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Abstract

Mathematical modelling (the process of translateween the real world and mathematics in both
directions) is one of the topics in mathematicscation that has been discussed and propagated most
intensely during the last few decades. In classrpoactice all over the world, however, modelling
still has a far less prominent role than is des&abhe main reason for this gap between the gufals
the educational debate and everyday school prastibat modelling is difficult both for studentshd

for teachers. In our paper, we will show exampliesaw students and teachers deal with demanding
modelling tasks. We will refer both to results fraur own projects DISUM and COM? as well as to
empirical findings from various other research msd First, we will present some examples of
students’ difficulties with modelling tasks and stidents’ specific modelling routes when solving
such tasks (also dependent on their mathematicddinly styles), and try to explain these diffica#i

by the cognitive demands of these tasks. We wilplessise that mathematical modelling has to be
learnt specifically by students, and that modelleamn indeed be learned if teaching obeys certain
quality criteria, in particular maintaining a pemeat balance between teacher's guidance and
students’ independence. We will then show some plesrof how teachers have successfully realised
this subtle balance, and we will present intergstlifferences between individual teachers’ handling
of modelling tasks. In the final part of our papeg will draw some consequences from the reported
empirical findings and formulate corresponding iiwglions for teaching mathematical modelling.
Eventually, we will present some encouraging resuttm a recent intervention study in the contéxt o
the DISUM project where it is demonstrated thatrappate learning environments may indeed lead
to a higher and more enduring progress concernutgests’ modelling competency.

Keywords: mathematical modelling, quality teaching, independearning, mathematical thinking
styles
1. What is mathematical modelling, and what is itdr?

Here is an example of a modelling task:

Example 1: “Giant’s shoe$

In a sports centre on the Philippines, FlorentinocAuevo
Jr. polishes a pair of shoes. They are, accordiagthe
Guinness Book of Records, the world’s biggest, withidth
of 2.37 m and a length of 5.29 m.

Approximately how tall would a giant be for the$mes to
fit? Explain your solution.

This task requires translations between reality mathematics what, in short, can be called
mathematical modellingBy reality, we mean according to Pollak (197% trest of the world”
outside mathematics including nature, society,\alay life and other scientific disciplines.

Here is how two students’ from grade 9 (15 yeady ol the German Hauptschule (the low-
ability track in our tripartite system) solved thisk:
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“Well, to calculate, from these two figures, thedm, the size of the man. If the width of the sisge
2.37 m and the length 5.29 m, then ought, | beli2\@7 m times 5.29 m. Then you have the height of
the man, | believe.”

And here is the according solution of the students’

237 5224 =A2,5373

Aadword: Ver Nfensch ware 42,53 m 8"/3'

In the following, we mean by arfodelling taska task with a substantial modelling demand.
The example shows that such tasks are usddflgult for students’. Why is modelling so difficult for
students’? An important reason are certainly thgnitive demands of modelling tasks. Modelling is
inseparably linked with other mathematical compeies (see Niss 2003) such as reading and
communicating, designing and applying problem swjvistrategies, or working mathematically
(reasoning, calculating, ...). Particularly helgfial cognitive analyses of modelling tasks is a etaf
the “modelling cycléfor solving these tasks. Here is the seven-stedah(see Blum/Leil3 2007) that
we use in both our projects:

1 Constructing

2 Simplifying/
real model & 3 . Structuring
problem mathematical 3 Mathematising
model & problem 4 Working
mathematically
1 2 5 Interpreting
real situation Z/\\ll /ﬂ%situation g \Elihgzit:?g
& problem ) S model 4 posing
7
&
mathematical
reallj L results
results
5
mathematics

rest of the world
Figure 1 — Modelling cycle

We would like to illustrate this cycle by a secanddelling task (Blum/Leif3 2006):

Example 2: “Filling up”

Mrs. Stone lives in Trier, 20 km away from the leordf Luxemburg.
To fill up her VW Golf she drives to Luxemburg vehanmediately
behind the border there is a petrol station. Thywoe have to pay 1.1I
Euro for one litre of petrol whereas in Trier yoave to pay 1.35 &=
Euro.

