≤ L2
K .

Proof. Let MK = [
∫
K
xixjdx]i,j≤n be the covariance matrix of K and consider the

ellipsoid of inertia of K,

EK = {x ∈ Rn, 〈x,MKx〉≤ 1}.

We shall compute its volume in two ways. Recall (1.2), which gives

|EK | = (detMK)−1/2|Bn2 |.

Moreover, for any T ∈ SL(n), MTK = TMKT
T , so detMK = detMTK . Choosing T

such that TK is isotropic, we have MTK = L2
KI and therefore detMK = L2n

K , which

gives

|EK | = L−nK |B
n
2 |.

On the other hand, integrating in polar coordinates,

|EK | =
∫
Sn−1

∫ 1/‖θ‖EK

0

tn−1|Sn−1|dσ(θ)dt = |Bn2 |
∫
Sn−1

‖θ‖−nEK dσ(θ).

Putting the two together yields

L−nK =

∫
Sn−1

‖θ‖−nEK dσ(θ).

In particular, there is θ0 ∈ Sn−1 such that ‖θ0‖−nEK ≥ L−nK . Recalling that the norm on

EK is given by MK , see (1.3), we get∫
K

〈x, θ0〉2dx =〈θ0,MKθ0〉= ‖θ0‖2EK ≤ L
2
K .

Conjecture 4.7 implies Conjecture 4.8. Suppose K is a centred convex body with vol-

ume 1. Let θ0 ∈ Sn−1 be a direction guaranteed by Lemma 4.10. Then by Theorem

4.9,

1

2
√

3e

1

|K ∩ θ⊥0 |
≤
(∫

K

〈x, θ0〉2dx

)1/2

≤ LK ,

therefore, if LK ≤ C for an absolute constant C, then |K ∩ θ⊥0 | ≥ 1
2
√

3eC
.
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4.3 Inradius and outerradius

We show that the inradius and outerradius of an isotropic convex body is related to

its isotropic constant and deduce an easy upper bound for the isotropic constant. The

inradius is the largest possible radius of a ball contained in the body and the outerradius

is the smallest possible radius of a ball containing the body.

4.11 Theorem. Let K be an isotropic convex body in Rn. Then,

K ⊂ 2
√

3e · nLKBn2 .

Moreover, if K is symmetric, then

K ⊃ LKBn2 .

Proof. For the upper bound, fix θ ∈ Sn−1 and choose x0 such that hK(θ) =〈x0, θ〉. Then

the cone Cθ = conv{K ∩ θ⊥, x0} is contained in K, thus looking at volumes gives

1 = |K| ≥ |Cθ| =
1

n
hK(θ)|K ∩ θ⊥|.

This and Corollary 4.9 yield

hK(θ) ≤ n 1

|K ∩ θ⊥|
≤ 2
√

3enLK = h2
√

3enLKBn2
(θ).

Since θ is arbitrary, we get K ⊂ 2
√

3e · nLKBn2 .

For the lower bound, by symmetry |〈x, θ〉| ≤ hK(θ) for any θ ∈ Sn−1 and x ∈ K,

therefore for any θ ∈ Sn−1,

LK =

(∫
K

〈x, θ〉dx
)1/2

≤ hK(θ),

which gives LKB
n
2 ⊂ K.

4.12 Corollary. Let K be a symmetric isotropic convex body in Rn. Then,

LK ≤ |Bn2 |−1/n ≤ 1

2

√
n.

Proof. Since K ⊃ LKB
n
2 , looking at volumes gives 1 = |K| ≥ LnK |Bn2 |. Recall the

formula for the volume of the Euclidean ball (1.1) to get

|Bn2 |−1/n =
1√
π

Γ
(

1 +
n

2

)1/n

.

When n ≥ 2, by Γ(1 +x) ≤ xx, x ≥ 1, this is upper bounded by 1√
π

(
n
2

)n
2

1
n = 1√

2π

√
n <

1
2

√
n. When n = 1, |Bn2 |−1/n = 1

2 .

4.13 Remark. The symmetry assumption in Theorem 4.11 and hence in Corollary 4.12

can be omitted.
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4.4 Isotropic log-concave measures

A random vector X in Rn is isotropic if

1) X is centred, that is EX = 0

2) Cov(X) = EXXT = I, equivalently, E〈X, θ〉2 = 1 for every θ ∈ Sn−1.

For instance, a standard Gaussian vector X ∼ N(0, I) is isotropic.

How should we define the isotropic constant of isotropic random vectors? Consider

the example of a random vector X uniformly distributed on a convex body K in Rn.

Let f(x) = 1
|K|1K(x) be the density of X. We have

EX =

∫
Rn
xf(x)dx =

1

|K|

∫
K

xdx

and

E〈x, θ〉2 =

∫
Rn
〈x, θ〉2f(x)dx =

1

|K|

∫
K

〈x, θ〉2dx.

Suppose X is isotropic. Then 1) implies that K is centred and 2) gives
∫
K
〈x, θ〉2dx =

|K|, for every θ ∈ Sn−1. Therefore, if we take λ > 0 such that |λK| = 1, that is

λ = |K|−1/n, then λK is an isotropic convex body and

L2
K =

∫
λK

〈x, θ〉2dx = λn+2

∫
K

〈x, θ〉2dx = λn+2|K| = |K|−2/n.

In other words, LK = 1
|K|1/n = supx∈Rn f(x)1/n. This motives our definition.

The isotropic constant LX of a log-concave isotropic random vector X in Rn with

density fX is defined as

LX = ‖fX‖1/n∞ .

In particular, if X is symmetric, LX = fX(0)1/n.

Suppose now that we have a log-concave random vector X with density fX , which

is not necessarily isotropic. We would still like to have an expression for its isotropic

constant. Let b = EX so that X − b is centred and take a matrix A such that Y =

A(X − b) is isotropic, that is I = Cov(A(X − b)) = ACov(X − b)AT = ACov(X)AT

(why does such A exist?). Then LX = LY = ‖fY ‖1/n∞ . We have

fY (x) = det(A−1)fX−b(A
−1x) = (detA)−1fX(A−1(x+ b))

and 1 = det(ACov(X)AT ) = (detA)2 det(Cov(X)), so

LX = ‖fY ‖1/n∞ = (detA)−1/n‖fX‖1/n∞ = (det Cov(X))
1
2n ‖fX‖1/n∞ .

4.14 Corollary. Let X be a log-concave random vector X in Rn with density f . Then

the isotropic constant of X equals

LX = (det Cov(X))
1
2n ‖f‖1/n∞ . (4.2)
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Since log-concave distributions naturally generalise uniform distributions on convex

sets, it is reasonable to ask in the spirit of the slicing problem whether the isotropic

constants of the former are also uniformly bounded.

4.15 Conjecture (Slicing problem’). There is a positive constant C such that for every

n and every continuous log-concave random vector X in Rn, LX ≤ C.

The slicing problem for convex bodies (Conjecture 4.7) and this presumably stronger

conjecture are in fact equivalent. There is a construction which produces a convex body

given a log-concave vector with the isotropic constants of the two different by at most

a constant factor. It relies on Ball’s inequality (Theorem 2.25).
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5 John’s position

5.1 Maximal volume ellipsoids

Existence of extremal objects is often times useful. In this chapter, we consider ellipsoids

of maximal volume contained in convex bodies. It turns out this has interesting and

important applications.

We start with existence and uniqueness of such ellipsoids.

5.1 Lemma. Given a convex body K in Rn, there exists a unique ellipsoid of maximal

volume inscribed in K.

Proof. To show the existence, consider the set A of all ellipsoids contained in K

A = {(b, T ), b ∈ Rn, T is an n× n positive definite real matrix , b+ TBN2 ⊂ K}.

This is a bounded set (if b+TBn2 ⊂ K ⊂ RBn2 , then b ∈ RBn2 , TBn2 ⊂ RBn2 , so ‖T‖op ≤
R) which is closed, hence compact. Therefore, the supremum of |b+TBn2 | = (detT )|Bn2 |
is attained on A (because det is continuous), which show that there is an ellipsoid of

maximal volume in K.

To address the uniqueness, suppose there are two ellipsoids E1 and E2 inK of maximal

volume. Without loss of generality, say E1 = Bn2 and E2 = b + TBn2 . Since |E1| = |E2|,
we have detT = 1. Since E1, E2 ⊂ K, by convexity,

E =
b

2
+
I + T

2
Bn2 =

E1 + E2
2

⊂ K,

so E is another ellipsoid in K and looking at volumes, by the maximality of E1 and E2,

det
(
I+T

2

)
≤ 1. On the other hand, if we denote the eigenvalues of T by ti, then by the

AM-GM inequality,

det

(
I + T

2

)1/n

=

[∏ 1 + ti
2

]1/n

≥
[∏ 1

2

]1/n

+

[∏ ti
2

]1/n

=
1

2
+

1

2
(detT )1/n = 1,

thus we have equality here, which is the case if and only if the ti are constant, so they

are all 1, that is T = I, or E2 = b+ Bn2 . If E1 6= E2, then b 6= 0, but then we can dilate

the ellipsoid b
2 + Bn2 ⊂ conv{Bn2 , b + Bn2 } ⊂ K a bit along the direction b to get an

ellipsoid in K of a larger volume.

5.2 Corollary. Given a convex body K in Rn, there exists a unique ellipsoid of minimal

volume containing K.

Proof. Use duality (apply Lemma 5.1 to polars).

We say that a convex body is in John’s position if Bn2 is its ellipsoid of maximal

volume. Since Bn2 is an invertible affine image of any ellipsoid, by Lemma 5.1 any convex

body can be put (by an invertible affine map) in John’s position.
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John showed that when a body is in John’s position, there are points which make this

fact much more workable. Ball showed that the sort of opposite statement also holds,

that is in order to check whether Bn2 is the maximal volume ellipsoid, it suffices to exhibit

contact points. A point x is a contact point of a body K and Bn2 , if x ∈ ∂Bn2 ∩ ∂K,

or in other words, |x| = 1 = ‖x‖K . We shall assume symmetry in both of these results.

5.3 Theorem (John). If Bn2 is the maximal volume ellipsoid inside a symmetric convex

body K in Rn, then there exist contact points x1, . . . , xm of K and Bn2 and positive

numbers c1, . . . , cm with m ≤
(
n+1

2

)
+ 1 such that for every x ∈ Rn,

x =

m∑
i=1

ci〈x, xi〉xi. (5.1)

5.4 Remark. If Bn2 ⊂ K and x is a contact point of K and Bn2 , then x is also a contact

point of the polar, ‖x‖K◦ = 1. Indeed, since Bn2 ⊂ K, if H is a supporting hyperplane

at x of K, then H is also a supporting hyperplane at x of Bn2 , but there is only one

choice for the latter, namely x+ x⊥, so H = x+ x⊥. Therefore,

‖x‖K◦ = hK(x) = sup
y∈K
〈x, y〉≤ sup

y∈H−
〈x, y〉≤〈x, x〉= 1.

On the other hand, we trivially have ‖x‖K◦ = hK(x) = supy∈K〈x, y〉 ≥ 〈x, x〉 = 1 by

picking y = x.

5.5 Remark. Condition (5.1) can be equivalently stated in terms of matrices as

I =

m∑
i=1

cixix
T
i . (5.2)

Taking trace gives in particular that

m∑
i=1

ci = n. (5.3)

Moreover,

|x|2 =〈x, x〉=
〈
x,
∑

ci〈x, xi〉xi
〉

=

m∑
i=1

ci〈x, xi〉2. (5.4)

Proof of Theorem 5.3. Looking at (5.2) and (5.3), we see that in fact we want to show

that
1

n
I ∈ conv{xxT , x is a contact point}

where xxT can be treated as elements of R(n+1
2 ) (because the positive semi-definite

matrices can be viewed as a subset of R(n+1
2 )). Then, by Carathéodory’s theorem 1.1,

we know that it is enough to take m ≤
(
n+1

2

)
+ 1 contact points.

If 1
nI is not in the convex hull of the contact points, it can be separated from it,

meaning there is an n× n symmetric matrix φ such that〈
φ,

1

n
I

〉
< α <

〈
φ, xxT

〉
, x ∈ ∂Bn2 ∩ ∂K.
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By considering φ− 1
n (trφ)I, we can assume that

〈
φ, 1

nI
〉

= 0 and trφ = 0, so

〈φx, x〉=
∑
i,j

φi,jxixj =
〈
φ, xxT

〉
> α

for all contact points for some α > 0.

For δ > 0 small enough (so small that I + δφ is positive definite), consider the

(nondegenerate) ellipsoid

Eδ = {x ∈ Rn, 〈x, (I + δφ)x〉≤ 1}.

Note that

|Eδ| = (det(I + δφ))−1/2|Bn2 | >
(

1

n
tr(I + δφ)

)−n/2
|Bn2 | = |Bn2 |

by the AM-GM inequality (which is strict because otherwise all the eigenvalues of φ are

the same and zero as trφ = 0, but φ is nonzero). This means that Eδ is an ellipsoid of

a larger volume that Bn2 . We reach a desired contradiction, if we show that Eδ is in K

for δ small enough.

To this end, we show that for every unit vector v we have v
‖v‖K /∈ Eδ. Let

U = {u ∈ Sn−1, u is a contact point of K and Bn2 }

be the set of all contact points. First consider the unit vectors which are away from the

contact points

V =

{
x ∈ Sn−1, dist(x, U) ≥ α

2‖φ‖

}
.

This is a compact set. Let d = max{‖x‖K , x ∈ V }. Note that d < 1 because Bn2 ⊂ K.

Let λ = minx∈V 〈φx, x〉. Since trφ = 0 and φ is nonzero, it has at least one negative and

one positive eigenvalue. In particular, there is a vector w such that 〈φw,w〉< 0. Then

for every u ∈ U ,

0 >〈φw,w〉=〈φu, u〉+〈φu,w − u〉+〈φ(w − u), u〉> α− 2|w − u|‖φ‖,

hence |w − u| > α
2‖φ‖ implying w ∈ V and λ < 0. Take δ < 1−d2

|λ| . Then for v ∈ V ,∥∥∥∥ v

‖v‖K

∥∥∥∥2

Eδ
=

〈
(I + δφ)

v

‖v‖K
,

v

‖v‖K

〉
=

1 + δ〈φv, v〉
‖v‖2K

≥ 1 + δλ

‖v‖2K
≥ 1 + δλ

d2
> 1,

that is v
‖v‖K /∈ Eδ.

Now suppose v ∈ Sn−1 \ V . There is a contact point u ∈ U such that |u− v| < α
2‖φ‖

and we have

|〈(I + δφ)v, v〉−〈(I + δφ)u, u〉| = δ |〈φv, v〉−〈φu, u〉|

≤ δ |〈φv, v〉−〈φv, u〉|+ δ |〈φv, u〉−〈φu, u〉|

≤ 2δ‖φ‖|u− v| < δα.
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Since v ∈ Bn2 ⊂ K, ‖v‖K ≤ 1 and we get∥∥∥∥ v

‖v‖K

∥∥∥∥2

Eδ
≥ ‖v‖2Eδ =〈(I + δφ)v, v〉≥〈(I + δφ)v, v〉− δα > 1 + δα− δα = 1,

thus v
‖v‖K /∈ Eδ in this case as well.

5.6 Theorem (Ball). Let K be a symmetric convex body in Rn such that it contains Bn2

and there are some contact points u1, . . . , um ∈ ∂Bn2 ∩ ∂K and weights c1, . . . , cm > 0

such that

I =

m∑
i=1

ciuiu
T
i .

Then Bn2 is the maximal volume ellipsoid in K.

Proof. Instead of K, consider the polyhedron given by the hyperplanes tangent to the

unit ball at contact points,

L = {y ∈ Rn, ∀ i ≤ m 〈ui, y〉≤ 1}.

Particularly, the ui are also contact points of L and Bn2 . If y ∈ K, then 〈ui, y〉 ≤
‖ui‖K◦‖y‖K = 1, so K ⊂ L and it is enough to show that Bn2 is the maximal volume

ellipsoid in L. Take an ellipsoid

E =

{
x ∈ Rn,

n∑
i=1

〈x, vi〉2

α2
i

}
with (vi)

n
i=1 being an orthonormal basis and αi > 0. Suppose E ⊂ L. Let yi =∑

j αj〈ui, vj〉vj . Since

∑
k

〈yi, vk〉2

α2
k

=
∑
k

〈ui, vk〉2 = |ui|2 = 1,

we get yi ∈ E ⊂ L and thus 〈yi, ui〉≤ ‖yi‖L‖ui‖L◦ ≤ 1. Therefore,

∑
j

αj =
∑
j

αj |vj |2 =
∑
i,j

ciαj〈ui, vj〉2 =
∑
i

ci

〈∑
j

αj〈ui, vj〉vj , ui

〉

=
∑
i

ci〈yi, ui〉≤
∑
i

ci = n.

By the AM-GM inequality,

|E| =
(∏

αj

)
|Bn2 | ≤ |Bn2 |,

so Bn2 is the maximal volume ellipsoid.

