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LECTURE NOTES ON ELLIPTIC EQUATIONS

ARAM L. KARAKHANYAN

Abstract. In this notes we discuss some ideas of De Giorgi and Moser leading to Hölder

continuity of the weak bounded solutions. We also give the proof of Krylov-Safonov’s

theorem following Trudinger’s paper.
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1. Outline

The present notes contain the material that I have been covering in the PDE seminar
organized for the postdocs and first and second year PhD students. The proof of the De
Giorgi oscillation lemma is based on the unpublished notes of Labutin [3]. The discussion
on the weak Harnack inequalities for non-divergence form elliptic equations is based on the
paper of Trudinger [5]. Other important texts are listed below

• D. Gilbarg, N.S. Trudinger; Elliptic partial differential equations of second
order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag,
Berlin, 2001

• Q. Han, F. Lin; Elliptic partial differential equations. Second edition. Courant
Lecture Notes in Mathematics, 1., New York; AMS, Providence, RI, 2011

• L.A. Caffarelli, A priori estimates and the geometry of the Monge-Ampère equa-
tion. Nonlinear partial differential equations in differential geometry (Park City, UT,
1992), 5-63, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, 1996.

• L.A. Caffarelli, X. Cabre ; Fully nonlinear elliptic equations. American Math-
ematical Society Colloquium Publications, 43. AMS, Providence, RI, 1995

• E. Landis; Second order equations of elliptic and parabolic type. Translated
from the 1971 Russian original by Tamara Rozhkovskaya. With a preface by Nina
Ural’tseva. Translations of Mathematical Monographs, 171. AMS, Providence, RI,
1998
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2. The De Giorgi oscillation lemma

By L we denote the divergence form uniformly elliptic operator with measurable coeffi-
cients,

Lu =

n∑
i,j=1

Di(aij(x)Dju).

Let Λ > 0 be the ellipticity of L. Here is the De Giorgi oscillation lemma.

Theorem 1. Let u ∈ H1(B1) satisfy

(2.1) Lu ≥ 0 in B1.

Assume also that u is normalised in the following sense:

u ≤ 1 in B1,∣∣B1/2 ∩ {u ≤ 0}
∣∣ ≥ θ|B1/2|(2.2)

for some θ > 0. Then

(2.3) sup
B1/4

u ≤ 1− ε,

for some ε = ε(n,L, θ) > 0.

The meaning of this lemma is simple. A function u satisfying (2.1) is more convex than
concave. Condition (2.2) means that u is below the level 1 near ∂B1, and below the level 0
on a set of big measure in B1/2. The lemma claims that such u is below the level 1 − ε in
B1/2. Actually, the name growth lemma reflects the nature of estimate (2.3) better.

Utilising translations and stretches of the graph of u we derive the De Giorgi oscillation
(growth) lemma at any level A ∈ R1:

Let u ∈ H1(B1) satisfy

Lu ≥ 0 in B1.

Assume that u is normalised at the level A as follows: for some δ, θ > 0

u ≤ A in B1,∣∣{u ≤ A− δ} ∩B1/2

∣∣ ≥ θ|B1/2|.

Then there exists ε = ε(n,L, θ) > 0 such that

(2.4) sup
B1/4

u ≤ A− εδ.

Indeed, just consider

ũ =
u

a
+ b

and choose a, b such that (2.1)–(2.2) hold for ũ: a > 0 and

u

a
+ b ≤ 1 ⇔ u ≤ A

u

a
+ b ≤ 0 ⇔ u ≤ A− δ.
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This gives

a = δ, b = 1− A

δ
.

Then (2.3) gives

sup
B1/2

(
u

δ
+ 1− A

δ

)
≤ 1− ε⇔ sup

B1/2

u ≤ A− εδ.

Similar estimate holds for supersolutions:

Let u ∈ H1(B1) satisfy

Lu ≤ 0 in B1.

Assume that u is normalised at a level A as follows: for some δ, θ > 0

u ≥ A in B1,∣∣{u ≥ A+ δ} ∩B1/2

∣∣ ≥ θ|B1/2|.
Then there exists ε = ε(n,L, θ) > 0 such that

(2.5) inf
B1/4

u ≥ A+ εδ.

(a)

B
1

B
1/2

u≥A+δ

u≥A+δ

u=A+δ

(b)

Figure 1

We also formulate a variation of the previous result.

Theorem 1′. Let u ∈ H1(B1) satisfy

(2.6) Lu ≥ 0 in B1.

Assume also that u is normalised in the following sense:

u ≤ 1 in B1,∣∣B1/4 ∩ {u ≤ 0}
∣∣ ≥ θ|B1/4|(2.7)

for some θ > 0. Then

(2.8) sup
B1/4

u ≤ 1− ε,

for some ε = ε(n,L, θ) > 0.
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Proof. ∣∣B1/2 ∩ {u ≤ 0}
∣∣ ≥ ∣∣B1/4 ∩ {u ≤ 0}

∣∣ ≥ θ

2n

then apply Theorem 1 to infer the result. �

Notations: for a function u and t ∈ R set

Et = {u > t}.

Clearly

(u− t)+ = |u− t| = u− t on Et.

We also have

Ek \ Eh = {k < u ≤ h}
for k < h.

2.1. Main steps in the proof of the De Giorgi oscillation lemma.

Proof. Step 1: Reversed Poincarè inequality. The starting point is the Caccioppoli
inequality. In order to obtain it, test the equation

Lu ≥ 0

with

(u− t)+ η2
r,R.

Here ηr,R is the cut-off localised in BR. The result is

(2.9)

ˆ
Et∩Br

|Du|2 . 1

(R− r)2

ˆ
Et∩BR

∣∣u− t∣∣2.
In other words,

for any height t the gradient of the subsolution u is controlled on the set Et
by the relative elevation of u on a larger scale.

The rest of the proof consists of a nontrivial bootstrapping of (2.9) at different scales and
levels.

Take

v (x) = η2 (x) (u− t)+
, Dv = 2ηDη (u− t)+

+ η2Du (x) 1Et

where η(x) = η(|x|) is radially symmetric continuous functions such that η(s) = 1 in (−r, r)
zero outside of the interval (−R,R), R > r and linear otherwise. From the weak formulation
formulation the equation we haveˆ

a (x)Du (x)Dv (x) ≤ 0.

Subtracting the expression of Dv into this inequality yieldsˆ
η21Et (a (x)DuDv) ≤ −

ˆ
(BR\Br)∩Et

2ηDη (aDu) (u− t)+
.
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Using the ellipticity of a we obtain

λ

ˆ
BR∩Et

η2 |Du|2 ≤
ˆ
Et

η2aDuDu ≤ 2Λ

ˆ
(BR\Br)∩Et

η |Dη| |Du| (u− t)+

≤ 2Λ

(
ε

ˆ
(BR\Br)∩Et

η2|Du|2 +
1

ε

ˆ
|Dη|2[(u− t)+]2

)
.

Or equivalently

(λ− 2εΛ)

ˆ
η2|Dη|2 ≤ Λ

ε

ˆ
(BR\Br)∩Et

|Dη|2[(u− t)+]2.

Choose λ = 2εΛ = λ
2 ⇒ ε = λ

4Λ to get

ˆ
Br∩Et

|Du|2 ≤
ˆ
BR∩Et

η2|Du|2 ≤ 8

(
Λ

λ

)2
Cn

(R− r)2

ˆ
BR∩Et

[(u− t)+]2.

Step 2: Local maximum principle. Careful iterations combined with the Sobolev
and Hölder inequalities give that

Proposition 2. for u ∈ H1(B1) satisfying (2.9) for all levels and all scales, the following
inequality holds:

sup
B1/4

u ≤ t+ C(n,L)

(ˆ
B1/2∩Et

|u− t|2
)1/2 ( ∣∣Et ∩B1/2

∣∣ )α
for any t.(2.10)

Here

(2.11) α = α(n) =
1

2κ
> 0

and κ is a fixed number (the positive root of 2κ2 − n(κ+ 1) = 0). The proof of (2.10) relies
on recurrent relations between the integral and the measure in the right-hand side there
obtained from (2.9), see next section.

Step 3: Dyadic level sets. From (2.10) the proof of the desired estimate (2.3) is almost
immediate. Indeed, set

t = 1− 1

2j
, j = 1, 2 . . . ,

in (2.10). We discover that

sup
B1/4

u ≤ t+ C

(ˆ
B1/2∩Et

|u− t|2
)1/2 ∣∣Et ∩B1/2

∣∣α
≤ t+ (1− t)C |Et ∩B1/2|α+1/2

= 1 + (t− 1)
(
1− C|Et ∩B1/2|

)α+1/2
(2.12)

≤ 1− 1

2j

(
1− C

∣∣∣E1− 1

2j
∩B1/2

∣∣∣α+1/2
)

(2.13)

for any j = 1, 2 . . . .
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We see that to prove (2.3) it is left to establish that

|Et ∩B1/2| → 0 when t→ 1

uniformly over all subsolutions normalised by (2.2).

Step 4: Decay rates. The final step is to obtain from (2.1) and (2.2) that

(2.14) j
∣∣∣E1− 1

2j
∩B1/2

∣∣∣2− 2
n ≤ C(n,L, θ), j = 1, 2, . . . .

Combined with (2.12) it completes the proof of the De Giorgi oscillation lemma.

Estimate (2.14) for our u, u ≤ 1, implies that

|Et| → 0 when t→ 1.

This is not surprising because u is a subsolution bounded by 1 from above. Intuitively we
expect this from the strong maximum principle. Formally, the proof of (2.14) relies on the
Cacioppoli inequality and the Sobolev estimate.

2.2. Proof of the decay estimate in Step 4. To prove (2.14) we need to approach the
level 1 for u. To see what can be done fix two numbers h and k such that

0 < h < k < 1.

We use the following general fact.

Lemma 3. If f ∈W 1,1(B1) and h < k, then

(k − h)
∣∣∣{f > k} ∩B1

∣∣∣1− 1
n

.
1

|{f ≤ h} ∩B1|

ˆ
{h<f<k}∩B1

|Df |.

Remark 4. The meaning of Lemma 3 is simple. The left hand side in the last inequality
indicates how f grows above the level h. The lemma asserts that we can bound this growth
provided we controll Df and f lies below the level h on a set of positive measure.

The lemma is proved later.

In the ball B1/2 apply Lemma 3 to our function u to discover that

(k − h)
∣∣Ek ∩B1/2

∣∣(n−1)/n
.