Is it worthwhile for Mrs. Stone to drive to Luxemdp® Give reasons
for your answer.

First, the problem situation has to be understopdhle problem solver, that is situation
modelhas to be constructed. Then the situation hae grbplified, structured and made more precise,
leading to areal modelof the situation. In particular, the problem solVes to define here what
“worthwhile” should mean. In the standard modeis theans only “minimising the costs of filling up
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and driving”. Mathematisation transforms the readel into amathematical modelvhich consists
here of certain equations. Working mathematicadigldulating, solving the equations, etc.) yields
mathematical resultswhich are interpreted in the real world esal results, ending up in a
recommendation for Mrs. Stone what to do. A valatabf these results may show that it is necessary
to go round the loop a second time, for instana@rdier to take into account more factors suchras ti
or air pollution. Dependent on which factors haeerp taken, the recommendations for Mrs. Stone
might be quite different.
There are a lot of models of the modelling proqessnpare the analyses in Borromeo Ferri
2006). The advantages of this particular modetdsearch purposes are:
» Step 1 is separated this is a particularly indigldoonstruction process and the first
cognitive barrier for students’ when solving moatgl tasks (see, e.g., Kintsch/Greeno
1985, DeCorte/Greer/Verschaffel 2000, Staub/Reu<3@5)

« All these steps are potential cognitive barriersstodents’ as well as essential stages in ac-
tual modelling processes, though generally notlinesar order (Borromeo Ferri 2007, Leil3
2007, Matos/Carreira 1997); see our documentafi@pecific “modelling routes” in par®
of this paper.

On this basis, we can now concisely definmtlelling competentysee Blum et al. 2007) as
the ability to construct models by carrying outdbarious steps appropriately as well as to aealys
or compare given models.

Modelling and applications has been an increasimghortant topic in mathematics education
during the last two decades (see the Proceedingbeofseries of ICTMA Conferences and the
corresponding sections in the series of ICMI Cosges, with survey papers such as Pollak 1979,
Blum/Niss 1991, or Houston 2005; compare also thevey in Kaiser 2005 and in
Kaiser/Blomhgj/Sriraman 2006). Recent interest athamatical modelling has been stimulated by
OECD'’s PISA Study where students’ “Mathematicaletatcy” (that is essentially the ability to deal
with real world situations in a well-founded manner investigated. The present state-of-the-art is
documented in the ICMI Study 14 Volume on “Moddlirand Applications in Mathematics
Education” (Blum et al. 2007).

Why is modelling soimportant for students’? Mathematical models and modellimg a
everywhere around us, often in connection with péwéechnological tools. Preparing students’ for
responsible citizenship and for participation ircistal developments requires them to build up
modelling competencyore generally: mathematical modelling is meant to

* help students’ to better understand the world,

 support mathematics learning (motivation, concepnation, comprehension, retaining),

» contribute to develop various mathematical compmésnand appropriate attitudes,

 contribute to an adequate picture of mathematics.

By modelling, mathematics becomes more meaningiulearners (this is, of course, not the
only possibility for that). Underlying all thesesjifications of modelling are the main goals of
mathematics teaching in secondary schools.

There is in fact a tendency in several countrieged¢tude more mathematical modelling in the
curriculum In Germany, for instance, mathematical modelisagne of six compulsory competencies
in the new national “Educational Standards” for meabatics. However, imveryday mathematics
teachingin most countries there is still only few modajinMostly “word problem$ are treated
where, after “undressing” the context, the esskaiia is exercising mathematics. For competency
development and for learning support also word lgrob are legitimate and helpful; it is only
important to be honest about the true nature dityezriented tasks and problems.