5.7 Remark. Theorems 5.3 and 5.6 give a characterisation that for a symmetric convex

body K which contains Bn2 , Bn2 is the maximal volume ellipsoid in K if and only if

for some unit vectors u1, . . . , um ∈ ∂K and positive weights c1, . . . , cm we have I =∑m
i=1 ciuiu

T
i . If K is not necessarily symmetric, the same remains true after adding the

condition that
∑m
i=1 ciui = 0.
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5.2 Applications

Banach-Mazur distance

Our first application draws from the fact that symmetric convex bodies in John’s position

have a not too large outerradius (cf. Theorem 4.11).

5.8 Theorem. For a symmetric convex body K in Rn which is in John’s position we

have

Bn2 ⊂ K ⊂
√
nBn2 .

5.9 Corollary. The Banach-Mazur distance of any symmetric convex body in Rn to the

unit ball Bn2 is at most
√
n.

Proof. Consider T ∈ GL(n) such that TK is in John’s position. Then Bn2 ⊂ TK ⊂
√
nBn2 , so recalling the definition of the Banach-Mazur distance, we see that indeed

dBM (K,Bn2 ) ≤
√
n.

Proof of Theorem 5.8. Note that by (5.4) and (5.3) for any x ∈ K, we have

|x|2 =
∑
i

ci〈x, ui〉2 ≤
∑
i

ci(‖x‖K‖ui‖K◦)2 ≤
∑
i

ci = n,

where the ui are contact points and ci are weights from John’s theorem 5.3.

Thanks to the (multiplicative) “triangle inequality” for the Banach-Mazur distance,

we also get that for any two symmetric convex bodies K and L in Rn,

dBM (K,L) ≤ n.

This bound is sharp in a sense that for n large enough, there are symmetric convex

bodies K and L in Rn such that dBM (K,L) > cn, for an absolute constant c > 0

(Gluskin’s theorem).

Circumscribed cube

Our second application is about circumscribing a small cube around a symmetric convex

body in John’s position. It turns out to be possible to fit a certain
√
n-dimensional slice

of an n-dimensional body into a cube of constant side length. This result will be crucial

in the next chapter when we discuss almost Euclidean sections of convex bodies.

5.10 Theorem (Dvoretzky-Rogers factorisation). Suppose that Bn2 is the maximal vol-

ume ellipsoid of a symmetric convex body K in Rn. There are s =
⌊√

n
4

⌋
orthogonal

unit vectors z1, . . . , zs such that for every reals a1, . . . , as, we have

1

2
max
i≤s
|ai| ≤

∥∥∥∥∥
s∑
i=1

aizi

∥∥∥∥∥
K

≤

√√√√ s∑
i=1

a2
i .
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5.11 Remark. Equivalently, the assertion says that there is a subspace H of dimension

s =
⌊√

n
4

⌋
and an orthogonal map U such that

Bn2 ∩H ⊂ K ∩H ⊂ 2(UBn∞ ∩H).

Proof. Let x1, . . . , xm be contact points and c1, . . . , cm positive weights guaranteed by

John’s theorem 5.3 such that

I =

m∑
i=1

cixix
T
i .

Let z1 = x1. We select the remaining vectors zi in the following greedy procedure:

suppose that orthogonal unit vectors z1, . . . , zk have been selected and consider the

projection P onto (span{z1, . . . , zk})⊥. Let l ≤ m be an index such that

|Pxl| = max
j≤m
|Pxj |.

Note that then

n− k = trP = tr(PI) =
∑

citr(Pxix
T
i ) =

∑
citr〈xi, Pxi〉=

∑
ci|Pxi|2

≤ |Pxl|2n.

Some explanation: since P is a projection, PT = P and P 2 = P , so P = PTP and

〈xi, Pxi〉=
〈
xi, P

TPxi
〉

=〈Pxi, Pxi〉

In the last inequality we used the choice of l and (5.3). Rearranging we get

|Pxl|2 ≥
n− k
n

.

In particular, Pxl is nonzero. Set

zk+1 =
Pxl
|Pxl|

.

Clearly, z1, . . . , zk, zk+1 are unit orthogonal vectors. We shall show that in this inductive

greedy procedure we also have

‖zk‖K◦ ≤ 2, k ≤
√
n

4
.

Since z1 was chosen among contact points, ‖z1‖K◦ = 1. Suppose that ‖zj‖K◦ ≤ 2 for

j ≤ k. Let us write xl selected in the k + 1 step as

xl = Pxl + (I − P )xl = |Pxl|zk+1 +

k∑
j=1

αjzj ,

for some αj ∈ R. Using orthogonality,

1 = |xl|2 = |Pxl|2 +

k∑
j=1

α2
j ,
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hence
k∑
j=1

α2
j = 1− |Pxl|2 ≤

k

n
.

Therefore,

‖zk+1‖K◦ =

∥∥∥∥xl −
∑
j αjzj

|Pxl|

∥∥∥∥
K◦
≤
√

n

n− k

‖xl‖K◦ +
∑
j

|αj |‖zj‖K◦

 .

Since xl is a contact point, ‖xl‖K◦ = 1 and by the inductive assumption ‖zj‖K◦ ≤ 2.

By the Cauchy-Schwarz inequality,
∑
j |αj | ≤

√
k
√∑

j α
2
j ≤ k√

n
. Putting it all together

yields

‖zk+1‖K◦ ≤
√

n

n− k

(
1 +

2k√
n

)
.

The right hand side is clearly an increasing function of k. Plugging in k =
√
n

4 it becomes√
1

1− 1
4
√
n

· 3
2 ≤

√
1

1− 1
4
√

1

· 3
2 =
√

3 < 2.

We have constructed at least s =
⌊√

n
4

⌋
orthogonal unit vectors z1, . . . , zs such that

‖zj‖K◦ ≤ 2. Consider z =
∑s
j=1 ajzj , a1, . . . , as ∈ R. Observe that for any j ≤ s,

|aj | = |〈z, zj〉| ≤ ‖z‖K‖zj‖K◦ ≤ 2‖z‖K ,

which gives the left inequality of the assertion. The right one is clear because of orthog-

onality and Bn2 ⊂ K,

‖z‖K ≤ ‖z‖Bn2 = |z| =

√√√√ s∑
j=1

a2
j .

Reverse isoperimetry

Recall that the classical isoperimetry (see Theorem 2.6) says that among all sets with

fixed volume, spheres have the smallest surface area. Let us consider the reverse problem:

among all sets with fixed volume, which ones have the largest surface area? A quick

thought reveals that pancakes can in fact have arbitrarily large surface area having their

volume fixed. What if we ask the same question modulo affine invariance, meaning we

consider sets the same when they are invertible affine images of one another?

5.12 Theorem (Ball). (i) Let K be a convex body in Rn and let ∆ be a regular n-

dimensional simplex. Then there is an affine image K̃ of K such that

|K̃| = |∆| and |∂K̃| ≤ |∂∆|.

(ii) If K is in addition symmetric, then there is a linear image K̃ of K such that

|K̃| = |Bn∞| and |∂K̃| ≤ |∂Bn∞|.
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The volume ratio of a convex body K in Rn is defined as

vr(K) =

(
|K|
|E|

)1/n

, E is the maximal volume ellipsoid in K.

Note that this is an affine invariant quantity. The reverse isoperimetry theorem due to

Ball follows from his theorem concerning sets having maximal volume ratio.

5.13 Theorem (Ball). (i) Among all convex bodies in Rn, the n-dimensional regular

simplex has the largest volume ratio.

(ii) Among all symmetric convex bodies in Rn, the cube Bn∞ has the largest volume ratio.

We shall only consider the symmetric case (the nonsymmetric case requires further,

a bit technical, considerations).

Proof of Theorem 5.12 (ii) from Theorem 5.13 (ii). Let K̃ be the affine image ofK such

that for some positive λ, λBn2 is the maximal volume ellipsoid in K̃ and |K̃| = |Bn∞|.
Since Bn2 ⊂ 1

λK̃, we have

|∂K̃| = lim inf
ε→0+

|K̃ + εBn2 | − |K̃|
ε

≤ lim inf
ε→0+

|K̃ + ε
λK̃| − |K̃|
ε

= |K̃|n
λ

= |Bn∞|
n

λ
.

Note that n|Bn∞| = 2n · 2n−1 = |∂Bn∞|. By Theorem 5.13,

1

λn
|K̃|
|Bn2 |

=
|K̃|
|λBn2 |

= vr(K)n ≤ vr(Bn∞)n =
|Bn∞|
|Bn2 |

,

so canceling |K̃| = |Bn∞| and |Bn2 | gives 1
λ ≤ 1, thus |∂K̃| ≤ |∂Bn∞|.

The proof of Theorem 5.13 about maximising the volume ratio goes from Ball’s

geometric form of the Brascamp-Lieb inequality, which we leave for now and show it

later, together with the reversal due to Barthe.

5.14 Theorem (Ball/Brascamp-Lieb). If some unit vectors u1, . . . , um in Rn and pos-

itive numbers c1, . . . , cm satisfy

I =

m∑
i=1

ciuiu
T
i ,

then for any integrable functions f1, . . . , fm : R→ [0,∞), we have∫
Rn

m∏
i=1

(fi(〈x, ui〉))cidx ≤
m∏
i=1

(∫
R
fi

)ci
.

Proof of Theorem 5.13 (ii) from Theorem 5.14. Since the maximal volume ellipsoid of

Bn∞ is Bn2 and the volume ration is affine invariant, we need to show that if Bn2 is the

maximal volume ellipsoid in K, then |K| ≤ |Bn∞|. In that case, by John’s theorem

5.3, there are contact points u1, . . . , um and positive numbers c1, . . . , cm such that I =
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∑
cixix

T
i . By symmetry, K ⊂

⋂
i≤m{x ∈ Rn, |〈x, ui〉| ≤ 1}, thus from Theorem 5.14

and (5.3),

|K| =
∫
Rn

1K(x)dx ≤
∫
Rn

∏
i≤m

1[−1,1](〈x, ui〉)cidx ≤
∏
i≤m

(∫
1[−1,1]

)ci
=
∏
i≤m

2ci = 2n = |Bn∞|.
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6 Almost Euclidean sections

Recall the Dvoretzky-Rogers theorem 5.10 which says that every symmetric convex body

K in Rn admits a subspace H of dimension roughly
√
n such that BH2 ⊂ K ∩H ⊂ 2BH∞,

where BH2 is the unit Euclidean ball in H and BH∞ is the cube in H with respect to a

certain orthonormal basis. Grothendieck asked whether BH∞ can be replaced with BH2 so

that we have a sort of matching lower and upper bound, possibly lowering the dimension

of H but still going to infinity as n→∞. Dvoretzky answered this question positively.

The optimal dimension dependence was established by Milman using concentration of

measure. The result itself as well as its influential proof are cornerstones of asymptotic

convex geometry.

In this chapter we only focus on what is true when the dimension is large enough and

do not care about values of absolute constants. For convenience, c, C, c1, C1, . . . always

denote positive universal constants, values of which may change from one occurrence to

another.

6.1 Dvoretzky’s theorem

The goal of this section is to prove the following quantitative version of Dvoretzky’s

theorem.

6.1 Theorem. There is an absolute constant c such that for every ε ∈ (0, 1), every

symmetric convex body K in Rn has a (1 + ε)-Euclidean section of dimension k ≥
cε2

log 1
cε

log n, that is there is a k-dimensional subspace F of Rn and a constant C > 0

such that
1

1 + ε
C(Bn2 ∩ F ) ⊂ K ∩ F ⊂ (1 + ε)C(Bn2 ∩ F ).

This is a stronger statement than

dBM (K ∩ F,Bn2 ∩ F ) ≤ (1 + ε)2

which amounts to saying that there is an invertible linear map T ∈ GL(n) such that

T (Bn2 ∩ F ) ⊂ K ∩ F ⊂ (1 + ε)2T (Bn2 ∩ F ),

that is K has a (1 + ε)-ellipsoidal section (T (Bn2 ∩ F ) is an ellipsoid).

On the other hand, ellipsoids admit exact Euclidean sections of a proportional di-

mension, as shown in the next lemma.

6.2 Lemma. Let E be a centred ellipsoid in Rn. There is a dn2 e-dimensional subspace

F of Rn such that E ∩ F is a Euclidean ball.

Proof. By possibly rotating, we can assume that

E = {x ∈ Rn,
n∑
i=1

αix
2
i ≤ 1}
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with 0 < α1 ≤ α2 ≤ . . . ≤ αn. Take c = Med((αi)
n
i=1) and F to be the subspace of the

solutions to the system of equations

{
∀ i ≤ bn

2
c
√
c− αixi =

√
αn−i − cxn−i

Then on F , αix
2
i +αn−ix

2
n−i = c(x2

i +x2
n−i) for all i ≤ bn2 c, so on F ,

∑
i αix

2
i =

∑
i cx

2
i

(note that when n is odd, c = α(n+1)/2). This means that E ∩ F is a ball.

6.3 Remark. Lemma 6.2 means that if we find a (1 + ε)-ellipsoidal section, we also get

a (1 + ε)-Euclidean section of a dimension possibly smaller, but at most by a factor of

2. Therefore, to prove Theorem 6.1, where we do not care about absolute constants, it

suffices to get a suitable ellipsoidal section.

We set off to prove Dvoretzky’s theorem. We fix some notation. For a normed space

X = (Rn, ‖ · ‖) and its unit ball K we introduce two parameters: the mean of the norm,

mean norm,

M = MX = MK =

∫
Sn−1

‖θ‖dσ(θ)

and its Lipschitz constant

b = inf{t > 0, ∀ x ∈ Rn ‖x‖ ≤ t|x|} = sup
x∈Sn−1

‖x‖

that is the smallest constant b such that Bn2 ⊂ bK. Throughout this chapter, we shall

write ‖ · ‖ for ‖ · ‖K (unless it is ambiguous).

The quantity M
b plays a crucial role in obtaining large dimensional Euclidean sections,

as explained in the next theorem due to Milman.

6.4 Theorem (Milman). If K is a symmetric convex body in Rn, then for every ε ∈
(0, 1) and k ≤ cε2

log 1
cε

n
(
M
b

)2
, there is a subset Γ of the set Gn,k of k-dimensional subspaces

of Rn of Haar measure νn,k(Γ) ≥ 1− exp
{
−cε2n

(
M
b

)2}
such that

∀F ∈ Γ
1

1 + ε

1

M
(Bn2 ∩ F ) ⊂ K ∩ F ⊂ (1 + ε)

1

M
(Bn2 ∩ F ).

Here c is an absolute positive constant.

We will easily deduce Dvoretzky’s theorem provided that we know n
(
M
b

)2
is at least

roughly log n. This is the case for bodies in John’s position as clarified in the following

lemma.

6.5 Lemma. If Bn2 is the maximal volume ellipsoid in a convex body K in Rn, then

MK

b
≥ c
√

log n

n
,

where c > 0 is an absolute constant.
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Proof of Dvoretzky’s theorem 6.1 from Milman’s theorem 6.4. For a symmetric convex

body K in Rn, take a linear map T ∈ GL(n) such that TK is in John’s position. By

Milman’s theorem and Lemma 6.5 applied to TK, we get a (1 + ε)-Euclidean section of

TK of dimension

k0 ≥

⌊
cε2

log 1
cε

n

(
M

b

)2
⌋
≥
⌊
cε2

log 1
cε

log n

⌋
.

This gives a (1 + ε)-ellipsoidal section of K of dimension k0, which by Lemma 6.2 (see

also Remark 6.3) gives a (1 + ε)-Euclidean section of K of dimension dk02 e.

Proof of Lemma 6.5. We have Bn2 ⊂ K, in other words, ‖x‖ ≤ |x| for every x ∈ Rn,

so b ≤ 1. It suffices to show that M is large. Let u1, . . . , uk, k = b
√
n

4 c be orthog-

onal unit vectors from the Dvoretzky-Rogers factorisation 5.10 applied to K, that is

‖
∑
i≤k aiui‖ ≥

1
2 maxi≤k |ai|. Extend (ui)i≤k to an orthonormal basis (ui)i≤n of Rn.

Then by rotational invariance,

M =

∫
Sn−1

‖θ‖dσ(θ) =

∫
Sn−1

‖
∑

θiei‖dσ(θ1, . . . , θn)

=

∫
Sn−1

‖
∑

θiεiui‖dσ(θ1, . . . , θn).

for any choice of signs ε1, . . . , εn ∈ {−1, 1}. In particular, averaging over a random

vector ε = (ε1, . . . , εn) of independent random signs yields

M =

∫
Sn−1

Eε‖
∑

εiθiui‖dσ(θ1, . . . , θn).

By independence and the triangle inequality,

Eε‖
∑

εiθiui‖ ≥ E(εi)i≤k‖
∑
i≤k

εiθiui + E(εi)i>k

∑
i>k

θiεiui‖ = Eε‖
∑
i≤k

εiθiui‖,

thus

M ≥
∫
Sn−1

Eε‖
∑
i≤k

εiθiui‖dσ(θ) =

∫
Sn−1

‖
∑
i≤k

θiui‖dσ(θ) ≥ 1

2

∫
Sn−1

max
i≤k
|θi|dσ(θ).

