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To Cecil Nesbitt



Foreword

Halley's Comet has been prominently displayed in many newspapers during
the last few months. For the first time in 76 years it appeared this winter,
clearly visible against the nocturnal sky. This is an appropriate occasion to
point out the fact that Sir Edmund Halley also constructed the world's first life
table in 1693, thus creating the scientific foundation of life insurance. Halley's
life table and its successors were viewed as deterministic laws, i.e. the number
of deaths in any given group and year was considered to be a well defined
number that could be calculated by means of a life table. However, in reality
this number is random. Thus any mathematical treatment of life insurance
will have to rely more and more on probability theory.

By sponsoring this monograph the Swiss Association of Actuaries wishes
to support the "modem" probabilistic view of life contingencies. We are fortu
nate that Professor Gerber, an internationally renowned expert, has assumed
the task of writing the monograph. We thank the Springer-Verlag and hope
that this monograph will be the first in a successful series of actuarial texts.

ZUrich, March 1986 Hans Biihlmann
President
Swiss Association of Actuaries



Preface

Two major developments have influenced the environment of actuarial math
ematics. One is the arrival of powerful and affordable computers; the once
important problem of numerical calculation has become almost trivial in many
instances. The other is the fact that today's generation is quite familiar with
probability theory in an intuitive sense; the basic concepts of probability the
ory are taught at many high schools. These two factors should be taken into
account in the teaching and learning of actuarial mathematics. A first conse
quence is, for example, that a recursive algorithm (for a solution) is as useful
as a solution expressed in terms of commutation functions . In many cases the
calculations are easy; thus the question "why" a calculation is done is much
more important than the question "how" it is done. The second consequence
is that the somewhat embarrassing deterministic model can be abandoned;
nowadays nothing speaks against the use of the stochastic model, which bet 
ter reflects the mechanisms of insurance . Thus the discussion does not have
to be limited to expected values; it can be extended to the deviations from
the expected values, thereby quantifying the risk in the proper sense.

The book has been written in this spirit . It is addressed to the young
reader (where "young" should be understood in the sense of operational time)
who likes applied mathematics and is looking for an introduction into the
basic concepts of life insurance mathematics.

In the first chapter an overviewof the theory of compound interest is given.
In Chapters 2-6 various forms of insurance and their mechanisms are discussed
in the basic model. Here the key elementis the future lifetime of a life aged x,
which is denoted by T and which is (of course!) a random variable. In Chap
ter 7 the model is extended to multiple decrements , where different causes for
departure (for example death and disability) are introduced. In Chapter 8 in
surance policies are considered where the benefits are contingent on more than
one life (for example widows' and orphans' pensions). In all these chapters the
discussion focuses on a single policy, which is possible in the stochastic model,
as opposed to the deterministic model, where each policy is considered as a
member of a large group of identical policies. In Chapter 9 the risk arising
from a group of policies (a portfolio) is examined. It is shown how the distribu
tion of the aggregate claims can be calculated recursively. Information about
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this distribution is indispensable when reinsurance is purchased. The topic of
Chapter 10 is of great practical importance; for simplicity of presentation the
expense loading is considered only in this chapter. Chapter 11 examines some
statistical problems, for instance, how to estimate the distribution of T from
observations. The book has been written without much compromise; however,
the appendix should be a sign of the conciliatory nature of the author. For
the very same reason the basic probability space (fl,:F, P) shall be mentioned
at least once: now!

The publication of this book was made possible by the support of the Fund
for the Encouragement of Actuarial Mathematics of the Swiss Association of
Actuaries; my sincere thanks go to the members of its committee, not in
the least for the freedom granted to me. I would like to thank in particular
Professor Biihlmann and Professor Leepin for their valuable comments and
suggestions. Of course I am responsible for any remaining flaws.

For some years now a team of authors has been working on a compre
hensive text, which was commissioned by the Society of Actuaries and will
be published in 1987 in its definitive form. The cooperation with the coau
thors Professors Bowers, Hickman, Jones and Nesbitt has been an enormously
valuable experience for me.