1∣∣{u ≤ h} ∩B1/2

∣∣ ˆ
(Eh\Ek)∩B1/2

|Du|

.
1

θ

ˆ
(Eh\Ek)∩B1/2

|Du|.(2.15)

In the last inequality we used (2.2).
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Now we are going to use Caccioppoli inequality to bound the last integral. Applying
Holder inequality and (2.9) derive that

ˆ
(Eh\Ek)∩B1/2

|Du| ≤ (|Eh ∩B1/2| − |Ek ∩B1/2|)1/2

(ˆ
(Eh\Ek)∩B1/2

|Du|2
)1/2

≤ (|Eh ∩B1/2| − |Ek ∩B1/2|)1/2

(ˆ
Eh∩B1/2

|Du|2
)1/2

. (|Eh ∩B1/2| − |Ek ∩B1/2|)1/2

(ˆ
Eh∩B1/2

|u− h|2
)1/2

. (|Eh ∩B1/2| − |Ek ∩B1/2|)1/2(1− h).

Continuing (2.15) deduce that

|Ek ∩B1/2|2−
2
n .

(
(1− h)

θ(k − h)

)2 (
|Eh ∩B1/2| − |Ek ∩B1/2|

)
.(2.16)

It is left to iterate (2.16) trying to approach the level 1. For that it is clear that we need
to choose h and k such that

1− h
k − h

. 1.

The simplest choice is

h = 1− 1

2j
, k = 1− 1

2j+1
,

1− h
k − h

= 2,

where j = 1, 2, . . .. Sum the first m inequalities∣∣∣E1− 1

2j+1
∩B1/2

∣∣∣2− 2
n ≤ C(n,L, θ)

(∣∣∣E1− 1

2j
∩B1/2

∣∣∣− ∣∣∣E1− 1

2j+1
∩B1/2

∣∣∣) ,
j = 0, . . ., m− 1, and keep in mind that∣∣∣E1− 1

2m
∩B1/2

∣∣∣ ≤ ∣∣∣E1− 1

2j
∩B1/2

∣∣∣ , j ≤ m.

Discover that

m
∣∣∣E1− 1

2m
∩B1/2

∣∣∣2− 2
n ≤ C(n,L, θ)|B1/2|,

which proves (2.14). �

3. Proof of Lemma 3 and Proposition 2

Recall the statement of Lemma 3:

If f ∈W 1,1(B1) and h < k, then

(k − h)
∣∣∣{f > k} ∩B1

∣∣∣1− 1
n

.
1

|{f ≤ h} ∩B1|

ˆ
{h<f<k}∩B1

|Df |.
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Proof. Step 1. The proof is simlar to the derivation of (2.15). Truncate f at the levels h
and k, and consider the relative value φ, φ ≥ 0. The formula for φ is

φ = ((f − k)− + h)+,

or

φ(x) =

 0 if f(x) ≤ h
f(x)− h if h ≤ f(x) ≤ k

k − h if k ≤ f(x).

The Sobolev inequality gives that(ˆ
B1

|φ− φB1
|n/(n−1)

)(n−1)/n

.
ˆ
B1

|Dφ|.

Let us express this in terms of f and Et = {f > t}.

Step 2. First notice that

0 ≤ φB1
=

1

|B1|

ˆ
Eh∩B1

φ ≤ (k − h)|Eh ∩B1|
|B1|

.

Consequentlyˆ
B1

|φ− φB1
|n/(n−1) ≥

ˆ
Ek∩B1

|φ− φB1
|n/(n−1)

=

ˆ
Ek∩B1

|(k − h)− φB1
|n/(n−1)

≥
(

(k − h)− (k − h)
|Eh ∩B1|
|B1|

)n/(n−1)

|Ek ∩B1|

=

(
(k − h)

|{f ≤ h} ∩B1|
|B1|

)n/(n−1)

|Ek ∩B1|.

At the same time ˆ
B1

|Dφ| =
ˆ
{h<f<k}∩B1

|Df |.

Substitution in the Sobolev inequality for φ now gives

(k − h)|{f ≤ h} ∩B1|
|B1|

|{f > k} ∩B1|1−
1
n .

ˆ
{h<f<k}∩B1

|Df |.

The lemma follows. �

Proof of Proposition 2 and (2.10.)
We want to show that

for u ∈ H1(B1) satisfying (2.9) on all levels and at all scales, the following
inequality holds:

sup
B1/2

u ≤ t+ C(n,L)

(ˆ
B1∩Et

|u− t|2
)1/2 (

|Et ∩B1|
)α

for any t,

where α = α(n) > 0, see (2.11).
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We will prove a more general statement. We show the bound for functions u from De Giorgi
class:

Proposition 2p. Let n > p ≥ 1, and let u ∈W 1,p(B1) satisfy

(3.17)

ˆ
Et∩Br

|Du|p . 1

(R− r)p

ˆ
Et∩BR

(u− t)p

on all levels t and at all scales 0 < r < R. Then the following inequality
holds:

sup
B1/2

u ≤ t+ C(n,L, p)

(ˆ
B1∩Et

(u− t)p
)1/p (

|Et ∩B1|
)α

for any t,(3.18)

where α = α(n, p) = 1
pκ > 0 and κ is the positive root of pκ2−n(κ+ 1) = 0.

The proof of (3.18) is a careful iteration of (3.17) changing levels and scales.

Proof. Step 1. To move closer to the proof of (3.18) let us try to understand the behaviour
of two quantities, namely

I(r, t) = Ip(r, t) =

ˆ
Et∩Br

(u− t)p

and

µ(r, t) = |Et ∩Br|,

when t→ +∞. For any real t we have (u− t)+ ∈W 1,p(B1), and in localised version

η(u− t)+ ∈ H1,p
0 (B1) for all t ∈ R1, η ∈ C∞0 (B1).

Now fix

0 < r < ρ < R < 1, η ∈ C∞0 (Bρ), η|Br = 1.

Estimate the W 1,p
0 -norm using (3.17):ˆ

B1

∣∣D (η(u− t)+
)∣∣p .

ˆ
B1

|Dη|p
∣∣(u− t)+

∣∣p
+

ˆ
B1

ηp
∣∣D ((u− t)+

)∣∣p
.

ˆ
Et∩Bρ

|Dη|p (u− t)p

+

ˆ
Et∩Bρ

|Du|p

.
1

(ρ− r)p

ˆ
Et∩Bρ

(u− t)p

+
1

(R− ρ)p

ˆ
Et∩BR

(u− t)p .

Now set

ρ =
R+ r

2
.
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Then the last inequality gives that
ˆ
B1

∣∣D (η(u− t)+
)∣∣p . 1

(R− r)p

ˆ
Et∩BR

(u− t)p .

Now, the Poincaré-Sobolev estimate for H1,p
0 , 1 ≤ p < n gives1

(ˆ
B1

∣∣η(u− t)+
∣∣p∗)1/p∗

.

(ˆ
B1

∣∣D (η(u− t)+
)∣∣p)1/p

,
1

p
=

1

n
+

1

p∗
,

and we obtain (ˆ
Et∩Br

(u− t)p
∗
)p/p∗

.
1

(R− r)p

ˆ
Et∩BR

(u− t)p .

The Hölder inequality implies that

|Et ∩Br|
p
p∗−1

ˆ
Et∩Br

(u− t)p ≤
(ˆ

Et∩Br
(u− t)p

∗
)p/p∗

.

Consequently ˆ
Et∩Br

(u− t)p . |Et ∩Br|
p/n

(R− r)p

ˆ
Et∩BR

(u− t)p.

Let us record this result in the following form:

(3.19) I(r, t) .
µ(r, t)p/n

(R− r)p
I(R, t).

Estimate (3.19) shows what happens when we go to the smaller scale. What happens when
we go the higher level?

Step 2. To pass from Et to Es with s > t we will use only a very simple fact, namely the
Chebyshev inequality:

|Es ∩Br| ≤
1

(s− t)p

ˆ
Et∩Br

(u− t)p.

In other words,

(3.20) µ(r, s) ≤ 1

(s− t)p
I(r, t), s > t.

Step 3. Combining (3.19) and (3.20) we discover that

I(r, s)µ(r, s) .
µ(r, t)p/n

(R− r)p(s− t)p
I(R, t)I(r, t), r < R, s > t.

1We tacitly assume that n ≥ 3 because for n = 2 Ch. B. Morrey gave the proof of Hölder continuity of
u using the regularity theory of quasiconformal mappings. Thus we can assume that n ≥ 3 and p = 2 is

allowed.
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Actually, it is better to take a power κ > 0 of (3.19) and obtain

I(r, s)κµ(r, s) .
µ(r, t)pκ/n

(R− r)pκ(s− t)p
I(R, t)κI(r, t),

.
µ(R, t)pκ/n

(R− r)pκ(s− t)p
I(R, t)1+κ,

r < R,

s > t.(3.21)

The reason for introducing this κ > 0 is that now we can use

Φ(r, s) = I(r, s)κµ(r, s) =

[(ˆ
Br∩Es

(u− s)p
) 1
p

|Br ∩ Es|
1
pκ

]κp
to express (3.21) simply as

Φ(r, s) .
Φ(R, t)β

(R− r)pκ(s− t)p
,

r < R,

s > t,(3.22)

provided κ = κ(n, p) and β = β(n, p) are given by

β =
pκ

n
, β =

κ+ 1

κ
= 1 +

1

κ
⇒ pκ2 − n(κ+ 1) = 0 see (2.11).

Notice that

β > 1.

The crucial observation is that (3.22) can be iterated to produce (3.18).

Step 4. We are going to establish (3.18). First notice that

‖u‖L∞(B1/2) ≤M ⇐⇒ Φ(1/2,M) = 0.

We will establish the last equality. For that we want to iterate (3.22). Therefore we neces-
sarily have to introduce a sequence of radii {Rj}. Set

Rj =
1

2
+

1

2j
, j = 1, 2, . . . .

Fix a level

M = t+ T

with some T = T (n, p, t) > 0 to be chosen below. Let us try to approach it with the sequence
{tj},

tj = t+ T − T

2j
, j = 1, 2, . . . .