Since k ≥ c
√
n, it remains to show the following lemma.

6.6 Lemma. For every k ≤ n,∫
Sn−1

max
i≤k
|θi|dσ(θ) ≥ c

√
log k

n
,

where c > 0 is a universal constant.

Proof. LetX be a random vector uniformly distributed on Sn−1. It is easier to work with

a standard Gaussian vector G in Rn rather than X because we can use independence

and the two are related (recall Theorem A.2): X ∼ G
|G| . We have∫

Sn−1

max
i≤k
|θi|dσ(θ) = Emax

i≤k
|Xi| = E

1

|G|
max
i≤k
|Gi|.
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By Chebyshev’s inequality,

P
(
|G| ≥

√
3n
)
≤ 1

3n
E|G|2 =

1

3
.

By independence,

P
(

max
i≤k
|Gi| ≤ c

√
log k

)
=
∏
i≤k

P
(
|Gi| ≤ c

√
log k

)
= P

(
|G1| ≤ c

√
log k

)k
.

By a direct computation,

P
(
|G1| ≤ c

√
log k

)
= 1− 2√

2π

∫ ∞
c
√

log k

e−t
2/2dt ≤ 1− 2√

2π

∫ c
√

log k+1

c
√

log k

e−t
2/2dt

≤ 1− 2√
2π
e−(c

√
log k+1)2/2dt.

For k ≥ 2 and, say c =
√

2
10 , we get c

√
log k + 1 ≤

√
2 log k and

P
(
|G1| ≤ c

√
log k

)k
≤
(

1−
√
π

2

1

k

)k
< e−

√
π
2 <

1

2
.

Putting these together, the union bound gives

P
(
|G| <

√
3n, max

i≤k
|Gi| > c

√
log k

)
≥ 1− 1

3
− 1

2
=

1

6
,

consequently,

E
1

|G|
max
i≤k
|Gi| ≥

1

6

1√
3n
c
√

log k.

6.7 Remark. Regardless the position, we always have M
b ≥

c√
n

with a universal

constant c > 0. This is essentially because, by the definition of b, Bn2 ⊂ bK and

there is a contact point u ∈ ∂bK ∩ Sn−1, so bK is contained is the symmetric slab

{x ∈ Rn, 〈x, u〉≤ 1}. It remains to compare the norms.

Our last task in this section is to prove Milman’s theorem. We fix ε ∈ (0, 1) and a

symmetric convex body K in Rn. We write in short ‖ · ‖K = ‖ · ‖. We want to find a

subset Γ of subspaces (of large dimension) of large measure for which the sections of K

are (1 + ε)-Euclidean, that is

∀F ∈ Γ
1

1 + ε

1

M
(Bn2 ∩ F ) ⊂ K ∩ F ⊂ (1 + ε)

1

M
(Bn2 ∩ F ).

or

∀F ∈ Γ
1

1 + ε
M ≤ ‖x‖ ≤ (1 + ε)M, x ∈ SF = Sn−1 ∩ F.

The argument is based on concentration of measure on the sphere (Corollary 3.2) and

approximation by nets (Lemma B.3). Recall the crucial parameters: the mean norm,

M =
∫
Sn−1 ‖θ‖dσ(θ) and the Lipschitz constant, smallest b such that ‖x‖ ≤ b|x| for all

x ∈ Rn.
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Proof of Milman’s theorem 6.4

Step 1 (Majority of rotations send unit vectors close to M∂K). For unit vectors

y1, . . . , ym with m ≤ c1e
c1ε

2n, there is a set B of orthogonal maps, B ⊂ O(n) of Haar

measure ν(B) ≥ 1− e−c2ε2n such that

∀U ∈ B ∀j ≤ m M − bε ≤ ‖Uyj‖ ≤M + bε. (6.1)

Explanation: consider the set

A = {x ∈ Sn−1, M − bε ≤ ‖x‖ ≤M + bε}

and apply the concentration for the 1-Lipschitz function 1
b‖x‖ on Sn−1 around its mean

M
b (Corollary 3.2) to get

σ(A) ≥ 1− Ce−cε
2n.

For every j ≤ m take the set of “good” orthogonal maps for yj ,

Bj = {U ∈ O(n), M − bε ≤ ‖Uyj‖ ≤M + bε}

and let B = ∩j≤mBj . Of course, (6.1) holds for this set B. Since ν(Bj) = σ(A), the

union bound gives

ν(Bc) ≤
∑
j≤m

ν(Bcj ) ≤ m · Ce−cε
2n ≤ c1Ce(c1−c)ε2n ≤ e−c2ε

2n.

Step 2 (Random subspaces work well for nets). If
(
1 + 2

δ

)k ≤ c1e
c1ε

2n, then there is a

set Γ ⊂ Gn,k of k-dimensional subspaces of Haar measure ν(Γ) ≥ 1− e−c2ε2n such that

for every F ∈ Γ there is a δ-net NF of SF (for the Euclidean distance) with

M − bε ≤ ‖x‖ ≤M + bε, x ∈ NF . (6.2)

Explanation: let F0 = span{e1, . . . , ek} and take a δ-net N0 = {y1, . . . , ym} of SF0 with

m ≤
(
1 + 2

δ

)k
(Lemma B.3). Take a set B ⊂ O(n) provided by Step 1 for the vectors

y1, . . . , ym and for every U ∈ B define FU = UF0, NF = UN0 (note that SFU = USF0
.

Clearly, the choice Γ = {FU , U ∈ B} ⊂ Gn,k is as desired and ν(Γ) = ν(B).

Step 3 (From nets to whole spheres). For a set Γ from Step 2, for every F ∈ Γ,

1− 2δ

1− δ
M − bε

1− δ
≤ ‖x‖ ≤ M + bε

1− δ
, x ∈ SF . (6.3)

Explanation: for the upper bound, we want to show that A = supy∈SF ‖y‖ ≤
M+bε
1−δ .

Consider x ∈ SF along with its approximation x0 ∈ NF from a δ-net NF of SF such

that |x− x0| ≤ δ. From Step 2, ‖x0‖ ≤M + bε, so

‖x‖ ≤ ‖x− x0‖+ ‖x0‖ ≤
∥∥∥∥ x− x0

|x− x0|

∥∥∥∥ |x− x0|+M + bε ≤ Aδ +M + bε.
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Taking the supremum over x ∈ SF , we get A ≤ Aδ +M + bε as needed.

For the lower bound, a similar argument gives

‖x‖ ≥ ‖x0‖ − ‖x− x0‖ ≥M − bε−
∥∥∥∥ x− x0

|x− x0|

∥∥∥∥ |x− x0|

≥M − bε−Aδ

≥M − bε− M + bε

1− δ
δ =

1− 2δ

1− δ
M − bε

1− δ
.

Step 4 (Adjusting parameters). Given ε0 ∈ (0, 1), we use Step 2 and 3 with

δ =
ε0

6
and ε =

M

b
δ =

M

b

ε0

6
.

We need to guarantee that
(
1 + 2

δ

)k ≤ c1ec1ε2n, that is(
1 +

12

ε0

)k
≤ c1e

c1
36 ε

2
0n(Mb )

2

,

which holds as long as

k ≤ cε2
0

log 1
cε0

n

(
M

b

)2

.

We get a set Γ ⊂ Gn,k of subspaces of Haar measure

ν(Γ) ≥ 1− exp{−c2ε2n} = 1− exp

{
−cε2

0n

(
M

b

)2
}
.

such that for every subspace F ∈ Γ, we have (6.3), that is

1− 2δ

1− δ
M − bε

1− δ
≤ ‖x‖ ≤ M + bε

1− δ
, x ∈ SF .

We check that
1− 2δ

1− δ
M − bε

1− δ
≥ 1

1 + ε0
M

and
M + bε

1− δ
≤ (1 + ε0)M.

This finishes the proof of Milman’s theorem 6.4. �

6.2 Critical dimension

For an n-dimensional normed space X = (Rn, ‖ · ‖) we define its critical dimension

k(X) as the largest integer k0 ≤ n for which

ν

{
F ∈ Gn,k,

1

2
M |x| ≤ ‖x‖ ≤ 2M |x| ∀x ∈ F

}
≥ 1− k0

n+ k0
, k = 1, . . . , k0.

In words, this is the largest dimension of 2-Euclidean sections existing for prevailing

subspaces. We also set k̃(X) to be the largest integer k0 ≤ n for which

ν

{
F ∈ Gn,k,

1

2
M |x| ≤ ‖x‖ ≤ 2M |x| ∀x ∈ F

}
≥ 1

2
, k = 1, . . . , k0.

Note that k̃(X) ≥ k(X).
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6.8 Remark. By Milman’s theorem 6.4,

k̃(X) ≥ cn
(
M

b

)2

.

Indeed, if n
(
M
b

)2 ≤ 1/c, there is nothing to prove. Otherwise, apply Theorem 6.4 to,

say ε = 1
2 to get that there is an integer k0 ≥ c1n

(
M
b

)2
such that for every k ≤ k0 there

is a set Γ of k-dimensional subspaces such that ν(Γ) ≥ 1−e−c2n(Mb )
2

≥ 1−e−c2/c ≥ 1/2

and for every F ∈ Γ and x ∈ F ,

2

3
M |x| ≤ ‖x‖ ≤ 3

2
M |x|.

Thus k̃(X) ≥ k0.

If a multiple of the unit ball of X is in John’s position, then

k(X) ≥ cn
(
M

b

)2

.

Indeed, apply Theorem 6.4 as above to ε = 1
2 to get that for k0 = bc1n

(
M
b

)2c and every

k ≤ k0, there is a set Γ of k-dimensional subspaces with 3/2-Euclidean sections such

ν(Γ) ≥ 1− e−c2n(Mb )
2

.

For C = c2
c1

we get c2n
(
M
b

)2 ≥ Ck0, so

ν(Γ) ≥ 1− e−Ck0 ≥ 1− k0

eCk0 + k0
.

By Lemma 6.5, n
(
M
b

)2 ≥ c log n, so (possibly increasing C), eCk0 ≥ n and consequently,

ν(Γ) ≥ 1− k0

n+ k0
.

Thus k(X) ≥ k0.

The mysterious threshold k
n+k in the definition of the critical dimension is partially

explained by the following theorem, a strong reversal of the previous remark.

6.9 Theorem (Milman-Schechtman). There is a universal constant C > 0 such that

for every n dimensional normed space X, its critical dimension satisfies

k(X) ≤ 8n

(
M

b

)2

.

Proof. Let k be equal to k(X), so that we can write n = kt + r for integers t ≥ 0 and

k > r ≥ 0. Take orthogonal subspaces E1, . . . , Et of dimension k and an orthogonal

subspace Et+1 of dimension r such that Rn =
∑t+1
i=1 Ei (if r = 0, we only need to take

E1, . . . , Et). By the definition of the critical dimension, for each i

ν{U ∈ O(n), UEi gives a 2-Euclidean section} ≥ 1− k

n+ k
.
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Note that, if r > 0, t = n−r
k < n

k , (t + 1) k
n+k < 1, and if r = 0, t k

n+k < 1, therefore,

by the union bound, there is U ∈ O(n) such that for each i, UEi gives a 2-Euclidean

section, that is

∀i ∀x ∈ UEi
1

2
M |x| ≤ ‖x‖ ≤ 2M |x|.

For every x ∈ Rn, we write x =
∑t+1
i=1 xi with xi ∈ Ei so that |x|2 =

∑
|xi|2 and by the

Cauchy-Schwarz inequality we obtain

‖x‖ ≤
∑
‖xi‖ ≤ 2M |xi| ≤ 2M

√
t+ 1|x|.

This implies b ≤ 2M
√
t+ 1, thus

n

(
M

b

)2

≥ n 1

4(t+ 1)
>

1

4
n

k

n+ k
≥ 1

8
k.

Application to polytopes

Note that the cube Bn∞ has 2n vertices and 2n facets, the cross-polytope Bn1 has 2n

vertices and 2n facets. It turns out that symmetric polytopes have etiher a lot of facets

or vertices, which is not the case without symmetry because in Rn, for instance an

n-simplex has n+ 1 vertices and n+ 1 facets (n− 1-dimensional faces).

6.10 Theorem. If P is a symmetric polytope in Rn with f(P ) facets and v(P ) vertices,

then

log f(P ) · log v(P ) ≥ cn

with a universal constant c > 0.

We shall obtain this from the following theorem and lemma.

6.11 Theorem. For every n-dimensional normed space X whose unit ball is in John’s

position,

k(X)k(X∗) ≥ cn,

where c > 0 is a universal constant and X∗ is the dual.

Proof. If a−1|x| ≤ ‖x‖ ≤ b|x|, then b−1|x| ≤ ‖x‖∗ ≤ a|x|, thus by Theorem 6.9,

k(X)k(X∗) ≥ cn2

(
MX

b

)2(
MX∗

a

)2

=
cn2

(ab)2
(MXMX∗)

2.

By the Cauchy-Schwarz inequality,

MXMX∗ =

∫
Sn−1

‖x‖dσ(x)

∫
Sn−1

‖x‖∗dσ(x) ≥
(∫

Sn−1

√
‖x‖ · ‖x‖∗dσ(x)

)2

≥
(∫

Sn−1

√
〈x, x〉dσ(x)

)2

= 1,
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so

k(X)k(X∗) ≥ cn2

(ab)2
.

In John’s position ab ≤
√
n (see Theorem 5.8), which finishes the proof.

6.12 Lemma. If P is a k-dimensional polytope with f facets such that Bk2 ⊂ P ⊂ aBk2 ,

then f ≥ e
k

2a2 .

Proof. Let us write P as the intersection of half-spaces Sj = {x ∈ Rk, 〈x, vj〉≤ 1} for

some nonzero vectors vj , j ≤ f . Since P ⊂ aBk2 , the union of the caps Scj ∩ aSk−1 =

{x ∈ Sk−1, 〈x, vj〉≥ 1} covers the sphere aSk−1, thus rescalling, Sk−1 ⊂
⋃
j≤f

1
aS

c
j and

we get from the union bound,

1 ≤
∑
j≤f

σ

{
x ∈ Rk, 〈x, vj〉≥

1

a

}

Since Bk2 ⊂ P , |vj | =
〈
vj
|vj | , vj

〉
≤ 1, so{

x ∈ Rk, 〈x, vj〉≥
1

a

}
⊂
{
x ∈ Rk,

〈
x,

vj
|vj |

〉
≥ 1

a

}
and by Lemma B.1,

1 ≤
∑
j≤f

σ

{
x ∈ Rk,

〈
x,

vj
|vj |

〉
≥ 1

a

}
≤
∑
j≤f

e−
k

2a2 = fe−
k

2a2 .

Proof of Theorem 6.10 from Theorem 6.11. Let P be an n-dimensional symmetric poly-

tope in Rn with f(P ) facets and v(P ) vertices. Consider its norm ‖ · ‖ = ‖ · ‖P and

X = (Rn, ‖ · ‖). Let k = k(X). Then there is a k-dimensional subspace F such that

1
2MP (Bn2 ∩ F ) ⊂ P ∩ F ⊂ 2MP (Bn2 ∩ F ). Applying Lemma 6.12 to the k-dimensional

polytope P ∩F which has at most f(P ) facets (every facet of P ∩F comes from a unique

facet of P ), we get

log f(P ) ≥ k

2 · 42
=

1

32
k(P ).

Thus by Theorem 6.11,

cn ≤ k(P )k(P ◦) ≤ 322 log f(P ) log f(P ◦).

To finish, note that f(P ◦) = v(P ).

6.3 Example: `np

Combining Remark 6.8 and Theorem 6.9, we get that for n-dimensional spaces X whose

(possibly dilated) unit balls are in John’s position, the largest dimension k for which

most k-dimensional sections are 2-Euclidean satisfies

k(X) ' n
(
M

b

)2

.
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Here a ' b, if there are universal constants c and C such that ca ≤ b ≤ Ca. Particularly,

this gives (up to universal constants) the value of the critical dimension for `np spaces,

which we shall now evaluate.

Recall that for a standard Gaussian random vector G in Rn and a random vector θ

uniformly distributed on Sn−1 we have E‖G‖ '
√
nE‖θ‖ (see (A.3)). Therefore,

n

(
M

b

)2

'
(
E‖G‖
b

)2

.

For the `p norms, their Lipschitz constants are easy to find: ‖x‖p ≤ |x|, p > 2 and

‖x‖p ≤ n
1
p−

1
2 |x|, 1 < p < 2 and these are sharp, so

b(`np ) =

n
1
p−

1
2 , 1 ≤ p < 2,

1, p ≥ 2.

It remains to find `p norms of a standard Guassian vector.

6.13 Lemma. Let G be a standard Gaussian random vector in Rn. Then,

E‖G‖p '

n
1/p√p, 1 ≤ p < log n,

√
log n, p ≥ log n.

Proof. We shall write G = (G1, . . . , Gn). Recall that (E|G1|p)1/p ' √p.
When p ≥ log n, we have the equivalence of the `p norm and `∞ norm, ‖x‖p ' ‖x‖∞,

x ∈ Rn. As essentially established in the proof of Lemma 6.6, Emaxi≤n |Gi| ≥ c
√

log n.

