Acutipa 3019119
Matnиa $1^{\text {P }}$
Mapaס(izparal (i) $U_{t}-U_{x x} \quad \mu \in \lambda \dot{v} \sigma \in \rightarrow U_{0}(x, t)=e^{-a^{2} t} \sin (a x), a \in \mathbb{R}$

$$
\rightarrow u(x, t)=x^{2}+2 t
$$

(i) $(y+u) u_{x}+y u_{y}=x-y$ ue Nion $u(x, y)=\frac{2}{y}+x-y$

Eurodes nepinzwoes!
-1) $U_{x}=0$ © Oo $\mathbb{R}^{2} \quad \forall y=\sigma r a \theta$ quen cival $\mu i a \quad \sum \Delta E$

Avricrpoфa, $\forall c \in C^{1}(\mathbb{R}) n_{x} c(y)$ गuver rnv © (4)
Evaл入aкuka: $u_{x}(x, y)=0 \Rightarrow \int_{0}^{x} u_{x}(s, y) d s=0 \Leftrightarrow u(x, y)-u(0, y)=0$

$$
\Leftrightarrow u(x, y)=u(0, y)=c(y)
$$

$$
\begin{aligned}
u_{x y}=0 & \Rightarrow u_{x}(x, y)=a(x) \Rightarrow \int_{0}^{x} u_{x}(s, y) d s=\int_{0}^{x} a(s) d s \\
& \Leftrightarrow u(x, y)-u(0, y)=\int_{0}^{x} a(s) d s \\
& \Leftrightarrow u(x, y)=f(x)+g(y) \quad \mu \epsilon \quad f, g \in C^{1}(\mathbb{R})
\end{aligned}
$$

Avriorpoфa, av $u(x, y)=f(x)+g(y)$ rore $u_{x y}=\left(f^{\prime}(x)\right)_{y}=0$
กnpornatio va unv $\operatorname{kav} \omega \Sigma \Delta E$

$$
\begin{aligned}
& \text { 3) } u_{x y}+u_{x}=0 \Rightarrow\left(u_{x}\right) y+u_{x}=0 \Leftrightarrow e^{y}\left(u_{x}\right) y+e^{y} \cdot u_{x}=0 \\
& \Leftrightarrow\left(e^{y} u_{x}\right) y=0 \Leftrightarrow e^{y} u_{x}=c(\dot{x}) \quad, \quad{ }^{\prime} \in C^{1}(\mathbb{R}) \\
& \Leftrightarrow u_{x}=e^{-y} \cdot c(x) \\
& \quad \downarrow \\
& u(x, y)=e^{-y} \int_{0}^{x} c(s) d s+\tilde{c}(y) \quad, \tilde{c}(y)=u(0, y)
\end{aligned}
$$

Apa, $u(x, y)=e^{-y} A(x)+B(y) \quad, \quad A, B \in C^{1}(\mathbb{R})$

$$
\begin{aligned}
& \text { 4) } u_{x x}=0 \Rightarrow u_{x}=c(y) \Rightarrow \int_{0}^{x} u_{x}(s, y) d s=\int_{0}^{x} c(y) d s \\
& \Rightarrow u(x, y)-u(0, y)=c(y) \cdot x \Rightarrow u(x, y)=c(y) \cdot x+u(0, y)
\end{aligned}
$$

Tia eupeon $\lambda \dot{u} \sigma \in \omega$ r MDE: $M \Delta E \longrightarrow \Sigma \Delta E$

- MéӨoठos xapakenpiorikior
- EFiowon Meraфopais: $u_{t}+C \cdot U_{x}=0$
- ESiowon kujaros: $U_{t t}=c^{2} \cdot U_{x x}$
- Ejiowon θ eproinzas: $U_{t}=k \cdot U_{x x}, k>0$
- Etolxeia otipuir Fourier
- MéӨoסos xwpioroi uezab入necir
- Ejiowon Laplace: Uxx $+U_{y y}=0$
- Taviónres Green
- Mn jpapuikès maE
M.I.T (noobanpa ouvoplakiov zipiov)

Diverau $M \Delta E$ ja in u ot eva $U \subset \mathbb{R}^{n}$ kou n anaiznon $u(x)=g(x) \quad \forall x \in \Gamma$, ónou $\Gamma c \partial U$ kar g סEסopèv ourajpinon
TPAMMIKEL EEILOEEIL $1 \frac{\text { ns }}{=}$ TAEHE OZO \mathbb{R}^{2} :

$$
\begin{aligned}
& a(x, y) u_{x}+b(x, y) \cdot u_{y}+c(x, y) \cdot u=d(x, y) \\
& \forall x, y \in U_{\text {lavoixtio }} \quad a, b \in C^{\infty} \text { kal }|a|+|b| \neq 0
\end{aligned}
$$

1. Opifoupe vés $\mu \in$ rabanres $\quad \xi=f(x, y)$, inou $f_{1} g \in C^{1}(u)$

$$
n=9(x, y)
$$

$$
x=h(\xi, n) \text { kon } y=k(\xi, n)
$$

$\Delta n \lambda a \delta \dot{n}, \mu \in r a o x n \mu a r o \mu \mu o s ~ T: U \rightarrow \mathbb{R}^{2} \mu \in:$
$T(x, y)=(f(x, y), g(x, y))=(\xi, \eta)$, avuorp $\in \psi \mu$ o (conikà) $\mu \in$ avriorpoфо $T^{-1}(\xi, \eta)=(h(\xi, \eta), k(\xi, \eta))=(x, y)$

2. $\theta \dot{\epsilon} \tau w \quad \bar{u}(\xi, n)=u\left(T^{-1}(\xi, n)\right) \circledast \quad(u(x, y)=\bar{u}(\xi, n))$
3. Deixvw ou n (1) loodurapei $\mu \in$ इ ΔE kal zn $\lambda \dot{v} w$
4. Eniorpéфw σ rnv * kau bpiokc $u(x, y)=\bar{u}(T(x, y))$

KYPIo MPOBAHMA: Eupeon f, g (rou peraoxnmarioucu)

- Eewowi rn इDE $\frac{d y}{d x}=\frac{b(x, y)}{a(x, y)}$ kau rnv peraoxnparijw
of oxeơn ens ropфضंs $f(x, y)=c$
- f, in $\theta \dot{\in} \lambda \omega$ fıa $\xi=f(x, y)$
ja inv $g: \quad\left|\begin{array}{ll}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right| \neq 0 \quad\left(\begin{array}{c}\text { Iuvi} \theta \omega s, g(x, y)=x \\ \eta \\ \eta\end{array}\right)$
ПAPA $\triangle E I T M A 1.8$
$x y U_{x}-x^{2} u_{y}-y u=x y$ oco $U=(0,+\infty) \cup(0,+\infty)$
$\mu \epsilon u(x, 0)=g(x) \quad \forall x>0$

$$
\frac{d y}{d x}=\frac{-x^{k}}{x y}=-\frac{x}{y} \Rightarrow y y^{\prime}=-x x^{\prime} \Leftrightarrow
$$

$$
\left(y^{2}\right)^{\prime}=-\left(x^{2}\right)^{\prime} \Leftrightarrow y^{2}+x^{2}=c
$$

Maipve ueraoxnpariopous: $\left\{\begin{array}{l}\xi=f(x, y)=x^{2}+y^{2} \\ \eta=g(x, y)=x\end{array}\right.$
Avriorpoфos μ eraoxnparefios: $\{x=n$

$$
\begin{aligned}
& \text { Avriorpopos } \mu \in z a o x n \mu a u o p e s:\left\{\begin{array}{l}
x=n \\
y=\sqrt{\xi-n^{2}} \\
\bar{u}(\xi, n)=u\left(T^{-1}(\xi, n)\right)=u\left(\tilde{n}, \sqrt{\xi-n^{2}}\right)
\end{array}\right.
\end{aligned}
$$

$\Delta n \lambda a \delta n, u(x, y)=\bar{u}(\underbrace{x^{2}}_{\xi}+y^{2}, \underbrace{x}_{n})$

- $u_{x}=2 x \cdot \bar{u}_{\xi}+\bar{u}_{n}$
- $u_{y}=2 y \cdot \bar{u} \xi+0 \cdot \overline{1} y$

Orioce n apxikn ϵ Fiowon jiveral: $x y\left(2 x \bar{u} \xi+\bar{u}_{n}\right)-x^{2} y \bar{u}_{\xi}-y \bar{u}=x y$

$$
\begin{aligned}
& \Leftrightarrow x \cdot \bar{u}_{\eta}-\bar{u}=x \stackrel{x=n}{\Longleftrightarrow} \eta \cdot \bar{u}_{n}-\bar{u}=\eta \\
& \Leftrightarrow \frac{n \bar{u}_{n}-\bar{u}}{\eta^{2}}=\frac{1}{\eta} \Leftrightarrow \partial_{\eta}\left(\frac{\bar{u}_{n}}{n}\right)=\partial_{\eta}(\ln n) \\
& \Leftrightarrow \frac{\bar{u}}{n}=\ln \eta+c(\xi) \Leftrightarrow \bar{u}(\xi, n)=\eta \ln \eta+\eta c(\xi)
\end{aligned}
$$

\rightarrow fia kannora orvaprnón C.

Leutépa 7/10/19
Mänpa 2 ㅇ
(ouvéxela cioknons anó nponjaü μ evo $\mu \dot{\theta}$ n μ a)

$$
\bar{u}(\xi, \sqrt{\xi})=u(\sqrt{\xi}, 0)=g(\sqrt{\xi})
$$

Enions, $\bar{u}(\xi, \sqrt{\xi})=\sqrt{\xi} \cdot \log \sqrt{\xi}+\sqrt{\xi} \cdot c(\xi)$

$$
\Rightarrow c(\xi)=\frac{1}{\sqrt{\xi}}(g(\sqrt{\xi})-\sqrt{\xi} \cdot \log \sqrt{\xi})
$$

- $A_{\rho a}, \bar{u}\left(\xi_{1} \eta\right)=\eta \log \eta+\frac{\eta}{\sqrt{\xi}}(g(\sqrt{\xi})-\sqrt{\xi} \cdot \log \sqrt{\xi})$

Kar apa, $u(x, y)=\bar{u}(\xi, n)=\bar{u}\left(x^{2}+y^{2}, x\right)=x \log x+\frac{x}{r}(g(r)-r \log r$
oncou

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{\xi} \\
& y=0 \Rightarrow r=\sqrt{x^{2}+y^{2}}=x \\
& x \log x+g(x)-x \log x=g(x)
\end{aligned}
$$

Tiari λ erroupfi $n ~ \mu \dot{\epsilon} \theta o \delta o s$;
Eixape <nv $a(x, y) \cdot u x+b(x, y) \cdot u_{y}+c(x, y) \cdot u=d(x, y)$ (1) $\forall(x, y) \in U$
Oeworioape rnv $\frac{d y}{d x}=\frac{b(x, y)}{a(x, y)}$
Tiv нeraoxn μ arioa $\mu \in$ of $f(x, y)=0$.
Qéoape $\xi=f(x, y)$ kal $\eta=g(x, y)$ сेठzt:

$$
\left|\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right| \neq 0
$$

H $u(x, y)=\bar{u}(f(x, y), g(x, y)) \quad$ ivel

$$
\begin{aligned}
& u_{x}=\bar{u}_{\xi} \cdot f_{x}+\bar{u}_{n} \cdot g_{x} \\
& u_{y}=\bar{u}_{\xi} \cdot f_{y}+\bar{u}_{n} \cdot g_{y}
\end{aligned}
$$

- Apa oro u өa exхоице $d(x, y)=\left\{a(x, y) f_{x}(x, y)+b(x, y) f_{y}(x, y)\right\} \bar{u}_{\xi}$

$$
\begin{aligned}
& \left.+\left\{a(x, y) \cdot g_{x}(x, y)+b(x, y) \cdot g_{v}(x, y)\right\} \cdot \overline{u_{n}}(T(x, y))\right\} \\
& +c(x, y) \cdot \bar{u}(T(x, y))
\end{aligned}
$$

θ Eंcoupe $(x, y)=T^{-1}(\xi, \eta)$ \qquad
Eorw $\left(x_{0}, y_{0}\right) \in U$. Y/noӨéroupe ou $f_{x}\left(x_{0}, y_{0}\right) \neq 0$
Töre, kovia oro $\left(x_{0}, y_{0}\right)$ n $f(x, y)=f\left(x_{0}, y_{0}\right)$ jüeza,㑊adika ws npos $x=x(y)$
$\Delta_{n} \lambda a \delta \dot{r}, \quad f(x(y), y)=f\left(x_{0}, y_{0}\right)$ (4) $\forall y$ kovea oro y_{0}
$H \quad x(y)$ düve rnv (2) jrari lkavonolei rnv:

$$
f(x(y), y)=c=f\left(x_{0}, y_{0}\right)
$$

$\Delta_{n} \lambda a \delta \dot{n}, \quad x^{\prime}(y)=\frac{a(x, y)}{b(x, y)}$
Enions, napajwjifovzas env (4) ws noos y Exoupe:

$$
\begin{aligned}
& f^{\prime}\left(x_{0}, y_{0}\right)=0=f_{x} \cdot x^{\prime}(y)+f_{y}=f x \cdot \frac{a}{b}+f_{y} \\
& \Rightarrow a \cdot f_{x}+b \cdot f_{y}=0
\end{aligned}
$$

－Apa，n（3）jiverou：

$$
d\left(T^{\prime}(\xi, n)\right)=\bar{A}(\xi, n) \cdot \bar{U}_{n}(\xi, \eta)+\bar{B}(\xi, n) \cdot \bar{u}(\xi, n) \quad \forall \xi,
$$ aver Eivou pia $\sum \triangle E$

2os tpónos H $\mu \dot{\epsilon} \theta o \delta o s$ wwv xapakenploukwiv
Exoure μ ia $M \Delta E$ oro $U \subset \mathbb{R}^{2}$ رa in ouvápenon U kou pia ouv宛m $u(x, y)=g(x, y) \quad \forall(x, y) \in T \subset \bar{u}$ ． EuvriӨws $\Gamma \subset \partial U$ ．世àxvoupe $\mu i a \quad u \in C(U U T)$ no va lkavonolei in MAE kal va extl zués g ozo r H $\mu \dot{\theta} \theta \circ \delta o s: Y$ roөéroupe ón n u eivou pia jưon zou npobanゥ kapnün $\gamma: s \longmapsto(x(s), y(s))$ ，wore：
（i）$(x(0), y(0))=\left(x_{0}, y_{0}\right)$
（ii）H $z(s)=u(x(s), y(s))$ va ikavonolei pia $\Sigma \Delta E$
 yonutio zns 5
Troupiforeas to $z(\tau)=g(x(r), y(r))$ kou rnv $\sum \Delta E$ ，bpiokoupe as zuiés uns u ot kà⿴e onpeio ins γ ，dipa nal oro $\left(x_{0}, y_{0}\right)$
Iro rédos enadnӨevoupe ou n u nou bprikape aúve to npóbanua．
 ans $M \triangle E$ ．MoA入ès фоpés，xapakenploukn $\lambda \dot{\text { éme kas rnv }}$ $s \longmapsto(x(s), y(s))$

U a00 $\Gamma u=g$
\rightarrow Esi bproxojpozer zu oufnü 乙

Tha env $a(x, y) \cdot u_{x}+b(x, y) \cdot U_{y}+c(x, y) \cdot u=d(x, y)$
Enidéjoure ws j $\mu \mathrm{a}$ kapnuian nov lkavonolei us.

$$
\left\{\begin{array}{l}
\frac{d x(s)}{d s}=a(x(s), y(s)) \tag{2}\\
\frac{d y(s)}{d s}=b(x(s), y(s))
\end{array}\right\}
$$

Töre, $z(s)=u(x(s), y(s))$ ikavonolei znv:

$$
\begin{aligned}
z^{\prime}(s) & =u_{x} \cdot x^{\prime}(s)+u_{y} \cdot y^{\prime}(s)=u_{x}(x(s), y(s)) \cdot a(x(s), y(s))+u_{y}(x(s), y(s)) b(x, y) \\
& =d(x(s), y(s))-c(x(s), y(s)) \cdot z(s)
\end{aligned}
$$

n onoia tivou pia $\sum \Delta E$ jla znv z.
$O_{1} x(s), y(s)$ npocunzav ano in (2)
MAPA $\triangle E I \Gamma M A$
$x \cdot u x+u y=0$ oro \mathbb{R}^{2}
$u(x, 0)=f(x) \quad \forall x \in \mathbb{R}$, onow $f \in C^{1}(\mathbb{R})$
Eorw a pia λ ion zns $(x(s), y(s), z(s)$) (xapakinploziki)
$0, \in \xi l o w \sigma e l s$ jrai ris x, y, z eival:

$$
\left.\begin{array}{l}
\frac{d x}{d s}(s)=x(s) \\
\frac{d y}{d s}(s)=1 \\
\frac{d z(s)}{d s}=0
\end{array}\right\} \begin{aligned}
& x(s)=c \cdot e^{s} \\
& y(s)=s+s_{0} \\
& z(s)=\bar{c}
\end{aligned}
$$

$$
y(s)=s+S_{0} \quad, c, \text { So, } \bar{c} \in \lambda \epsilon^{\prime} \theta \in c a
$$

- Orar "opioupe" ru pe 00 óo tinape $x(0)=x_{0}, y(0)=y 0$
- Eocw $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Enid̀ јоuнe $c=x_{0} \quad S_{0}=y_{0}$ ara, roce $z(s)=u\left(\frac{x_{0} \cdot e^{s}}{x}, \frac{y_{0}+s}{y}\right)$ fival ocatcon us nops s

$$
\rightarrow s=y-y_{0}
$$

$$
\begin{aligned}
& x=x_{0} \cdot e^{y \cdot y_{0}}=x_{0} \cdot e^{-y_{0}} \cdot e^{y}, \text { Eipa náva orov aşova zw } x_{0} \\
& u\left(x_{0}, y_{0}\right)=z(0)=z\left(-y_{0}\right)=u\left(x_{0} \cdot e^{-y_{0}}, 0\right)=f\left(x_{0} \cdot e^{-y_{0}}\right)
\end{aligned}
$$

θ ewpouju env $u(x, y)=f\left(x \cdot e^{-y}\right) \in C^{1}\left(\mathbb{R}^{2}\right)$

$$
\begin{aligned}
& x \cdot u_{x}+u_{y}=x \cdot f^{\prime}\left(x \cdot e^{-y}\right) \cdot e^{-y}+f^{\prime}\left(x \cdot e^{-y}\right)\left(-x \cdot e^{-y}\right)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

Eva入дакикаі：

$$
\begin{aligned}
& \frac{d x}{d s}=x \quad<\theta \text { ewpin ro } x \text { ouvaipenon rou } y \\
& \left.\begin{array}{l}
\frac{d s}{d s} \\
\frac{d y}{d s}=1
\end{array}\right\} \Rightarrow \frac{d x}{d y}=x \Rightarrow x(y)=c \cdot e^{y} \\
& {\left[\begin{array}{l}
\frac{1}{d x} d x \Rightarrow \ln x=y+c \\
x \quad x=e^{2} e^{t}+x=c \cdot e^{y}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
x(y)= & c \cdot e^{y} \\
z(y)= & u(x(y), y) \Rightarrow z^{\prime}(y)=0 \Rightarrow z \quad \operatorname{cza} \theta \in \operatorname{cin} \\
& u^{\prime \prime}\left(c \cdot e^{y}, y\right)
\end{aligned}
$$

Eocw $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ Enidéjoupe $c=x_{0} \cdot e^{-y_{0}}$

$$
\begin{aligned}
& z(0)=z\left(y_{0}\right) \Rightarrow u(c, 0)=u\left(x\left(y_{0}\right), y_{0}\right) \Rightarrow f(c)=u\left(x_{0}, y_{0}\right) \\
& \Rightarrow u\left(x_{0}, y_{0}\right)=f\left(x_{0}, e^{-y_{0}}\right)
\end{aligned}
$$

－NN AよKHよH
M_{ϵ} en $\mu \dot{\epsilon} \theta 0 \delta 0$ rwv xapakinploukciv $\lambda \dot{v o r t}$ in $M \Delta E$ $x y \cdot u_{x}-x^{2} \cdot u_{y}-y u=x y$ oго $u=(0, \infty) \cup(0, \infty) \quad \mu \epsilon$ $u(x, 0)=g(x) \forall x>0$
（Alikaikos 2n èkooorn，oe 43 rapaideffra 1．8）

Terapen 9/10/19
MäӨnиa 3:

$$
a(x, y) \cdot u_{x}+b(x, y) \cdot u_{y}+c(x, y) \cdot u=d(x, y)
$$

O1 xapaktnplotikés Eival ol:

$$
\left.\begin{array}{l}
\frac{d x}{d s}=a(x(s), y(s)) \\
\frac{d y}{d s}=b(x(s), y(s)) \\
z(s)=u(x(s), y(s))
\end{array}\right\} \quad \frac{d y}{d x}=\frac{b(x, y)}{a(x, y)}
$$

Aurn Sive env $\xi(x, y)$ oinv rexviè̀ ad入ajnis ouvzerajuèvcuv.

$$
A \sum K H \sum H \quad 7 \quad \$_{1} 2 \text { (Strauss) }
$$

a) $\mathrm{Na} \lambda u \theta \in i \quad n \quad y \cdot u_{x}+x \cdot u_{y}=0$ oro \mathbb{R}^{2}

$$
u(0, y)=e^{-y^{2}} \quad \forall y \in \mathbb{R}
$$

b) $\sum \epsilon$ nola neploxn tou \mathbb{R}^{2} npoosiopifetan n düon μ ovadikd;

Nüon: a) Xapakrŋpioukés

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{d x}{d s}=y(s) \\
\frac{d y}{d s}=x(s)
\end{array}\right\} \Rightarrow \frac{d y}{d x}=\frac{x}{y} \Leftrightarrow y y^{\prime}=x x^{\prime} \\
& \Leftrightarrow\left(y^{2}\right)^{\prime}=\left(x^{2}\right)^{\prime} \\
& \Leftrightarrow y^{2}-x^{2}=c, c \in \mathbb{R}
\end{aligned}
$$

Xapakenploukés civar ötes ol uneppodis $\mu \in$ aou μ nzwres us

$$
y=x, y=-x \text {. }
$$

－Eorw $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$
－Ar $\left|y_{0}\right| \geqslant\left|x_{0}\right|, ~ \theta \dot{c} \operatorname{cou} \mu \epsilon \quad c=y_{0}^{2}-x_{0}^{2} \geqslant 0$（ol raive s＇rácw orepbodis＇， $Y_{\text {no }} \dot{c}$ roupe ór $y_{0} \geqslant 0$
H $z(x)=u\left(x, \sqrt{x^{2}+c}\right)$ inavomolei inv：

$$
\left.\left.\begin{array}{rl}
z^{\prime}(x) & =u_{x}\left(x, \sqrt{x^{2}+c}\right)+\frac{\partial x}{2 / \sqrt{x^{2}+c}} u_{y}\left(x, \sqrt{x^{2}+c}\right) \\
& =\frac{\sqrt{x^{2}+c} \cdot u_{x}\left(x, \sqrt{x^{2}+c}\right)+x \cdot u_{y}\left(x, \sqrt{x^{2}+c}\right)}{\sqrt{x^{2}+c}=0} \\
\sqrt{x_{0}^{2}+c}
\end{array}\right]=u\left(x_{0}, y_{0}\right)=u(0, \sqrt{c})=e^{-(\sqrt{c})^{2}}=e^{-c}=e^{x_{0}^{2}-y_{0}^{2}}\right)
$$

－Ar $\left|y_{0}\right|<\left|x_{0}\right|$ סouneujoure ópola nal bpiocaupe óa： $u\left(x_{0}, y_{0}\right)=g\left(\sqrt{x_{0}^{2}-y_{0}^{2}}\right)$ ，inou $u(x, 0)=g(x)$
θ_{ϵ} coupe $c=y_{0}{ }^{2}-x_{0}{ }^{2}<0 \quad$（ $\delta E^{Z} \xi_{1 a}+$ aporepa untpleatss）

Taparnpaíhe ore：
1）$H \quad u(x, y)=e^{x^{2}-y^{2}}$ 它优 to noobinua oro \mathbb{R}^{2}
2）$H u(x, y)= \begin{cases}e^{x^{2}-y^{2}} & |x| \leq|y| \\ g\left(\sqrt{x^{2}-y^{2}}\right) & |x|>|y|\end{cases}$
入üre enions ro npobinnea，apkei va avrikel oro $C^{1}\left(\mathbb{R}^{2}\right)$ Oa mperier va loxü：$g(0)=1, g^{\prime}(0)=0$ kau $g c C^{1}(\mathbb{R})$

OPONOTIA
Mo入uбкikzes $a_{1}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ ，opi］oune $|a|=a_{1}+\ldots+a_{n}$

$$
\partial^{a} u=\frac{\partial^{a_{1}}}{\partial x_{1}^{a_{1}}} \cdot \ldots \cdot \frac{\partial^{a_{n}}}{\partial x_{n}^{a_{n}}} \cdot u=\frac{\partial^{|a|}}{\partial \partial_{x_{1}}^{a_{1}} \ldots \cdot \partial_{x_{n}}^{a_{n}}} \cdot u
$$

Mapajjujos $k-\operatorname{caj} \xi n s$ ens $u: U \rightarrow \mathbb{R}$ ，$U \subset \mathbb{R}^{n}$ avoixio $k=|a|$
 $F\left(x,\left(\partial_{u}^{a}\right) l a l \leqslant k\right)=0$ oeo u
$\Delta n \lambda a \delta n, F\left(x, u,\left(\frac{\partial u}{\partial x_{i_{1}}}\right)_{1 \leq i \leq u},\left(\frac{\partial^{2} u}{\partial x_{i}, \partial x_{i_{2}}}\right)_{1 \leq i_{1}, i_{2} \leq n},\left(\frac{\partial^{k} u}{\partial x_{i}, \partial x_{i_{+}}}\right)_{1 \leq i_{1}, i_{L} \leq n}\right)=0$ onou $F: U \times \mathbb{R} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n^{k}} \longrightarrow \mathbb{R}$ ouvapenon

$$
u_{t}+u_{x x}+u^{2}=0
$$

Kגaoky $\lambda \dot{c}$ on ens (1) $\lambda \dot{\epsilon} \mu \in \mathrm{ka} \theta \in$ ouvapenon $u: U \rightarrow \mathbb{R}$怆 us wiornres:

1) $u \in C^{k}(u), \delta n \lambda a \delta n$ ódes ol napajwjol $\tilde{j} \xi^{\prime} n$ w ws nar k fa rnv u va unapxouv kou va eivou ouvextis.
2) H u va kavonolei znv (1)

Euvopiakès ouvөrikes of èva 「c ∂u $\lambda e j \mu$ ouvorikes naivw

Ta kupiöeca tión ouvopıakuv ouvөnkùv:

- Dirichlet

Eivou rns roppris $u(x)=g(x) \quad \forall x \in \Gamma$ (2), onou g $\delta \in \delta o \mu \in \dot{v n}$-o) ouvapenon. H λ ion Givar pia $u: U \cup \Gamma \rightarrow \mathbb{R}$ now Eivou ouvexjis oro UuT kou Lkavonolei ris (1), (2)

- Neumann

Eivar ens ropфins $\frac{\partial u}{\partial n}(x)=h(x) \quad \forall x \in \Gamma$ (3), onou n zo käӨero Siaivuoua oron Γ
H duón tivol pia u: UU[$\rightarrow \mathbb{R}$ work U, ∇U eivou ouvExEis oro UuT, n u Ikavonoíi rnv (1) kau env \qquad

$$
F\left(x_{1}\left(\partial^{a} u\right)|a| \leq k\right)=0
$$

- Rodin
 $\left.(\partial u)^{a}\right) \mid a l \leq k$
$\Delta n \lambda a \delta \dot{n}$ eivae ens poopris $\sum_{|a| \leq k} C_{a}(x) \partial^{a} u(x)=f(x)$, Ca,f $\delta \in$ coueves
 napajcijous avcirepns eásns $\quad\left(\partial^{a} u\right)|a|=k$.
$\Delta n \lambda a \delta \dot{\eta}$, Eivou ens μ oppris $\sum_{|a|=k} C_{a}(x) \partial^{4} u(x)+g\left(\left(\left.\partial_{u}^{b}\right|_{|e| \leq k-1}, x\right)=0\right.$
(y) Execoiv jpapرikn', ar Eivou ens Hop anjs:

$$
\sum_{|a|=k} C_{a}\left(\left(\partial^{e} u| | c \mid \leq k-1, x\right) \partial^{a} u(x)+g\left(\left(\partial^{b} u\right)|b| \leq k-1, x\right)=0\right.
$$

(δ) Minipws un јparرikij, av E\}apeaizou $\mu \in$ en jpapرiko rpóno ano us mapajujous avcurepns tásns
n.x $u_{x}^{2}+u_{y}^{2}=1$

H $u x x+u_{y y}=u^{2}$ Eivou un jparر|ki adAa் óx| niniows un joa $\mu \mu \mathrm{ky}$

$$
E \equiv I \Sigma O \Sigma H \quad M E T A \Phi O P A \Sigma
$$

A $0 \mu 0 j \in v i n s$

$$
\begin{aligned}
& U_{t}+c U_{x}=0 \quad(x, t) \in \mathbb{R} x(0,+\infty) \\
& u(x, 0)=g(x) \quad \forall x \in \mathbb{R}
\end{aligned}
$$

$c \in \mathbb{R}$ ora $\theta \in p a \quad, \quad g \in C^{1}(\mathbb{B})$
Nưon $\mu \in$ xapakenpioukès

- Eow $(x(s), t(s), z(s)=u(x(s), t(s)))$ нia xapakenplouk η '

$$
\left.\begin{array}{l}
x^{\prime}(s)=c \Rightarrow x(s)=x_{0}+c s \\
t^{\prime}(s)=1 \Rightarrow t(s)=t_{0}+s
\end{array}\right\}
$$

$$
z(s)=u\left(x_{0}+c s, t_{0}+s\right)
$$

$$
z^{\prime}(s)=c \cdot u x+u t=0
$$

$$
\begin{aligned}
u\left(x_{0}, y_{0}\right)=z(0) & =z\left(-t_{0}\right)=u\left(x_{0}-c t_{0}, 0\right) \\
& =g\left(x_{0}-c t_{0}\right)
\end{aligned}
$$

 $H \quad u \in C^{1}(\mathbb{R} \times(0,+\infty)) \quad u \in C(\mathbb{R} \times(0,+\infty))$ Épw va Niow.

$$
\begin{aligned}
& u_{t}+c u_{x}=(-c) \cdot g^{\prime}(x-c t)+c \cdot g^{\prime}(x-c t)=0 \\
& u(x, 0)=g(x)
\end{aligned}
$$

IxONIO: Mia ouvapernon ens mopфris $g(x-c t)$ $\lambda \dot{\text { ejecou }}$ odevor küa Auro jlazi rn oujun $t=0$ סivel oujuiowno $g(x)$.
 g rou xpóvo t, θ a bpiokerou nàvw ano ro on μ tio
 inza c. (Exina 1) $\quad\left(x-c t=x_{0} \Rightarrow x=x_{0}+c t\right)$
Av $c>0$ to kija keviza ipos za $\delta \in \xi ̋ a$
Av $c<0$ to küro kiveizon npos z'aplorepà

(B) M_{n} o μ ojevins

$$
\begin{align*}
& U_{t}+C U_{x}=f(x, t) \text { fıa }(x, t) \in \mathbb{R} \times(0,+\infty) \tag{1}\\
& u(x, 0)=g(x)
\end{align*}
$$

$$
\begin{array}{lll}
V_{t}+c V_{x}=0, & (x, t)_{\epsilon} U & (2) \\
V(x, 0)=g(x), & W_{t}+c W_{x}=f(x, t),(x, t) \in U \\
& w(x, 0)=0, & x \in \mathbb{R}
\end{array}
$$

H $u=v+w$ tivou λ ion rou (1) jari:

$$
U_{t}+c U_{x}=V_{t}+c V_{x}+w_{t}+c W_{x}=0+f(x, t)=f(x, t)
$$

kol $u(x, 0)=v(x, 0)+w(x, 0)=g(x)+0=g(x)$
H dion (Movaठukj) चns (2) Givar η v $v(x, t)=g(x-c t)$

Aevépa 14/10/19
Mänua 4 :

$$
\begin{array}{ll}
u_{t}+c u_{x}=f(x, t), & (x, t) \in \mathbb{R} x(0, \infty) \\
u(x, 0)=g(x) & x \in \mathbb{R} \\
V_{t}+c V_{x}=0 & (2) \\
v(x, 0)=g(x) & w(x, 0)=0 \\
&
\end{array}
$$

$H \quad v+w$ eival $\lambda \dot{o n}$ ens (1)
Müon ens 3: Xapakenploukès

- Eozw (x(s), t(s), $\tau(s))$

$$
\begin{aligned}
& w^{\prime \prime}(x(s), t(s)) \\
& x(s)=c \quad \Rightarrow \quad x(s)=c s+x_{0} \quad, t>0 \\
& t^{\prime}(s)=1 \quad \Rightarrow \quad t(s)=s+t_{0} \\
& z^{\prime}(s)=w_{x} \cdot x^{\prime}(s)+w_{t} \cdot t^{\prime}(s)=c w_{t}+w_{t}=f(x(s), t(s)) \\
& =f\left(c s+x_{0}, s+t_{0}\right) \\
& \int_{-t_{0}}^{0} z^{\prime}(s) d s=\int_{-t_{0}}^{0} f\left(c s+x_{0}, s+t_{0}\right) d s \Rightarrow w\left(x_{0}, t_{0}\right)=z\left(-t_{0}\right)+ \\
& Z\left(-t_{0}\right)=w\left(x_{0}-t_{0} c, 0\right)=0 \\
& \Rightarrow w\left(x_{0}, t_{0}\right)=\int_{-t_{0}}^{0} f\left(c s+x_{0}, s+t_{0}\right) d s
\end{aligned}
$$

$r=s+t_{0} \quad$ (a $\lambda \lambda a \nLeftarrow \dot{\eta}$ $\left.\mu \in \tau a b \lambda n z n i s\right)$

$$
\Rightarrow w\left(x_{0}, t_{0}\right)=\int_{0}^{t_{0}} f\left(c\left(r-t_{0}\right)+x_{0}, r\right) d r
$$

Mion rou (3):

$$
w(x, t)=\int_{0}^{t} f(x-c(t-s), s) d s
$$

Apa, λ vion rns (1):

$$
u(x, t)=g(x-c t)+\int_{0}^{t} F(x-c(t-s), s) d s
$$

Mpoè $\lambda \in 0^{\prime}$ ens ϵ Kiowons:
 $\mu \epsilon$ raxúnza c npos ra $\delta \in \xi i a . ~ P i x v o u \mu \epsilon ~ x p \omega \mu a z o \mu \dot{\epsilon v o ~}$ uppo orov a flujo. Eozw $u(x, t)$ n oufrévrpwon ra yoou oro x oro xpovo t. Tia $x<y$ éxoufe:

$$
\begin{aligned}
& \frac{d}{d t} \int_{x}^{y} u(z, t) d z=c \cdot u(x, t)-c \cdot u(y, t) * \\
& =-c \int_{x}^{y} u x(z, t) d z \\
& \Rightarrow \int_{x}^{y}\left(u_{t}(z, t)+c \cdot u x(z, t)\right) d z=0 \\
& \Rightarrow u_{t}(x, t)+c \cdot u_{x}(x, t)=0
\end{aligned}
$$

Evaд入akuka
Ar $M(t)=\int_{x}^{y} u(z, t) d z$

$$
\begin{aligned}
& \text { Tra } t_{1}<t_{2} \\
& M\left(t_{2}\right)=M\left(t_{1}\right)+c \int_{t_{1}}^{t_{2}} u\left(x_{1}, t\right) d t-c \int_{t_{1}}^{t_{2}} u(y, t) d t
\end{aligned}
$$

Thapajwjifoupe ws mpos t_{2} kal naiprou μ :

$$
M^{\prime}\left(t_{2}\right)=c \cdot u\left(x, t_{2}\right)-c \cdot u\left(x, t_{2}\right)
$$

kal npokúneg ठntaסri n oxéon (*)

$$
A \sum K H \Sigma E \mid \Sigma
$$

1) Na $\quad v_{\theta \in i} n\left\{\begin{array}{l}u_{t}+c u_{x}+\beta u=f(x, t), \quad(x, t) \in \mathbb{R} \times(0, \infty) \\ u(x, 0)=g(x), \quad x \in \mathbb{R}\end{array}\right.$ onou $c \neq 0, \beta \in \mathbb{R}, g \in C^{1}(\mathbb{R})$

- Eorw $(x(s), t(s), z(s))$ xapakrnploukn now siépxezou ano to $\left(x_{0}, t_{0}\right) \in \mathbb{R} x(0, \infty) \quad z(s)=u(x(s), t(s))$

$$
\begin{aligned}
& x^{\prime}(s)=c \Rightarrow x(s)=c s+x_{0} \\
& t^{\prime}(s)=1 \Rightarrow t(s)=s+t_{0} \\
& z^{\prime}(s)+\beta z(s)=f(x(s), t(s)) \Rightarrow z^{\prime}(s)+\beta z(s)=f\left(c s+x_{0}, s+t_{0}\right) \\
& \Rightarrow\left(e^{\beta \cdot s} z(s)\right)^{\prime}=e^{\beta \cdot s} f\left(s c+x_{0}, s+t_{0}\right)
\end{aligned}
$$

odokanpiuvoupe ano - to Éws 0 ka nporúneec:

$$
\begin{aligned}
& \Rightarrow e^{0} \cdot z(0)-e^{-\beta \cdot t_{0}} z\left(-t_{0}\right)=\int_{-t_{0}}^{0} e^{\beta \cdot s} F\left(c s+x_{0}, s+t_{0}\right) d s \\
& r=s+t_{0} \\
& u\left(x_{0}, t_{0}\right)=e^{-\beta \cdot t_{0}} u\left(x_{0}-c t_{0}, 0\right)+\int_{0}^{\beta\left(r-t_{0}\right)} f\left(x_{0}+c\left(r-t_{0}\right), r\right) d r \\
& u\left(x_{0}, t_{0}\right)=e^{-\beta t_{0}} g\left(x_{0}-c t_{0}\right)+\int_{0}^{t_{0}} e^{-\beta\left(t_{0} \cdot s\right)} f\left(x_{0}-c\left(t_{0}-s\right), s\right) d s
\end{aligned}
$$