Finally I would like to thank my assistant, Markus Lienhard, for the careful
perusal of the galley proofs and Springer-Verlag for their excellent cooperation.

Lausanne, March 1986

Acknowledgement
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I am indebted to my colleague, Dr. Walther Neuhaus (University of Oslo),
who translated the text into English and carried out the project in a very
competent and efficient way. We are also very grateful to Professor Hendrik
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(1.2.1)

Chapter 1. The Mathematics of
Compound Interest

1.1 Mathematical Bases of Life Contingencies

To life insurance mathematics primarily two areas of mathematics are fund a
ment al: th e th eory of compound interest and probability th eory. This chapte r
gives an introduction to th e first topic. The prob abilisti c model will be intro
duced in th e next chapter; however , it is assumed th at th e reader is familiar
with th e basic principles of probability th eory.

1.2 Effective Interest Rates

An interest rate is always stated in conjunct ion with a basic time unit ; for
example, one might speak of an annual rat e of 6%. In addit ion, the conversion
period has to be st at ed ; thi s is th e t ime interval at th e end of which interest is
credited or "compounded" . An interest rat e is called effective if th e conversion
period and th e basic tim e unit are identi cal; in th at case interest is credit ed
at th e end of th e basic t ime unit.

Let i be an effect ive annual interest rat e; for simplicity we assume th at i
is th e same for all years. We consider an account (or fund) where th e initi al
capital Fa is invested, and where at the end of year k an addit ional amount of
rk is invested , for k = 1, . .. , n . What is th e balance at the end of n years? Let
Fk be th e balance at the end of year k, including the payment of rk. Int erest
credited on the previous year' s balan ce is iFk- l . Thus

Fk = Fk- l + iFk- 1 + rk, k = 1, . . . , n .

We may writ e this recursive formula as

Fk - (1+ i )Fk- 1 = r»: (1.2.2)

if we multiply thi s equat ion by (1 + i )n- k and sum over all values of k, all but
two terms on th e left hand side vanish , and we obtain

n

r; = (1 + i )nFa + 2:(1 + it - k' k.
k=l

(1.2.3)
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The powers of (1 + i) are called accumulation fa ctors. The accumulated value
of an initial capital C after h years is (1 + i )hC . Equation (1.2.3) illustrat es
an obvious result: th e capital at the end of the interval is th e accumulated
value of th e initial capital plus th e sum of th e accumulated values of the
intermediate deposits.

The discount fa ctor is defined as

1
V=-- .

1 + i

Equation (1.2.3) can now be written as

n

vn Fn = Fo + L vkrk .
k=l

Hence the present value of a capital C , due at tim e h, is vhC.
If we writ e equat ion (1.2.1) as

and sum over k we obtain

n n

Fn - Fo = L iFk - 1 + L r».
k=l k=l

(1.2.4)

(1.2.5)

(1.2.6)

(1.2.7)

Thus the increment of th e fund is th e sum of th e total interest credited and
the total deposits made.

1.3 Nominal Interest Rates

When th e conversion period does not coincide with th e basic time unit , th e
interest rat e is called nominal. An annual interest rate of 6% with a conversion
period of 3 months means that interest of 6%/4 = 1.5% is credited at the end of
each quarter. Thus an initial capital of 1 increases to (1.015)4 = 1.06136 at th e
end of one year. Therefore, an annual nominal interest rat e of 6%, convert ible
quarte rly, is equivalent to an annual effect ive interest rat e of 6.136%.

Now, let i be a given annual effect ive interest rate. We define i (m) as the
nominal interest rat e, convert ible m tim es per year , which is equivalent to i.
Equality of the accumulation factors for one year leads to the equation

which implies th at

' (m )
(1 + _l_)m = 1 + i ,

m

i(m) = m[(1 + i )l/m - 1] .

