Random Effects

- We need to understand (at least qualitatively) what are the likely sources of random variation
- One possible source is Random Effects, when units are sampled at random from a population and various aspects of their behavior may show stochastic variation between units
- We introduce Linear Random Effects model where
- the response is assumed to be a linear function of exploratory variables with regression coefficients that vary from one individual to the next
- variability reflects natural heterogeneity due to unmeasured factors

Example: Children birth weight and growth rate.

- A random effects model is a reasonable description if the set of coefficients from a population of children can be thought of as a sample from a distribution
- Given the actual coefficient for a children, the linear Random Effects model assumes that repeated observations for that person are independent
- Correlation arises because we cannot observe the underlying growth curve, that is the regression coefficient, but we have only imperfect measurements of weight on each infant
- So the model takes the form

$$
E\left(Y_{i j} \mid U_{i}\right)=\left(\beta_{0}+U_{i}\right)+\beta_{1}(\text { time })_{i j}
$$

- Typically, a parametric model such as Gaussian with mean $=0$ and unknown variance ν^{2} is used for U_{i}.

Linear Mixed Models

- The Usual Linear Model

$$
y=X \beta+e,
$$

where

- $y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ is an $n \times 1$ vector of independent observations
- β is a $p \times 1$ vector of unknown parameters
- X an $n \times p$ design (model) matrix
- $e=\left(e_{1}, \ldots, e_{n}\right)^{\prime}$ is an $n \times 1$ vector of independent errors
- The linear mixed model (general)

$$
Y_{i}=X_{i} \beta+Z_{i} b_{i}+e_{i}
$$

where

- Y_{i}, β and e as before with
* $E\left(e_{i}\right)=0_{n}$
$* \operatorname{Var}\left(e_{i}\right)=W$
- Matrix Z is a given $n \times q$ matrix (the columns of Z is a subset of the columns of X)
- b_{i} is an unobservable random vector of dimensions $q \times 1$, following (theoretically) any multivariate distribution with the following assumptions
* $E\left(b_{i}\right)=0_{q}$
* $\operatorname{Var}\left(b_{i}\right)=B$

In practice b_{i} follow a multivariate normal distribution.

- In addition, vectors b_{i} and e_{i} are assumed uncorrelated.
- $E\left(Y_{i}\right)=X_{i} \beta$
$-\operatorname{Var}\left(Y_{i}\right)=\operatorname{Var}(X \beta+Z b+e)=Z B Z^{\prime}+W$.

Random Intercept Model

Consider the model

$$
\begin{aligned}
Y_{i j} & =X_{i j}^{\prime} \beta+b_{i}+e_{i j} \\
& =\left(\beta_{1}+b_{i}\right)+X_{i j 2} \beta_{2}+\ldots+X_{i j p} \beta_{p}+e_{i j}
\end{aligned}
$$

- Each subject's profile appears flat (across occasions) - [or parallel]
- Observations $Y_{i j}$ vary around a different value for each subject. These values are the intercepts of the line each subject's responses vary around, where b_{i} represents the deviations of subject's i intercept from the population one $\left(\beta_{1}\right)$.
- The set of intercepts are a sample from the population of intercepts.
- This implies that there is between-subject variability (equivalent to within-subject correlation)

- Furthermore, the variance of $Y_{i j}$ takes the form

$$
\begin{aligned}
\operatorname{Var}\left(Y_{i j}\right) & =\operatorname{Var}\left(X_{i j}^{\prime} \beta+b_{i}+e_{i j}\right) \\
& =\operatorname{Var}\left(b_{i}\right)+\operatorname{Var}\left(e_{i j}\right) \\
& =\sigma_{b}^{2}+\sigma^{2}
\end{aligned}
$$

and the covariance between any pair of observations of the same subject

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{i j}, Y_{i k}\right) & =\operatorname{Cov}\left(X_{i j}^{\prime} \beta+b_{i}+e_{i j}, X_{i k}^{\prime} \beta+b_{i}+e_{i k}\right) \\
& =\operatorname{Cov}\left(b_{i}, b_{i}\right) \\
& =\sigma_{b}^{2} .
\end{aligned}
$$

The covariance matrix then becomes

$$
\operatorname{Cov}\left(Y_{i}\right)=\left(\begin{array}{ccccc}
\sigma_{b}^{2}+\sigma^{2} & \sigma_{b}^{2} & \sigma_{b}^{2} & \cdots & \sigma_{b}^{2} \\
\sigma_{b}^{2} & \sigma_{b}^{2}+\sigma^{2} & \sigma_{b}^{2} & \cdots & \sigma_{b}^{2} \\
\sigma_{b}^{2} & \sigma_{b}^{2} & \sigma_{b}^{2}+\sigma^{2} & \cdots & \sigma_{b}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_{b}^{2} & \sigma_{b}^{2} & \sigma_{b}^{2} & \cdots & \sigma_{b}^{2}+\sigma^{2}
\end{array}\right)
$$

and the correlation between two observations becomes

$$
\rho=\operatorname{Corr}\left(Y_{i j}, Y_{i k}\right)=\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma^{2}}
$$

- The presence of random effect induce correlation among repeated measurements. This is also known as intra-class correlation.

Note: In statistics, the intraclass correlation is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other. While it is viewed as a type of correlation, unlike most other correlation measures it operates on data structured as groups, rather than data structured as paired observations.

- The model

$$
E\left(Y_{i j} \mid b_{i}\right)=X_{i j}^{\prime} \beta+b_{i}
$$

is referred to as the conditional or subject specific mean model

- The model

$$
E\left(Y_{i j}\right)=X_{i j}^{\prime} \beta
$$

is referred to as the marginal or population averaged mean model

Example: Orthodont Data [included in nlme package]

- A set of measurements of the distance from the pituitary gland to the pterygomaxillary fissure taken every 2 years.
- Measurements taken from 8 till 14 years of age.
- We have 27 children: 16 males - 11 females
- Data collected from x-rays.