Thus Rj → 1/2, tj → t+ T , and

|Rj+1 −Rj | �
1

2j
, |tj+1 − tj | �

T

2j
.
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Utilising (3.22) we discover that

Φ(Rj+1, tj+1) ≤ C2pκj2pj

T p
Φ(Rj , tj)

β

≤ C̃j

T p
Φ(Rj , tj)

β

≤ C̃j

T p

(
C̃j−1

T p
Φ(Rj−1, tj−1)β

)β
. . . , j = 1, 2 . . . ,

with some C̃(n,L, p) = max(1, C)2p(κ+1) > 0.

Note that for β > 1 we have that

∞∑
j=1

j

βj
.

ˆ ∞
1

x

βx
dx

=

ˆ ∞
1

e−x log βxdx =

=
1

(log β)
2

ˆ ∞
1

e−zzdz

≤ Γ(2)

(log β)
2 .

Having in mind this and that β > 1 we straightforwardly iterate this estimate to derive
that

Φ(Rj+1, tj+1) ≤ C̃(j+(j−1)β+(j−2)β2+···+1βj−1)

T p(1+β+β2+···+βj−1)
Φ(1, t)β

j

=

 C̃

(
j

βj
+

(j−1)

βj−1 +
(j−2)

βj−2 +···+ 1
β

)

T
p
(

1

βj
+ 1

βj−1 + 1

βj−2 +···+ 1
β

)
βj

Φ(1, t)β
j

≤

(
ĈΦ(1, t)

T
p
β

(
1−(1/β)j

1−(1/β)

)
)βj

Ĉ = C̃
Γ(2)

(log β)
2

=

(
ĈΦ(1, t)

T
p

β−1

(
1− 1

βj

)
)βj

=

(
ĈΦ(1, t)

T
p

β−1

)βj
T

pβj

(β−1)βj

=

(
ĈΦ(1, t)

T
p

β−1

)βj
T p/(β−1).

Recall that β > 1. Hence we see that

Φ(1/2, t+ T ) = lim
j→∞

Φ(Rj , tj) = 0
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provided

ĈΦ(1, t)

T
p

β−1

< 1.

For example, we can take

T = (Ĉ + 1)Φ(1, t)(β−1)/p.

Then

T = C̃I(1, t)κ(β−1)/pµ(1, t)(β−1)/p

= C̃I(1, t)1/pµ(1, t)α with α = (β − 1)/p =
1

pκ
> 0.

We conclude that

‖u‖L∞(B1/2) ≤ t+ T

≤ t+ CI(1, t)1/pµ(1, t)α

which establishes (3.18). �

4. Holder continuity from De Giorgi oscillation lemma

The De Giorgi oscillation lemma implies the Hölder continuity of u ∈ H1 solving

Lu = 0.

Namely,

for u ∈ H1(B2) solving

Lu = 0 in B2

the estimate

(4.1) [u]C0,α(B1/2) . oscB1
u

holds.

Note that

oscB1u ≤ 2‖u‖L∞(B1),

and that by (2.10)

‖u‖L∞(B1) . ‖u‖L2(B3/2).

We set

M(R) = sup
BR

u,

m(R) = inf
BR

u,

o(R) = oscBRu = M(R)−m(R).

To prove (4.1) it is enough to show that there exists ξ < 1 such that

(4.2) o(R/4) ≤ ξo(R) for all R > 0.

To prove this fix R > 0. Take the level l = (M(R) +m(R))/2. Either

|{u ≥ l} ∩BR/4| ≥ |BR/4|/2,
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or

|{u ≤ l} ∩BR/4| ≥ |BR/4|/2.
In the first case we utilise that u is a supersolution Lu ≤ 0 and use (2.5). In the second
case we utilise that u is a subsolution Lu ≥ 0 and use (2.4). Assume, for example, that the
first possibility is realised. We have

Lu ≤ 0 in BR,

together with the pointwise bounds

u ≥ m(R) in BR,∣∣∣∣{u ≥ m(R) +
o(R)

2

}
∩BR/4

∣∣∣∣ ≥ |BR/4|/2.
Estimate (2.5) is scale invariant. Applying it to our u deduce that there exists ε = ε(n,L) >
0 such that

m(R/4) ≥ m(R) +
ε

2
o(R).

At the same time

M(R/4) ≤M(R).

Hence

o(R/2) = M(R/4)−m(R/4)

≤ o(R)− ε

2
o(R)

=
2− ε

2
o(R).

We conclude that (4.2) holds. Thus (4.1) is proved.

Lemma 5. Let o(r) ≥ 0 be non-decreasing and o(r) ≤ ηo(4r) for some η ∈ (0, 1). Then

o(ρ) ≤ 1

η

( ρ
R

)α
o(R), α =

log 1
η

log 4
.

Proof.

4m ≤ R

ρ
≤ 4m+1 ⇒ m log 4 ≤ log

R

ρ
≤ (m+ 1) log 4

m ≤
log R

ρ

log 4
≤ m+ 1 ⇒ ηm ≥ η

log R
ρ

log 4 ≥ ηm+1.

Iterating R
4m+1 ≤ ρ ≤ R

4m we have

o(ρ) ≤ o(
R

4m
) ≤ ηm ≤ 1

η
ηm+1o(R)

≤ o(R)

η
η

log R
ρ

log 4

=
1

η

( ρ
R

)α
o(R).

�
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5. The mean curvature equation and a Bernstein type theorem

Let u be a W 1,1(Ω) satisfying

div

 Du√
1 + |Du|2

 = 0.

This PDE Mu = div

 Du√
1 + |Du|2

is called the mean curvature equation and arises in

the area minimization

Area =

ˆ
Ω

√
1 + |Du|2 → min .

Theorem 6.

sup
Ω
|Du| ≤M ⇒ u ∈ C1,α

loc (Ω).

Proof. Let e be a fixed unit vector. We have

∂e

 Du√
1 + |Du|2

 =
Due√

1 + |Du|2
− DuD2uDue(√

1 + |Du|2
)3 = a (x)Due

where

a (x) =
1√

1 + |Du|2

(
id− Du⊗Du

1 + |Du|2

)
.

It follows that ue solves the equation

div (a (x)Due) = 0.

Denote w = Due, then w ∈ L∞(Ω). Furthermore,

aijξ
iξj =

1√
1 + |Du|2

(
|ξ|2 − (Du · ξ)2

1 + |Du|2

)

≥ 1√
1 + |Du|2

(
|ξ|2 − (|Du||ξ|)2

1 + |Du|2

)

≥ 1(√
1 + |Du|2

) 3
2

|ξ|2 .

On the other hand

aijξ
iξj ≤ 1√

1 + |Du|2
|ξ|2 ,
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consequently, a is a uniformly elliptic matrix such that

λ =
1

(1 +M2)
3/2

,Λ =
1√

1 +M2
.

Applying De Giorgi’s theorem the result follows. �

Theorem 7. (Bernstein type theorem) Suppose that Mu = 0 in Rn such that supRn |Du| ≤
M . Then u is a linear function.

Proof. Suppose u(0) = 0 and introduce the scaled functions

u→ u (Rx)

R
= uR (x) , x ∈ Bρ, R > 0.

It is easy to check that MuR = 0. Observe that

x =
z

R
⇒
∣∣∣ z
R

∣∣∣ ≤ 1.

We have from the C1,α result of the previous theorem

|DuR (x)−DuR (y)| ≤ C |x− y|α .

Scaling to the original variables we get that

|Du (z)−Du (ξ)| ≤ C |z − ξ|
α

Rα
.

�

6. Weak Harnack inequality from De Giorgi oscillation lemma

The De Giorgi oscillation lemma can be formulated in a seemingly stronger form. For
example for supersolutions we have:

Let u ∈ H1(B1) satisfy

Lu ≤ 0 in B1.

Assume that u is normalised at a level A as follows: for some δ, θ > 0

u ≥ A in B1,∣∣{u ≥ A+ δ} ∩B1/100

∣∣ ≥ θ|B1/100|.

Then there exists ε = ε(n,L, θ) > 0 such that

(6.1) inf
B1/2

u ≥ A+ εδ.

In other words (having in mind the comparison principle), the oscillation lemma says
that
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if a supersolution u lies above the level A everywhere in B1 (and in particular
around ∂B1) and if in B1/100 it lies above the level C, C > A, on a set of
big measure, then in the ball B1/2 it lies above the level

A+ ε(C −A),

with ε > 0 independent of u, A, and C.

It is convenient to reformulate the De Giorgi oscillation lemma for dyadic cubes instead
of balls. Let w ∈ H1(B1) be a positive supersolution:

Lw ≤ 0 in B1,

w ≥ 0 in B1.

We will assume that dyadic cubes stay far away from ∂B1. Let Q be a dyadic cube, and let
Q̃ be any of χ(n) dyadic cubes touching Q and belonging to the previous generation.

Proposition 8. There exists M > 0, M = M(n,L), such that

|{w ≥ 1 +M} ∩Q| > 1

2
|Q| =⇒ inf

Q̃
w > 1 for

any Q̃.(6.2)

Proof. Indeed, (6.1) implies at once (with A = 0, δ = 1) that

u ≥ 0 in B1,
|{u ≥ 1} ∩Q| > 1

2 |Q|

}
=⇒ inf

Q̃
u ≥ ε.

Now set u = w
1+M . Then

{w ≥ 1 +M} ∩Q = {u ≥ 1} ∩Q.

Hence the normalisation

w ≥ 0,

|{w ≥ 1 +M} ∩Q| > 1

2
|Q|

implies

inf
Q̃

w

1 +M
= inf

Q̃
u ≥ ε.

Consequently,

inf
Q̃
w ≥ (1 +M)ε > 1

provided we take, say, M =
1

ε
. �

Another way to say (6.2) is:

There exists M > 0, M = M(n,L), such that

(6.3) inf
Q̃
w ≤ 1 for some Q̃ =⇒ |{w ≥ 1 +M} ∩Q| ≤ 1

2
|Q| for all dyadic subcubes Q.
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This is just the trivial negation of both sides in (6.2).

The oscilation lemma toether with the Calderon-Zygmund decomposition implies the
weak Harnack inequality. It is convinient to have in mind both forms (6.2) and (6.3) of the
oscilation lemma. We set

Q0 = (0, 1)n, Q1 = (−3, 4)n, Q2 = (−6, 8)n, Q0 ⊂ Q1 ⊂ Q2.

Theorem 9. Let u ≥ 0 satisfy the oscilation conditions (6.2), (6.3) with some constant
M > 0. Then there exists κ > 0, κ = κ(n,M), such that

(6.4) |Et ∩Q0| . t−κ inf
Q1

u.