Why do we find only so few modelling in everydagssrooms, why is there trgap between
the educational debate (and even official curricuta the one hand, and classroom practice, on the
other hand? The main reason is that modellingffedlit also for teachers, for real world knowledge
is needed, and teaching becomes more open angridistable (see, e.g., Freudenthal 1973, Pollak
1979, DeLange 1987, Burkhardt 2004, Blum et al.7200

In the following, we will investigate more deeplyw students’ and teachers deal with
mathematical modelling. All the examples we useahis paper are taken from our own projects
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DISUM and COM2. DISUM mean$ “Didaktische Interventionsformen fiir einen
Selbstandigkeitsorientierten aufgabengesteuetiaterricht am BeispieM athematik” (“Didactical
intervention modes for mathematics teaching oriktosvards self-regulation and directed by tasks”;
see Blum/LeiR 2008)COM?2 mean$ “Cognitive-psychological analysis ahodelling processes in
mathematics lessons” (see Borromeo Ferri 2006). Botfects analyse how students’ and teachers
deal with cognitively demanding modelling tasksthwa focus on grades 8-10. Consequently, this age
group (14-16-year-olds) will also be the focustos tpaper.

2. How do students’ deal with modelling tasks?

The PISA-2006 results (OECD 2007) have revealethapat students’ all around the world
have problems with modelling tasks. Analyses cdroat by the PISA Mathematics Expert Group
(whose member is the first author) have shown ttatdifficulty of modelling tasks can indeed be
substantially explained by the inherent cognitieenplexity of these tasks, that is by the demands on
students’ competencies. Our own studies have slioatrall potential cognitive barriers (according to
the steps of the modelling cycle, @& can actually be observed empirically, specificifatividual
tasks and individual students’ (compare also Gdtftillman 2006). Here are some selected
examples of students’ difficulties

« Step 1 “constructing”: See the introductory exampl&siant’s shoes”! This is an instance
of the well-known superficial solution strategy figre the context, just extract all numbers
from the text and calculate with these according tamiliar schema” which in everyday
classrooms is very often rather successful for isglword problems (Baruk 1985,
Verschaffel/Greer/DeCorte 2000).

« Step 2 “simplifying”: Here is an authentic solutiof modelling example 2 “Filling up™:
“You cannot know if it is worthwhile since you ddmbw what the Golf consumes. You also
don’t know how much she wants to fill 'U@bviously, the student has constructed an ap-
propriate situation model, but he is not able ti&xengassumptions.

« Step 6 “validating” seems to be particularly probédic. Mostly, students’ do not check at
all whether there task solutions are reasonable aaiopriate, the teacher seems to be
exclusively responsible for the correctness of tsahs.

Particularly interesting are students’ specific ®lddg routes during the process of solving
modelling tasks. A rhodelling routé (see Borromeo Ferri 2007) describes an individnaldelling
process in detail, referring to the various phasiethe modelling cycle. The individual starts this
process in a certain phase, according to his/refefances, and then goes through different phases,
focussing on certain phases or ignoring othersb@&amore precise, one ought to speakistble
modelling routes since one can only refer to veuttdrances or external representations for the
reconstruction of the starting point and the cowfsa modelling route. We will illustrate the copte
of modelling routes more concretely by means ofntleelelling task “Lighthouse”:

Example 3: “Lighthouse”

In the bay of Bremen, directly on the coast, atliglhise called “Roter
Sand” was built in 1884, measuring 30.7 m in heidtst beacon was
meant to warn ships that they were approachingctisest.

How far, approximately, was a ship from the coabemwit saw the
lighthouse for the first time? Explain your solutio

A short analysis of the lighthouse task by mearnth@fmodelling cycle will give more insight
into students’ thinking processes and make thaitestents (see below) more transparent. The first
solution step is mentally imagining the situatioansisting of the lighthouse, the ship and theasarf

1 DISUM runs since 2002 and is funded by the GerrRasearch Foundation since 2005. It is directed byBWMm
(Mathematics Education), R. Messner (Pedagogy, hbtiversity of Kassel), and R. Pekrun (PedagogicatcRology,
University of Miinchen); the present project staffisists also of D. Lei3, S. Schukajlow, and J. Kxé(all Kassel).
2 COM? runs since 2004 and is directed by R. Borronad Fogether with G. Kaiser (both University of tdburg).
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of the earth in between (already a non-trivial dmpmany students’). The resulting situation model
has to be simplified: the earth as a sphere, theaha point, and free sight between lighthougk an
ship. Mathematisation leads to a mathematical moéi¢he real situation, with ¥ 30,7 m as the
height of the lighthouse, R 6,37 km as the radius of the earth é&ds the unknown distance
lighthouse-ship. Mathematical considerations shbat tthere is a right-angled triangle, and the
Pythagorean theorem gives S? + R2 = (R+H)?, herBe= V2RH + H2= V2RH =~ 19,81 km.
Interpreting this mathematical result leads to #mswer “approximately 20 km” for the initial
guestion. Now this real result has to be validaked: reasonable, are the assumptions approptiate
ship is certainly not a point, etc.)? If need be, tycle may start once again with new assumptions.

