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Stationary ARMA Models and Box-Jenkins methodology

I Introduction
I The time series models:

I Moving Average models [MA]
I Autoregressive models [AR]
I Autoregressive and Moving Average models [ARMA]

I Properties of time series models

I Estimation of time series models

I Forecasting time series models
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Introduction

I Explain the movements of the time series by its own
characteristics.

I Emphasis is on the analysis of probabilistic or stochastic
properties of the time series.

I Construct models that explain the series yt by using past
values yt−i and past stochastic error terms εt−j ...

I ...instead of (or apart from) explaining yt by using explanatory
variables x1, x2, ..., xk .
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Introduction: Time Series models

Use lagged data points or/and lagged errors
Autoregressive models [AR(p)]

yt = δ + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

Moving Average models [MA(q)]

yt = µ+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt

Autoregressive Moving Average models [ARMA(p,q)]

yt = δ + φ1yt−1 + . . .+ φpyt−p + θ1εt−1 + . . .+ θqεt−q + εt
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Introduction: Aim of the analysis

I Try to study the characteristics of the time series
(identification step)...

I in order to build - construct and estimate an appropriate
model (estimation step)...

I which can be used to explain what has generated the observed
time-series data (diagnostic checking step)...

I and can be also used for predictions (forecasting step).
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Introduction: Box-Jenkins methodology

I Identification step
Use autocorrelation and partial autocorrelation of the series to
find appropriate values of p and q.

I Estimation step
Estimate the model’s parameters using Maximum Likelihood
or Least Squares method.

I Diagnostic checking step
Examine if the chosen (estimated) model fits the data
reasonably well - test if the residuals of the estimated model
are uncorrelated, homoscedastic and normal, i.e. white noise.

I Forecasting step
Compute forecasts based on the fitted model.
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White Noise

The basic building block for all processes and models considered in
time series analysis is the White Noise process

A process εt that satisfies the following conditions is called a
White Noise process:

I E (εt) = 0, zero mean.

I V (εt) = E [εt − E (εt)]2 = E (ε2t )− [E (εt)]2 = E (ε2t ) = σ2,
constant variance.

I γt−s = Cov(εt , εs) = E [(εt − E (εt))(εs − E (εs))] =
E (εtεs) = 0 for t 6= s, uncorrelated elements across time.

Furthermore, if the εt follow the Normal distribution, i.e.
εt ∼ N(0, σ2) the process εt is called Gaussian White Noise
process.
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Example 1: yt = µ + εt

Consider a process yt which is the sum of a constant µ plus a
Gaussian White Noise process εt i.e. yt = µ+ εt , εt ∼ N(0, σ2)

E (yt) = E (µ+ εt) = E (µ) + E (εt) = µ

γ0 = V (yt) = V (µ+ εt) = V (µ) + V (εt) = σ2 or

γ0 = V (yt) = E [yt − E (yt)]2 = E [yt − µ]2 = E (εt)
2 = σ2

γj = Cov(yt , yt−j) = E [(yt − E (yt))(yt−j − E (yt−j))] =

= E [(yt − µ)(yt−j − µ)] = E (εtεt−j) = 0

yt moves around µ with variance σ2 (uncorrelated y ′ts)
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Example 2: yt = βt + εt

Consider a process yt which is a time trend, βt, plus a Gaussian
White Noise process εt i.e. yt = βt + εt , εt ∼ N(0, σ2)

E (yt) = E (βt + εt) = E (βt) + E (εt) = βt

γ0 = V (yt) = V (βt + εt) = V (βt) + V (εt) = σ2 or

γ0 = V (yt) = E [yt − E (yt)]2 = E [yt − βt]2 = E (εt)
2 = σ2

γj = Cov(yt , yt−j) = E [(yt − E (yt))(yt−j − E (yt−j))] =

= E [(yt − βt)(yt−j − β(t − j))] = E (εtεt−j) = 0

yt move around trend βt with variance σ2 (uncorrelated y ′ts)
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Moving Average process: MA(1) - Mean - Variance

Let yt follow a Moving Average of order one, MA(1), model:

yt = µ+ θ1εt−1 + εt , εt ∼ N(0, σ2)

E (yt) = E (µ+ θ1εt−1 + εt) = E (µ) + E (θ1εt−1) + E (εt)

= E (µ) + θ1E (εt−1) + E (εt) = µ

V (yt) = E [yt − E (yt)]2 = E [yt − µ]2 = E (θ1εt−1 + εt)
2 =

= E (θ21ε
2
t−1 + ε2t + 2θ1εt−1εt) =

= E (θ21ε
2
t−1) + E (ε2t ) + E (2θ1εt−1εt) =

= θ21E (ε2t−1) + E (ε2t ) + 2θ1E (εt−1εt) =

= θ21σ
2 + σ2 = (1 + θ21)σ2
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Moving Average process: MA(1)
Autocovariance at lag 1, γ1 - Autocorrelation at lag 1, ρ1

γ1 = Cov(yt , yt−1) = E [(yt − E (yt))(yt−1 − E (yt−1))] =

= E [(yt − µ)(yt−1 − µ)] = E [(θ1εt−1 + εt)(θ1εt−2 + εt−1)] =

= E (θ21εt−1εt−2 + θ1ε
2
t−1 + θ1εtεt−2 + εtεt−1) =

= θ21E (εt−1εt−2) + θ1E (ε2t−1) + θ1E (εtεt−2) + E (εtεt−1) =

= θ1σ
2

ρ1 = γ1
γ0

= θ1σ
2

(1+θ21)σ
2 = θ1

1+θ21
6= 0
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Moving Average process: MA(1)
Autocovariance at lag 2, γ2 - Autocorrelation at lag 2, ρ2

γ2 = Cov(yt , yt−2) = E [(yt − E (yt))(yt−2 − E (yt−2))] =

= E [(yt − µ)(yt−2 − µ)] = E [(θ1εt−1 + εt)(θ1εt−3 + εt−2)] =

= E (θ21εt−1εt−3 + θ1εt−1εt−2 + θ1εtεt−3 + εtεt−2) =

= θ21E (εt−1εt−3) + θ1E (εt−1εt−2) + θ1E (εtεt−3) + E (εtεt−2) = 0

ρ2 = γ2
γ0

= 0
(1+θ21)σ

2 = 0
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Moving Average process: MA(1)
Autocovariance at lag k ≥ 2 - Autocorrelation at lag k ≥

γk = Cov(yt , yt−k) = E [(yt − E (yt))(yt−k − E (yt−k))] =

= E [(yt − µ)(yt−k − µ)] = E [(θ1εt−1 + εt)(θ1εt−k−1 + εt−k)] =

= E (θ21εt−1εt−k−1 + θ1εt−1εt−k + θ1εtεt−k−1 + εtεt−k) =

= θ21E (εt−1εt−k−1) + θ1E (εt−1εt−k) + θ1E (εtεt−k−1) +E (εtεt−k)

= 0

ρk = γk
γ0

= 0
(1+θ21)σ

2 = 0
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Moving Average process: MA(1) Useful comments

I The mean, the variance and the
autocovariances-autocorrelations are constant over time.

I The MA(1) is weakly stationary process, without imposing
restrictions on the model parameters.

