Hypothesis Testing Fundamentals

Loukia Meligkotsidou Associate Professor of Statistics Department of Mathematics National and Kapodistrian University of Athens

Hypothesis Testing

- A hypothesis is a claim (assumption) about a population parameter:
 - population mean

Example: The mean salary is $\mu = 1500

population proportion

Example: The proportion of a candidate in a voting process is p = 0.60

The Null Hypothesis, H₀

States the assumption (numerical) to be tested

Example: The average grade is 7 $H_0: \mu = 7$

 Is always about a population parameter, not about a sample statistic

 H_0 :

$$H_0: \mu = 7$$

The Null Hypothesis, H₀

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- May or may not be rejected
- Decision will be made on the basis of a sample: either there is enough evidence to reject the null or not

The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average grade is not equal to 7 $(H_1: \mu \neq 7)$
- May or may not be supported by the data
- Is generally the hypothesis that the researcher is trying to support

In hypothesis testing, we use a statistic (function of the data, called the test statistic) and its sampling distribution under the null. Extreme (unlikely) values of the sample statistic show evidence against the null.

Level of Significance

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test
- Is the probability of rejecting the null, given it's true

Level of Significance and the Rejection Region

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual Situation	
Decision	H ₀ True	H ₀ False
Do Not Reject H₀	No error (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (1-β)

Power of the Test

- The power of a test is the probability of rejecting a null hypothesis that is false
- i.e., Power = P(Reject $H_0 | H_0$ is false) = P(Reject $H_0 | H_1$ is true) = $1 - \beta =$ = $1 - P(not reject H_0 | H_0 is false)$ = $1 - P(not reject H_0 | H_1 is true)$
 - Power of the test increases as the sample size increases

Hypothesis Tests for the Mean

Test of Hypothesis for the Mean (σ Known)

Convert sample result (x) to a z value

Decision Rule

p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - Also called observed level of significance
 - The rule: Reject the null if p-value<α</p>

p-Value Approach to Testing

- Convert sample result (e.g., x̄) to test statistic (e.g., z statistic)
- Obtain the p-value • For an upper tail test: $P - value = P(Z > \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}, \text{ given that } H_0 \text{ is true})$ $= P(Z > \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \mid \mu = \mu_0)$
- Decision rule: compare the p-value to α

• If p-value <
$$\alpha$$
, reject H₀
• If p-value > α , do not reject H₀

Example: Upper-Tail Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill is grater than \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

H ₀ : µ ≤ 52	the average is not over \$52 per month
H ₁ : μ > 52	the average is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

Example: Sample Results

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 64, $\overline{x} = 53.1$

Using the sample results,

$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{53.1 - 52}{\frac{10}{\sqrt{64}}} = 0.88$$

Example: Find Rejection Region

• Suppose that α = .10 is chosen for this test

Example: Decision

Reach a decision and interpret the result:

Do not reject H_0 since z = 0.88 < 1.28

i.e.: there is not sufficient evidence that the mean bill is over \$52

One-Tail Tests

 In many cases, the alternative hypothesis focuses on one particular direction

This is an upper-tail test since the
alternative hypothesis is focused on the upper tail above the mean of 3

This is a lower-tail test since the
alternative hypothesis is focused on the lower tail below the mean of 3

Upper-Tail Tests

Two-Tail Tests

Hypothesis Testing Example

Test the claim that the true mean # of TV sets in US homes is equal to 3. (Assume $\sigma = 0.8$)

- State the appropriate null and alternative hypotheses
 - $H_0: \mu = 3$, $H_1: \mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that α = .05 is chosen for this test
- Choose a sample size
 - Suppose a sample of size n = 100 is selected

Hypothesis Testing Example

(continued)

- Determine the appropriate technique
 - σ is known so this is a z test
- Set up the critical values
 - For α = .05 the critical z values are ±1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are

n = 100, \overline{x} = 2.84 (σ = 0.8 is assumed known)

So the test statistic is:

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

Hypothesis Testing Example (continued)

Is the test statistic in the rejection region?

Hypothesis Testing Example (continued)

Reach a decision and interpret the result

Since z = -2.0 < -1.96, we reject the null hypothesis and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

Example: p-Value

• Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu = 3.0$?

Example: p-Value

(continued)

• Compare the p-value with α

- If p-value < α , reject H₀
- If p-value $\geq \alpha$, do not reject H₀

t Test of Hypothesis for the Mean (σ Unknown)

Convert sample result (x) to a t test statistic

t Test of Hypothesis for the Mean (σ Unknown)

(continued)

For a two-tailed test:

Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

(Assume the population is normal, and the population variance is unknown)

The decision rule is:

$$\begin{array}{l} \text{Reject } H_0 \text{ if } \boxed{t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} < -t_{n-1, \, \alpha/2}} \text{ or if } \boxed{t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1, \, \alpha/2}} \end{array} \end{array}$$