The following quotes made by two students’ durirgit videotaped problem solving
processes can only give some exemplary illustratminthe various changes during these processes.
The actual processes are too long and too comptagivfing an account of all the utterances in detai

Both students’, Max and Sebastian, worked togethene group; nevertheless it was possible
to reconstruct their individual modelling routesigéare presented in fig. 2:

Max (a) Sebastian (v)

extra-mathematical 3
knowledge

real
model

’l1

real H situation 4
situation - ==
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\/ =

rest of the 5
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Mathematising
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Figure 2— Two Students’ individually modelling routes

Max’ modelling route (straight arrows):

Max read the “lighthouse task” and expressed theviong thoughts shortly afterwards:

M: “Okay, what shall we do, I'd say we do Pythagodrdstal situation => mathematical
model)

Max changed immediately from the situation desdtilie the task into the mathematical
model, as he could see in his mind’'s eye that hdcapply Pythagoras. However, he did not make
any progress with the mathematical model becausdidhenot seem to have clarified the given
situation sufficiently. He then changed to the remidel in order to better imagine the situation
described. Doing this, he started thinking aloud amensively about the earth’s curvature, which
shows that he was literally “picturing” the situgati

M: *Actually, it's the earth’s curvature that makes tighithouse disappear; if it was a smooth
plane, it would be visible all the tinfelmathematical model => real model)

After Max had got a more precise mental picture, dimnged quickly back to the
mathematical model. He still remembered the PyttesgoTheorem and made a drawing.

M: “We have to mirror this on this cathetus, can yaitse length, it's the one up héréreal
model => mathematical model)

Max dwelled on the mathematical model for quite sotime. He increasingly started
wondering about what the earth’'s curvature is agkke@ himself and the others for this extra-
mathematical knowledge. Unlike the other group membhe held the opinion that the earth’s
curvature would also have to be taken into acctarrthe calculations.

M: “Yeah, see, we've got to include the earth’s cureaitnl our calculations. (mathematical
model => extra-mathematical knowledge)

Leaving the question of the earth’s curvature adidi@x returned to the mathematical model
and remained in that phase for a long time. Dutireg phase, he used his intra-mathematical skills
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(Pythagoras’ theorem) as well as extra-mathemaknalvledge (the earth’s diameter) to reach a
conclusion.

M: “It's twenty kilometres. I've got the lighthouseth® power of two minus the radius.
(extra-mathematical knowledge => mathematical tegu

Max interpreted the result only to some extent digdnot validate it with regard to the real
situation; he assumed it to be “mathematically’rect.

M: “I've got twenty kilometres, as the crow flie@nathematical results => real results)

Sebastian’s modelling route (broken arrows):

Sebastian started immediately with a sketch aridsatdescribed the real situation given very
vividly. That way, he got the situation describadhe task clear in his mind and created a sitoatio
model.

S: “Here’s the ship, somewhat like this and this isehegh’s curvaturé. (real situation =>
situation model)

Starting with his mental picture, he kept simplifyithe situation further and created a real
model.

S: “We’re gonna do a triangle hefe(situation model => real model)

In his further statements, an increasing matheatadis became apparent, and he changed to
the mathematical model.