Mion fivar n :

$$
\begin{aligned}
& \text { Nion tivae } n: \\
& u(x, t)=e^{-\beta t} g(x-c t)+\int_{0}^{\tau} e^{-\beta(t-s)} f(x-c(t-s), s) d s \\
& G \text { TEDIEXG }
\end{aligned}
$$

GMepiext ral eqv orofern cal env un-orojeví

2）．Eorw to nobinua：$\left\{\begin{array}{lc}u_{t}+c u x=0 & (x, t) \in(0, \infty) \times(0, \infty) \\ u(x, 0)=f(x) & x \geqslant 0 \\ u(0, t)=g(t) & t \geqslant 0\end{array}\right.$
Me $F, g \in C^{1}(\mathbb{R}) \quad f(0)=g(0), c>0$
（a）Tía noles f, g exoure kגaolkn 入üon；Mota Eivar ouen；
（B）Mora xwpia ennpeáJovza anó us F, g ；

Mion：（Xapanznoı⿱一𫝀口iés）

$$
\left.\begin{array}{ll}
x^{\prime}(s)=c & \Rightarrow x(s)=c s+x_{0} \\
t^{\prime}(s)=1 & \Rightarrow t(s)=s+t_{0}
\end{array}\right\} \begin{aligned}
& x-x_{0}=c\left(t-t_{0}\right) \\
& t-t_{0}=\frac{1}{c}\left(x-x_{0}\right)
\end{aligned}
$$

$$
z^{\prime}(s)=0 \quad \Rightarrow \quad z(s)=A \quad, \forall s \in \mathbb{R}
$$

H xapakenpiotikn ario to（ x_{0}, t_{0} ） ouvavea rov aंSova x fra $s=-t_{0}$ ozo onutio $\left(x_{0}-c\right.$ to， 0$)$

－Ar $x_{0}-c t o \geqslant 0$ tó τ ：

$$
z(0)=z\left(-t_{0}\right) \Rightarrow u\left(x_{0}, t_{0}\right)=u\left(x_{0}-c t_{0}, 0\right)=f\left(x_{0}-c t_{0}\right)
$$

－Ar $x_{0}-c t_{0}<0$ zóre：

$$
z(0)=z\left(-\frac{x_{0}}{c}\right) \Rightarrow
$$

$$
s+\text { to }
$$

$\theta \in \lambda \omega: x_{0}+c s=0$

$$
u\left(x_{0}, t_{0}\right)=u\left(x_{0}+c \cdot\left(-\frac{x_{0}}{c}\right), t_{0}-\frac{x_{0}}{c}\right)
$$

$$
\Rightarrow s=-\frac{x_{0}}{c}
$$

$$
=u\left(0, t_{0}-\frac{x_{0}}{c}\right)=g\left(t_{0}-\frac{x_{0}}{c}\right)
$$

Apa，ar umápxe kdaolej̀ $\lambda \dot{\prime}$ ，noénel：

$$
u(x, t)=\left\{\begin{array}{l}
f(x-c t), \text { av } x \geq c t \\
g\left(t-\frac{x}{c}\right), \text { av } x \leqslant c t, \quad x, t \geq 0
\end{array}\right.
$$

Oa xpeiacoúpe env napardizw npozaon.
Mpocion: Av $F:[a, b] \rightarrow \mathbb{R}$ ourexris oro a, napafojiorun ozo (a, b) kas $\lim _{x \rightarrow a} f^{\prime}(x)=l \in \mathbb{R}$, ioze uncipxes $f^{\prime}(a)$ kae $f^{\prime}(a)=l$

H u eivon C^{\prime} oro $U,\{(x, t): x=c t\}$. Eivou ouvexn's oro \bar{U} fari $F(0)=g(0)$
(位Ga va sajuc en slaфopiolförnza)
H ouv $\theta \dot{j k} \eta$ ja ra Eiveu $\eta u \quad C^{1}$ oro U Eivou: $g^{\prime}(0)+c F^{\prime}(0)=0$ (as δ oú $\mu \mathrm{e}$ јаzi:)
Tia: $x<c t, u_{x}(x, t)=g^{\prime}\left(t-\frac{x}{c}\right)\left(-\frac{1}{c}\right)$
Tra $x \geqslant c t, \quad U_{x}(x, t)=f^{\prime}(x-c t)$
Av rapoupe x_{0}, to $_{0} \mu \in x_{0}=c t_{0}$, npénes:

$$
\begin{aligned}
& u_{x}\left(x_{0}^{-}, t_{0}\right)=u_{x}\left(x_{0}^{+}, t_{0}\right) \\
\Rightarrow & g^{\prime}(0)\left(-\frac{1}{c}\right)=f^{\prime}(0) \Rightarrow c \cdot f^{\prime}(0)+g^{\prime}(0)=0
\end{aligned}
$$

Opola ka jla env Ut.
Δ Iopowon ano nponjajuevo $\mu a ̈ n \mu a$ (aiocnon 7 -Strauss)

Inovn ka avajcala ouv Irikn Ha va sivar n dión mas kdaoukr:

Eixape bper:

$$
\begin{aligned}
& \text { Eixape bpe:: } \\
& u(x, y)= \begin{cases}f \sqrt{y^{2}-x^{2}} & |y| \geqslant|x| \\
g\left(\sqrt{x^{2}-y^{2}}\right) & |x|>|y|\end{cases}
\end{aligned}
$$

Euvorikn; wore $u \in C^{1}\left(\mathbb{R}^{2}\right): \quad g(0)=f(0)=1$

$$
\begin{aligned}
& g^{\prime}(0)=0 \\
& g^{\prime \prime}(0)=2
\end{aligned}
$$

(Mpėner n g "va acodoviei" env F 位pl en 2 "n napajfujo)
$E \equiv I \Sigma O \Sigma H$ KYMATO
Avin tivar $n \quad U_{t t}=c^{2} U_{x x}(1)(x, t) \in \mathbb{R}^{2}, c>0$
Mpózaon: H jevikn ens λ ión tivar n :

$$
u(x, t)=f(x+c t)+g(x-c t) \text { (2) , inou } f, g \in C^{2}(\mathbb{R})
$$

$A_{n 0 \delta} \varepsilon_{1} \xi_{\eta}$

- Ioxupiopos 1:

Kïe u ins ropфn's (2) tivar $\lambda \dot{0}$ n

$$
\left.\begin{array}{l}
u_{t t}=c^{2} f^{\prime \prime}(x+c t)+c^{2} g^{\prime \prime}(x-c t) \\
u_{x x}=f^{\prime \prime}(x+c t)+g^{\prime \prime}(x-c t)
\end{array}\right\} \Rightarrow u_{t t}=c^{2} u_{x x}
$$

kou Bépara $u \in C^{2}\left(\mathbb{R}^{2}\right)$

- Ioxupiofios 2:

H (1) јpoipczar $0=\left(\partial^{2} t-c^{2} \partial^{2} x\right) u=(\partial t-c \partial x)\left(\partial t+c \partial_{x}\right) u$
10s toónos: Eocw $v=(\partial t+c \partial x) u=u_{t}+c u x$ rote n (1) jiverou $\left(\partial_{t}-c \partial x\right) v=0$
(avin' tivar EEiowon Merapopa's, tha env onoia Feipape en jovien ${ }^{\text {joion }}$
Aurn èxel duơn (fevikin): $v(x, t)=h(x+c t), h \in C^{1}(\mathbb{R})$
Apa, $u_{t+c} u_{x}=h(x+c t) \quad$ (μn-opojern's $\left.\epsilon\right\}, \mu \in \tau a$ popís)

Terapen 16/10119
Männua 5 을

$$
u_{t t}-c^{2} u_{x x}
$$

$$
\begin{aligned}
& \left(\partial_{t}-c \partial_{x}\right)\left(\partial_{t}+c \partial_{x}\right) u=0 \\
& v=u_{t}+c u_{x} \\
& v_{t}-c v_{x}=0 \Rightarrow v(x, t)=h(x+c t) \quad \mu t \quad h \in C^{1}(\mathbb{R})
\end{aligned}
$$

- Apa, $u_{t}+c u_{x}=h(x+c t)$

$$
\begin{aligned}
& \left.\left[\begin{array}{l}
u_{t}+c u x=f(x, t) \\
u(x, 0)=g(x)
\end{array}\right\} \Rightarrow u(x, t)=g(x-c t)+\int_{0}^{t} f(x-c(t-s), s) d s\right] \\
& \Rightarrow u(x, t)=a(x-c t)+\int_{0}^{t} v(x-c(t-s), s) d s
\end{aligned}
$$

Tla koinolo a $\in C^{1}(\mathbb{R})$

$$
\begin{aligned}
& =a(x-c t)+\int_{0}^{t} h(x-c(t-s)+c s) d s \\
& r=x-c t+2 c s \quad \int_{h \in c_{2}^{2}}^{\text {Eivar } c_{2}^{2} \text { मori }} \\
& \stackrel{2}{\rightleftharpoons} a(x-c t)+\frac{1}{2 c} \int_{x-c t} h(r) d r \\
& =a(x-c t)-\frac{1}{2 c} \int_{0}^{x-c t} h(r) d r+\frac{1}{2 c} \int_{0}^{x} h(r) d r \\
& =f(x-c t)+g(x+c t) \\
& \text { - H a tivar } C^{2} \\
& \text { yai } a(x-c)=u(x, 1)
\end{aligned}
$$

2宝 tpónos: Me ajdajij ourzerajuèrwur
-íroupe $\bar{f}=x+c t$ na ja onolavojinore $A(x, t)$

$$
\eta=x-c t
$$

$\begin{aligned} & \text { Oecupoijut r rpv }\tilde{A}(\}, y)=A(x, t)=A\left(\frac{\zeta+n}{2}, \frac{\zeta-n}{2}\right) \\ & G \tilde{A}(x+c t, x-c t)\end{aligned}$

Tore $\quad \partial x A(x, t)=\partial_{\xi} \tilde{A}(\xi, \eta)-c \partial_{\eta} \tilde{A}(\xi, n)$

$$
\begin{align*}
\partial x & =\partial \xi+\partial \eta \quad \partial t-c \partial x=-2 c \partial \eta \\
\partial t & =c \partial \xi-c \partial_{\eta} \quad \Rightarrow \quad \partial_{t}+c \partial x=2 c \partial \xi
\end{align*}
$$

Apa.

$$
\begin{aligned}
0 & =\left(\partial_{t}-c \partial_{x}\right)\left(\partial_{t}+c \partial_{x}\right) u \\
& =-4 c^{2} \partial_{\eta} \partial_{j} \tilde{u}\left(\xi_{1} \eta\right)
\end{aligned}
$$

To apiotepó pìjos spa oe цia $\quad A(x, t)$ To $\left.\delta \in \xi_{i} \quad \sigma e n v, \tilde{A}(\}, \eta\right)$ nou $\mu \in \operatorname{a}$ 白roupe:
$\}=x+c t$
$\eta=x-c t$
$\Rightarrow \partial \eta \partial \xi \tilde{u}\left(\xi_{1} \eta\right)=0 \Rightarrow \partial \xi \tilde{u}(\xi, \eta)=\alpha(\xi), \alpha \in C^{1}(\mathbb{R})$

$$
\begin{aligned}
& \text { orecrine. } \\
& \Rightarrow \tilde{u}\left(j_{1}\right)-\tilde{u}(0, \eta)=\int_{0}^{\xi} a(r) d r \Rightarrow \tilde{u}(\xi, \eta)=\frac{\tilde{u}(0, \eta)}{l^{2} n_{g}}+\underbrace{\int_{0}^{\prime \prime}} a(r) d r
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow u(x, t)=u^{2}\left(\xi_{,}\right)=f(x+c t)+g(x-c t) \quad f(\xi)+g(y)
\end{aligned}
$$

Enaíj $\quad f+g=G$ roener $A+B=0$
Apa, $u(x, t)=f(x+c t)+g(x-c t)$

$$
\begin{aligned}
& =r(x+c t)+g(x-c t) \\
& =\frac{1}{2}(\varphi(x+c t)+\varphi(x-c t))+\frac{1}{2 c} \int_{x-c t}^{0} \psi(s) d s+\frac{1}{2 c} \int_{0}^{x+c t} \psi(s) d s \\
& =\frac{1}{2}(\varphi(x-c t)+\varphi(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x} \psi(s) d s
\end{aligned}
$$

Tinos d'Alembert

Teoloxn ϵ Gópenons evós (x, t)
Eivan io siaocqua $I_{x, t}=[x-c t, x+c t]$

Ieploxy enippoñs evos $\left(x^{*}, 0\right)$
Eivan ro xwpio:

$$
\begin{gathered}
D_{x^{*}}=\left\{(x, t): x^{*}-c t \leq x \leq x^{*}+c t\right\} \\
t \geqslant 0
\end{gathered}
$$

 empeijaur eqv $u(x, t)$ rovo fra $(x, t) \in D_{x *}$

To noobanرа apxikivr upiv (TAT)

$$
\begin{array}{ll}
u_{t t}=c^{2} u_{x x} & \text { oco } \mathbb{R} x(0, \infty) \\
u(x, 0)=\varphi(x), & \forall x \in \mathbb{R} \tag{1}\\
u_{t}(x, 0)=\psi(x), & \forall x \in \mathbb{R}
\end{array}
$$

Mooraon: Eorw ou $\varphi \in C^{2}(\mathbb{R}), \psi \in C^{1}(\mathbb{R})$. Tort vnapxte akoıbios ma גion rou (1) kou Siveral ano rov wino:

$$
\begin{equation*}
u(x, t)=\frac{1}{2}(\varphi(x-c t)+\varphi(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s \tag{2}
\end{equation*}
$$

 $\mu \epsilon f_{1} g \in C^{2}(\mathbb{R}) \mathrm{kal}$

$$
\begin{aligned}
& u(x, 0)=\frac{1}{2}(\varphi(x)+\varphi(x))=\varphi(x) \\
& u_{t}(x, 0)=\frac{1}{2}(-c \varphi(x)+c \varphi(x))+\frac{1}{2 c}(c \psi(x)+c \psi(x))=\psi(x)
\end{aligned}
$$

Eorw u $\mu i a$ à入入n λ uion Töt unapxouv $f, g \in C^{2}(\mathbb{R})$ wor ϵ :
$\left.\left.\begin{array}{c}u(x, t)=f(x+c t)+g(x-c t) \\ \text { rott } u_{t}(x, t)=c f^{\prime}(x+c t)-c g^{\prime}(x-c t)\end{array}\right\} \stackrel{t=0}{ } \begin{array}{ll} & f(x)+g(x)=\varphi(x) \\ & f^{\prime}(x)+g^{\prime}(x)=\frac{1}{c} \psi(x)\end{array}\right\} \Rightarrow$

$$
\left.\left.\begin{array}{l}
f^{\prime}+g^{\prime}=\varphi^{\prime} \\
f^{\prime}-g^{\prime}=\frac{1}{c} \psi
\end{array}\right\} \Rightarrow \begin{array}{l}
f^{\prime}=\frac{1}{2}\left(\varphi^{\prime}+\frac{1}{c} \psi\right) \\
g^{\prime}=\frac{1}{2}\left(\varphi^{\prime}-\frac{1}{c} \psi\right)
\end{array}\right\} \xrightarrow{c} \begin{aligned}
& f(x)=\frac{1}{2} \varphi(x)+\frac{1}{2 c} \int_{0}^{x} \psi(s) d s+A \\
& g(x)=\frac{1}{2} \varphi(x)-\frac{1}{2 c} \int_{0}^{x} \psi(s) d s+B
\end{aligned}
$$

H E\}icwon kuparos oin raraivewon yopóns!
 ora onptia $(a, 0),(b, 0)$ zevzwpèra
 oraon npepias kou ro xpovo $t=0$ rŋv agnivoupe $\epsilon \lambda \in \dot{v} \theta \in \rho \eta$

Forw $u(x, t)=\eta$ rerajuévn rou onptiou eqs x oporjs μE rerunfè̀v x rau xpovou t.
 - пnkous) каи raion T.

Moraon: H u kavonolei inv $u_{t t}=\frac{T}{p} u_{x x} \quad \forall t>0, \forall x \in(a, b)$
nal us $u(a, t)=u(b, t)=0$ hai us $u(a, t)=u(b, t)=0$

AnodG\}y: 'Eozw $x \in(a, b)$ коाганє to runifa rңs xopon's ozo $[x, x+\Delta x]$ кои éow $\theta^{\prime}(x)$ n jwvia nou oxnparifer n xop $\delta \dot{\eta}-\mu \epsilon$ zyr opiforra dieüluron ozo x zo xpoivo t. Tote $\tan \theta(x)=u_{x}(x, t)$
Δ ivaرn nou aoneizou oro rرinرa $[x, x+\Delta x]$ ins xoofins kara urikos rou karakópugou ájova

$$
\begin{aligned}
& T \sin \theta(x+\Delta x)-T \sin \theta(x) \simeq T(\tan \theta(x+\Delta x)-\tan \theta(x)) \\
= & T\left(u_{x}(x+\Delta x, t)-u_{x}(x, t)\right) \simeq T u_{x x}(x, t) \Delta_{x}
\end{aligned}
$$

H $\mu \dot{j}$ Ja autai tou rurifaros fivon $\rho \Delta x$

$$
\begin{aligned}
F=m \cdot j & \Rightarrow T U_{x x}(x, t) \Delta x=\rho \Delta x U_{t t}(x, t) \\
& \Rightarrow U_{t t}=\frac{T}{\rho} U_{x x}
\end{aligned}
$$

$\theta_{\text {eon }} \mathrm{u}$ raxurnea: u_{t} Enicaixuron: Utt

Evepjtra rns xoporis?

$$
\frac{1}{2} \rho \Delta x u^{2} t(x, t)
$$

 karaं $\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}-\Delta x=\Delta x\left(\sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}}-1\right)$

$$
\begin{aligned}
& =\left.\Delta x\left(\sqrt{1+u_{x}^{2}(x, t)}-1\right)\right|_{\sqrt{1+x^{2}} \simeq 1+\frac{1}{2} x^{2}} \\
& \simeq \Delta x \frac{1}{2} u_{x}^{2}(x, t)
\end{aligned}
$$

$$
T \frac{1}{2} u_{x}^{2}(x, t) \Delta x
$$

Apa, Δ vaןukŋ єrépfєa $=T \frac{1}{2} \int_{a}^{b} u^{2} x(x, t) d x$

Asurépa 21/10/19 Maìnua 6:

$$
\begin{aligned}
& u_{1 t}=c^{2} u_{x x} \quad \text { (1) } \\
& u(x, t)=F(x+c t)+g(x-c t) \quad \text { jevikj } \quad \text { aion }
\end{aligned}
$$

H (1) ue apxikes ouvorikes $u(x, 0)=\varphi(x)$ ixat дion:
Tia us $\varphi, \psi: G \in C^{2}(\mathbb{R}), \psi \in C^{1}(\mathbb{R}) \quad U_{t}(x, 0)=\psi(x)$

$$
u(x, t)=\frac{1}{2}(\varphi(x-c t)+\varphi(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

MAPATHPHZH T. onyquifi;
A_{v} al $4, \psi$ sival anduis runparika ovvexeis, iore o tinos D'Alebert èxe vönpa kou sive "aotevin avion" rns $U_{t t}=C^{2} U_{x x}$

- $A_{v} \iint_{\mathbb{R}^{2}}\left(u_{t t}-c^{2} u_{x x}\right) s(x, t) d x d t=0$ ióze $\iint_{\mathbb{R}^{2}\left(\mathbb{R}^{2}\right){ }^{2}} u\left(s t t-c^{2} s_{x x}\right) d x d t$ Kavope arocarincuarn rard piepy-

A工KHEH
Av φ, ψ negrerés ouvapriogs, tóze kal $\eta u(x, t)$ tival repiren ws npos $x \quad \forall t \in \mathbb{R}$

Dưon: $1^{\text {os }}$ tpoónos

$$
\begin{aligned}
& \text { Eow } t \in \mathbb{R}: \\
& u(-x, t)=\frac{1}{2}(\varphi(-x-c t)+\varphi(-x+c t))+\frac{1}{2 c} \int_{-x-c t}^{-x+c t} \\
& s=-y(s) d s \\
&=-\frac{1}{2}(\varphi(x+c t)+\varphi(x-c t))+\frac{1}{2 c} \int_{\varphi}^{x-c t} \psi(-y) d y \\
&=-\frac{1}{2}(\varphi(x+c t)+\varphi(x-c t))-\frac{1}{2 c} \int_{x-c t}^{x+c t}
\end{aligned} \psi(s) d s=-u(x, t) \quad .
$$

* Ar ol 4. द eiva cipues tóre $U(\pi, t)$ tival aipua *
$2^{\text {os }}$ épónos
Өizoupe $\quad a \cdot \mathbb{R}^{2} \rightarrow \mathbb{R} \quad \mu \epsilon \quad a(x, t)=u(x, t)+u(x, t)$
H a mavonolei env $\operatorname{att}(x, t)=u_{t t}(x, t)+u_{t t}(-x, t)$
kow apa $a_{t t}(x, t)=c^{2}\left(u_{x x}(x, t)+u_{x \times}\left(-x_{1} t\right)\right)=c^{2} \quad a_{x x}(x, t)$ $a(x, 0)=G_{p}(x)+G_{p}(-x)=0$ (agoi Q nepirzip)
$a_{t}(x, 0)=U_{t}(x, 0)+U_{t}(-x, 0)=\psi(x)+\psi(\cdot x)=0 \quad($ асоi $\psi \quad n \in \operatorname{cozi})$

Apa, $u(-x, t)=-u(x, t) \quad \forall x, t \in \mathbb{R}$
(Kupauknं ffiowon ornv nuieultia-Strauss §3.2) H KYMATIKH EEIIOIH ITHN HMIEYOEIA

Erow $\because=(0, \infty) \times(0, \infty)$
Iniape $v \in C(\overline{0}) \cap C^{2}(\underline{0})$
wore: $\quad V_{t t}=c^{2} U_{x x} \quad \forall(x, t) \in 0$
$V(x, 0)=Q(x) \quad \forall x \geqslant 0$
$V_{ \pm}(x, 0)=\psi(x) \quad \forall x \geqslant 0$
$V(0, t)=0 \quad \forall t \geqslant 0$
Yroóroupe ite $\varphi_{\varphi} \in C^{2}\left([0, \infty), \psi \in C^{\prime}([0, \infty)), \varphi_{\varphi}(0)=\psi(0)=0\right.$ $q^{\prime \prime}(0)=0$
 asen' η oir 9 rien okeqropaote va enerzetivoupe zu u az nepicti talo pia surajpruon f tivau sijapa 0 oro 0 av tival neplrzi)

EnEKzivayfe us $\varphi_{1} \psi \mu \in n \in p i z i o$ zpóno.
Andaoin Cprep $(x)=\left\{\begin{array}{l}\varphi(x), x \geqslant 0 \\ -\varphi(-x), x<0\end{array}\right.$

$$
\psi_{\text {ne }, ~}(x)= \begin{cases}\psi(x), & x \geqslant 0 \\ \psi(-x), & x<0\end{cases}
$$

H pate. Eivou $C^{2}(\mathbb{R})$
$\left[\right.$ Mpogarcis η Gose $\in C^{2}(\mathbb{R},\{0\})$. Tia to 0 η Ynfp. Givar ouvexyjs pari Gnep. $(0)=0$
$\Rightarrow \varphi_{\text {nep }}^{\prime}(0)$ vnapxt kai 10 viral $\mu_{\epsilon} \lim _{x \rightarrow 0} G_{\text {rep }}^{\prime}(x) \Rightarrow G_{\text {nep }} \in C^{1}(\mathbb{R})$

$$
\varphi^{\prime \prime} \cap \in \rho=\left\{\begin{array}{l}
\varphi_{\varphi}^{\prime \prime}(x), x \geqslant 0=\varphi_{p^{\prime \prime}}^{\prime \prime} \text { nep }\left(0^{+}\right)=\varphi^{\prime \prime}(0)=0 \\
-\varphi_{p}^{\prime \prime}(-x), x<0=\varphi^{\prime \prime} \cap \in \rho .\left(0^{-1}=-\varphi^{\prime \prime}(0)=0\right.
\end{array}\right.
$$

H $\psi_{n \in p} \in C^{1}(\mathbb{R})$. Eijoupa $\psi_{n \in p} \in C(\mathbb{R})$ jati $\psi(0)=0$ Eninieiov Unef $\in C^{3}(\mathbb{R})$ ópoia oncws jo eqve cpree.

Eorw $u \in C^{2}(\mathbb{R} \times[0, \infty))$ n avon rou noob \quad niuaros

$$
\begin{array}{ll}
u_{t t}=C^{2} u_{x x} \\
u(x, 0)=\text { prep. }(x) & \forall x \in \mathbb{R} \\
U_{t}(x, 0)=\psi_{n \in \rho}(x) & \forall x \in \mathbb{R}
\end{array}
$$

. Eorw $v:=u \mid 0 \quad \underline{o}=(0, \infty) \times(0, \infty)$
H v kavonolei zqv $V_{t t}=c^{2} V x x$ oro o $v \in C^{2}(0) \cap C^{1}(0)$, evis jia $x \geqslant 0$ exoupse:

$$
\begin{aligned}
& v(x, 0)=U(x, 0)=\varphi_{n \in \rho}(x)=\varphi(x) \\
& v_{t}(x, 0)=U_{+}(x, 0)=\psi_{n \in \rho}(x)=\psi(x)
\end{aligned}
$$

Apa, anoं rqv nponjoujevn η u $u(x, t)$ tivou nepirry ws nopos x. Apa, $u(0, t)=0$. 'Apa, $v(0, t)=0 \quad \forall t \geqslant 0$ 0 winos yo zqv v : $v(x, t)=\frac{1}{2}\left(\varphi_{0 \text { ce. }}(x-c t)+\varphi_{\text {onep. }}(x+c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s$
＊Aoknon 2.26 （Aगikaikos）
Iolo noobanua adà arzi fia $v(0, t)=0$ exoupe env $v \times(0, t)=0$
（Apra enèkzaon）
A£KHEH 3 （ $\$ 2.1$ Strauss）
 xopóǹs evós niavou ráons T，nukvórnzas p．Evas yì入入os kä日eron oro $3 \ell / 4 \quad(a<\ell(4)$
Toioo xpovo xptiàjerar fa va epraiote η siarapaxn ozov $\psi \dot{i} \lambda \lambda 0$ ；

MAPATHPHJEIइ TIA THN KYMATIKH EFILOSH ITHN HMIEY OEIA －Ar $x-c t \geqslant 0$ röre orov rino $(*)$ ，ónou Gncp．Ynep． bajJoupe φ, ψ
－Ar $x-c t<0$ tóre

$$
v(x, t)=\frac{1}{2}(\varphi(x+c t)-\varphi(c t-x))+\frac{1}{2 c} \int_{c t-x}^{x+c t} \psi(s) d s
$$

Tepiorn $\in\} a ̈ r y o n s$

Meploxin Enippoñs

Nuon ciornons 3
H puraronion $u(x, t)$ tou onpkicu x row xpovou t, (kavonoki en $\begin{aligned} U_{t} & =c^{2} U_{x x} \quad \forall x \in \mathbb{R} \\ u(x, 0) & =0 \quad \text { onov } c=\sqrt{\frac{I}{P}}\end{aligned}$

$$
\begin{aligned}
& U_{t}(x, 0)=A \cdot d\left|x-\frac{\rho}{2}\right| \leq a=\psi(x) \quad A \\
& H \quad u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
\end{aligned}
$$ Tla $x_{0}=\frac{3 l}{4}$ no10 \&ival to $\inf \{t>0: U(x, t) \neq 0\}$

H (1) inopti va jpagrei:

$$
u(x, t)=\frac{A}{2 c} \int_{x_{0}-c t}^{x_{0}+c t} 1_{\left(\frac{l}{2}-a, \frac{l}{2}+a\right)} \text { (s) ds Avió tiva, Otziré }
$$

av ral μ ivo av: $\quad x_{0}-c t<\frac{l}{2}+a \Leftrightarrow c t>-a+\frac{l}{4} \Leftrightarrow$

$$
t>\frac{1}{c}\left(\frac{l}{4}-a\right)
$$

Eגáxiotos xpóvos
AよKHよH 4 (($\$ 2.2$ Strauss) (o Strauss ruvexe yo c-1) Mia $u \in C^{2}\left(\mathbb{R}^{2}\right)$ (kavonolei eqv $U_{t t}=c^{2} U_{x x} \Longleftrightarrow$

$$
\begin{align*}
& \text { Mia } u \in C^{2}\left(\mathbb{R}^{2}\right) \text { (kavonolei cyv } u_{t t}=c u x x \Longleftrightarrow \\
& u(x+c h, t+k)+u(x-c h, t-k)=u(x+c k, t+h)+u(x-c k, t-h) \tag{1}\\
& \forall x, t, h, k \in \mathbb{R} \text { (1) }
\end{align*}
$$

Mion: " \Rightarrow " Ynapxouv $f, g \in C^{2}(\mathbb{R})$ wore:

$$
u(x, t)=f(x+c t)+g(x-c t)
$$

AvuraQiozoupe ornv (1) kas bienoupe or coxike

$$
\begin{aligned}
u(x+h, t+k)= & u(x, t)+u_{x}(x, t) h+u_{t}(x, t) k+\frac{1}{2} u_{x x}(x, t) h^{2} \\
& +\frac{1}{2} u_{t t}(x, t) k^{2}+u_{x t}(x, t) h k^{2}+R(h, k)
\end{aligned}
$$

$\mu \in \lim _{(h, k) \rightarrow 0} \frac{R(h, k)}{\|(h, k)\|}=0$

Terapr 23110119
Mäqua 7:
Euvextia cioknons ane nponjaúrevo fienpea.

$$
u_{t t}=c^{2} u_{x x} \Leftrightarrow u(x+c h, t+k)+u(x-c h, t-k)=u(x+c k, t+h)+u(x-c k, t-h)
$$

" \Leftarrow " "cuprnua Taylor:

$$
\begin{aligned}
& \Leftrightarrow \quad \theta \text { cuipnua Taylor: } \\
& u(x+h, t+k)=u(x, t)+u_{x}(x, t) \cdot h+u_{t}(x, t) k+\frac{1}{2} U_{x x}(x, t) h^{2} \\
& \quad+\frac{1}{2} U_{t t}(x, t) k^{2}+u_{x t} h k+R(h, k) \\
& \frac{R(h, k)}{\|(h, k)\|^{2}}=\frac{R(h, k)}{h^{2}+k^{2}} \xrightarrow{(h, k) \rightarrow 0} 0
\end{aligned}
$$

θ éroup $k=0$

$$
\begin{aligned}
& c^{2} U_{x x}-u_{t t}=\frac{1}{h^{2}}(-R(c h, 0)-R(0, h)-R(0,-h)) \xrightarrow{h \rightarrow 0} 0 \\
& c^{2} u_{x x} k=0
\end{aligned}
$$

Opiopos? 'Eorw $I \subseteq \mathbb{R}$ sigiornua. Mia $f: I \rightarrow \mathbb{R}$ néferou rرnpauka ouvexnis av $\forall M>0, n \quad F \mid I \cap[-M, M]$ eival acuvexris of nenepaofèvo naritos onutiluv kau ro onpeia aouvèxelas, ra nasuplkà opla uncifxouv kou tival nenepaçieva (to islo kau ora àkpa zou I av avea tival on μ Eia rou \mathbb{R})
$\leadsto B_{1} b \lambda i o$ Strauss ore rapapen μ a
$\triangle \mid A \Phi O P I Z H$ KATO AחO TO ONOKПHPOMA
(rapajwojos ens $\int_{\mathbb{R}} f(x, t) d x$ ws npos t)
IPOTASH: Eozw $0=\mathbb{R} \times(\gamma, \delta)$ kou $f: थ \rightarrow \mathbb{R}$ wore:
(1) $\forall t_{\epsilon}\left(j_{1} \delta\right) ~ \eta f(0, t)$ Eiva $\mu \in \tau p \eta j o n \eta$ (n, x zunuazuá ouvexn's)
(2) $\int_{\mathbb{R}}|f(x, t)| d x<\infty \quad \forall t \in(\gamma, \delta)$
（3）$H \quad d_{t} F(x, t)$ uncipxt $\forall(x, t) \in O$
（4） $\int_{\mathbb{R}} \sup _{t \in(y, \delta)}\left|\partial_{t} F(x, t)\right| d x<\infty$
Toite $\eta \quad I(t)=\int_{\mathbb{R}} f(x, t) d x$ tival napajwjiorpen oro (γ, δ) kou

$$
I^{\prime}(t)=\int_{\mathbb{R}} \partial_{t} f(x, t) d x
$$

Eorw $t \in(\gamma, \delta) . \theta \dot{\epsilon}$ zount $h_{0}=(t-\gamma) \wedge(\delta-t),($, Tia $h=0$ 位 $|h|<h o ~ E x o u \mu \epsilon:$

$$
\begin{aligned}
& \text { lia } h=0 \text { 他 }|h|<h o \in \in \cup \mu \in: ~ \\
& G g_{h}(x) \\
& \frac{1}{h}(I(t+h)-I(t))=\int_{\mathbb{R}} \frac{1}{h}(f(x, t+h)-f(x, t)) d x=\int_{\mathbb{R}} g_{h}(x) d x .
\end{aligned}
$$

Exoype：$\cdot \lim _{h \rightarrow 0} g_{h}(x)=\partial_{t} f(x, t)$
（aró θ éjpnqa yèons ryeis）

$$
\text { - } \lg _{h}(x)\left|\leqslant \sup _{s \in(f, \delta)}\right| \partial_{t} f(x, s) \mid=: g(x) \quad \forall h \in\left(-h_{0}, h_{0}\right)
$$

hou $\cdot \int_{\mathbb{R}} g(x) d x<\infty$
Ano 位pnua kuplapxnpievns ovjkaions： $\lim _{h \rightarrow 0} \int_{\mathbb{R}} g_{h}(x) d x \longrightarrow \int_{\mathbb{R}} \operatorname{lig}_{h \rightarrow 0}(x) d x$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \int_{\mathbb{R}} g_{h}(x) d x & \longrightarrow \int_{\mathbb{R}} \operatorname{lig}_{h \rightarrow 0}(x) d x \\
& =\int_{\mathbb{R}} \partial_{t} f(x, t) d x
\end{aligned}
$$

MAPATHPHEH
 To bibdio Jnrater $\int_{\mathbb{R}} a_{t} f(x, s) d x$ ouvexis ws npos s avri fa（4））
（Aev käva Oeipnua rupiapxnpévns oujedions oro b，bdio）

$$
\begin{aligned}
\int_{\mathbb{R}} f(x, t) d x & =\int_{\mathbb{R}} \int_{a}^{t} \partial_{t} f(x, s) d s d x+\int_{\mathbb{R}} f(x, a) d x \\
& =\int_{a}^{t} \int_{\mathbb{R}} \partial_{t} f(x, s) d x d s+\int_{\mathbb{R}} f(x, a) d x
\end{aligned}
$$

Пap à $\delta \in L \gamma \mu a \quad \theta a \delta \in i\} o \cup \mu \epsilon$ ó $\quad A=\int_{\infty}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}$
Anoठ $\left.\epsilon_{1}\right\}_{\eta}: I(t)=\int_{0}^{\infty} \frac{1}{1+x^{2}} e^{-t^{2}\left(1+x^{2}\right)} d x$

$$
\begin{aligned}
& I(0)=\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\tan ^{-1}(a)-\tan ^{-1}(0)=\frac{\pi}{2} \\
& I(\infty)=0
\end{aligned}
$$

Eqaphij $\frac{\infty}{\infty}$ rou napancive $\theta \in i$ pnpea cal aipa Exoupe:

$$
\begin{aligned}
I^{\prime}(t) & =\int_{0}^{\infty} \frac{1}{1+x^{2}} e^{-t^{2}}\left(1+x^{2}\right)\left(-2 t\left(1+x^{2}\right)\right) d x \\
& =-2 t e^{-t^{2}} \int_{0}^{\infty} e^{-x^{2} t^{2}} d x \stackrel{x t=y}{=}-2 t e^{-t^{2}} \int_{0}^{\infty} e^{-y^{2}} d y \\
& =-2 e^{-t^{2}} \cdot A
\end{aligned}
$$

$\Delta n \lambda a \delta \dot{n} \quad I^{\prime}(t)=-2 e^{-t^{2}} A$
o iokinpüroupt en oxèon averj kou Éxouple:

$$
I(\infty)-I(0)=-2 A \int_{0}^{\infty} e^{-t^{2}} d t=-2 A^{2} \Rightarrow \frac{n}{4}=A^{2} \Rightarrow A=\frac{1}{2} \sqrt{\pi}
$$

Kavovas Leibniz
Eorw $I \subset \mathbb{R} \delta$ ioicnua kou $\gamma, \delta \in \mathbb{R} \mu \in \quad \gamma<\delta$.
$f:[\gamma, \delta] \times I \longrightarrow \mathbb{R}$ kou $\alpha, \beta: I \longrightarrow[\gamma, \delta]$ wore:

- $a, \beta \in C^{1}(I)$
- $f(-, t)$ ouvexris $\forall t$
- $\partial_{t} F(x, t)$ vnapx $\quad \forall(x, t) \in[\gamma, \delta] \times I$
- $\int_{\gamma}^{\delta} \sup _{t \in I}\left|\partial_{t} f(x, t)\right| d x<\infty$

Tóre $\frac{d}{d t} \int_{a(t)}^{b(t)} f(x, t) d t=f(b(t), t) b^{\prime}(t)-f(a(t), t) a^{\prime}(t)+\int_{a(t)}^{b(t)} \partial_{t} f(x, t) d x$