There is a matching upper-bound Emaxi≤n |Gi| ≤ C
√

log n, which follows from the

union bound (so it does not even use the independence of the Gi). Therefore,

E‖G‖p ' E‖G‖∞ '
√

log n.

Let p < log n. There is an easy upper bound, based on convexity

E‖G‖p = E

(
n∑
i=1

|Gi|p
)1/p

≤

(
E

n∑
i=1

|Gi|p
)1/p

= n1/p(E|G1|p)1/p ≤ Cn1/p√p

(we have not used that p < log n here). To reverse this bound, partition {1, . . . , n} into

roughly n
cep subsets Ij of roughly equal size exceeding cep. Then,

E‖G‖p = E

∑
j

∑
i∈Ij

|Gi|p
1/p

≥ E

∑
j

(
max
i∈Ij
|Gi|

)p1/p

≥

∑
j

(
Emax
i∈Ij
|Gi|

)p1/p

≥ c
(
n

cep

(
c
√

log |Ij |
)p)1/p

≥ cn1/p√p.
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6.14 Corollary. The critical dimension of n-dimensional `p spaces up to universal

constants equals

k(`np ) '


n, 1 ≤ p < 2,

pn2/p, 2 ≤ p < log n,

log n, p ≥ log n.

6.4 Proportional dimension

We remark that when 1 ≤ p < 2, Corollary 6.14 says that Bnp has critical dimension

' n, that is it has Euclidean sections of proportional dimension (this is not so sur-

prising given that it has 2n facets). The maximal volume ellipsoid of Bnp is n
1
2−

1
pBn2

(reason: n−1/p(±1, . . . ,±1) are contact points which clearly give the decomposition of

the identity). Thus the volume ratio equals

vr(Bnp ) =

( |Bnp |
|n1/2−1/pBn2 |

)1/n

' const, 1 ≤ p < 2.

This is not accidental as explained in the next theorem.

6.15 Theorem. Let K be a symmetric convex body in Rn such that Bn2 ⊂ K and

|K| = αn|Bn2 |, α > 1. Then for every 1 ≤ k ≤ n, we have that there is a subset Γ of

k-dimensional subspaces of Haar measure ν(Γ) ≥ 1− e−n such that

∀F ∈ Γ Bn2 ∩ F ⊂ K ∩ F ⊂ (8eα)
n
n−k (Bn2 ∩ F ).

In particular, if α is a constant, k is roughly cn, we get that K has k-dimensional

C-Euclidean sections.

Proof. Let ‖ · ‖ = ‖ · ‖K be the norm given by K. We want to find subspaces F such

that (Cα)−
n
n−k ≤ ‖x‖ ≤ 1 for x ∈ Sn−1 ∩ F = SF . Since Bn2 ⊂ K, ‖x‖ ≤ |x|, so the

upper bound is clear. To go about the lower bound, note that by the factorisation of

Haar measures (A.6) and the volume formula in polar coordinates,∫
Gn,k

∫
SF

‖x‖−ndσF (x)dνn,k(F ) =

∫
Sn−1

‖x‖−ndσ(x) =
|K|
|Bn2 |

= αn.

This gives that for

Γ = {F,
∫
SF

‖x‖−ndσF (x) ≤ (eα)n},

by Chebyshev’s inequality we have

νn,k(Γc) ≤ e−n.

Fix F ∈ Γ. Our goal is to show ‖x‖ ≥ (Cα)−
n
n−k , x ∈ SF . By Chebyshev’s inequality

and the definition of Γ,

(eα)n ≥
∫
SF

‖x‖−n1{‖x‖<r}dσF (x) ≥ r−nσF {x ∈ SF , ‖x‖ < r} ,
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thus for A = {x ∈ SF , ‖x‖ ≥ r}, σF (A) ≥ 1 − (reα)n. Fix x ∈ SF and consider a

spherical cap C(x) around x or radius r/2. By our lower bound for the measure of

spherical caps, σ(C(x)) ≥
(
r
8

)k
(Theorem B.2). Consequently,

σF (A ∩ C(x)) = σF (A) + σF (C(x))− σF (A ∪ C(x)) ≥ 1− (reα)n +
(r

8

)k
− 1

=
(r

8

)k
− (reα)n.

For any r such that this measure is positive, that is r < r0 with r0 = 8−
k

n−k (eα)−
n
n−k ,

for y ∈ A ∩ C(x) we get

‖x‖ ≥ ‖y‖ − ‖x− y‖ ≥ r − |x− y| ≥ r

2
.

Since r0
2 = 2−18−

k
n−k (eα)−

n
n−k > 8−

n
n−k (eα)−

n
n−k , k < n, by taking r appropriately

close to r0, we get

‖x‖ ≥ (8eα)−
n
n−k .

Now we prove a global version of the previous theorem.

6.16 Theorem. Let K be a symmetric convex body in Rn such that Bn2 ⊂ K and

|K| = αn|Bn2 |, α > 1. Then there exist an orthogonal map U ∈ O(n) such that

Bn2 ⊂ K ∩ UK ⊂ 16α2Bn2 .

Proof. Let ‖ · ‖ = ‖ · ‖K be the norm given by K. Since Bn2 ⊂ K, for any U ∈ O(n),

Bn2 ⊂ UK and consequently Bn2 ⊂ K ∩ UK. It suffices to find U such that K ∩ UK ⊂
Cα2Bn2 , or in other words ‖x‖K∩UK ≥ 1

Cα2 for all x ∈ Sn−1. We have

‖x‖K∩UK = max{‖x‖, ‖x‖UK} = max{‖x‖, ‖UTx‖} ≥ ‖x‖+ ‖UTx‖
2

.

Let

NU (x) =
‖x‖+ ‖UTx‖

2
.

Computing its appropriate average yields∫
O(n)

∫
Sn−1

NU (θ)−2ndσ(θ)dν(U) ≤
∫
O(n)

∫
Sn−1

1

‖θ‖n‖UT θ‖n
dσ(θ)dν(U)

=

∫
Sn−1

1

‖θ‖n

(∫
O(n)

1

‖UT θ‖n
dν(U)

)
dσ(θ)

=

∫
Sn−1

∫
Sn−1

1

‖θ‖n‖θ′‖n
dσ(θ)dσ(θ′)

=

(∫
Sn−1

1

‖θ‖n
dσ(θ)

)2

=

(
|K|
|Bn2 |

)2

= α2n,
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where we have used (A.4). Therefore, there exist U ∈ O(n) such that∫
Sn−1

NU (θ)−2ndσ(θ) ≤ α2n.

Let ε be the minimum minθ∈Sn−1 NU (θ) attained at, say θ0 ∈ Sn−1. Since ‖ · ‖ is 1-

Lipschitz (because Bn2 ⊂ K), for any θ ∈ Sn−1 such that |θ − θ0| < ε, we get NU (θ) ≤
NU (θ − θ0) +NU (θ0) ≤ 2ε. Thus,

α2n ≥
∫
Sn−1

NU (θ)−2ndσ(θ) ≥
∫
Sn−1

NU (θ)−2n1{|θ−θ0|<ε}dσ(θ)

≥ (2ε)−2nσ{θ, |θ − θ0| < ε} ≥ (2ε)−2n
(ε

4

)n
=

1

(16ε)n
,

where we have used again our lower bound for the measure of spherical caps – Theorem

B.2. This finishes the proof because

min
θ
NU (θ) = ε ≥ 1

16α2
.

When applied to Bn1 , the above proof gives Kashin’s theorem about n-dimensional

Euclidean sections of B2n
1 .

6.17 Theorem (Kashin). There are two orthonormal bases (yi)
n
i=1 and (yi)

2n
i=n+1 of

Rn such that
1

18

√
n|x| ≤

2n∑
i=1

|〈x, yi〉| ≤ 2
√
n|x|, x ∈ Rn.

Proof. We have Bn2 ⊂
√
nBn1 and it can be checked that for n ≥ 1,

|
√
nBn1 |
|Bn2 |

=
nn/22n/n!

√
π
n
/Γ(1 + n/2)

≤
(

3

2

)n
.

Taking α = 3
2 , the proof of Theorem 6.16 gives an orthogonal map U ∈ O(n) such that

1

16α2
|x| ≤ 1√

n

‖x‖1 + ‖Ux‖1
2

≤ |x|,

so setting yi = ei, yn+i = UT ei, i ≤ n gives the result.
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7 Distribution of mass

In this chapter we show two general results concerning distribution of mass in convex

bodies: 1) large deviations inequality for the Euclidean norm due to Paouris, and 2) small

ball estimates for arbitrary norms due to Lata la. Instead of just uniform distributions

on convex bodies, we shall consider log-concave distributions.

7.1 Large deviations bound

Paouris established the following general large deviations inequality for the Euclidean

norm.

7.1 Theorem. There is a universal constant C > 0 such that for every isotropic log-

concave random vector X in Rn, we have

P
(
|X| ≥ Ct

√
n
)
≤ e−t

√
n, t ≥ 1. (7.1)

Instead of Paouris’ original approach, we shall follow a later argument which goes

through a moment comparison inequality.

7.2 Theorem. There is a universal constant C > 0 such that for a log-concave random

vector X in Rn and q ≥ 1, we have

(E|X|q)1/q ≤ C
(
E|X|+ sup

θ∈Sn−1

(E|〈X, θ〉|q)1/q
)
. (7.2)

Proof that Theorem 7.2 implies Theorem 7.1. Let X be an isotropic log-concave ran-

dom vector in Rn. By isotropicity, E|〈X, θ〉|2 = 1 for every θ ∈ Sn−1 and E|X|2 = n.

Thus, E|X| ≤ (E|X|2)1/2 =
√
n. Moreover, by the moment comparison inequal-

ity for semi-norms from Theorem 3.15, (E|〈X, θ〉|q)1/q ≤ Cq(E|〈X, θ〉|2)1/2 = Cq, for

q ≥ 2. Note this bound remains true for q ≥ 1 because for q ≤ 2, (E|〈X, θ〉|q)1/q ≤
(E|〈X, θ〉|2)1/2 = 1. Therefore, (7.2) yields for every q ≥ 1,

(E|X|q)1/q ≤ C(
√
n+ q).

By Chebyshev’s inequality,

P
(
|X| ≥ C ′t

√
n
)
≤ (C ′t

√
n)−qE|X|q ≤

(
C

C ′

)q
(t
√
n)−q(

√
n+ q)q.

Given t ≥ 1, let q = t
√
n. Let C ′ = 2Ce. Then the above becomes

P
(
|X| ≥ C ′t

√
n
)
≤
(

1

2e

)q (
1 + t

t

)q
≤
(

1

e

)q
= e−t

√
n.

To prove Theorem 7.2, we need two technical lemmas.
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7.3 Lemma. For a random vector X in Rn, a norm ‖ · ‖ on Rn and q ≥ 1, we have

inf
θ∈Sn−1

(E|〈X, θ〉|q)1/q ≤ (E‖X‖q)1/q

E‖X‖
E|X|.

Proof. Let K be the unit ball with respect to ‖ · ‖ and let b be the smallest number such

that Bn2 ⊂ bK (the Lipschitz constant of ‖ · ‖). Let θ0 be a contact point of Bn2 and bK.

Then ‖θ0‖bK = 1 = ‖θ0‖(bK)◦ = b‖θ0‖K◦ (recall Remark 5.4). Thus,

|〈θ0, x〉| ≤ ‖θ0‖K◦‖x‖ = b−1‖x‖, x ∈ Rn,

which gives

(E|〈X, θ0〉|q)1/q ≤ b−1(E‖X‖q)1/q.

By the definition of b, ‖x‖ ≤ b|x|, so E‖X‖ ≤ bE|X|, which combined with the above

finishes the proof.

7.4 Lemma. For a symmetric log-concave random vector X in Rn, there is a norm ‖·‖
on Rn such that

(E‖X‖n)1/n ≤ 500E‖X‖.

Proof. Without loss of generality assume that the support of X is n-dimensional and

consider its log-concave density f : Rn → [0,∞) which is even. Since f is even and

log-concave, f(0) = ‖f‖∞. Let

K = {x ∈ Rn, f(x) ≥ 25−nf(0)}

and let ‖ · ‖ be the norm whose unit ball is K.

First, we bound E‖X‖ below. Note that

1 ≥
∫
K

f ≥ 25−nf(0)|K|

and

P
(
‖X‖ ≤ 1

50

)
=

∫
1
50K

f ≤ | 1

50
K| · f(0) =

1

50n
|K|f(0).

Using the previous estimate yields

P
(
‖X‖ ≤ 1

50

)
≤ 1

50n
25n =

1

2n
≤ 1

2
.

By Chebyshev’s inequality we can conclude that

E‖X‖ ≥ 1

50
P
(
‖X‖ > 1

50

)
≥ 1

100
.

Second, we bound E‖X‖n above. Note that

E‖X‖n = E‖X‖n1{‖X‖≤1} + E‖X‖n1{‖X‖>1} ≤ 1 + E‖X‖n1Kc .
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On Kc we have f(0) > 25nf(x) and thus

f2X(x) = 2−nf
(x

2

)
≥ 2−n

√
f(x)f(0) ≥

(
5

2

)n
f(x),

so

E‖X‖n1Kc =

∫
Kc

‖x‖nf(x) ≤
(

2

5

)n ∫
Kc

‖x‖nf2X(x) ≤
(

2

5

)n
E‖2X‖n

=

(
4

5

)n
E‖X‖n.

Using this in the second last inequality, we obtain

E‖X‖n ≤ 1

1−
(

4
5

)n ≤ 5.

Proof of Theorem 7.2. Without loss of generality we can assume that X is symmetric.

Otherwise, consider X and take its independent copy X ′. Then X −X ′ is a symmetric

log-concave random vector, so knowing the theorem for such vectors gives an upper

bound for E|X −X ′|q,

(E|X −X ′|q)1/q ≤ C
(
E|X −X ′|+ sup

θ∈Sn−1

(E|〈X −X ′, θ〉|q)1/q
)

≤ 2C
(
E|X|+ sup

θ∈Sn−1

(E|〈X, θ〉|q)1/q
)
.

By the triangle inequality |X| ≤ |X − EX|+ |EX|, so by the triangle inequality in Lq,

(E|X|q)1/q ≤ (E|X − EX|q)1/q + |EX|.

By Jensen’s inequality, E|X − EX|q = E|X − EX ′|q ≤ E|X − X ′|q and |EX| ≤ E|X|.
Combined with the previous estimates, this gives

(E|X|q)1/q ≤ C ′
(
E|X|+ sup

θ∈Sn−1

(E|〈X, θ〉|q)1/q
)
.

Assume from now on that X is symmetric. Define a function h : Rn → [0,∞),

h(u) = (E|〈X,u〉|q)1/q, u ∈ Rn,

which is a semi-norm. Let G be a standard Gaussian random vector in Rn. Conditioned

on the value of X, 〈X,G〉has the same distribution as |X|G1, hence we have

Eh(G)q = E|〈X,G〉|q = E|X|q|G1|q = E|G1|qE|X|q,

that is, introducing

cq = (E|G1|q)1/q = Θ(
√
q),

we have

(E|X|q)1/q =
1

cq
(Eh(G)q)1/q.
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Let b be the Lipschitz constant of h, that is

b = sup
θ∈Sn−1

h(θ) = sup
θ∈Sn−1

(E|〈X, θ〉|q)1/q.

By the Gaussian concentration inequality for Lipschitz functions (see Corollary 3.5 and

Remark 3.6),

P (|h(G)− Eh(G)| ≥ s) ≤ Ce−cs
2/b2 .

This and a standard computation of moments using tails yields

E|h(G)− Eh(G)|q =

∫ ∞
0

qsq−1P (|h(G)− Eh(G)| ≥ s) ds ≤ Ccqqbq.

By the triangle inequality in Lq, we can write

(Eh(G)q)1/q ≤ (E|h(G)− Eh(G)|q)1/q + Eh(G).

Putting everything together,

(E|X|q)1/q =
1

cq
(Eh(G)q)1/q ≤ 1

cq

(
Eh(G) + Ccqb

)
≤ C

( 1
√
q
Eh(G) + sup

θ∈Sn−1

(E|〈X, θ〉|q)1/q
)
.

To show (7.2), it thus remains to show that 1√
qEh(G) is upper bounded (up to a constant)

by either E|X| or b or their sum.

Case 1. If q ≥ c
(

Eh(G)
b

)2

, then 1√
qEh(G) ≤ 1√

c
b, so there is nothing to do in this case.

Case 2. If q ≤ c
(

Eh(G)
b

)2

, then by Dvoretzky’s theorem 6.4 with ε = 1
2 applied to h

(note that Mh =
∫
Sn−1 h = (1 + o(1))Eh(G)√

n
), there is subset Γ of subspaces F of Rn of

dimension k, say q ≤ k < 2q such that

2

3

Eh(G)√
n
|x| ≤ h(x) ≤ 3

2

Eh(G)√
n
|x|, x ∈ F

and

νn,k(Γ) ≥ 1− e−c
′( Eh(G)

b )
2

≥ 1− e−c
′q/c ≥ 1− e−c

′/c >
2

3
.