S: “We need an angle on this side in order to calcutate distance. (...) Cos | need this
(points at Mark’s drawing), then | could hundreddagighty minus ninety minus..(real model =>
mathematical model)

Sebastian did not stick to the mathematical modeldng, as he had to keep “picturing” the
situation. When the group started discussing trestipn of whether the earth’s curvature should be
included in the calculations, he remained rathetnaé

S: “The only thing which otherwise prevents us fronirggs clear view is mostly our eyes, if
the plane was level, and probably particles inairg’ (mathematical model => real model)

From the real model Sebastian returned to the mettieal model and continued to work
more mathematically. As it did not occur to himwiork with Pythagoras, but with Sinus instead, he
only focussed on applying this individual matheratcompetence.

S: “And if we knew one angle now, then we could, wédcase Sinus. (real model =>
mathematical model)

Sebastian often switched between the real and #itbematical model because he had to
transport himself into the real situation and neealevays to picture the situation visually in order
keep working on the task. In contrast to Max, wblved the problem, Sebastian did not reach a con-
clusion and was stuck in the mathematical model.

The modelling routes of the two students’ are natliferent. One reason for that is the fact
that students’ problem solving behaviour substintdepends on theimathematical thinking styles
(Borromeo Ferri 2004). According to their responsesjuestionnaires and interviews, Max is an
“analytic” thinker and Sebastian a “visual” think@ihe term mathematical thinking styletienotes
the way in which an individual prefers to presaatunderstand and to think through mathematical
facts and connections, using certain internal imaipns and/or externalised representations.
Accordingly, a mathematical thinking style is cdtgéed by two components: 1) internal imaginations
and externalized representations, 2) the “holisteéspectively “dissecting” way of proceeding when
solving mathematical problems. Mathematical thigkstyles should not be seen as mathematical
abilities but as preferences how mathematical tasliare used. Empirically, three mathematical
thinking styles of students’ attending grades @40ld be reconstructed:

» “Visual” (pictorial-holistic) thinking style Visual thinkers show preferences for distinctive
internal pictorial imaginations and externalizedcctpiial representations and for the
understanding of mathematical facts and connectitm®ugh existing illustrative
representations, as well as preferences for a haligtic view on given problem situations.
In modelling tasks, they tend to focus more onréad world part of the process.

* “Analytical” (symbolic-dissecting) thinking styléAnalytic thinkers show preferences for
internal formal imaginations and for externalizexnial representations; they are able to
comprehend and to express mathematical facts ptdfethrough symbolic or verbal
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representations, and they show preferences forra step-by-step procedure when solving
given problems. In modelling tasks, they tend twufomore on the mathematical part of the
process.

* “Integrated” thinking style:These persons are able to combine visual and analgys of
thinking to the same extent.

In the following, we will mention some mosampirical findingsconcerning students’ dealing

with modelling tasks.

* In most cases, there is no conscious usproblem solving strategielBy students’. This
explains a lot of the observed difficulties since know from several studies that strategies
(meta-cognitive activities) are helpful also for dhetling (Tanner/Jones 1993,
Matos/Carreira 1997, Schoenfeld 1994, Kramarskiddeeh/Arami 2002, Burkhardt/Pollak
2006, Galbraith/Stillman 2006; for an overview §&reer/Verschaffel in Blum et al. 2007).

» We know from several studies in the context of &i#d Cognition that learning is always
dependent on the specific learnicmntextand hence a simple transfer from one situation to
others cannot be expected (Brown/Collins/Duguid9198eCorte/Greer/Verschaffel 1996,
Niss 1999). This holds for the learning of mathecahtmodelling in particular, modelling
has to be learntspecifically. This is a “bad” message; the “goamunterpart is the
following message:

» Several studies have shown that mathematical modellcan be learnt
(Galbraith/Clatworthy 1990, Abrantes 1993, Kais887, Maal} 2007; see a®y. The de-
cisive variable for successful teaching seems to“dwality teaching”. This will be
addressed in the next chapter.

3. How do teachers treat modelling in the classrooth

Perhaps the most important finding is the followingachersare indispensablethere is a
fundamental distinction between students’ workimdgipendently with teacher’s support and students’
working alone. This may sound rather trivial busitot at all trivial; here is a picture from ar@an
best-seller on general pedagogy:

Unusual and right!