AnodGun
Eorw $H(u, v, t)=\int_{u}^{v} f(x, t) d x \quad d u H=-f(u, t)$
Tórt $I(t)=H(a(t), b(t), t)$

$$
\begin{aligned}
I^{\prime}(t) & =\partial u H() a^{\prime}(t)+\partial v H() b^{\prime}(t)+\partial_{t} H(a(t), b(t), t) \\
& =-f(a(t), t) a^{\prime}(t)+F(b(t), t) b^{\prime}(t)+\int_{a(t)}^{b(t)} \partial t f(x, t) d x
\end{aligned}
$$

H evéofeia oeqv \in Giowon kuparos

- Eorw $u \in C^{2}(\mathbb{R} \times(0, \infty)) \cap C^{\prime}(\mathbb{R} \times[0, \infty))$ nou lkavonolei us:

$$
\begin{array}{ll}
u_{t t}=c^{2} U_{x x} & \text { ya }(x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0)=\varphi(x) & \forall x \in \mathbb{R} \\
u_{+}(x, 0)=\psi(x) & \forall x \in \mathbb{R}
\end{array}
$$

$\varphi \in C^{2}(\mathbb{R}), \psi \in C^{\prime}(\mathbb{R})$
$Y_{\text {no }}$ éroupe on $\exists R>0$ wore $\varphi_{\varphi}(x)=\psi(x)=0 \quad \forall x$ ue $|x| \geqslant R$, $\forall t \geqslant 0$ opijoure:

$$
E(t)=\frac{1}{2} \int_{\mathbb{R}}\left(u_{t}^{2}(x, t)+c^{2} u_{x}^{2}(x, t)\right) d x
$$

(To olokगripw μ eivou ka入à oplouèvo jazi $U_{t}(x, t)=U_{x}(x, t)$ ја

$$
|x| \geqslant R+c t
$$

kai Ut, Ux ouvextis

MPOTAXH: H Evépfeca δ iarnptizau, $\delta n \lambda a \delta n \quad E(t)=E(0) \quad \forall t \geqslant 0$
Aחod $\left.\epsilon_{1}\right\}_{n}:$ Eorw $f(x, t)=\frac{1}{2}\left(u_{t}^{2}(x, t)+c^{2} u_{x}^{2}(x, t)\right)$
I. f firou ouvexijs kau $f(x, t)=0$ fa $|x| \geq R+c t$

Euko入a biénoupe du E(t) Eivou ourexins

$$
\partial_{t} f(x, t)=u_{t} u_{t t}+c^{2} u_{x} u_{x t}
$$

「ia $\delta \epsilon \delta o \mu \epsilon$ to to $\geqslant 0$ naiprou $\epsilon \epsilon>0$ wore to- $\epsilon>0$. $H / \partial_{t} f \mid$ tivas чpaдні்v oгo $\left[-R-c\left(t_{0}+\epsilon\right), R+c\left(t_{0}+\epsilon\right)\right] \times\left[t_{0}-\epsilon, t_{0}+\epsilon\right]$ kou єorw M. iva Gpajpua ens.
-Apa, $\quad \int_{\mathbb{R}} \sup _{t \in\left[t_{0}-t, t_{0}+\epsilon\right)}|\hat{\partial t} f(x, t)| d x \leqslant M \cdot 2\left(R+c\left(t_{0}+\epsilon\right)\right)<\infty$
$A p a, \quad E^{\prime}(t)=\int_{\mathbb{R}} \partial_{t} f(x, t) d x=\int_{-R-c t}^{R+c t} \partial t f(x, t) d x$
Etoxos firar va raive tur napajuyo ws npos $x \xrightarrow{\text { va fives noporjupos ws npos } t}$ $\partial_{t} f(x, t)=u_{t} c^{2} u_{x x}+c^{2} u_{x} u_{x t}=c^{2}\left(u_{x} u_{t}\right) x$
Orore, $E^{\prime}(t)=c^{2}\left[U_{x} U_{t}\right]_{-R-c t}^{R+c t}=0$, juari:

$$
U_{x}=U_{t}=0 \text { ora onptia }(-R-c t, t),(t, R+c t)
$$

* It evépfra pas bon θ a va anoठeikvúaule θ ewpripara 100 rnzas.
$A \Sigma K H \sum H:$ Eocw $f: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ woce f, f_{x} va tivau ovvextis. Töz zo MAT (npöbinpa apxikcir upeiv):

$$
\begin{aligned}
& u_{t}+c u_{x}=f(x, t), \quad(x, t) \in \mathbb{R} \times(0, \infty) \\
& u(x, 0)=g(x), \quad x \in \mathbb{R} \\
& \text { ovasicn } \lambda \dot{0}, \quad \text { रोv: } u(x, t)=\left(\int_{0}^{t} f(x-c(t-s), s) d s\right)+g(x-c t)
\end{aligned}
$$

$\dot{E} \times \in$ mova δ
$(g c(1(\mathbb{R}))$
Nün: $H \circledast$ Eival $\lambda \dot{0}$ n frati:

- Eivar cuvexris oro $\mathbb{R}_{x}[0, \infty)$
$-u(x, 0)=g(x)$
$u_{x}=g_{G_{\text {ourexis }}^{\prime}}^{\prime}(x-c t)+\int_{0}^{t} f_{x}(x-c(t-s), s) d s$

$$
u_{t}=-c g^{\prime}(x-c t)+f(x-c(t-t), t)+\int_{0}^{t} f_{x}(x-c(t-s), s)(-c) d s
$$

$$
=-c g^{\prime}(x-c t)+f(x, t)-c \int_{0}^{t} f x(x-c(t-s), s) d s
$$

Mpoovérw kazá rédn kan npocünzel:

$$
u_{t}+c u_{x}=f(x, t)
$$

Teraper 30110/19
Mäŋna 8:

$$
\begin{aligned}
& u_{t}+c u_{x}=f(x, t) \quad 0=\mathbb{R} \times(0, \infty) \\
& u(x, 0)=0 \\
& f, \partial_{x} f \in c(\bar{\theta}) \\
& \Rightarrow u(x, t)=\int_{0}^{t} f(x-c(t-s), s) d s
\end{aligned}
$$

? H MH OMOTENHE EEILOIH KYMATOL

$$
\underline{0}=\mathbb{R} \times(0, \infty)
$$

Zneaje $u \in C^{2}(\underline{0}) \cap C^{\prime}(\underline{0})$ wore:

$$
\left.\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=f(x, t) & (x, t) \in 0 \tag{1}\\
u(x, 0)=\varphi(x) & x \in \mathbb{R} \\
u_{t}(x, 0)=\psi(x) & x \in \mathbb{R}
\end{array}\right\}
$$

onou $\varphi \in C^{2}(\mathbb{R}), \psi \in C^{\prime}(\mathbb{R}) \quad f, \partial \times f \in C(\overline{\underline{\sigma}})$
Hoozaon: To TAT (1) èxel Movaठikn $\lambda \dot{\sigma} \eta \eta_{x+c t}$ rv.
(2) $u(x, t)=\frac{1}{2}[\varphi(x-c t)+\varphi(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t+} \psi(s) d s+\frac{1}{2 c} \int_{0}^{1} \int_{x-c(t-r)}^{x+c(t-z)} f(y, r) d y d z$
 diots rote $u=u_{1}-u_{2}$ inavonolei ris:

$$
\begin{aligned}
& U_{t t}-c^{2} U_{x x}=0 \\
& U(x, 0)=U_{1}(x, 0)-U_{2}(x, 0)=\varphi(x)-\varphi(x)=0 \\
& U_{t}(x, 0)=\ldots=0
\end{aligned}
$$

Aven exer movasivn $\lambda \dot{0}$ on eqv $u=0$ (orov wino d'Alembert bajau. μE onou $\varphi, \psi=0$)
(θ è गouple rupa va סoüpe rus tpowinte a zinos)
Aphei va jưoupe to (1) orav $\varphi=\psi=0$, jazi a 入ोims गuvoupe

$$
\left\{\begin{array} { l }
{ V _ { t t } - c ^ { 2 } V _ { x x } = f (x , t) } \\
{ V (x , 0) = 0 } \\
{ V _ { t } (x , 0) = 0 }
\end{array} \left\{\begin{array}{l}
w_{t t}-c^{2} \omega_{x x}=0 \\
w(x, 0)=\varphi(x) \\
w_{t}(x, 0)=\psi(x)
\end{array}\right.\right.
$$

GAro pas sive ro

$$
u=v+w
$$

Nuen $\mu \in$ avajwjn oenv \in \}iowon $\mu \in z a d o p a s: ~$

$$
(\partial t-c \partial x)(\partial t+c \partial x) u(x, t)=f(x, t)
$$

Eorw $v=u_{t}+c u x \quad \tau \dot{\sigma} \epsilon$:

$$
\begin{aligned}
& v_{t}-c v_{x}=f(x, t) \\
& v(x, 0)=u_{t}(x, 0)+c\left(u_{x}(x, 0)=0\right.
\end{aligned}
$$

kou exoupe eninnėov ou $f, \partial_{x} f \in C(\underline{\overline{0}})$ apa:

$$
v(x, t)=\int_{0}^{t} f(x+c(t-s), s) d s
$$

Apa $u_{t}+c u_{x}=v(x, t)$ (npente eqi ra zoerdipayte ize

$$
\begin{gather*}
u(x, 0)=0 \\
\Rightarrow u(x, t)=\int_{0}^{t} v^{1}(x-c(t-\tau), \tau) d \tau \tag{0}
\end{gather*}
$$ $v(x, t) \in C(\overline{\overline{0}})$ кae $\left.V_{x}(x,+) \in C(\underline{\overline{0}})\right)$

$\begin{array}{ll}\text { A } \lambda \lambda a j \dot{\eta} \text { rezab入nziv : } x-c t+2 c \tau-c s=y & \tau=(y+c r-x+c t) \frac{1}{2 c} \\ & s=r\end{array}$

Tpirwvo efoprnons ra rnv
tgiow nenparos
Bpioroupe env larwbiavy ja zo Sinio o jokinipwua

$$
\left|\frac{\partial(\tau, s)}{\partial(y, r)}\right|=\left|\begin{array}{cc}
1 / 2 c & 1 / 2 \\
0 & 1
\end{array}\right|=\frac{1}{2 c}
$$

Onoze m - jivezau:

$$
u(x, t)=\int_{0}^{t} \int_{x-c(t-r)}^{\frac{x+c(t-r)}{f(y, r)} \frac{1}{2 c} d y d r \quad(\text { Eidikn qєpiqzaon да } \varphi=\psi=0) .}
$$

H apxy Duhamel
Ito (1) vnotcioupe ón $\varphi=\psi=0$
Eorw $t>0, \delta \in \delta o \mu \in v o$
$\forall \tau \in[0, t]$ Өewpojuє to xwpio $0_{\tau}=\mathbb{R} x(\tau, \infty)$ kal \underline{o}_{τ} то TAT:

$$
\begin{array}{ll}
W_{s s}(x, s)=c^{2} W_{x x}(x, s) & (x, s) \in O_{\tau} \\
W(x, \tau)=0 & \forall x \in \mathbb{R} \\
W_{s}(x, \tau)=f(x, \tau) & \forall x \in \mathbb{R}
\end{array}
$$

(tl apxin ra xpora tival n-xpovicy oufuiz z.

Eozw $w(\tau ; x, s)$ n $\lambda \dot{0} \sigma_{\eta} \quad\left((x, s) \in \overline{\underline{\sigma}}_{\tau}\right)$
Toite η u ano rip (2) fpoiqerau:

$$
u(x, t)=\int_{0}^{t} w(\tau ; x, t) d \tau \int^{x+c(t-\tau)}
$$

Teajpare, $\eta \quad w(\tau ; x, t)=\frac{1}{2 c} \int_{x-c(t-\tau)}^{x+c(t-\tau)} f(y, \tau) d y$
As סoijet jati η (3) Múvel to (1) (To jrwpiju in tival tal anjoi

$$
\begin{aligned}
& u(x, 0)=0 \\
& u_{t}(x, t)=w(t ; x, t)+\int_{0}^{t} w_{t}(\tau ; x, t)^{\text {rockcip } w_{t}} d \tau=\int_{0}^{w} w_{t}(\tau ; x, t) d \tau \\
& u_{t}(x, 0)=w(0 ; x, 0)=0
\end{aligned}
$$

(Apa cal oi δ vo apxires ouvOrikes (kavonoloùvial)

$$
\begin{aligned}
U_{t t} & =W_{t}(t ; x, t)+\int_{0}^{t} W_{t t}(\tau ; x, t) d \tau \\
& =f(x, t)+c^{2} \int_{0}^{t} W_{x x}(\tau ; x, t) d \tau \\
& =f(x, t)+c^{2} U_{x x}
\end{aligned}
$$

H apxn Dutiamel aenv EGiowon μ reaфopas
Eiбope ou: $\quad u_{t}+c u_{x}=f(x, t)$

$$
u(x, 0)=0 \quad f, \partial_{x} F \in C(\bar{o})
$$

Toite: $u(x, t)=\int_{0}^{t} \frac{f(x-c(t-s), s) d s}{u(s ; x, t)}$

H $u(s ; x, t)$ juvel to : $U_{t}+C U_{x}=0$ oro $\mathbb{R} x(s, \infty)$

$$
u(x, s)=f(x, s)
$$

 av: 1) Exte Jion^{2} (inap ξ_{n})

3) $\mu 1 k p \dot{\eta} \mu \in r a b o \lambda \eta$ ous ouvopiakés ouv $\theta \eta k \in s$ npoka $\lambda \in i$

 oro \mathbb{R}, єiva ka入ios zono θ er rquèvo.
$-Y_{\text {nap }} \xi_{\eta}$,
Moradikoznzar
Evoza'tga
Tia $h: \mathbb{R} x[0, \infty) \rightarrow \mathbb{R} \theta \dot{\epsilon}$ zoupt : $\|h\|_{\tau}=\sup _{x \in \mathbb{R}}|h(x, t)|$

Tia $k: \mathbb{R} \rightarrow \mathbb{R} \quad\|k\|=\sup _{x \in \mathbb{R}}|k(x)|$
Eorw $u^{(1)}, u^{(2)} \lambda \dot{v}{ }^{(2)}$ zwv:

$$
\begin{array}{ll}
\left.u^{(i)}\right) t-c^{2} u_{x x}^{(i)}=f_{i}(x, t) \\
u^{(i)}(x, 0)=\varphi_{i}(x) & , x \in \mathbb{R} \\
u_{t}^{(i)}(x, 0)=\psi_{i}(x) & , x \in \mathbb{R}
\end{array}
$$

Tort:

$$
U_{1}(x, t)=\frac{1}{2}\left[\varphi_{1}(x-c t)+\varphi_{1}(x+c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{1}(y) d y+\frac{1}{2 c} \int_{0}^{t} \int_{\underset{x}{x+c(t-\tau)}}^{f_{1}(y, r) d y d r}
$$

Avriozolxa ja u_{2}.

Tla $T>0 \quad \delta \in \delta o \mu \dot{\mu} v o$:

$$
\begin{aligned}
& \left\|u_{1}-U_{2}\right\| T \leqslant \frac{1}{2}\left\|\varphi_{1}-G_{t}\right\|+\frac{1}{2}\left\|\varphi_{1}-G_{-2}\right\|+\frac{1}{2 c} \cdot 2 c T\left\|\psi_{1}-\psi_{2}\right\|+ \\
& \begin{array}{l}
+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-r)}^{x+c(t-r)}\left\|f_{1}-F_{2}\right\|_{T} d y d \tau \quad 2 c \\
\left\|G_{1}-G_{2}\right\|+T\left\|\psi_{1}-\psi_{1}-\psi_{2}\right\|+\frac{1}{2 c}\left\|F_{1}-F_{2}\right\|_{T}=\left(\frac{1}{2} 2 c T \cdot T\right)
\end{array} \\
& =\frac{\left\|\varphi_{1}-C_{2}\right\|}{\perp}\left\|\frac{T}{\perp}\right\| \psi_{1}-\psi_{2}\left\|+\frac{T^{2}}{2}\right\| F_{1}-F_{2} \|_{T}
\end{aligned}
$$

Terapin 6/11/19
Mä $\eta_{\eta \mu a} 9$ 응
H μn opojevris ©Giowon orqv nرlevetia
str) $u_{t t}=c^{2} u_{x x}+f(x, t) \quad, \quad(x, t) \in O=(0, \infty) \times(0, \infty)$

$$
\left.\begin{array}{ll}
u(x, 0)=\varphi(x) & x>0 \tag{1}\\
u_{t}(x, 0)=\psi(x) & , \quad x>0 \\
u(0, t)=0 & t>0
\end{array}\right\}
$$

onou $\varphi \in C^{2}([0, \infty))$, $\psi \in C^{1}([0, \infty))$ kow $\varphi(0)=\psi(0)=0$ kal $\varphi^{\prime \prime}(0)=0$ $f, \partial \times f \in C((0, \infty) \times[0, \infty)) \quad, f(0, t)=0 \quad \forall t>0$
Na bpe $\theta \in i \quad n \quad$ u...
\ion: Enekreivoupe us $\dot{\varphi}, \psi, f(, t) \forall t>0$ of $\pi \in \rho$ rrés oro \mathbb{R}

$$
\left.\begin{array}{ll}
\bar{u}_{t t}=c^{2} \bar{u}_{x x}+f_{n \in \rho .}(x, t) \\
\bar{u}^{(x, 0)}=\varphi_{n \in \rho} .(x) & , x \in \mathbb{R} \\
\bar{u}_{t}(x, 0)=\psi_{n \in \rho .}(x) & , x \in \mathbb{R}
\end{array}\right\}(2)
$$

Exoupe ozl: Q nep $\in C^{2}(\mathbb{R}) \stackrel{\text { soos }}{\leftrightarrows}$ SEs nponjai μ evn aoenon, yati coxüe auro!)

$\psi_{\text {rep }} \in \mathbb{C}^{\prime}(\mathbb{R}) \quad\left(\right.$ Hari; $\rightarrow \psi_{n}(-x)=-\psi(x)$

$$
\begin{aligned}
& \psi_{n}(-x)=-\psi(x) \\
&-\psi_{n}^{\prime}(-x)=\psi^{\prime}(x) \stackrel{x^{\prime}=0}{\Rightarrow} \psi_{n}^{\prime}\left(0^{-}\right)=\psi^{\prime}(0+1 \\
&=\psi_{n}^{\prime}\left(0^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{u}(x, t)=\frac{1}{2}\left(\varphi_{\text {ncc }}(x-c t)+\varphi_{n+\rho}(x+c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{n \epsilon} \cdot(s) d s \\
& +\frac{1}{2 c} \int_{0}^{x+c(t-\tau)} \int_{x-c(t-\tau)} f(y, \tau) d y d \tau
\end{aligned}
$$

Өंrou $\mu \in u=\bar{u}([0, \infty) \times[0, \infty))$
H u düvel to npobanua (1)
Aprei va $\delta \dot{\text { E }}$ Joupt rep $u(0, t)=0 \quad \forall t>0 \quad$ (ol a a $\lambda \epsilon \epsilon$ ouvorics s oxúouv!)

Scanned by CamScanner
$x^{42} /$

$$
\begin{array}{ll}
\underline{o}=(0, \infty) x(0, \infty), & (x, t) \in 0 \\
u_{t t}=c^{2} u x x, \\
u(x, 0)=\varphi(x), & x>0 \\
u_{t}(x, 0)=\psi(x), & x>0 \\
u(0, t)=h(t), & t>0
\end{array}
$$

onou $\varphi, h \in C^{2}([0, \infty)), \psi \in C^{1}([0, \infty))$

$$
h^{\prime}(0)=\varphi(0), h^{\prime}(0)=\psi(0), h^{\prime \prime}(0)=c^{2} \varphi^{\prime \prime}(0)
$$

Na bpetei juion $u \in C^{2}(\underline{0}) \cap C^{1}(\underline{0})$
10s tponos. θ eroupe $v(x, t)=u(x, t)-h(t)$
rore: $\quad V_{t t}+h^{\prime \prime}(t)=c^{2} V_{x x}$
$V_{t t}-c^{2} V_{x x}=-h^{\prime \prime}(t) \Rightarrow \operatorname{Kara} \varphi \in p a$ va rnv
Euvorikes кoive un orojevi.

$$
\begin{aligned}
v(x, 0) & =u(x, 0)-h(0) \\
& =\varphi(x)-h(0) \\
& =\varphi(x)-\varphi(0) \\
& =\hat{\varphi}(x) \\
v_{t}(x, 0) & =u_{t}(x, 0)-h^{\prime}(0) \\
& =\psi(x)-h^{\prime}(0) \\
& =\hat{\psi}(x)
\end{aligned}
$$

Tla $x>0$ npėnel: $\quad f(x)+g(x)=\varphi(x)$

$$
\begin{aligned}
& c f^{\prime}(x)-c \cdot g^{\prime \prime}(x)=\psi(x) \\
& \left.\left.\begin{array}{rl}
\Rightarrow f^{\prime}+g^{\prime}=\varphi^{\prime} \\
f^{\prime}-g^{\prime}=\frac{1}{c} \psi^{\prime}
\end{array}\right\} \Rightarrow \begin{array}{l}
f^{\prime}=\frac{1}{2}\left(\varphi^{\prime}+\frac{1}{c} \psi^{\prime}\right) \\
g^{\prime}=\frac{1}{2}\left(\varphi^{\prime}-\frac{1}{c} \psi^{\prime}\right)
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left\{\begin{array}{l}
f(x)=\frac{1}{2} \varphi(x)+\frac{1}{2 c} \int_{0}^{x} \psi(s) d s+A \\
g(x)=\frac{1}{2} \varphi(x)-\frac{1}{2 c} \int_{0}^{x} \psi(s) d s+B
\end{array}\right.
\end{aligned}
$$

H $\quad f+g=\varphi \quad$ Sivel $\quad A+B=0$
Tia $t>0: u(0, t)=h(t) \Rightarrow f(c t)+g(-c t)=h(t)$

$$
\stackrel{j^{\alpha} \quad x>0}{\Longrightarrow} g(-x)=h\left(\frac{x}{c}\right)-f(x)
$$

- Av $x \geqslant c t$ тó $\quad u(x, t)=\frac{1}{2}(\varphi(x-c t)+\varphi(x+c t))+\frac{1}{2 c} \int_{\text {xwpio }}^{x+c t} \underset{x}{x+c t} \psi(s) d s$
- Av $x<c t$ tórs $u(x, t)=f(x+c t)+g(x-c t)$
$\rightarrow_{\text {xupio (II) }}$

$$
\begin{aligned}
& =f(x+c t)-f(c t-x)+h\left(\frac{c t-x}{c t}\right) \\
& =\frac{1}{2}(\varphi(x+c t)-\varphi(c t-x))+\frac{1}{2 c} \int_{c t-x} \psi(s) d s+h\left(t-\frac{x}{c}\right)
\end{aligned}
$$

Oedouts v.ठ.0 our $u \in C^{2}(0) \cap C^{1}(\Xi)$
Mapampoite ou $u(0, t)=h(t)$
Pia ro ou $u \in C(0) \rightarrow \sum_{\text {tnv }} x=c t$ kaw $\left(x_{0}, t_{0}\right) \ell_{2} x_{0}=c t_{0}$

$$
\begin{aligned}
& \rightarrow r_{1 a} x<c l \operatorname{ka}(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\
& \text { ine } u(x, t) \rightarrow \frac{1}{2}\left(\varphi\left(2 x_{0}\right)-\varphi(0)\right)+\frac{1}{2 c} \int_{0}^{2 x_{0}} \psi(s) d s+h(0) \\
& \rightarrow \text { Fin } x>C 1 \quad \text { kai }\left(x_{1}^{\prime}, t\right)-0\left(x_{0}, t_{0}\right) \\
& \text { Tirs } u(x, t) \rightarrow \frac{1}{2}\left(\varphi(0)+\varphi\left(\frac{1}{2 x_{0}}\right)\right)+\frac{1}{2 c} \int_{0}^{2 x_{0}} \psi(s) d s
\end{aligned}
$$

Ta nápanaivo siven $16 a \Longleftrightarrow \varphi(0)=h(0)$
 $\Gamma_{1 a}$ roior $u \in C^{2}($ e): Ofciús v

Acence 13 Strauss $(\operatorname{Cos} 83)$

$$
\begin{array}{ll}
u_{t 1}=c^{2} u_{\lambda x} & , x>0, t>0 \\
u(x, 0)=x & \\
u_{t}(x, 0)=0 & \\
u(0,1)=t^{2} & 1>0
\end{array}
$$

へug
EEmpoifz zo $V(x, 1)=U(x, t)-t^{2}$

$$
\begin{aligned}
& V_{t t}=c^{2} V_{x x}-2 \\
& V(x, 0)=x \\
& V_{t}(x, 0)=0 \\
& V(0, t)=0
\end{aligned}
$$

Kaiw nepiezin Enizerac- n onoia Eivas abwgyins....
Tedikà bpiscw.

$$
\begin{aligned}
& u \in C([0, \infty) \times[0, \infty)) \\
& u_{1}=\left\{\begin{array}{cc}
2\left(t-\frac{x}{C}\right) \\
0 & \text { sulgis }, \quad u_{x}=\{
\end{array}\right.
\end{aligned}
$$

$$
o_{w_{x}}
$$

$$
U_{t t}=\left\{\begin{array}{l}
2 \\
0
\end{array} \text { arovisis } \delta \lambda u \in c^{2}\right.
$$

- Asenar 2.35 (Aliraces)
$\theta_{\text {ewpoite to M.A.T } \quad U_{t t}=c^{2} U_{x x} \quad(x, t) \in(0, l)_{x}(0, \infty) \quad l>0}$

$$
\begin{aligned}
& U(x, 0)=\varphi(x) \\
& u_{1}(x, 0)=\psi(x) \\
& U(0, t)=U \times(e, t)=0
\end{aligned}
$$

a) N.S.0 ges ro noti fia dúa

b) Aivor owOincs Guis φ, ψ worr va unapxer duan $u \in c^{2}(\underline{O}) \cap c^{1}(\underline{\underline{0}})$ kan Sw'ons. Hia avanapáaraas uns duas.

へüan
a) EGuw $V_{1}, V_{2} 2$ dügs. Tone $n u=V_{1}-V_{2}$ dives ro

$$
\begin{gathered}
U_{t t}=c^{2} U_{x x} \\
U(x, 0)=0 \\
U_{t}(x, 0)=0 \\
U(0, t)=U_{x}(l, t)=0
\end{gathered}
$$

O.ס.0 $u \equiv 0$

Өrwpöfz ruv $E[0, \infty) \rightarrow \mathbb{R})_{\varepsilon} E(t)=\frac{1}{2} \int_{0}^{\ell}\left(u_{t}^{2}(x, t)+c^{2} u_{x}^{2}(x, t)\right) d x$

$$
\begin{gathered}
E(0)=\frac{1}{2} \int_{0}^{l}\left(u_{t}^{2} \frac{\left.(x, 0)+c^{2} u_{x}^{2}(x, 0)\right) d x}{\frac{d}{d}}=0\right. \\
0 \quad 0 \text { Enद्यो: } u(x, 0)=0
\end{gathered}
$$

$$
E^{\prime}(t)=\int_{0}^{l}\left(u_{t} u_{t}+c^{2} u_{x} u_{x t}\right) d x=c^{2} \int_{0}^{l}\left(u_{t} u_{x x}+u_{x} u_{x t}\right) d x
$$

$$
=c^{2} \int_{0}\left(u_{t} u_{x}\right)_{x} d x
$$

$$
=c^{2}\left(u_{t}(l, t) \prod_{0}^{11} u_{x}(l, t)-\underset{\sim}{u}(0, t) u_{x}(0, t)\right)=0
$$

$\left.\begin{array}{c}\text { Enutisus : } E(t): \operatorname{Ga}_{\text {ip }} \dot{n} \\ E(0)=0\end{array}\right\} \in(t)=0, \quad \forall t \geqslant 0$

$$
\Rightarrow u_{t}(x, t)=u_{x}(x, t)=0, \forall(x, t) \in 0
$$

$\Rightarrow \nabla u=0 \quad 6100 \Rightarrow u=\widetilde{c}\left(0, D_{2 p}\right)$ ano 0

$$
\varphi_{\varepsilon n}=\varphi(l-(x-l))=\varphi(2 l-x), x \in[l, 2 l]
$$

- Kävorte nepizin erizkiaca ano $[-2 l, 2 l]$ Ke renzpu to 0
- Kanoer neprofici enizzac- \$e nepiojo $4 l$

Deurépa 11/11/19
Mäөйa 10%
H EGiowon θ cquoimzas/Siaxuons oro \mathbb{R}

$$
\begin{array}{ll}
U_{t}=k U_{x x} & \text { fla }(x, t) \in \mathbb{R} x(0, \infty)=0 \tag{1}\\
u(x, 0)=\varphi(x) & \forall x \in \mathbb{R}
\end{array}
$$

Znzape ue $C^{2:}:(0) \cap C(\overline{0})$ nou (kavonolfi us (1), (2)

$$
\partial x^{i} \partial t^{j} \quad i \leq 2, j \leq 1
$$

TIAPATHPHZEVZ

1) Av η u цkavonolei rqv (1) ióre onolárinore napajwjos rns, nov avjinel oro $C^{2, n}(\underline{O})$, inv lkavonolit
n.x п Ux, napajwjifoufe eqve (1) ws ipos x.

$$
u_{t x}=k u_{x x x} \Rightarrow\left(u_{x}\right)_{t}=k\left(U_{x}\right)_{x x}
$$

2) Av η u kavonolei znv (1) röt $\forall a \in \mathbb{R} \eta$ u(ax, a $2 t) \forall(x, t)$ enions znv Lkavonolei

$$
u(x, t) \rightarrow \varphi
$$

$$
\left.\begin{array}{l}
V_{t}=a^{2} U_{t}\left(a x, a^{2} t\right)=a^{2} k U_{x x}\left(a x, a^{2} t\right) \\
V_{x}=a u_{x}\left(a x, a^{2} t\right) \\
V_{x x}=a^{2} U_{x x}\left(a x, a^{2} t\right)
\end{array}\right\}=k U_{x x}
$$

$$
u\left(a x, a^{2} t\right) \longrightarrow \varphi
$$

$$
\varphi(x)=1 \quad x>0
$$

3) To u ouvriөus єкфpajel: (a) In Өєopokpacia ozo onutio x, rov xpovo t
(b) en oujkevzowon plas ovoias of èva ujpo (oro onpeiox rov xpovot)
la in λ ion ins (1) unopouje va Exaupe:

$$
u\left(a x, a^{2} t\right)=u(x, t) \quad \forall a, x \in \mathbb{R} \quad \forall t>0
$$

Av val, röt foa $a=\frac{1}{\sqrt{t}}, \theta a$ èxoufe:

$$
u(x, t)=u\left(\frac{x}{\sqrt{t}}, 1\right)
$$

Avajncoúpt dion ins ropфnंs: $\quad Q(x, t)=g\left(\frac{x}{\sqrt{t}}\right)$
Eorw $p=\frac{x}{\sqrt{t}}$:

$$
\begin{array}{ll}
Q_{t}(x, t)=g^{\prime}(p) \times\left(-\frac{1}{2}\right) t^{-3 / 2} \\
Q_{x x}(x, t)=g^{\prime \prime}(p) \frac{1}{t}
\end{array} \quad \begin{aligned}
& p=\frac{x}{\sqrt{t}} \Rightarrow x=p \sqrt{t} \\
& \frac{p}{2 t} g^{\prime \prime}(p)-\frac{k}{t} g^{\prime}(p)
\end{aligned}
$$

$A_{p a}, 0=Q_{t}-k Q_{x x}=-\frac{1}{2 t^{3 / 2}} \times g^{\prime}(p)-\frac{k}{t} g^{\prime \prime}(p)$

$$
=-\frac{k}{t}\left(g^{\prime \prime}(p)+\frac{x}{2 k \sqrt{t}} g^{\prime}(p)\right)
$$

$$
=-\frac{k}{t}\left(g^{\prime \prime}(p)+\frac{p}{2 k} g^{\prime}(p)\right)
$$

$$
\begin{aligned}
& g^{\prime \prime}(p)+\frac{p}{2 k} g^{\prime}(p)=0 \Rightarrow\left(e^{p^{p / 4 k}} g^{\prime}(p)\right)^{\prime}=0 \\
& \Rightarrow g^{\prime}(p)=C_{1} \cdot e^{-\frac{p^{2}}{4 k}} \\
& g(p)=C_{1} \int_{0}^{p} e^{\frac{-s^{2}}{4 k}} d s+C_{2} \Rightarrow Q(x, t)=C_{1} \int_{0}^{\frac{x}{\sqrt{t}}} e^{-\frac{s^{2}}{4 k}} d s+C_{2} \\
& \text { Aró iqu raparionon 1) , } \eta Q_{x} \text { ukavon }
\end{aligned}
$$

Aro env raparionon 1), ηQ_{x} ukavonolei inv (1)
Enion;

$$
Q_{x}(x, t)=C_{1} \cdot \frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4 k t}}
$$

Eninejoupe $C_{1}=\frac{1}{\sqrt{4 \mathrm{kn}}}$
Qeroupe $s(x, t)=\frac{1}{\sqrt{4 k \pi t}} e^{-x^{2} / 4 k t}, x \in \mathbb{R}, t>0$

Isiornzes rqs $s(x, t)$
(i) $\forall t>0 \quad \eta \quad x \longmapsto S(x, t)$ tivon η Tukvónza plas $N(0,2 k t)$ 'Apa, ext oдокдnipwиa 1.
(ii) $S_{E} C^{\infty}(\mathbb{R} \times(0, \infty))$
(iii) $S_{t}=k S_{x x}$
(iv) $t \delta>0 \quad \lim _{t \rightarrow 0^{+}} \int_{|x|>\delta} s(x, t) d x=0$

ATOXEI\}?
(i) Aewpia
(ii) \checkmark
(iii) Ioxie frazi: $S=Q x$ ja каzà $\lambda \lambda_{n} \lambda \quad C_{1}$ kal Q_{x} ikavonolí znv (1) $x^{2} / 4$ tt
(iv) $\int_{|x|>\delta} \frac{1}{\sqrt{4 k \pi t}} e^{-x^{2} / 4 k t} d x=$

$$
\begin{array}{r}
\sum_{i=a_{+}}^{\infty} a_{i} \longrightarrow l-S_{n}
\end{array}
$$

Oєїрпиа
$E_{\text {orw }}$ O $=\mathbb{R} \times(0, \infty)$ kas $\varphi \in C(\mathbb{R})$ иe $|G(x)| \leq M, \forall x \in \mathbb{R}, M<\infty$ ordo. érount:

$$
\begin{equation*}
u(x, t)=\int_{\mathbb{R}} s(x-y, t) G(y) d y \tag{4}
\end{equation*}
$$

oxuc ou:
) $u \in C^{\infty}(0)$ kou $\frac{\partial^{k+x}}{\partial_{x}^{k} \partial t^{x}} u=\int \frac{\partial^{k+x}}{\partial x^{k} \partial t^{x}}(s(x-y, t)) \varphi(y) d y$

$$
\begin{aligned}
& u_{x}=k u_{x \times} \text { (1) } \\
& u(x, 0)=c_{6}(x) \\
& s(x, t)=\frac{1}{\sqrt{4 k \pi t}} e^{-x^{2} / 4 k t}
\end{aligned}
$$

$$
\frac{u_{t}=k u_{x x} \quad \forall(x, t) \in 0}{\lim _{\substack{x \rightarrow x_{0} \\ t \rightarrow 0^{+}}} u(x, t)=\varphi(x), \forall x \in \mathbb{R}}
$$

(2) Exozio: Opijovras rnv u oro 0 oinus ornv (4) kal $\mu \in$ xprion uns $u(x, 0)=$ Exoupe on $\eta \quad \varphi \in C(\bar{\sigma})$

Anio $\delta \in\}_{n}$:
H u tivou kanai oplबpèvn flari ro o Dok λ ripupea ornv (4) oujkaiver anchürcus.

$$
\int_{\mathbb{R}}|s(x-y, t) \varphi(y)| d y \leq M \int_{\mathbb{R}} S(y-x, t) d y \stackrel{z=y-x}{=} M \int_{\mathbb{R}} s(z, t) d z=M<\infty
$$

$\theta \delta_{0} \quad U_{t}(x, t)=\int_{\mathbb{R}} \frac{\partial}{\partial t}(S(x-y, t))_{\varphi}(y) d y$
Eorw $\left(x_{0}, t_{0}\right)_{\epsilon}$ o. Eni $\dot{\epsilon}$ joupet $\epsilon>0$ wore to $^{\text {of }} \epsilon>0$
立roupe:

$$
I=\left(t_{0}-\epsilon, t_{0}+\epsilon\right), f: \mathbb{R} \cdot \hat{x} \rightarrow \mathbb{R} \mu \epsilon f(y, t)=S\left(x_{0}-y, t\right) \varphi(y)
$$

$$
\begin{aligned}
& J(t)=\int_{\mathbb{R}} f(x, t) d \\
& \text { (i) } f(\cdot, t) \quad \mu \in \tau p r i o \\
& \text { (ii) } \int 1 f(x, t) d x<\infty \\
& \text { (iii) } \partial_{t} f(x, t)
\end{aligned}
$$

(iii) $\partial_{t} f(x, t)$ uncip $x \in 1 \quad \forall t \in I, \forall x \in \mathbb{R}$

$$
\text { (iv) } \int_{R} \sup _{t \in I}\left|\partial_{t} f(x, t)\right| d x<\infty
$$

Ta (i), (ii), (iii) Eivou evrà \}G.
Tha to (iv): òt $f(x, t)=\varphi(x)\left(-\frac{1}{2 t}+\frac{(x-y)^{2}}{4 k t^{2}}\right) S(x-y, t)$

$$
\begin{aligned}
\sup _{t \in I}\left|\partial_{t} f(y, t)\right| & \left.\leqslant M\left(\frac{1}{2\left(t_{0}-\epsilon\right)}+\frac{(x-y)^{2}}{4 k\left(t_{0} \cdot \epsilon\right)^{2}}\right) \frac{1}{\sqrt{4 k t^{2}}}\right)^{\rho(x-y} e^{-t} e^{-\frac{(x-y)^{2}}{4 k\left(t_{0}+\epsilon\right)}} \\
& =g(y)
\end{aligned}
$$