I In the MA(1) process the autocovariance-autocorrelation at
lag one is different from zero, and all the other
autocorrelations are zero.
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Moving Average process: MA(2) - Mean - Variance

Let yt follow a Moving Average of order two, MA(2), model:

yt = µ+ θ1εt−1 + θ2εt−2 + εt , εt ∼ N(0, σ2)

E (yt) = E (µ+ θ1εt−1 + θ2εt−2 + εt) =
E (µ) + θ1E (εt−1) + θ2E (εt−2) + E (εt) = µ

V (yt) = E [yt − E (yt)]2 = E [yt − µ]2 =
E (θ1εt−1 + θ2εt−2 + εt)

2 = . . . = (1 + θ21 + θ22)σ2
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Moving Average process: MA(2)
Autocovariance at lag 1, γ1 - Autocorrelation at lag 1, ρ1

γ1 = Cov(yt , yt−1) = E [(yt − E (yt))(yt−1 − E (yt−1))] =

= E [(yt − µ)(yt−1 − µ)] =

= E [(θ1εt−1 + θ2εt−2 + εt)(θ1εt−2 + θ2εt−3 + εt−1)] =

= θ1σ
2 + θ1θ2σ

2 = (θ1 + θ1θ2)σ2

ρ1 = γ1
γ0

= (θ1+θ1θ2)σ2

(1+θ21+θ
2
2)σ

2 = θ1+θ1θ2
1+θ21+θ

2
2
6= 0
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Moving Average process: MA(2)
Autocovariance at lag 2, γ2 - Autocorrelation at lag 2, ρ2

γ2 = Cov(yt , yt−2) = E [(yt − E (yt))(yt−2 − E (yt−2))] =

= E [(yt − µ)(yt−2 − µ)] =

= E [(θ1εt−1 + θ2εt−2 + εt)(θ1εt−3 + θ2εt−4 + εt−2)] =

= θ2σ
2

ρ2 = γ2
γ0

= θ2σ
2

(1+θ21+θ
2
2)σ

2 = θ2
1+θ21+θ

2
2
6= 0
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Moving Average process: MA(2)
Autocovariance at lag k , γk - Autocorrelation at lag k , ρk

γk = Cov(yt , yt−k) = E [(yt − E (yt))(yt−k − E (yt−k))] =

= E [(yt − µ)(yt−k − µ)] =

= E [(θ1εt−1 + θ2εt−2 + εt)(θ1εt−k−1 + θ2εt−k−2 + εt−k)] =

= 0

Thus, γk = 0 for k ≥ 3

ρk = γk
γ0

= 0
(1+θ21+θ

2
2)σ

2 = 0

Thus, ρk = 0 for k ≥ 3
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Moving Average process: MA(q) - Mean - Variance

Let yt follow a Moving Average of order q, MA(q), model:

yt = µ+ θ1εt−1 + . . .+ θqεt−q + εt , εt ∼ N(0, σ2)

E (yt) = E (µ+ θ1εt−1 + . . .+ θqεt−q + εt) = µ

V (yt) = E [yt − E (yt)]2 = E [yt − µ]2 =
E (θ1εt−1 + . . .+ θqεt−q + εt)

2 = (1 + θ21 + . . .+ θ2q)σ2
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Moving Average process: MA(q)
Autocovariance at lag k, γk - Autocorrelation at lag k, ρk

γk = Cov(yt , yt−k) = E [(yt − E (yt))(yt−k − E (yt−k))] =

= E [(yt − µ)(yt−k − µ)] =

= (θk + θ1θk+1 + . . .+ θq−kθq)σ2

ρk = γk
γ0

=
(θk+θ1θk+1+...+θq−kθq)σ

2

(1+θ21+...+θ
2
q)σ

2 =
θk+θ1θk+1+...+θq−kθq

1+θ21+...+θ
2
q

6= 0

Thus, for k = 1, 2, . . . , q the autocovariances-autocorrelations are
different from zero, while for k > q these metrics are zero.
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Moving Average process: MA(q) Useful comments

I The mean, the variance and the
autocovariances-autocorrelations are constant over time.

I The MA(q) is weakly stationary process, without imposing
restrictions on the model parameters.

I In the MA(q) process the autocovariance-autocorrelation at
lag 1, . . . , q are different from zero, and all the other
autocorrelations are zero.

Loukia Meligkotsidou, UoA Applied Econometrics



Stationary ARMA Models and Box-Jenkins methodology

Introduction
Time series models and their properties
Estimation of ARMA models
Diagnostic checking of residuals
Forecasting

Autoregressive process: AR(1) - MA representation
AR(1) as a linear process

Let yt follow an Autoregressive model of order one, AR(1):

yt = δ + φ1yt−1 + εt

This model can be written as a MA(∞) model:

yt = δ + φ1yt−1 + εt = δ + φ1(δ + φ1yt−2 + εt−1) + εt

= δ + φ1δ + φ21yt−2 + φ1εt−1 + εt

= δ + φ1δ + φ21(δ + φ1yt−3 + εt−2) + φ1εt−1 + εt

= δ + φ1δ + φ21δ + φ31yt−3 + φ21εt−2 + φ1εt−1 + εt

... go backwards m periods

= δ(1 + φ1 + φ21 + . . .+ φm1 ) +
∑m

i=0 φ
i
1εt−i + φm+1

1 yt−m−1
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Autoregressive process: AR(1) - MA representation
AR(1) as a linear process

yt = δ
∑m

i=0 φ
i
1 +

∑m
i=0 φ

i
1εt−i + φm+1

1 yt−m−1

if |φ1| < 1, then φm+1
1 → 0 as m→∞

if |φ1| < 1, then 1 + φ1 + φ21 + . . .+ φm1 = 1
1−φ1 as m→∞

Thus, the AR(1) model can be written as a MA(∞) model:

yt = δ
1−φ1 +

∑∞
i=0 φ

i
1εt−i

Note that |φ1| < 1 implies
∑∣∣φi1∣∣ <∞
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Autoregressive process: AR(1) - Mean

Let yt follow an Autoregressive model of order one, AR(1):

yt = δ + φ1yt−1 + εt or

yt = δ
1−φ1 +

∑∞
i=0 φ

i
1εt−i , if |φ1| < 1

The mean of the AR(1) process is given by:

E (yt) = E ( δ
1−φ1 +

∑∞
i=0 φ

i
1εt−i ) =

= E ( δ
1−φ1 ) + E (

∑∞
i=0 φ

i
1εt−i ) =

= δ
1−φ1 +

∑∞
i=0 φ

i
1E (εt−i ) =

= δ
1−φ1
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Autoregressive process: AR(1) - Variance

Let yt follow an Autoregressive model of order one, AR(1):

yt = δ + φ1yt−1 + εt or

yt = δ
1−φ1 +

∑∞
i=0 φ

i
1εt−i , if |φ1| < 1

The variance of the AR(1) process is given by:

V (yt) = V ( δ
1−φ1 +

∑∞
i=0 φ

i
1εt−i ) =

= V ( δ
1−φ1 ) + V (

∑∞
i=0 φ

i
1εt−i ) =

=
∑∞

i=0 φ
2i
1 V (εt−i ) =

= (1 + φ21 + φ41 + . . .)σ2 =

= σ2

1−φ21
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Autoregressive process: AR(1) - Mean

Let yt follow an Autoregressive model of order one, AR(1):

yt = δ + φ1yt−1 + εt , |φ1| < 1 (stationary process)

E (yt) = E (yt−1) = . . . = µ

Then the mean of the AR(1) process is calculated by:

E (yt) = E (δ + φ1yt−1 + εt) = E (δ) + E (φ1yt−1) + E (εt)

⇒ µ = δ + φ1µ⇒ µ(1− φ1) = δ ⇒ µ = δ
1−φ1 = E (yt)

Note that for φ1 = 1 the mean is not defined
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Autoregressive process: AR(1) - Variance

Let yt follow an Autoregressive model of order one, AR(1):

yt = δ + φ1yt−1 + εt , |φ1| < 1 (stationary process)

V (yt) = V (yt−1) = . . . = v

Then the variance of the AR(1) process is calculated by:

V (yt) = V (δ + φ1yt−1 + εt) = V (δ) + V (φ1yt−1) + V (εt)

⇒ v = φ21v + σ2 ⇒ v(1− φ21) = σ2 ⇒ v = σ2

1−φ21
= V (yt)

Note that the variance is well defined if |φ1| < 1

V (yt) > 0⇒ σ2

1−φ21
> 0⇒ 1− φ21 > 0

⇒ φ21 < 1⇒ −1 < φ1 < 1⇒ |φ1| < 1
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Autoregressive process: AR(1) - Variance

Let yt follow an Autoregressive model of order one with mean zero,
i.e. δ = 0:
yt = φ1yt−1 + εt

Then the variance of the AR(1) process is calculated by:

γ0 = Cov(yt , yt) = E [(yt − E (yt))(yt − E (yt))] = E (ytyt) =

= E (y2t ) = E (φ1yt−1 + εt)
2 = E (φ21y

2
t−1 + ε2t + 2φ1yt−1εt) =

= φ21E (y2t−1) + E (ε2t ) + 2φ1E (yt−1εt)⇒

⇒ γ0 = φ21γ0 + σ2 ⇒ γ0(1− φ21) = σ2 ⇒ γ0 = σ2

1−φ21
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Autoregressive process: AR(1)
Autocovariance at lag 1, γ1 - Autocorrelation at lag 1, ρ1

yt = φ1yt−1 + εt

The autocovariance and autocorrelation at lag 1 are calculated by:

γ1 = Cov(yt , yt−1) = E [(yt − E (yt))(yt−1 − E (yt−1))] =

= E (ytyt−1) = E [(φ1yt−1 + εt)yt−1] =

= E (φ1y
2
t−1 + εtyt−1) = φ1γ0

⇒ γ1 = φ1
σ2

1−φ21

ρ1 = γ1
γ0

= φ1γ0
γ0

= φ1
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Autoregressive process: AR(1)
Autocovariance at lag 2, γ2 - Autocorrelation at lag 2, ρ2

yt = φ1yt−1 + εt
The autocovariance and autocorrelation at lag 2 are calculated by:

γ2 = Cov(yt , yt−2) = E [(yt − E (yt))(yt−2 − E (yt−2))] =

= E (ytyt−2) = E [(φ1yt−1 + εt)yt−2] =

= E [yt−2(φ1(φ1yt−2 + εt−1) + εt)] =

= E [yt−2(φ21yt−2 + φ1εt−1 + εt)] =

= E (φ21y
2
t−2 + φ1εt−1yt−2 + εtyt−2)⇒

⇒ γ2 = φ21γ0 ⇒ γ2 = φ21
σ2

1−φ21

ρ2 = γ2
γ0

=
φ21γ0
γ0

= φ21
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Autoregressive process: AR(1)
Autocovariance at lag k, γk - Autocorrelation at lag k, ρk

yt = φ1yt−1 + εt

In this way, the autocovariance at lag k is:

γk = Cov(yt , yt−k) = E [(yt − E (yt))(yt−k − E (yt−k))]⇒ . . .⇒

⇒ γk = φk1γ0 ⇒ γk = φk1
σ2

1−φ21

And the autocorrelation at lag k is given by:

ρk = γk
γ0

=
φk1γ0
γ0

= φk1

Note: In the AR(1) process all the autocorrelations are different
from zero, i.e. the process has infinite memory
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Autoregressive process: AR(2) - Autocovariances, γk

yt = φ1yt−1 + φ2yt−2 + εt

The variance is computed by:

γ0 = E (ytyt) = E [yt(φ1yt−1 + φ2yt−2 + εt)] =

= E (φ1ytyt−1 + φ2ytyt−2 + ytεt)

⇒ γ0 = φ1γ1 + φ2γ2 + σ2

The autocovariance at lag 1 is computed by:

γ1 = E (ytyt−1) = E [yt−1(φ1yt−1 + φ2yt−2 + εt)] =

= E (φ1y
2
t−1 + φ2yt−1yt−2 + yt−1εt)

⇒ γ1 = φ1γ0 + φ2γ1
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Autoregressive process: AR(2) - Autocovariances, γk

yt = φ1yt−1 + φ2yt−2 + εt

The autocovariance at lag 2 is computed by:

γ2 = E (ytyt−2) = E [yt−2(φ1yt−1 + φ2yt−2 + εt)] =

= E (φ1yt−1yt−2 + φ2y
2
t−2 + yt−2εt)

⇒ γ2 = φ1γ1 + φ2γ0

Generally, the autocovariance at lag k , k ≥ 2 is computed by:

γk = E (ytyt−k) = E [yt−k(φ1yt−1 + φ2yt−2 + εt)] =

= E (φ1yt−kyt−1 + φ2yt−kyt−2 + yt−kεt)

⇒ γk = φ1γk−1 + φ2γk−2
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Autoregressive process: AR(2) - Autocovariances, γk

yt = φ1yt−1 + φ2yt−2 + εt

Solving the following equations

γ0 = φ1γ1 + φ2γ2 + σ2

γ1 = φ1γ0 + φ2γ1
γ2 = φ1γ1 + φ2γ0

with respect to γ0, γ1 and γ2 we obtain:

γ0 = (1−φ2)σ2

(1+φ2)[(1−φ2)2−φ21]

γ1 = φ1
1−φ2γ0

and for k ≥ 2

⇒ γk = φ1γk−1 + φ2γk−2
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Autoregressive process: AR(2) - Autocorrelations, ρk

yt = φ1yt−1 + φ2yt−2 + εt

The autocorrelations in the AR(2) process are given by:

ρ1 = γ1
γ0

=
φ1γ0
1−φ2
γ0

= φ1
1−φ2

ρ2 = γ2
γ0

= φ1γ1+φ2γ0
γ0

= φ2 + φ1ρ1 = φ2 +
φ21

1−φ2

and for k ≥ 2

ρk = φ1ρk−1 + φ2ρk−2

Useful comments: In the AR(2) process all the autocorrelations are
different from zero. Similar calculations provide the
autocovariances - autocorrelations for the general AR(p) process.
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The Partial Autocorrelation Function, αk

AR(1) : yt = φ1yt−1 + εt
AR(2) : yt = φ1yt−1 + φ2yt−2 + εt
AR(p) : yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

First step: compute the autocovariances, γk

ytyt−k = yt−k(φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt)⇒

E (ytyt−k) =
E (φ1yt−1yt−k + φ2yt−2yt−k + . . .+ φpyt−pyt−k + εtyt−k)⇒

γ0 = φ1γ1 + φ2γ2 + . . .+ φpγp + σ2

γ1 = φ1γ0 + φ2γ1 + . . .+ φpγp−1
. . .
γp = φ1γp−1 + φ2γp−2 + . . .+ φpγ0
γk = φ1γk−1 + φ2γk−2 + . . .+ φpγk−p, for k > p
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The Partial Autocorrelation Function, αk