In particular, for some p > 0, p = p(n,L),

‖u‖Lp(Q0) . inf
Q1

u.

Proof. Step 1. Without loss of generality we assume that

inf
Q1

u = 1.

Then oscilation property (6.3) implies that

|{u ≥ 1 +M} ∩Q0| ≤
1

2
|Q0|.

We are going to combine the Calderòn-Zygmund decompoistion with the oscilation property
at any scale to derive that

(6.5)
∣∣{u ≥ (1 +M)k} ∩Q0

∣∣ ≤ 1

2k
|Q0|, for all k = 1, 2 . . . .

Estimate (6.4) follows immediately from (6.5). The rest of the proof is devoted entirely to
veryfying (6.5).

Step 2. Set Et = {u ≥ t}. We have from (6.3)

|E1+M ∩Q0| ≤
1

2
|Q0|.

Of course we also have

E1+M ⊃ E(1+M)2 ⊃ · · · ⊃ E(1+M)k ⊃ E(1+M)k+1 ⊃ · · · .

Fix an element in this chain. The crucial fact here is that its measure is less than the
measure of the previous element by a fixed factor. Namely, we claim that

(6.6) |{u ≥ (1 +M)2} ∩Q0| = |E(1+M)2 ∩Q0| ≤
1

22
|Q0|.

To see this we will use a Calderòn-Zygmund type argument. Assume that there is dyadic
cube Q ⊂ Q0 such that the inequality∣∣E(1+M)2 ∩Q

∣∣ > 1

2
|Q|

holds. (If no such Q exists then we have
∑
E(1+M)2 ∩Q ≤ 1

2

∑
|Q| ≤ 1

2n+1 |Q0| ≤ 1
22 |Q0|).

For Q we have ∣∣∣∣{ u

1 +M
≥ 1 +M

}∣∣∣∣ > 1

2
|Q|.
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Oscilation property (6.2) applied to u
1+M gives

inf
Q̃

u

1 +M
> 1,

and hence

Q̃ ⊂ E1+M .

Thus we have derived the following implication:∣∣E(1+M)2 ∩Q
∣∣ > 1

2
|Q| ⇒ Q̃ ⊂ E1+M .

In particular, we derived that

if a dyadic cube Q ⊂ Q0 is filled with the set E(1+M)2 by more than 1/2,
then its dyadic parent Q′ belongs to E1+M .

Now apply a Calderon-Zygmund type lemma described in the last step below with A =
E(1+M)2 ,B = E1+M at the level δ = 1/2. We deduce at once that

|E(1+M)2 ∩Q0| ≤
1

2
|E1+M ∩Q0|.

Recalling that

|E1+M ∩Q0| ≤
1

2
|Q0|

we see that (6.6) holds.

Further iterations give ∣∣E(1+M)k ∩Q0

∣∣ ≤ 1

2k
|Q0|

which proves (6.5).

Step 3. We present a Calderón-Zygmund type argument and prove the following state-
ment. By Q we denote a dyadic cube, and by Q′ his parent.

Lemma 10. Let δ ∈ (0, 1), let A ⊂ B ⊂ Q0, be measurable and let A satisfy

(i) |A| ≤ δ|Q0|.
(ii) For any dyadic cube Q the following implication holds:

|A ∩Q|
|Q|

> δ =⇒ Q′ ⊂ B.

Then

(6.7) |A| ≤ δ|B|.

Proof. Recall the Calderòn-Zygmund decomposition: for every f ∈ L1(Q0) and δ > 0 there
are disjoint dyadic countably many cubes {Qj} such that

|f | ≤ δ a.e. in Q0 \
⋃
j

Qj

δ ≤
 
Qj

|f | < 2nδ.
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Apply this to 1A to infer

A ⊂
⋃
Qj modulo a set of measure zero

δ ≤ |A ∩Qj |
|Qj |

< 2nδ
|A ∩ Q̃j |
|Q̃j |

< δ

where the last inequality follows from the Claderòn-Zygmung argument where those cube

which satisfy
|A∩Q̃j |
|Q̃j |

bisected (resulting Qj) until the opposite inequality is true for Qj .

From our assumption (ii) we see that

A ⊂
⋃
j

Q̃j ⊂ B.

Relabelling Q̃j such that they are non-overlapping we get

|A| ≤
∑
j

|A ∩ Q̃j | ≤ δ
∑
j

|Q̃j | ≤ δ|B|.

�

The Lp estimate now follows from an elementary integration argument as in Section
10.3. �

7. Harnack inequality

For u ∈ H1(B1) satisfying

u ≥ 0, Lu ≥ 0 in B1,

estimate (2.10) with t = 0 gives

sup
B1/2

u .

(ˆ
B1

|u|2
)1/2

.

Simple translations and scalings give that for any B(p,R) ⊂ B1 we have

sup
B(p,R/2)

u .

(
1

Rn

ˆ
B(p,R)

|u|2
)1/2

.

Moreover, we have

sup
B(p,τR)

u .

(
1

((1− τ)R)n

ˆ
B(p,R)

|u|2
)1/2

.

A simple scaling is not enough to prove this estimate. However, we can argue as follows.
Choose x0 ∈ B(p, τR) such that (

sup
B(p,τR)

u

)2

≤ 2u(x0)2.
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At the same time B(x0, (1− τ)R) ⊂ B(p,R) and hence

u(x0)2 ≤ sup
B(x0,(1−τ)R/4)

u2

.
1

((1− τ)R)n

ˆ
B(x0,(1−τ)R/2)

|u|2

.
1

(1− τ)n

(
1

Rn

ˆ
B(p,R)

|u|2
)
.

8. The Aleksandrov maximum principle

Normal mapping is defined as followsiu

χu (y) = {p ∈ Rn : s.t. u (x) ≥ u (y) + p (x− y) , ∀x ∈ Ω} .
Lower contact set is defined

Γ−u = {y ∈ Ω s.t. χu (y) 6= ∅}
= {y ∈ Ω s.t. u (x) ≥ u (y) + p · (x− y) ∀x ∈ Ω and some p ∈ Rn}
= {y ∈ Ω where u is convex}.

Proposition 11. Let u ∈ C0(Ω) then

• If u is differentiable at y ∈ Γ− then χu(y) = Du(y).
• if u is convex in Ω then Γ− = Ω and χ is subgradient of u.
• If u is twice continuously differentiable at y ∈ Γ− then D2u(y) ≥ 0.

Lemma 12. Let M =
inf∂Ω u− infΩ u

d
, Ω bounded u ∈ C2(Ω) ∩ C0(Ω). Then

BM (0) ⊂ χu(Γ−).
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Proof. Note that ∂Ω ⊂ Ω thus inf∂Ω u − infΩ u ≥ 0. If M = 0 then BM (0) = ∅. Thus
assume M > 0. Replacing u with v = u− inf∂Ω v we have inf∂Ω v = 0, v ≥ 0 on ∂Ω and in
terms of the new function v we have that

M = − infΩ v

d
.

Let ,Ω− = {v < 0}. It is enough to show that

BM (0) ⊂ χu
(
Γ− ∩ Ω−

)
.

Given ξ ∈ BM (0) . Suppose m = minΩ v = v (0) , 0 ∈ Ω (if the minimum is attained on ∂Ω
then we are done). In our notations

M = −m
d
,m = v (0) < 0.

Consider the linear function L (x) = m+ ξ · x, |ξ| < M then

L (x) < m+

(
−m
d

)
d = 0, ∀x ∈ Ω,L (0) = m < 0.

There is x1 close to 0 such that

v (x1) < L (x1) < 0.

Thus we have ”room” to translate L (x) downwards before it becomes tangent to the graph
of v at some point x̄. Note that L (x) < 0, x ∈ Ω thus after translating downwards the

resulted functions L̃ (x) < 0, x ∈ Ω and consequently x̄ 6∈ ∂Ω. Thus we see that for given
ξ ∈ BM (0) there is x̄ ∈ Ω− such that ξ is the slope of the tangent at x̄. �

Theorem 13. Let u ∈ C2 (Ω) ∩ C0
(
Ω
)

satisfy

detD2u ≤ f (x)h (Du) on Γ−

for some h > 0, h ∈ C2 (Rn). Assume
´

Γ−
f <

´
Rn

dp

h (p)

min
Ω
≥ min

∂Ω
−cd

(ˆ
Γ−

f

) 1

n

where C = C (n) depends only on the dimension n.

Proof.

Mn

suph
≤
ˆ
BM (0)

dp

h (p)
≤
ˆ
χ(Γ−)

dp

h (p)
≤
ˆ

Γ−

detD2u

h (Du)
≤
ˆ

Γ−
f (x)

By approximation χεu = Du + εId, and then letting ε → 0 we can justify the change of
variable formula.

Consequently

Mn =

(
inf∂Ω u− infΩ u

d

)n
≤
ˆ

Γ−
f (x) dx,

and the result follows. �
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Consider

Lu = aijuij ≤ g in Ω

For n× n matrices A,B ≥ 0 we have

detAdetB ≤
(

Tr(AB)

n

)n

(8.8) inf
∂Ω
u ≤ inf

Ω
u− dC (n)

∥∥∥∥∥ g

(det a)
1
n

∥∥∥∥∥
Ln(Γ−)

, d = diamΩ.

Similarly for Lu ≥ g we have

(8.9) sup
Ω
u ≤ sup

∂Ω
u+ dC (n)

∥∥∥∥∥ g

(det a)
1
n

∥∥∥∥∥
Ln(Γ+)

, d = diamΩ,

where Γ+ is the upper contact set defined by

Γ+
u = {y ∈ Ω s.t. u (x) ≤ u (y) + p · (x− y) , ∀x ∈ Ω and some p ∈ Rn} .

9. Applications of Aleksandrov’s maximum principle

9.1. Generalizations for Lu = aijuij + biui + cu. 2

Next proposition contains a generalization of the Aleksandrov maximum principle.

Proposition 14. Let D = det a,D∗ = D
1
n such that

λ ≤ D∗ ≤ Λ.

Let u ∈ C2 (Ω) ∩ C
(
Ω
)

satisfying

Lu := aijuij + biui + cu ≥ f in Ω

such that the following holds

|b|
D∗

,
f

D∗
∈ Ln (Ω) , c ≤ 0 in Ω

Then

sup
Ω
u ≤ sup

∂Ω
u+ + c

∥∥∥∥ f

D∗

∥∥∥∥
Ln(Γ+)

In fact the constant C depends on n, d = diamΩ,

∥∥∥∥ b

D∗

∥∥∥∥
Ln(Γ+)

and more explicitly

C = d

{
exp

{
2n + n− 2

ωnnn+1

(∥∥∥∥ b

D∗

∥∥∥∥n
Ln(Γ+)

+ 1

)}
− 1

}
2This section covers some of the material from Section 2.5 of the lecture notes of Q. Han and F. Lin.
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where ωn = |B1|.