(1.3.1)

(1.3.2)



1.4. Continuous Payments

Th e limiting case m ........ 00 corresponds to cont inuous compounding. Let

3

{) = lim i(m) ;
m~oo

this is called the force of interest equivalent to i . Writing (1.3 .2) as

(1.3.3)

(1.3.4 )
.(m ) _ (1 + i ) l /m - (1 + i)0
7 - 11m '

we see t hat {) is the derivative of the function (1+iy at th e point x = O. Thus
we find th at

or

{) = In (l + i) (1.3.5)

(1.3.6)

We can verify this result by letting m ........ 00 in (1.3.1) and using the definition
(1.3 .3) .

Thus th e accumulat ion factor for a period of h years is (1 + i)h = eoh; the
discount factor for the same period of tim e is vh = e- oh. Here the length of
th e period h may be any real number .

Intuitively it is obvious th at i(m) is a decreasing function of m. We can give
a formal proof of this by interpreting i(m) as the slope of a secant , see (1.3.4),
and using th e convexity of th e functi on (1 + iY. The following numerical
illustration is for i = 6%.

m i(m)

1 0.06000
2 0.05913
3 0.05884
4 0.05870
6 0.05855

12 0.05841
00 0.05827

1.4 Continuous Payments

We consider a fund as in Section 1.2, but now we assume th at payment s
are made continuously with an annual instantaneous rate of payment of r (t ).
Thus th e amount deposited to the fund during th e infinitesimal tim e interval
from t to t + dt is r(t) dt. Let F(t) denot e the balance of the fund at t ime
t . We assume that interest is credited cont inuously, according to a, possibly
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time-dependent , force of interest 8(t) . Interest credited in the infinitesimal
time interval from t to t + dt is F(t)8(t) dt . The total increase in the capital
during this interval is thus

dF(t) = F(t)8(t) dt + r(t) dt.

To solve the corresponding differential equation

F'(t) = F(t)8(t) + r(t),

we write
~ [e- f; 6(s)ds F(t)] = e- f; 6(s)dSr (t ) .

Integration with respect to t from 0 to h gives

(1.4.1)

(1.4.2)

(1.4.3)

(1.4.4)

Thus the value at time 0 of a payment to be made at time t (i.e. its present
value) is obtained by multiplication with the factor

From (1.4.4) we further obtain

F(h) = efoh 6(s) dsF(O) + lh eft 6(s)dsr (t ) dt .

(1.4.5)

(1.4.6)

Thus the value at time h of a payment made at time t < h (its accumulated
value) is obtained by multiplication with the factor

et 6(s)ds. (1.4.7)

In the case of a constant force of interest, i.e. 8(t) = 8, the factors (1.4.5) and
(1.4.7) are reduced to the discount factors and accumulation factors introduced
in Section 1.2.

1.5 Interest in Advance

Until now it was assumed that interest was to be credited at the end of each
conversion period (or in arrears). But sometimes it is useful to assume that
interest is credited at the beginning of each conversion period . Interest cred
ited in this way is also referred to as discount, and the corresponding rate is
called discount rate or rate of interest-in-advance.

Let d be an annual effective discount rate. A person investing an amount of
C will be credited interest equal to dC immediately, and the invested capital



1.5. Interest in Advance 5

C will be returned at the end of the period. Investing the interest dC at the
same conditions, the investor will receive additional interest of d(dC) = cPC,
and the additional invested amount will be returned at the end of the year;
reinvesting the interest yields additional interest of d(cPC) = d3C, and so on.
Repeating this process ad infinitum, we find that the investor will receive the
total sum of

1
C + dC + d2C + d3C + .. . = --C (1.5.1)

I-d
at the end of the year in return for investing the initial capital C . The equiv
alent effective interest rate i is given by the equation

which leads to

1 .
I_d=l+z, (1.5.2)

(1.5.5)

d=_i_ ( )1 + i . 1.5.3

This result has an obvious interpretation: if a capital of 1 unit is invested, d
(the interest payable at the beginning of the year) is the discounted value of
the interest i to be paid at the end of the year. Furthermore, (1.5.2) implies
that

i = 1 ~ d . (1.5.4)

Thus the interest payable at the end of the year is the accumulated value of
the interest payable at the beginning of the year .