$I_{\text {oxue }} \quad \int_{\mathbb{R}} g(y) d y<\infty$
-Apa to kpirnipio jia to $J^{\prime}(t)$ Eqap $\mu 0$ Jercu.
(b) Anc to (a) Exoupt:

$$
u_{t}-k u_{x x}=\int\left(\frac{\hat{\partial}}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}\right) s(x-y, t) \varphi(y) d y=0
$$

yazi $k \frac{\partial^{2}}{\partial x^{2}} s(x-y, t)=k S_{x x}(x-y, t)=S_{t}(x-y, t)$

$$
=\frac{\partial}{\partial t}(s(x-y, t))
$$

(8) $u(x, t)=\int_{\mathbb{R}} s(x-y, t) \varphi(y) d y$

$$
\frac{\lim _{\substack{x \rightarrow x_{0} \\ t \rightarrow 0^{+}}} u\left(x_{1} t\right)=\varphi\left(x_{0}\right)}{x_{0}}
$$

Eorw $X_{0 \in \mathbb{R}}$ kои $\epsilon>0, \exists \delta>0$ wort

$$
\left|x-x_{0}\right|<\delta \Rightarrow\left|\varphi(x)-\varphi\left(x_{0}\right)\right|<\epsilon
$$

Av $\left.\left|x-x_{0}\right|<\frac{\delta}{2} \tau \dot{\tau} \epsilon \in\left|u(x, t)-\varphi\left(x_{0}\right)\right|=1 \int_{\mathbb{R}} s(x-y, t)\left(\varphi(y)-\varphi\left(x_{0}\right)\right) d y\right)$

$$
\begin{aligned}
& 2=\left|\int_{\left|y-x_{0}\right|<\delta}+\int_{\left|y-x_{0}\right| \geqslant \delta}\right| \leqslant \epsilon \int_{\left|y-x_{0}\right|<\delta} s(x-y, t) d y+2 M \int_{\left|y-x_{0}\right| \geqslant \delta} s(x-y, t) d y \\
& \delta \leq\left|y-x_{0}\right| \leq|y-x|+\left|x-x_{0}\right|<|y-x|+\frac{\delta}{2} \leqslant \varepsilon+2 M \int_{|y-x|>\delta} s(x-y, t) d y=\epsilon+2 M \int_{1} s(z, t) d z \\
& \Rightarrow|y-x|>\frac{\delta}{2}
\end{aligned}
$$

$I \delta^{\prime}>0$ wort $t \in\left(0, \delta^{\prime}\right) \Rightarrow 2 M \int_{|z|>\delta} S(z, t) d z<\epsilon$

$\left.\begin{array}{ll}-A p a, & \left|x-x_{0}\right|<\delta \\ t \in\left(0, \delta^{\prime}\right)\end{array}\right\} \Rightarrow\left|u(x, t)-\varphi\left(x_{0}\right)\right|<2 \epsilon$

Asuripa 18/11/19
Mänua 11:
E jiowon θ equirnzas

$$
\begin{align*}
& U_{t}=k U_{x x}, \mathbb{R}_{x}(0,+\infty) \quad k>0 \rightarrow \Delta_{E r} \text { Exet revadien' גion } \\
& u(x, 0)=\phi(x), \quad x \in \mathbb{R} \\
& u(x, t)=\int_{\mathbb{R}} \phi(y) S(x-y, t) d y \quad \begin{aligned}
& t>0 \\
& -x^{2}
\end{aligned} \\
& \text { Mia auon uns givar } \eta \text { ** } \\
& \mu \in s(x, t)=\frac{1}{\sqrt{4 k_{n} t}} e \\
& \lim _{x \rightarrow x_{0}} u(x, t)=\phi\left(x_{0}\right) \quad \text { (vnotéraupe on } n \text { ф tivon ouvexis aro } x_{0} \text {) } \\
& t \rightarrow 0^{+}
\end{align*}
$$

MAPATHPHEEIL

1) Av η Q tivou anतios фpajpèvn kal $\mu \epsilon r o j o u \mu \eta$ (nx kard rpinuara ouvernjs) rote η. (x) ikavonolit inv $U_{t}=k U_{x x}$ oro $\mathbb{R} x(0, \omega)$ kou $\eta \lim _{x \rightarrow x_{0}} u(x, t)=\phi\left(x_{0}\right)$ ioxut ora onpeia x_{0} ouvéxtias ins ϕ.
2) Tia ora $\theta \in \rho \dot{0} \quad t>0$ η u rqs * Gival C^{∞} ws mpos x av kal η a μ nopti va tival andius фрајfièv η kou μ erpjorun

Avio Sev coxuer oeqv efiowon kujaros
H u teive va jive oraltpì ka θ is $t \longrightarrow \infty$
n.x av $U_{x x}\left(x_{0}, t_{0}\right)<0$ rort $U_{t}\left(x_{0}, t_{0}\right)<0$. Ta onneia kovza oro to Al ricouv oro to ${ }^{+}$
3) Medio enipponis evos $x_{0} \in \mathbb{R}$. Ynotéraupe ón ϕ ourexis $000 x_{0}$.
 $\Delta \eta \lambda a \delta \dot{n}$ éxoupe antipn raxiznza sidiowons, n.x $\quad \phi(x)=\Lambda_{|x| k 1}$ zöze $u(x, t)>0 \quad \forall x \in \mathbb{R} \quad \forall t>0$
Evii orqv Efiowon kujazos η raxienza tiva $c, n \in n \in p a \sigma \mu e ̀ m$.
4) Ention $s(x-y, t) \geqslant 0$ kal $\int s(x-y, t) d y=1$ Exaupe ou:

$$
\left.\begin{array}{l}
-M \leq \phi(y) \leq M \\
\forall y \in \mathbb{R}
\end{array}\right\} \Rightarrow-M \leq u(x, t) \leq M \quad \forall x, t
$$

$$
\begin{aligned}
& \left\{u_{t}=k u_{x x}\right. \\
& l_{u}(x, 0)=\phi(x)
\end{aligned}
$$

MAPALOTH THE EEI工OLHS OEPMOTHTAS

- Eorw $u(x, t)=\eta$ 日eproxpacia oro x rov xpóvo t.

Maipvoupe $\alpha<\beta$ av θ aipera.

H $\mu \in \tau a \beta o \lambda \eta_{b}$ rns ws npos to xpóvo Eivole:

$$
\frac{d}{d t} c \int_{a}^{b} u(x, t) d x-c \int_{a}^{b} u_{t}(x, t) d x
$$

NOHOS $\triangle I A T H P H D H \Sigma ~ T H \Sigma ~ E N E P T E L A \Sigma ~$
$\frac{d I_{t}=G o p o n}{d t}$ Evépjtas oro a kar

$$
=-\lambda u_{x}(a, t)+\lambda u_{x}(\beta, t)
$$

Nopos Fourier $\quad(\lambda>0)$

$$
\Rightarrow \int_{a}^{\beta} c\left(u_{t}-\lambda u_{x x} u_{a}^{\beta} d x=0 \quad \forall a<\beta \Rightarrow c u_{t}=\lambda u_{x x} \quad \forall x, t\right) d x
$$

$\underline{O}=(0, \infty) \times(0, \infty) \longrightarrow\left\{f: \underline{0} \rightarrow \mathbb{R}: f, \partial_{x} f, \partial_{x x} f, \partial_{f} f\right.$ auvexeis oro $\left.\because\right\}$
Znroipe $V \in C(\underline{\underline{\sigma}}) \cap C^{2,1}(\underline{O})$ kol V_{x} ouvexis oro $[0, \infty) \times(0, \infty)$ nou va lkavonolei ra $\epsilon \xi_{n i s: ~}^{\text {ra }}$ $G x=0, t>0$

$$
\begin{array}{ll}
V_{t}=k V_{x x}, & \sigma r_{0} 0 \\
V(x, 0)=\phi(x), & \forall x \geqslant 0 \\
V_{x}(0, t)=0, & \forall t>0
\end{array}
$$

\$ ourexins
our θ jik N Neumann

$$
\text { Gap. }(x)= \begin{cases}\varphi(x), & x \geqslant 0 \\ \varphi(-x), & x<0\end{cases}
$$

Coer $\in C(\mathbb{R})$ kou фpajuèvo
To провдпиа $\quad \tilde{V}_{t}=k \tilde{V}_{x x}, \quad(x, t) \in \mathbb{R} \times(0, \infty)$

$$
\tilde{V}(x, 0)=\varphi_{\text {are }}(x), \quad \forall x \in \mathbb{R}
$$

$\dot{\epsilon} x \in \lambda \dot{\sigma} \sigma_{n}$ env $\tilde{v}(x, t)= \begin{cases}\int_{\mathbb{R}} C_{\text {ape }}(y) s(x-y, t) d y, t>0, x \in \mathbb{R} \\ C_{\text {apu }}(x) & t=0, x \in \mathbb{R}\end{cases}$
-ízoupe $\quad v=\tilde{v} \mid \stackrel{\Xi}{\underline{v}}\left(\tau_{0, \infty}\right) \times(0, \infty)$
H $V \in\left(\infty(\underline{0})\right.$ aqoú $\widetilde{V}_{\in} C^{\infty}(\mathbb{R} \times(0, \infty))$ apa V_{t} tivas owex η^{\prime} s oco $[0, \infty) \times(0, \infty)$

Enions, $v \in C($ (̄)
$V_{t}=k V_{x x}$ oro ○ aqoú $\tilde{V}_{t}=k \tilde{V}_{x x}$ oro $\mathbb{R} x(0, \infty)$

$$
V(x, 0)=G a_{0} u(x)=\varphi(x) \text { fa } x \geqslant 0
$$

[Tia env $V_{x}(0, t)=0$
$H \quad \tilde{v}$ Eivou apua us noos $x \quad \forall t>0$:

$$
\begin{aligned}
& \widetilde{v}(-x, t)=\int_{-\infty}^{\infty} C_{\rho a \rho}(x) S(-x-y, t) d y \stackrel{z=y}{\Longrightarrow} \int_{\infty}^{\infty} C_{a \rho r}(-z) S(-x+z, t) \cdot(-1) d z
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-\tilde{V}_{x}(-x, t)=\tilde{V}_{x}(x, t) \stackrel{x=0}{\Longrightarrow} \tilde{V}_{x}(0, t)=0
\end{aligned}
$$

$$
\frac{d}{d x}(\tilde{v}(-x, t))=-\tilde{v}_{x}(-x, t)
$$

A£KH£H: 'Eorw ó oro npóbinua $\begin{cases}U_{t}=k U_{x x}, & (x, t) \in \mathbb{R} x(0, \infty) \\ U(x, 0)=\varphi(x), & \forall x \in \mathbb{R}\end{cases}$ $\eta \quad G \in C(\mathbb{R})$ qpajpïr kon $\int_{\mathbb{R}}|G(x)| d x<\infty$

sion: $u(x, t)=\frac{1}{\sqrt{4 k n t}} \int_{\mathbb{R}} \varphi(1) \cdot e^{-(x-y)^{2} / 4 k t} d y$
Ioxvit ou: $|u(x, t)| \leqslant \frac{1}{\sqrt{4 k_{n} t}} \int_{-\infty}^{\infty}|\varphi(y)| d y$

$$
\sup _{x \in \mathbb{R}}|u(x, t)| \xrightarrow{t \rightarrow \infty} 0
$$

AइKHよH: Av Q Gpajpèvn, $\mu \in \tau$ piou $\mu \eta$ kal ozo $x_{0} \in \mathbb{R}$ unapxouv ra $\varphi\left(x_{0} 0^{-1}, \varphi\left(x_{0}{ }^{+}\right)\right.$to $\left.\tau \epsilon: \lim _{t \rightarrow 0^{+}} \int_{\mathbb{R}} \varphi(y) s\left(x_{0}-y, t\right) d y\right)=\frac{1}{2}\left(\varphi\left(x_{0}^{-}\right)+\varphi\left(x_{0}\right)\right.$
Nion:

$$
\begin{aligned}
& I(t)=\int_{-\infty}^{x_{0}} \varphi(y) s\left(x_{0}-y, t\right) d y+\int_{x_{0}}^{\infty} \varphi(y) s\left(x_{0}-y, t\right) d y \\
& I(t)-\frac{1}{x_{0}^{2}}\left(\varphi\left(x_{0}{ }^{-}\right)+\varphi\left(x_{0}^{+}\right)\right)=x_{0} \quad \int_{-\infty}^{x_{0}} s\left(x_{0} \cdot y, t\right) d y=\int_{-\infty}^{0} s(-2, t) d= \\
& =\int_{-\infty}^{x_{0}}\left(\varphi(y)-\varphi\left(x_{0}^{-}\right)\right) s\left(x_{0}-y, t\right) d y+\int_{x_{0}}^{\infty}\left(\varphi(y)-\varphi\left(x_{0}^{+}\right)\right) s\left(x_{0}-y, t\right) d y=\int_{-\infty}^{0} s(z, t) d z=\frac{1}{2} \\
& \text { agaj s apua kan } \\
& \left.\left.\left[1 a \epsilon>0 \quad \exists \delta>0 \text { wot } \quad y<x_{0}\right] \Rightarrow\left|\varphi(y)-\varphi\left(x_{0}\right)\right|<\epsilon \mid \int_{-\infty}^{\left|y-x_{0}\right|<\delta}\right]\right\} s=1 \\
& \int_{-\infty}^{x_{0}}\left|\varphi(y)-\varphi\left(x_{0}^{0}\right)\right| s\left(x_{0}-y, t\right) d y \leqslant \int_{-\infty}^{x_{0}-\delta\left|y-x_{0}\right|<\delta}+\int_{x_{0}-\delta}^{x_{0}} \cdots \\
& \text { - Youa kar jıa zo } \\
& \int_{x_{0}}^{\infty} 5 \ldots=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leqslant 2 M \int_{-\infty}^{x_{0}-\delta} s\left(x_{0}-y, t\right) d y+\epsilon \int_{x_{0}=\delta}^{s\left(x_{0}-y, t\right) d y}\right)^{x_{0}} \leqslant 1 \\
& \leqslant 2 M \int_{|z| \geqslant \delta} s(z, t) d z+\epsilon
\end{aligned}
$$

$$
\lim _{t \rightarrow 0^{+}} \int_{-\infty}^{x_{0}}\left|\varphi(y)-\varphi\left(x_{0}^{-}\right)\right| s\left(x_{0}-y, t\right) d y \leqslant \epsilon
$$

- Me avriozolxo rpóno $\delta o u \lambda \epsilon j \omega$ rar dia zo ci入入o odordripwfea

TIA THN TPOO $\triangle 0$ (11.00-13.30 इ́ábbaro 23111/19)
Xaparinpioukes
Addajn ouvitz
Ox1 ϵ Fiowon $\theta \in p \mu o r n z a s$
EGiow on $\mu \in$ zorфopais Coroy $+\mu n$ oroj)
E Giow on wuaros
tunos Leibniz (nap. koizw ano odordrifupa)
$\mu_{E} \theta_{0} \delta$ os vépjuas
Edejxos opadointas (n.x nus bpiozw dion nou va fivar C ${ }^{1}$) Tepioxe's Enipporis ran ϵ Gapryons
ox1 "nepiepres" anosizgtis

Terapen 20111/19
Mänpa 12:
Tla env ekiowon Exppórnzas:

$$
\left.\begin{array}{rl}
u(x, t) & =\int_{\mathbb{R}} \varphi_{a p r}(y) s(x-y, t) d y \quad x>0, t>0 \\
& =\int_{0}^{\infty} \varphi(y) s(x-y, t) d y+\int_{-\infty}^{\infty} \varphi(-y) s(x-y, t) d y \\
z & =-y \\
& =\int_{0}^{\infty} \varphi(y) s(x-y, t) d y+\int_{0}^{\infty} \varphi(z) s(x+z, t) d z \\
& =\int_{0}^{\infty} \varphi(y)(s(x-y, t)+s(x+y, t)) d y \\
y-x
\end{array}\right)
$$

H un opojevins eGiowon θ eppórnzas
(1) $\begin{cases}U_{t}=k U_{x x}+f(x, t) & , \forall(x, t) \in O=\mathbb{R} \times(0, \infty) \\ U_{(x, 0)=G(x)} & , \forall x \in \mathbb{R}\end{cases}$
onou $\quad Q: \mathbb{R} \rightarrow \mathbb{R}$ ouvexins, Gpafuevn
$f: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ ouvexis kan $f \mid \mathbb{R} \times[0, T]$ qpajucivn $\forall T>0$
Znrape ú $C^{2,1}$ (0) $\cap C(\overline{0})$ nou va lkavonolei env (1)
Av of v, w ùvouv us:

$$
\left\{\begin{array} { l }
{ \text { Av oi } v _ { 1 } w \text { iuvouv us: } } \tag{3}\\
{ V _ { t } = k V _ { x x } + f (x , t) } \\
{ v (x , 0) = 0 }
\end{array} \text { (2) } \left\{\begin{array}{l}
W_{t}=k W_{x x} \\
w(x, 0)=\varphi(x)
\end{array}\right.\right.
$$

röte η, $u=v+w$ iuvel rqv (1), Sióu:

$$
\begin{aligned}
& \eta \quad u=v+w \\
& U_{t}=V_{t}+W_{t}=k v_{x x}+k W_{x x}+f(x, t)=k U_{x x}+f(x, t) \\
& u(x, 0)=v(x, 0)+w(x, 0)=0+\varphi(x)=\varphi(x)
\end{aligned}
$$

(2)ria va fucu avto to onordripura wisa eqievero, ta referer n f va Gnou \&foypern, to oncio iexuer. Apa cifuas ee!
Mia λ üon zns (3) Eivau $\eta \quad W(x, t)=\left\{\begin{array}{l}\int_{\mathbb{R}} \varphi(y) s(x-y, t) d y, t>0, x \in \mathbb{R} \\ \phi(x) \quad t=0, x \in \mathbb{R}\end{array}\right.$

Tia rip (2):
Fa kite $s \geqslant 0$ 他poupe rn "jrworn""

IKEUH

$$
\begin{gathered}
\tilde{V}(x, r)=\tilde{V}(x, s+r), r \geqslant 0 \\
\tilde{V} r=k \tilde{V} x x \\
\tilde{V}(x, 0)=f(x, s) \\
\\
\\
\tilde{V}(x, r)=\int f(y, s) s(x-y, r) d y
\end{gathered}
$$

 - xpóvos va Eerivdit ano to O (yari غ̇ra Exw paiter va Souderiw) Me aurov rov $\mu \in 7 a 0 \mathrm{~m}:$. parioplo ro cara ε हो vu.
Tore:

$$
\begin{aligned}
V(x, t) & =\widetilde{V}(x, t-s) \\
& =\int F(y, s) s(x-y, t-s) d y
\end{aligned}
$$

$\int_{0}^{t} \int_{\mathbb{R}} \mid f(y, s) s(x-y, t-s) d y d s \leqslant \| f\left(\|_{t} \int_{0}^{t} \int_{\mathbb{R}} s(x-y, t-s) d y d s\right.$

$$
\begin{aligned}
& \|f\|_{t}=\left\{\sup _{t}|f(x, s)|:(x, s) \in \mathbb{R} \times[0, \tau]\right\} \\
& =\|f\|_{t} \int_{0} d s=t\|f\|_{t}<\infty
\end{aligned}
$$

$H \quad v \in C^{1,2}(\mathbb{R} \times(0, \infty))$ kou $\lim _{t \rightarrow 0^{+}} v(x, t)=0\left(a \varphi a \dot{ }|v(x, t)| \leq t\|f\|_{t} \xrightarrow{t \rightarrow 0^{+}} 0\right)$
Onore realiai:

$$
v(x, t)= \begin{cases}\int_{0}^{t} \int_{\mathbb{R}} F(y, s) S(x-y, t-s) d y d s, t>0 \\ 0 & , t=0\end{cases}
$$

$$
\begin{aligned}
V_{t} & =v(x, t ; t)+\int_{0}^{t} v t(x, t ; s) d s \\
& =f(x, t)+\int_{0}^{t} k V x x(x, t ; s) d s \\
& =f(x, t)+k\left(\int_{0}^{t} v(x, t ; s) d s\right)_{x x} \\
& =f(x, t)+k V_{x x}
\end{aligned}
$$

'Apa, pia juon ens (1) Eival η :

$$
u(x, t)=\int_{\mathbb{R}} \varphi(y) s(x-y, t) d y+\int_{0}^{t} \int_{\mathbb{R}} f(y, s) s(x-y, t-s) d y d s
$$

AIKHZH 3 ($\oint 3.3$ strauss)
$N_{a} \lambda u \theta \in i \quad \eta \quad W_{t}=k W_{x x}, x>0, t>0$

$$
\begin{array}{ll}
W(x, 0)=C_{C}(x) & , x>0 \\
W_{x}(0, t)=h(t) & , t>0
\end{array}
$$

Nion: Opifoupt $v(x, t)=w(x, t)-x h(t)$ चózt:

$$
\begin{aligned}
& V_{t}=W_{t}-x h^{\prime}(t)=k W_{x x}-h^{\prime}(t)=k V_{x x}-x h^{\prime}(t) \\
& V(x, 0)=G(x)-x h(0)=\tilde{G}(x), x>0 \\
& V_{x}(0, t)=W_{x}(0, t)-h(t)=0
\end{aligned}
$$

$$
V_{t}=k V_{x}+f(x, t)
$$

$$
\begin{equation*}
v(x, 0)=\tilde{\varphi}(x) \tag{*}
\end{equation*}
$$

$$
\varphi(x)-x h^{\prime}(t)
$$

Kóvw dipua enérraon, cifa n u Qa bjet ípua, apa n naiven natajwios. Oa Bje nepiren
Avoupe to $u_{t}=k u_{x}+f_{\text {afc. }}(x, t)$

$$
\begin{aligned}
& u(x, 0)=\tilde{\varphi} \text { apu }(x) \\
& u(x, t)=\int_{\mathbb{R}} \operatorname{\varphi apr.}^{(y) s(x-y, t) d y+\int_{0}^{b} \int_{\mathbb{R}} f \text { fapr }(y, s) s(x-y, t-s) d s d y} .
\end{aligned}
$$

Δ eixvaut ón η u tivan ápua:

$$
\begin{aligned}
& u(-x, t)=u(x, t) \Rightarrow-u_{x}(-x, t)=u_{x}(x, t) \\
& u_{x}(0, t)=0 \\
& \int_{-\infty}^{\infty} \varphi_{a p r} \cdot(y) s(-x-y, t) d y \stackrel{z=-y}{=} \int_{\infty}^{-\infty} \varphi_{a p r}(-z) s(-x+z, t)(-d z)=\int_{-\infty}^{\infty} \varphi_{a p r}(z) s(x-z, t) d z
\end{aligned}
$$

Apa, v-u|[0, $) \times[0, \infty)$ juva zo

$$
\begin{aligned}
& W(x, t)=v(x, t)+x h(t) \\
& x>0 \\
& v(x, t)=u(x, t) \\
& \tilde{\varphi}_{\text {apr }}(x)=\varphi(|x|)-|x| h(0) \\
& f_{\text {apr }}(x, t)=-|x| h^{\prime}(t)
\end{aligned}
$$

H EミIIESH OEPMOTHTAS LE NEREPAIMENO SIAよTHMA

$$
a, \beta \in R, a<\beta \quad \underline{0}=(a, \beta) \times(0, \infty) \quad k>0
$$

θ ewpojue to TIAIT:

$$
\left.\begin{array}{ll}
u_{t}=k u_{x x} & ,(x, t) \in 0 \\
u(x, 0)=G(x) & , \forall x \in[a, \beta] \\
u(a, t)=0 & \forall t>0 \\
u(\beta, t)=0 & \forall t>0 \\
u \in C^{2,1}([a, \beta] x[0, \infty))
\end{array}\right\}
$$

$$
E(t)=\int_{a}^{b^{1}} u^{2}(x, t) d x \text { ivon } \varphi \theta \text { irovoa ws mpos } t \text {. }
$$

Ano $\delta \in\}$: H E Gival ouvexijs oro $[0, \infty)$. Enions, Givan Siapopiorpy $\mu \epsilon$:

$$
\begin{aligned}
E^{\prime}(t)=2 \int_{a}^{b} u(x, t) u_{t}(x, t) d x & =2 k \int_{a}^{b} u(x, t) u_{x} x(x, t) d x \\
& =2 k\left(\left[u(x, t) u_{x}(x, t)\right]_{a}^{b}-\int_{a}^{b} u_{x}^{2}(x, t) d x\right) \\
& =-2 k \int_{a}^{b} u_{x}^{2}(x, t) d x \leqslant 0
\end{aligned}
$$

- Tpóraon (Movafikórnea)
$H \in$ Fiowon $u_{t}=k u_{x x}+f(x, t) \quad \forall(x, t) \in O$

$$
\begin{aligned}
& u(x, 0)=\phi(x) \\
& u(a, t)=g(t) \\
& u(\beta, t)=h(t)
\end{aligned}
$$

onou $f, a, g, h \quad \delta \in \delta$ opieves ouvapinjots
exer ro mo iú ria jün na va Eivar vrolxtio rou $C^{1,1}(\overline{0})$

Av u_{1}, u_{2} Eival Sü juves, róre η, $u=u_{1}-u_{2} \in C^{2,1}$ ($\overline{0}$) havonolei as:

$$
\begin{aligned}
& u_{t}=k u_{x} \\
& u(x, 0)=u_{1}(x, 0)-u_{2}(x, 0)=\varphi(x)-\varphi(x)=0 \\
& u(a, t)=0 \\
& u(\beta, t)=0
\end{aligned}
$$

Me bain rqv пропјаuнev» про́zaō, $\eta \quad E(t)=\int_{a}^{b} u^{2}(x, t) d x \geq 0$ tivan q日ivovea us mpos t

$$
E(0)=\int_{a}^{b} u^{2}(x, 0) d x=0
$$

- Apa, $\quad E(t)=0 \quad \forall t$

$$
\begin{gathered}
u(x, t)=0 \quad \forall x \in[a, b]-k \int_{a}^{b} u^{2} x d x \leq 0 \\
\forall t \geqslant 0
\end{gathered}
$$

Aturieq 25/11119
Mainua 13:
H apxi rau uefiorou ja rqv Ejiowon $\theta \in p$ pornzas
Eorw $a<\beta, T>0$

$$
\begin{aligned}
& \underline{O}=(a, \beta) \times(0, T) \\
& \Gamma=\partial \underline{o}-([a, \beta] \times\{T\})
\end{aligned}
$$

to rapapo ${ }_{1}$ кe ouvivopo rou O

Tpozaon (Ao大evins apxì tou μ efiorou)

- Eocw $u: \bar{o} \longrightarrow \mathbb{R}$ ouvexijs $\mu \in u \in C^{1,2}((a, \beta) \times(0, \tau])$ rou ikavonotici eqv $\quad u_{t}=k u_{x x}$ oro $\quad(a, \beta) \times(0, T]=0-\Gamma$
Tote:

$$
\max _{\underline{\sigma}} u=\max _{\Gamma} u \quad\left(\max _{(x, y) \in \Gamma} u(x, y)\right)
$$

Amódet $\}_{\eta:}$ Eozw $M=\max _{\Gamma} U$ kal $\varepsilon>0$
$\theta_{\text {éroupt }} v(x, t)=u(x, t)-\varepsilon t$
Tort $V_{t}=U_{t}-\varepsilon=k U_{x x}-\varepsilon=k V_{x x}-\varepsilon$
$\exists\left(x_{0}, t_{0}\right) \in \underline{\underline{O}}$ wote $\max _{\underline{O}} V=V\left(x_{0}, t_{0}\right)$
Ioxupionos: $\left(x_{0}, t_{0}\right) \in \Gamma$
Eorw óa oer loxver

- Mepinzwón 1: $\quad\left(x_{0}, t_{0}\right) \in$
rote $V_{t}\left(x_{0}, t_{0}\right)=0$ nou $V_{x x}\left(x_{0}, t_{0}\right) \leqslant 0$
- Apa, $V_{t}\left(x_{0}, t_{0}\right)-k V_{x x}\left(x_{0}, t_{0}\right) \geqslant 0, \delta n \lambda a \delta \dot{\eta}-\varepsilon \geqslant 0$ ázoпо
- Tepinzwon 2: $A_{v} t_{0}=T$ roite $\quad V_{t}\left(x_{0}, t_{0}\right) \geqslant 0$ kow $V_{x x}\left(x_{0}, t_{0}\right) \leqslant 0$
$\pi \dot{\lambda} \lambda_{1} \quad V_{t}\left(x_{0}, t_{0}\right)-k V_{x x}\left(x_{0}, t_{0}\right) \geqslant 0 \quad$ à $2 \pi 0$
- Apa $\max _{\underline{\bar{\sigma}}} u \leqslant \max _{\underline{\underline{\sigma}}} v+\varepsilon T=\max v+\varepsilon T$

$$
\leqslant \max _{\Gamma} u+\varepsilon T=M+\varepsilon T
$$

Γ Гa $\varepsilon \rightarrow 0^{+}$غ́xou μ :

$$
\max _{\underline{\underline{0}}} u \leq M=\max _{\Gamma} u \leq \max _{\bar{o}} u
$$

Tlaparn$\rho \eta o \eta:$ Tha rqv aroi $\delta a\}_{y}$ ทrav apkero to on $U_{t}-k U_{x x} \leqslant 0$
Apxy zou e入axiozov
Av η u tiva on ons oqv rponjoujevn rporaon rȯre $\frac{\min u}{\bar{\sigma}}=\frac{\min }{\Gamma} u$
Eqap $\mu \mathrm{oj} \dot{\eta}$
Tporaon (Movaסinörzza düons $\sigma \in$ фpajpèvo Siaiorqua)
Eozw $\underline{0}=(a, \beta) \times(0, \infty)$
To mpoban μ a

$$
\begin{array}{ll}
u_{t}=k u_{x x}+F(x, t) & ,(x, t) \in O \\
u(x, 0)=\varphi(x) & , x^{\prime} \in[a, \beta] \\
u(a, t)=g(t) & , t \geqslant 0 \\
u(\beta, t)=h(t) & , t \geqslant 0
\end{array}
$$

$\mu \epsilon \quad f, g, h \quad \delta \in \delta o \mu \varepsilon v e s$
Exse to to $\lambda \dot{\cup} \mu$ ia $\lambda \dot{v} \eta \eta \quad u \in C(\overline{0}) \cap C^{2,1}(\underline{0})$
ATojgk?
Eocw u_{1}, u_{2} סio viogs. Tore $\eta \quad u=u_{1}-u_{2} \in(\underline{\underline{O}}) \cap C^{2,}(\underline{O})$ fiven jujon ran kavonolfi as:

$$
\begin{aligned}
& u_{t}=k u_{x x} \quad \text { oro } \quad \\
& u(x, 0)=0 \\
& u(0, t)=u(\beta, t)=0
\end{aligned}
$$

I'a $T>0$ eфapнojoure rqv apxí rou $\mu \in f i o z o v ~ o z \eta v ~ u ~$ oro $\underline{o}_{T}=(a, \beta) \times(0, T)$

$$
\max _{\underline{\underline{\sigma}}_{T}} u=\max _{\Gamma_{T}} u=0
$$

$O_{\text {pora, }} \min U=\min u=0$

$$
\bar{\sigma}_{T} \quad \Gamma_{T}
$$

Ertión to T avөaipєto: $u \mid \overline{\sigma_{T}}=0$
Eqap $\mu \circ \gamma \dot{\eta}: ~ § 2.3$ Strauss.
Toozaon (Ioxuon apxi $\mu \in j i \sigma z o v) ~$

- Eorw $u \in C([a, \beta] \times[0, T]) \cap C^{2,1}((-a, \beta) \times(0, T])$ row kavonolti z zv $u_{t}=k u_{x x}$ oтo $\left(a_{1} \beta\right) \times(0, T]$ то̀ $\tau:$
$\max _{\overline{0}} u=\max _{\Gamma} u$ kou av viapxa $\left(x_{0}, t_{0}\right) \in \bar{O}-\tau \quad \mu \epsilon$ $\max _{\overline{0}} u=u\left(x_{0}, t_{0}\right)$ roze η eivan σ ra $\theta \in p \dot{\eta}$.
- Aoknon 4 (\$2.3 strauss)

$$
\begin{aligned}
& u \in\left(([a, 1] \times[0, \infty)) \cap C^{2,1}((0,1) \times(0, \infty))\right. \\
& u_{t}=k u_{x x} \quad(x, t) \in(0,1) \times(0, \infty) \\
& u(0, t)=u(1, t)=0 \quad \forall t \geqslant 0 \\
& u(x, 0)=4 \times(1-x) \quad
\end{aligned}
$$

(a) $0<u(x, t)<1, \forall t>0 \quad \forall x \in(0,1)$
(b) $u(x, t)=u(1-x, t), \quad \forall t>0 \quad \forall x \in[0,1]$
(ر) H $E(t)=\int_{0}^{1} u^{2}(x, t) d x$ tivou jv noiws \$oivovoa.

Avon: (a) Aro apxij elaxiozov $u \geqslant 0$ ozo 0 Aro $\overline{\text { Lxupi }}$ apxi $\in \lambda a x i o z o v ~ u>0$ ozo 0

$$
u\left(x_{0},+0\right)^{\prime}=0
$$

$T>t_{0}$

$$
\Gamma=\partial 0
$$

$$
\max _{r} u=\max _{x \in[0,1)} 4 x(x-1)=1
$$

(b) H $v(x, t)=u(1-x, t)$ (kavorolti us:

$$
\begin{aligned}
& V_{t}(x, t)-k v_{x x}(x, t)=U_{t}(1-x, t)-k U_{x x}(1-x, t)=0 \quad(x, t) \in \underline{O} . \\
& v(x, 0)=u(1-x, 0)=4 x(1-x) \\
& v(0, t)=v(1, t)=0 \quad \forall t \geqslant 0 \\
& I^{\prime \prime} \quad{ }^{\prime} \quad \\
& u(1, t) \quad u(0, t)
\end{aligned}
$$

-1 v, u dùvour zo idio TMAइT

(γ)

$$
\begin{aligned}
& E^{\prime}(t)=2 \int_{0}^{1} u u_{t} d x=2 \int_{0}^{1} k u u_{x} x d x= \\
&-2 k \int_{0}^{1} u_{x}^{2}(x, t) d x \\
&=-2 k \int_{0}^{1} u_{x}^{2}(x, t) d x \leq 0
\end{aligned}
$$

Ioxupiopos: $E^{\prime}(t)<0, \forall t \geqslant 0$
Av ox, roite $E^{\prime}\left(t_{0}\right)=0$ да кainolo to>0
$U_{x}\left(x, t_{0}\right)=0 \quad \forall x \in(0,1) \Rightarrow u\left(x, t_{0}\right)$ oca $\theta \in \rho \dot{\eta}$ ws toos x $u(0, t)=0$
$\Longrightarrow u\left(x\right.$, to $\left._{0}\right)=0 \quad \forall x \in(0,1) \quad$ àrono ano (a)

1von rns ϵ fiowons θ eqpiornzas or renepaofirvo Siaiornua
Eorw $L>0$. Orwpouje ro TALT:

$$
\begin{array}{cc}
U_{t}=k U_{x x} & , \quad c 0 \quad 0=(0, L) \times(0, \infty) \\
u(x, 0)=\varphi(x) & , x \in[0, L], \varphi \in C([0,1) \\
u(0, t)=u(L, t)=0 & \forall t>0
\end{array}
$$

örou $\phi(0)=\phi(L)$
 да in $\lambda \dot{\operatorname{lon}}$

 to L.