Proof. In Ω+ = {u > 0} with c ≤ 0 we have from Lu ≥ f

−aijuij ≤
−→
b ·Du− f + c (x)u(9.10)

=
−→
b ·Du− f + cu+ − cu−

=
−→
b ·Du− f + cu+

≤ |f | |Du|+ f−.

It is clear from the binomial theorem that(
|b| |Du|+ f−

)n
=

n∑
k=0

(|b| |Du|)k
(
f−
)n−k (n

k

)
.

For 1 ≤ k ≤ n− 1 we have from holder inequality ab ≤ ap

p + bq

q , p = n
k ,

1
p + 1

q = 1 we have

(|b| |Du|)k
(
f−
)n−k

= |Du|n |b|k
(
f−

|Du|

)n−k
≤ |Du|n

(
k

n
|b|n +

n− k
n

(
f−

|Du|

)n)
≤ max

1≤k≤n−1

(
k

n
,
n− k
n

)
(|b| |Du|)n +

(
f−
)n
.

Using this computation we get

(
|b| |Du|+ f−

)n ≤ (|b| |Du|)n +
(
f−
)n

+

n−1∑
x=1

(|b| |Du|)k (f)
n−k

(
n

k

)

≤
(
(|b| |Du|)n +

(
f−
)n) [

1 + max
1≤k≤n−1

(
k

n
,
n− k
n

) n−1∑
k=1

(
n

k

)]

≤
(
(|b| |Du|)n +

(
f−
)n) [

max
1≤k≤n−1

(
k

n
,
n− k
n

)
[2n − 2] + 1

]
≤

[
1

n
[2n − 2] + 1

] (
(|b| |Du|)n +

(
f−
)n)

.

For µ > 0 to be fixed below we notice that

(
|b|n +

(
f−

µ

)n)
(|Du|n + µn) = |b|n |Du|n +

(
f−
)n

+ |b|n µn +

(
f−

µ

)n
|Du|n

≥ |b|n |Du|n +
(
f−
)n

implying the estimate
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|b| |Du|+ f− ≤
(
|b|n +

(f−)
n

µn

) 1
n

(|Du|n + µn)
1
n

(
2

n
(2n−1 − 1) + 1

) 1
n

.

Returning to (9.10) we conclude

det adet(−Diju) ≤
(
−aijuij

n

)n
≤
(
|b|n +

(f−)
n

µn

)
(|Du|n + µn)

1

n
(2n + n− 2) .

Define

g (ξ) =
1

|ξ|n + µn

and use Lemma 12 (applied to −u and consequently replacing Γ− with Γ+ and M =
supΩ u

+−sup∂Ω u
d ) to obtain

ˆ
BM

g(ξ)dξ ≤ 2n + n− 2

nn+1

ˆ
Γ+∩Ω+

|b|n + µ−n (f−)
n

D
.

It remains to evaluate the integral

ˆ
BM

g(ξ)dξ = Area(∂B1)

ˆ M

0

rn−1dr

rn + µn

=
Area(∂B1)

n
log

(
Mn

µn
+ 1

)
= ωn log

(
Mn

µn
+ 1

)
.

Consequently

Mn ≤ µn
{

exp

{
2n + n− 2

ωnnn+1

[∥∥∥∥ b

D∗

∥∥∥∥n
Ln(Γ+∩Ω+)

+ µ−n
∥∥∥∥ f

D∗

∥∥∥∥n
Ln(Γ+∩Ω+)

]}
− 1

}
.

If f 6≡ 0 then we choose µ =

∥∥∥∥ f

D∗

∥∥∥∥
Ln(Γ+∩Ω+)

. If f = 0 then we let µ→ 0. �

We begin with the following simple application of strong maximum principle due to James
Serrin. Note that there is no assumption of the sign of c.

Lemma 15. Let u ∈ C2 (Ω)∩C
(
Ω
)

satisfies Lu ≥ 0. If u ≤ 0 in Ω then either u < 0 in Ω
or u ≡ 0 in Ω .

Proof. We have c = c+ − c−, consequently

aijuij + biui − c−u ≥ −c+u ≥ 0.

Applying the strong maximum principle the result follows. �

Next lemma is valid for the domains with small volume.
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Lemma 16. Let Lu = aijuij + biui + cu in Ω

{aij} is positive definite in Ω, |bi|+ |c| ≤ Λ, det (aij) ≥ λ.

Suppose u ∈ C
(
Ω
)
∩ C2 (Ω) , Lu ≥ 0 in Ω, u ≤ 0 in Ω, diamΩ ≤ d. There is a constant

δ = δ (n, λ,Λ, d) > 0 such that if |Ω| < δ then

u ≤ 0 in Ω.

Proof. Write c = c+ − c−, then it follows

aijuij + biui − c−u ≥ −c+u = −c+
(
u+ − u−

)
≥ −c+u+.

We can apply now the Aleksandrov maximum principle

sup
Ω
u ≤ C

∥∥c+u+
∥∥
Ln(Ω)

≤ C
∥∥c+∥∥∞ |Ω| 1n sup

Ω
u

≤ δ
1
nC
∥∥c+∥∥∞ sup

Ω
u.

This implies that u ≤ 0 if δ is sufficiently small. �

9.2. The moving plane method.

Theorem 17. Suppose u ∈ C2(B1) ∩ C(B1) is a positive solution of

∆u+ f(u) = 0 in B1,

u = 0 on ∂B1,

where f is locally Lipschitz in R. Then u is radially symmetric in B1 and ∂u
∂r < 0 for every

x 6= 0.

The proof follows from the following

Lemma 18. Suppose Ω is a bounded domain convex in x1 direction and symmetric with
respect to the plane {xn = 0}. Let u ∈ C2(B1) ∩ C(B1) be a positive solution of

∆u+ f(u) = 0 in B1,

u = 0 on ∂B1,

where f is locally Lipschitz in R. Then u is symmetric in x1 variable and ∂u
∂x1

< 0 for every
x ∈ Ω with x1 > 0.

Proof. Step 1: We use the notation x = (x1, y), y ∈ Rn−1. We shall prove that

(9.11) u(x1, y) < u(x∗1, y)

for any x1 > 0 and x∗1 < x1 with x∗1 + x1 > 0. Then by letting x∗1 → x1 we get u(x1, y) ≤
u(−x1, y) for any x1. Then changing the direction x1 → −x1 we get the symmetry.
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Step 2: We introduce now the main notations

a = sup
x∈Ω

x1, 0 < λ < a,

Σ = {x ∈ Ω : x1 > λ},
Tλ = {x1 = λ},

Σ′λ = reflection of Σλ with respect Tλ,

xλ = (2λ− x1, x2, . . . , xn), x = (x1, x2, . . . , xn).

In Σλ we define

wλ = u(x)− u(xλ), x ∈ Σλ.

Then we have by the mean value theorem

∆wλ + c(x, λ)wλ = 0 in Σλ,

wλ ≤ 0, and wλ 6≡ 0 on ∂Σλ,

where c(x, λ) is a bounded function in Σλ.

Claim 19. wλ ≤ 0 in Σλ for any λ ∈ (0, a).

Proof. For λ close to a we have wλ < 0 by Lemma 16.

Let (λ0, a) be the largest interval of values of λ such that wλ < 0 in Σλ. We want to
show λ0 = 0.
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If λ0 > 0 by continuity, wλ0 ≤ 0 in Σλ0 and wλ0 6≡ 0 on ∂Σλ0(because otherwise we will
have an interior point z0 where u vanishes which is precluded by our assumptions.).

Let us take small δ > 0 to be fixed below. Let K be a closed subset of Σλ0
such that

|Σλ0 \K| <
δ

2
.

The fact that wλ0 < 0 in Σv0 implies there is η > 0 such that

wλ0
(x) ≤ −η,∀x ∈ K.

Choosing ε small we get
|Σλ0−ε \K| < δ

we choose δ so small that we can apply Lemma 16 to wλ0−ε in Σλ0−ε \ K. Hence we get
that

wλ0−ε ≤ 0 in Σλ0−ε \K
and then my Lemma 15 we infer

wλ0−ε < 0 in Σλ0−ε \K.
Therefore we obtain that

wλ0−ε in Σλ0−ε

which is in contradiction with the definition of λ0.

�

Step 3: From the claim we see that wλ assumes along ∂Σλ ∩Ω its maximum in Σλ. By
Hopf’s lemma we have that for any such λ ∈ (0, a)

Dx1
wλ|x1=λ = 2Dx1

u|x1=λ < 0.

�

10. Local estimates for subsolutions and supersolution of linear equations
aijuij = f

Let us define

u = uε,α(x) =

{
1− rα if r > ε,
1− αεα−2r2 − (1− α)εα if r ≤ ε.

Let

F (D2u) =
1

1− α
∑
λj≥0

λj +
1

n− 1

∑
λj≤0

λj .

This operator is convex for α < 1 and hence one has a priori C2,α estimates of Evans.

For α < 1 we have F (D2u) = −C(α)εα−21Bε hence

‖F (D2u)‖pLp = εp(α−2)εn

goes to zero as ε→ 0 for any

p <
n

2− α
.

This shows that W 2,p a priori estimates for fully non-linear equations cannot hold for p < n.
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Note that from Sobolev’s embedding theorem we have that u ∈ Cα if u ∈ W 2,p, p ≥ n
with

‖u‖Cα ≤ C(n, ‖u‖W 2,p).

In this section we show that a better estimate holds

‖u‖Cα ≤ C(n, ‖u‖∞, L)

for the solutions of the elliptic equation

Lu := aijuij = 0(or = f).

10.1. Subsolutions.

Theorem 20. Let Ω ⊂ Rn be open such that it contains the ball BR = BR(y) (y) ⊂ Ω, u ∈
C2 (Ω) , Lu ≥ f in Ω, with f ∈ Ln (Ω). Then ∀σ ∈ (0, 1) , n ≥ p > 0

sup
BRσ

u ≤ C

{(
1

Rn

ˆ
BR

(
u+
)p) 1

p

+
R

λ
‖f‖Ln(BR)

}

where C = C

(
n, σ, p,

Λ

λ

)
.