Let d(m) be the equivalent nominal rate of interest-in-advance credited m
times per year. The investor thus obtains interest of d:lC at the beginning
of a conversion period, and his capital C is returned at the end of it. Equality
of the accumulation factors for this mth part of a year is expressed by

1 i(m) I
d( )/ = 1 + - = (1 + i)l "".1- m m m

This leads to
d(m) = m[1 - (1 + i)-11m] .

In analogy with (1.5.3) one obtains

·(m )
d(m) = __z-,-..,.....,-_

1 +i(m)/m '

resulting in a very simple relation between i(m) and d(m):

1 1 1-=-+-
d(m) m i(m)·

It follows that
lim d(m) = lim i(m) = {j

rn-e-oo m--oo '

(1.5.6)

(1.5.7)

(1.5.8)

(1.5.9)
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(1.6.1)

(1.6.2)

(1.6.3)

which was to be expected: when interest is compounded continuous ly, the
difference between interest in advance and interest in arrears vanishes.

The following numerical illustration is for i = 6%.

m d(m)

1 0.05660
2 0.05743
3 0.05771
4 0.05785
6 0.05799

12 0.058 13
00 0.05827

1.6 Perpetuities

In this section we introduce certain types of perpetual payment streams (per
petuities) and calculate their present values. The resulting formu lae are very
simple and will later be useful for calcu lating th e present value of ann uities
with a finite term.

First we consider perpetuities consisting of annual payments of 1 unit . If
the first payment occurs at time 0, the perpetuity is called a perpetuity-due,
and its present value is denoted by iiOOl . Th us

.. 2 1 1
aOOl = 1 + v + v + ... = 1 _ v = d .

If the first payment is made at the end of year 1, we call th e perpetuity an
immediate perpetuity . Its present value is denoted by aOO] , and is given by

2 3 V 1
a;;;::-] = v + v + v + .. . = -- = - .

00 1 I - v i

Let us now consider perpetuities where payments of 11m are made m times
each year. If the payments are made in advance (first payment of 11m at time

0), the present value is denoted by ii~ and is

ii(m) = -.!.. + -.!.. v l /m + -.!.. v2/m + ... = -.!.. 1 = _ 1_
00] tti m m m 1 - VI /m d (m ) ,

cf. (1.5.6). If the payments are made in arrears (first paym ent of 11m at time

11m), the present value is denoted by a~ and given by

( 1 1 1am) _ _vl /m + _ V2/ rn + _ v3/m + ...
OO]-m m m
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1 v1/ m

m 1 - v1/ m

1
i(m) ,

1

m[(l + i )1/m - 1]

7

(1.6.4)

d. (1.3.2).
The result s in (1.6.3) and (1.6.4) lead to an interpretati on of th e identity

(1.5.8): since a perpetuity-due and an immediat e perpetuity differ only by a
payment of l /m at time 0, th eir present values differ by l /m .

Let us now consider a cont inuous perpetuity with constant rat e of payment
r = 1 and start ing at time 0. Its present value is denoted by 0,00] and given

by

- 100
- tit 1a:::::l = e dt = -.