Eocw $\quad G_{0}(x)= \begin{cases}G(x), & x \in[0, L] \\ 0, & x \in \mathbb{R}-[0, L]\end{cases}$

$$
\left(\begin{array}{c}
\ln \lambda a \delta \dot{\eta} \eta \quad \varphi(L+x) \\
\pi \varepsilon \rho \operatorname{I\tau \dot {\eta }} \\
\varphi(L-x)=-\varphi(L+x)
\end{array}\right)
$$

Av $x \in[2 k L, 2 k L+1]$ róre $\quad \varphi \in \pi(x)=\varphi(x-2 k L)$
Av $x \in((2 k-1) L, 2 k L)$ тort $\varphi \ln (x)=-\varphi(2 k L-x)$
$\tilde{u}, u=\tilde{u}(\underline{0})$

- Apa, $\quad \operatorname{cr} .(x)=\sum_{k \in \mathbb{Z}}\left(\varphi_{0}(x-2 k L)-G_{0}(2 k b-x)\right)$

$$
\begin{aligned}
& 2 k L, 2 k L+L,(2 k-1) L, 2 k L \\
& \varphi_{00}(-x)=\sum_{k \in \mathbb{Z}}\left(\varphi_{0}(-x-2 k L)-\varphi_{0}(2 k L+x)\right) \\
& 0<2 k L-x<L \\
& (2 k-1) L<x<2 k L \\
& k L, k L+1 \\
& k=j \sum_{j \in \mathbb{R}}\left(\varphi 0\left(2 L_{j}-x\right)-\varphi 0(-2 L j+x)\right)=-\varphi \in L_{0}(x)
\end{aligned}
$$

oprora $G_{\text {en }}(L+x)=-Q_{\in n}(L-x)$
 paros:

$$
\begin{array}{ll}
\tilde{u}_{t}=k \tilde{u}_{x x} \\
\tilde{u}(x, 0)=\varphi_{\varepsilon n}(x)
\end{array},(x, t) \in \mathbb{R} x(0, \infty)
$$

Avró غ̀xer λ vion rqv $\tilde{u}(x, t)=\int_{-\infty}^{\infty} \varphi_{s n}(y) S(x-y, t) d y$

Teraprn 27/11/19
Mä \quad nua 14ㅇ
(Iurexrra áoknons aqó mponjoi $\mu \varepsilon v o$ нїө $\eta \mu a)$
(1) $\begin{cases}u_{t}=k u_{x x} & (x, t) \in(0, L) x(0, \infty) \\ u(x, 0)=\varphi(x) & , x \in[0, L] \quad, \quad, \in C([0, L]) \\ u(0, t)=u(L, t)=0 & , t>0 \\ \varphi(0)=\varphi(L)=0 & \end{cases}$

$$
\left.\begin{array}{l}
\varphi_{0}(x)=\left\{\begin{array}{l}
\varphi(x), \\
0, \\
0,
\end{array}, x \in \mathbb{R},[0, L]\right.
\end{array}\right] \begin{aligned}
& \varphi \in \pi(x)=\sum_{k \in \mathbb{Z}}\left(\varphi_{0}(x-2 k L)-\varphi_{0}(2 k L-x)\right)
\end{aligned}
$$

'Eocw \tilde{u} pia λ vion rov $\left.\begin{array}{ll}\tilde{u}_{t}=k \tilde{u}_{x x}, & (x, t) \in \mathbb{R} \times(0, \infty) \\ \tilde{u}(x, 0)=C_{i n} .(x), & x \in \mathbb{R}\end{array}\right\}$ (2)
Gin. $\in C(\mathbb{R})$ Gpajuivn

$$
\tilde{u}(x, t)= \begin{cases}\int_{\mathbb{R}} \varphi_{\varepsilon n}(y) S(x-y, t) d y & , x \in \mathbb{R}, t>0 \\ \varphi_{\varepsilon n}(x) & , x \in \mathbb{R}, t=0\end{cases}
$$

Duvar to (2)
Өítoupe to $u=\tilde{u}([0, L] \times[0, \infty))$
H u juver to (1) jaci:

$$
\begin{aligned}
& \begin{array}{l}
U_{t}=k U_{x x} \\
u(x, 0)=\tilde{u}(x, 0)=G \varepsilon n \cdot(x)=G(x) \\
\\
\\
\\
\\
\\
\\
\\
0 \in[0, L] \cap \mathbb{R}(0,0)
\end{array}
\end{aligned}
$$

Qin. eivau nepizin $\Rightarrow \tilde{u}$ repirè ws noos $x \forall t$

$$
\begin{aligned}
\tilde{u}(-x, t)=-\tilde{u}(x, t) & \Rightarrow \tilde{u}(0, t)=0 \\
-68- & \Rightarrow u(0, t)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \tilde{u}(L-x, t)=-\tilde{u}(L+x, t) \\
& \Rightarrow \tilde{u}(L, t)=-\tilde{u}(x, t) \\
& \Rightarrow \tilde{u}(L, t)=0 \\
& \Rightarrow u(L, t)=0
\end{aligned}
$$

H $\varepsilon\} i \sigma \omega \sigma_{n} \theta \varepsilon p \mu o z \eta z a s ~ \delta \varepsilon v ~ \varepsilon i v a u ~ \varepsilon u o z a \theta \eta j s ~ \pi p o s ~ z a ~ n i \sigma w ~$ oてo xporo
$\pi \times$ ozo $\mathbb{R}_{x}(-\infty, 0]$

$$
U_{n}(x, t)=\frac{1}{n} \sin (n x) e^{-n^{2} k t}, n \in \mathbb{N}^{+}
$$

गüves 工yv $u_{t}=k u_{x x}$

$$
u \cdot\left(-n^{2} k\right)=k\left(-n^{2}\right) u
$$

$$
u(x, t)=\int \varphi(y) S(x-y, t) d y
$$

$$
\sup _{x \in \mathbb{R}}|\operatorname{Un}(x, 0)|=\frac{1}{n}
$$

a入入à fla $t<0$ kou x woer $\frac{U_{x}}{2 k} \notin \mathbb{Z}$ हंxoupe：

$$
\lim _{u \rightarrow \infty} u_{n}(x, t)=\infty
$$

$$
-\frac{x^{2}}{-4 k(t+1)}
$$

＇H av mapoupe $u(x, t)=S(x, t+1)=\frac{1}{\sqrt{-x^{2}}} e$ avin $\dot{\varepsilon x u} u(x, 0)=\frac{1}{\sqrt{4 k \pi}} e^{\frac{-x^{2}}{4 k}}$
oucos $\lim _{t \rightarrow-1} u(x, t)=\infty, x \in \mathbb{R}$

$$
U_{t}=-k u_{x x} \quad \tilde{u} \quad \tilde{u}_{t}=k \tilde{u}_{x x} \quad t \in \mathbb{R}, x \in \mathbb{R}
$$

$H u(x, t)=\tilde{u}(x,-t) \quad \theta a \quad \lambda \dot{v a} \tau \eta v u_{t}=-k u_{x x}$

Aoknon. Na avajajete iqv $u_{t}=k u_{x x}$ oinv $\tilde{u}_{t}=\tilde{u}_{x x}$
1ion: $\theta \dot{\varepsilon} \tau$ оине $\tilde{u}(x, t)=u\left(x, \frac{t}{k}\right)$
Tore $\tilde{U}_{t}(x, t)=\frac{1}{k} U_{t}\left(x, \frac{t}{h}\right)=\frac{1}{k} k U_{x x}\left(x, \frac{t}{k}\right)=\tilde{U}_{x x}(x, t)$ H $\tilde{u} \lambda_{\text {vete }}$ iqv $\tilde{u}_{t}=\tilde{u}_{x x} \quad u(x, t)=\tilde{u}(x, k t)$

$$
\begin{array}{ll}
\tilde{u}=u(\sqrt{k} x, t) & \tilde{u}_{t}=u_{t}(\sqrt{k} x, t) \\
\tilde{u}_{x x}=k u_{x x}(\sqrt{k} x, t)
\end{array}
$$

Xupor Hilbert:
'Eorw X јpapuinos xujpos oro $\mathbb{R},\langle\because\rangle:, X \times X \rightarrow \mathbb{R}$
Eowrepiko jivopevo orov x
Auzo opifa rópea $\|\cdot\|: x \rightarrow[0, \infty)$ ws $\varepsilon\}_{j} \dot{s}:$

$$
\|x\|=\sqrt{\langle x, x\rangle}, x \in X
$$

кou $\mu \in \tau$ iky $d: x \times x \rightarrow[0, \infty): d(x, y)=\|x-y\|$
 $\left(x_{1}<,>1\right.$ 廹eron xiupos Hilbert
n.x $l^{2}=\left\{\left(x_{n}\right)_{n=1}: \sum_{n=1}^{\infty} x_{n}{ }^{2}\langle\infty\} \mu \epsilon\langle x, y\rangle=\sum_{n=1}^{\infty} x_{n} y_{n}\right.$
'Eva ACX то $\lambda \dot{\varepsilon} \mu \varepsilon$ op $\theta_{0 \text { кavoviko }}$ av:

$$
\langle u, v\rangle=1 u=v \quad \forall u, v \in A
$$

To $\lambda \dot{\varepsilon} \mu \varepsilon$ op θ кávoriky baion av zivou op Ookavovikó kou

$$
\langle\bar{A}\rangle=x
$$

\longrightarrow jpappik $\theta_{\dot{\eta} k \eta}$
n.x oro l^{2} тo $\left\{e_{n}=(0,0, \ldots, 1,0,0): n \geq 1\right\}$ sivas oplonavoviky boion. boion n
Tlpagнare, $\left\langle e_{n}, e_{n}\right\rangle=1 u=n$
Av $x \in l^{2}, x=\left(x_{1}, x_{2}, \ldots\right) \quad \mu \varepsilon \quad \sum_{i=1}^{\infty} x_{i}{ }^{2}<\infty$
Tha $n \in \mathbb{N}^{+} \delta \varepsilon \delta o \mu \dot{v} o ~ \theta i r o u \mu \varepsilon:$

$$
\begin{gathered}
y_{n}=\sum_{i=1}^{n} x_{i} l_{i}=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0 \ldots\right) \\
\left\|x-y_{n}\right\|=\left\|\left(0,0, \ldots, 0, x_{n+1}, x_{n+1}, \ldots\right)\right\|=\sum_{k=n+1}^{\infty} x_{k}^{2} \xrightarrow{n \rightarrow \infty} 0
\end{gathered}
$$

Apa, $x \in\rangle$

Oevipnpa : Ar X xujos Hilbert, tore o X exe oolokavovivn baion A kou:
(1) $\|x\|^{2}=\sum_{u \in A}|\langle x, u\rangle|^{2} \quad \forall x \in X \quad$ (raviónza Parseral)
(2) Kaide $x_{\in} X$ үpáqerou ws $x=\sum_{u \in A}\langle x, u\rangle u$

Srov $l^{2}: x=\left(x_{1}, x_{2}, \ldots\right)=\sum_{i=1}^{\infty} x_{i} e_{i}$

$$
\|x\|^{2}=\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2}=\sum_{i=1}^{\infty} x_{i}^{2}
$$

Av ACX sivan op θ okavoviky röts:

$$
\sum_{u \in A}\left|\left\langle x_{i}, u\right\rangle\right|^{2} \leq\|x\|^{2} \quad \forall x \in X \quad \text { (aviooinea Bessel) }
$$

Tapacnpnom: $A_{v} x=\sum_{u \in A} \lambda u$, A op θ baion róte: $\lambda u=\langle x, u\rangle \quad \forall u \in A$, uet ariav uoe A

$$
\begin{aligned}
&\left\langle x, u_{0}\right\rangle=\sum_{u \in A} \lambda_{u}\left\langle u, u_{0}\right\rangle=\lambda u_{0}\left\langle u_{0}, u_{0}\right\rangle=\lambda u_{0} \\
&-\not 1_{1}-
\end{aligned}
$$

$\mathcal{E}_{\text {elpes }}$ Fourier

$$
L^{2}[-\pi, n]=\left\{\begin{array}{l|c}
f:[-\pi, \Pi] \rightarrow \mathbb{R} & f: \text { Le besque } \mu \varepsilon c \rho \dot{j} \pi \mu \eta \\
& \int_{-n}^{n} f^{2}(-x) d x-\infty
\end{array}\right\}
$$

$0 L^{2}[-\pi, \square] \mu \varepsilon$ гоштернко јио́ $\mu \varepsilon v 0$ то $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$ Eivan xupos Hilbert
To ouvode $A=\left\{\frac{1}{\sqrt{2 \pi}}\right\} \cup\left\{\frac{1}{\sqrt{\pi}} \cos (n x), \frac{1}{\sqrt{\pi}} \sin (n x): n \in \mathbb{N}^{+}\right\}$
Coratep jouráperon
\left. sival pia op ${\text { Ookavorik } \eta \text { baion ocov } L^{2}[-\pi, \eta\}}^{\prime}\right\}$
XPH\&IME TAYTOTHTEJ
(a) $\int_{-\pi}^{\pi} \cos (\mu x) \sin (n x) d x=0 \quad \forall \mu, n \in \mathbb{N}$
(b) $\int_{-n}^{n} \cos (\mu x) \cos (n x) d x=\left\{\begin{array}{lll}0, & \text { ar } \quad \mu \neq n \\ \pi, & \text { av } & \mu=n \neq 0 \\ 2 n, & \text { ar } & \mu=n=0\end{array}\right\} \pi I_{\mu=n}$
(x) $\int_{-\pi}^{\pi} \sin \left(\mu_{x}\right) \sin (n x) d x=n 1 \mu=n$.

Aridajn: (a) $2 \cos (\mu x) \sin (n x)=\sin ((\mu+n) x)+\underbrace{\sin ((n-\mu) x)}_{\pi \in p i r t e s}$
(b) $2 \cos \left(\mu_{x}\right) \cos (n x)=\cos ((\mu+n) x)+\cos ((\mu-n) x)$

$$
-72=
$$

$$
\int_{-n}^{n} \cos (k x) d x=\left\{\begin{array}{l}
2 \pi, k=0 \\
\frac{1}{k}(\sin (k n)-\sin (-k n))=0 \text { ar } k \in \mathbb{Z}
\end{array}\right.
$$

Av $M=n=0 \quad \int_{-\pi}^{\pi}=2 M$
Av $\quad \mu \neq n \quad \int_{-n}^{n}=0$
Av $\quad M=n \neq 0 \quad 2 \int_{-n}^{n} \cos (m x) \cos (n x)=0+2 n$
Asixvoupr μ iovo ò to A rival op θ okavovikó
'Eocw $\ln (x)=\frac{1}{\sqrt{\pi}} \cos (n x), \quad \tilde{e}_{n}=\frac{1}{\sqrt{\pi}} \sin (n x), e_{0}(x)=\frac{1}{\sqrt{2 \pi}}$

$$
\begin{aligned}
& \left\|\frac{1}{\sqrt{2 \pi}}\right\|=\left(\int_{-n}^{n}\left(\frac{1}{\sqrt{2 \pi}}\right)^{2} d x\right)^{1 / 2}=1^{1 / 2}=1 \\
& \|e n\|=\left(\int_{-n}^{n} \frac{1}{\pi} \cos ^{2}(n x) d x\right)^{1 / 2}=\left(\frac{1}{\pi} \cdot \pi\right)^{1 / 2}=1 \\
& \left\|\tilde{e_{n}}\right\|=\left(\int_{-n}^{n} \frac{1}{\pi} \sin ^{2}(n x) d x\right)^{1 / 2}=1 / 2=1
\end{aligned}
$$

Tia $n \neq 0$:

$$
\begin{aligned}
& \left\langle e_{0}, e_{n}\right\rangle=\int_{-n}^{\pi} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{n}} \cos (n x) d x=1 \\
& \pi \sqrt{2} \\
& \left\langle e_{0}, \hat{e_{n}}\right\rangle=\left.\int_{-n}^{n} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{n}} \sin (n x)\right|_{-n} ^{n}=0 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle e_{m}, \hat{e}_{n}\right\rangle=0 \quad \forall \mu, n \\
& \left\langle\hat{e}_{n}, \hat{e}_{\mu}\right\rangle=0
\end{aligned}
$$

Aqoi to A op $\theta_{0 \text { kavoriki }}^{\eta}$ baion, kaं $\theta \varepsilon \quad f \in L^{2}[-\pi, \Pi]$ үpacerar ws:

$$
f=\left\langle f, e_{0}\right\rangle e_{0}+\sum_{n=1}^{\infty}\left(\left\langle f_{1} e_{n}\right\rangle e_{n}+\left\langle f, e_{n}\right\rangle \tilde{e}_{n}\right)
$$

$\left.\begin{array}{l}\text { Oricoupe: } a_{n=\frac{1}{\pi}}^{n} \int_{-n}^{\pi} f(x) \cos (n x) d x, n \in \mathbb{N} \\ b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x \quad, n \in \mathbb{N}^{+}\end{array}\right\} \quad \begin{aligned} & \text { Euvet } \quad \text { Fourier. }\end{aligned}$

$$
\left\langle f, e_{0}\right\rangle=\int_{-\eta}^{\pi} \frac{1}{\sqrt{2 n}} f(x) d x
$$

Apa, $\left\langle f, e_{0}\right\rangle e_{0}=\frac{1}{\sqrt{2 n} \sqrt{2 n}} \int_{-n}^{n} f(x) d x=\frac{1}{2} d 0$

$$
\begin{aligned}
\left\langle f, e_{n}\right\rangle \ln (x) & =\left(\int_{-n}^{n} f(x) \frac{1}{\sqrt{\pi}} \cos (n t) d t\right) \frac{1}{\sqrt{\pi}} \cos (n x) \\
& =\frac{1}{\pi} \int_{-n}^{n} f(x) \cos (n t) d t
\end{aligned}
$$

orpos $\left\langle f_{1} e_{n}^{n}\right\rangle \tilde{e}_{n}(x)=b_{n} \cdot \sin (n x)$
Apa $f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]$
To rapanavai to $\lambda \dot{\varepsilon} \varepsilon \varepsilon$ oeipá Fourier zךs f

Acuripa 2112119
Mainnua 15:
Mapá $\delta_{E L}$ ر μa
$f(x)=x, x \in[-n, n]$. Na uno入opiocti n oteqà Fourier ins f $a_{n}=\frac{1}{\Pi} \int_{-n}^{\pi} \frac{x \cos (n x)}{\Pi} d x=0 \quad \forall n \in \mathbb{N}$ $b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} x\left(-\frac{\cos (n x)}{n}\right)^{1} d x=\frac{2}{\pi}\left(-\frac{\pi}{n} \cos (n n)-0\right)+\frac{2}{\pi} \int_{0}^{\pi} \frac{\cos (n x) d x}{n}$

$$
=\frac{-2}{n}(-1)^{n}=\frac{2}{n}(-1)^{n+1}
$$

\therefore Apa, $\quad x \sim \sum_{n=1}^{\infty}(-1)^{n+1} \frac{2}{n} \sin (n x)$

Eqapuoji zns 100 inzas Parseval ounv $f(x)=x$

$$
\begin{aligned}
& \|f\|^{2}=\left|\left\langle f, e_{0}\right\rangle\right|^{2}+\sum_{n=1}^{\infty}\left|\left\langle f, e_{n}\right\rangle\right|^{2}+\left|\left\langle f, \tilde{e}_{n}\right\rangle\right|^{2} \\
& f=\left(\left\langle f, e_{0}\right\rangle\right)+\sum_{n=1}^{\infty}\left\langle f, e_{n}\right\rangle e_{n}+\left\langle f, \tilde{e}_{n}\right\rangle e_{n}
\end{aligned}
$$

G Onws oa daje nie ritu avoi se diva

$$
\left\langle F, e_{0}\right\rangle=0 \quad \forall n
$$

Exoupt: $\left\langle f, \tilde{e}_{n}\right\rangle \tilde{e}_{n}=b_{n} \sin (n x) \Rightarrow\left\langle F, \tilde{e}_{n}\right\rangle \frac{1}{\sqrt{n}} \sin (n x)=l_{n} \cdot \sin (n x)$

$$
\Rightarrow\left\langle f, \tilde{e}_{n}\right\rangle=\sqrt{\pi} \cdot b_{n}
$$

(0 yola rporuintet ò u $\left\langle f, e_{n}\right\rangle=\sqrt{\pi} \cdot a_{n} \mathrm{kas} n \geqslant 1$, eví

$$
\left.\left\langle f_{1} e_{0}\right\rangle=\frac{\sqrt{7}}{\sqrt{2}} a_{0}\right)
$$

Onore n Parseval jpaiфezau:

$$
\int_{-n}^{n} x^{2} d x=\sum_{n=1}^{\infty} n \cdot b_{n}^{2} \Rightarrow \frac{2}{3} n^{3}=\Pi \sum_{n=1}^{\infty} \frac{4}{n^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{n^{2}}{6}
$$

\rightarrow OEMA EEETAIEON

- Aornon: Forw $f \in C^{1}([-n, n])$ ue $f(-n)=f(n)$. Av $\left(a_{n}\right)_{n} \geq 0,\left(b_{n}\right)_{n \geq 0}$ fivon a ouvzedeorés Fourier ins f kan $\left(a_{n}{ }^{\prime}\right)_{n \geqslant 0,}\left(b_{n}\right)^{\prime} n \geqslant 0$ tivas a ruvzedeoziss Fourier ens f^{\prime}. Töe $a_{n}{ }^{\prime}=n: b_{n}$, $b_{n}^{\prime}=-n d n$. $\forall n \in \mathbb{N}$ (opijoupe $b_{0}=b_{0}^{\prime}=0$)

$$
\begin{aligned}
\text { nion: } a_{n}^{\prime} & =\frac{1}{\pi} \int_{-n}^{n} f^{\prime}(x) \cos (n x) d x=\left.\frac{1}{\pi} f(x) \cos (n x)\right|_{-n} ^{\pi}-\frac{1}{\pi} \int_{-n}^{\pi} f(x)(-n \sin (n x) d x \\
& =\frac{1}{\pi}(f(n) \cos (n n)-f(-n) \cos (-n n))^{n}+n b_{n} \\
& =n \cdot b_{n} \\
\cdot b_{n}^{\prime} & \left.=\frac{1}{\pi} \int_{-n}^{\pi} f^{\prime}(x) \sin (n x) d x=\ldots(-n)\right)
\end{aligned}
$$

Mporaon: Eorw $k \in \mathbb{N}$ kou $f \in C^{k}([-n, n])$ $\mu \in f^{(r)}(-n)=f^{(r)}(n)$ $\mu_{E} \quad r=0,1, \ldots, k-1 \quad(0 \leq r \leq k-1)$
Tóz unapxer $c \in(0, \infty)$ ue, $\left|a_{n}\right| \leqslant \frac{c}{n^{k}},\left|b_{n}\right| \leqslant \frac{c}{n^{k}} \quad \forall_{n} \geqslant 1$
Anoid\}?: $1{ }^{105}$ iponos fiva appoiotifal

Eorw $\left(a_{n}^{n-1}\right)_{n \geqslant 0},\left(b_{n}{ }^{n}\right)_{n \geqslant 1}$ ol ouvreateries Fourier ins $f^{(r)}, r=0,1, \ldots, k$
Av k apuos: Eqapuijoupe un mponfoúvevn ácuoy $\frac{k}{2}$

$$
\begin{aligned}
& \cdot a_{n}^{(k)}=n \cdot b_{n}^{k-1}=-n^{2} a_{n}^{(k-2)}=\ldots=(-1)^{2} n^{k} a_{n}^{(0)} \\
& \cdot b_{n}^{(k)}=-n \cdot a_{n}^{(k-1)}=-n^{2} \cdot b_{n}^{(k-2)}=\ldots=(-1)^{k} n^{k} b_{n}^{(0)}
\end{aligned}
$$

Av k repiziós: $\cdot a_{n}(k)=(-1)^{\frac{k-1}{2}} n^{k} b_{n}^{(0)}$

$$
\text { - } b_{n}^{(k)}=(-1)^{\frac{k+1}{2}} n^{k} a_{n}(0)
$$

Eorw $M=\sup \left\{\left|F^{(k)}(x)\right| \cdots x \in[-\pi, n]\right\}<\infty$
Tore

$$
\left|a_{n}^{(x)}\right|=\left|\frac{1}{\pi} \int_{-n}^{\pi} f^{(k)}(x) \cos (n x) d x\right| \leqslant \frac{2 x}{\not n} M=2 M
$$

jpo1a $\left|b_{n}^{(k)}\right| \leq 2 M$
$A p a, \quad\left|a_{n}^{(0)}\right| \leqslant \frac{2 M}{n^{k}}$

$$
\left|b_{n}^{(0)}\right| \leq \frac{2 M}{n^{k}}
$$

$2^{0 \stackrel{ }{=} \text { iponos }}$
Enajwfrai

$$
\cdot b n=\frac{1}{n^{k}} \frac{1}{n} \int_{-n}^{n} f^{(k)}(x) \sin \left(n x+\frac{k n}{2}\right) d x
$$

Гevikai $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$, apkei $f \in L^{\prime}[-n, n]$

Mooraon (Riemann-Lebesque)

- Eocw $f:[-n, n] \rightarrow \mathbb{R}$, Riemann ojok nnowior $\mu \eta \int_{-n}^{n}|f(x)| d x<\infty$ rore: $\lim _{n \rightarrow \infty} a n=\lim _{n \rightarrow \infty} b_{n}=0$

$$
\begin{aligned}
& \text { ort: } \lim _{n \rightarrow \infty} a n=\lim _{n \rightarrow \infty} \quad b_{n}=0 \\
& \int_{-n}^{n} f(x) \cos (n x) d x \xrightarrow{n \rightarrow \infty} 0 \quad \int_{-n}^{n} f(x) \sin (n x) d x \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

Eujклıon σ tepur Fourier
(ocov L2, on $\mu \mathrm{Gak} \dot{\eta}$, оноіо \quad op $\phi \eta$)

1) Eujpedion orov L^{2}

Eocw $f \in L^{2}[-n, n] \quad \mu \in \quad \sigma \in\left(p a \dot{\text { Fourier: }} f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)\right.$
Өeroupe $\operatorname{Sn} f(x)=a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right), n \in \mathbb{N}+$

1) Ioxia $S_{n} f \rightarrow f$ orov $L_{n \rightarrow \infty}^{2}[-n, \eta]$
$\Delta_{n} \lambda a \delta_{\eta}: \int_{-n}^{n}\left|S_{n} f(x)-f(x)\right|^{2} d x \xrightarrow{n \rightarrow \infty} 0$

Kunavon

- Eorw $f:[a, b] \rightarrow \mathbb{R}$. Tia $\Delta=\left\{a=x_{0}<x_{1} \ldots<x_{n}=b\right\}$ ס1 apepion za $[a, b]$, Өíoupe $V_{f}(\Delta)=\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|$

Kupavon ens f ovopajoupte tov apiopé

$$
V_{f}=\sup \left\{V_{f}(\Delta): \Delta \text { siapispion zou }[a, b]\right\}
$$

Ar $V_{f}<\infty \quad \lambda_{e j \mu}$ ou n f Eivos фpaffèrns kipravons.
Av n f^{\prime} Giva runnaura ouvexis rore η I f giva lipschitz
Aoknon. Av f Lipschitz $\Rightarrow V_{F}<\infty$
Moon: ${ }^{`}$ Eorw $|f(x)-F(y)| \leq M|x-y| \quad \forall x, y \in[a, b]$ roze $\quad \forall \Delta$

$$
V_{f}(\Delta) \leqslant M \sum_{i=1}^{n}\left|x_{i}-x_{i-1}\right|=M \cdot|b-a|
$$

f фoajuivns kipavons ozo $[a, b] \Rightarrow \exists g_{T} h:[a, b] \rightarrow \mathbb{R}$ aij\}ovots wore $F=g-h$
2) $\sum n \mu G a k \dot{\eta}$ ouj $k d$ on
[la $\delta \in(0, n)$ kon $x \in[-n, n]$, Өéroupe:

$$
U_{\delta}(x)= \begin{cases}(x-\delta, x+\delta) \cap[-n, n], & \text { av } x \in(-n, n) \\ {[-\pi,-n+\delta) \cup(n-\delta, n),} & \text { ov } x=-\Pi \quad \eta \quad x=\pi\end{cases}
$$

Oewipnpa Il (Jordan)
Eorw $f_{\epsilon} L^{2}[-n, n], x_{0 \in}[-n, n]$ кои ín $\exists \delta_{\epsilon}(0, n)$ wort $\eta \quad f / U \delta(x$. va tival dpafjèvns wimavons.
(roize oxua avió; n.x ozav n f^{\prime} eivar zrnرaüka ouvexn's) Tóte:

$$
\lim _{n \rightarrow \infty} S_{n} f(x)=\frac{f\left(x_{0}^{-}\right)+f\left(x_{0}^{+}\right)}{2}
$$

$\triangle|E Y K P| N H E E \mid \Sigma$

- Ar $X_{0}=-\pi$, tóte $f\left(x_{0}-1\right)$ evrooujue to $f\left(\pi^{-1}\right.$
- Ar $X_{0}=n$, tó $e f\left(x_{0}+\right)$ evvoouje to $f\left((-n)^{+}\right)$
- Ta ópia $f\left(x_{0}{ }^{-}\right), f\left(x_{0}{ }^{+}\right)$unápxouv

Tipioua
Av $f:[-n, n] \rightarrow \mathbb{R}$ tunpazka ouvexis wore va unaipxel
 kain f^{\prime} va éx \quad n ℓ uplkà ópla of $k \dot{\theta} \theta \in \quad x \in[-\pi, n]$. Tore η loxút of $k \dot{\theta} \theta \in \quad x_{0} \in[-n, n]$

Mapaiberpa. Tla inv $f(x)=x, x \in[-\pi, n]$ exoure:

$$
x \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)
$$

H f eivou ouvexijs kar $f^{\prime} \in C^{\prime}([-\pi, \pi])$. To noprojed eqappoj]fou,
Apa $\mu \mathrm{E}$ baion in oxéon * $*$ a éxoupe:

$$
\begin{aligned}
& 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)=\left\{\begin{array}{l}
x, \text { av } x \in(-n, n) \\
0, \text { av } x=-n, \eta \\
\frac{f\left(x_{0}-\right)}{2}+f\left(x_{0}+\right) \\
2
\end{array}=\frac{f(-n)+f(n)}{2}=0\right.
\end{aligned}
$$

Terapen 4112/19
Mänpa 16:
Ito noonjojuevo riinna єiठafe ou:

$$
x \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x) \quad, x \in[-n, n]
$$

kou tiסape ou orjt $\lambda i v e$ oro $\begin{cases}x & , x \in(-n, n) \\ 0, & x=-n \text { ij } x=n\end{cases}$
To oplo סer tivar opoionoppo. θ a $\delta a j \mu e$ ou av anopakpuv θ ajpe ano ta akpa. to óplo ta sivar opoio mopфo Coprió ropqu ajedioy)
3) $0 \mu 010 \dot{\mu} \mu Q \phi \eta$ Eujk $\lambda_{1} \sigma \eta$

Oewonua 2 (Jordan)
Eorw $f:[-\pi, \Pi] \rightarrow \mathbb{R}$ qpajpevns rupavons. Av I $\subset[-n, n]$ k $\lambda \in \in$ oro Sidournpa kal $f \mid I$ ouvexìs (av $-\pi$ i $n \in I$, anouroüre Eninतéov

$$
\text { - } S_{n} f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos (k x)+\beta_{k} \sin (k x)\right)
$$

Tia rejäda n éxoupe rejoidn ravion. Ira axpa "Méфroufe" ariozopa oro 0

Eidikn repinzwon: Eow $f:[-n, n] \rightarrow \mathbb{R}$ ouvexns $\mu \in f(-n)=f(n)$ yia rqv omoia vmaipxe A.C $[-\pi, n]$ memeparpicvo, wore ηf^{\prime} va unapxer oro $[-\pi, r]-A$, va Eival ouvexñs $\epsilon_{k \in i}$ kau va umápxair ra $f^{\prime}(x)$; $F^{\prime}(x+) \forall x \in[-n, n)$ (ràsupika opla) röe η f sival Lipschitz oro $[-n, n]$ वipa фpajuèv kuravons, onȯt $S_{n} f \rightarrow f$ oноі́норфа oro $\quad(\Pi, r]$.
 $\left.C_{\in \in} \in(0,0)\right)$
Y nev úpion: $: \quad a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+\beta_{n}^{2}\right)=\frac{1}{\pi} \int_{-n}^{n} F^{2}(x) d x$
(Parseval)

$$
\propto O X I \text { TIA E EETAIELI }
$$

Aoryon : Av $f:[-\pi, \pi] \rightarrow \mathbb{R}$ ouvexijs $\mu \in f(-n)=f(n)$ kar unajpxer
 очоіриорфа ого $[-n, n]$
 pionpa 15:)
M_{t} bion to θ típnpea 1 (Jordan) oxvig $S_{n} F(x) \xrightarrow{n \rightarrow \infty} f(x), \forall x \in[-n, n]$
H Snf oujediver oroióropф a flati:
Maparnpaipe are: $\left|\alpha_{n} \cdot \cos (n x)+\beta_{n} \cdot \sin (n x)\right| \leqslant\left|\alpha_{n}\right|+\left|\beta_{n}\right| \not \forall_{x \in}[-n, n]$ enions, $a_{n}=n \cdot \beta_{n}, \beta_{n}^{\prime}=-n \cdot a_{n}$
'Apa,

$$
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|\beta_{n}\right|\right)=\sum_{n=1}^{\infty}\left(\frac{\left|a_{n}^{\prime}\right|}{n}+\frac{\left|\beta_{n}\right|}{n}\right) \leqslant
$$

*E Ew xpnolponoinoape $\leqslant\left(\sum_{n=1}^{\infty}\left(\left|a_{n}^{\prime}\right|+\left|\beta_{n^{\prime}}\right|^{\prime}\right)^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}$ ruv sioryza:

$$
(x+y)^{2} \leqslant 2\left(x^{2}+y^{2}\right)
$$

$$
\leqslant\left(2 \sum\left(\left|a_{n}^{\prime}\right|^{2}+\left|\beta_{n}^{\prime}\right|^{2}\right)\right)^{1 / 2} \cdot \frac{\pi^{2}}{6}
$$

$$
\stackrel{\text { Parsevad }}{\leqslant} \leqslant 2\left(\frac{1}{\pi} \int_{-n}^{\pi}\left(f^{\prime}(x)\right)^{2} d x\right)^{1 / 2} \frac{n^{2}}{6}<\infty
$$

Eerpés Fourier orov $L^{2}[-l, l], l>0$

Eowtepico मivóuevo : $\langle f, g\rangle=\int_{-l}^{l} f(x) g(x) d x$

Op Өokavorik $\dot{\eta}$ baion : $\frac{1}{\sqrt{2 l}}, \frac{1}{\sqrt{l}} \cos \left(\frac{\pi}{l} n x\right), \frac{1}{\sqrt{l}} \sin \left(\frac{\pi}{l} n x\right), n \geqslant 1$
Etcai Fourier plas $f_{\epsilon} L^{2}[-l, l]$ Givar η :

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n}{l} n x\right)+\beta_{n} \sin \left(\frac{n}{l} n x\right)\right)
$$

$\mu \in \quad a_{n}=\frac{1}{l} \int_{-n}^{n} F(x) \cdot \cos \left(\frac{n}{l} n x\right) d x \quad, n \in \mathbb{N}$

$$
\beta_{n}=\frac{1}{l} \int_{-n}^{n} f(x) \cdot \sin \left(\frac{n}{l} n x\right) d x, n \in \mathbb{N}^{+}
$$

Ioxuouv avriorolxa θ ewprjpara ònws orov $L^{2}[-\pi, n]$
M.x (Aगікакоs)

$$
\frac{\left(A \lambda_{1 \text { kákos })}\right.}{a_{0}^{2}} 2 \sum_{n=1}^{2}\left(a_{n}^{2}+\beta_{n}^{2}\right)=\frac{1}{l} \int_{-l}^{l} F^{2}(x) d x
$$

Huizovck's kan Juvquizovikés oeppès Fourier

1) $A_{v} f_{\in} L^{2}[-l, \ell]$ Givou apua, róre:

$$
\begin{aligned}
& \beta_{n}=0, \frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{\pi}{l} n x\right) d x \\
& a_{n}=1
\end{aligned}
$$

kal

$$
f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n}{\ell} n x\right)
$$

2] Ar $f_{\in} L^{2}[-l, l] \quad \pi \in p i z \tau \dot{\eta}$, гоं兀є:

$$
a_{n}=0, \quad \forall n \geqslant 1
$$

$$
\beta_{n}=\frac{2}{l} \int_{a}^{l} f(x) \sin \left(\frac{n}{l} n x\right) d x
$$

Kal $\quad f \sim \sum_{n=1}^{\infty} \beta_{n} \sin \left(\frac{n}{l} n x\right) \frac{n \pi}{l} \quad[0, l]$

Mapoyifion otrouv
Tooraon (Ane1 II, b, b入io Nejpenoven, Tpozaon 27.29)
Forw $f_{n}:[a, \beta] \rightarrow \mathbb{R}, n \geq 1$ ako $n o u \theta$ ia ouvaperjoewv wore:
(a) In rapajwiorpn oro $[a, \beta]$
(b) $\exists x_{0 \in}[a, \beta]$ wore to $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$ va unap $x \in s$
$(\gamma) \exists g:[a, \beta] \rightarrow \mathbb{R}$ wort ${ }^{n \rightarrow \infty} f_{n}^{\prime} \rightarrow g$ oноіонорфа
Tore unapxt $f:[a, \beta]$ wort: $f_{n} \rightarrow f$ оиоіонорфа

- F rapajwiorpn

$$
\text { . } f^{\prime}=g
$$

Av f_{n}^{\prime} ouveprjs $\forall n$ zoize:

$$
\begin{aligned}
& f(x)=\int_{x_{0}}^{x} g(t) d t+\lim f_{n}\left(x_{0}\right)
\end{aligned}
$$

Mopiopa: Eorw $f_{n}:[a, \beta] \longrightarrow \mathbb{R}, n \geqslant 1$ ako $a \theta$ ia rapajwjiorpwv ouvaprjoecur wore:
(a) $\sum_{n=1}^{\infty} f_{n}$ oujkdiver $\forall x \in[a, \beta]$ ot pia ouvaipenon f
(b) $\sum_{n=1}^{\infty} f_{n}^{\prime}$ oujкдirer opoió $о р \phi$ а ovo $[a, \beta]$ oz $\mu i a$ ourcipenon g.