Let PF be the projection onto F and SF = Sn−1 ∩ F . By Lemmas 7.3 and 7.4 applied

to Y = PF (X),

inf
θ∈Sn−1

(E|〈X, θ〉|q)1/q ≤ inf
θ∈SF

(E|〈Y, θ〉|q)1/q ≤ inf
θ∈SF

(E|〈Y, θ〉|k)1/k

≤ (E‖Y ‖k)1/k

E‖Y ‖
E|Y |

≤ 500E|Y | = 500E|PF (X)|.

Since for every F ∈ Γ and θ ∈ SF ,

Eh(G) ≤ 3

2

√
nh(θ),
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by taking infimum over θ and using the above,

Eh(G) ≤ 3

2

√
n500E|PF (X)| = 750

√
nE|PF (X)|.

To finish, note that for every x ∈ Rn, we have∫
Gn,k

|PE(x)|2dνn,k(E) =
k

n
|x|2.

Explanation: we can treat E as the image of E0 = span{e1, . . . , ek} under a uniform

random orthogonal matrix U ; then |PE(x)|2 =
∑k
i=1 |〈Uei, x〉|2, 〈Uei, x〉 has the same

distribution as ηi|x|, where η is uniformly distributed on Sn−1 and E|ηi|2 = 1
n . Thus

∫
Gn,k

|PE(x)|dνn,k(E) ≤

(∫
Gn,k

|PE(x)|2dνn,k(E)

)1/2

=

√
k

n
|x|.

By Chebyshev’s inequality,

νn,k

{
F ∈ Gn,k, E|PF (X)| ≤ C

√
k

n
E|X|

}
≥ 1− 1

C
.

Choosing, say C = 3, there is nontrivial intersection of this even with Γ and picking a

subspace F belonging to both we finally get

Eh(G) ≤ 750
√
nE|PF (X)| ≤ 750

√
n · 3

√
k

n
E|X| ≤ C√qE|X|.

7.2 Small ball estimates

The goal of this section is to show Lata la’s inequality.

7.5 Theorem. For every log-concave random vector X in Rn and every norm ‖ · ‖ on

Rn, we have

P (‖X‖ < tE‖X‖) ≤ 384t, t ∈ [0, 1]. (7.3)

Proof. Let K be the unit ball with respect to ‖ · ‖. Without loss of generality we can

assume that X has a density on Rn (otherwise, consider X + εY for an independent Y

being uniform on the unit ball K of ‖ · ‖ and then use

P (‖X‖ < tE‖X‖) = lim
ε→0

P (‖X‖+ ε < tE‖X‖)

as well as

P (‖X‖+ ε < tE‖X‖) ≤ P (‖X‖+ ε‖Y ‖ < tE‖X‖) ≤ P (‖X + εY ‖ < tE‖X‖)

and E‖X‖ ≤ E‖X + εY ‖). This guarantees that ‖X‖ has no atoms and its distribution

function is thus continuous. Choose then α > 0 to be the smallest number such that

P (‖X‖ ≤ α) =
2

3
.

76



By Borell’s lemma (Theorem 3.12 and Remark 3.14), we have

P (‖X‖ > tα) ≤ 2

3

(
1− 2

3
2
3

) t+1
2

=
2

3

(
1

2

) t+1
2

, t ≥ 1.

In particular,

P (‖X‖ > 3α) ≤ 1

6
,

thus

P (α < ‖X‖ ≤ 3α) = P (‖X‖ ≤ 3α)− P (‖X‖ ≤ α) ≥ 5

6
− 2

3
=

1

6
.

Fix k ≥ 1. Define the rings

R(u) =
{
x ∈ Rn, u− α

2k
< ‖x‖ ≤ u+

α

2k

}
, u ≥ α

2k
.

Since

{x ∈ Rn, α ≤ ‖x‖ < 3α} =

2k⋃
j=1

R

(
α+

2j − 1

2k
α

)
,

for u0 = α+ 2j0−1
2k α for some 1 ≤ j0 ≤ 2k, we have

P (X ∈ R(u0)) ≥ 1

12k
.

Note that for every 0 ≤ λ ≤ 1 and u ≥ α
2k , we have

λR(u) + (1− λ)
α

2k
K ⊂ R(λu).

Indeed, if x ∈ R(u) and y ∈ K, then∥∥∥λx+ (1− λ)
α

2k
y
∥∥∥ ≤ λ‖x‖+ (1− λ)

α

2k
‖y‖ ≤ λ

(
u+

α

2k

)
+ (1− λ)

α

2k
= λu+

α

2k

and∥∥∥λx+ (1− λ)
α

2k
y
∥∥∥ ≥ λ‖x‖ − (1− λ)

α

2k
‖y‖ ≥ λ

(
u− α

2k

)
− (1− λ)

α

2k
= λu− α

2k
.

Claim. P
(
‖X‖ ≤ α

2k

)
≤ 48

k , k = 1, 2, . . ..

Proof of the claim. Suppose it does not hold, so there is k0 ≥ 1 such that

P
(
‖X‖ ≤ α

2k0

)
>

48

k0
.

As explained earlier, for this k0, there is u0 > α of the form α+ 2j0−1
2k0

α such that

P (X ∈ R(u0)) ≥ 1

12k0
.

By log-concavity,

P (X ∈ R(λu0)) ≥ P
(
X ∈ λR(u0) + (1− λ)

α

2k0
K

)
≥ P (X ∈ R(u0))

λ P
(
‖X‖ ≤ α

2k0

)1−λ

≥
(

1

12k0

)λ(
48

k0

)1−λ

.
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Note that for λ ≤ 1
2 , 481−λ

12λ
= 48

(48·12)λ
≥ 48√

48·12
= 2, so for every u ≤ u0

2 ,

P (X ∈ R(u)) = P (X ∈ R(λu0)) ≥ 2

k0
.

Consider the sets Aj = R( jk0α), 1 ≤ j ≤ k0
2 . They are disjoint. Since j

k0
α ≤ α

2 < u0

2 ,

P (X ∈ Aj) ≥ 2
k0

, so P (X ∈
⋃
Aj) ≥ bk02 c ·

2
k0

. On the other hand,
⋃
Aj is disjoint from

α
2k0

K and P
(
‖X‖ ≤ α

2k0

)
> 48

k0
. Thus,⌊

k0

2

⌋
· 2

k0
+

48

k0
≤ 1,

which gives a contradiction.

Let 0 < t ≤ 1
2 . Take an integer k ≥ 1 such that 1

4k ≤ t ≤
1
2k . Then, by the claim,

P (‖X‖ ≤ tα) ≤ P
(
‖X‖ ≤ α

2k

)
≤ 48

k
≤ 4 · 48t.

To finish the argument, observe that E‖X‖ is comparable with α. We have,

E‖X‖ =

∫ ∞
0

P (‖X‖ > t) dt ≤ α+

∫ ∞
α

P (‖X‖ > t) dt = α+ α

∫ ∞
1

P (‖X‖ > tα) dt.

Using Borell’s lemma,∫ ∞
1

P (‖X‖ > tα) dt ≤
∫ ∞

1

2

3

(
1

2

) t+1
2

dt =
2

3 log 2
< 1.

Hence, E‖X‖ ≤ 2α and we get

P (‖X‖ ≤ tE‖X‖) ≤ P (‖X‖ ≤ 2tα) · 4 · 48 · 2t = 384t,

for t ≤ 1
4 . For 1

4 < t ≤ 1, trivially,

P (‖X‖ ≤ tE‖X‖) ≤ 1 ≤ 4t.

As a corollary, we obtain a moment comparison inequality.

7.6 Theorem. For every log-concave random vector X in Rn, every norm ‖ · ‖ on Rn

and −1 < q < 0, we have

E‖X‖ ≤ e384

1 + q
(E‖X‖q)1/q

. (7.4)

Proof. We can assume that E‖X‖ = 1. Let p = −q ∈ (0, 1). We have,

E‖X‖q = E
(

1

‖X‖

)p
=

∫ ∞
0

ptp−1P
(

1

‖X‖
> t

)
dt ≤ 1 +

∫ ∞
1

ptp−1P
(
‖X‖ < 1

t

)
dt.

By (7.3), ∫ ∞
1

ptp−1P
(
‖X‖ < 1

t

)
dt ≤ 384

∫ ∞
1

ptp−2dt =
384p

1− p
.
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This gives,

1

1 + q
(E‖X‖q)1/q ≥ 1

1− p

(
1 +

384p

1− p

)−1/p

= (1 + 383p)−1/p(1− p)1/p−1.

Clearly, (1 + 383p)−1/p ≥ e383p−1
p = e−383. For the second term, we check (by taking

the logarithm and differentiating) that p→ (1−p)1/p−1 increases on (0, 1), so it is lower

bounded by its limit at p→ 0, which is e−1.
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8 Brascamp-Lieb inequalities

The goal of this section is to present Brascamp-Lieb inequalities and their reverse form,

due to Barthe. We shall follow his unified approach to both results. As applications, we

give a proof of Ball’s inequality (Theorem 5.14) omitted earlier, Young’s inequality for

convolutions with sharp constants, derive the entropy power inequality and, as a good

excuse, discuss the relation between entropy and the slicing problem (Conjecture 4.15).

8.1 Main result

Given m ≥ n, positive numbers c1, . . . , cm such that
∑m
i=1 ci = n and vectors v1, . . . , vm

in Rn define for integrable functions f1, . . . , fm : R→ [0,∞) the following operators

J(f1, . . . , fm) =

∫
Rn

m∏
i=1

fi(〈x, vi〉)cidx

and

I(f1, . . . , fm) =

∫ ?

Rn
sup

{
m∏
i=1

fi(ti)
ci , x =

m∑
i=1

citivi

}
dx.

Here, for a not necessarily measurable function f (as may be the case for the supremum

above), we use its outer integral,∫ ?

Rn
f = sup

{∫
Rn
h, h ≤ f, h is measurable

}
.

We are interested in best constants E,F in the following inequalities

J(f1, . . . , fm) ≤ F ·
m∏
i=1

(∫
R
fi

)ci
and

I(f1, . . . , fm) ≥ E ·
m∏
i=1

(∫
R
fi

)ci
.

The main deep result is that these constants come from testing the inequalities with

Gaussian functions (note that the inequalities do not change when fi is replaced with

λifi for some λi > 0, thus it suffices to consider centred Gaussian functions).

8.1 Theorem (Brascamp-Lieb inequalities). Let m ≥ n, c1, . . . , cm > 0 be such that∑m
i=1 ci = n and v1, . . . , vm ∈ Rn. Let E and F be the best constants such that foll every

integrable functions f1, . . . , fm : R→ [0,∞), we have

I(f1, . . . , fm) ≥ E ·
m∏
i=1

(∫
R
fi

)ci
, (8.1)

J(f1, . . . , fm) ≤ F ·
m∏
i=1

(∫
R
fi

)ci
. (8.2)

80



Let Eg and Fg be the best constants such that these inequalities hold for all centred

Gaussian functions of the form fi(t) = e−αit
2

with any αi > 0. Let D be the best

constant such that for every αi > 0, we have

det

(
m∑
i=1

αiciviv
T
i

)
≥ D ·

m∏
i=1

αcii . (8.3)

Then,

E = Eg =
√
D and F = Fg =

1√
D
. (8.4)

8.2 Remark. There is a generalisation of this theorem concerning functions fi defined

on Rni for any 1 ≤ ni ≤ n such that n =
∑
cini (the vectors vi are replaced with linear

maps Rn → Rni).

8.3 Remark. As an example, consider the special case when m = 2, n = 1, c1 + c2 = 1

and v1 = v2 = 1. Then (8.3) becomes α1c1 +α2c2 ≥ D ·αc11 α
c2
2 which holds with D = 1,

which is sharp, by the AM-GM inequality. Thus E = F = 1 and (8.1) becomes the

Prékopa-Leindler inequality (Theorem 2.8), whereas (8.2) becomes Hölder’s inequality.

Note that similarly, D = 1 when n = 1 with any m.

Theorem 8.1 will be established through several lemmas. Before we start, we remark

that the theorem clearly holds when the vi are linearly dependent because then D = 0.

Moreover, I = 0 (regardless the fi, the integrand will be a function defined on a lower

dimensional subspace) and J = ∞. Thus we assume in what follows that the vi are

linearly dependent.

Our first lemma is a straighforward computation involving Gaussian functions. Re-

call that for α > 0, ∫
R
e−αt

2

dt =

√
π

α

and for a symmetric positive definite n× n matrix A,∫
Rn
e−〈Ax,x〉dx =

πn/2√
detA

.

8.4 Lemma. Fg = 1√
D

.

Proof. Let fi(t) = e−αit
2

, αi > 0, i ≤ m. Then,

m∏
i=1

(∫
R
fi

)ci
=

m∏
i=1

√
π

αi

ci

=
πn/2√∏

αcii

and

J(f1, . . . , fm) =

∫
Rn

m∏
i=1

e−αici〈x,vi〉
2

dx =

∫
Rn
e−〈(

∑
αiciviv

T
i )x,x〉dx =

πn/2√
det
(
αicivivTi

) .
Therefore, Fg is the best constant in the inequality

πn/2√
det
(
αicivivTi

) ≤ Fg · πn/2√∏
αcii

,
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that is

det
(
αiciviv

T
i

)
≥ 1

F 2
g

·
m∏
i=1

αcii .

Thus by the definition of D, D = 1
F 2
g

.

8.5 Lemma. Eg · Fg = 1.

Proof. For α1, . . . , αm > 0 define a positive definite matrix

Q =

m∑
i=1

αiciviv
T
i

and the norm

N(x) =
√
〈Qx, x〉

whose unit ball is the ellipsoid given by Q. Note that for fi(t) = e−αit
2

, as computed

in Lemma 8.4, we have

Fg(α1, . . . , αm) =
J(f1, . . . , fm)∏m
i=1

(∫
R fi
)ci =

√∏
αcii

detQ
.

On the other hand,

Eg(α1, . . . , αm) =
I(f1, . . . , fm)∏m
i=1

(∫
R fi
)ci =

√∏
αcii
πn

∫
Rn
e− inf{∑αicit

2
i , x=

∑
citivi}dx.

Let us try to interpret the function given by the infimum that shows up in the exponent.

Consider the dual norm,

N?(x) = sup {〈x, y〉, N(y) ≤ 1}

and compute it explicitly. As the dual to N(x) =
√
〈Qx, x〉 whose unit ball is an

ellipsoid, N? should also be of this form (duals of ellipsoids are ellipsoids). Note that by

the Cauchy-Schwarz inequality,

〈x, y〉=
〈
Q−1/2x,Q1/2y

〉
≤ |Q−1/2x| · |Q1/2y| =

√
〈Q−1x, x〉

√
〈Qy, y〉,

which gives, after taking the supremum over y such that N(y) ≤ 1, that is 〈Qy, y〉≤ 1,

N?(x) ≤
√
〈Q−1x, x〉.

In fact, there is equality because we can arrange the Cauchy-Schwarz inequality to be

equality by taking y = λQ−1x (and then choosing λ such that N(y) = 1).

Let us now compute N? differently. The condition N(y) ≤ 1 reads
∑
αici〈y, vi〉2 ≤ 1.

For x of the form x =
∑
citivi, by the Cauchy-Schwarz inequality,

〈x, y〉=
∑

citi〈y, vi〉≤

√∑
ci
t2i
αi

√∑
αici〈y, vi〉2,
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which shows that

N?(x) ≤ inf


√∑

ci
t2i
αi
, x =

∑
citivi

 .

In fact, this is equality. To see that, given x, choose y achieving the supremum in the

definition of N?, that is y = λQ−1x with λ such that N(y) = 1. Let ti = 1
λαi〈y, vi〉.

Then we have equality in the Cauchy-Schwarz inequality above. Moreover, for these ti

we have x = 1
λQy = 1

λ

∑
αici〈y, vi〉vi =

∑
ticivi, which finishes the argument.

Going back the the formula for Eg(α1, . . . , αm), we can rewrite it as

Eg(α
−1
1 , . . . , α−1

m ) =

√∏
α−cii

πn

∫
Rn
e−N?(x)2dx.

Since N?(x) =
√
〈Q−1x, x〉, we get

Eg(α
−1
1 , . . . , α−1

m ) =

√∏
α−cii

πn

∫
Rn
e−〈Q

−1x,x〉dx =

√∏
α−cii

detQ−1
.

We thus obtain

Fg(α1, . . . , αm) · Eg(α−1
1 , . . . , α−1

m ) =

√∏
αcii

detQ
·

√∏
α−cii

detQ−1
= 1,

that is

Fg(α1, . . . , αm) =
1

Eg(α
−1
1 , . . . , α−1

m )
.

Taking the supremum over αi > 0 gives Fg = 1
Eg

.

8.6 Lemma. For every integrable functions f1, . . . , fm, h1, . . . , hm : R → [0,∞) with∫
fi = 1 =

∫
hi, we have

I(f1, . . . , fm) ≥ D · J(h1, . . . , hm).

Note that this lemma gives E ≥ DF , so by Lemma 8.4 and 8.5,

√
D = Eg ≥ E ≥ DF ≥ DFg = D

1√
D

=
√
D,

so there are in fact equalities and this finishes the proof of Theorem 8.1.