Second step: compute the autocorrelations, ρk

ρ1 = φ1 + φ2ρ1 + . . .+ φpρp−1
. . .
ρp = φ1ρp−1 + φ2ρp−2 + . . .+ φp
ρk = φ1ρk−1 + φ2ρk−2 + . . .+ φpρk−p, for k > p

These equations are called Yule-Walker equations

Third step: To obtain the partial autocorrelations solve the
Yule-Walker equations with respect to φ1, φ2, . . . iteratively for
different values of p, i.e. for p = 1, p = 2, . . .
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The Partial Autocorrelation Function, αk

p = 1: Solve the Yule-Walker equations with respect to φ1
Equation: ρ1 = φ1
The solution with respect to φ1 is: φ1 = ρ1
Thus, the partial autocorrelation at lag 1 is: α1 = φ̂1 = ρ̂1.

p = 2: Solve the Yule-Walker equations with respect to φ2
Equations:
ρ1 = φ1 + φ2ρ1
ρ2 = φ1ρ1 + φ2

The solution with respect to φ2 is: φ2 =
ρ2−ρ21
1−ρ21

Thus, the partial autocorrelation at lag 2 is: α2 = φ̂2 =
ρ̂2−ρ̂21
1−ρ̂12

and so on...
to obtain general formulas which provide the partial
autocorrelations.
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The Partial Autocorrelation Function : AR(1) model

Recall that in the AR(1) process, the autocorrelations are given by:
ρ1 = φ1, ρ2 = φ21, ρ3 = φ31, . . .
Applying the general formulas of partial autocorrelations, using the
AR(1) autocorrelation estimates, we obtain:

α1 = ρ1 = φ1, different from zero

α2 =
ρ2−ρ21
1−ρ21

=
φ21−φ21
1−φ21

= 0

α3 = 0

Useful comments: In the AR(1) model, the partial autocorrelation
at lag 1 is different from zero.
Generalization: In the AR(p) model, the partial autocorrelation at
lag 1, 2, . . . , p are different from zero, while the remaining partial
autocorrelations are zero.
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Autoregressive Moving Average: ARMA(1,1) - Mean

Let yt follow an ARMA(1,1) model:

yt = δ + φ1yt−1 + θ1εt−1 + εt , |φ1| < 1 (stationary process)

E (yt) = E (yt−1) = . . . = µ

Then the mean of the ARMA(1,1) process is calculated by:

E (yt) = E (δ + φ1yt−1 + θ1εt−1 + εt) =

= E (δ) + φ1E (yt−1) + θ1E (εt−1) + E (εt) =

⇒ µ = δ + φ1µ⇒ µ(1− φ1) = δ ⇒ µ = δ
1−φ1 = E (yt)

Note that for φ1 = 1 the mean is not defined.
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Autoregressive Moving Average: ARMA(1,1) - Variance

Let yt follow an ARMA(1,1) model with mean zero:

yt = φ1yt−1 + θ1εt−1 + εt , |φ1| < 1 (stationary process)

Then the variance of the ARMA(1,1) process is calculated by:

γ0 = V (yt) = E [(yt − E (yt))2] = E (y2t ) =

= E (φ1yt−1 + θ1εt−1 + εt)
2 =

= E (φ21y
2
t−1+θ21ε

2
t−1+ε2t +2φ1θ1yt−1εt−1+2φ1yt−1εt +2θ1εtεt−1)

= φ21γ0 + θ21σ
2 + σ2 + 2φ1θ1σ

2

⇒ γ0(1− φ21) = σ2(1 + θ21 + 2θ1φ1)

⇒ γ0 =
(1+θ21+2θ1φ1)σ2

1−φ21

Note that the variance is well defined if |φ1| < 1
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Autoregressive Moving Average: ARMA(1,1) - γ1 - ρ1

Let yt follow an ARMA(1,1) model with mean zero:

yt = φ1yt−1 + θ1εt−1 + εt , |φ1| < 1 (stationary process)

The autocovariance and the autocorrelation at lag 1 are given by:

γ1 = Cov(yt , yt−1) = E [(yt − E (yt))(yt−1 − E (yt−1))] =

= E (ytyt−1) = E [(φ1yt−1 + θ1εt−1 + εt)yt−1] =

= E (φ1y
2
t−1 + θ1εt−1yt−1 + εtyt−1) =

= φ1γ0 + θ1σ
2 = φ1

(1+θ21+2θ1φ1)σ2

1−φ21
+ θ1σ

2 ⇒

⇒ γ1 = (φ1+θ1)(1+φ1θ1)
1−φ21

σ2

ρ1 = γ1
γ0

= (φ1+θ1)(1+φ1θ1)
1+θ21+2θ1φ1
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Autoregressive Moving Average: ARMA(1,1) - γ2 - ρ2

Let yt follow an ARMA(1,1) model with mean zero:

yt = φ1yt−1 + θ1εt−1 + εt , |φ1| < 1 (stationary process)

The autocovariance γ2 of the ARMA(1,1) process is calculated by:

γ2 = Cov(yt , yt−2) = E [(yt − E (yt))(yt−2 − E (yt−2))] =

= E (ytyt−2) = E [(φ1yt−1 + θ1εt−1 + εt)yt−2] =

= E (φ1yt−1yt−2 + θ1εt−1yt−2 + εtyt−2) =

⇒ γ2 = φ1γ1

Then the autocorrelation at lag 1 is calculated by:

ρ2 = γ2
γ0

= φ1γ1
γ0

= φ1ρ1
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Autoregressive Moving Average: ARMA(1,1) - γk - ρk

Let yt follow an ARMA(1,1) model with mean zero:

yt = φ1yt−1 + θ1εt−1 + εt , |φ1| < 1 (stationary process)

The autocovariance, γk , and the autocorrelation, ρk , k ≥ 2 of the
ARMA(1,1) process are given by:

γk = φ1γk−1

ρk = φ1ρk−1
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Backward Operators

The backward operators are defined as follows:

Bεt = εt−1,B
2εt = εt−2, . . .B

kεt = εt−k

The AR(p) process can be written:

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt ⇒

⇒ yt − φ1yt−1 − φ2yt−2 − . . .− φpyt−p = εt ⇒

⇒ (1− φ1B − φ2B2 − . . .− φpBp)yt = εt ⇒

⇒ Φ(B)yt = εt

The polynomial Φ(z) = 1− φ1z − φ2z2 − . . .− φpzp is called the
characteristic polynomial of the AR(p) model.
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Backward Operators

The MA(q) process can be written:

yt = θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt ⇒

⇒ yt = (1 + θ1B + θ2B
2 + . . .+ θqB

q)εt ⇒

⇒ yt = Θ(B)εt
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Backward Operators

The ARMA(p) process can be written:

yt = φ1yt−1 + . . .+ φpyt−p + θ1εt−1 + . . .+ θqεt−q + εt ⇒

⇒ yt − φ1yt−1 − . . .− φpyt−p = θ1εt−1 + . . .+ θqεt−q + εt ⇒

⇒ (1− φ1B − . . .− φpBp)yt = (1 + θ1B + . . .+ θqB
q)εt ⇒

⇒ Φ(B)yt = Θ(B)εt
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Stationarity