R Console
> levels (Orthodont\$Sex)
[1] "Male" "Female"
> OrthoFem=Orthodont[Orthodont\$Sex=="Female",]
> lmF=lmList (distance ~ age, data=OrthoFem)
> coef(lmF)
(Intercept) age
F10 $\quad 13.550 .450$
F09 18.10 0.275
F06 17.00 0.375
F01 $\quad 17.25 \quad 0.375$
F05 $\quad 19.60 \quad 0.275$
F07 16.950 .550
F02 $14.20 \quad 0.800$
F08 $21.45 \quad 0.175$
F03 $14.40 \quad 0.850$
F04 $\quad 19.65 \quad 0.475$
F11 $18.95 \quad 0.675$
> intervals(lmF)
, , (Intercept)

```
    lower est. upper
F10 10.07138 13.55 17.02862
F09 14.62138 18.10 21.57862
F06 13.52138 17.00 20.47862
F01 13.77138 17.25 20.72862
F05 16.12138 19.60 23.07862
F07 13.47138 16.95 20.42862
F02 10.72138 14.20 17.67862
F08 17.97138 21.45 24.92862
F03 10.92138 14.40 17.87862
F04 16.17138 19.65 23.12862
F11 15.47138 18.95 22.42862
, , age
```

lower est. upper
F10 $0.140099620 .450 \quad 0.7599004$ F09-0.03490038 0.2750 .5849004 F06 0.065099620 .3750 .6849004 F01 $0.065099620 .375 \quad 0.6849004$ F05-0.03490038 0.2750 .5849004
F07 0.240099620 .5500 .8599004
F02 0.490099620 .8001 .1099004
F08-0.13490038 0.1750 .4849004
F03 0.540099620 .8501 .1599004
F04 0.165099620 .4750 .7849004
F11 0.365099620 .6750 .9849004

> lmF2=update(lmF,distance~I(age-11))
> intervals(lmF2)
, , (Intercept)

lower est. upper

F10 17.8070418 .50019 .19296
F09 20.4320421 .12521 .81796
F06 20.4320421 .12521 .81796
FO1 20.6820421 .37522 .06796
F05 21.9320422 .62523 .31796
F07 22.3070423 .00023 .69296
F02 22.3070423 .00023 .69296
F08 22.6820423 .37524 .06796
F03 23.0570423 .75024 .44296
F04 24.1820424 .87525 .56796
F11 25.6820426 .37527 .06796
, , I(age - 11)
lower est. upper
F10 $0.140099620 .450 \quad 0.7599004$
F09-0.03490038 0.2750 .5849004
F06 0.065099620 .3750 .6849004
F01 0.065099620 .3750 .6849004
F05 -0.03490038 0.2750 .5849004
F07 $0.240099620 .550 \quad 0.8599004$
F02 0.490099620 .8001 .1099004
F08 -0.13490038 0.1750 .4849004
F03 0.540099620 .8501 .1599004
F04 $0.165099620 .475 \quad 0.7849004$
F11 0.365099620 .6750 .9849004

> lmeF=lme(distance~age, data=OrthoFem, random=~1) \# Using REML
> summary (lmeF)
Linear mixed-effects model fit by REML
Data: OrthoFem
AIC BIC logLik
$149.2183156 .169-70.60916$
Random effects:
Formula: ~1 Subject
$\begin{array}{lrr} & \text { (Intercept) } & \text { Residual } \\ \text { StdDev: } & 2.06847 & 0.7800331\end{array}$
Fixed effects: distance ~ age
Value Std.Error DF t-value p-value
(Intercept) $17.3727270 .85874193220 .230440 \quad 0$
age $\quad 0.4795450 .0525898 \quad 32 \quad 9.118598 \quad 0$
Correlation:
(Intr)
age -0.674

Standardized Within-Group Residuals:
Min
Q1
Med
Max
$-2.2736479-0.7090164 \quad 0.1728237 \quad 0.4122128 \quad 1.6325181$
Number of Observations: 44
Number of Groups: 11
$>$ lmeF0=lme(distance~I (age-11), data=OrthoFem, random=~1)
> summary (lmeFO)
Linear mixed-effects model fit by REML
Data: OrthoFem
AIC BIC logLik
$149.2183156 .169-70.60916$

Random effects:
Formula: ~1 Subject
$\begin{array}{lrr} & \text { (Intercept) } & \text { Residual } \\ \text { StdDev: } & 2.06847 & 0.7800331\end{array}$
Fixed effects: distance ~ I (age - 11)
Value Std.Error DF t-value p-value
(Intercept) 22.6477270 .63465683235 .6850
I (age - 11) 0.479545 0.0525898 $32 \quad 9.1186$ 0 Correlation:
(Intr)
I (age - 11) 0
Standardized Within-Group Residuals:
Min
Q1
Med Q3
Max
$-2.2736479-0.7090164 \quad 0.17282370 .4122128 \quad 1.6325181$

Number of Observations: 44
Number of Groups: 11

Random Intercept and Slope Model

Consider the model

$$
Y_{i j}=\left(\beta_{1}+b_{1 i}\right)+\left(\beta_{2}+b_{2 i}\right) t_{i j}+e_{i j}
$$

- Each subject varies with respect
(i) baseline level when $t_{i 1}=0$ and
(ii) rate of change of response over time.
- In this particular case we have $q=p=2$ and

$$
X_{i}=Z_{i}=\left(\begin{array}{cc}
1 & t_{i 1} \\
1 & t_{i 2} \\
\vdots & \vdots \\
1 & t_{i n_{i}}
\end{array}\right)
$$