Proof of Lemma 8.6. If D = 0, there is nothing to prove, so let D be positive. Without

loss of generality we can assume that the fi and hi are positive and continuous (...).

Define the transport functions Ti : R→ R by∫ Ti(t)

−∞
fi =

∫ t

−∞
hi.

Then, differentiating yields the transport equations,

T ′i (t)fi(Ti(t)) = hi(t).
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Define the change of variables Ψ : Rn → Rn,

Ψ(y) =

m∑
i=1

ciTi(〈y, vi〉)vi.

Since
∂Ψ

∂yj
=
∑
i

ciT
′
i (〈y, vi〉)vi,jvi,

we have

dΨ(y) =
∑
i

ciT
′
i (〈y, vi〉)vivTi

and because T ′i is pointwise positive, dΨ is positive definite and thus has a positive

determinant. Therefore Ψ is injective, x = Ψ(y) defines a valid change of variables on

Rn and we have

I(f1, . . . , fm) =

∫
Rn

sup
x=

∑
citivi

∏
fi(ti)

cidx ≥
∫
Rn

sup
Ψ(y)=

∑
citivi

∏
fi(ti)

ci det(dΨ(y))dy.

By (8.3), det(dΨ(y)) ≥ D ·
∏
T ′i (〈y, vi〉)ci . Setting in the supremum ti = Ti(〈y, vi〉) and

using the transport equations we obtain

I(f1, . . . , fm) ≥ D
∫
Rn

∏
fi(Ti(〈y, vi〉))ci

∏
T ′i (〈y, vi〉)cidy = D

∫
Rn

∏
hi(〈y, vi〉)cidy

= D · J(h1, . . . , hm).

8.2 Geometric applications

Suppose we are given positive numbers c1, . . . , cm > 0 and unit vectors v1, . . . , vm in Rn

such that
∑
civiv

T
i = I. Recall Theorem 5.14 says that then∫

Rn

∏
fi(〈x, vi〉)cidx ≤

∏(∫
R
fi

)ci
. (8.5)

Recall also that automatically,
∑
ci = n (Remark 5.5). In terms of Theorem 8.1, this

means F ≤ 1. We shall prove now that D = 1, thus F = 1, thus giving also a proof of

Theorem 5.14.

8.7 Theorem. If positive numbers c1, . . . , cm > 0 and unit vectors v1, . . . , vm in Rn are

such that
∑m
i=1 civiv

T
i = I, then for every positive α1, . . . , αm,

det

(
m∑
i=1

αiciviv
T
i

)
≥

m∏
i=1

αcii

(which is sharp for αi = 1, i ≤ m).

We shall need two basic tools from multilinear algebra.
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8.8 Theorem (Cauchy-Binet formula). Let n ≤ m. Let A and B be n×m and m× n
matrices. Then

det(AB) =
∑
|S|=n

det(AS) det(BS),

where the sum is over all n-element subsets S of the set {1, . . . ,m} and AS, BS denotes

the restriction of A, respectively B to an n × n matrix with colums, respectively rows

from S.

8.9 Theorem (Sylvester’s formula). Let A and B be n×m and m×n matrices. Then

det(In +AB) = det(Im +BA).

Proof of Theorem 8.7. Let V be an n×m matrix with columns
√
αicivi, i ≤ m. Then

V V T =

m∑
i=1

αiciviv
T
i ,

so by the Cauchy-Binet formula,

det

(
m∑
i=1

αiciviv
T
i

)
= det(V V T ) =

∑
|S|=n

(detVS)2.

Note that detVS =
(∏

i∈S
√
αi
)

det
(
[
√
civi]i∈S

)
, where [

√
civi]i∈S is the n × n matrix

with columns
√
ciui, i ∈ S. Denoting

αS =
∏
i∈S

αi

and

λS = det ([
√
civi]i∈S)

2
,

we thus have

det

(
m∑
i=1

αiciviv
T
i

)
=
∑
|S|=n

λSαS .

When the αi are all 1, the above becomes 1 =
∑
|S|=n λS . Hence, by the AM-GM

inequality,∑
|S|=n

λSαS ≥
∏
|S|=n

aλSS =
∏
|S|=n

∏
i∈S

αλSi =
∏
|S|=n

m∏
i=1

αλS1i∈Si =

m∏
i=1

a
∑
S:i∈S λS

i .

To finish, note that for a fixed i,∑
S:i∈S

λS =
∑
S

λS −
∑
S:i/∈S

λS = 1−
∑
S:i/∈S

(
det
(
[
√
cjvj ]j∈S

))2
.

Using the Cauchy-Binet formula once again,

∑
S:i/∈S

(
det
(
[
√
cjvj ]j∈S

))2
= det

∑
j 6=i

cjvjv
T
j

 = det
(
In − civivTi

)
= 1− civTi vi = 1− ci|vi|T = 1− ci,
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where in the second line we use Sylvester’s formula. Thus,∑
S:i∈S

λS = ci

and consequently,

det

(
m∑
i=1

αiciviv
T
i

)
=
∑
|S|=n

λSαS ≥
∏
|S|=n

aλSS

m∏
i=1

a
∑
S:i∈S λS

i =

m∏
i=1

acii .

We saw how useful Ball’s version (8.5) of the Brascamp-Lieb inequality (8.2) was to

solve the reverse isoperimetric problem. We finish with one more application, which can

be viewed as a sharp version for Gaussian vectors of the crucial Lemma 6.5 (used for

the proof of Dvoretzky’s theorem).

8.10 Theorem. Let G be a standard Gaussian vector in Rn. Let ‖ · ‖ be a norm on Rn

whose unit ball is in John’s position. Then E‖G‖ ≥ E‖G‖∞.

Proof. Let c1, . . . , cm > 0 and contact points v1, . . . , vm be given by John’s theorem 5.3,

I =
∑
civiv

T
i . As in the proof of Ball’s theorem 5.6, the unit ball of ‖ · ‖ is contained in

{x ∈ Rn, |〈x, vi〉| ≤ 1, i ≤ m}

which is the unit ball with respect to

‖x‖′ = max
i≤m
|〈x, vi〉|.

Thus, ‖x‖ ≥ ‖x‖′ and we get

E‖G‖ ≥ E‖G‖′ = Emax
i≤m
|〈G, vi〉| =

∫ ∞
0

P
(

max
i≤m
|〈G, vi〉| > s

)
ds

=

∫ ∞
0

[1− P (∀i ≤ m |〈G, vi〉| ≤ s)] ds

Applying (8.5) to fi(t) = 1√
2π
e−t

2/21[−s,s](t) gives (recall (5.4))

P (∀i ≤ m |〈G, vi〉| ≤ t) =

∫
Rn

1
√

2π
n e
−|x|2/2

m∏
i=1

1{|〈x,vi〉|≤s}dx

=

∫
Rn

m∏
i=1

fi(〈x, vi〉)cidx

≤
m∏
i=1

(∫
R
fi

)ci
=

m∏
i=1

P (|G1| ≤ s)ci = P (|G1| ≤ s)n .
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Hence,

E‖G‖ ≥
∫ ∞

0

[1− P (∀i ≤ m |〈G, vi〉| ≤ s)] ds

≥
∫ ∞

0

[1− P (|G1| ≤ s)n] ds

=

∫ ∞
0

[1− P (∀i ≤ n |Gi| ≤ s)] ds

=

∫ ∞
0

P
(

max
i≤n

|Gi| > s

)
ds

= E‖G‖∞.

8.3 Applications in analysis: Young’s inequalities

We shall derive classical Young’s iequalities for Lp norms of convolutions with sharp

constants from the Brascamp-Lieb inequality (8.2). Recall that for a measurable function

f : R→ R and p ∈ [1,∞], its Lp norm is defined as

‖f‖p =

(∫
R
|f |p

)1/p

.

By p′ = p
p−1 we denote the dual exponent, 1

p+ 1
p′ = 1. It follows from Hölder’s inequality

that we have the following variational formula

‖f‖p = sup

{∫
R
fh,

∫
R
|h|p

′
≤ 1

}
. (8.6)

8.11 Theorem (Young’s inequality). Let p, q, r ≥ 1 be such that 1
p + 1

q = 1
r + 1. Then

for every measurable functions f, g : R→ R, we have

‖f ? g‖r ≤
CpCq
Cr
‖f‖p · ‖g‖q, (8.7)

where

Cp =

√
p1/p

p′1/p′
. (8.8)

Moreover, this inequality is sharp.

8.12 Remark. Clearly, Cp′ = 1
Cp

.

8.13 Remark. Using the variational formula, (8.7) can be equivalently stated as: for

every p, q, r′ ≥ 1 such that 1
p + 1

q + 1
r′ = 2 and f, g, h : R→ R, we have∫

R

∫
R
f(x− y)g(y)h(x)dxdy ≤ CpCqCr‖f‖p‖g‖q‖h‖r′ . (8.9)

To see this, note that by (8.6),

‖f ? g‖r = sup
h

∫
R(f ? g)(x)h(x)dx

‖h‖r′
= sup

h

∫
R
∫
R f(y − x)g(y)h(x)dxdy

‖h‖r′
.

Combining this with Remark 8.12 finishes the argument.
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8.14 Remark. Setting h̃(x) = h(−x), the left hand side of (8.9) can be written as∫
R

∫
R
f(x− y)g(y)h(x)dxdy = (f ? g ? h̃)(0).

Thus, (8.9), equivalently (8.7) follow from the following: for every p, q, r′ ≥ 1 such that

1
p + 1

q + 1
r′ = 2 and f, g, h : R→ R, we have

‖f ? g ? h‖∞ ≤ CpCqCr‖f‖p‖g‖q‖h‖r′ . (8.10)

In fact, the three are equivalent: from Hölder’s inequality and (8.7), we get

‖f ? g ? h‖∞ ≤ ‖f ? g‖r‖h‖r′ ≤
CpCq
Cr
‖f‖p‖g‖q‖h‖r′ = CpCqCr′‖f‖p‖g‖q‖h‖r′ .

The gain is that (8.10) easily tensorises, say we have f, g, h : R2 → R. Then using it

twice, for every (x1, x2) ∈ R2 we obtain

(f ? g ? h)(x1, x2) =

∫
R2

∫
R2

f(x1 − y1 − z1, x2 − y2 − z2)g(y1, y2)h(z1, z2)dydz

≤
∫
R2

(CpCqCr′)‖f(·, x2 − y2 − z2)‖p‖g(·, y2)‖q‖h(·, z2)‖r′dy2dz2

≤ (CpCqCr′)
2‖f‖p‖g‖q‖h‖r′ .

Therefore, once we have proved (8.9) for functions on R, then by iterating the argument

above, we get that (8.10) holds for all functions on Rn with the constant (CpCqCr′)
n

and by the established equivalences, (8.7) and (8.9) also hold for all functions on Rn

(with constants being the nth-power).

Proof of (8.9). Replacing f , g, h with f1/p, g1/q and h1/r′ , introducing c1 = 1/p, c2 =

1/q, c3 = 1/r′ and the vectors v1 = (1,−1), v2 = (0, 1), v3 = (1, 0), note that (8.9)

becomes∫
R2

f(〈x, v1〉)c1g(〈x, v2〉)c2h(〈x, v3〉)c3dx ≤ F ·
(∫

f

)c1 (∫
g

)c2 (∫
h

)c3
with c1 + c2 + c3 = 2. This is exactly the Brascamp-Lieb framework and by Theorem

8.1, the best constant F is 1/
√
D with D being the best constant in the inequality

det(α1c1v1v
T
1 + α2c2v2v

T
2 + α3c3v3v

T
3 ) ≥ D · αc11 α

c2
2 α

c3
3 ,

for every α1, α2, α3 > 0. We have

det(α1c1v1v
T
1 + α2c2v2v

T
2 + α3c3v3v

T
3 ) = det

(
α1c1

[
1 −1
−1 1

]
+ α2c2 [ 0 0

0 1 ] + α3c3 [ 1 0
0 0 ]
)

= det(
[
α1c1+α3c3 −α1c1
−α1c1 α1c1+α2c2

]
)

= α1α2c1c2 + α2α3c2c3 + α1α3c1c3.
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By taking the limit if necessary, we can assume that c1, c2, c3 < 1. Then by the AM-GM

inequality,

α1α2c1c2 + α2α3c2c3 + α1α3c1c3 = (1− c3)
c1c2

1− c3
α1α2

+ (1− c1)
c2c3

1− c1
α2α3

+ (1− c2)
c1c3

1− c2
α1α3

≥
(
c1c2

1− c3

)1−c3 ( c2c3
1− c1

)1−c1 ( c1c3
1− c2

)1−c2

· α2−c2−c3
1 α2−c1−c3

2 α2−c1−c2
3

=

3∏
i=1

ccii
(1− ci)1−ci

· αc11 α
c2
2 α

c3
3 .

Equality holds for αi such that

c1c2
1− c3

α1α2 =
c2c3

1− c1
α2α3 =

c1c3
1− c2

α1α3.

Therefore the best constant is

F =
1√
D

=

3∏
i=1

√
(1− ci)1−ci

ccii

which is CpCqCr′ , as required (recall c1 = 1/p, so 1− c1 = 1/p′, etc.).

8.4 Applications in information theory: entropy power

The (differential, Shannon) entropy of a random vector X in Rn with density f : Rn →
[0,+∞) is defined by

S(X) = −
∫
Rn
f log f

(provided that the integral exists in the usual Lebesgue’s sense). For p > 0, p 6= 1, we

also define the p-Rényi entropy of X as

Sp(X) =
1

1− p
log

∫
Rn
fp.

This is a well defined quantity (the Lebesgue integral of fp always exists). However,

it can be that Sp is infinite for every p 6= 1, e.g. take f on R to be proportional to

1
x ln2 x

1(0,1/2)∪(2,∞). Note that for this density, the entropy S(X) does not exist.

Remark that

S(X) = E
[
− log f(X)

]
.

Similarly,

Sp(X) =
1

1− p
logEf(X)p−1 = − log(Ef(X)p−1)

1
p−1 ,

so in particular, Sp(X) is nonincreasing in p. By monotonicity, the one sided limits

limp→1± Sp(X) do exist, but possibly taking different values (as in the mentioned ex-

ample, they are ∓∞).
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If the Rényi entropy Sp(X) is finite at some point p = p0 > 1, then S(X) exits and

lim
p→1+

Sp(X) = S(X).

Similarly, if Sp(X) is finite for some p = p0 < 1, then S(X) exists and equals the limit

limp→1− Sp(X).

For example, for X with a density proportional to 1
x ln3 x

1(2,∞), its Rényi entropy of

order p is +∞ when p ∈ (0, 1) and is finite when p ∈ (1,∞), its entropy S(X) exists, is

finite and equals limp→1+ Sp(X), but limp→1− Sp(X) = +∞.

We finish this discussion of definiteness with one more remark. If a density f belongs

to Lp(Rn) for some p > 1, then by the concavity of the logarithm and Jensen’s inequality

−
∫
Rn f log f > −∞. Moreover, Jensen’s inequality also yields the following very useful

variational formula for the entropy

S(X) = inf

{
−
∫
Rn
f log g, g : Rn → [0,+∞) is a probability density

}
.

In particular, if E|X|2 <∞, then comparison with the standard Gaussian gives S(X) <

∞. Combining the two we can conclude that the entropy of a log-concave random vector

with density on Rn is well defined and finite.

We remark the following scaling properties: for a linear invertible map A : Rn → Rn

and b ∈ Rn, we have

S(AX + b) = S(X) + log |detA|

and identically,

Sp(AX + b) = Sp(X) + log |detA|.

For instance, for a standard Gaussian vector G in Rn, we have

S(G) = −
∫
Rn

1
√

2π
n e
−|x|2/2 log

(
1
√

2π
n e
−|x|2/2

)
dx

= log
√

2π
n

+
n

2
=
n

2
log(2πe).

Consequently, for a Gaussian vector GA with covariance matrix A, GA = A1/2G,

S(GA) = S(G) + log |detA1/2| = n

2
log
[
2πe(detA)1/n

]
. (8.11)

The fundamental inequality in information theory, put forward by Shannon, the so-called

entropy power inequality, concerns a subadditivity property of the entropy of sums of

independent random vectors vectors.

8.15 Theorem (Entropy power inequality). Let X and Y be independent random vec-

tors in Rn, let λ ∈ [0, 1]. Then (provided that all the entropies exist)

S(
√
λX +

√
1− λY ) ≥ λS(X) + (1− λ)S(Y ). (8.12)
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Proof. Let f and g be the densities of X and Y . For a > 0, let fa denote the density

of aX. The density of
√
λX +

√
1− λY is f√λ ? g

√
1−λ. By Young’s inequality (8.7) (in

Rn, see Remark 8.14),

‖f√λ ? g√1−λ‖r ≤
(
CpCq
Cr

)n
‖f√λ‖p‖g√1−λ‖q,

for all p, q, r > 1 such that 1
p + 1

q = 1 + 1
r . Taking the log and rewriting in terms of

Rényi entropy yields

Sr(
√
λX +

√
1− λY ) ≥ r

1− r
n log

CpCq
Cr

+
r

1− r
1− p
p
Sp(
√
λX) +

r

1− r
1− q
q
Sq(
√

1− λY ).