Tire ηf eiva napajuyion \% kae $f^{\prime}=g$
$\triangle n \lambda a \delta \dot{\eta}$

$$
\left(\sum_{n=1}^{\infty} f_{n}\right)^{\prime}=\sum_{n=1}^{\infty} F_{n}^{\prime}
$$

$$
\operatorname{Sn}(x)=\sum_{k=1}^{\infty} f_{k}(x)
$$

H MEOOAOL XOPISMOY METABAHTON
 Conov \mathcal{L} jpappukós siapopukós $\tau \in \lambda \in \sigma$ 门̀s, ous peraßanzés x, t) ot xwpia $U \times I \quad \mu \in U$ фpafrévo $(x \in U, t \in I)$

ח.x $\alpha_{u}=u_{t}-k u_{x x}$ q$\quad u_{t t}-c^{2} u_{x x}$
"Mapiotypea: $\mathrm{Na} \lambda u \theta \in i$ тo T/AइT

$$
\begin{array}{ll}
u_{t}=k u_{x x} & (x, t) \in(0, n) \times(0, \infty) \\
u(0, t)=u(n, t)=0, & \forall t \geqslant 0 \\
u(x, 0)=\phi(x) & \forall x \in[0, n]
\end{array}
$$

ous repiniwoets: (i) $\phi(x)=3 \sin (2 x)-5 \sin (10 x)$
(ii) $\phi(x)=x \wedge(\pi-x) \equiv \begin{cases}x, & x \in[0, \pi / 2] \\ n-x, & x \in(\pi / 2, \pi]\end{cases}$

Dion: Bripa 1 Bpionoupe jparpuka avéapenzes λ üGs ens (1) now Exouv en $\mu \circ \rho \phi \dot{\eta}$:-
$u(x, t)=X(x) T(t)$ kal ikavonolaiv us (2), (3)

- еं доире $\quad X(x) T^{\prime}(t)=k x^{\prime \prime}(x) T(t), \forall x \in(0, \pi) \quad \forall t>0$

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}=-\lambda \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& u \in C^{2,1}((0, n) \times(0, \infty)) \\
& \cap C([0, n] \times[0, \infty))
\end{aligned}
$$

Tla ro loxies η _(2) mpente $X(0)=X(\pi)=0$ yari

$$
0=u(0, t)=X(0) T(t) \neq 0
$$

éxoupe λ oinev

$$
\begin{aligned}
& X^{\prime \prime}(x)+\lambda x(x)=0 \\
& T^{\prime}(t)+\lambda k T(t)=0
\end{aligned}
$$

Ioxü ör $\lambda>0$

$$
\begin{aligned}
& \text { Tari } \int_{0}^{l}\left(x(x) x^{\prime \prime}(x)+\lambda x^{2}(x)\right) d x=0 \\
& \Rightarrow \lambda \int_{0}^{l} x^{2}(x) d x=-\int_{0}^{l} x x^{\prime \prime} d x=-\left[x(x) x^{\prime}(x)\right]_{0}^{n}+\int_{0}^{l}\left(x^{\prime}(x)\right)^{2} d x
\end{aligned}
$$

Deurepa 9/12/19
MaïnMa 17:
Aoknon ano nponjoujpero paionpla

$$
\begin{align*}
& u_{t}=k u_{x x} \quad(x, t) \in(0, n) \times(0, \infty)=0 \\
& \begin{array}{llll}
u(0, t)=u(n, t)=0 \quad t \geqslant 0 \quad(2) & & (1) \\
u(x, 0)=\phi(0) T(u)=X(n) T(t)=0
\end{array} \tag{2}
\end{align*}
$$

$$
\phi(x)=3 \sin (2 x)-5 \sin (10 x)
$$

(ii) $\phi(x)= \begin{cases}x, & x \in\left[0, \frac{n}{2}\right] \\ n-x, & x \in\left[\frac{n}{2}, n\right]\end{cases}$

Bripa 1:(1), (2): $u(x, t)=X(x) \cdot T(t)$

$$
X(x) \cdot T^{\prime}(t)=k X^{\prime \prime}(x) T(t) \stackrel{\frac{1}{x \cdot 1}}{\Rightarrow} \frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}=-\lambda
$$

Kaivape סieptivnon kae tioluf ou θ a noénei $\lambda>0$
Títe: $\quad x^{\prime \prime}(x)+\lambda \cdot x(x)=0$

$$
a= \pm i \sqrt{\lambda} \quad]
$$

TEviki λ üon: $\quad X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)$

$$
X(0)=0 \Rightarrow A=0
$$

$$
X(n)=0 \Rightarrow B \sin (\sqrt{\lambda} \pi)=0
$$

$\rightarrow A_{V} B=0$ iot $\epsilon \quad X \equiv 0$, azono رlazi $x \neq 0$. Apa, $\sin (\sqrt{\lambda} n)=0$,
$\delta_{n \lambda a} \delta_{\eta} \sqrt{\lambda} n=n n, n \in \mathbb{N}^{+} \Rightarrow \lambda=n^{2}, n \in \mathbb{N}^{+}$
Oroit $\quad X(x)=B \sin (n x)$

$$
T^{\prime}(t)+\lambda k T(t)=0 \Rightarrow\left(T(t) \cdot e^{\lambda k t}\right)^{\prime}=0 \Rightarrow T(t)=c \cdot e^{-\lambda k t}
$$

- Apa, $\lambda \dot{\sim} \in\left(s: \quad U_{n}(x, t)=e^{-n^{2} k t} \sin (n x), \quad n \in \mathbb{N}^{+}\right.$ (Se xptiaferai na rparijow us oralepés c, B ya ur U_{n})
 brjuaros 1, now va kavonolei eqv apxiky ouvojing

$\Delta n \lambda a \delta \dot{\eta}$, ava]nrajue $A n \in \mathbb{R}, n \in \mathbb{N}^{+}$, wंore η :

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} U_{n}(x, t)
$$

va Exte $u(x, 0)=\phi(x)$
Andaס $\dot{\eta}$

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \cdot \sin (n x)=\phi(x) \stackrel{\text { (i) }}{=} 3 \sin (2 x)-5 \sin (10 x)
$$

Aprei $A_{2}=3, A_{10}=-5, \quad A_{n}=0 \quad n \in \mathbb{N}^{+}-\{2,10\}$
Ө́тоupe: $u(x, t)=3 u_{2}(x, t)-5 u_{10}(x, t)$

$$
=3 e^{-4 k t} \sin (2 x)-5 e^{-100 k t} \sin (10 x)
$$

 архіко́ пров вдица.
$u \in C(\underline{\bar{o}}) \cap C^{2,1}(\underline{0})$
H (1) ikavonoleizou jazi:

$$
\begin{aligned}
u_{t}-k u_{x x} & =3\left(u_{2}\right)_{t}-5\left(u_{10}\right)_{t}-k 3\left(u_{2}\right)_{x x}+k 5\left(u_{10}\right)_{x x} \\
& =3\left(\left(u_{2}\right)_{t-k}\left(u_{2}\right)_{x x}\right)-5\left(\left(u_{10}\right)_{t}-k\left(u_{10}\right)_{x x}\right) \\
& =0
\end{aligned}
$$

$H_{1}(2)$ ikavonoleizan yari:
$u(0, t)=3 u_{2}(0, t)-5 u_{10}(0, t)=0$ kau іно10 u(n,t)=0
Tì $\lambda 0 s, u(x, 0)=3 u_{2}(x, 0)-5 u_{10}(x, 0)=\phi(x)$ anó zqv Eni $\lambda 0 j \dot{\eta}$ zwv ouvze入 $\in \sigma z \dot{\omega}$. $A_{n}, n \in \mathbb{N}^{+}$

Tia to (ii) rípa:
Brima 1: To i $\delta 10$ ue npiv
Brima 2. Ava Jnzavipe $A_{n} \in \mathbb{B}, n \in \mathbb{N}^{+}$wore n u(x,t)=$\sum_{n=1}^{\infty} A_{n} U_{n}(x, t)$
$v a \quad \dot{\in} x \in L \quad u(x, 0)=\phi(x) \quad \forall x \in[0, n]$
$\Delta \eta \lambda a \delta n: \infty, ~$ Aumi Givae n siraurn nas opicape aryu apxri.

Enekteivoupe znv ф oro $[-n, n]$ 位 neprzó tpóno.
Taipvoupe zqv фnep.
H otipai Fourier ins фnep. Eival:

$$
\begin{aligned}
a_{0} & +\sum_{n=1}^{\infty} a_{n} \cdot \cos (n x)+\beta n \cdot \sin (n x) \\
a_{n}= & \frac{1}{\pi} \int_{-n}^{n} \phi_{n \in p}(x) \cdot \cos (n x) d x=0 \\
\beta_{n}= & \frac{1}{n} \int_{-\pi}^{\pi} \phi_{n \in \rho \cdot}(x) \cdot \sin (n x) d x=\frac{2}{n} \int_{0}^{\pi / 2} \phi(x) \cdot \sin (n x) d x \\
\frac{n}{2} \beta_{n} & =\int_{0}^{\pi} x \sin (n x) d x+\int_{n / 2}^{n / 2}(n-x) \cdot \sin (n x) d x \\
y=n-x & \int_{0}^{n / 2} x \sin (n x) d x+\int_{0}^{n / 2} y \sin (n n-n y) d y \\
& =\left(1+(-1)^{n+1}\right) \int_{0}^{n / 2} x \sin (n x) d x
\end{aligned}
$$

- n ápuos $\Rightarrow \beta_{n}=0$
$n=2 v+1, v \in \mathbb{N}$. Tort:

$$
\begin{aligned}
& =2 v+1
\end{aligned} \quad \begin{aligned}
\frac{n}{2} \beta_{n} & =2\left[-\frac{n}{2} \frac{\cos \left(n \frac{n}{2}\right)}{n}+\int_{0}^{n / 2} \frac{\cos (n x)}{n} d x\right] \\
& =\frac{2}{n}\left[\frac{\sin (n x)}{n}\right]_{0}^{\pi / 2}=\frac{2}{n^{2}} \sin \left(\frac{n n}{2}\right)=\frac{2}{n^{2}}(-1)^{v} \\
\Rightarrow \beta 2 x+1 & =\frac{4}{\pi}(2 v+1)^{2} \\
& (-1)^{2}
\end{aligned}
$$

H фosp Eivan фpaffievns kujavons (oix Gival Lipschitz) ouvexn's oro $[-n, n]$ kou фrep. $(-n)=$ фnep. (n)
Apa, $\phi_{n t e .}(x)=\sum_{v=0}^{\infty} \beta_{2 v+1} \sin ((2 v+1) x) \quad \forall x \in[-n, n]$ kan η oujkdion eys otepas Eivan oproiópopфy oro $[-n, n]$
Oécoupe roinov: $u(x, t)=\sum_{v=0}^{\infty} \beta_{2 v+1} \cdot U_{2 v+1}(x, t)$

$$
=\frac{4}{\pi} \sum_{v=0}^{v=0} \frac{(-1)^{v}}{(2 v+1)^{2}} e^{-(2 v+1)^{2} k t} \sin ((2 v+1) x)
$$

Hu Givau kàà opiopèvn fazi: $\sum_{v=0}^{\infty}\left|\beta_{2 v+1} U_{2 v+1}(x, t)\right| \leqslant \frac{4}{\Pi} \sum_{v=0}^{\infty} \frac{1}{(2 v+1)^{2}}<\infty$
Bripa 3: H u $\lambda \dot{v} e \mathrm{e}$ to MAET
H oeipà now opifg eqv u, oujkitive oroióropфa ozo ō. (frazi $\sum_{v=0}^{\infty} \sup _{x \in-0}\left|\beta_{2 v+1} \cdot U_{2 v+1}(x, t)\right| \leq \frac{\left.4 \sum_{v=0}^{\infty} \frac{1}{n}<\infty \quad(B-w)\right)}{(2 v+1)^{2}}$
Kai ol opol ens tivou ouvextis ouvapriots
Apa, ú C($\overline{0})$
$\Gamma_{1 a}$ in (2):

- $u(0, t)=u(\pi, t)=0 \quad$ aqou $\quad u n(0, t)=u_{n}(\pi, t)=0 \quad \forall n$

「1a $\operatorname{\tau nv}$ (3):

$$
\text { -u(x,0) } \sum_{v=0} \beta_{2 x+1} \cdot \sin ((2 v+1) x)=x \wedge(n-x)=\phi(x) \quad \forall x \in[0, n]
$$

Ta rqu (1):
Ioxupiopos: $U_{t}, U_{x}, U_{x x} \in C(0)$ kan ol napájwjoi avzoi npokinzouv伦 napafijion ópo npos opo.
 $\forall 0<\varepsilon<M$

$\overline{\bar{O}} \varepsilon_{1} M$ jari avin woizas $\mu \in \sum_{\eta} \sum_{v=0}^{\infty}(-1)^{v} e^{-(2 x+1)^{2} k t} \sin ((2 v+1) x)(-k)$
Eфарие foupe kpiejpio Weierstrass (B-w)

$$
\sum_{v=0}^{\infty} \sup _{(x, t) \in \bar{o}_{\varepsilon, M}}\left|e^{-(2 v+1)^{2} k t} \sin ((2 v+1) x)\right| \leqslant \sum_{v=0}^{\infty} e^{-(2 v+1)^{2} k \varepsilon}<\infty
$$

(oidoupe va nápoupe eqvanozzaon e oro xiupo, jazi סlapopereica of avró to Bripo δ ev da eixafe oujedion zns otipois)

To is10 kar η otepai rns u. Apa, η Ut unajpxer kae npowinzel He napafiufion ens otipa's, ipo npos opo.
Ano ra rapanaveu, $\sum_{v=0}^{\infty} \beta_{2 v+1} \partial t U_{2 v+1}(x, t)$ oujk $\lambda_{i v e r}$ opoióropфa ozo $\overline{\mathrm{O}}_{\varepsilon, \mu}$

$$
\left(0=\bigcup_{0<\varepsilon \angle M} \underline{o} \varepsilon, M .\right) \text { Entzan ozi: } U_{t \in} C(0)
$$

'Opora avzuerwnifoupe kal zo $u_{x}, u_{x \times}$ I
 तolit inv (1) fraii:

$$
\begin{aligned}
U_{t}-k U_{x} & =\sum_{v=0}^{\infty} \beta_{2 v+1}\left(\partial t U_{2 v+1}(x, t)-k \partial x x U_{2 v+1}(x, t)\right) \\
& =\sum_{v=0}^{\infty} \beta_{2 v+1} \cdot 0=0
\end{aligned}
$$

Teraprn 11/12/19
MiӨnиа 18:
ПAPATHPHEEI工

1) 0 . apı $\theta \mu$ oi $\lambda \subset \mathbb{R}$, $\dot{\omega} \sigma \tau \epsilon$ то про́b $\lambda n \mu a$

$$
\begin{aligned}
& X^{\prime \prime}(x)=\lambda X(x) \quad \forall x \in(0,0) \\
& X(0)=X(0)=0
\end{aligned}
$$

 18icouvoipryón
 va kàvaufe to $\epsilon \xi_{r i s: ~}^{\text {v }}$
$A_{v} \lambda=0$ toze $X(x)=A x+B$

$$
\left.\begin{array}{l}
X(0)=0 \Rightarrow B=0 \\
X(\pi)=0=A_{\Pi} \Rightarrow A=0
\end{array}\right\} X \equiv 0 \quad \text { ATOMO }
$$

Av $\lambda<0$. Eorcu $a=-\sqrt{-\lambda}$

$$
\begin{aligned}
& X(x)=A \cdot e^{-a x}+B \cdot e^{a x} \\
& 0=X(0)=A+B \Rightarrow B=-A \\
& 0=X(n)=A \cdot e^{-a n}-A e^{a n}=A e^{-a n}\left(1-e^{2 a n}\right) \\
& \Rightarrow e^{2 a n}=1 \Rightarrow a=0 \quad \text { ATon0 }
\end{aligned}
$$

Maparnenon y 子a env прообо:

- Orav exoupe $y^{\prime}(t)+a(t) y(t)=0$ rore eninejfw va in duow ws јрариiкi rae oxt ws xupiJopevew pezabinziv.
In $\lambda a \delta \dot{n}$, raiplu odokdnpuzeró napa jovza kal exw. $\left(e^{a(t)} y(t)\right)^{\prime}=0$
Aornon (6 ano env ropajpapo 4.1 - Strauss)
$\mathrm{Na} \delta_{\text {eix }}$ ei ór ro npó banfa ** Exte änefes λ úoes.
(1) $t u t=u \times x+2 u \quad \forall(x, t) \in(0, n) \times(0, \infty)\}$
(2) $u(0, t)=u(0, t)=0$
(3) $u(x, 0)=0$

תion：Uäxvoupte u ens roọфns $u(x, t)=X(x) T(t)$ na ikavonolti tus（1），（2）：

$$
t X T^{\prime}=X^{\prime \prime} T+2 T X \Rightarrow\left(\frac{T^{\prime}(t)}{T(t)}-2=\frac{X^{\prime \prime}(x)}{X(x)}\right)=-\lambda
$$

Kal enions npènel $X(0)=X(n)=0$ द Eסw jpaqaspe：Entioǹ
 \rightarrow Tus Esfraoks dea payt arant Kara ra juwora，nepintwoténet $\lambda>0$ ．
en δE^{3} i pridor סw Ejaprazan ano ro t rou to apiorepo万rv ε \}aprazan ano x ，zort
$X^{\prime \prime}(x)+\lambda X(x)=0 \Rightarrow X(x)=A \cos (\sqrt{\lambda x})+B \sin (\sqrt{\lambda} x) n$ naponave loúrura 100 za， $X(0)=0 \Rightarrow A=0$

$$
\begin{aligned}
& x(0)=0 \Rightarrow A=0 \\
& 0=x(\pi)=B \sin (\sqrt{\lambda} \pi) \stackrel{B \neq 0}{\Rightarrow} \sqrt{\lambda} \pi=v \pi, v \in \mathbb{N}^{+}
\end{aligned}
$$ le ria oral epa．

$$
\Rightarrow \lambda=v^{2}, v \in \mathbb{N}^{+}
$$

$\Delta \epsilon$ xperajfzan va éjnjú nus
＊$x t^{\lambda-3} \rightarrow$ bprica zov onordnewzico napajouza

$$
t T^{\prime}(t)+(\lambda-2) T(t)=0 \stackrel{x t}{\Rightarrow} t^{\lambda^{-2}} T^{\prime}(t)+(\lambda-2) t^{\lambda-3} T(t)=0
$$

$$
\left(t^{\lambda-2} T(t)\right)^{\prime}=0 \Rightarrow T(t)=c \cdot t^{2-\lambda}, c \in \mathbb{R}
$$

Apa λ úoels：
$u(x, t)=t^{2-\lambda} \sin (\sqrt{\lambda} x), \quad \mu \in \quad \lambda=v^{2}, v \in \mathbb{N}^{+}$
$0 \lambda \in s$ ol $u(x, t)=c \cdot t \sin x$
Tlari прасicurt auró；
Irnv，$U_{v}(x, t)=t^{2-\lambda} \sin (\sqrt{\lambda} x)$ bajaupe us

Miws bpricape ór θ a
moddandaviocupe $\mu \in$ $t^{\lambda-3}$ ；
－ $\operatorname{\Delta iarp} \dot{\omega} \mu \in t \mathrm{kal}$ Exw：$T^{\prime}(t)=\frac{\lambda-2}{t} \tau(t)$ Apa $\mu=e^{\int \frac{\lambda \cdot 2}{t}}$
－Auzó ro μ 就 eiva －odordne，rapájovzas
$\left.\lambda=4: u=t^{-2} \sin (2 x)\right]$ Aurès wau òtes ol unòdolnts
$\lambda=9: u=t^{-7} \sin (3 x)$ ani $\in \delta \dot{\omega}$ con cärw anoppinzovza Siou ઈe kownoloóv en ouvOicu（3） ＂Xa入áve＂oto $t=0$

$$
\begin{array}{ll}
U_{t t}=4 U_{x x} & (x, t) \in(0, l) \times(0, \infty) \\
U_{x}(0, t)=U_{x}(l, t)=0, & \forall t>0 \\
u(x, 0)=\cos \left(\frac{2 n x}{l}\right)+1 & , \forall x \in[0, l] \\
U_{t}(x, 0)=\cos ^{2}\left(\frac{3 n x}{l}\right) & \forall x \in[0, l] \tag{4}
\end{array}
$$

Nion: Bripa 1 Nüon_rwv_(1), (2) rns popфn’s $X(x) T(t)$

$$
\cdots \quad \frac{T^{\prime \prime}}{4 T}=\frac{x^{\prime \prime}}{x}=-\lambda
$$

Enions, $\left.\begin{array}{rl}U_{x}(0, t) & =x^{\prime}(0) T(t)=0 \\ U_{x}(l, t) & =x^{\prime}(l) \cdot T(t)=0\end{array}\right\} \stackrel{T \neq 0}{\Rightarrow} \quad x^{\prime}(0)=x^{\prime}(l)=0$

$$
\begin{aligned}
& \text { TpėாG } \quad \lambda \geqslant 0 \text { Trazi; } \\
& -x^{\prime \prime}=\lambda x \Rightarrow \lambda \int_{0}^{l} x^{2}(x) d x=-\int_{0}^{l} x^{\prime \prime}(x) X(x) d x=-\left.x^{\prime} x\right|_{0} ^{l}+\int_{0}^{l}\left(x^{\prime}(x)\right)^{2} d x= \\
& X^{\prime}(0)=x^{\prime}(c)^{\prime 0} l \\
& \stackrel{\downarrow}{=} \int_{0}^{l}\left(x^{\prime}(x)\right)^{2} d x \geqslant 0 \Rightarrow \lambda \geqslant 0
\end{aligned}
$$

Núvers pe $\lambda=0: X^{\prime \prime}(x)=0 \Leftrightarrow X(x)=A x+B \Leftrightarrow A=0$
'Apa $X(x)=B$
Opoia $T^{\prime \prime}(t)=0 \Rightarrow T(t)=\Gamma_{0} t+\Delta_{0}$

- Apa $\lambda \dot{\sigma} \sigma \mathrm{s} \quad u(x, t)=x \cdot T=\Gamma_{0} t+\Delta_{0}, \Gamma_{0} \Delta_{0} \mathbb{R}$
\ujecs re $\lambda \geqslant 0: \quad X^{\prime \prime}(x)+\lambda x(x)=0 \Rightarrow X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)$

$$
\begin{aligned}
& 0=x^{\prime}(0)=B \cos (0)=B \Rightarrow B=0 \\
& 0=x^{\prime}(l)=-A \sqrt{\lambda} \sin (\sqrt{\lambda} l) \stackrel{A \neq 0}{\Rightarrow} \sin (\sqrt{\lambda} l)=0 \Rightarrow \sqrt{\lambda} l=v \pi, v \in \mathbb{N}^{+}
\end{aligned}
$$

Isloupies o1: $\lambda_{v}=\left(\frac{v \pi}{l}\right)^{2}$
NuoGs: $X_{v}(x)=\cos \left(\frac{v \pi}{l} x\right), v \in \mathbb{N}^{+}$

$$
T^{\prime \prime}(t)+4 \lambda T=0 \Rightarrow T(t)=\Gamma \cos (2 \sqrt{\lambda} t)+\Delta \sin (2 \sqrt{\lambda} t)
$$

Nöecs jivópevo o1: $\quad U_{v}(x, t)=\left(\sqrt{v} \cos \left(\frac{2 v \pi}{l} t\right)+\Delta_{v} \sin \left(\frac{2 v \pi}{l} t\right)\right) \cos \left(\frac{v \pi}{l} x\right)$ $\mu \in \quad v \in \mathbb{N}^{+}$

Bripa 21: Ava]nrajue $\left[v, \Delta_{v}, v \in \mathbb{N}\right.$ wore η :

$$
u(x, t)=5 t+\Delta_{0}+\sum_{v=1}^{\infty} u_{v}(x, t)
$$

va ikavonoliti us (3), (4)

$$
\begin{align*}
& u(x, 0)=\Delta_{0}+\sum_{v=1}^{\infty} \Gamma_{v} \cos \left(\frac{v n}{l} x\right)=1+\cos \left(\frac{2 n}{l} x\right) \Rightarrow\left\{\begin{array}{l}
\Delta_{0}=1 \\
\Gamma_{v}= \begin{cases}1, & v=2 \\
0, & v \neq 2\end{cases} \\
u_{t}(x, 0)=\Gamma_{0}+\sum_{v=1}^{\infty} \Delta_{v} \frac{2_{v n}}{l} \cos \left(\frac{v n}{l} x\right) \quad(x)
\end{array}\right.
\end{align*}
$$

Ioxúa n tavioinra: $\cos ^{2}\left(\frac{3 n x}{e}\right)=\frac{1}{2}+\frac{1}{2} \cos \left(\frac{6 n x}{e}\right)$
(4)

Өетоиие $u(x, t)=\frac{1}{2} t+1+2 \cos \left(\frac{4 n}{l} t\right) \cos \left(\frac{2 n x}{l}\right)+\frac{1}{24 n} \sin \left(\frac{12 n}{e} t\right) \cos \left(\frac{6 n x}{l}\right)$
Bripa 3 u nou bprika H mapanàv, λ ùve zo npób $\lambda n \mu a$.
Aury fival ouvexins ozo o kou Eival' $C^{2,2}$ (0)

- Tia $t=0$ icavonaitizal n apxirì ouvirikn (3)
 kas y ouvgrixn (4)

Aornon 1 (3.19, 3.20)
「ра́ure of $\mu \circ \rho \phi \dot{\eta}$ - otpás en λ úon zn :

$$
u_{t}=k U_{x x} \quad(x, t) \in \quad(0, l) \times(0, \infty)
$$

$$
u(x, 0)=\varphi(x) \quad x \in[0, l], G \text { ouvexins фpaffievns rifeavons }
$$

M_{E} as $\epsilon_{j}^{\dot{j}}$ n's ouvoplakés ouvorikes:
(i) $u(0, t)=u(l, t)=0 \quad \forall t>0$
$Y_{n o \theta \text { érafe }}$ oे $\varphi(0)=\varphi(l)=0$
(ii) $U_{x}(0, t)=U_{x}(l, t)=0$

Nuon:

$$
\begin{aligned}
& \text { B=n } u(x, t)=X(x) \cdot T(t) \\
& X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t) \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}=-\lambda
\end{aligned}
$$

ponws npiv
$\prod_{p \in ̇ \pi} \quad \lambda>0 \ldots \quad \lambda_{v}=\left(\frac{v \pi}{l}\right)^{2}, v \in \mathbb{N}^{+}$

$$
X(x)=B \sin (\sqrt{\lambda v} x)
$$

$$
T^{\prime}(t)+\lambda_{k} T(t)=0 \Rightarrow T(t)=c \cdot e^{-\lambda k t}
$$

niodess $e^{-k \lambda v t} \sin \left(\frac{v \pi}{l} x\right)=U_{v}(x, t), v \in \mathbb{N}^{+}$
Avajnrojue $C_{v \in \mathbb{R}}$ wore $\eta \quad u(x, t)=\sum_{v=1}^{\infty} c_{v} U_{v}(x, t)$ va LKavonole' env $u(x, 0)=\phi(x)$
$\Delta \eta \lambda a \delta_{n}$,

$$
\sum_{v=1}^{\infty} C_{v} \sin \left(\frac{v_{n}}{l} x\right)=\phi(x) \quad \forall x \in[0, l]
$$

- ewpoüre env repirrin enènzaon ins ϕ, èozw dnee.

H фnee. $\in C([-l, l])$ Hari $\phi(0)=0$
Enions, $\phi(-l)=\phi(l)=0$ kole ϕ nef. ϕ pafreivns rifeavons

- Apa $\phi_{n \in \rho .}(x)=\sum_{v=1}^{\infty} \beta_{n} \sin \left(\frac{v \pi}{l} x\right), \quad \beta_{v}=\frac{1}{l} \int_{-l}^{l} \phi_{n \in \rho} \cdot \sin \left(\frac{v \pi}{l} x\right) d x$

$$
=\frac{2}{l} \int_{0}^{l} \phi \sin \left(\frac{v \pi}{l} x\right) d x
$$

H ofpai oufdive opoiónopda ornv \& (θ ciipnuea Jordan) Eriaejoufes doinov $C_{v}=\beta_{v}$ коe Oézoufee.

$$
u(x, t)=\sum_{v=1}^{\infty} \beta_{r} e^{-k \lambda v t} \sin \left(\frac{v \pi}{l} x\right)
$$

 $\mu \in$ zo exiripio Abel!

Aeviepa 161 2119
Mänرа 19:

Na jpï ψ ere ol otipai, n jion rou npolanjuaros:

$$
\begin{array}{ll}
u_{t}=k u_{x x} \quad, \quad x \in(0, y) \quad t>0 \\
u(x, 0)=\varphi(x) \leftarrow \text { ouvexn's, фpafuèvns küpavens }
\end{array}
$$

(i) $u(0, t)=u(l, t)=0 \quad \forall t>0$
$v_{\text {no }}$ czoupe ore $\varphi(0)=\varphi(l)=0$
(ii) $u_{x}(0, t)=u_{\times}(l, t)=0$

Moon: (i) $\frac{\text { Bripal }}{\text { Moupès }} \quad \lambda_{v}=\left(\frac{v_{n}}{l}\right)^{2}, v \in \mathbb{N}^{+}$
Siocurápenon $X_{v}(x)=\sin \left(\sqrt{\lambda_{v}} x\right), v \in \mathbb{N}^{+}$
Aúas jivérevo:

$$
\frac{e^{-k \lambda_{v} t}}{T(t)} \frac{X_{v}(x)}{X(x)}
$$

Brina 2: $u(x, t)=\sum_{v=1}^{\infty} C_{v} \cdot e^{-k \lambda v t} \sin \left(\frac{v n}{l} x\right) \quad \otimes$
$C_{v}=; \quad \rightarrow A_{n 0} \theta$ cuipnua Jordan
$I_{0 x v i t}^{\infty} \quad \phi(x)=\sum_{v=1}^{\infty} \beta_{v} \cdot \sin \left(\frac{v n}{l} x\right) \quad \forall x \in[0, l] \quad \mu \epsilon \quad \beta_{v}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \left(\frac{v n}{l} x\right) d x$
Eruijјаuнe $C_{v}=\beta_{v}$
H oespa oinv (*) oujkliva quoiónopфa oeo $[0, l] \times(0, \infty)$
Kpirio10 Abel: $A_{v} f_{n}, g_{n}: X \rightarrow \mathbb{R}$ ouvapriotes $\forall_{n} \geqslant 1$ kas@ $\sum_{n=1}^{\infty} f_{n}$ oufk λ ive opoiopooфа огo X, (b) $g_{n}(x) \geqslant g_{n+1}(x) \quad \forall n, x$
(8) $\exists M<\infty:\left|g_{n}(x)\right| \leqslant M \quad \forall_{n, x}^{\prime}$ ioze anio as oxious @ (b), (d) еххоиє:

$$
\sum_{n=1}^{\infty} f_{n} g_{n} \text { oujklive oноі் }
$$

Eqapuijoupe to rpieripio Abel $\mu \in: \quad X=[0,0] \times[0, \infty)$ $f_{n}(x, t)=C_{n} \cdot \sin \left(\frac{n n}{l} x\right)$ кае $g_{n}(x, t)=e^{-k \lambda_{n} t}$

вора 3
Aro ra rafanaviu \Rightarrow kàai opopicun kou ouvexnjs, kaza ra frweza ue $C^{\infty}((0,1) \times(0, \infty))$ (Fani ro "rpik" ue to $\left.\varepsilon\right)$; rainnpo 16; hai düva ro repóbdnна.

$$
\text { (ii) } \frac{\delta^{\prime} X^{\prime \prime \prime}(x)}{X(x)}=\frac{T^{\prime}(l)}{T(t)}=-\lambda
$$

 $X(x)=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x \quad$ oedi反a 94 (raci $i x \omega$ as
Mpine $\quad x^{\prime}(0)=0, x^{\prime}(l)=0$ oedida 94 (yau x x as
$x^{\prime}(0)=x^{\prime}(l)=0$

$$
\begin{aligned}
& \quad B \sqrt{\lambda}=0 \stackrel{\lambda 1}{\Rightarrow} B=0 \Rightarrow X(x)=A \cos \sqrt{\lambda} x \\
& 0=x^{\prime}(l)=A \sin (\sqrt{\lambda} l) \sqrt{\lambda} \underset{\substack{A \neq 0 \\
A>0}}{\Rightarrow} \sin (\sqrt{\lambda} l)=0 \Rightarrow \sqrt{\lambda} l=v \pi \Rightarrow \lambda_{v}=\left(\frac{v n}{l}\right)^{2}, \\
& v \in N^{+}
\end{aligned}
$$

\Longrightarrow Múels: $\quad U v(x, t)=e^{-k \lambda v t} \cos \left(\frac{v \pi}{l} x\right) \quad v \in \mathbb{N}^{+}$

$$
\begin{aligned}
\lambda=0: & X^{\prime \prime}(x)=0 \Rightarrow X(x)=A x+B \\
& X^{\prime}(l)=X^{\prime}(0)=0 \Rightarrow A=0
\end{aligned}
$$

Nion $\quad u_{0}(x, t)=1$
Bripa 2: Avafneoúps oralepés wore η :
$\theta_{\text {exoune }} \quad \phi(x)=A+\sum_{v=1}^{\infty} C_{v} \cos \left(\frac{v \pi}{l} x\right) \quad \forall x \in[0, l]$
Enekzeivoure env ϕ of $\phi_{\text {aft. }}(x)=\phi(|x|) \quad \forall x \in[-l, l]$
H фapr. tival ouvexijs, фpafrèvns kupravons.

$$
\begin{aligned}
& \phi_{\text {rae. }}(x)=\frac{u_{0}}{2}+\sum_{v=1}^{\infty} a_{v \cdot} \cdot \cos \left(\frac{v n}{l} x\right) \text { ónov: } \\
& Q_{v}=\frac{1}{l} \int_{-l}^{l} \phi_{a e r}(x) \cos \left(\frac{v n}{l} x\right) d x=\frac{2}{l} \int_{0}^{l} \phi(x) \cdot \cos \left(\frac{v \pi}{l} x\right) d x
\end{aligned}
$$

Enidejoure oinv * $A=\frac{a_{0}}{2}, C_{v}=\operatorname{ar} \quad \forall n \in \mathbb{N}^{+}$ Bина 3
H ogpa oinv ** oujkaiva opoiórop ϕ a oco $[0, \ell] \times[0, \infty)$ (θ. Abel), Eron η u Eivar kadà oplopévn nou ouvexris,

(i) $\Sigma \tau_{0}$ (i) Ynapxes $c>0$ wore: $|u(x, t)| \leq c \cdot e^{-\frac{k \pi^{2}}{e^{2}} t}$
(ii) Ito (ii). Ynapxa c>0 wort: $\left|u(x, t)-\frac{1}{l} \int_{0}^{l} \phi(x) d x\right| \leqslant c \cdot e^{-\frac{k \pi^{2} t}{l^{2}}}, \forall t>0, \forall x \in[0, l]$

Nion:
(i) $u(x, t)=\sum_{v=1}^{\infty} c_{v} \cdot e^{-k \lambda v t} \sin \left(\frac{v \pi}{l} t\right), c_{v}=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\frac{n \pi}{l} x\right) d x$

$$
\begin{aligned}
\stackrel{(I)}{\Rightarrow}|u(x, t)| & \leq 2 M \sum_{v=1}^{\infty} e^{-k \lambda_{v} t} \\
& =2 M e^{-k \lambda_{1} t} \sum_{v=1}^{\infty} e^{-k\left(\lambda_{v}-\lambda_{1}\right) t} \quad(I)\left(\Rightarrow|\omega| \leq \frac{2}{l} \int_{0}^{l} M d x=2 M\right.
\end{aligned}
$$

$$
\lambda_{v}-\lambda_{1}=\left(\frac{n}{l}\right)_{\infty}^{2}\left(v^{2}-1\right) \geqslant\left(\frac{n}{l}\right)^{2} v
$$

Apa, $\quad \sum_{v=1}^{\infty} e^{-k\left(\lambda_{v}-\lambda_{1}\right) t} \leqslant \sum_{v=1}^{\infty} e^{-k\left(\frac{n}{l}\right)^{2} v t}$
Tia $t \geqslant 1: ~ \odot \leqslant \sum_{v=1}^{\infty} e^{-k\left(\frac{n}{e}\right)_{v}} \stackrel{v=1}{=} M_{1}$
-Apa, $|u(x, t)| e^{k d_{1} t} \leqslant 2 M M_{1}$, , ра $t \geqslant 1, x \in[0, l]$
Enions, vnapx $\quad M_{2}<\infty:|u(x, t)| e^{k a_{1} t} \leqslant M_{2} \quad \forall t \in[0,1]$ $x \in[0, \ell]$
Eni $\lambda \dot{\text { jfoume }} \quad c=\max \left\{2 \mu \mu_{1}, \mu_{2}\right\}$

TexvLkés anhonoino \quad s $\$ 5.6$ strauss)
11 MéQo $\delta a s$ petazónions ruvv $\delta \in \delta o \mu \in ̇ v \omega v$
Mapaseifua
Eto npȯanца: $U_{t t}=c^{2} U_{x x}+F(x, t), \forall(x, t) \in 0$

$$
\begin{equation*}
\underline{O}=(0, l) \times(0, \infty) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& u(0, t)=h(t) \quad \text { (2) } \\
& u(l, t)=k(t) \quad \text { (3) } \\
& u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x) \tag{4}
\end{align*}
$$

Өewpoupe inv $a(x, t)=\left(1-\frac{x}{l}\right) h(t)+\frac{x}{l} k(t)$ kal eqv

$$
v(x, t)=u(x, t)-a(x, t)
$$

Töte: $V_{t t}-c^{2} V_{x x}=f(x, t)-\left(a_{t t}-c^{2} a_{x x}\right)=f(x, t)-a_{t t}(x, t)$

$$
\begin{aligned}
& v(0, t)=u(0, t)-h(t)=0 \\
& v(l, t)=0 \\
& v(x, 0)=u(x, 0)-\left(1-\frac{x}{l}\right) h(0)-\frac{x}{l} k(0) \\
& I^{\prime} \\
& \phi(x) \\
& v_{t}(x, 0)=u_{t}(x, 0)-\left(1-\frac{x}{l}\right) h^{\prime}(0)-\frac{x}{l} k^{\prime}(0) \\
& \psi(x)
\end{aligned}
$$

Aoknón 5.6.9 (Strauss)

$$
\begin{aligned}
& U_{t t}=9 U_{x x} \quad(x, t) \in(0,1) \times(0, \infty) \\
& u(0, t)=h \\
& u(1, t)=k \\
& u(x, 0)=0, U_{t}(x, 0)=0
\end{aligned}
$$

Өéroupe $v(x, t)=u(x, t)-(k x+(1-x) h)$
$H \quad v$ dúver to

$$
\begin{aligned}
& V_{t t}=9 V_{x x} \quad V(1, t)=0 \\
& v(0, t)=0, \quad V(1-x) h) \\
& v(x, 0)=-(k x+(1, y \\
& V t(x, 0)=0
\end{aligned}
$$

Bpiokoupe ou: $v(x, t)=\sum_{v=1}^{\infty} \frac{2}{n \pi}\left(k(-1)^{n}-h\right) \cos (3 n n t) \sin (n n x)$
(2) Aqaipeon Eivikns λ uons

Eto npóbanua (1) - (4) no naivw, av:

$$
f(x, t)=f(x), \quad h(t)=h, \quad k(t)=k
$$

Inzajue $U(x)$ dion rou. Anतaס η :

$$
\begin{aligned}
-c^{2} U^{\prime \prime}(x) & =f(x) \\
U(0) & =h \\
U(l) & =k
\end{aligned}
$$

Avajnew Auon na $\frac{\delta(6)}{t}$ e Ezapraral anó ro t, Enda反n ouv. Slap. $\varepsilon \xi_{1} \sigma$.