- Additionally, consider the variance

$$
\begin{aligned}
\operatorname{Var}\left(Y_{i j}\right) & =\operatorname{Var}\left(X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i}+e_{i j}\right) \\
& =\operatorname{Var}\left(Z_{i j}^{\prime} b_{i}+e_{i j}\right) \\
& =\operatorname{Var}\left(b_{1 i}+b_{2 i} t_{i j}+e_{i j}\right) \\
& =\operatorname{Var}\left(b_{1 i}\right)+2 t_{i j} \operatorname{Cov}\left(b_{1 i}, b_{2 i}\right)+t_{i j}^{2} \operatorname{Var}\left(b_{2 i}\right)+\operatorname{Var}\left(e_{i j}\right) .
\end{aligned}
$$

and the covariance among the repeated observations of the same subject becomes

$$
\operatorname{Cov}\left(Y_{i j}, Y_{i k}\right)=\operatorname{Var}\left(b_{1 i}\right)+\left(t_{i j}+t_{i k}\right) \operatorname{Cov}\left(b_{1 i}, b_{2 i}\right)+t_{i j} t_{i k} \operatorname{Var}\left(b_{2 i}\right)
$$

- Hence, the covariance matrix can be expressed as a function of time.

Covariance Structure

In the linear mixed model

$$
Y_{i}=X_{i} \beta+Z_{i} b_{i}+e_{i},
$$

the matrix $W_{i}=\operatorname{Cov}\left(e_{i}\right)$ introduces the covariance between the repeated observations when focusing on the conditional mean response profile of a specific individual. In other words, it is the covariance of the $i^{\text {th }}$ individual's deviations from the response profile

$$
E\left(Y_{i} \mid b_{i}\right)=X_{i} \beta+Z_{i} b_{i}
$$

- The usual assumption is $W=\sigma^{2} I_{n}$. This is referred as the conditional independence assumption.
- The conditional covariance becomes

$$
\operatorname{Cov}\left(Y_{i} \mid b_{i}\right)=\operatorname{Cov}\left(e_{i}\right)=W_{i}
$$

- The marginal then takes the form

$$
\operatorname{Cov}\left(Y_{i}\right)=Z_{i} B Z_{i}^{\prime}+W_{i}
$$

- The $\operatorname{Cov}\left(Y_{i}\right)$ allows for between-subject (B) and within-subject $\left(W_{i}\right)$ sources of variation.
- Due to the fact that $\operatorname{Cov}\left(Y_{i}\right)$ is a function of times of measurements (when time is in Z_{i}), in principle each subject may have its own measurement times.
- The comparison of random effects models for the covariance is based on the likelihood ratio test (REML). A test of two nested models, one with q and another one with $q+1$ correlated random effects lead to a chi-square test on $q+1 \mathrm{df}(1$ for variance and q covariances). However, caution is needed when the null hypothesis is on the boundary of the parameter space.

Some Characteristics

- There is no need of balanced data.
- The covariances are functions of time. As a result, if time is included in Z_{i}, each patient can have his own sequence of measurement times. This property makes these models suitable for the analysis of real life longitudinal data.
- The number of covariance parameters that need to be estimated remains unchanged regardless of the number of measurements.
- The random effects covariance structure allows the variances and covariances to change (increase or decrease) as a function of measurement times, without introducing restrictive structures as the covariance pattern models do.

Prediction

- In the analysis of longitudinal data the interest in fixed effects β is obvious. The interpretation of the parameters is clear and associated with the mean response over time and changes in covariates.
- In many cases, however, subject-specific trajectories are of interest.
- Under the linear mixed-effects model patient specific response trajectories can be predicted/estimated.
- This is possible by obtaining predictions of the subject-specific effects b_{i} (random effects), or

$$
X_{i} \beta+Z_{i} b_{i} .
$$

- Generally, the issue of predicting a random variable and as a result the patient specific response trajectory is that of predicting its conditional mean given the available data.
- There are two pieces of information that contribute in the estimation/prediction of b_{i}.
- The first is the statement that

$$
b_{i} \sim N(0, B)
$$

(the prior of b_{i}).

- The second is the likelihood of the data Y_{i}, which say that

$$
Y_{i} \mid b_{i} \sim N\left(X_{i} \beta+Z_{i} b_{i}, W_{i}\right)
$$

- We combine information by multiplying the two densities (joint) and ...after some maths... we get

$$
E\left(b_{i} \mid Y_{i}\right)=B Z_{i}^{\prime} \Sigma_{i}^{-1}\left(Y_{i}-X_{i} \hat{\beta}\right)
$$

where $\Sigma_{i}=\operatorname{Cov}\left(Y_{i}\right)=Z_{i} B Z_{i}^{\prime}+W_{i}$. This is known as the BLUP.

- The predictor of b_{i} depends on B. Hence, when this is replaced by its REML estimator, we have

$$
\hat{b}_{i}=\hat{B} Z_{i}^{\prime} \hat{\Sigma}_{i}^{-1}\left(Y_{i}-X_{i} \hat{\beta}\right)
$$

also known as the empirical BLUP (or empirical Bayes estimate).

- Given \hat{b}_{i} we obtain

$$
\hat{Y}_{i}=X_{i} \hat{\beta}+Z_{i} \hat{b}_{i}
$$

- As a result we have

$$
\begin{aligned}
\hat{Y}_{i} & =X_{i} \hat{\beta}+Z_{i} \hat{b_{i}} \\
& =X_{i} \hat{\beta}+Z_{i} \hat{B} Z_{i}^{\prime} \hat{\Sigma}_{i}^{-1}\left(Y_{i}-X_{i} \hat{\beta}\right) \\
& =\left(I_{n_{i}}-Z_{i} \hat{B} Z_{i}^{\prime} \hat{\Sigma}_{i}^{-1}\right) X_{i} \hat{\beta}+Z_{i} \hat{B} Z_{i}^{\prime} \hat{\Sigma}_{i}^{-1} Y_{i} \\
& =\left(\hat{W}_{i} \hat{\Sigma}_{i}^{-1}\right) X_{i} \hat{\beta}+\left(I_{n_{i}}-\hat{W}_{i} \hat{\Sigma}_{i}^{-1}\right) Y_{i}
\end{aligned}
$$

where

$$
\hat{\Sigma}_{i} \hat{\Sigma}_{i}^{-1}=I_{n_{i}}=\left(Z_{i} \hat{B} Z_{i}^{\prime}+\hat{W}_{i}\right) \hat{\Sigma}_{i}^{-1}=Z_{i} \hat{B} Z_{i}^{\prime} \hat{\Sigma}_{i}^{-1}+\hat{W}_{i} \hat{\Sigma}_{i}^{-1}
$$