Proof. By scale invariance we can take R = 1. Define

(10.12) η =

{ (
1− |x|2

)β
, x ∈ B1,

0 otherwise,

where the exponent β > 1 will be fixed later.

|Dη| ≤ cη1− 1
β ,(10.13) ∣∣D2η

∣∣ ≤ cη1− 2
β(10.14)

Define v = η (u+)
2
, consequently

Dv = Dη
(
u+
)2

+ 2ηu+Du,

D2v = D2η
(
u+
)2

+Dη ⊗Dη4u+ + 2ηDu+ ⊗Du+ + 2ηu+D2u.

Combining

Lv =
(
u+
)2
aijηij + 4u+aijηiuj + 2ηaiju

+
i u

+
j + 2ηu+Lu

≥ −Λ
(
u+
)2
η

1−
2

β + 4u+aijηiu
+
j + 2ηaiju

+
i u

+
j + 2ηu+f.

Clearly we also have

4u+aijηiuj + 2ηaiju
+
i u

+
j ≥ 2λη

∣∣Du++
∣∣2 − 4u+Λ |Dη|

∣∣Du+
∣∣

≥ 2λη
∣∣Du+

∣∣2 − 4Λ

(
(u+ |Dη|)2

ηε
+ εη

∣∣Du+
∣∣2) .
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Returning to Lv we infer

Lv ≥ −Λ
(
u+
)2
η

1−
2

β + 2λη
∣∣Du+

∣∣2 − 4Λ

(
(u+ |Dη|)2

ηε
+ εη

∣∣Du+
∣∣2)+ 2ηu+f

≥ −Λ
(
u+
)2
η1− 2

β

(
1 +

4

ε

)
+ 2η

∣∣Du+
∣∣2 (λ− 2εΛ) + 2ηu+f.

Choose

ε =
λ

2Λ
then

Lv ≥ −Λ
(
u+
)2
η1− 2

β

(
1 +

8Λ

λ

)
+ 2ηu+f.

Now apply Aleksandrov’s maximum principle to conclude

sup
B1

v ≤ sup
∂B1

v +
C(n)

λ

∥∥∥∥∥∥∥−Λ

(
1 +

8Λ

λ

)(
u+
)2
η

1−
2

β + 2ηu+f

∥∥∥∥∥∥∥
Ln(B1)

= sup
∂B1

v + C(n)

∥∥∥∥−Λ

λ

(
1 +

8Λ

λ

)
v1− 2

β
(
u+
) 4
β +

2

λ
v

1
2 η

1
2 f

∥∥∥∥
Ln(B1)

≤ C (n)

Λ

λ

(
1 +

8Λ

λ

)∥∥∥∥∥∥∥v
1−

2

β
(
u+
) 4

β

∥∥∥∥∥∥∥
Ln(B1)

+
2

λ
‖ (vη)

1
2 f ‖Ln(B1)


≤ C (n) max

[
Λ

λ

(
1 +

8Λ

λ

)
, 2

]sup
B1

v
1−

2

β

∥∥∥∥∥∥∥
(
u+
) 4

β

∥∥∥∥∥∥∥
Ln(B1)

+
sup v

1

2

λ
‖f‖Ln(B1)

 .

After dividing both sides by supB1
v

1
2 this yields the estimate

sup
B1

v
1
2 ≤ C

{
sup
B1

v1− 2
β

∥∥∥(u+
) 4
p

∥∥∥
Ln(B1)

+
1

λ
‖f‖Ln(B1)

}
.

Now choose

β =
4n

p
, ⇒ 1

2
− 2

β
=

1

2

(
1− 4

β

)
=

1

2

(
1− p

n

)
.

Applying Hölder’s inequality we get

sup
B1

v
1
2 (1− pn )

∥∥∥(u+
) p
n

∥∥∥
Ln
≤ εq sup v

q
2 (1− pn )

q
+

1

εq′q

(∥∥∥(u+
) p
n

∥∥∥
Ln

)q′
where q′ is the conjugate of q, i.e. 1

q + 1
q′ = 1. We have to choose ε and q appropriately.

In order to match the powers and get the Lp norm of u+ on the right hand side we should



32 ARAM L. KARAKHANYAN

take q′ = n
p . Consequently

q′ =
n

p
⇒ q =

1

1− 1

q′

=
1

1− p

n

=
n

n− p
.

Thus returning to sup v
1
2 we conclude that

sup
B1

v
1
2 ≤ C

{
ε

n
n−p

n− p
n

sup
B1

v
1
2 +

1

ε
n
p

p

n

∥∥u+
∥∥
Lp(β1)

+
1

λ
‖f‖Ln

}
or equivalently[

1− Cn− p
n

vε
n
p

]
sup
B1

v
1
2 ≤ C

{
p

nεnp

∥∥u+
∥∥
Lp(B1)

+
1

λ
‖f‖Ln

}
.

Choose ε so that

C
n− p
n

ε
n
n−p =

1

2
, ⇒ ε =

[
n

2C (n− p)

]n−p
n

and we finally obtain

sup
B1

v
1
2 ≤ 2C

(
p

n

(
2C (n− p)

n

)n−p
p ∥∥u+

∥∥
Lp(B1)

+
1

λ
‖f‖Ln(B1)

)
.

It is left to choose η ≥ 1 in Bσ to conclude the proof of the theorem. �

10.2. Supersolutions.

Theorem 21. Let u ∈W 2,n (Ω) , satisfying u ≥ 0, Lu ≤ 0 in Ω, and let BR ⊂ Ω. Then for
some p (we will later see that p = 1

2C ) and any σ ∈ (0, 1) we have the estimate

(
1

|BRσ|

ˆ
BRσ

up
)1

p ≤ C inf
BRσ

u

where γ > p > 0 and C depend only on n, σ and λ
Λ , γ = logM

log δ > 0.

Proposition 22. Let u ≥ 0 be as in Theorem 21.

(10.15) If |KR(y) ∩ {u ≥ 1}| ≥ δ|KR(y)| then inf
B3R

≥M.

Proof. Set w = log
1

u+ ε
, ε > 0 and normalize R = 1, x ∈ B1.

Dw = − Du

u+ ε
,

D2w = − D2u

u+ ε
+
Du⊗Du
(u+ ε)

2 = − D2u

u+ ε
+Dw ⊗Dw.
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From here we see that

Lw = −aD
2u

u+ ε
+ (aDw)Dw = − Lu

u+ ε
+ (aDw)Dw ≥ (aDw)Dw.

Take

η =
(

1− |x|2
)β

, β > 0,

By direct computation we have

Dη = −2β
(

1− |x|2
)β−1

x,

D2η = −2β
(

1− |x|2
)β−1

id+ 4β (β − 1)
(

1− |x|2
)β−2

x⊗ x

= 2β
(

1− |x|2
)β−2 [

2 (β − 1)x⊗ x− id
(

1− |x|2
)]
.

From these computations it follows that

Lη = 2β
(

1− |x|2
)β−2 [

2 (β − 1) (ax)x−
(

1− |x|2
)

Tra
]

≥ 2β
(

1− |x|2
)β−2 [

2 (β − 1)λ |x|2 − nΛ
(

1− |x|2
)]

For |x| ≥ α we have

Lη ≥ 2β
(

1− |x|2
)β−2 [

2 (β − 1)λ |x|2 − nΛ
(

1− |x|2
)]

≥ 2βλ
(

1− |x|2
)β−2

[
2 (β − 1)α2 − nΛ

λ

(
1− α2

)]
= 2βλ

(
1− |x|2

)β−2
[
α2

(
2 (β − 1) + n

Λ

λ

)
− nΛ

λ

]
≥ 0

provided that

(10.16) α2 ≥
n

Λ

λ

2 (β − 1) + n
Λ

λ

, or β ≥ 1 +
n

2

Λ

λ

(
1− α2

)
.

This computation shows that if α > 0 is a given small number α < 1 then we can choose
β ≥ 2 large enough so that

(10.17) Lη ≥ 0 in B1 \Bα.
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Now we turn to

L (ηw) = a
(
ηD2w

)
+ 2aDηDw + waD2η

= ηLw + 2aDηDw + wLη

≥ η (aDw)Dw + 2aDηDw + wLη

≥ λη |Dw|2 − 2Λ |Dη| |Dw|+ wLη

≥ λη |Dw|2 − 2Λ

(
ε |Dw|2 η +

1

ε

|Dη|2

η

)
+ wLη

= η |Dw|2 (λ− ε2Λ)− 2Λ

εη
|Dη|2 + wLη

= λη |Dw|2
(

1− 2ε
Λ

λ

)
− 2Λ

εη
|Dη|2 + wLη.

Choose

(10.18) ε =
λ

2Λ
in the last inequality to have

L (ηw) ≥ −4Λ
Λ

λ

|Dη|2

η
+ wLη.

We want to rewrite the last inequality in terms of v := ηw and η only. To do so recall that

|Dη| = 2β |x|
(

1− |x|2
)β−1

.

Using this we obtain

|Dη|2

η
=

4β2 |x|2
(

1− |x|2
)2β−2

(
1− |x|2

)β = 4β2 |x|2 (1− |x|2)β−2 ≤ 4β2 if β ≥ 2.(10.19)

Finally, writing w =
ηw

η
=
v

η
, with v = ηw we obtain the inequality

(10.20) Lv ≥ −16Λ
Λ

λ
β2 +

v

η
Lη

We need to consider this inequality in B+ = B1 ∩ {w > 0}. Utilizing the fact that

Lη ≥ 0 in B1\Bα ∀α ∈ (0, 1)

provided that

β ≥ 1 +
n

2

Λ

λ

(
1− α2

)
and β ≥ 2

we can further estimate

Lv ≥ −16Λβ2 Λ

λ
− v1Bα sup

Bα

(
−Lη
η

)
in B+(10.21)

= −16Λβ2 Λ

λ
− v1Bα sup

Bα

(Lη)
−

η
(10.22)
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where 1Bα is the characteristic function of the ball Bα and (Lη)− is the negative part of
Lη. Now recall Aleksandrov’s maximum principle

If u ≤ 0 on ∂Ω and Γ+ is the upper contact set of u ∈ W 2,n (Ω) ∩ C0
(
Ω
)

then we have

sup
Ω
u ≤ CdiamΩ

[ˆ
Γ+

(Lu)
n

det a

] 1

n

One may replace Γ+ in the former estimate by Ω+ = {u > 0} which yields the estimate

sup
Ω
u ≤ C

diamΩ

λ

[ˆ
Ω+

(Lu)
n

] 1

n
(10.23)

= C
diamΩ

λ
‖Lu‖Ln(Ω+) .(10.24)

We apply this estimate to v = ηw

(10.25) sup
B1

v ≤ C 1

λ

∥∥∥∥∥16β2Λ
1

λ
+ v1Bα sup

Bα

(Lη)
−

η

∥∥∥∥∥
Ln(B+)

.