00 1 0 8 (1.6.5)

The same result can be obt ained by letting m --t 00 in (1.6.3) or (1.6.4) .
The systematic pattern in formulae (1.6.1)-(1.6.5) is evident .
A certain type of perpetuities with increasing payments is defined by two

parameters , m (th e numb er of payments per year) and q (the numb er of
increases per year) ; we assum e th at q is a factor of m. If for instance, m = 12
and q = 4, payments are made monthly and increase quarterly. In general,
th e payments of such an increasing perpetuity-due are defined as follows:

T ime Payment

0 l / m l /q - l/m l /{mq)
l /q l /q + l / m 2/q - 11m 2/{mq)
21q 2/q + 11m 3/q - l / m 3/{mq)
3/q 31q + 11m 41q - 11m 4/{ mq)
and so on

In particular, th e last m /q payments of year k are k f m each. We denot e
th e present value of such a perpetuity by (I(q) a)~ . We can calculate it by
representing th e sequence of increasing payments as a sum of perpetui ties
with const ant payments of l /(mq) payable m tim es per year, and beginning
at times 0, l /q ,2/q", -. Thus we obtain th e surprisingly simple formula

~ ag;J [l + v 1
/
q + v2

/
q + ...J

q 00 I

.. (m ) .. (q)
aOO] aOO]

1 1
d (m) d(q ) .

(1.6.6)
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The corresponding immediate annuity differs only in that each payment is
made one mth year later, thus giving

(1.6.7)

A superscript of 1 is always omitted. For instance, the present value of a
perpetuity-due with annual payments of 1,2, . .. is

(/
" ) _ (/(1) .. )(1) _ 1
a 001- aOO1-cr' (1.6.8)

(1.6.9)

(1.6.10)

(1.6.11)

Equations (1.6.6) and (1.6.7) may also be used with m -+ 00 to calculate
present values of continuous payment streams. One obtains for instance

-_ roo -bt 1
(/a)OO1 = Jo te dt = 82

and roo 1
(/a)OO1 = Jo It + l]e-

btdt = 8d'

without actually calculating the integrals.
We conclude this section by considering a perpetuity with arbitrary an

nual payments of TO, Tll T2 , ' .. (at times 0, 1,2, . .. ). Its present value, denoted
simply by a, is

Such a variable perpetuity may be represented as a sum of constant perpetu
ities in the following way:

Annual payment Starts at time

~ 0
Tl - TO 1
T2 - rr 2
T3 - T2 3
and so on

The present value of this perpetuity may therefore be expressed as

ii = ~ {TO + V(TI - TO) + V
2(T2

- Tl) + ...} , (1.6.12)

which is useful if the differences of Tk are simpler than the Tk themselves. If,
in particular, Tk is a polynomial in k, the present value ii may be calculated by
repeated differencing. For instance, using Tk = k + lone may verify (1.6.8).

We can use (1.6.11) to calculate the present value of exponentially growing
payments. Letting

Tk = eTk for k = 0,1,2, .. . , (1.6.13)
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one obtains
.. 1
a = ---=-=1 - e -(6-r) ,

(1.6.14)

provided th at T < 8.

1. 7 Annuities

(1.7.2)
d

In practic e, annuit ies are more frequent ly encountered th an perp etuities. An
annuity is defined as a sequence of payments of a limit ed duration, which we
denote by n. In what follows we consider some standard types of annuit ies,
or annuities-certain as they sometimes are called.

The present value of an annuity-due with n annual payments of 1 start ing
at time 0, is denoted by an]' It is given by

.. 1 2 n - l (1 7 1)an] = + v + v + ...+ v . . .

Representing th e annuity as th e difference of two perp etuities (one starting at
time 0, t he ot her at tim e n), we find th at

.. .. n .. 1 n 1
an] = aOOl - v aOOl = d - v d

(1.7.3)

This result can be verified by directly evaluati ng th e geometric sum (1.7.1).
In a similar way one obtains from (1.6.2) ,(1.6.3) and (1.6.4) th e formulas

1- vn

an] i

.. (m ) 1- vn

an] d(m) , (1.7.4)

(m ) 1 - v
n

( )
an] i(m) . 1.7.5

Note th at only th e denom inator varies, depending on th e payment mode (im
mediat e/due) and frequency. Note that n must be an integer in (1.7.2) and
(1.7.3), and a multiple of l /m in (1.7.4) and (1.7.5).