This expression shows that \hat{Y}_{i} is a weighted mean of $X_{i} \hat{\beta}$, the population-averaged mean response profile and Y_{i} the $i^{t h}$ patient's observed response profile.

- As a result the predicted response profile is pulled (shrinks) towards the populationaveraged mean response profile.
- The amount of shrinkage depends on W_{i} and Σ_{i}.
- If W_{i} is "large" then the within-subject variability is greater that the between subject variability and hence more weight is given on the population averaged mean response profile $X_{i} \hat{\beta}$.
- The opposite holds when W_{i} is "small".

Example: Orthodont (cont.)

```
>lmeOrth1=lme(distance ~ I(age-11),data=Orthodont,random=~1)
>lmeOrth1ml=update(lmeOrth1,method='ML')
>lmeOrth2=lme(distance ~ I(age-11),data=Orthodont)
>lmeOrth2ml=update(lmeOrth2,method='ML')
>lmeOrth3=update(lmeOrth2,fixed=distance ~ Sex*I(age-11))
```

```
R Console
> summary(lmeOrth1)
Linear mixed-effects model fit by REML
    Data: Orthodont
        AIC BIC logLik
    455.0025 465.6563-223.5013
Random effects:
    Formula: ~1 Subject
        (Intercept) Residual
StdDev: 2.114724 1.431592
Fixed effects: distance ~ I(age - 11)
                            Value Std.Error DF t-value p-value
(Intercept) 24.023148 0.4296605 80 55.91193 0
I(age - 11) 0.660185 0.0616059 80 10.71626 0
    Correlation:
        (Intr)
I(age - 11) 0
Standardized Within-Group Residuals:
        Min Q1 Med Max
-3.66453932-0.53507984 -0.01289591 0.48742859 3.72178465
Number of Observations: 108
Number of Groups: 27
```

> OrthRE1ml=random.effects(lmeOrth1ml)
> OrthRE1ml
(Intercept)
M16 -0.9152788
M05 -0.9152788
M02 -0.5798146
M11 -0.3561719
M07 -0.2443505
M08 -0.1325291
M03 0.2029351
M12 0.2029351
M13 0.2029351
M14 0.7620421
M09 0.9856849
M15 1.6566133
M06 2.1038989
M04 2.3275416
M01 3.3339342
M10 4.8994337
F10 -4.9408491
F09 -2.5925998
F06 -2.5925998
F01 -2.3689570
F05 -1.2507430
F07 -0.9152788
F02 -0.9152788
F08 -0.5798146
F03 -0.2443505
F04 0.7620421
F11 2.1038989
> coef(lmeOrth1)\#subject specific coefficients (random intercept only)
(Intercept) I (age - 11)

M16	23.10517	0.6601852
M05	23.10517	0.6601852
M02	23.44163	0.6601852
M11	23.66593	0.6601852
M07	23.77808	0.6601852
M08	23.89023	0.6601852
M03	24.22668	0.6601852
M12	24.22668	0.6601852
M13	24.22668	0.6601852
M14	24.78744	0.6601852
M09	25.01174	0.6601852
M15	25.68464	0.6601852
M06	26.13325	0.6601852
M04	26.35755	0.6601852
M01	27.36691	0.6601852
M10	28.93702	0.6601852
F10	19.06774	0.6601852
F09	21.42291	0.6601852
F06	21.42291	0.6601852
F01	21.64721	0.6601852
F05	22.76872	0.6601852
F07	23.10517	0.6601852
F02	23.10517	0.6601852
F08	23.44163	0.6601852
F03	23.77808	0.6601852
F04	24.78744	0.6601852
F11	26.13325	0.6601852

> summary (lmeOrth1ml)
Linear mixed-effects model fit by maximum likelihood
Data: Orthodont
AIC BIC logLik
451.3895462 .1181 -221.6948

Random effects:
Formula: ~1 | Subject
(Intercept) Residual

Fixed effects: distance ~ I (age - 11)
Value Std.Error DF t-value p-value
(Intercept) $24.023148 \quad 0.42558788056 .44699 \quad 0$
I (age - 11) 0.6601850 .06179938010 .682720
Correlation:
(Intr)
I(age - 11) 0
Standardized Within-Group Residuals:
Min $\begin{gathered}\text { Q1 }\end{gathered} \quad$ Q3 Max
$-3.68695130-0.53862941-0.01232442 \quad 0.49100161 \quad 3.74701483$
Number of Observations: 108
Number of Groups: 27
> OrthRE1ml=random.effects(lmeOrth1ml)
> OrthRE1ml
(Intercept)
M16 -0.9152788
M05 -0.9152788
M02 -0.5798146
M11 -0.3561719
M07 -0.2443505
M08 -0.1325291
M03 0.2029351
M12 0.2029351
M13 0.2029351
M14 0.7620421
M09 0.9856849
M15 1.6566133
M06 2.1038989
M04 2.3275416
M01 3.3339342
M10 4.8994337
F10 -4.9408491
F09 -2.5925998
F06 -2.5925998
F01 -2.3689570
F05 -1.2507430
F07 -0.9152788
F02 -0.9152788
F08 -0.5798146
F03 -0.2443505
F04 0.7620421
F11 2.1038989
> coef(lmeOrth1ml)\#subject specific coefficients (random intercept only)
(Intercept) I(age - 11)