Recall that

Lη

η
=

2β
(

1− |x|2
)β−2 [

2 (β − 1) (ax)x−
(

1− |x|2
)

Tru
]

η
(10.26)

≤ 2β (2β − 1) Λ

1− α2
(10.27)

provided

(10.28) β ≥ 2, and β ≥ 1 +
nΛ

λ

(
1− α2

)
.

Therefore

sup
B1

v ≤ C

∥∥∥∥Λ

λ
16β2 Λ

λ
+ v1Bα4β2

∥∥∥∥
Ln(B+

1 )

≤ C4β2 Λ

λ
max

(
4

Λ

λ
, 1

)
‖1 + v1Bα‖Ln(B+

1 )

≤ C0

(
1 +

∥∥v+
∥∥
Ln(Bα)

)
.
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Next we switch to cubes in order to employ cube decomposition argument. For cubes the
last estimates takes the form

sup
B1

v ≤ C

1 +
∣∣B+

α

∣∣ 1n sup
Bα

v+


≤ C

1 +
∣∣K+

α

∣∣ 1n sup
Bα

v+


≤ c

1 +

(
|K+

α |
|Kα|

) 1
n

|K|
1

n sup
B1

v+


≤ CA

(
1 + θ

1
n 2α sup

B1

v

)
Implying 1− 2CAαθ

1

n

 sup
B1

v ≤ CA ⇒ sup
B1

v ≤ CA

1− 2CAαθ
1
n

,

where we assumed that

(10.29)
|K+

α |
|Kα|

≤ θ,

Recall that here C depends on n, Λ
λ . Choose

θ =
1

(4αCA)
n ,

then
CA

1− 2CAαθ
1
n

= 2CA.

Summarizing we have proved the following statement (here and henceforth θ = 1
(4αCA) ):

If

(10.30)
|K+

α |
|Kα|

≤ θ then sup
B1

v ≤ 2CA.

Here 0 < α < 1 is arbitrary and β ≥ 2 must be fixed with respect to α such
that all constraints imposed on β are satisfied.

Our choice is

(10.31) α =
1

3n

then
|K+
α |

|Kα| ≤ θ becomes
|K+

1
3n

|

|K 1
3n
| ≤ θ. Now upon rescaling we get
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If

(10.32)
|K+

R |
|KR|

≤ θ then sup
3R

w ≤ sup
B3nR

v ≤ 2CA.

in terms of u this reads

(10.33) If |KR(y) ∩ {u ≥ 1}| ≥ δ|KR(y)| then inf
B3R

≥M.

M = e−2CA .

Note that M = e−2CA < 1, because w = log
1

u
and hence

{w > 0} ⇔
{

1

u
> 1

}
,K+

R = KR ∩ {u < 1}

and consequently

|KR ∩ {u ≥ 1}| ≥ (1− θ) |KR (y)|
�

10.3. Proof of Theorem 21. We can reformulate our results obtained so far as

Claim 23. If for some δ > 0

|KR ∩ {u ≥ 1}| ≥ δ |KR (y)|

then

inf
B3R(y)

u ≥M ∀K3R (y) such that K3nR (y) ⊂ Ω.

From Claim 23 we deduce

Lemma 24. If ∣∣∣{u ≥ 1} ∩K 1
3n

∣∣∣ ≥ δm ∣∣∣K 1
3n

∣∣∣
then

inf
K 1

3n

u ≥Mm.

Proof. Demonstration is by induction. The base step is easy: if m = 1 then by Claim 23
we have ∣∣∣{u ≥ 1} ∩K 1

3n

∣∣∣ ≥ δ ∣∣∣K 1
3n

∣∣∣ ⇒ inf
K 1

3n

≥M

Inductive step m ≥ 2. Let us prove that

if
∣∣∣{u ≥ 1} ∩K 1

3n

∣∣∣ ≥ δm+1
∣∣∣K 1

3n

∣∣∣ then inf
K 1

3n

u ≥Mm+1.

Let Q ∈ B then Claim 23 implies that infQ̃ u ≥M . In particular

inf
Γ̃δ

u = inf
∪Q∈BQ̃

u ≥M
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For u =
u

M
we have

{
u =

u

M
≥ 1
}
⊃ Γ̃δ. Moreover, from the covering Lemma 25 it follows

that

|Γ̃δ| ≥
1

δ
|Γ| ≥ 1

δ
δm+1

∣∣∣K 1
3n

∣∣∣ = δm+1
∣∣∣K 1

3n

∣∣∣ .
Thus for the supersolution u = u

M we have that

∣∣∣{u ≥ 1} ∩K 1
3n

∣∣∣ ≥ δm ∣∣∣K 1
3n

∣∣∣
Applying inductive hypothesis we infer

inf
K 1

3n

u ≥Mm ⇒ inf
K 1

3n

u ≥Mm+1

and this finishes the proof of the claim. �

From ∣∣∣Γ ∩K 1
3n

∣∣∣ ≥ δm ∣∣∣K 1
3n

∣∣∣
after taking the logarithm we get

log
∣∣∣Γ ∩K 1

3n

∣∣∣ ≥ m log δ + log
∣∣∣K 1

3n

∣∣∣ ⇒ log

∣∣∣Γ ∩K 1
3n

∣∣∣∣∣∣K 1
3n

∣∣∣ ≥ m log δ

Since M < 1 it follows

M

log

∣∣∣∣∣Γ∩K 1
3n

∣∣∣∣∣∣∣∣∣∣K 1
3n

∣∣∣∣∣ ≤ (Mm)
log δ

implying

inf
K 1

3n

u ≥M

log

∣∣∣∣∣Γ∩K 1
3n

∣∣∣∣∣∣∣∣∣∣K 1
3n

∣∣∣∣∣
log δ =

log

∣∣∣Γ ∩K 1
3n

∣∣∣∣∣∣K 1
3n

∣∣∣


logM
log δ

.

Note that γ := logM
log δ > 0, hence this yields

inf
K 1

3n

u ≥


∣∣∣Γ ∩K 1

3n

∣∣∣∣∣∣K 1
3n

∣∣∣
γ

.

Returning to balls

inf
B 1

3n

u ≥ inf
K 1

3n

u ≥


∣∣∣Γ ∩K 1

3n

∣∣∣∣∣∣K 1
3n

∣∣∣
γ

≥ c(n)


∣∣∣Γ ∩B 1

3n

∣∣∣∣∣∣B 1
3n

∣∣∣
γ

.

Finally setting {u ≥ t} = Γt
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inf
B 1

3n

u ≥ C0t

(∣∣Γt ∩B 1
3n

∣∣∣∣B 1
3n

∣∣
)γ

Set u =
u

infBα u
then

1 ≥ t

infBα u
c0


∣∣∣∣{u ≥ t

infBα u

}
∩Bα

∣∣∣∣
|Bα|


γ

substituting s =
t

infBα u
we infer

(
1

sc0

) 1

γ |Bα| ≥ |{u ≥ s} ∩Bα| ⇒
ˆ
Bα

up =

ˆ +∞

0

psp−1 |{u ≥ s} ∩Bα| ds

≤
ˆ +∞

1

ps
p−1−

1

γ ds

=
p

p− 1

γ

, if p <
1

γ
.

10.4. Proof of Lemma 25.

Lemma 25. Let K0 be cube in Rn and Γ ⊂ K0 a measurable subset. Let 0 < δ < 1 and set

Γδ =
⋃
{K3R(y) ∩K0 : KR(y) ⊂ K0, |KR(y) ∩ Γ| ≥ δ|KR(y)|} .

If Γδ 6= K0 then |Γ| ≤ δ|Γδ|.

Proof is by Calderòn-Zygmund type argument similar to one we did in the proof of the
Harnack inequality.

Proof. First suppose that

|K0 ∩ Γ| > δ |K0|
then it implies

Γδ = K0.

Therefore, we assume Γδ 6= K0 and consequently |K0 ∩ Γ| ≤ δ |K0|.

Let us divide K0 into 2n subcubes {K (j1)}2
n

j1=1. Consider two cases:

(a) |Γ ∩K (j1)| ≤ δ |K(j1)|,
(b) |Γ ∩K (j1)| > δ |K(j1)|.



40 ARAM L. KARAKHANYAN

Denote

B1 = {K(j1) : for which case (b) is true}.

If K(j1) 6∈ B then subdivide K(j1) into 2n smaller congruent cubes {K(j1, j2)}2nj2=1. Denote
by B2 the collection of those cubes K(j1, j2) for which the case (b) is true. By repeating
this procedure we obtain a sequence B1,B2, . . . containing cubes for which (b) is true. Let

B =
{
K (j1, j2, . . . , jm−1) : K

(
j1, j2, jm−1), jm

)
∈ Bm

}
.

Observe that for

K (j1, j2, . . . , jm) ∈ Fm

we have

|K (j1, . . . , jm) ∩ Γ| > δ |K (j1, . . . , jm)|

while

(10.34) |K (j1, . . . , jm−1) ∩ Γ| ≤ δ |K (j1, . . . , jm−1)| .

Note that K(j1, . . . , jm−1) ∈ Γδ be definition, and, moreover⋃
K∈B

K ⊂ Γδ.

It follows from (10.34)

|Γ̃δ ∩ Γ| =

∣∣∣∣∣ ⋃
K∈B

Γδ ∩ Γ

∣∣∣∣∣
=

∑
K∈B

|K ∩ Γ| ≤ δ
∑
K∈B

|K|

≤ δ |Γδ| .

It remains to apply Lebesgue’s theorem to finish the proof. �

11. Pogorelov’s estimate for the Monge-Ampère equation

Theorem 26. (à la Pogorelov [4, Theorem 5.1]) Let D ⊂ Rd be a bounded convex domain,
and z ∈ C4(D) ∩ C1(D) be a convex solution to

(11.35)


detD2z = ϕ(x, z(x), Dz(x)), in D,

z = 0, on ∂D,

z < 0, in D,

and 0 < ϕ ∈ C3(Rd × R− × Rd). Then, there exists a constant C > 0 depending only on d,
||ϕ||C3 , ||Dz||L∞ such that

−zzij ≤ C on D.