Figure 3— A wrong view on students’ learning

According to the empirical findings, it should hustthe other way round

There is dense empirical evidence that teachirgcesffcan only (to be more precise: at most)
be expected on the basis afuality mathematics teachihgWhat could that mean? Here is the
working definition we use in our projects (comparg., Blum/Leil3 2008):
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* A demanding orchestration of teaching the mathesabsiubject mattefoy giving students’
vast opportunities to acquire mathematical commpi¢snand establishing connections
within and outside mathematics)

« Permanent cognitive activation of the learn@rg stimulating cognitive and meta-cognitive
activities and fostering students’ independence)

* An effective and learner-oriented classroom manageiiby varying methods flexibly, us-
ing time effectively, separating learning and assest etc.)

For quality teaching, it is crucial that a permanbalance between (minimal) teacher’s
guidance and (maximal) students’ independence imtaiaed (according to Maria Montessori's
famous maxim: “Help me to do it by myself’). In paular, when students’ are dealing with
modelling tasks, this balance is best achieved Hgptve, independence-preserving teacher
interventions. In this context, oftetrategicinterventions are most adequate, that means angons
which give hints to students’ on a meta-level (“gme the situation!”, “What do you aim at?”, “How
far have you got?”, “What is still missing?”, “Dogisis result fit to the real situation?”, etc.). In
everyday mathematics teaching, those quality @itare often violated. In particular, teacher’s
interventions are mostly not independence-presgnitere, we will report on an example of a
successful strategic intervention. The task stigd¢fitom a Realschule class 9, medium-ability-tpack
were dealing with was the following:

Example 4: “Fire-brigade”

Feuerwehr

Die Munchner Feuerwehr hot
sich im Johr 2004 ein neues
Drehleiter-Fohrzeug  ongeschafft.
Mit diesem konn mon  Uber
sinem am Ende der Leiter

angebrachten Korb Personen aus

grofien Héhen reftten. Dabe
muss das Feuverwehroute lout

siner Varschrift 12 m

Mindestabstand vom brennenden Hous einhalten.

Die technischen Daten des Fohrzeugs sind:

Fahrzengtyp: Daimler Chrysler AG Fconic 1828 LL - Dissal
Banjahr: 2004

Leistung: 205kw [ 279 P8 )

Hubraum: 6374 cny?

Mabe des Fahmeug: Linge [0m Brzite 2,5m Hohe 3, 19m

Mage der Leiter:  30m Liinge

Leergewicht: 15540kg

Gesumtgewicht: 18000 kg

Aus welcher moximalen HEhe kaonn die Monchner Feverwehr mit diesem
Fahrzeug Personen reffeng

From which maximal height can the Munich
fire-brigade rescue persons with this engine?

A student thought that he was done but the teaglmegnised that he had forgotten to include
the engine’s height into his calculations. Thee,fihllowing dialogue arose:

T.: “You have disregarded a little thirig!

S.: “... this calculation of &?

T.: “No, you have calculated everything correctly, ywhay. You only have to read once more
precisely?
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The student found quickly and independently histakis, and not only did he correct it, he
also explained to the members of his table grougtwddo and why they ought, by all means, not to
forget to include the engine’s height ok, it is said here in the text, 3.19")n!

We have reported on another successful strategervemtion (in the context of the
“Lighthouse” task) in Borromeo Ferri/ Blum (2008However, according to our observations,
mathematics teacher's spontaneous interventions miodelling contexts were mostly not
independence-preserving, they were mostly contdated or organisational, and next to never
strategic. Mostly, only a narrow spectrum of intrtions was available even for experienced
teacher’s (constituting the teacher’s specificéimention styles”).

A common feature of many of our observations was the teacher's owfavourite solution
of a given task was often imposed on the studehtsugh his interventions, mostly without even
noticing it, also due to an insufficient knowledgfethe richness of the “task space” on the teasher’
side. However, we know that it is important to amegevarious individual solutionsalso to match
different thinking styles of students’, and partarly as a basis for retrospective reflectionsratte
students’ presentations. To this end, it is necgdsa teacher’s to have an intimate knowledgehef t
cognitive demands of given tasks. In another ptof€OACTIV; see Krauss et al. 2008) we have
found that the teacher's knowledge of task spaesesnie significant predictor of his students’
achievement gains.