M16	23.10787	0.6601852
M05	23.10787	0.6601852
M02	23.44333	0.6601852
M11	23.66698	0.6601852
M07	23.77880	0.6601852
M08	23.89062	0.6601852
M03	24.22608	0.6601852
M12	24.22608	0.6601852
M13	24.22608	0.6601852
M14	24.78519	0.6601852
M09	25.00883	0.6601852
M15	25.67976	0.6601852
M06	26.12705	0.6601852
M04	26.35069	0.6601852
M01	27.35708	0.6601852
M10	28.92258	0.6601852
F10	19.08230	0.6601852
F09	21.43055	0.6601852
F06	21.43055	0.6601852
F01	21.65419	0.6601852
F05	22.77241	0.6601852
F07	23.10787	0.6601852
F02	23.10787	0.6601852
F08	23.44333	0.6601852
F03	23.77880	0.6601852
F04	24.78519	0.6601852
F11	26.12705	0.6601852

>plot(compareFits(coef(lmeOrth1), coef(lmeOrth1ml)))

>plot(augPred(lmeOrth1), aspect="xy", grid=T)

> summary(lmeOrth2)
Linear mixed-effects model fit by REML
Data: Orthodont
AIC BIC logLik
454.6367470 .6173 -221.3183

Random effects:
Formula: ~I (age - 11) | Subject
Structure: General positive-definite
StdDev Corr
(Intercept) 2.1343327 (Intr)
I(age - 11) 0.22642750 .503
Residual 1.3100394
Fixed effects: distance ~ I(age - 11)
Value Std.Error DF t-value p-value
(Intercept) 24.0231480 .42966088055 .911890
I (age - 11) 0.6601850 .0712532809 .265340
Correlation:
(Intr)
I(age - 11) 0.294
$\begin{array}{rrrrr}\text { Standardized Within-Group } \\ \text { Min } & \text { Residuals: } & \text { Med } & \text { Q3 } & \text { Max } \\ -3.223106405 & -0.493761198 & 0.007316808 & 0.472151143 & 3.916034231\end{array}$
Number of Observations: 108
Number of Groups: 27
>plot(compareFits(ranef(lmeOrth2), ranef(lmeOrth2ml)), mark=c $(0,0))$

> summary (lmeOrth3)
Linear mixed-effects model fit by REML
Data: Orthodont
AIC BIC logLik
458.9891498 .655 -214.4945

Random effects:
Formula: ~Sex + I (age - 11) + Sex:I (age - 11) | Subject
Structure: General positive-definite
(Intercept)
SexFemale
I (age - 11)
StdDev Corr $1.6956351-0.307$

SexFemale
Residual $0.2937695-0.009-0.146$
1.2551778

Standardized Within-Group Residuals:				
Min	Q1	Med	Q3	Max
-2.96534486	-0.38609670	0.03647795	0.43142668	3.99155835

Number of Observations: 108
Number of Groups: 27
> OrthRE3=random.effects(lmeOrth3)
> OrthRE3

	(Intercept)	SexFemale	I (age - 11)	SexFemale:I(age - 11)
M16	-1.73612668	0.63199885	-0.121203414	0.0748642681
M05	-1.73713471	0.49796730	0.035630448	-0.0876368146
M02	-1.40604191	0.43103963	-0.003830025	-0.0370896958
M11	-1.18396932	0.56512991	-0.239248823	0.2132764937
M07	-1.07528511	0.31943477	0.008987456	-0.0407096045
M08	-0.96357680	0.47583428	-0.213277852	0.1928075453
M03	-0.63399603	0.20785928	-0.017487532	-0.0003969599
M12	-0.63483606	0.09616632	0.113207353	-0.1358145288
M13	-0.63802816	-0.32826691	0.609847916	-0.6504012907
M14	-0.08183867	0.14099033	-0.135532941	0.1380152657
M09	0.13720981	-0.12701403	0.099549847	-0.0991217929
M15	0.79838740	-0.39490093	0.177462762	-0.1605286380
M06	1.24102052	-0.32776769	-0.058124041	0.0964521169
M04	1.46326110	-0.17133882	-0.319681817	0.3739018202
M01	2.45317943	-0.81889368	0.084716304	-0.0161270990
M10	3.99777519	-1.19823860	-0.021015641	0.1385089141
F10	-1.91258504	-1.84210386	0.071770763	-0.2293495874
F09	-0.72087067	-0.69430276	0.027050737	-0.0864435068
F06	-0.71120815	-0.68499782	0.026688309	-0.0852850411
F01	-0.59610113	-0.57413261	0.022368854	-0.0714818606
F05	-0.03022851	-0.02911148	0.001134008	-0.0036244236
F07	0.16900395	0.16277491	-0.006341852	0.0202661280
F02	0.19316023	0.18603726	-0.007247922	0.0231622923
F08	0.30543005	0.29417922	-0.011461928	0.0366266523
F03	0.54331257	0.52328536	-0.020387500	0.0651510668
F04	1.02505976	0.98728531	-0.038465941	0.1229211327
F11	1.73502694	1.67108646	-0.065107527	0.2080571474

>plot(augPred(lmeOrth3), aspect="xy", grid=T)


```
R Console
> newOrth=data.frame(Subject=rep(c("M11","F03"),c(3,3)),Sex=rep(c("Male","Female"),c(3,3)), age
=rep(16:18,2) )
> newOrth
    Subject Sex age
1 M11 Male 16
2 M11 Male 17
            M11 Male 17
            F03 Female 16
            F03 Female 17
            F03 Female 18
predict(lmeOrth3,newdata=newOrth,level=0:1)
    Subject predict.fixed predict.Subject
M11 28.89063 26.51041
2 M11 29.67500 
M M11 30.45938 27.60066
4 F03 25.04545 26.33587
5 F03 25.52500 26.86018
\begin{tabular}{llll}
6 & \(F 03\) & 26.00455 & 27.38449
\end{tabular}
```

>lmListOrth=lmList(distance I(age-11), data=Orthodont) >compFOrth=compareFits(coef(lmListOrth), coef(lmeOrth2))

>plot (comparePred (lmListOrth, lmeOrth2, length.out=2), layout=c $(9,3)$)

Examining a Fitted Model

There are two basic assumptions that need to be assessed

1. the within-group errors are assumed independent and identically normally distributed with mean zero and variance σ^{2} (since $W_{i}=\sigma^{2} I$), and they are independent of the random effects
2. the random effects are normally distributed with mean zero and covariance matrix B (not depending on the group) and are independent for different groups.