Example: AR(1) process: yt = φ1yt−1 + εt ⇒ (1− φ1B)yt = εt
That is, the characteristic polynomial of the AR(1) model is:
Φ(z) = 1− φ1z

Φ(z) = 0⇒ 1− φ1z = 0⇒ φ1z = 1⇒ z = 1
φ1

Stationary solution if : |z | > 1⇒
∣∣∣ 1φ1 ∣∣∣ > 1⇒ |φ1| < 1

An AR(p) process is stationary if the roots of the characteristic
polynomial Φ(z) = 1− φ1z − φ2z2 − . . .− φpzp lie outside the
unit cirlce.
Therefore, an AR(p) process is stationary if we impose some
restrictions on the autoregressive coefficients.
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Backward operator

Note that manipulating operators like Φ(z) is like manipulating
polynomials:

1
1−φz = 1 + φz + φ2z2 + φ3z3 + . . .

provided that |φ| < 1 and |z | < 1.
Remember:

1
1−x = 1 + x + x2 + x3 + . . .

provided that |x | < 1.
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Invertibility

Generally speaking, yt is invertible if Φ(B)yt = εt .

The Autoregressive processes, AR(p), are invertible without
imposing any restrictions on the model parameters.

The Moving average processes are invertible if we impose
restrictions on the model parameters.

Consider the MA(q) process:

yt = θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt ⇒

⇒ yt = (1 + θ1B + θ2B
2 + . . .+ θqB

q)εt ⇒

⇒ yt = Θ(B)εt ⇒ Θ−1(B)yt = εt

So yt is invertible if Θ−1(B) converges. It converges if the roots of
the polynomial Θ(B) = 1 + θ1z + θ2z

2 + . . .+ θqz
q = 0 lie outside

the unit cirlce.
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Invertibility - Example MA(1) process

Consider the MA(1) process:

yt = θ1εt−1 + εt ⇒

⇒ yt = (1 + θ1B)εt ⇒

If |θ1| < 1, we can write:

εt = (1 + θ1B)−1yt ⇔

⇔ εt = (1− θ1B + θ21B
2 − θ31B3 + . . .)yt ⇔

⇔ εt =
∑∞

i=0(−θ1)iyt−i

and yt is invertible.
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Estimation of ARMA models

Estimation of ARMA(p,q) models can be done by using
I Least Squares method

I Minimize the sum of squared residuals of the model under
consideration

I The idea is based on the minimization of a function: no need
for distributional assumptions for the error process

I Maximum Likelihood method
I Maximize the likelihood (log-likelihood) function
I Use a distribution for the error process
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Least Squares Method: AR(p) model

Suppose that yt is a stationary process, and we want to estimate
an AR(p) model:

yt = δ + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

parameter vector: θ = (δ, φ1, φ2 . . . , φp)
Rewrite the model as follows:

εt = yt − δ − φ1yt−1 − φ2yt−2 − . . .− φpyt−p

and then minimize the sum of squared errors with respect to the
model parameters, i.e

minθ
∑T

t=1 ε
2
t
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Least Squares Method: ARMA(p,q) model

Suppose that yt is a stationary process with mean zero, and we
want to estimate an ARMA(p,q) model:

yt = φ1yt−1 + . . .+ φpyt−p + θ1εt−1 + . . .+ θqεt−q + εt

parameter vector: θ = (φ1, . . . , φp, θ1, . . . , θq)
We can write the model as follows:

yt − φ1yt−1 − . . .− φpyt−p = θ1εt−1 + . . .+ θqεt−q + εt ⇒

⇒ (1− φ1B − . . .− φpBp)yt = (1 + θ1B + . . .+ θqB
q)εt ⇒

⇒ Φ(B)yt = Θ(B)εt ⇒ εt = Θ−1(B)Φ(B)yt

and then minimize the sum of squared errors with respect to the
model parameters, i.e

minθ
∑T

t=1 ε
2
t
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Least Squares Method: Useful comments

I For autoregressive models (AR) least squares estimation is
straightforward, since the derivatives of the function of the
sum of squared residuals with respect to the model
parameters are obtained easily, and the corresponding system
of equations to be solved is linear.

I For moving average (MA) and autoregressive moving average
(ARMA) models, non-linear least squares estimation
procedures/routines must be used, due to the MA part of the
model (the roots of the corresponding polynomial lie outside
the unit circle).
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Maximum Likelihood method

I The approach is based on calculating the likelihood i.e. the
joint probability density fY1,Y2,...,YT

(y1, y2, . . . , yT ; θ), which
might be viewed as the probability density of having observed
this particular sample.

I The maximum likelihood estimate (MLE) of θ is the value for
which this sample is most likely to have been observed.

I That is, it is the value of θ that maximizes
fY1,Y2,...,YT

(y1, y2, . . . , yT ; θ)

I step 1: compute the likelihood (or log-likelihood)

I step 2: maximize the likelihood function
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Maximum Likelihood method - Compute the likelihood

The likelihood is the joint probability density f (y1, y2, . . . , yT ; θ)
which can be computed as follows:

L(θ; y) = f (y1, y2, . . . , yT |θ) =

= f (yT |y1, . . . , yt−1, θ)f (y1, . . . , yt−1, θ)

= f (yT |y1, . . . , yt−1, θ)f (yT−1|y1, . . . , yt−2, θ)f (y1, . . . , yt−2, θ)

. . .

= f (yT |y1, . . . , yt−1, θ)f (yT−1|y1, . . . , yt−2, θ) . . . f (y2|y1, θ)f (y1|θ)

= f (y1|θ)
∏T

t=2 f (yt |yt−1, θ)
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Maximum Likelihood method - Maximize the likelihood

We maximize the likelihood function L(θ; y) with respect to θ

L(θ; y) = f (y1|θ)
∏T

t=2 f (yt |yt−1, θ)

or the logarithm of the likelihood function log [L(θ; y)]

log [L(θ; y)] = log [f (y1|θ)] +
∑T

t=2 log [f (yt |yt−1, θ)]
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Maximum Likelihood method: Conditional-Exact likelihood

In order to calculate the likelihood of ARMA models, one will have
to decide how to treat the initial values (known as initial
conditions) of the y ′s and the ε′s, i.e. the initial values of y and ε
that appear in the likelihood function.

There are two approaches:

I Conditional likelihood: treat the initial values as given, i.e.
compute the likelihood conditional on the initial values
(simplifies the computation of the likelihood function).

I Exact likelihood: treat the initial values as unknown, i.e.
consider them to be random variables, which usually follow a
Normal distribution with mean and variance based on the
unconditional mean and variance of the yt process.
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AR(1) model: Exact likelihood

Suppose we have observed a sample y1, y2, . . . , yT of size T, and
we want to estimate an AR(1) model:

yt = δ + φ1yt−1 + εt , εt ∼ N(0, σ2).

Parameter vector: θ = (δ, φ1, σ
2).

I Consider the probability distribution of y1, f (y1|θ).

It is a random variable with mean δ
1−φ1 and variance σ2

1−φ21
i.e. y1 ∼ N( δ

1−φ1 ,
σ2

1−φ21
).