An interesting question in this context is: How tlee mathematical thinking styles of
teachers’influence their way of dealing with modelling ta8k In the COM?2 project, three grade 10
classes of the Gymnasium (the German Grammar Sghbigh-ability track)) were chosen for an
analysis of the teacher’s behaviour when treatingleiling tasks. The sample was comprised of 65
pupils and 3 teachers’ (one male, two female). Bedunterviews were conducted with each teacher
to reconstruct his/her mathematical thinking styegraphical questions were also included and
guestions were asked, among other things, abaihiehisurrent view of mathematics or about reasons
why his/her view of mathematics might have chanigetthe course of his/her teaching life. After the
lessons there was a stimulated recall with eacthefteachers’ where they were shown videotaped
sequences of their acting in the classroom.

We will show here reactions of Mr. P (an analytimker) and Mrs. R (a visual thinker) after
the students’ presentation of their solutions af lighthouse task. What can be seen here (in the
validation phase) is typical also for other phasfehie modelling process.

Reaction of Mr P.: That was really good. [...] But what | am missingaasaths teacher is that ygu
can use more terms, more abstract terms and thatwrite down a formula and not only numbers.

This way corresponds more to the way that thinkihgsicians and mathematicians prefer, when you
use and transform terms and get a formula afterwdrd]” [Mr. P. then developed with the pupils|a
formula after this statement.]

Reaction of Mrs. R.: So we have different solutions. But what | recagphiznd what | missed in our
discussion till now is the fact that you are ndhking of what is happening in the reality! Whemyo
want to illustrate yourself the lighthouse and th&tance to a ship, then think for example of tioenD)
[name of a famous fair in Hamburg]. | can see thenDfrom my balcony. Or, whatever, think|of
taking off with a plane in the evening and so amo kilometres. Is that much? Is that l€5s?

So, on the one hand, Mr P. as an analytical thioketously focussed less on interpretation
and validation. For him, the subsequent formaligatf the task solutions in the form of abstract
equations was important. Accordingly, the realatittn became less important.

On the other hand, Mrs. R. as a visual thinkerrpreted and, above all, validated the
modelling processes with the learners. This becaviglent in her very vivid, reality-based
descriptions she provided for the learners.
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4. How can modelling be appropriately taught?

4.1. Some implications for teaching

There is, of course, no general “king‘s route” fimaching modelling. However, some

implications from the empirical findings are plausible (thougbt at all trivial!) for teaching
modelling in an effective way.

Implication 1:

= The criteria for quality teaching(see ®) have to be considered also for teaching
modelling. The substance for quality teaching isstituted by appropriate modelling
tasks. When treating modelling tasks, a permandmlance between maximal
independence of students’ and minimal guidancénéydacher ought to be realised.

Implication 2:

= It is important to support studenigdividual modelling routes and to encourameltiple
solutions To this end, teachers have to be familiar withtésk spaceand to be aware of
their own potential preferences for special sohgio

Implication 3:
= Teachers have to know a broad spectrunintdrvention modesalso and particularly
strategicinterventions.

Implication 4:
= Teachers have to know ways how to support adegstatentstrategiesfor solving
modelling tasks.

A few more remarks on implication 4: For modellitasks, a specific strategic tool is

available, themodelling cycleThesevenstep schema (presented@) is appropriate and sometimes
even indispensable for research and teaching pesp&®r students’, the followirfgur step schema
(also developed in the DISUM project; compare BROO7) seems to be more appropriate.

Four steps to solve a modelling task Solution Plan’)

2. Establishing

1. Understanding

task model

® Read the text precisely and imagine the > ® ook for the data you need. If
situation clearly necessary: make assumptions
® Make a sketch ® Look for mathematical relations
u

OV |
, v e
3. Using '
mathematics

4. Explaining
result

<

® Round off and link the result to the ° ;
Use appropriate procedures
task. If necessary, go back to 1 Ppropriate p !