Assessing assumptions on the within-group error

- The primary quantities used to assess the adequacy of the first assumption are the withingroup residuals, defined as the difference between the observed and the within-group fitted value.
- The plot method of lme class is the primary tool for obtaining diagnostics for the first assumption.

Example: Orthodont (cont.)

- Initially we consider the box plot of the residuals, by group.
- We add a vertical line at zero so we can assess whether
- the residuals are centered at zero
- have constant variance across groups
- are independent of the group level
>plot(lmeOrth2, Subject \sim resid(.), abline=0)

>plot(lmeOrth2, resid(.,type='p') ~ fitted(.)|Sex,id=0.05, adj=-0.3)

$>$ lmeOrth5=lme(distance~I (age-11), data=Orthodont, weights=varIdent(form=~1|Sex))
$>$ summary (lmeOrth5)
Linear mixed-effects model fit by REML
Data: Orthodont
AIC BIC logLik
435.6466454 .2907 -210.8233

Random effects:
Formula: ~I (age - 11) | Subject
Structure: General positive-definite
StdDev Corr
(Intercept) 2.1590091 (Intr)
I (age - 11) 0.19806270 .617
Residual 1.6452598

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 Sex
Parameter estimates.
Male
Female
1.00000000 .4040981

Fixed effects: distance ~ I(age - 11)
Value Std.Error DF t-value p-value
(Intercept) 23.973770 .43416978055 .217520
I(age - 11) 0.606860 .05942608010 .21203
0
Correlation:
(Intr)
I(age - 11) 0.391
Standardized Within-Group Residuals:

| Min | Q1 | Med | Q3 | Max |
| ---: | ---: | ---: | ---: | ---: | ---: |
| -3.02779067 | -0.48052007 | 0.04214476 | 0.51813201 | 3.18632228 |

Number of Observations: 108
Number of Groups: 27

>plot(lmeOrth5, resid(.,type='p') ~ fitted(.)|Sex,id=0.05, adj=-0.3)

>plot(lmeOrth5, distance \sim fitted(.),id=0.05,adj=-0.3)

>qqnorm(lmeOrth5, ~ resid(.)|Sex)

Assessing assumptions on the random effects

- The ranef method is used to obtain the estimated BLUP of the random effects for lme objects.
- Two types of diagnostic plots will be used to assess the second assumption
- qqnorm: normal plot
- pairs: scatter plot
>qqnorm(lmeOrth2, $\sim \operatorname{ranef}(),. i d=0.10, c e x=0.7)$

>pairs(lmeOrth2, $\sim r \operatorname{ranef}() \mid. S e x, i d=\sim$ Subject=='M13', adj=-0.3)

>qqnorm(lmeOrth5, \sim ranef(.),id=0.10, cex=0.7)

Generalized Linear Mixed Effects Models

- GLMs can be extended, with the inclusion of random parameters, to allow variation between subjects
- Random effects follow multivariate normal distribution
- Conditional on random effects, responses are independent following a distribution that belongs to the exponential family.

Model Specification:

- The distribution of $Y_{i j}$, conditional to random effects, belongs to the exponential family of distributions.
- It's variance is

$$
\operatorname{Var}\left(Y_{i}\right)=\phi v\left(E\left[Y_{i j} \mid b_{i}\right]\right)
$$

- Given $b_{i}, Y_{i j}$ are independent from one another
- In matrix notation, the linear predictor can be written

$$
\eta_{i j}=X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i}
$$

and for some known link function $g()$

$$
g\left(E\left[Y_{i j} \mid b_{i}\right]\right)=\eta_{i j}=X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i}
$$

- Random effects, in theory, can follow any multivariate distribution. In practice, they follow multivariate normal with mean equal zero and a covariance matrix G.

GLMM for Continuous Response:

- Responses $Y_{i j}$ are independent, conditional on b_{i}, and normally distributed
- Variance has the form

$$
\operatorname{Var}\left(Y_{i j} \mid b_{i}\right)=\sigma^{2}
$$

where $\phi=\sigma^{2}$ and $v(\mu)=1$.

- The linear predictor is

$$
\eta_{i j}=X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i},
$$

where $X_{i j}^{\prime}=Z_{i j}^{\prime}=\left(1, t_{i j}\right)$ (illustration). Then

$$
\begin{aligned}
E\left(Y_{i j} \mid b_{i}\right)=\eta_{i j} & =X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i} \\
& =\left(\beta_{1}+b_{1 i}\right)+\left(\beta_{2}+b_{2 i}\right) t_{i j}
\end{aligned}
$$

- Although the link is the identity function, more options are available
- Random effects have a bi-variate Normal with covariance matrix $G_{2 \times 2}$

GLMM for Binary Response:

- Responses $Y_{i j}$ are independent, conditional on b_{i}, Bernoulli variables
- Variance has the form

$$
\operatorname{Var}\left(Y_{i j} \mid b_{i}\right)=E\left(Y_{i j} \mid b_{i}\right)\left(1-E\left(Y_{i j} \mid b_{i}\right)\right)
$$

This means that $\phi=1$.