We have Sp(
√
λX) = n

2 log λ + Sp(X) and similarly for
√

1− λY . Given r > 1, take

p, q > 1 such that

1

p
=
λ

r
+ 1− λ and

1

q
=

1− λ
r

+ λ.

Then the condition 1
p + 1

q = 1 + 1
r is satisfied. Note that

r

1− r
1− p
p

= λ and
r

1− r
1− q
q

= 1− λ.

Putting these together gives

Sr(
√
λX +

√
1− λY )− λSp(X)− (1− λ)Sq(Y ) ≥ n

2

[ r

1− r
log

(
CpCq
Cr

)2

+ λ log λ+ (1− λ) log(1− λ)
]
.

As r → 1, we also have p, q → 1, and consequently the left hand side converges to

S(
√
λX +

√
1− λY )− λS(X)− (1− λ)S(Y ). It is enough to show that the right hand

side converges to 0. We have

r

1− r
log

(
CpCq
Cr

)2

= −r′ log

(
p1/p

p′1/p′
q1/q

q′1/q′
r−1/r

r′−1/r′

)
.

Using that r′

p′ = λ and r′

q′ = 1− λ, after a few simplifications, we get to

−r′ log

(
p1/p

p′1/p′
q1/q

q′1/q′
r1/r

r′1/r′

)
=r′

(
1

p
log

1

p
+

1

q
log

1

q
− 1

r
log

1

r

)
− λ log λ− (1− λ) log(1− λ).

The term λ log λ+ (1− λ) log(1− λ) cancels and we are left with showing that the first

term goes to 0. Setting r′ = 1
ε , ε→ 0 and using 1

p = λ
r +1−λ = λ(1−ε)+1−λ = 1−λε,
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similarly 1
q = 1− (1− λ)ε, we obtain

r′
(

1

p
log

1

p
+

1

q
log

1

q
− 1

r
log

1

r

)
=

1

ε

[
(1− λε) log(1− λε)

+ (1− (1− λ)ε) log(1− (1− λ)ε)

− (1− ε) log(1− ε)
]

≈ 1

ε

[
− (1− λε)λε

− (1− (1− λ)ε)(1− λ)ε

+ (1− ε)ε
]

=
[
λ2 + (1− λ)2 − 1

]
ε.

The entropy power inequality is sometimes stated in another equivalent forms.

8.16 Theorem (Entropy power inequalities). The following statements holding true for

every independent random vectors X and Y in Rn are equivalent

(i) S(
√
λX +

√
1− λY ) ≥ λS(X) + (1− λ)S(Y ), for every λ ∈ [0, 1],

(ii) e
2
nS(X+Y ) ≥ e 2

nS(X) + e
2
nS(Y ),

(iii) S(X+Y ) ≥ S(GX+GY ), for independent Gaussian vectors GX and GY in Rn with

covariance matrices proportional to the identity matrix such that S(GX) = S(X)

and S(GY ) = S(Y ).

Proof. “(i)=⇒(ii)” Applying (i) to X/
√
λ and Y/

√
1− λ, we get

S(X + Y ) = S
(√

λ
X√
λ

+
√

1− λ Y√
1− λ

)
≥ λS

(
X√
λ

)
+ (1− λ)S

(
Y√

1− λ

)
= λS(X) + (1− λ)S(Y )− n

2

[
λ log λ+ (1− λ) log(1− λ)

]
.

We optimise the right hand side over λ ∈ (0, 1). Computing the derivative and equating

it to 0 gives

S(X)− S(Y )− n

2

[
log λ− log(1− λ)

]
= 0.

Solving for λ yields

λ =
e

2
nS(X)

e
2
nS(X) + e

2
nS(Y )

.

Note that also

S(X)− n

2
log λ = S(Y )− n

2
log(1− λ).
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Then

S(X + Y ) ≥ λS(X) + (1− λ)S(Y )− n

2

[
λ log λ+ (1− λ) log(1− λ)

]
= λ

(
S(X)− n

2
log λ

)
+ (1− λ)

(
S(Y )− n

2
log(1− λ)

)
= S(X)− n

2
log λ

=
n

2
log
(
e

2
nS(X) + e

2
nS(Y )

)
,

which gives (ii).

“(ii)=⇒(iii)” Let GX and GY have covariance matrices αI and βI. Then GX +GY

has covariance matrix (α+ β)I. By (8.11) and (ii), we obtain

e
2
nS(X+Y ) ≥ e 2

nS(X) + e
2
nS(Y ) = e

2
nS(GX) + e

2
nS(GY ) = 2πe

(
α+ β

)
= e

2
nS(GX+GY ).

“(iii)=⇒(i)” Let GX and GY be Gaussian vectors with covariance matrices αI and

βI such that S(GX) = S(X) and S(GY ) = S(Y ). Let λ ∈ [0, 1]. Then S(
√
λGX) =

S(
√
λX) and S(

√
1− λGY ) = S(

√
1− λY ), so by (iii) and the AM-GM, we obtain

e
2
nS(
√
λX+

√
1−λY ) ≥ e 2

nS(
√
λGX+

√
1−λGY ) = e

2
nS
(
N(0,(λα+(1−λ)β)I)

)
= 2πe(λα+ (1− λ)β))

≥ 2πe(αλβ1−λ)

= e
2
nλS(GX)e

2
n (1−λ)S(GY )

= e
2
n

(
λS(X)+(1−λ)S(GY )

)
,

which shows (i).

8.5 Entropy and slicing

Let X be a log-concave random vector in Rn with density f . In the proof of Theorem

2.20, we showed that

log(e−n‖f‖∞) ≤
∫
Rn
f log f ≤ log ‖f‖∞.

If X is isotropic, its isotropic constant equals LX = ‖f‖1/n∞ . Therefore, the above

establishes that

log(e−1LX) ≤ − 1

n
S(X) ≤ logLX .

Showing that LX is bounded above by a universal constant (the slicing problem – Con-

jecture 4.15) is thus equivalent to showing that − 1
nS(X) is bounded above by a universal

constant, assuming X is isotropic.
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To make an affine invariant statement, let us introduce the relative entropy D(X)

of X defined as

D(X) = S(G)− S(X),

where G is a Gaussian vector in Rn with the same covariance matrix as X. This is an

affine invariant quantity. In particular, if X is isotropic, its covariance matrix is the

identity, thus D(X) = n
2 log(2πe)− S(X) and we conclude that

log

(√
2π

e
LX

)
≤ 1

n
D(X) ≤ log

(√
2πeLX

)
.

The gain is that this inequality is affine invariant. We have thus established that the

slicing problem is equivalent to: for every n ≥ 1 and every log-concave random vector

X in Rn, its relative entropy per coordinate 1
nD(X) is bounded above by a universal

constant.
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9 Coverings with translates

The idea of a covering is one of the simplest and most fundamental in mathematics.

We shall be concerned with covering one convex set (particularly, the whole space) with

translates of another one. Formally, for two convex sets K,L in Rn with nonempty

interior, we define the covering number

N(K,L) = smallest number of translates of L needed to cover K

= sup

{
m ≥ 0, ∃ x1, . . . , xm ∈ Rn,K ⊂

m⋃
i=1

(L+ xi)

}
.

Clearly, this is an affine invariant quantity. Of course, in many cases N(Rn, L) =∞.

To quantify efficiency of a covering of the whole space, we introduce the covering

density ϑ(K) of a convex body K in Rn defined as

ϑ(K) = inf
F

lim sup
Q – cube
|Q|→∞

1

|Q|
∑

i:Ki∩Q6=∅
|Ki|

 ,

where the infimum is taken over all coverings F = {Ki, Ki = K+ vi, vi ∈ Rn} of Rn by

translates Ki = K + vi of K, that is Rn =
⋃∞
i=1Ki. Here are throughout this section,

by a cube we mean a set of the form [−s, s]n + a, s > 0, a ∈ Rn.

It takes some effort to establish that ϑ(K) is also an affine invariant quantity (see,

for instance Chapter 1.2 in [6]).

Given a convex body K in Rn, we are interested in the quantity

b(K) = N(K, intK),

the minimum number of translates of the interior of K required to cover K. It is an

exercise to show that it coincides with the minimum number of translates of smaller

dilates λK, 0 < λ < 1 of K required to cover K. Surprisingly, it also coincides with the

minimum number of light sources required to illuminate the boundary of K (for these

classical facts, see Paragraph 34 in [3]).

For instance, when K is a square on the plane, b(K) = 4, because any translate of

its interior contains at most one vertex. It was shown that on the plane, b(K) = 3,

unless K is an affine image of the cube. Similarly, when K is a cube in Rn, we have

b(K) = 2n. It is conjectured that this is the worst case.

9.1 Conjecture (Gohberg, Marcus, Hadwiger, Levy). For a convex body K in Rn,

b(K) ≤ 2n, with equality if and only if K is an affine image of the cube.

Our goal is to show the classical general result of Rogers which says that

b(K) ≤
(

2n

n

)
(n log n+ n log log n+ 3n+ 1)
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for a convex body K in Rn, n ≥ 3. If K is symmetric, this can be significantly improved

to

b(K) ≤ 2n(n log n+ n log log n+ 3n+ 1).

The proof is based on three results:

1) a general upper bound for covering numbers due to Rogers and Zong,

N(K,L) ≤ |K − L|
|K|

ϑ(L),

2) a general upper bound for covering density due to Rogers,

ϑ(K) ≤ n log n+ n log log n+ 3n+ 1, n ≥ 3,

3) an upper bound for the volume of the difference body due to Rogers and Shephard,

|K −K| ≤
(

2n

n

)
|K|.

9.1 A general upper bound for covering numbers

9.2 Theorem (Rogers and Zong). For convex subsets K, L of Rn with nonempty

interior, we have

N(K,L) ≤ |K − L|
|K|

ϑ(L). (9.1)

Proof. Fix ε > 0. By the definition of ϑ(L), there is a discrete subset G of Rn such that

the translates of L by the elements of G cover Rn, Rn =
⋃
g∈G(L + g) and for every

large enough cube Q,

1

|Q|
∑

g∈G:(L+g)∩Q6=∅

|L+ g| ≤ ϑ(K) + ε

and since L+ g intersect Q if and only if g ∈ Q− L, we get

#(G ∩ (Q− L)) ≤ |Q|
|L|

(ϑ(L) + ε). (9.2)

Fix t ∈ Rn. Since L + g intersect K + t if and only if g ∈ K − L + t and since

{L+ g}g∈G covers Rn, we conclude that {L+ g}g∈K−L+t covers K + t. Let N(t) be the

size (cardinality) of this cover,

N(t) = #(G ∩K − L+ t) =
∑
g∈G

1K−L+t(g).

Consider a large enough cube such that K ⊂ εQ. Averaging N(t) over Q gives

1

|Q|

∫
Q

N(t)dt =
1

|Q|
∑
g∈G

∫
Q

1K−L+t(g)dt =
1

|Q|
∑
g∈G
|Q ∩ (L−K + g)|.
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Note that |Q ∩ (L−K + g)| equals 0 unless g ∈ G ∩ (K − L+Q) in which case it can

be bounded by |L−K + g| = |K − L|. Thus,

1

|Q|

∫
Q

N(t)dt ≤ |K − L|
|Q|

#(G ∩ (K − L+Q)) ≤ |K − L|
|Q|

#(G ∩ ((1 + ε)Q− L)).

By (9.2) applied to (1 + ε)Q, we get

1

|Q|

∫
Q

N(t)dt ≤ (1 + ε)n
|K − L|
|L|

(ϑ(L) + ε).

Therefore, there exists t0 ∈ Q such that N(t0) is bounded by the above quantity. This

gives a covering of K of size N(t0) by sets L+ g − t0, hence

N(K,L) ≤ (1 + ε)n
|K − L|
|L|

(ϑ(L) + ε).

Sending ε→ 0 finishes the proof.

9.2 An asymptotic upper bound for covering densities

9.3 Theorem (Rogers). For a convex subset K of Rn with nonempty interior, n ≥ 3,

we have

ϑ(K) ≤ n log n+ n log log n+ 3n+ 1. (9.3)

We shall need a simple observation about centred convex bodies.

9.4 Lemma. If K is a centred convex body in Rn, that is
∫
K
xdx = 0, then − 1

nK ⊂ K.

Proof. Fix a direction θ ∈ Sn−1 and consider the volume distribution function along

this direction f(t) = |K ∩ (θ⊥ + tθ)|. Brunn’s principle (see Remark 2.4) says that f

is 1
n−1 concave on its support. Let [−a, b], a, b > 0 be the support of f . Since K is

centred,
∫ b
−a tf(t)dt = 0. Our goal is to show that b ≥ 1

na and a ≥ 1
nb. Let w = f(0)

1
n−1 .

Consider a linear function g(x) = w x+a
a . It agrees with f

1
n−1 at x = −a and x = 0. By

concavity, g ≤ f
1

n−1 on [−a, 0] and g ≥ f
1

n−1 on [0, b]. Thus∫ b

0

tg(t)n−1dt ≥
∫ b

0

tf(t)dt =

∫ 0

−a
(−t)f(t)dt ≥

∫ 0

−a
(−t)g(t)n−1dt.

Computing the left and right hand sides yields

wn−1a2

(
1

n+ 1

[(
1 +

b

a

)n+1

− 1

]
− 1

n

[(
1 +

b

a

)n
− 1

])
≥ wn−1a2

(
1

n
− 1

n+ 1

)
which gives b ≥ 1

na. A similar argument shows that a ≥ 1
nb.

9.5 Remark. The proof shows that this result is tight for a cone (for one direction,

f
1

n−1 is linear).
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Proof of Theorem 9.3. Since ϑ(K) is affine invariant, we can assume that the volume of

K is 1, |K| = 1 and the barycentre is at the origin,
∫
K
xdx = 0.

Let R > 0 and consider the rescaled integer lattice Λ = RZn. Taking R sufficiently

large, we can ensure that every two translates of K by distinct g1, g2 ∈ Λ are disjoint.

Let Q = [0, R]n. Let X1, . . . , XN be i.i.d. random vectors uniformly distributed on Q.

Consider a (random) family of translates of K,

F = {K +Xi + g}i≤N,g∈Λ.

By a simple probabilistic argument (a first moment calculation), we shall show existence

of the Xi such that F covers a large portion of the whole space. Let E = Rn \
⋃
L∈F L

be the set of uncovered points. Clearly,

1E(x) =

N∏
i=1

(
1− 1K+Xi+Λ(x)

)
.

Since for a fixed i ≤ N , the sets K +Xi + g, g ∈ Λ, are disjoint, we have

1K+Xi+Λ(x) =
∑
g∈Λ

1K+Xi+g(x),

so

1E(x) =

N∏
i=1

1−
∑
g∈Λ

1K+Xi+g(x)

 .

Consider

ρ =
|E ∩Q|
|Q|

(since 1E is a periodic function in each coordinate with period R, ρ can be viewed as

the density of the uncovered points). Let us compute its expectation. By independence,

we have

Eρ = E
1

|Q|

∫
Q

1E(x)dx =
1

|Q|

∫
Q

N∏
i=1

1−
∑
g∈Λ

E1K+Xi+g(x)

 dx.

By the definition of Xi and a simple change of variables,

E1K+Xi+g(x) =
1

|Q|

∫
Q

1K+u+g(x)du =
1

|Q|

∫
Q+g−x

1K(−v)dv,

so using that the translates of Q by Λ are almost disjoint and cover Rn,∑
g∈Λ

E1K+Xi+g(x) =
1

|Q|
∑
g∈Λ

∫
Q+g−x

1K(−v)dv =
1

|Q|

∫
Rn

1K(−v)dv =
|K|
|Q|

= R−n.

Thus,

Eρ =
1

|Q|

∫
Q

(
1−R−n

)N
=
(
1−R−n

)N
.

Therefore, there exist points X1, . . . , XN ∈ Q for which

ρ ≤
(
1−R−n

)N
.
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Fix such points and let F = {K +Xi + g}i≤N,g∈Λ. Summarising, this family covers the

whole space but the set E and we have an upper bound for ρ = |E∩Q|
|Q| .

The second part of the proof is to efficiently adjust F to a covering of the whole

space. This is achieved by considering an appropriate maximal object. Fix 0 < η < 1
n .

Consider points y1, . . . , yM such that the family

G = {−ηK + yi + g}i≤M,g∈Λ

satisfies two conditions

(i) sets in G are disjoint,

(ii) sets in G do not intersect any set from F .

By (i) and periodicity,

|Q ∩
⋃
L∈G

L| = Mηn.

By (ii), every set from G is in E. Consequently,

|Q ∩
⋃
L∈G

L| ≤ |Q ∩ E|.

Let M be maximal such that points yi exist and fix such points and G (if no yi exists,

M = 0). We thus have,

M = η−n|Q ∩
⋃
L∈G

L| ≤ η−n|Q ∩ E| = η−n|Q|ρ ≤ η−nRn
(
1−R−n

)N
.