Remark 27. Since ϕ ∈ C4(D) it follows that D2z > 0 as ϕ > 0 and z is convex.
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Proof of Theorem 26. On D × Sd−1 consider the function auxiliary function

w(x, α) = w = −ze
µ

(
|Dz|2

2

)
zαα = −z(x)e

µ

(
|Dz|2

2

)
(zijαiαj),

where µ is a smooth function to be defined below. Since w = 0 on ∂D and w > 0 in D, then
there is x0 ∈ D and α0 ∈ Sd−1 where w attains its absolute positive maximum. Without
loss of generality we will assume that x0 = 0 as otherwise we may translate the origin onto
x0 by considering the function z̃(x) = z(x + x0) in D − x0. Next, by means of a rotation
we may assume further that D2z(0) is diagonal with the property that z11(0) ≥ zij(0) for
all 1 ≤ i, j ≤ d. Hence, we get that α0 = e1 = (1, 0, ..., 0) ∈ Rd.

We have

logw = log(−z) + µ

(
|Dz|2

2

)
+ log zαα.

Differentiating this expression we obtain

(logw)i =
zi
z

+ µ̇

d∑
k=1

zkizk +
zααi
zαα

and

(logw)ii =
zii
z
−
(zi
z

)2

+ µ̈

(
d∑
k=1

zkizk

)2

+ µ̇

d∑
k=1

zkiizk + µ̇

d∑
k=1

zkizki +
zααii
zαα

−
(
zααi
zαα

)2

.

Since D2z(0) is diagonal and w has maximum at 0 from the last computation we get

(11.36) 0 = (logw)i(0) =
zi
z

+ µ̇ziizi +
zααi
zαα

= 0,

and

(11.37) 0 ≥ (logw)ii(0) =
zii
z
− z2

i

z2
+ µ̈(zizii)

2 + µ̇

d∑
k=1

zkiizk + µ̇(zii)
2 +

zααii
zαα

− z2
ααi

z2
αα

.

Multiplying both sides of (11.37) by zαα
zii

and summing up over 1 ≤ i ≤ d yields

(11.38)

d∑
i=1

zααii
zii︸ ︷︷ ︸

4th order

+ µ̇zαα

d∑
i=1

d∑
k=1

zkiizk
zii

−
d∑
i=1

z2
ααi

ziizαα︸ ︷︷ ︸
3rd order

+µ̈zαα

d∑
i=1

z2
i zii + µ̇zαα

d∑
i=1

zii+

zαα
z
d−

d∑
i=1

z2
i

z2

zαα
zii
≤ 0.

We now want to eliminate the terms in (11.38) containing 3rd and 4th order derivatives
of z. Differentiating the equation log detD2z = logϕ at 0 in the direction γ and using the
fact that D2z(0) is diagonal, by a simple computation we obtain

(11.39)

d∑
i=1

ziiγγ
zii
−

d∑
i,j=1

z2
ijγ

ziizjj
= ∂2

γγ logϕ,

(11.40)

d∑
i=1

ziiγ
zii

= ∂γ logϕ,
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where on the right-hand sides of (11.39) and (11.40) are full derivatives of logϕ. Using
(11.39) with γ = α we replace the term containing 4th order derivatives of z in (11.38), by
so inferring that the remaining 3rd order term will be as follows

3rd order =

d∑
i,j=1

z2
ijα

ziizjj
−

d∑
i=1

z2
ααi

ziizαα
+ µ̇zαα

d∑
i=1

d∑
k=1

zkiizk
zii

=

d∑
i=1

∑
j 6=α

z2
ijα

ziizjj
+ µ̇zαα

d∑
i=1

d∑
k=1

zkiizk
zii

=

∑
j 6=α

z2
ααj

zααzjj
+
∑
i 6=α

∑
j 6=α

z2
ijα

ziizjj
+ µ̇zαα

d∑
i=1

d∑
k=1

zkiizk
zii

(11.36)
=

∑
j 6=α

zαα
zjj

(zj
z

+ µ̇zjjzj

)2

+
∑
i 6=α

∑
j 6=α

z2
ijα

ziizjj
+ µ̇zαα

d∑
i=1

d∑
k=1

zkiizk
zii

(11.40)
=:

Σ1 + Σ2 + µ̇zαα

d∑
k=1

zk∂k logϕ,

where Σ1,2 are respectively the first and the second sums of the second to the last row.
Substituting these computations in (11.38) we get

∂2
αα logϕ+

∑
j 6=α

zαα
zjj

(zj
z

+ µ̇zjjzj

)2

+
∑
i 6=α

∑
j 6=α

z2
ijα

ziizjj
+

µ̇zαα

d∑
k=1

zk∂k logϕ+ µ̈zαα

d∑
i=1

z2
i zii + µ̇zαα

d∑
i=1

zii+

d
zαα
z
−

d∑
i=1

z2
i

z2

zαα
zii

=: I ≤ 0.

A further simplification of I gives

0 ≥ I =
∑
i 6=α

∑
j 6=α

z2
ijα

ziizjj
+ (µ̇)2

∑
j 6=α

zαα
zjj

(z2
jj)(zj)

2 + ∂2
αα logϕ+

2µ̇zαα
∑
j 6=α

z2
j

z
+ µ̇zαα

d∑
k=1

zk∂k logϕ+

µ̈zαα

d∑
i=1

z2
i zii + µ̇zαα

d∑
i=1

zii + d
zαα
z
− z2

α

z2
.

Finally, we deal with the derivatives of logϕ. Computing the derivatives at 0 and taking
into account that D2z is diagonal at 0, we obtain

(11.41) ∂j logϕ = ∂xj logϕ+ (∂z logϕ)zj +

d∑
k=1

(∂zk logϕ)zkj ,
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∂2
αα logϕ =

d∑
k=1

(∂zk logϕ)zkαα + z2
αα(∂2

zα logϕ)+

zαα
(
∂z logϕ+ ∂xα∂zα logϕ+ ∂z∂zα logϕ︸ ︷︷ ︸

Q

)
+R,

where in R we collect all terms containing lower order derivatives of z. We next eliminate
the term containing the 3rd order derivative of z using (11.36). By doing so, we arrive at
(11.42)

∂2
αα logϕ = z2

αα(∂2
zα logϕ)− µ̇zαα

d∑
k=1

zkzkk∂zk logϕ− zαα
z

d∑
k=1

zk∂zk logϕ+ zααQ+R

Plugging (11.41)-(11.42) into I, after some simplifications we get

0 ≥ I ≥ −µ̇zαα
d∑
k=1

∂ logϕ

∂zk
zkzkk +

∂2 logϕ

∂z2
α

z2
αα +

zαα
z
Q′ +R+ 2µ̇zαα

∑
j 6=α

z2
j

z
+

µ̇zαα

d∑
k=1

zk
∂ logϕ

∂zk
zkk + µ̈zαα

d∑
i=1

z2
i zii + µ̇zαα

d∑
i=1

zii + d
zαα
z
− z2

α

z2
=

zαα

d∑
i=1

µ̈z2
i zii + µ̇zαα

d∑
i=1

zii +
∂2 logϕ

∂z2
α

z2
αα+

zαα
z

(Q′ + d)︸ ︷︷ ︸
Q′′

+2µ̇zαα
∑
j 6=α

z2
j

z
+
(
R− zα

z2

)
︸ ︷︷ ︸

s0
z2

.

Now choose µ(t) = ect with c > 0. Then µ̇ = cµ and µ̈ = c2µ. Therefore

0 ≥ zααc2µ
d∑
i=1

z2
i zii + cµzαα

d∑
i=1

zii +
∂2 logϕ

z2
α

z2
αα + zααzQ

′′ + 2cµzαα
∑
j 6=α

z2
j

z
+
s0

z2
=

µc

d∑
i=1

zαα(cz2
i zii + zii) +

∂2 logϕ

∂z2
α

z2
αα +

zαα
z
Q′′ + 2cµzαα

∑
j 6=α

z2
j

z
+
S0

z2
=

µczαα

d∑
i=1

zii(cz
2
i + 1)︸ ︷︷ ︸

≥ zαα

+
∂2 logϕ

∂z2
α

(zαα)2 +
zαα
z
Q′′ + 2cµzαα

∑
j 6=α

z2
j

z
+
S0

z2
≥

(
µc+

∂2 logϕ

∂z2
α

)
z2
αα +

zαα
z

Q′′ + 2cec
|Dz|2

2

∑
j 6=α

z2
j


︸ ︷︷ ︸

S

+
S0

z2
≥

(
c− sup

∣∣∣∣∂2 logϕ

∂z2
α

∣∣∣∣) z2
αα + S

zαα
z

+
S0

z2
.
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Choosing c� sup
∣∣∣∂2 logϕ

∂z2
α

∣∣∣ and multiplying both sides by z2 we get

cz2z2
αα + Szzαα + S0 ≤ 0,

hence

zzαα ≤
−s+

√
S2 − 4cS0

2c
:= C1,

where the left-hand side is evaluated at 0, and C1 = C1(d, ||z||L∞ , ||Dz||L∞ , ||ϕ||C3). Since
w attains it maximum at 0, from the last estimate we get w(x) ≤ C1 for all x ∈ D, hence

−z(x)zαα(x) ≤ C1, x ∈ D, α ∈ Sd−1.

The proof is complete.

�

References

[1] E. De Giorgi, Sulla differenziabilita e I’analiticita delle estremali degli integrali multipli regolari, Mem.

Accad. Sci. Torino. CI. Sci. Fis. Mat. Nat. (3) 3 (1957), 25- 43
[2] N.V. Krylov, M. V. Safonov, A property of the solutions of parabolic equations with measurable coeffi-

cients. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161?175,

[3] D.A.Labutin, DeGiorgi-Moser Iterations, manuscript 2006
[4] Pogorelov, A.V.: Multidimensional Monge-Ampère equation det||zij || = ϕ(z1, ..., zn, z, x1, ..., xn),

Nauka, Moscow, 1988 (in Russian)

[5] N.S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic
quasilinear equations. Invent. Math. 61 (1980), no. 1, 67-79

View publication statsView publication stats

https://www.researchgate.net/publication/312990126