- The linear predictor is given by

$$
\begin{aligned}
\eta_{i j} & =X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i} \\
& =X_{i j}^{\prime} \beta+b_{i},
\end{aligned}
$$

where $Z_{i j}^{\prime}=1$ for all i, j (illustration). Then

$$
\log \left[\frac{P\left(Y_{i j}=1 \mid b_{i}\right)}{P\left(Y_{i j}=0 \mid b_{i}\right)}\right]=\eta_{i j}=X_{i j}^{\prime} \beta+b_{i}
$$

- $b_{i} \sim N\left(0, \sigma^{2}\right)$.
- This is a random intercept model, equivalent to the compound symmetry model.

GLMM for Counts:

- Responses $Y_{i j}$ are independent, conditional on b_{i}, following Poisson distribution
- Variance has the form

$$
\operatorname{Var}\left(Y_{i j} \mid b_{i}\right)=E\left(Y_{i j} \mid b_{i}\right)
$$

This means that $\phi=1$.

- The linear predictor is given by

$$
\eta_{i j}=X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i},
$$

where $Z_{i j}^{\prime}=\left(1, t_{i j}\right)$ for all i, j (illustration). Then

$$
\log E\left(Y_{i j} \mid b_{i}\right)=\eta_{i j}=X_{i j}^{\prime} \beta+Z_{i j}^{\prime} b_{i}
$$

- Random effects follow bivariate normal with zero mean and 2×2 covariance matrix

Parameter Interpretation

- Parameters in the linear predictor are now interpreted in terms of conditional probabilities, given subject (random) effects
- Regression parameters β in GLMM have different interpretation than in marginal models
- In GLMM, β represent subject-specific interpretation
- Specifically, β represent the impact of covariates on changes in an individual's transformed mean response
- Consider the example with the logistic regression model

$$
\log \left[\frac{P\left(Y_{i j}=1 \mid b_{i}\right)}{P\left(Y_{i j}=0 \mid b_{i}\right)}\right]=X_{i j}^{\prime} \beta+b_{i},
$$

where $b_{i} \sim N\left(0, g_{11}\right)$. Furthermore, consider covariate $X_{i j k}$ takes some value x, leading to the log-odds

$$
\begin{aligned}
& \log \left[\frac{P\left(Y_{i j}=1 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=x, \ldots, X_{i j p}\right)}{P\left(Y_{i j}=0 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=x, \ldots, X_{i j p}\right)}\right] \\
& \quad=\beta_{1} X_{i j 1}+\beta_{2} X_{i j 2}+\ldots+\beta_{k} x+\ldots+\beta_{p} X_{i j p}+b_{i}
\end{aligned}
$$

Additionally, if $X_{i j k}=x+1$, then the log-odds takes the form

$$
\begin{aligned}
& \log \left[\frac{P\left(Y_{i j}=1 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=x+1, \ldots, X_{i j p}\right)}{P\left(Y_{i j}=0 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=x+1, \ldots, X_{i j p}\right)}\right] \\
& =\beta_{1} X_{i j 1}+\beta_{2} X_{i j 2}+\ldots+\beta_{k}(x+1)+\ldots+\beta_{p} X_{i j p}+b_{i},
\end{aligned}
$$

and hence β_{k} measures the changes in the log-odds resulted from a unit change in covariate $X_{i j k}$ while the remaining ones were held fixed. In terms of interpretation:

- If the covariate $X_{i j k}$ varies within individual (subject-specific, time-varying) then

$$
\begin{aligned}
& \log \left[\frac{P\left(Y_{i j^{\prime}}=1 \mid b_{i}, X_{i j^{\prime} 1}, X_{i j^{\prime} 2}, \ldots, X_{i j^{\prime} k}=x+1, \ldots, X_{i j^{\prime} p}\right)}{P\left(Y_{i j^{\prime}}=0 \mid b_{i}, X_{i j^{\prime} 1}, X_{i j^{\prime} 2}, \ldots, X_{i j^{\prime} k}=x+1, \ldots, X_{i j^{\prime} p}\right)}\right] \\
& -\log \left[\frac{P\left(Y_{i j}=1 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=x, \ldots, X_{i j p}\right)}{P\left(Y_{i j}=0 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=x, \ldots, X_{i j p}\right)}\right]=\beta_{k},
\end{aligned}
$$

where the interpretation is quite straight forward since all other covariates as well as random effects are the same and hence removed. Hence,

$$
\begin{gathered}
\log \left[\frac{P\left(Y_{i j^{\prime}}=1 \mid b_{i}, \ldots\right) / P\left(Y_{i j^{\prime}}=0 \mid b_{i}, \ldots\right)}{P\left(Y_{i j}=1 \mid b_{i}, \ldots\right) / P\left(Y_{i j}=0 \mid b_{i}, \ldots\right)}\right]=\log O R=\beta_{k} \Rightarrow \\
O R=\exp \left(\beta_{k}\right)
\end{gathered}
$$

is the within subject OR.

- If the covariate $X_{i j k}$ is time invariant (between-subject), like treatment group, interpretation becomes complicated. Hence

$$
\begin{gathered}
\log \left[\frac{P\left(Y_{i j}=1 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=1, \ldots, X_{i j p}\right)}{P\left(Y_{i j}=0 \mid b_{i}, X_{i j 1}, X_{i j 2}, \ldots, X_{i j k}=1, \ldots, X_{i j p}\right)}\right] \\
-\quad \log \left[\frac{P\left(Y_{i^{\prime} j}=1 \mid b_{i^{\prime}}, X_{i^{\prime} j 1}, X_{i^{\prime} j 2}, \ldots, X_{i^{\prime} j k}=0, \ldots, X_{i^{\prime} j p}\right)}{P\left(Y_{i^{\prime} j}=0 \mid b_{i^{\prime}}, X_{i^{\prime} j 1}, X_{i^{\prime} j 2}, \ldots, X_{i^{\prime} j k}=0, \ldots, X_{i^{\prime} j p}\right)}\right]=\beta_{k}+\left(b_{i}-b_{i^{\prime}}\right),
\end{gathered}
$$

and as a result the change in log-odds is confounded by $b_{i}-b_{i^{\prime}}$. It is misleading to give to this change a subject-specific interpretation. It is seen as a model based extrapolation (no data available) and could be sensitive to various assumptions concerning the random effects.