Tore $\eta \quad v(x, t)=U(x, t)-U(x)$ गiver to mpó banmal.

$$
\begin{aligned}
& V_{t t}-c^{2} V_{x x}=f(x)-\left(U_{t t}-c^{2} U_{x x}\right)=0 \\
& v(0, t)=0 \quad v\left(l_{,} t\right)=0 \\
& v(x, 0)=\phi(x)^{\prime}-U(x) \\
& V_{t}(x, 0)=\psi(x)
\end{aligned}
$$

Aoknon 5.4.1 (Strauss)

$$
\begin{align*}
& U_{t t}=c^{2} U_{x x}+k \tag{1}\\
& U(x, 0)=0 \tag{2}\\
& U_{t}(x, 0)=v \tag{3}\\
& U(0, t)=U_{x}(l, t)=0 \tag{4}
\end{align*}
$$

Mion: Uaxvoufe λ ion $a(x)$ iwv (1), (4)

$$
\left.\begin{array}{l}
0=c^{2} a^{\prime}(x)+k \\
a(0)=0 \\
a^{\prime}(l)=0
\end{array}\right\} \Rightarrow a(x)=\frac{k l}{c^{2}} \times\left(1-\frac{x}{2 l}\right)
$$

Өंгоupe $\quad v(x, t)=u(x, t)-a(x)$
H v גúve to rpóbanpa:

$$
\begin{aligned}
& V_{t t}-c^{2} V_{x x}=0 \\
& v(0, t)=0 \\
& V_{x}(0, t)=0 \\
& v(x, 0)=-a(x) \\
& V_{t}(x, 0)=v
\end{aligned}
$$

§5.6 Strouss (Adikaikos 3.4).

$$
\begin{aligned}
& U_{t}=k U_{x x}+f(x, t) \\
& u=X(x) T(t) \\
& X_{x}(x)=\cos (
\end{aligned}
$$

Aornon 5.6.5 (Strauss)

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}+e^{t} \sin (5 x) \quad,(x, t) \in(0, \pi) \times(0, \infty) \\
& u(0, t)=u(n, t)=0 \\
& u(x, 0)=0 \\
& u_{t}(x, 0)=\sin (3 x)
\end{aligned}
$$

Terapry 18/12/19
Maitnua 20:
Aerinen 5.6 .5 (Strauss)

$$
\begin{array}{ll}
u_{t t}=c^{2} u_{x x}+e^{t} \sin (5 x) & , x \in[0, n], t>0 \\
u(0, t)=u(n, t)=0 & , t \geqslant 0 \\
u(x, 0)=0, \quad u t(x, 0)=\sin (3 x), \quad x \in[0, m]
\end{array}
$$

Muon: \quad lia to $X^{\prime \prime}(x)=\lambda x(x)$ isioupes of $\lambda_{n}=n^{2}, n \in \mathbb{N}^{+}$

$$
X(0)=X\left(n_{1}\right)=0 \quad \text { סioovvaprijoas of } \quad X_{n}(x)=\sin (n x)
$$

(Exaupe ropadeive kanola Рripara)
Avajntaipe λ ion:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) X_{n}(t)
$$

Eגnijovzas òs η rapajujpion fiveral opo npos ipo
θ eो

$$
\begin{aligned}
& \theta e \lambda \text { vut. } \\
& \sum_{n=1}^{\infty} a_{n}^{\prime \prime}(t) \sin (n x)=c^{2} \sum_{n=1}^{\infty} a_{n}(t)\left(-n^{2} \sin (n x)\right)+e^{t} \sin (5 x) \\
& \sum_{n=1}^{\infty}\left(a_{n}^{\prime \prime}(t)+c^{2} n^{2} a_{n}(t)\right) \sin (n x)=e^{t} \sin (5 x) \\
& \Leftrightarrow a_{n}^{\prime \prime}(t)+c^{2} n^{2} a_{n}(t)=e^{t} 1_{n=5} \\
& 0=u(x, 0)=\sum_{n=1}^{\infty} a_{n}(0) \sin (n x) \Rightarrow a_{n}(0)=0 \quad \forall n \geqslant 1 \\
& 0, \\
& \sin (3 x)=\sum_{n=1}^{\infty} a_{n}^{\prime}(0) \sin (n x) \Rightarrow a_{n}^{\prime}(0)=1_{n=3}
\end{aligned}
$$

Ar fer fixape $3 x$ rau eixafe x, θ a enpene na zyr avaduooufe of oepà Fourier
Tia $n \neq 3,5$:

$$
\begin{aligned}
& \left.a_{n}^{\prime \prime}(t)+c^{2} n^{2} a_{n}(t)=0\right\} \quad a_{n}(t)=A_{n} \cdot \cos (c n t)+B_{n} \cdot \sin (c n t) \\
& a_{n}(0)=a_{n}^{\prime}(0)=0 \\
& a_{n}(0)=0 \Rightarrow A_{n}=0 \\
& a_{n}{ }^{\prime}(0)=0 \Rightarrow B_{n}=0
\end{aligned}
$$

- Apa $\quad a_{n}(t)=0$

Tha $n=3$: Bpiokcure: $d_{3}(t)=\frac{1}{3 c} \sin (3 c t)$
T1a $n=5: \quad a_{s}(t)=\frac{1}{1+25 c^{2}}\left(e^{t}-\cos (5 c t)-\frac{1}{5 c} \sin (5 c t)\right)$ ou npocinian aura (H / ω)

Qéroupe: $\quad u(x, t)=a_{3}(t) \sin (3 x)+a_{5}(t) \sin (5 x)$
(Túpo lièva ro bripea 3)
It u eivau jüon rou ipobanjuaros fari:

$$
u \in C([0, n] \times[0, \infty)) \cap C^{\infty}((0, n) \times(0, \infty))
$$

$H \quad u_{t t}=c^{2} u_{x x}+e^{t} \sin (5 x)$ (kavonolsizal fari... (סes ane neong pabipizaza)

$$
\begin{aligned}
& u_{t}=2 u_{x x}+e^{t} \sin x+2 t \sin (3 x) \\
& u(0, t)=u(n, t)=0, \quad t \geq 0 \\
& u(x, 0)=0
\end{aligned}
$$

HEミIエOIH LAPLACE
$U \subset \mathbb{R}^{n}$ avouxio. H \in Giowon Laplace oro U tivan η :

$$
\Delta u(x)=0 \quad \forall x \in U
$$

onou $\Delta u(x)=\frac{\partial^{2} u}{\partial x_{1}{ }^{2}}(x)+\ldots+\frac{\partial^{2} u}{\partial x_{n}{ }^{2}}(x) \quad \eta$ पanдaolav η

H EGiowon Laplace $\sigma \epsilon$ opoojúvio
Aoknon: $D=(0, n) \times(0, n)$. Etwpouje to npobanpa ouroplakiov upuir.

$$
\begin{equation*}
 \tag{1}
\end{equation*}
$$

Múon: Bripa 1
Znrajpe ouvaperiots rens $u(x, y)=X(x) X(y) \not \equiv 0$ mou va ikavonoioù us (1), (2), (3)
$\Delta_{\eta} \lambda a \delta_{\eta}:(1) \Leftrightarrow X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)=0$
(2) $\Leftrightarrow X(x) Y^{\prime}(y)=0$, но $y=0$ in $y=0 \quad \forall x \in[0, n] \Leftrightarrow Y^{\prime}(0)=Y^{\prime}(n)=0$
(3) $\Leftrightarrow X(0) Y(y)=0 \quad \forall y \in[0, n] \Leftrightarrow X(0)=0$

$$
\frac{X^{\prime \prime}(x)}{X(x)}-\frac{y^{\prime \prime}(y)}{Y(y)}=\lambda
$$

Прent $\lambda \geqslant 0 \quad$ Гlati: $\lambda Y(y)=-Y^{\prime \prime}(y) \Rightarrow \lambda \int_{0}^{n} y^{2}(y) d y=-\int_{0}^{n} y^{\prime \prime}(y) y(y) d y$

$$
=-\left.y^{\prime} y\right|_{0} ^{n}+\int_{0}^{n}\left(y^{\prime}(y)\right)^{2} d y=0+\int_{0}^{n}\left(y^{\prime}(y)\right)^{2} d y \geqslant 0 \Rightarrow \lambda \geqslant 0
$$

Múas oro $\lambda=0$

$$
\begin{aligned}
& \text { UoGs oro } \lambda=0 \\
& Y^{\prime \prime}(y)=0 \Leftrightarrow Y^{\prime}(y)=A y+B \quad Y^{\prime}(0)=Y^{\prime}(n)=0 \quad A=0 \Rightarrow Y(y)=B
\end{aligned}
$$

Kparajut inv $Y(y)=1$
Tia rqv $x . X^{\prime \prime}(x)=0 \Rightarrow X(x)=\Gamma_{x}+\Delta \stackrel{x(0)}{\Rightarrow} X(x)=\Gamma_{x}$
Kparape env $X(x)=x$
TEगLкаं غxaupe eqv $U_{0}(x, y)=x$

Uuoels íav $\lambda>0: \quad Y^{\prime \prime}(y)+\lambda Y(y)=0 \Rightarrow Y(y)=A \cos (\sqrt{\lambda} y)+B \sin (\sqrt{\lambda} y)$

$$
\begin{aligned}
& 0=Y^{\prime}(0)=B \sqrt{\lambda} \cos 0=B \sqrt{\lambda} \Rightarrow B=0 \\
& 0=Y^{\prime}(\pi)=-A \sqrt{\lambda} \sin (\sqrt{\lambda} n) \xrightarrow{A \neq 0} \sin (\sqrt{\lambda} n)=0 \Leftrightarrow \sqrt{\lambda} \pi=n \pi, n \in \mathbb{N}^{+} \\
& \Leftrightarrow \lambda=n^{2}
\end{aligned}
$$

Kparaje us $\cos (n y), n \in \mathbb{N}^{+} \quad Y(y)=\cos (n y)$
Tia inv $X: \quad X^{\prime \prime}(x)-\lambda X(x)=0 \Rightarrow X(x)=\Gamma e^{\sqrt{\lambda} x}+\Delta e^{-\sqrt{\lambda} x}$
*
Evas àddos rpónos va

$$
\begin{aligned}
& \Rightarrow X(x)=\Gamma^{\prime} \cosh (\sqrt{\lambda} x)+\Delta^{\prime} \sinh (\sqrt{\lambda} x) \\
& \therefore X(0)=0 \Rightarrow 0=\Gamma^{\prime} \cosh 0=\Gamma^{\prime} \Rightarrow \Gamma^{\prime}=0
\end{aligned}
$$

nuiets jo inv $X: X(x)=\sinh (n x)$
nioes far eqy u :
jpaigaupe λ ưous (orav $\lambda>0$):

(*) $\quad \cosh x=\frac{e^{x}+e^{-x}}{2}$
Droie $e^{x}=\sinh x+\cosh x$

$$
e^{-x}=\cosh x-\sinh x
$$

$$
\begin{aligned}
& U_{n}(x, y)=\sinh (n x) \cos (n y) \\
& 2)
\end{aligned}
$$

Étaupe $u(x, y)=a_{0} x+\sum_{n=1}^{\infty} a_{n} \sinh (n x) \cos (n y)$

$$
a_{n}=j \prod_{p \in \operatorname{nec}} \frac{1}{2}+\frac{1}{2} \cos (2 y)=u\left(\pi_{1} y\right)=a_{0} n+\sum_{n=1}^{\infty} a_{n} \sinh (n n) \cos (n y
$$

$\Delta_{n} \lambda_{0} \delta \dot{\eta}: \quad d_{0} \Pi=\frac{1}{2} \Rightarrow a_{0}=\frac{1}{2 \pi}$

$$
\left.\begin{array}{l}
a_{n} \cdot \sinh (n n)=0 \\
a_{2} \cdot \sinh (2 n)=\frac{1}{2}
\end{array}\right\} \Rightarrow \begin{aligned}
& a_{n}=0, n \in \mathbb{N}^{+},\{2\} \\
& a_{2}=\frac{1}{2 \sinh (2 n)}
\end{aligned}
$$

Qitoune $u(x, y)=\frac{1}{2 \pi} x+\frac{1}{2 \sinh (2 \pi)} \sinh (2 x) \cos (2 y)$
$\sim u \in C(\bar{D}) \cap C^{2}(D)$, queis Didoupe C^{2}, andà हठì e'var rau C^{\prime} Qn' n - Euvexion oinv vdetorizyza, Co oro ouvopıaró cal rorvo noloùvzan. al apxicés ouvorices
Ta edijxu oda auroi, inws of rpanjoujpera na $\begin{array}{r}\text { jpara }\end{array}$
 ikavonoloür us opojevelis ouvoplakés ouv $\theta_{\text {nkes. }}$
(H/W: Aoknon 7 , rapojpaфos 6.2)
H. Egiowon Laplace oe kukगo kas o rinos Poisson.

$$
a>0, \underline{O}=B(0, a)=\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{x^{2}+y^{2}}<a\right\}
$$

Zquape ue $C(\overline{0}) \cap C^{2}(\underline{0})$ wiore:

$$
\Delta u=0 \text { oro } \because \text { (1) }
$$

(2) $u(z)=g(z) \quad \forall z \in \partial O$, onou g Eival rèrola wore:

$$
h(\theta)=g\left(a e^{i \theta}\right)=g(a \cos \theta, a \sin \theta)
$$

$g: \partial \underline{\theta} \rightarrow \mathbb{R}$ eival ouvexins kal dpaffieins kujpavons.
Merarpénoupe ro прóbanua $\mu \in$ xprion nodıkìv ouvetrafuèvcuv.
Ioxupionos: $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{\partial^{2}}{\partial y^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial}{\partial r}$
$\Gamma_{1 a} v: \bar{D} \rightarrow \mathbb{R}$ Өंєдоице $\tilde{v}(r, \theta)=v\left(r e^{i \theta}\right)=v(r \cos \theta, r \sin \theta)$,

$$
\begin{aligned}
& \tilde{v}:[0, a] \times[0,2 r] \rightarrow \mathbb{R} \\
& \quad L_{1} \vee(x, y)=L_{2} \sim(r, \theta) \\
& \uparrow \\
& \text { bajoupe } \mu \in \dot{r a} \quad \\
& \quad x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Anodet $\}^{\top} \eta$ loxupionai

$$
\begin{aligned}
& \tilde{V}(r, \theta)=V(r \cos \theta, r \sin \theta) \\
& \Rightarrow \tilde{V}_{r}(r, \theta)=V_{x}(x, y) \cos \theta+V_{y}(x, y) \sin \theta \\
& \tilde{V}_{\theta}(r, \theta)=V_{x}(x, y)(-r \sin \theta)+V_{y}(x, y)(r \cos \theta) \\
& \binom{\partial_{r} \tilde{v}}{\partial_{\theta} \tilde{v}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)\binom{\partial_{x} V}{\partial_{y} v}
\end{aligned}
$$

Beictcufle rou avtiorpopo rou nivaka ka èxoupe:

$$
\begin{aligned}
& \rightarrow\binom{\partial_{x} v}{\partial_{y} r}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \theta & -\sin \theta \\
r \sin \theta & \cos \theta
\end{array}\right)\binom{\partial r \tilde{v}}{\partial \theta \tilde{v}} \\
& \frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial}{\partial \theta} \\
& \frac{\partial}{\partial y}=\sin \theta \frac{\partial}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}
\end{aligned}
$$

Terapry 8/1/20
Mainpa 22ः
He $\xi i \sigma \omega \sigma$ Laplace oto Siono,

$$
\underline{O}=B(0, a), a>0 \quad a e^{i \theta}
$$

$g: \partial O \rightarrow \mathbb{R}$ wore $\eta \quad h(\theta)=g(a \cos \theta, a \sin \theta)$ ouvexìs kau фpajuєuns kujavons

$$
\text { Znzäر } \lambda \text { uon rou: } \begin{cases}\Delta u=0 & \text { oro } \\ u(z)=g(z) & \forall z \in \hat{0} 0\end{cases}
$$

$u \in C^{2}(\underline{O}) \cap C(\underline{\bar{O}}) \quad T_{\text {rv }}$ јpáwape uf noaikés ouvzerayuèves rai $\left.\tilde{u}(r, \theta)=u(r \cos \theta, r \sin \theta) \boxtimes \delta_{i j}\right\}^{2}$ aps de awro tiva $100 \delta u$ uvapo $\mu \in$:

$$
=u(x, y)
$$

$\tilde{u}_{r r}+\frac{1}{r^{2}} \tilde{u}_{\theta \theta}+\frac{1}{r} \tilde{u}_{r}=0$

$$
\tilde{u}(a, \theta)=h(\theta)
$$

Kavape xwpiopio verabinzeju rae hprirape: $r^{n} \cos (n \theta), n \in \mathbb{N}$

$$
r^{n} \sin (n \theta), n \in \mathbb{N}^{+}
$$

Avajnzouje λ ion ens poopris: $\tilde{u}(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(A n \cos (n \theta)+B_{n} \sin (n \theta)\right) r^{n}$

$$
h(\theta)=\frac{d_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \theta)+\text { bn } \sin (n \theta)\right)
$$

Dadijoupe $\quad A_{n}=\frac{a_{0}}{2}, \quad A_{n}=\frac{1}{a^{n}} a_{n}, \quad B_{n}=\frac{1}{a^{n}} b_{n}$
Ta tnidésape pe rėzole zóno wore va iravonoleitar x (*) H tedeuraia Giva appovicy, tive C^{2} ran Givan kar ouvexris
 Orciopnua (Abelj))

$$
\begin{equation*}
\tilde{u}(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) \frac{r^{n}}{a^{n}} \tag{8}
\end{equation*}
$$

Kfarionpe ar opigmon

$h(\theta)=g(r \cos , r \sin \theta)$

Mpocaon: H ü ins (8) jpaiфezou ws:

$$
\begin{equation*}
u(r, \theta)=\frac{a^{2}-r^{2}}{2 n} \int_{0}^{2 n} h(\phi) \frac{1}{a^{2}+r^{2}-2 a r \cos (\theta-\phi)} d \phi \tag{9}
\end{equation*}
$$

ju $k \dot{a} \theta \in \quad r \in[0, a), \theta \in[0,2 n]$
$A_{n} \dot{\delta}(\underset{\xi}{ }\}_{n}: a_{n}=\frac{1}{n} \int_{-n}^{n} h(\phi) \cos (n \phi) d \phi=\frac{1}{n} \int_{0}^{2 n} h(\phi) \cos (n \phi) d \phi$
0×1 fa
Eferingis

$$
b_{n}=\frac{1}{n} \int_{0}^{2 n} h(\phi) \cdot \sin (n \phi) d \phi
$$

$$
\begin{array}{rl}
\text { Apa, } \tilde{u}(r, \theta) & =1 \int_{2 n}^{2 n} h(\phi) d \phi+\sum_{n=1}^{n} r^{n} 1 \\
a^{n} \\
n & h(\phi)(\cos (n \phi) \cos (n \theta)+\sin (n \phi) \\
2 n & \left.\int_{0}^{2 n} \sin ^{n}(n \theta)\right] d \phi \\
h(\phi)\left(1+2 \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cos (n(\theta-\phi))\right) d \phi
\end{array}
$$

$$
\begin{aligned}
S+1 & =2 \sum_{n=0}^{\infty}\left(\frac{r}{a}\right)^{n} \cos (n(\theta-\phi))=\sum_{n=0}^{\infty}\left(\frac{r}{a}\right)^{n}\left(e^{i n(\theta-\phi)}+e^{-i n(\theta-\phi)}\right) \\
& =\frac{1}{1-\frac{r}{a} e^{i(\theta-\phi)}}+\frac{1}{1-\frac{r}{a} e^{-i(\theta-\phi)}}=\frac{2-2 \frac{r}{a} \cos (\theta-\phi)}{1+\frac{r^{2}}{a^{2}}-2 \frac{r}{a} \cos (\theta-\phi)}
\end{aligned}
$$

$$
\Rightarrow S=\frac{1-\frac{r^{2}}{a^{2}}}{1+\frac{r^{2}}{a^{2}}-\frac{r}{a} \cos \left(\theta_{\phi}\right)}=\frac{a^{2}-r^{2}}{a^{2}+r^{2}-2 a r \cos (\theta-\phi)}=\frac{\left|z^{\prime}\right|^{2}-|2|^{2}}{\left|z^{\prime}-z\right|^{2}} \quad \square
$$

0 uinos of kapreotavés ouvrerajuéves
Tia $z=(x, y) \in B(0, a) \quad,(x, y)=(r \cos \theta, r \sin \theta)$
Ioxicz: $u(z)=\tilde{u}(r, \theta)=\frac{a^{2}-|z|^{2}}{2 \pi a} \int_{\left|z^{\prime}\right|=a}^{1} \frac{9\left(z^{\prime}\right)}{\left|z-z^{\prime}\right|^{2}} d$
(Enikapnïtio odokanipwre nolivear eiठous)

$$
\left(\int_{c} f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t\right)
$$

Anoocisn
 pecpinonoinon ra $C \quad\left|z^{\prime}\right|=a$

$$
\begin{aligned}
\Gamma_{1 a} z^{\prime}=j(\phi) \text { exaupe }\left|z-z^{\prime}\right|^{2} & =\left|r e^{i \theta}-a e^{i \phi}\right|^{2} \\
& =\left(r e^{i \theta}-a e^{i \phi}\right)\left(r e^{i \theta}-a e^{-i \phi}\right) \\
& =r^{2}+a^{2}-a r\left(e^{i(4 \cdot \theta)}+e^{-i(\phi \cdot \theta)}\right) \\
& =r^{2}+a^{2}-\operatorname{ar} \cos (\theta-\phi)
\end{aligned}
$$

$$
f^{\prime}(\phi)=(-a \sin \phi, a \cos \phi) \Rightarrow\left|\gamma^{\prime}(\phi)\right|^{2}=a^{2} \Leftrightarrow\left|f^{\prime}(\phi)\right|=a
$$

- Apa $u(x, y)=\tilde{u}(r, \theta) @ \frac{a^{2}-r^{2}}{2 n} \int_{0}^{2 n} h\left((\phi) \frac{1}{a^{2}+r^{2}-2 a r(\cos \theta \cdot \phi)} d \phi\right.$

$$
\begin{aligned}
& =\frac{a^{2}-|2|^{2}}{2 n} \int_{0}^{2 n} g(f(\phi)) \frac{1}{|2-f(\phi)|^{2}} \frac{\left|d^{\prime}(\phi)\right|}{a} d \phi \\
& =\frac{a^{2}-|2|^{2}}{2 n a} \int_{\left|k^{\prime}\right|=a} g\left(z^{\prime}\right) \frac{1}{|2-2,|^{2}} d s
\end{aligned}
$$

Mporaon: 'Eow $\underline{\underline{o}}=B(0, a)$. $A_{v} g: \partial \underline{O} \rightarrow \mathbb{R}$ Gival ouvexris tore to npobanua: $\Delta u=0$ oro

$$
u(x, y)=g(x, y) \quad \forall(x, y) \in \partial O
$$

ext povadien tüon $u \in C(\bar{b}) n c^{2}(\underline{\theta}) n$ onoia Siveral and us (9), (10) Màioca $u \in C^{\infty}$ (으)

MAPATHPHZH: 1) $A_{v} \underline{O} \subset \mathbb{C}$ avouxió nae $F: \underline{O} \rightarrow \mathbb{C}$ одореррф: $f=u+i v$ töt $\Delta u=\Delta v=0$ oro -
Aurí riati oro - éxoupe: $\left.U_{x}=V_{y}\right\} \Rightarrow U_{x x}=V_{y x}$

$$
U_{y}=V_{x} \int U_{y y}=-V_{x y}
$$

$$
\Rightarrow \Delta u=0
$$

2) Bprikafe dote of $r^{n} \cos (n \theta), r^{n} \sin (n \theta)$ iival appeovizès Avapevapuro fhati: $r^{n} \cos (n \theta)=\operatorname{Re}\left(z^{n}\right) \quad z=r e^{i \theta}$

$$
r^{n} \sin (n \theta)=\operatorname{Im}\left(2^{n}\right)
$$

3) Av η g orev zino Poisson tivar andius μ erpriorun kal фрafuiev η, rore η u nou opifer o winos: (i) tivou C^{∞} olo

Aornon 6.3 .2 (Strauss)
(kau ra svo bibdia, zavrifow uf u μt ut

$$
\begin{equation*}
\underline{0}=B(0, a) \tag{u}
\end{equation*}
$$

Na $\lambda_{u} \theta_{\epsilon}$ n: $\Delta u=0$ oto 0 .

$$
u=1+3 \sin \theta \text { oro } \partial o
$$

\rightarrow Exoupe napadtivet canola bripaza. Ifra pe aveäoyv apxr aurai ca \uणn: Exoupe δG ous of $r^{n} \cos (n \theta), n \in \mathbb{N}$, $r^{n} \sin (n \theta), n \in \mathbb{N}^{+}$tivou appovikés
Өa bpajue karädinda $\left(A_{n}\right)_{n \geqslant 0},\left(B_{n}\right)_{n \geqslant 0}$ wore η $u(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n \theta)+B n \sin (n \theta)\right) r^{n}$, va $\lambda_{u} v \in \tau 0$
npóbinua. Eniдејои $\mu \epsilon \quad A_{0}=1, A_{n}=0 \quad t_{n} \geqslant 1$

$$
B_{1}=\frac{3}{a}, \quad B_{n}=0 \quad V_{n} \geqslant 2
$$

Indaסri, $u(r, \theta)=1+\frac{3}{a} \sin (\theta) r$
Autin n a eival ouvexris oro $\overline{0}, c^{\infty}$ oro 0
$\Delta u=0$ kau $u(a, \theta)=1+3 \sin \theta$
Euventies tou tuna Poisson
(1810 enza ens píons upins, Apxn pefiozov, C^{∞})
Tporaon: (Isiórnza zns peions zupis)
Eozw $z_{0 \in} \mathbb{B}^{2}, a>0 \quad D=B\left(z_{0}, a\right), u \in C(\bar{D}) \cap C^{2}(D), \mu \epsilon$

Mapaperpikonoinon: $\gamma(\phi)=Z_{0}+a(\cos \phi, \sin \phi)$ (*)

$$
\begin{aligned}
& =\frac{1}{2 n} \int_{0}^{2 n} u\left(x_{0}+0, \cos \phi, y_{0}+a \sin \phi\right) d \phi
\end{aligned}
$$

Ano $\varepsilon_{1} \xi_{n}$: Ynoөєroupe iu $z_{0}=0$. Anó zov zino zou Poisson: $u(0)=\frac{a^{2}}{2 n a} \int_{\left|z^{\prime}\right|=a}\left(u\left(z^{\prime}\right)\right) \frac{1}{\left|z^{\prime}\right|^{2}} d s$ aqai

$$
\begin{aligned}
u(z)= & \left.\frac{a^{2}-|z|^{2}}{2 n a} \int_{\left|z^{\prime}\right|=\left.a^{\mid z-z^{\prime}}\right|^{2}} \frac{g\left(z^{\prime}\right)}{\mid s}\right] \\
& =\frac{1}{2 n a} \int_{\left|z^{\prime}\right|=a} u\left(z^{\prime}\right) d s
\end{aligned}
$$

Av $Z_{0} \neq 0$. θ єwpouje oiz $U: \bar{B}(0, a) \rightarrow \mathbb{R} \quad \mu \epsilon$.

$$
\begin{aligned}
& U(z)=u\left(z+z_{0}\right) \\
& U(x, y)=u\left(x_{0}+x, y_{0}+y\right)
\end{aligned}
$$

röte $\quad \Delta U=0 \quad U \in C(\bar{B}(0, a))$
Anó rav nepintwon $\left(z_{0}=0\right)$ exoupte:

$$
\begin{aligned}
U(0) & =\frac{1}{2 n a} \int_{\left|z^{\prime}\right|-a} U\left(z^{\prime}\right) d s \\
\Rightarrow U\left(z_{0}\right) & =\frac{1}{2 n a} \int_{\left|z-z_{0}\right|=a} U\left(z-z_{0}\right) d s=\frac{1}{2 n a} \int_{\left|z-z_{0}\right|=a} u(z) d z
\end{aligned}
$$

Eto biledio r.Adikakou

Seveipa 13/1/20
Mainjua 23: unapxe kou to ϵ^{ξ} 万is

$$
\begin{align*}
& D=B\left(z_{0}, a\right) \\
& u \in C(\bar{D}) \cap C^{2}(0), \Delta u=0 \quad \sigma_{z 0} D \\
& u\left(z_{0}\right)=\frac{1}{2 n a} \int_{z:\left|z-z_{0}\right|=4}^{2 n} u(z) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+a(\cos \theta, \sin \theta)\right) d \theta \tag{*}
\end{align*}
$$

Idiónza Méons Eipn:

Dóplopa: D ónws nıo noivw, тотє $u\left(z_{0}\right)=\frac{1}{\pi a^{2}} \iint_{0} u(x, y) d x d y$
Anöde\}n: Aa xpnorponoiniowpe nodikés ouvrezafréves.

$$
\begin{aligned}
& \iint_{D} u(x, y) d x d y \stackrel{\text { noarkis }}{=} \int_{0}^{a} \int_{0}^{2 \pi} u\left(z_{0}+r(\cos \theta, \sin \theta)\right) r d \theta d r \\
&=\int_{0}^{a} r 2 \pi u\left(z_{0}\right) d r \\
&=u\left(z_{0}\right) \pi a^{2}
\end{aligned}
$$

Moozaon (Apxi periozau)

- Eozw $D \subset \mathbb{R}^{2}$ avoixzo, ouvekrko, ue $C^{2}(D)$ aprovikn. Av: unaipxet $z_{0 \in D}$ woze $u(z) \leq u\left(z_{0}\right) \quad \forall z \in D$, zore n u Givou oza $\theta \in p$ ì ozo D.

Anoi $\delta\} \eta$:
Eas f.x civon ouvertikos orav ra roiva avolxzà ku klelozá oivoia of aviov tivan μ ovo ro $\phi \mathrm{kar}$ odos o xupos)

Eorw $\quad A=\left\{z \in D: u(z)=u\left(z_{0}\right)\right\}$
 $\left.\exists r>0 \quad \dot{\omega} \quad \overline{B\left(\omega_{0}\right.}, r\right) \subset D$
Tore $\int_{u} u\left(w_{0}\right)=\frac{1}{2 n} \int_{0}^{2 n} u\left(w_{0}+R\left(\cos \phi_{T} \sin \phi\right)\right) d \phi=$
fia $R_{\in}[0, r]:\left(\begin{array}{l}2 n 00 \\ \text { xprion ens isioenzas ras } \mu \notin o n s \text { zuris }\end{array}\right.$

$$
=\frac{1}{2 n} \int_{0}^{2 n} u\left(z_{0}\right) d \phi \Rightarrow \int_{0}^{2 n} \frac{\left[u\left(z_{0}\right)-u\left(w_{0}+R\left(\cos \phi_{1} \sin \phi\right)\right)\right]}{A(\phi)} d \phi=0
$$

($A(\phi)$ ourexis, $A(\phi) \geqslant 0$

$$
\begin{aligned}
& \Rightarrow A(\phi)=0 \quad \forall \phi \in[0,2 \pi] \\
& \Rightarrow u\left(w_{0}+R_{e}^{i \phi}\right)=u\left(z_{0}\right) \quad \forall \phi \in[0,2 \pi] \quad \forall R \in[0, r] \\
& \Rightarrow B\left(w_{0}, r\right) \subset A
\end{aligned}
$$

To A Eivau kdeiorio oro D: Eorw $\left(Z_{n}\right)_{n \geqslant 1}$ onpeia rou A $\mu \epsilon$ $Z_{n} \Longrightarrow \hat{z} \in D$ uavexis
Ention $\quad z_{n} \in A \Rightarrow u\left(z_{n}\right)=u\left(z_{0}\right) \stackrel{u \rightarrow \infty}{\Rightarrow} u(\hat{z})=u\left(z_{0}\right) \Rightarrow \hat{z} \in A$
Eneiסnं $A \neq \phi$ kan D ouvekuke, entzal or $A=D$.
$\Delta_{n \lambda a} \delta_{n}, u(z)=u\left(z_{0}\right) \quad \forall z \in D$
(Ta bibaia to anoberivioun ue aidiov rpóno)
Mopiopa: $D \subset \mathbb{R}^{2}$ avolxio, ouvekrexi, фpajuivo, $u \in C(\bar{D}) \cap C^{2}(D)$ apuovirn. Tote:

$$
\max _{z \in \bar{D}} u(z)=\max _{z \in \partial D} u(z) \quad \text { kav } \min _{z \in \bar{D}} u(z)=\min _{z \in D D} u(z)
$$

Anoida\}n: \bar{D} oupnajés, u ouvexins oro $\bar{D} \Rightarrow \exists z_{n}, z_{m} \in \bar{D}$ woze:

$$
u\left(Z_{n}\right) \leq u\left(Z^{\prime} \leq u\left(Z_{m}\right)\right.
$$

 oro \bar{D} rou or (*) ioxiour.

Av $Z_{n} Z_{m} \notin D$ röre $Z_{n} Z_{m} \in \partial D$

Mperacan 3: $D \subset \mathbb{R}^{2}$ awarie, $u \in C^{2}(D)$ apfovik-

$$
u \in C^{\infty}(D)
$$

Ekiajecuncon andorutwo
Eliw $z, \in D . \exists r>0$ war $\overline{B\left(z_{0}, 2 r\right)} C D$
Fiu $z \in B(z, r)$ ejoutc
Tuncs $_{\text {Poisson }}: \quad U(z)=\frac{a^{2}-\left|z-z_{0}\right|^{2}}{2 n 2 r} \int_{\left|z^{\prime}-z_{0}\right|=2 r} g\left(z^{\prime}\right) \frac{1}{\left|z-z^{\prime}\right|^{2}} d s$
'AGKnGn 6.3.1 (Strauss)

$$
0=B(0,2), u \in C(\overline{(}) \cap C^{2}(0) \text { aptoviki } a_{0} \bigcirc k_{\varepsilon}
$$

$$
u=3 \sin (\theta)+1 \quad \text { fic } r=2 \quad[u(r, \theta)]
$$

a) $\max u(z) \Rightarrow ;$
b) $u(0)=$;

$$
z \in \underline{0}
$$

1 vica
a) Año tiv apxi zou Hexiciov $\max u(z)=\max u(z)=\max (3 \sin (2 \theta)+1)=4$

$$
z \in \bar{O} \quad z \in \partial O \quad O \in[0,2 n]
$$

e) $u(0)=\frac{1}{2 n} \int_{0}^{2 n} u\left(2\left(\cos \theta, \frac{\sin \theta)) d \theta}{} u\left(2 e^{i \theta}\right)\right.\right.$

$$
\gamma \operatorname{la} \theta=\frac{\pi}{4} \text { in } \theta=\frac{3 n}{4}
$$

$$
=\frac{1}{2 n} \int_{0}^{2 n}(3-\sin (2 \theta)+1) d \theta=1
$$

h) 17 sficwon Laplace σ e ita a xupic ($\$ 6.4$: Strames)

Xwpin aus Luppins $\left[r_{1}, r_{2}\right] \times\left[\theta_{1}, \theta_{2}\right]$ ar nolviés ourzzaytives $l \varepsilon \quad 0 \leqslant r_{1}<r_{2} \leqslant \infty, \quad 0 \leq \theta_{2}-\theta_{1} \leq 2 n$

Pragoute in haplace of notives oureraytions kas xpratongoils xupictio ferabtinzin.

$$
\begin{aligned}
& u(r, \theta)=u(r \cos \theta, r \sin \theta) \\
& \Delta u(x, y)=\tilde{u}_{r r}+\frac{1}{r} \bar{u}_{r}+\frac{1}{r^{2}} \tilde{u}_{\theta \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{u}(r, \theta)=X(r) Y(\theta) \\
& \Delta u=0 \Rightarrow X^{\prime \prime}(r) Y(\theta)+\frac{1}{r} x^{\prime}(r) Y(\theta)+\frac{1}{r^{\prime}} X(r) Y^{\prime \prime}(\theta)=0 \xrightarrow{\frac{1}{X(r) Y(\theta)} \cdot r^{2}} \\
& r^{2} \frac{X^{\prime \prime}(r)}{X(r)}+r \frac{X^{\prime}(r)}{X(r)}=-\frac{Y^{\prime \prime}(\theta)}{Y(\theta)}=\lambda
\end{aligned}
$$

ciwospà Siaxupida..
Agknon 6.11 (Alikakes) +6.4 .6 Straws

$$
\underline{O}=\frac{(0, a)}{r} \times(0, b) \quad \notin \varepsilon \quad b<2 n
$$

N_{a} bprosi cptowiki 620 ○ $L_{\varepsilon} \quad U(r, 0)=u(r, e)=0$

i) $u(a, \theta)=\sin \left(\frac{\pi}{a} \theta\right)-3 \sin \left(\frac{2 n}{b} \theta\right)^{(\text {strass })}$
ii) $u(G, \theta)=100$ (Alikikes)
nún
Buta 1: Λ_{u} ose ans topyin $X(r) Y(\theta) \mathcal{L}_{\varepsilon}$

$$
Y(0)=Y(0)=0
$$

$\Sigma_{\text {to npiro }} \quad$ Bpigkoule ize nésose $\lambda>0$
bitu npounatiou Vu ikauonoriow as otogenis apatios 600 incus kar liationa $\lambda=\left(\frac{n \pi}{b}\right)^{2}, n \in N^{+}$

$$
\begin{aligned}
& Y_{n}(\theta)=\sin \left(\frac{n \pi}{b} \theta\right) \\
& X<r^{-\sqrt{\lambda}} \cdot r^{\sqrt{\lambda}} \cdot \text { kparacic } r^{\sqrt{\lambda}}=r^{\frac{n \pi}{b}}
\end{aligned}
$$

(n alt- expnjusizan)
Bifa 2: EGw $u(r, \theta)=\sum_{n=1}^{\infty} B_{n} r^{\frac{n n}{b}} \sin \left(\frac{n n}{b} \theta\right)$
i) Mpen $B_{1} a^{\pi / 6}=1$ \}

$$
u(r, \theta)=\left(\frac{r}{a}\right)^{\pi / 6} \sin \left(\frac{\pi}{b} \theta\right)-3\left(\frac{r}{a}\right)^{2 \pi / b} \sin \left(\frac{2 n}{b} \theta\right)
$$

H u dís to noobl-ta.... (bita 3)
ii) Avatuíw ro 100 ge oapia ntiroivm aro [$0, b]$ Kaivate nipirai snikraca ans 100
δs.