Thus, the density of the first observation is given by:

f (y1|θ) = 1√
2π
√
σ2/(1−φ21)

exp [−[y1−(δ/(1−φ1))]
2

2σ2/(1−φ21)
].
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AR(1) model: Exact likelihood

I Next consider the distribution of y2|y1, f (y2|y1, θ)

y2 = δ + φ1y1 + ε2, ε2 ∼ N(0, σ2)

Thus, y2|y1 ∼ N(δ + φ1y1, σ
2)

Therefore, the density of the y2|y1 is given by:

f (y2|y1, θ) = 1√
2πσ2

exp [−[y2−(δ+φ1y1)]
2

2σ2 ]
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AR(1) model: Exact likelihood

I In general, the distribution of yt |yt−1, f (yt |yt−1, θ) can be
calculated as follows:

yt = δ + φ1yt−1 + εt , εt ∼ N(0, σ2)

Thus, yt |yt−1 ∼ N(δ + φ1yt−1, σ
2)

Therefore, the density of the yt |yt−1 is given by:

f (yt |yt−1, θ) = 1√
2πσ2

exp [−[yt−(δ+φ1yt−1)]2

2σ2 ]
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AR(1) model: Exact likelihood

The likelihood of the complete sample can be calculated by:

L(θ; y) = f (y1, y2, . . . , yT |θ) = f (y1|θ)
∏T

t=2 f (yt |yt−1, θ) =

= 1√
2π
√
σ2/(1−φ21)

exp [−[y1−(δ/(1−φ1))]
2

2σ2/(1−φ21)
]·

·
∏T

t=2
1√
2πσ2

exp [−[yt−(δ+φ1yt−1)]2

2σ2 ]
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AR(1) model: Exact likelihood

The log-likelihood of the complete sample can be calculated by:

log [L(θ; y)] = log [f (y1|θ)] +
∑T

t=2 log [f (yt |yt−1, θ)] =

= −1
2 log(2π)− 1

2 log(σ2/(1− φ21))− [y1−(δ/(1−φ1))]2
2σ2/(1−φ21)

−[(T − 1)/2]log(2π)− [(T − 1)/2]log(σ2)−
∑T

t=2
[yt−δ−φ1yt−1)]2

2σ2
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AR(1) model: Conditional likelihood

If we consider that the initial value is known/given i.e. is the first
observation in the sample, then the conditional likelihood is:

L(θ; y) = f (y2, . . . , yT |y1, θ) =

= f (yT |y1, . . . , yt−1, θ)f (yT−1|y1, . . . , yt−2, θ) . . . f (y2|y1, θ)

=
∏T

t=2 f (yt |yt−1, θ)

=
∏T

t=2
1√
2πσ2

exp [−(yt−δ−φ1yt−1)2

2σ2 ]

= (2πσ2)−(T−1)/2 exp [−1
2

∑T
t=2

(yt−δ−φ1yt−1)2

σ2 ]
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AR(1) model: Conditional likelihood

In the conditional likelihood approach, the conditional
log-likelihood for the AR(1) model is given by:

log [L(θ; y)] =
∑T

t=2 log [f (yt |yt−1, θ)] =

= −[(T − 1)/2]log(2π)− [(T − 1)/2]log(σ2)−
∑T

t=2
[yt−δ−φ1yt−1]2

2σ2

Note that, maximization of the conditional log-likelihood with
respect to δ and φ1 is equivalent to minimization of∑T

t=2(yt − δ − φ1yt−1)2

which is achieved by an ordinary least squares (OLS) regression of
yt on a constant and its own lagged values.
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MA(1) model: Conditional likelihood

Suppose we have observed a sample y1, y2, . . . , yT of size T, and
we want to estimate an MA(1) model:

yt = µ+ θ1εt−1 + εt , εt ∼ N(0, σ2)

Parameter vector: θ = (µ, θ1, σ
2).

To calculate the conditional likelihood for the MA(1) model, we
condition on the initial values of the ε′s.

I Based on the MA(1) model, y1 = µ+ θ1ε0 + ε1
Conditional on ε0 = 0, y1 = µ+ ε1 or ε1 = y1 − µ and
(y1|ε0 = 0) ∼ N(µ, σ2)
The conditional density of the first observation is given by:

f (y1|ε0 = 0, θ) = 1√
2πσ2

exp [−(y1−µ)
2

2σ2 ]
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MA(1) model: Conditional likelihood

I Based on the MA(1) model, y2 = µ+ θ1ε1 + ε2
ε2 = y2 − µ− θ1ε1 = y2 − µ− θ1(y1 − µ)
Thus, the conditional distribution of y2 given y1, ε0 = 0, θ, is
given by:
(y2|y1, ε0 = 0, θ) ∼ N(µ+ θ1ε1, σ

2)
The conditional density of the second observation is given by:

f (y2|y1, ε0 = 0, θ) = 1√
2πσ2

exp [−(y2−µ−θ1ε1)
2

2σ2 ]
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MA(1) model: Conditional likelihood

I In general, the distribution of yt |y1, . . . , yt−1, ε0 = 0, θ,
f (yt |y1, . . . , yt−1, ε0 = 0, θ) can be calculated as follows:

yt = µ+ θ1εt−1 + εt ⇒ εt = yt − µ− θ1εt−1

Thus, (yt |y1, . . . , yt−1, ε0 = 0, θ) ∼ N(µ+ θ1εt−1, σ
2)

Therefore, the density of the yt |y1, . . . , yt−1, ε0 = 0, θ is given
by:

f (yt |y1, . . . , yt−1, ε0 = 0, θ) = 1√
2πσ2

exp [−[yt−µ−θ1εt−1]2

2σ2 ]
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MA(1) model: Conditional likelihood

The conditional likelihood for the MA(1) model is given by:

L(θ; y) = f (y1, y2, . . . , yT |ε0 = 0, θ) =

= f (y1|ε0 = 0, θ)
∏T

t=2 f (yt |ε0 = 0, y1, . . . , yt−1, θ) =

= 1√
2πσ2

exp [−(y1−µ)
2

2σ2 ] ·
∏T

t=2
1√
2πσ2

exp [−(yt−µ−θ1εt−1)2

2σ2 ]

=
∏T

t=1
1√
2πσ2

exp [−ε
2
t

2σ2 ]

= (2πσ2)−T/2 exp [−
∑T

t=1
ε2t
2σ2 ]
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MA(1) model: Conditional likelihood

The conditional log-likelihood for the MA(1) model is given by:

log [L(θ; y)] =
∑T

t=1 log [f (yt |yt−1, ε0 = 0, θ)] =

= −T
2 log(2π)− T

2 log(σ2)−
∑T

t=1
ε2t
2σ2
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Maximum likelihood Method: Useful comments

I Two approaches: exact and conditional likelihood.
I AR(p) models - conditional likelihood: maximization is

straightforward, since the derivatives of the log-likelihood
function with respect to the model parameters are obtained
easily, and the corresponding system of equations to be solved
is linear (similar to least squares method).

I AR(p) models - exact likelihood: maximization requires
iterative or numerical procedures.

I MA(q), ARMA(p,q) models - conditional likelihood:
maximization requires iterative or numerical procedures (due
to the MA part of the model, i.e. the ε′s are constructed
iteratively creating nonlinearities - the roots of the
corresponding polynomial lie outside the unit circle).
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Model fit

Different measures can be used to assess the model fit.

I Akaike’s information criterion (AIC):

AICm = −2 log(Lm) + 2npm or
AICm = −2 log(Lm)/T + 2npm/T

I Schwartz’s information criterion or Bayesian information
criterion (BIC):

BICm = −2 log(Lm) + npm log(T ) or
BICm = −2 log(Lm)/T + npm log(T )/T

where Lm is the value of the likelihood for the fitted model m, npm
is the number of model parameters, T is sample size (number of
observations).