Fix z ∈ Rn. The sets −ηK + z + g, g ∈ Λ are disjoint, so since M is maximal, there

is g1 ∈ Λ such that either

1) −ηK + z + g1 intersects a set from G (to violate (i)), or

2) −ηK + z + g1 intersects a sets from F (to violate (ii)).

In case 1), there are x1, x2 ∈ K, i ≤M , g2 ∈ Λ such that −ηx1 +z+g1 = −ηx2 +yi+g2,

so, using Lemma 9.4, −ηK ⊂ K,

z ∈ η(K −K) + yi + (g2 − g1) ⊂ (1 + η)K + yi + (g2 − g1).

In case 2), there are x1, x2 ∈ K, i ≤ N , g2 ∈ Λ such that −ηx1 + z+ g1 = x2 +Xi + g2,

so

z ∈ (1 + η)K +Xi + (g2 − g1).

Since z is arbitrary, this shows that Rn is covered by

{(1 + η)K + yi + g}i≤M,g∈Λ ∪ {(1 + η)K +Xi + g}i≤N,g∈Λ,

or, equivalently, by

{K + (1 + η)−1(yi + g)}i≤M,g∈Λ ∪ {K + (1 + η)−1(Xi + g)}i≤N,g∈Λ.
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By periodicity, the density of this covering equals (1 + η)n(M +N)R−n. Thus,

ϑ(K) ≤ (1 + η)n(M +N)R−n.

Using our bound for M , we obtain

ϑ(K) ≤ (1 + η)nη−n
(
1−R−n

)N
+ (1 + η)nR−nN.

The last part of the proof is to optimise over the parameters R, N and η. Regard η

as fixed and take R =
(

N
n log 1

η

)n
with N sufficiently large such that R is large enough

(as required at the beginning of the proof). Then R−n =
n log 1

η

N and using (1−R−n)N ≤
e−NR

−n
= ηn, we get

ϑ(K) ≤ (1 + η)n + (1 + η)nn log
1

η
.

For simplicity take η = 1
n logn to obtain

ϑ(K) ≤
(

1 +
1

n log n

)n
(1 + n log n+ n log log n) .

Using
(

1 + 1
n logn

)n
≤ e

1
logn ≤ 1 + 2

logn for n ≥ 3 and checking that 2
logn (1 + n log n+

n log log n) < 3n for n ≥ 3 finishes the proof.

9.3 An upper bound for the volume of the difference body

(This subsection was a guest lecture by B-H. Vritsiou.)

9.6 Theorem (Rogers-Shephard). For a convex subset K of Rn, we have

|K −K| ≤
(

2n

n

)
|K|. (9.4)

Proof. Define f(x) = |K ∩ (K + x)|1/n which is concave on its support K −K (which

follows from the Brunn-Minkowski inequality and a simple inclusion K∩(λx+(1−λ)y) ⊃
λ(K ∩ (L+ x)) + (1− λ)(K ∩ (L+ y)) for arbitrary convex bodies K,L in Rn, λ ∈ [0, 1]

and x, y ∈ Rn). For x ∈ Rn written in polar coordinates as x = rθ, r ≥ 0, θ ∈ Sn−1,

consider a function g : Rn → R defined as

g(rθ) = f(0)

(
1− r

ρK−K(θ)

)
,

where ρK−K(θ) = sup{t > 0, tθ ∈ K−K} is the radial function of K−K in the direction

θ. Note that along each ray {tθ, t ≥ 0}, f is concave, g is linear agreeing with f at t = 0

and t = ρK−K(θ). Thus, f ≥ g on every segment [0, θρK−K(θ)] and therefore f ≥ g on

K −K. From this we obtain ∫
K−K

fn ≥
∫
K−K

gn
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and the right hand side can be computed using polar coordinates as follows∫
K−K

gn = f(0)n
∫
Sn−1

∫ ρK−K(θ)

0

(
1− r

ρK−K(θ)

)n
rn−1|Sn−1|drdσ(θ)

= f(0)n
∫
Sn−1

∫ 1

0

(1− t)n tn−1|Sn−1|ρK−K(θ)ndtdσ(θ)

= f(0)n
(
|Sn−1|

∫
Sn−1

|Sn−1|ρK−K(θ)ndσ(θ)

)(∫ 1

0

tn−1(1− t)ndt

)
.

By the formula for the volume in polar coordinates, the first parenthesis equals n|K−K|.
The second one is B(n, n+ 1) = Γ(n)Γ(n+1)

Γ(2n+1) = (n−1)!n!
(2n)! = 1

n(2n
n )

. Recall the definition of

f to see that f(0)n = |K| and conclude∫
K−K

fn ≥
∫
K−K

gn = |K| |K −K|(
2n
n

) .

On the other hand, by Fubini’s theorem,∫
K−K

fn =

∫
Rn
|K ∩ (K + x)|dx =

∫
Rn

∫
Rn

1K(y)1K+x(y)dydx

=

∫
Rn

1K(y)

(∫
Rn

1y−K(x)dx

)
dy

=

∫
Rn

1K(y)|K|dy = |K|2.

Putting the last two conclusions together finishes the proof.

9.7 Remark. The same arguments give a more general inequality: for convex bodies

K and L in Rn, we have

|K + L| ≤
(

2n

n

)
|K| · |L|
|K ∩ −L|

(9.5)

(the point being that the function f(x) = |K ∩ (L+ x)|1/n is concave).

9.8 Remark. For convex bodies K and L in Rn, we also have

|K − L| ≤
(

2n

n

)
|K + L|. (9.6)

Assuming without loss of generality that 0 belongs to both K and L, we have an inclusion

K − L ⊂ K + L− (K + L), so (9.4) yields

|K − L| ≤ |K + L− (K + L)| ≤
(

2n

n

)
|K + L|.

9.9 Remark. By the Brunn-Minkowski inequality |K −K| ≥ 2n|K|. Combining this

with (9.4) and using
(

2n
n

)
< 4n, we get that the volume of the symmetric difference

K −K is comparable to the volume of K on the exponential scale,

2 ≤ |K −K|
1/n

|K|1/n
≤ 4.

9.10 Remark. Using equality cases for the Brunn-Minkowski and deriving a nontrivial

characterisation of a simplex, Rogers and Shephard also showed that (9.4) becomes

equality if and only if K is a simplex.
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A Appendix: Haar measure

We begin with recalling an abstract theorem guaranteeing existence of Haar measure.

A.1 Theorem. Let (M,d) be a compact metric space and let G be a group acting on

M as isometries, that is d(gx, gy) = d(x, y) for x, y ∈ M and g ∈ G. There exists a

regular finite Borel measure µ on M which is invariant under the action of G, that is

µ(gA) = µ(A) for all g ∈ G and Borel subsets A of M . Moreover, µ is unique up to a

constant, if the action of G on M is transitive (for every x, y ∈M , there is g ∈ G such

that x = gy).

Such a measure is called a Haar measure. It is often normalised to be a probability

measure and we shall make no exception. Let us discuss three important examples: the

sphere, orthogonal group and Grassmannian.

Sphere

Consider the unit sphere Sn−1 = {x ∈ Rn, |x| = 1} in Rn. It is naturally equipped with

the Euclidean metric: for x, y ∈ Sn−1, dE(x, y) = |x − y|. There is also the geodesic

metric dG(x, y) defined as the measure of the convex angle x0y (on the plane spanned

by x and y). We can check that |x − y| = 2 sin dG(x,y)
2 , thus 2

πdG ≤ dE ≤ dG. The

orthogonal group O(n) acts transitively on Sn−1 as isometries. The unique probability

Haar measure σ on Sn−1 provided by Theorem A.1 is the normalised surface (Lebesgue)

measure on Sn−1 which also agrees with its cone measure, that is

σ(A) =
|cone(A)|
|Bn2 |

,

for a Borel subset A of Sn−1, where cone(A) = {ta, t ∈ [0, 1], a ∈ A}. These two

statements are justified by the invariance and uniqueness properties of the Haar measure.

The Haar measure on the sphere is related to the standard Gaussian measure by the

following extremely useful factorisation result, which is very intuitive.

A.2 Theorem. Let G be a standard Gaussian vector in Rn. Take Θ to be a random

vector uniformly distributed on the unit sphere Sn−1 and R to be an independent non-

negative random variable with density |S
n−1|√
2π
n rn−1e−r

2/2 on [0,∞). Then G has the same

distribution as R ·Θ, G
d
= R ·Θ.

Proof. Integrating in spherical coordinates, for a measurable function f : Rn → R, we

have

Ef(G) =

∫
Rn
f(x)e−|x|

2/2 dx
√

2π
n =

∫
Sn−1

∫ ∞
0

f(rθ)e−r
2/2rn−1 |Sn−1|

√
2π

n dσ(θ)dr

=

∫ ∞
0

(∫
Sn−1

f(rθ)dσ(θ)

)
|Sn−1|
√

2π
n r

n−1e−r
2/2dr

= EREΘf(RΘ) = Ef(RΘ).
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In particular, this allows to compute Gaussian Euclidean moments. For p > −n, we

have

E|G|p = E|RΘ|p = ERp =

∫ ∞
0

rn−1+pe−r
2/2 |Sn−1|
√

2π
n dr.

Changing variables and rearranging yields,

E|G|p = 2
n+p
2 −1Γ

(
n+ p

2

)
|Sn−1|
√

2π
n .

Setting p = 0 gives |S
n−1|√
2π
n = 2−n/2+1/Γ(n/2) and we get

E|G|p =
2
n
2 Γ
(
n+p

2

)
Γ
(
n
2

) . (A.1)

In particular, for p = 1, thanks to Stirling’s formula Γ(x) ∼
√

2πxx−
1
2 e−x,

E|G| = ER =

√
2Γ
(
n+1

2

)
Γ
(
n
2

) ∼
√

2
(
n+1

2

)n
2(

n
2

)n
2−

1
2

e−
1
2 = e−1/2

(
1 +

1

n

)n/2√
n

and we obtain

E|G| = ER = (1 + o(1))
√
n. (A.2)

Consequently, writing G
d
= RΘ, for any norm ‖ · ‖ on Rn, we have

E‖G‖ = (1 + o(1))
√
nE‖Θ‖. (A.3)

Orthogonal group

Consider the orthogonal group O(n) (all orthogonal n × n real matrices). It can be

equipped for instannce with the operator norm and then it acts on itself as isometries.

The Haar measure νn on O(n) thus satisfies νn(UAV ) = νn(A) for all Borel subsets A

of O(n) and U, V ∈ O(n). Practically, Haar measure νn can be realised as follows: take

a random vector uniformly distributed on the unit sphere, then take a random vector θ2

uniformly distributed on the unit sphere conditioned on being perpendicular to θ1, then

take a random vector θ3 uniformly distributed on the unit sphere conditioned on being

perpendicular to θ1 and θ2, etc. Then the random matrix whose columns are θ1, . . . , θn

is distributed according to νn.

The Haar measures σ on Sn−1 and νn on O(n) are of course related: thanks to

invariance and uniqueness, for a Borel set A in Sn−1 and a unit vector x ∈ Sn−1, we

have

νn({U ∈ O(n), Ux ∈ A}) = σ(A). (A.4)

In other words, if U is a uniform random matrix on O(n) and θ is a uniform random

vector on Sn−1, then for any (fixed) vector x ∈ Rn,

Ux
d
= |x|θ. (A.5)
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Grassmannian

Consider the Grassmannian Gn,k, that is the set of all k-dimensional subspaces in Rn.

It can be equipped for instance with the Hausdorff distance between the unit balls of

two subspaces and then the orthogonal group acts on the Grassmannian as isometries.

The Haar measure νn,k on Gn,k satisfies νn,k(UA) = νn,k(A), for U ∈ O(n), and Borel

sets A ⊂ Gn,k. A way to generate νn,k is of course to use the Haar measure on the

orthogonal group: let U be a uniform random matrix on O(n) and let F be a fixed

subspace in Rn of dimension k; then UF is a uniform random subspace in Gn,k, that is

for any Borel subset A of Gn,k,

νn({U ∈ O(n), UF ∈ A}) = νn,k(A). (A.6)

We conclude with the following useful decomposition identity: for an integrable function

f : Sn−1 → R, we have∫
Sn−1

fdσ =

∫
Gn,k

(∫
SF

fdσF

)
dνn,k(F ), (A.7)

where SF = Sn−1 ∩ F is the unit sphere in F and σF is its Haar measure. As always,

both (A.6) and (A.7) can be checked using invariance and uniqueness (for the latter it

helps check it first for indicators).

B Appendix: Spherical caps

A spherical cap on the unit sphere Sn−1, centred at θ ∈ Sn−1 with radius r > 0,

equivalently, distance ε = 1− r2

2 from the origin (height 1− ε) is the set

C(θ, ε) = {x ∈ Sn−1, 〈x, θ〉≥ ε}

= {x ∈ Sn−1, |x− θ| ≤ r} = B(θ, r).

It is useful to have a good bound for the measure of spherical caps. In the next two

theorems, we provide simple upper and lower bounds.

B.1 Theorem. For ε ∈ [0, 1] and θ ∈ Sn−1, we have

σ(C(θ, ε)) ≤ e−ε
2n/2.

Proof. We shall use the cone measure representation for σ. Let A be the cone based on

C(θ, ε) intersected with Bn2 . We distinguish two cases.

Case 1. If 0 ≤ ε ≤ 1√
2
, then A ⊂ εθ +

√
1− ε2Bn2 , thus

σ(C(θ, ε)) =
|A|
|Bn2 |

≤ |
√

1− ε2Bn2 |
|Bn2 |

= (1− ε2)n/2 ≤ e−ε
2n/2.
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Case 2. If 1√
2
≤ ε ≤ 1, then A ⊂ 1

2εθ + 1
2εB

n
2 , thus

σ(C(θ, ε)) =
|A|
|Bn2 |

≤
| 1
2εB

n
2 |

|Bn2 |
=

(
1

2ε

)n
≤ e−ε

2n/2.

The last estimate follows from the inequality ex
2/2 < 2x, x ∈ [ 1√

2
, 1], which, by convexity,

reduces to verifying it at x = 1√
2

and x = 1.

B.2 Theorem. For r ∈ [0, 2] and θ ∈ Sn−1, we have

σ(B(θ, r)) ≥
(r

4

)n
.

Proof. Let X be an r-net in Sn−1 of size at most (1 + 2/r)n (see below). Thus,

1 = σ(Sn−1) ≤ σ

(⋃
θ∈X

B(θ, r)

)
≤ |X| · σ(B(θ, r)),

consequently,

σ(B(θ, r)) ≥
(

r

r + 2

)n
≥
(r

4

)n
.

For the convenience of our proofs, we stated the above upper and lower bounds using

two different parametrisations of caps, but of course, we can easily translate one into

another using ε = 1− r2

2 .

We finish by explaining the existence of small nets, which is a very useful fact (beyond

the application we just saw in Theorem B.2). Recall that a δ-net of a metric space (M,d)

is a subset X of M such that that for every point y from M , there is a point x in X

such that d(x, y) < δ. In other words, M is covered with the balls with radius r centred

at the points in X, M ⊂
⋃
x∈X B(x, δ).

B.3 Lemma. Let ‖ · ‖ be a norm on Rn. For every δ > 0, there is a δ-net with respect

to the distance measured by ‖ · ‖ of its unit sphere {x ∈ Rn, ‖x‖ = 1} of size at most

(1 + 2/δ)n.

Proof. Let B = {x ∈ Rn, ‖x‖ < 1} be the unit ball and let S = {x ∈ Rn, ‖x‖ = 1}
be the unit sphere with respect to ‖ · ‖. Let X be a subset of S of maximal cardinality

with the property that every two points of X are at least δ-apart in distance measured

by ‖ · ‖, equivalently, the balls {x+ δ
2B}x∈X are disjoint. Note that by its maximality,

X is also a δ-net of S (otherwise, we could add a point to X). By a volume argument,

X cannot be too large,

|X| · (δ/2)n voln(B) = voln

( ⋃
x∈X

(x+
δ

2
B)

)
≤ voln

((
1 +

δ

2

)
B

)
=

(
1 +

δ

2

)n
voln(B),

hence |X| ≤ (1 + 2/δ)n.
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C Appendix: Stirling’s Formula for Γ

Recall that Stirling’s formula for factorials of integers says that

n! =
√

2πnn+1/2e−n
(

1 +O

(
1

n

))
, n→∞. (C.1)

This extends to the continuous case when we consider the Gamma function

Γ(x) =

∫ ∞
0

tx−1e−tdt, x > 0.

We have Γ(x+ 1) = xΓ(x) and thus, for integers, Γ(n+ 1) = n!. Stirling’s formula reads

Γ(x) =
√

2πxx−1/2e−x
(

1 +O

(
1

x

))
, x→∞. (C.2)

To recover (C.1), set x = n and multiply both sides of (C.2) by n. In fact precise two

sided bounds are known.

C.1 Theorem. For x > 0, we have

√
2πxx−1/2e−x ≤ Γ(x) ≤

√
2πxx−1/2e−xe

1
12x . (C.3)

A complete proof with a discussion and other references can be found in [5].
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