. . ® Write down your mathematical result
® \Write down vour final answel y

Figure 4 — The “Solution Plan” for modelling tasks



Werner Blum and Rita Borromeo Ferri 55

Here, steps 2 and 3 from the seven step schemad. [fage united to one step (“establishing”),
as well as steps 5, 6 and 7 (“explaining”). As barseen, there are some similarities of tRisltition
Plan” for modelling tasks to George Polya’s generalbpeoa solving cycle (compare Polya 1957).
This Solution Plan is not meant as a schema thsitttiebe used by students’ but as an aid for
difficulties that might occur in the course of thaution process. The goal is that students’ léause
this plan independently whenever appropriate. Hepees show that a careful and stepwise
introduction of this plan is necessary, as welleggseated exercises how to use it. If this is takém
account, even students’ from Hauptschule (low stiitack) are able to successfully handle this plan

4.2. Some encouraging empirical results

We will close by presenting some more encouragingigcal results. In the DISUM project,
we have developed a so-callamptrative-strategitteaching unit for modelling (to be used in grades
8/9, embedded in the unit on the Pythagorean thgorEhe most important guiding principles for this
teaching unit were:

» Teaching aiming at students’ active and independenstructions and individual solutions
(realising permanently the aspired balance betvatedents’ independence and teacher's
guidance)

» Systematic change between independent work in grdapached by the teacher) and
whole-class activities (especially for comparisérdifferent solutions and retrospective re-
flections)

» Teacher's coaching based on the modelling cyclecanddividual diagnoses.

In autumn 2006 (with 4 Realschule classes) andiinnan 2007 (with 17 Realschule classes)
we have compared the effects of this “operativategic” teaching with a so-called “directive”
teaching and with students’ working totally alorimth concerning students’ achievement and
attitudes. The most important guiding principles‘fdirective” teaching were:

» Development of common solution patterns by theheac

» Systematic change between whole-class teachingnted towards a fictive “average
student”, and students’ individual work in exersise

Both “operative-strategic” and “directive” teachingere conceived as optimised teaching
styles and realised by experienced teachers froafoam project (“SINUS”, see Blum/Leifl3 2008). All
teachers were particularly trained for this purp&er study had a classical design:

Ability test / Pre-test / Treatment (10 lessonsiwdrious modelling tasks) with accompanying
questionnaires / Post-test / Follow-up-test (3 rhenater)

The tests comprised both modelling tasks and dals¥Pythagorean” tasks. According to our
knowledge, this study was unique insofar it wasuasgexperimental study with more than 600
students’, yielding both quantitative (tests andgjionnaires) and qualitative (videos) data. Stnee
optimised teaching styles were implemented, onddcpassibly expect no differences between the
two treatments concerning students’ achievement atihdes. However, there were remarkable
differences. Here are some results:

» Both students’ in “operative-strategic” and in ‘&litive” classes made significant progress

(not so students’ working alone); the progresstoflents’ in “operative-strategic” classes
was significantly higher and more enduring thanstoidents’ in “directive” classes.

» The progress of “directive” students’ was esselgtialue to their progress in the
“Pythagorean” tasks. Only “operative-strategic’dants’ made significant progress in their
modelling competency.

» The best results were achieved in those classesewdecording to our ratings, the balance
between students’ independence and teacher’'s guidaas realised best, with a mixture of
different kinds of adaptive interventions.

We will report about our study into more detaibimother context.

Altogether, these and other results suggest thewinlg answer to the question in the title of
this paperMathematical modelling seems to be actually tealghabd learnableThe aim must be, of
course, to implement all these insights and idassaveryday teachingFor that, it is necessary to
implement these insights inteacher educatigrboth in-service and pre-service.
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We have reported here on some findings concerhiadeiarning and teaching of mathematical
modelling at the lower secondary level. There afe¢ourse, still lot of open questions (compare
DaPonte 1993; Niss 2001; ICMI Study 14 Discussiarcinent Blum et al. 2002); here are two
examples of important questions left to answer:

» We know that modelling competency has to be buyilindongtermlearning processes (over

years). What is actually achievable regarding lerga competency development?

» Modelling is an important competency, but the g@ala comprehensivenathematical

education of the students’. How can the interplapween different competencies be
advanced systematically?
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