I Small values of AIC, BIC indicate better fit.
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Diagnostic checking

After estimating an identified model, the residuals must be
(resemble) a white noise process, i.e. must be:

I Uncorrelated

I Homoskedastic

I Normally distributed

In ARMA(p,q) models, the residuals are estimated through the
following formula:

ε̂t = Θ̂−1(B)Φ̂(B)yt
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Test for Autocorrelation of Residuals

Different tests can be used to test for autocorrelation of residuals:

I Bartlett test

I Box-Pierce and Ljung-Box test

I Autocorrelation and partial autocorrelation plots

I Durbin-Watson test (autocorrelation test at lag 1)

I Breusch-Godfrey test
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Test for Autocorrelation of Residuals

Estimate the autocorrelation of residuals at lag k :

ρ̂k =
∑T−k

t=1 ε̂t ε̂t−k∑T
t=1 ε̂

2
t

Bartlett’s test (for a particular lag k):
H0 : ρk = 0
H1 : ρk 6= 0

If the residuals are random (white noise), then the sampling
distribution of ρ̂k is approximately normal, i.e. ρ̂k ∼ N(0, 1

T ) test

statistic: Z = ρ̂k−0√
1/T
∼ N(0, 1)

Reject H0, at level of significance α, if the observed value of the
test statistic Z < −Z1−α/2 or Z > Z1−α/2
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Test for Autocorrelation of Residuals

H0 : ρ1 = ρ2 = . . . = ρm = 0 , for a fixed m
H1 : ρi 6= 0 , for at least one i ≤ m

Box-Pierce test statistic: Q = T
∑m

k=1 ρ̂
2
k ∼ χ2

m−np

Ljung-Box test statistic: LB = T (T + 2)
∑m

k=1
ρ̂2k

T−k ∼ χ
2
m−np

np: is the number of ARMA parameters, i.e. np = p + q, that
have been estimated in the model under consideration

Reject H0, at level of significance α, if the observed value of the
test statistic Q > χ2

m−np,1−α (LB > χ2
m−np,1−α)

Loukia Meligkotsidou, UoA Applied Econometrics



Stationary ARMA Models and Box-Jenkins methodology

Introduction
Time series models and their properties
Estimation of ARMA models
Diagnostic checking of residuals
Forecasting

Test for Heteroskedasticity of Residuals

Different tests (directly or indirectly) can be used to test for
heteroscedasticity of residuals:

I Autocorrelation test of squared residuals

I Autocorrelation and partial autocorrelation plots of squared
residuals

I Goldfeld-Quandt test

I Breusch-Pagan test

I White test

I ARCH LM test of heteroscedasticity
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Normality Test for residuals

Different tests can be used to test for normality of residuals:

I Jarque-Bera test

I Kolmogorov-Smirnov test

I Shapiro-Wilk test

I QQ-plot
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Jarque-Bera Normality Test of Residuals

H0 : εt follow a Normal distribution
H1 : εt are not Normal

Jarque-Bera test statistic: JB = T−np
6 [S2 + (K−3)2

4 ] ∼ χ2
2

where S denotes the skewness, K denotes the kurtosis, T is the
sample size, and np is the number of parameters in the model
under consideration

Reject H0, at level of significance α, if the observed value of the
test statistic JB > χ2

2,1−α
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Forecasting: the Loss Function

I Suppose we are interested in forecasting the value of yt+1

based on a set of observations yt , yt−1, . . . , yt−m+1 i.e. based
on the m most recent values of the series

I Let ŷt+1|t denote the forecast of yt+1. The usefulness of this
forecast can be specified with respect to a certain loss function

I The most commonly used loss function is the quadratic loss
function. The best prediction ŷt+1|t according to the quadratic
loss function is that which minimizes the Mean Squared Error:

MSE (ŷt+1|t) = E (yt+1 − ŷt+1|t)
2
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Forecasting: Conditional Expectation

Theorem: The minimum Mean Squared Error predictor ŷt+1|t of
yt+1 is given by the conditional expectation:

ŷt+1|t = E (yt+1|yt , yt−1, . . . , yt−m+1) = E (yt+1|ỹt)
Proof
Let ŷt+1|t = g(yt , yt−1, . . . , yt−m+1) = g(ỹt), where g is any
function of the most recent values of the series

E [yt+1 − ŷt+1|t ]
2 = E [yt+1 − g(ỹt)]2 =

= E [yt+1 − E (yt+1|ỹt) + E (yt+1|ỹt)− g(ỹt)]2 =

= E [yt+1 − E (yt+1|ỹt)]2 + E [E (yt+1|ỹt)− g(ỹt)]2+

+2E [[yt+1 − E (yt+1|ỹt)][E (yt+1|ỹt)− g(ỹt)]]+

= E [yt+1 − E (yt+1|ỹt)]2 + E [E (yt+1|ỹt)− g(ỹt)]2
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Forecasting: Conditional Expectation

Denote ηt+1 = [yt+1 − E (yt+1|ỹt)][E (yt+1|ỹt)− g(ỹt)]

Law of iterated expectations: E (ηt+1) = Eỹt (E [ηt+1|ỹt ])

E [ηt+1|ỹt ] = E [[yt+1 − E (yt+1|ỹt)][E (yt+1|ỹt)− g(ỹt)]|ỹt ] =

= [E (yt+1|ỹt)− g(ỹt)] · E [[yt+1 − E (yt+1|ỹt)]|ỹt ] =

= [E (yt+1|ỹt)− g(ỹt)] · 0 = 0

Thus, E (ηt+1) = Eỹt (E [ηt+1|ỹt ]) = 0
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Forecasting: Conditional Expectation

Therefore, E [yt+1 − ŷt+1|t ]
2 = E [yt+1 − g(ỹt)]2 =

= E [yt+1 − E (yt+1|ỹt)]2 + E [E (yt+1|ỹt)− g(ỹt)]2

The function g(ỹt) that makes the Mean Squared Error as small as
possible is the function that makes the second term zero, i.e.
E (yt+1|ỹt) = g(ỹt)

That is, the forecast g(ỹt) that minimize the mean squared error is
the conditional expectation E (yt+1|ỹt)

The Mean Squared Error of this optimal forecast is:

E [yt+1 − ŷt+1|t ]
2 = E [yt+1 − g(ỹt)]2 = E [yt+1 − E (yt+1|ỹt)]2
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Forecasting a MA(1) process

Consider the MA(1) model: yt = µ+ θ1εt−1 + εt

The one-step ahead forecast, ŷt+1|t , is computed as follows:

ŷt+1|t = E (yt+1|Φt) = E [µ+ θ1εt + εt+1|Φt ] =

= E (µ|Φt) + E (θ1εt |Φt) + E (εt+1|Φt) =

= µ+ θ1εt

The Mean Squared Error of ŷt+1|t is:

MSE (ŷt+1|t) = E [yt+1 − ŷt+1|t ]
2 =

= E [µ+ θ1εt + εt+1 − µ− θ1εt ]2

= E (εt+1)2 = σ2
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Forecasting a MA(1) process

The forecast error is given by:

ε̂t+1 = yt+1 − ŷt+1|t = εt+1 [see previews slide]

The variance of the forecast error is given by:

V (ε̂t+1) = V (yt+1 − ŷt+1|t) = V (εt+1) = σ2

I the variance of the forecast error is equal to the mean squared
error of the forecast

I the standard error of the one-step ahead forecast in the
MA(1) model is given by the square root of its variance or by
the square root of the mean squared error of the forecast

I it is useful to evaluate the accuracy of the forecasts as well to
construct confidence intervals
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Forecasting a MA(1) process

Consider the MA(1) model: yt = µ+ θ1εt−1 + εt

The two-step ahead forecast, ŷt+2|t , is computed as follows:

ŷt+2|t = E (yt+2|Φt) = E [µ+ θ1εt+1 + εt+2|Φt ] =

= E (µ|Φt) + E (θ1εt+1|Φt) + E (εt+2|Φt) =

= µ

The Mean Squared Error of ŷt+2|t is:

MSE (ŷt+2|t) = E [yt+2 − ŷt+2|t ]
2 =

= E [µ+ θ1εt+1 + εt+2 − µ]2

= θ21σ
2 + σ2 = (1 + θ1)σ2
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Forecasting a MA(1) process

The forecast error is given by:

ε̂t+2 = yt+2 − ŷt+2|t = θ1εt+1 + εt+2 [see previews slide]

The variance of the forecast error is given by:

V (ε̂t+2) = V (yt+2 − ŷt+2|t) = V (θ1εt+1 + εt+2) = (1 + θ1)σ2
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Forecasting a MA(1) process

Consider the MA(1) model: yt = µ+ θ1εt−1 + εt

The s-step ahead forecast, ŷt+s|t , is computed as follows:

ŷt+s|t = E (yt+s |Φt) = E [µ+ θ1εt+s−1 + εt+s |Φt ] = µ

The Mean Squared Error of ŷt+s|t is:

MSE (ŷt+s|t) = E [yt+s − ŷt+s|t ]
2 = E [µ+ θ1εt+s−1 + εt+s − µ]2

= θ21σ
2 + σ2 = (1 + θ1)σ2

Notice that

E (εt+1|Φt) = E (εt+2|Φt) = . . . = E (εt+s |Φt) = 0

E (ε1|Φt) = ε1,E (ε2|Φt) = ε2, . . . ,E (εt |Φt) = εt
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Forecasting a MA(1) process

The forecast error is given by:

ε̂t+s = yt+s − ŷt+s|t = θ1εt+s−1 + εt+s [see previews slide]

The variance of the forecast error is given by:

V (ε̂t+s) = V (yt+s − ŷt+s|t) = V (θ1εt+s−1 + εt+s) = (1 + θ1)σ2
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Forecasting an AR(1) process

Consider the AR(1) model: yt = δ + φ1yt−1 + εt

The one-step ahead forecast, ŷt+1|t , is computed as follows:

ŷt+1|t = E (yt+1|Φt) = E [δ + φ1yt + εt+1|Φt ] =

= E (δ|Φt) + E (φ1yt |Φt) + E (εt+1|Φt) =

= δ + φ1yt

The Mean Squared Error of ŷt+1|t is:

MSE (ŷt+1|t) = E [yt+1 − ŷt+1|t ]
2 =

= E [δ + φ1yt + εt+1 − δ − φ1yt ]2

= E (εt+1)2 = σ2
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Forecasting an AR(1) process

The forecast error is given by:

ε̂t+1 = yt+1 − ŷt+1|t = εt+1 [see previews slide]

The variance of the forecast error is given by:

V (ε̂t+1) = V (yt+1 − ŷt+1|t) = V (εt+1) = σ2
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Forecasting an AR(1) process

Consider the AR(1) model: yt = δ + φ1yt−1 + εt

The two-step ahead forecast, ŷt+2|t , is computed as follows:

ŷt+2|t = E (yt+2|Φt) = E [δ + φ1yt+1 + εt+2|Φt ] =

= E (δ|Φt) + E (φ1yt+1|Φt) + E (εt+1|Φt) =

= δ + φ1(δ + φ1yt) = δ + φ1δ + φ21yt

= δ(1 + φ1) + φ21yt

or ŷt+2|t = δ + φ1ŷt+1|t
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Forecasting an AR(1) process

Consider the AR(1) model: yt = δ + φ1yt−1 + εt

The Mean Squared Error of ŷt+2|t is:

MSE (ŷt+2|t) = E [yt+2 − ŷt+2|t ]
2 =

= E [δ + φ1yt+1 + εt+2 − (δ + φ1δ + φ21yt)]2

= E [δ + φ1(δ + φ1yt + εt+1) + εt+2 − δ − φ1δ − φ21yt ]2

= E [δ + φ1δ + φ21yt + φ1εt+1 + εt+2 − δ − φ1δ − φ21yt ]2

= E [φ1εt+1 + εt+2]2 = (1 + φ21)σ2
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Forecasting an AR(1) process

The forecast error is given by:

ε̂t+2 = yt+2 − ŷt+2|t = φ1εt+1 + εt+2 [see previews slide]

The variance of the forecast error is given by:

V (ε̂t+2) = V (yt+2 − ŷt+2|t) = V (φ1εt+1 + εt+2) = (1 + φ21)σ2
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Forecasting an AR(1) process

Consider the AR(1) model: yt = δ + φ1yt−1 + εt

The s-step ahead forecast, ŷt+s|t , is computed as follows:

ŷt+s|t = E (yt+s |Φt) = E [δ + φ1yt+s−1 + εt+s |Φt ] =

= E (δ|Φt)+E (φ1yt+s−1|Φt)+E (εt+s |Φt) = δ+φ1E (yt+s−1|Φt) =

= δ+φ1(δ+φ1E (yt+s−2|Φt)) = δ+φ1δ+φ21E (yt+s−2|Φt) = . . . =

= δ(1 + φ1 + φ21 + . . .+ φs−11 ) + φs1yt

or ŷt+s|t = δ + φ1ŷt+s−1|t
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Forecasting an AR(1) process

Consider the AR(1) model: yt = δ + φ1yt−1 + εt

The Mean Squared Error of ŷt+s|t is:

MSE (ŷt+s|t) = E [yt+s − ŷt+s|t ]
2 = . . . = σ2(1 +φ21 + . . .+φ

2(s−1)
1 )

The forecast error is given by:

ε̂t+s = yt+s − ŷt+s|t =

= εt+s + φ1εt+s−1 + φ21εt+s−2 + . . .+ φs−11 εt+1

The variance of the forecast error is given by:

V (ε̂t+s) = V (yt+s − ŷt+s|t) = σ2(1 + φ21 + . . .+ φ
2(s−1)
1 )

Similar computations provide the forecasts and the Mean Squared
Error for any MA, AR, ARMA model
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Confidence Intervals of the Forecasts

Consider a time series model [AR, MA, ARMA]. Assuming Normal
errors, i.e. the process εt ∼ N(0, σ2), the forecast errors follow
approximately (asymptotically) a normal distribution:

ε̂t+s = yt+s − ŷt+s|t ∼ N[0,V (ε̂t+s)]

and a (1− α)100% confidence interval for the forecast yt+s is
computed by

[ŷt+s|t − Z1−α
2

√
V (ε̂t+s), ŷt+s|t + Z1−α

2

√
V (ε̂t+s)

where α is the level of significance and Z1−α
2

is the 1− α
2

percentile of the standard normal distribution
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