Enidigw B_{n} wions $U(G, \theta)=100=\sum_{n=1}^{100} b_{n} \operatorname{sun}\left(\frac{n n}{b} \theta\right)$
Sus $\quad B_{n} a^{\frac{n \pi}{8}}=b_{n}$
onore $u(r, \theta)=\sum_{n=1}^{\infty} l_{n}\left(\frac{r}{a}\right)^{\frac{n n}{b}} \sin \left(\frac{n n}{\rho} \theta\right)$
0^{2} - jemtenpicos

$$
\frac{\text { opus } b_{0}-\theta_{\text {is }}}{\text { oro vo oydativen }}
$$

-apa va nevuan
n napenjuys tion

$$
\begin{aligned}
& h(\theta)= \begin{cases}100, & \theta \in(0, b] \\
0, & \theta=0 \\
-100 & , \theta \in[-l, 0)\end{cases} \\
& h(\theta)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n n}{b} \theta\right) \quad L_{k} \quad b_{n}=\frac{1}{b} \int_{-b}^{b} h(x) \sin \left(\frac{n \pi}{b} x\right) d x= \\
& =\frac{2}{b} \int_{0}^{b} h(x)-\sin \left(\frac{n}{b}-x\right) d x=\left\{\begin{array}{l}
\frac{400}{4 n}, n: n \mid p i r i s \\
0, n: c i p n i c s
\end{array}\right.
\end{aligned}
$$

Terapen 15/1/20
Mai日nयa 24․
Aornan. $:=\left\{(x, y) \in \mathbb{R}^{2}, r \in(1,2)\right\}$
Na $\lambda u \theta$ ti ro: $\Delta u=0$ oro 0

$$
\begin{aligned}
& \pi u_{r}(1, \theta)=0 \quad 1 \quad \theta \in[0,2 n] \\
& \mathscr{G} u(2, \theta)=\sin (2 \theta)
\end{aligned}
$$

Aurn tivou $n \underset{H}{\tilde{H}} u(2, \theta)=\sin (2 \theta)$

nüon. Tn aüvoufe oc noalmés ouvzerafuèves, $\mu \in$ xwpio $\mu \dot{\text { ò }} \mu$ reapanziov
Brima 1: Nüqeis $u^{2}(r, \theta)=X(r) y(\theta) \quad(r, \theta) \in[1,2] \times \mathbb{R}, Y$ $2 n-n \in p, 0 \delta r e d$

$$
\frac{r^{2} x^{\prime \prime}(r)}{x(r)}+v \frac{x^{\prime}(r)}{x(r)}=-\frac{y^{\prime \prime}(\theta)}{x(\theta)}=\lambda
$$

H efiowon ja eqv y sive ou $\lambda \geqslant 0$. Гiazi? 2

$$
\begin{aligned}
& \text { on ya eqvy Siver ou } \lambda \geqslant 0 \text {. Tiazi ? 2 } \\
& \lambda y=-y^{\prime \prime} \Rightarrow \lambda \int_{0}^{2 n} y^{2}(\theta) d \theta=-\int_{0}^{2 n} y^{\prime \prime} d \theta=-\left.y(\theta) y^{\prime}(\theta)\right|_{0} ^{2 n}+\int_{0}^{2 n}\left(y^{\prime}(\theta)\right)_{d e}^{2}
\end{aligned}
$$

Tla inv y :

- Γ 1a $\quad \lambda=0$, $\lambda \dot{0} \sigma n \quad y(\theta)=1$
$-\Gamma a \quad \lambda>0, \lambda i o n \quad y(\theta)=A \cos (\sqrt{\lambda} \theta)+B \sin (\sqrt{\lambda} \theta)$
Ano τn_{v} (1) naipvw. $x^{\prime}(1)=0$
y $2 n$-nepiosicn $\Rightarrow \sqrt{\lambda}=n \in \mathbb{N}^{+} \Rightarrow \lambda=n^{2}, n \in \mathbb{N}^{+}$
Tha rnv x :
- Fia $\lambda=0$,

$$
\begin{aligned}
& r X^{\prime \prime}(r)+X^{\prime}(r)=0 \Rightarrow\left(r X^{\prime}\right)^{\prime}=0 \Rightarrow \\
& r X^{\prime}=A \Rightarrow X^{\prime}=A \log r+B \\
& X(r)=A r^{-1}+B r^{n} \\
& 0=X^{\prime}(1)=A 1^{-n-1}+n B 1^{n-1}=n(B-A) \\
& \Rightarrow A=B \\
& X(r)=r^{-1}+r^{n}
\end{aligned}
$$

$-\Gamma_{1 a} \quad \lambda=n^{2}:$

Brima 2: Eazw $u(r, \theta)=B+\sum_{n=1}^{\infty}\left(r^{-n}+r^{n}\right)\left(r_{n} \cos (n \theta)+\Delta n \sin (n \theta)\right)$

$$
\sin (2 \theta)=\tilde{u}(2, \theta)=B+\sum_{n=1}^{\infty}\left(2^{n=n}+2^{n}\right)(\sqrt{n} \cos (n \theta)+\Delta n \sin (n \theta))
$$

$B=0, \Gamma_{n}=0 \quad \forall n, \Delta n=0$ fra $n \neq 2$

$$
\begin{aligned}
& B=0, \quad \mid n=0 \quad \forall n, \Delta n=0 \text { fa } n \neq 2 \\
& 1=\left(2^{-2}+2^{n}\right) \Delta_{2}=\frac{17}{4} \Delta_{2}(r, \theta)=\left(\frac{r^{-2}+r^{2}}{2^{-2}+2^{2}}\right) \operatorname{in}(2 s)
\end{aligned}
$$

Aoknon

$$
\begin{aligned}
& \text { O onns nolv } \\
& \begin{array}{l}
\Delta u=0 \text { oro } 0 \\
u=A \text { fra } r=1 \\
u=B \text { ja } r=2
\end{array} \\
& u \text { ue xwoluo uero }
\end{aligned}
$$

Muon: Avajnzaft duon ins ropфìs: $u(r, \theta) \Rightarrow X(r)$ ano ro θ, siou та סesoficia
Пpenes: $\quad X^{\prime \prime}(r)+\frac{1}{r} X^{\prime}(r)=0$ δ_{0} Ejaquivau)

$$
\left.\begin{array}{c}
\left(r X^{\prime}(r)\right)^{\prime}=0 \Rightarrow r X^{\prime}(r)=C_{1} \\
X(r)=C_{1} \log r+C_{2} \\
X(1)=A \Rightarrow C_{2}=A \\
X(2)=B \rightarrow C_{1} \log 2+C_{2}=B
\end{array}\right\} \begin{aligned}
& C_{2}=A \\
& C_{1}=\frac{(B-A)}{\log 2}
\end{aligned}
$$

(Na סrabaiow ano Strauss, nws dovounf zu Laplace of Sarvidio. $0 \lambda_{\text {es }}$ us aorriots) sos
'Aomon 6.2.7' (strouss)

$$
0=(0, n) \times(0, \infty)
$$

(a) $\mathrm{Na} \lambda u \theta \in i$ ro $\Delta u=0$ oro 0

$$
\begin{aligned}
& u(0, y)=u(r, y)=0 \quad y>0 \\
& u(x, 0)=h(x) \quad \forall x \in(0, n)
\end{aligned}
$$

$$
\lim _{v \rightarrow \infty} u(x, y)=0 \quad \forall x \in(0, n)
$$

(b) T_{1} fiverou ar $y \rightarrow \infty$ dung n ouvoricn $u(x, a)=0$;

Mion: $u(x, y)=X(x) Y(y) \quad X(0)=x(0)=0$

$$
\frac{x^{\prime \prime}(x)}{x(x)}=-\frac{y^{\prime \prime}(y)}{y(y)}=-\lambda
$$

$\begin{array}{lll}\text { DGixvoupf } \lambda>0 & \left(\begin{array}{l}x x^{\prime \prime}=\lambda x^{2} \\ \\ \lambda\langle x, x\rangle=\left\langle x^{\prime}, x^{\prime}\right\rangle\end{array}\right)\end{array}$

$$
\begin{aligned}
& X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x) \\
& 0=x(0)=A \Rightarrow A=0 \\
& 0=x(n)=B \sin (\sqrt{\lambda} n) \xlongequal{B \neq 0} \sin (\sqrt{\lambda} n)=0 \Rightarrow \sqrt{\lambda} \Rightarrow \sqrt{\lambda}=n \in N^{+} \quad\left(\lambda=n^{2}\right) \\
& \quad \text { dis. } X n(x)=\sin (n x), n \in N^{+}
\end{aligned}
$$

I $a \lambda=n^{2}: Y^{\prime \prime}(y)-n^{2} Y(y)=0 \quad \Longrightarrow Y(y)=c_{1} e^{-n y}+c_{2} e^{n y}$

$$
\xrightarrow{Y(\infty)=0} c_{2}=0 \quad \text { àpa } \quad Y_{n}(y)=e^{-n y}
$$

Brifa 2: $\theta_{\text {zin }} u(x, y)=\sum_{n=1}^{\infty} A_{n} e^{-n y} \sin (n x) \quad A_{n}=;$

$$
h(x)=u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n x)
$$

Avanzuicow thu $h(x)$ Gc cerpá Fourier (ripizeí Enivezac-) napive

$$
A_{n}=\frac{2}{n} \int_{0}^{\pi} h(x) \sin (n x) d x
$$

Brita 3: A 4 Eivan duon (í adtins piair nepvaen líos n napiogays)
(Ynwoition: El'n: ourktives oporiotupan

$$
\sum F_{n} \text { : cugrdived }
$$

 $\mu_{\varepsilon} \operatorname{cial}_{\text {Epais }}$ Guraticaiso sio \mathbb{R}^{2}
Feulin foppin: $a_{11} u_{x x}+2 a_{12} u_{x y}+a_{22} u_{y y}+a_{1} u_{x}+a_{2} u_{y}+a_{0} u_{=f}$

$$
\begin{equation*}
-\left|a_{1}\right|+\left|a_{12}\right|+\left|a_{22}\right| \neq 0 \tag{1}
\end{equation*}
$$

Exat: $\delta_{\varepsilon_{1}}$ us $\cdot u_{x x}+u_{y y}=0$ haplace

$$
\begin{array}{ll}
\begin{aligned}
u_{x x}-u_{y y}=0 & \text { kutaics } \\
u_{x x}-u_{y}=0 & \text { Orptoinias }
\end{aligned} \\
=a_{12}^{2}-a_{11} \cdot a_{22}
\end{array}
$$

$$
\Delta=a_{12}^{2}-a_{11} a_{22}
$$

(1)

Ettimuxi aw $\Delta<0 \quad \sim$ Laplace $\Delta=-1$
(1) unepbotici
$\Delta>0$
\sim kutanus
$\Delta=1$
rapabciian $\quad \Delta=0$ as Esploinzos $\Delta=0$
Mrios: : ME Lia reathic: allag: hnabl-iwe

$$
\binom{F}{n}=A_{2 \times 2}\binom{x}{y} \text { kcu } U(7, n):=U(x, y)
$$

n-(1) avajgma $62 n$
(a) $U_{J j}+U_{n n}+\dot{0}$ pose xatutcoises rat $\rightarrow s=g, \Delta<0$
(b) $v_{f f}-U_{n n}+\cdots=g, \Delta>0$
(才) $U_{f 5}+\ldots=g, \Delta=0$
Anosait
II nepincuman $A_{v} a_{11}=a_{22}=0$ (is $a_{12} \neq 0$

$$
\begin{aligned}
& \Delta= a_{12}^{2}>0 \\
&-u_{x y}=\frac{1}{4}\left(\left(\partial_{x}+\partial y\right)^{2} u-\left(\partial_{x}-\partial y\right)^{2} u\right) \\
& \frac{\partial_{x x}}{\partial}+2 \partial_{x y}+\partial_{y y}
\end{aligned}
$$

- Apa for apkis $\partial_{3}=\partial x+\partial y \quad$ kar $\partial_{n}=\partial x-\partial y$

Eow $U(f, m)=U(x(t, n), y(f, n))$

$$
\begin{aligned}
& \partial_{f} u=\partial_{x} u\left(\partial_{F} x\right)+\partial_{y} u \partial_{f} y \\
& \left.\partial_{n} u=\partial_{x} u\left(\partial_{n} x\right)+\partial_{y} u \partial_{n} y\right)
\end{aligned}
$$

$$
x=7+n
$$

$$
y=f-n
$$

$$
\begin{aligned}
& \frac{\delta}{f=\frac{x+y}{2}, n=\frac{x-y}{2}} \\
& \binom{z}{n}=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
\frac{1}{2} & -1 / 2
\end{array}\right)\left(\frac{x}{y}\right) \\
& A
\end{aligned}
$$

Tör $u_{x y}=\frac{1}{4}\left(\partial_{F_{F}} U-\partial_{n n} U\right)$

$$
\left\{\begin{array}{l}
U(x, y)=U\left(\frac{x+y}{2}, \frac{x-y}{2}\right) \\
u_{x}=U_{f} \cdot \frac{1}{2}+U_{n}-\frac{1}{2} \\
u_{y}=U_{7} \frac{1}{2}-U_{n} \frac{1}{2}
\end{array}\right.
$$

n (1) jpáseran $a_{12} \frac{1}{2}\left(U_{f 7}-U_{n n}\right)+$ rpat. ouviadios iww $U_{f}, U_{n}, U=f(f+n, f-n)$
$\frac{\Pi_{\text {spinzw }}-2}{} \quad a_{11} \neq 0$ in $a_{22} \neq 0$
Pnotinw on $a_{11}=1$. To kettion, qus ritus zws (1) sivan

> Siakpive nEpinzw(eds
$\frac{\text { Mepinzwon } 2 a}{\Delta<0}$
$\frac{\text { nepinzow } 2 l}{\Delta>0}$

Acurepa 2011/20
Maïnua 25:-

$$
\begin{align*}
& a_{11} u_{x x}+2 a_{12} u_{x y}+a_{22} u_{y y}+\text { opo1 xay } \dot{a} \dot{g}_{n s}=f(x, y) \tag{1}\\
& \left|a_{11}\right|+\left|a_{12}\right|+\left|a_{22}\right|>0 \\
& \Delta=a_{12}^{2}-a_{11} a_{22}
\end{align*}
$$

$$
\begin{aligned}
& \Delta>0 \quad \text { unspbalik } \quad U_{5 \xi}-U_{n \eta}=g \\
& \Delta=0 \text { napabaliki } U_{\xi \xi}+\ldots=g
\end{aligned}
$$

$\Pi_{\text {Epintwon 2 }} \quad a_{11} \neq 0$ in $a_{22} \neq 0$
Eow on $a_{11}=1$

$$
\begin{equation*}
\partial_{x}^{2}+2 a_{12} \partial_{x} \partial_{y}+a_{22} \partial_{y}^{2}=\left(\partial_{x}+a_{12} \partial_{y}\right)^{2}-\frac{\left(a_{12}^{2}-a_{22}\right)}{\Delta} \partial_{y}^{2} \tag{2}
\end{equation*}
$$

Mepinzwon 2a: $\quad \Delta<0$
Opijoupe $U(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta))$ wivet:

Apa

$$
\begin{aligned}
& x=\xi \\
& y=a_{12} \xi+\sqrt{|\Delta|} \eta
\end{aligned}
$$

Tote (2) $=\partial_{j}^{2} U_{t} \partial_{\eta}^{2} U$
Meginzwon 2 $\beta^{\circ}: \quad \Delta>0$
तaixi $\theta \dot{\text { éroupt }} \times(\xi, \eta), y(\xi, n)$ onws ornv $2 a$
Tore η (2) $=\partial_{\xi}^{2} U-\partial_{\eta}^{2} U$

Mepintwon $3 \quad \Delta=0$
$\theta_{\text {e } \lambda \text { oune }} \partial_{s} U=\left(\partial x+a_{12} \partial_{y}\right) u$
$\Delta_{n} \lambda a \delta_{j} j \quad \partial_{\xi} x-1, \partial_{\xi} y=a_{12}$
Eninejoupe $\quad x=\xi$

$$
y=a_{12} \xi+\eta
$$

Tȯt

$$
\begin{aligned}
& \text { (2) }=\partial_{\xi}^{2} U \\
& u_{x y}=0 \\
& u_{x}=a(x) \\
& u=\int_{0}^{x} a(s) d s+\beta(y)
\end{aligned}
$$

Aaknon 2.22 /ota 180 (Aaikokos)
Hoia η јtvik η iuon zqs $u_{t t}-4 u_{x t}+u_{x x}=0$;
nuon:

$$
\begin{array}{ll}
0=\left(\partial_{t}^{2}-4 \partial_{x} \partial_{t}+\partial_{x}^{2}\right) u=\frac{\left(\partial_{t}-2 \partial_{x}\right)^{2}}{\text { G Tavio osidw }} u-3 \partial_{x}^{2} u \\
U\left(\xi_{\eta}\right)=u(x(\xi, \eta), t(\xi, \eta)) & \\
U_{\xi}=u_{x} x_{\xi}+U_{y} t \xi & \eta=\frac{x+2 t}{\sqrt{3}} \\
U_{\eta}=u_{x} x_{\eta}+u_{y} t_{\eta} & \xi=t
\end{array}
$$

- $\left.\begin{array}{rl}\text { inoup } \epsilon \quad \begin{array}{rl}t_{\xi} & =1 \\ x_{\eta} & =\sqrt{3}\end{array}, x_{\xi}=-2 \\ x^{2}\end{array}\right\} \Rightarrow \quad \begin{aligned} & x=-2\}+\sqrt{3} \eta \\ & t=\}\end{aligned}$

Apa, $\left.U\left(\xi_{\eta}\right)=4(-2\}+\sqrt{3} \eta, \xi\right)$ kas η Esiowo jiveras:

$$
\left.\partial^{2}\right\} U-\partial_{\eta}^{2} U=0
$$

Aver ripa Eiva quia EGiowon wiparos.
Eeviki $\lambda \dot{\cup} \circ \eta: \quad U\left(\xi_{\eta}\right)=f(\xi+\eta)+g(\xi-\eta), \mu \in f_{1} g \in C^{2}(\mathbb{R})$
$A p a_{1} \quad u(x, y)=f\left(\frac{x+2 t}{\sqrt{3}}+t\right)+g\left(t-\left(\frac{x+2 t}{\sqrt{3}}\right)\right)$
$\Delta_{n \lambda a \delta \dot{\eta}}, \quad u(x, y)=f\left(\frac{x}{\sqrt{3}}+\left(\frac{2}{\sqrt{3}}+1\right) t\right)+g\left(\left(1-\frac{2}{\sqrt{3}}\right) t-\frac{x}{\sqrt{3}}\right)$
(Tapopoies oro Strauss \rightarrow 1.6.4, 2.1.9)
 napanava dornon ral raus bpiokw)

H $E=I \Sigma O \Sigma H$ Burgers/Kpovouka ko peaza

$$
U_{t}+U U_{x}=0 \text { jpappicy, ioju zov juopeivou avzaj }
$$

Eopnveioupe ro u ws raxúrnea $u(x, t)$: η raxjenzo evos ouparibiou zov xpovo t,ozo onutio x

Av $x(t)$ eivas η - $\begin{gathered}\text { eon oro onfecio roize: }\end{gathered}$

$$
x^{\prime}(t)=u(x(t), t)
$$

Kan $\quad \frac{d}{d t} u(x(t), t)=u_{x} x^{\prime}(t)+u_{t}=u u_{x}+u_{t}$

Tevikorepn ESiowon

$$
\begin{aligned}
& U_{t}+c(u) U_{x}=0 \quad \sigma_{\tau 0} \quad 0=\mathbb{R} x(0, \infty) \\
& u(x, 0)=\Phi(x)
\end{aligned}
$$

$$
\varphi, C \in C^{\prime}(\mathbb{R}), \quad c^{\prime}(x)>0 \quad \forall x \in \mathbb{R}
$$

Xaparenpiouki nou repvait ano to ($x_{0}, t_{0}, u\left(x_{0}, t_{0}\right)$)

- Eorw $(x(s), t(s), z(s))_{s \in \mathbb{R}}$ ónou $z(s)=u(x(s), t(s))$

Mpénec: $\quad x^{\prime}(s)=c(z(s))$

$$
t^{\prime}(s)=1
$$

$$
z^{\prime}(s)=u_{x} x^{\prime}(s)+u_{t} t^{\prime}(s)=u_{x} c(u)+u_{t}=0
$$

$$
\begin{aligned}
\Rightarrow z(s) & =u\left(x_{0}, t_{0}\right) \quad \forall s \in \mathbb{R} \\
t(s) & =s+t_{0}
\end{aligned}
$$

$$
x(s)=s c\left(u\left(x_{0}, t_{0}\right)\right)+x_{0}
$$

$$
x(s)=\left(t(s)-t_{0}\right) \subset\left(u\left(x_{0}, t_{0}\right)\right)+x_{0}
$$

H xapakenpiourn tiva Eu θ tia.

$$
\begin{aligned}
& z(0)=z\left(-t_{0}\right) \Rightarrow \\
& u\left(x_{0}, t_{0}\right)=u\left(x\left(-t_{0}\right), 0\right)=\phi\left(x\left(-t_{0}\right)\right)=\phi\left(x_{0}-t_{0} \cdot c\left(u\left(x_{0}, t_{0}\right)\right) \quad \vec{x}\right.
\end{aligned}
$$

H oxion $u=\phi\left(x_{0}-t_{0} c(u)\right)$ opif to $u\left(x_{0}\right.$, to $) \quad n \in n \lambda \in$ fueva
TIAPATHPHEEIZ
A. 'Yrap $\}_{\eta} \lambda \dot{o} n s$ ja pirpó t

Eorw $\vec{x} \in \mathbb{R}$. Eqаррiojoupe to θ ecipnfo $T_{\epsilon T} \lambda_{\epsilon}$ frievns ouvaiprnons orqv $F(x, t, u)=u-\phi\left(x-t_{c}(u)\right)$ oro $(\bar{x}, 0, \phi(\bar{x}))$
$H F$ tivou C^{1} kau $F(\bar{x}, 0, \phi(\bar{x}))=0$,

$$
\partial u F(\bar{x}, 0, \phi(\bar{x}))=1-\left.\phi^{\prime}\left(x-t c(u)\left(-t c^{\prime}(u)\right)\right)\right|_{\begin{array}{l}
t=0 \\
x=\bar{x} \\
u=\Phi(\bar{x})
\end{array}}=1 \neq 0
$$

- Apa, tra (x, t) $\sigma \in$ meploxi rou $(\bar{x}, 0), n \quad F(x, t, u)=0$, λ uंveras Movasina' ws npos e 'Eorw $u(x, t)$ n $\lambda \dot{0} \sigma \eta$

$$
\begin{aligned}
& u(x, t)=\Phi(x-t c(u(x, t))) \\
& \Rightarrow u_{t}=\phi^{\prime}(x-t c(u))\left(-c(u)-t c^{\prime}(u) u t\right) \\
&=-\phi^{\prime}(x-t c(u)) c(u)-u_{t} t c^{\prime}(u) \phi^{\prime}(x-t c(u)) \\
& \Rightarrow u_{t}=-\frac{\phi^{\prime}(x-t c(u)) c(u)}{1+t c^{\prime}(u) \phi^{\prime}(x-t c(u))}
\end{aligned}
$$

$$
\begin{aligned}
& \text { v) } u_{x}=\phi^{\prime}(x-t c(u(x, t)))-\phi^{\prime}(x-t c(u(x, t))) t c^{\prime}(u) u_{x} \\
& \Rightarrow u_{x}=\frac{\phi^{\prime}(x-t c(u))}{1+c^{\prime}(u) \phi^{\prime}(x-t c(u))}
\end{aligned}
$$

'Exoupe Aoinov: $\quad u_{t}+c(u) u_{x=0}^{c(u)}$
IB. H xapakenplotiky now $\xi_{\text {Eruvit ano to }(\bar{x}, 0) \text {, èxer raion: }}$

$$
x^{\prime}(s)=c(z(s))=c(\phi(\bar{x}))
$$

Apa, fivas n јранині $x=\bar{x}+t c(\phi(\bar{x}))$

- 'Orar oujefociorea sio xapoletnploures, töre n duion' naje ra vaipxa
- Aoknon: $\mathrm{Na} \lambda u \theta_{\mathrm{fi}} \eta$

$$
\begin{aligned}
& u_{t}+u u_{x}=0 \\
& u(x, 0)=x
\end{aligned}
$$

Nion: $u=\phi(x-t c(u))$

$$
-\frac{c(u)=u}{c(u))}
$$

$$
\Rightarrow u=-x+t u \Rightarrow u=-\frac{x}{1-t}
$$

Opi $]$ erar rovo ja $t \in[0,1)$

- Exaure kpovion tov xpovo $t=1$

It xapakenplouki now $\xi_{\text {eavaie ario to (} \bar{x}, 0) \text { fivou } \eta \text { : }}$

$$
x=\bar{x}+t(-\bar{x})=\bar{x}(1-t)=\bar{x}-\bar{x} t \quad t
$$

- Ones ol xapactuploukés, otav to $t=1$, zo $x=0$

Xpovos Epacions

$$
t_{\theta}=\inf \left\{-\frac{1}{(c \circ \phi)^{\prime}(x)}: x \in \mathbb{R} \mu \varepsilon(c \circ \phi)^{\prime}(x)<0\right\} .
$$

 $\left.\kappa \alpha \iota \omega \varsigma \phi^{\prime}(x) \geqslant 0\right)$.

Auon undipxti oro $[0$, to $)$
TADATHPH工H:

$$
c(\phi(\xi))^{\prime}=c^{\prime}(\phi(\xi)) \phi^{\prime}(\xi)
$$

Av $\phi^{\prime}(\xi) \geqslant 0$ róre $\tau_{\theta}=\infty$
Atv exoupt ouffpovon rwv xapacinpioukiov

Tecapen 2211/20

$$
\begin{array}{ll}
u_{t}+c(u) u_{x}=0 & , \quad(x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0)=\phi(x) & , x \in \mathbb{R}
\end{array}
$$

$$
\left\{\begin{aligned}
& c^{\prime}(y)>0 \quad \forall y \\
& x^{\prime}(t)=c(z(t)) \\
& z(t)=u(x(t), t) \Rightarrow z^{\prime}(t)=u_{t}+x^{\prime}(t) u_{x}=0 \\
& \Rightarrow z(t)=z(0)=\Phi(x(0))
\end{aligned}\right.
$$

H xapakinplotiki now Jekivaie ano to ($(\bar{x}, 0$) Eival η :

$$
x(t)=\bar{x}+t c^{\prime}(\phi(\bar{x}))
$$

Av $n \phi \rightarrow$ toze ϕ jio xapakinploukès
Sev oujkpojovran.
Tiari:

 a xapakinplouxes δ se oujepoviover

Thati av $x_{1}<x_{2}$ kou ol xapakrnploukès ano to x_{1}, x_{2} ouyepojovral, róre ja kainoio t>0 θ a tixafe:

$$
\begin{aligned}
& x_{1}+t c\left(\phi\left(x_{1}\right)\right)=x_{2}+t c\left(\phi\left(x_{2}\right)\right) \\
\Rightarrow \quad & t\left(c\left(\phi\left(x_{1}\right)\right)-c\left(\phi\left(x_{2}\right)\right)\right)=x_{2}-x_{1}>0
\end{aligned}
$$

Av n ϕ 元 fivon \nearrow, unapxouv $x_{1}<x_{2} \mu \epsilon \phi\left(x_{1}\right)>\phi\left(x_{2}\right)$
Apa, $c\left(\phi\left(x_{1}\right)\right)>c\left(\phi\left(x_{2}\right)\right)$ kou to xpovo $t=\frac{x_{2}-x_{1}}{c\left(\phi\left(x_{1}\right)\right)-c\left(\phi\left(x_{2}\right)\right)}>0$ ol xaparenploukès ano za x_{1}, X_{2} oufrpoúoved.

Iujxpoven Sinaavciv xapakznploukiuvs

- Ar $\Phi^{\prime}\left(x_{1}\right)$ <0 ozov nio mável unoдо 1 omóo, raipvoure $x_{2} \longrightarrow x_{1}+$

$$
0 \text { xpovos xpoions: } t=-\frac{1}{\frac{c\left(\phi\left(x_{2}\right)-c\left(\phi\left(x_{1}\right)\right)\right.}{x_{2}-x_{1}}}
$$

Aornon: Na $\lambda_{u} \theta_{\epsilon i} \eta: \quad U_{t}+U u_{x}=0$

$$
U(x, 0)=\phi(x)=\left\{\begin{aligned}
2, & x<0 \\
2-x, & x \in[0,1] \\
1, & x>1
\end{aligned}\right.
$$

$$
x\left(t ; x_{0}\right)=x_{0}+\phi\left(x_{0}\right) \cdot t
$$

Ixediajaupe ranoies xaparinploukès:

Tra $x_{0 \in}[0,1]: x\left(1, x_{0}\right)=x_{0}+2-x_{0}=2$
Apa, anio oxripa \rightarrow to $=1$

$$
\text { ourkniver oro } \frac{1}{\left(\cos ^{\prime}\right)^{\prime}\left(x_{1}\right)}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

	$\phi(x)$	$U(x, 0)=\phi(x)=\left\{\begin{array}{cc}2, & x<0 \\ 2-x, & x \in[0,1] \\ 1, & x>1\end{array}\right.$
	1	x

Mnopaune woróoo va bpaipe ro xpovo Opaiuns kal anó rou rino:

$$
t \theta=\inf _{\xi \in \mathbb{R}}\{-1
$$

H גuon kavonolei inv $u(x, t)=\Phi(x-u(x, t) \cdot t)$ (t)
「 $00<t<1: \quad$ Av $\quad x \leqslant 2 t: \quad u(x, t)=2$
Av $x \geqslant t+1: u(x, t)=1$
Av $2 t<x<t+1$: av $10 x$ vie ou x-u.t $\in(0,1)(1)$ roiz:
n (*) Sivel: $u(x, t)=2-x+u(x, t) \cdot t$
Inतaín $u(x, t)=\frac{2-x}{1-t}$ (nptnerva totcàpw au kawnoti unv (7))
Fíauzo: $\quad x-u t=x-\frac{2-x}{1-t} \cdot t=\frac{x-x t-2 t+x t}{1-t}=\frac{x-2 t}{1-t}$
Aurio rivea, fivar >0 hari $x>2 t$
kas <1 frari $\frac{x-2 t}{1-t}<1 \Leftrightarrow x<1+t \quad$ (10xikl)
Onore realka:

$$
u(x, t)= \begin{cases}2, & x \leq 2 t \\ \frac{2-x}{1-t}, & 2 t<x<t+1 \\ 1, & \text { Exp yjvetza, ја } t \rightarrow 1 \\ 1, & x \geqslant t+1\end{cases}
$$

\rightarrow baoixo napaistyrea
Aocnon (strauss)

$$
u_{t}+u u_{x}=0
$$

$u(x, 0)=x^{2}, x \in \mathbb{R} \rightarrow \Gamma$ a $x<0$ sivar \$Oivovoa, dpo θ_{0} Exoure kpojon
Avon: H $\lambda \dot{0}$ n θ_{a} (kquonolei env $u=\phi(x-u t)$

$$
\begin{aligned}
& u=(x-u t)^{2}=x^{2}+u^{2} t^{2}-2 u x t \\
& t^{2} u^{2}-(2 x t+1) u+x^{2}=0 \\
& u=\frac{2 x t+1 \pm \sqrt{(2 x t+1)^{2}-4 t^{2} x^{2}}}{2 t^{2}} \\
& =\frac{2 x t+1 \pm \sqrt{4 x t+1}}{2 t^{2}}
\end{aligned}
$$

\rightarrow Sos: Na Eiparye va Stixvoupt nus noorinte outn n oxtón. (Oewpia)

$$
\begin{aligned}
& u\left(x_{0}, t_{0}\right)=\phi(\bar{x}) \\
& x(t)=\bar{x}+t_{\Delta(\bar{x})}^{7} \\
& \text { rdiou } \\
& \Gamma_{\text {ia } t}=t_{0}: x\left(t_{0}\right)=\bar{x}+t_{0} \cdot \phi(\bar{x}) \\
& \Rightarrow \bar{x}=x_{0}-x_{0}^{\prime \prime}-t_{0} \cdot u\left(x_{0}, t_{0}\right)
\end{aligned}
$$

Scanned by CamScanner

Mpénel $4 x t+1>0 . \quad \Delta n \lambda a \delta \dot{n}, \quad x \geqslant 0 \quad t>0$

$$
\eta \quad x<0, t<-\frac{1}{4 x}
$$

Dradijoupe in tion $\mu \in$ to

$$
\begin{aligned}
& u(x, t)=\frac{2 x t+1-\sqrt{4 x t+1}}{2 t^{2}}=\frac{(2 x t+1)^{2}-4 x t-1}{2 t^{2}(2 x t+1+\sqrt{4 x t+1})} \\
&=\frac{4 x^{2} t^{2}}{2 t^{2}(2 x t+1+\sqrt{4 x t+1})}=\frac{x^{2}}{2 x t+1+\sqrt{4 x t+1}} \\
& t_{\theta}=\inf _{\xi \in \mathbb{R}}\left\{-\frac{1}{\phi^{\prime}(\xi)}\right\}=\inf _{\xi<0}\left\{-\frac{1}{2 \xi}\{ \}=\inf _{x>0} \frac{1}{2 x}=0\right.
\end{aligned}
$$

 $\mu \in$ us Sinaaves uns oro $\left(\frac{x}{2},-\frac{1}{2 x}\right)$

Av $\phi(x)= \begin{cases}1, & x<0 \\ 0, & x>0\end{cases}$ to $=$;

Ario oxripa \rightarrow Xpovos Options $=0$
(Bienncu to oxripo ore nial!)
-EEro rujuaros

- Oतो

二Apxn rejiotow (हु) Oeppocura) + Laplace) SOS

- Xupionos is iza binziov

Aoknon 1.2.2 (Aalıacos)

$$
\begin{aligned}
& \quad u_{x}+u_{y}=u^{2} \\
& U=\left\{x \in \mathbb{R}^{2}: x+y>0\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{2}=4\right\} \\
& \text { Na } \lambda u \theta \in i \quad n \otimes 0_{r} \quad u(x-x)=x
\end{aligned}
$$

Na $\lambda_{u \in t i} n * \sigma_{i 0} \cup \mu_{\epsilon} u(x,-x)=x \rightarrow$ ouvoplatn ouvorikn.
$N_{a} \delta_{\epsilon} x \theta \in i$ ou $u(x, y) \rightarrow \infty$ av $(x, y) \rightarrow\left(x_{0}, y_{0}\right) \quad \mu \in x_{0}{ }^{2}-y_{0}{ }^{2}=4$
nuon

Xapakenploukés: $u(x(s) y(s))$
Eorw ($x(s), y(s), z(s)$)

$$
z^{\prime}(s)=z^{2}(s)
$$

 Goorea firi beraw va xiveo

$$
\begin{aligned}
& z^{\prime}(x)=z^{2}(x) \Rightarrow \frac{z^{\prime}}{z^{2}}-1 \Rightarrow-\left(-\frac{1}{z}\right)^{\prime}=1 \Rightarrow \frac{1}{2}=-x+C_{2} \\
& \Rightarrow z(x)=\frac{1}{C_{2}-x}
\end{aligned}
$$

Tla $\delta \in \delta_{o \mu i e v o ~}\left(x_{0}, y_{0}\right)$ बédoupe $y\left(x_{0}\right)=y_{0}$
Maipvoupe $C_{1}=y_{0}-x_{0}$
H xapaktnaoukn $\quad C_{x_{0}, y_{0}}: ~ f(x)=x+y_{0}-x_{0}, \quad$, E рисit ano to $\left(x_{0}, y_{0}\right)$
Mepuais ano to Γ òrav $y(x)=-x$, snda $\delta \dot{n}$:

$$
\begin{aligned}
& x+y_{0}-x_{0}=-x \Rightarrow x=\frac{x_{0}-y_{0}}{2} \\
& u\left(x_{0}, y_{0}\right)=z\left(x_{0}\right)=\frac{1}{c_{2}-x_{0}}
\end{aligned}
$$

- Opws, $z\left(x^{*}\right)=u\left(x^{*},-x^{*}\right)=x^{*} \rightarrow \frac{1}{c_{2}-x^{*}}=x^{*} \Rightarrow$

$$
C_{2}=x^{*}+\frac{1}{x^{*}}
$$

Onote: $\quad C_{2}-X_{0}=\frac{x_{0}-y_{0}}{2}+\frac{2}{x_{0}-y_{0}}-x_{0}=\frac{-x_{0}-y_{0}}{2}+\frac{2}{x_{0}-y_{0}}$

$$
\begin{aligned}
& y^{\prime}(s)=1 \Rightarrow y(s)=s+c_{1} \Rightarrow y(x)=x+c_{1}
\end{aligned}
$$

$$
=\frac{4-\left(x_{0}{ }^{2}-y_{0}{ }^{2}\right)}{2\left(x_{0}-y_{0}\right)}
$$

Apa, $u\left(x_{0}, y_{0}\right)=\frac{2\left(x_{0}-y_{0}\right)}{4-\left(x_{0}^{2}-y_{0}{ }^{2}\right)}$
Indaini, $u(x, y)=\frac{2(x-y)}{4-\left(x^{2}-y^{2}\right)}$
Av, $\quad(x, y) \longrightarrow\left(x_{0}, y_{0}\right)$ uE $x_{0}^{2}-y_{0}^{2}=4 ; \quad x_{0}>0 \quad x>y$

$$
u(x, y) \rightarrow \infty
$$