Estimation and Inference

- The distribution of the random effects as well as the distribution of the responses are known
- As a result, the joint distribution of random effects and responses is fully specified

$$
f\left(Y_{i}, b_{i}\right)=f\left(Y_{i} \mid b_{i}\right) f\left(b_{i}\right)
$$

where

$$
f\left(Y_{i} \mid b_{i}\right)=f\left(Y_{i 1} \mid b_{i}\right) f\left(Y_{i 2} \mid b_{i}\right) \ldots f\left(Y_{i n_{i}} \mid b_{i}\right)
$$

under the conditional independence assumption.

- Then, the likelihood function takes the form

$$
L(\beta, \phi, G)=\prod_{i=1}^{N} \int f\left(Y_{i} \mid b_{i}\right) f\left(b_{i}\right) d b_{i}
$$

where the random effects are integrated out of the likelihood, obtaining in that way a marginal likelihood averaged over the b_{i}.

- There is now way the likelihood can be written in a closed form
- As a result, numerical integration techniques are required

Prediction of b_{i}

- Given the MLE of β, ϕ and G, b_{i} can be predicted as

$$
\hat{b}_{i}=E\left(b_{i} \mid Y_{i} ; \hat{\beta}, \hat{\phi}, \hat{G}\right)
$$

- This is the empirical Bayes or BLUP used before
- Numerical integration techniques are also required

The lmer function (R : lme4 package)

Fit (Generalized) Linear Mixed-Effects Models

Description
Fit a linear or generalized linear mixed-effects model with nested or crossed grouping factors for the random effects.

Usage
lmer (formula, data, family, method, control, start, subset, weights, na.action, offset, contrasts, model, ...)
lmer2 (formula, data, family, method, control, start, subset, weights, na.action, offset, contrasts, model, ...)

Arguments

formula a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a \sim operator and the terms, separated by + operators, on the right. The vertical bar character " \| " separates an expression for a model matrix and a grouping factor.
data an optional data frame containing the variables named in formula. By default the variables are taken from the environment from which lmer is called.
family a GLM family, see glm. If family is missing then a linear mixed model is fit; otherwise a generalized linear mixed model is fit.
method a character string. For a linear mixed model the default is "REML" indicating that the model should be fit by maximizing the restricted log-likelihood. The alternative is "ML" indicating that the log-likelihood should be maximized. (This method is

Example: Respiratory Data

```
    resp_lmer1 =lmer(status ~ centre + treatment + sex + baseline + age +
(1|subject), data = resp, family = "binomial")
```

> summary(resp_lmer1)
Generalized linear mixed model fit using Laplace
Formula: status ~ centre + treatment + sex + baseline + age + (1 | subject) Data: resp
Family: binomial(logit link)
AIC BIC logLik deviance
$443 \quad 471.7$-214.5 429
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) $3.8402 \quad 1.9596$
number of obs: 444, groups: subject, 111
Estimated scale (compare to 1) 0.7770601
Fixed effects:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-1.64382	0.75668	-2.172	0.0298	*
centre2	1.04635	0.53075	1.971	0.0487	*
treatmenttreatment	2.16087	0.51652	4.183	$2.87 e-05$	***
sexmale	0.20740	0.65969	0.314	0.7532	
baselinegood	3.07037	0.52499	5.848	4.96e-09	***
age	-0.02549	0.01994	-1.278	0.2012	
Signif. codes: 0	' 0.00	1 **' 0.01	'*' 0	5 '.' 0.	, '

Correlation of Fixed Effects:
(Intr) centr2 trtmnt sexmal bslngd
centre2
-0.054
trtmnttrtmn -0.407 0.018
sexmale $-0.008-0.151 \quad 0.222$
baselinegod -0.347-0.236 0.2060 .101
age $\quad-0.753-0.226-0.015-0.255 \quad 0.069$
resp_lmer2 $=$ lmer (status \sim centre + treatment + sex + baseline + age + (age|subject), data = resp, family = "binomial")
> summary(resp_lmer2)
Generalized linear mixed model fit using Laplace
Formula: status \sim centre + treatment + sex + baseline + age + (age | subject) Data: resp
Family: binomial (logit link)
AIC BIC logLik deviance
445.8482 .7 -213.9 427.8

Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 1.9647991 .401713
age 0.0015840 .0397990 .003
number of obs: 444, groups: subject, 111
Estimated scale (compare to 1) 0.7859826

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-1.29487	0.72534	-1.785	0.0742	.
centre2	0.99755	0.50953	1.958	0.0503	.
treatmenttreatment	2.01372	0.50179	4.013	5.99e-05	***
sexmale	0.24017	0.68883	0.349	0.7273	
baselinegood	2.97704	0.51023	5.835	5.39e-09	
age	-0.03354	0.02107	-1.592	0.1114	
Signif. codes: 0	'***' 0.00	01 '**' 0.01	-*' 0.05	5 '.' 0.1	,
Correlation of Fixed Effects:					
$\begin{aligned} & (\text { Intr) } \\ & -0.084 \end{aligned}$	centr2 trtmnt sexmal bslngd				
trtmnttrtmn -0.396	0.013				
sexmale 0.053	-0.130	0.215			
baselinegod -0.337	-0.226	$0.217 \quad 0.076$			
age -0.753	-0.173-0.	0.038-0.316	0.042		