The final or accumulated value of annuities is also of interest . This is
defined as th e accumulated value of the payment stream at time n , and the
usual symbol used is s , Th e final value is obt ained by multiplying th e initi al
value with the accumulation factor (1 + i)n :

Sn]
(1+ i)n-1

(1.7.6)
d

(1 + it - 1
(1.7.7)sn] i

..(m) (1+ i)n-1
(1.7.8)sn] d(m)

(m) (1 + i )n - 1
(1.7.9)sn] i(m )
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Another simple relation between the init ial value and th e final value of a
constant annuity may easily be verified:

1 1 .
-=-+ z.
aill sill

(1.7.10)

Let us now consider an increasing annuity-due with parameters q and m:

Time I Payment

0 11m 11q - 11m 1/(mq)
11q 11q + 11m 21q -11m 2/(mq)
21q 21q+ 11m 31q - 11m 3/(mq)

n -llq n - 11q + 11m n - 1/m nlm

Such an increasing annuity can be represented as an increasing perpetuity
starting at t ime 0, minus an identi cal increasing perpetuity starting at time
n, minus a constant annuity starting at t ime n . Thus we may writ e

( I
(q) ·· ) (m ) _ (I (q) ··) (m ) n (I (q) ··) (m ) n .. (m)

a ill - a OOl- v a 00l - v n aOOl' (1.7.11)

Subst itu ting (1.6.6) and (1.6.3) and using (1.7.4), we obtai n the equation

(1.7.12)

(1.7.13)

Similarly the present value of th e corresponding immediate annuity is calcu
lat ed:

(i( q) - nv n

( I (q)a ) (m ) = ----'ill'--;----,_
ill i(m)

Note tha t in th ese equat ions n must be a multiple of l /q .
Important special cases are the combina tions of m = 1 and q = 1, m = 12

and q = 1, m = 12 and q = 12, m = 00 and q = 1, and m = 00 and q = 00 .

Equ ations (1.7.12) and (1.7.13) facilitat e the evaluation of the present and
final values for these combinations.

Th e annuit ies just considered are known as standard increasing ann uit ies
(1). St andard decreasing annuities (D) are similar, but t he payments are
made in the reversed order . The sum of a standa rd increasing annuity and
its corresponding standa rd decreasing annuity is of course a constant annuity.
Thi s relati on carries over to the present values, and we obtain

(1.7.14)
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Using (1.7.12) and (1.7.14) and the identity

we obtain

11

(1.7.15)

n - a(q)

(D (q) ·· ) (m) = 7l] (1716)
a 7l] d(m) ..

The direct derivatiori of this identity is also instructive: the standard decreas
ing annuity-due may be interpreted as a constant perpetuity with mthly pay
ments of nfm, minus a series of deferred perpetuities-due, each with constant
mthly payments of l /(mq) , and starting at times l/q , 2/q,·, · , n .

1.8 Repayment of a Debt

Let S be the value at time °of a debt that is to be repaid by payments
rl ,···, r« , made at the end of years k = 1,2,· · · , n . Then S must be the
present value of the payments:

(1.8.1)

Let Sk be the principal outstanding, i.e, the remaining debt immediately after
rk has been paid . It consists of the previous year 's debt , accumulated for one
year, minus rk:

Sk = (1 + i)Sk-1 - rk, k = 1, . . . ,n.

This equation may be written as

(1.8.2)

(1.8.3)

From (1.8.3) it is evident that each payment consists of two components,
interest on the running debt and reduction of principal.

Substituting -Sk for Fk, one sees that (1.8.2) is equivalent to (1.2.2). Thus
all results of Section 1.2 carryover with the appropriate substitution. From
(1.2.3) one obtains

k

Sk = (1 + ils - 2::(1 + i)k-h rh,
h=1

(1.8.4)

and one may verify that Sn = 0, using (1.8.1) . Similarly, (1.2.5) may be used
to show

(1.8.5)

Formula (1.8.4) is the retrospective formula , and (1.8.5) is the prospective
formula for the outstanding principal.
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The payments Tl,'" ,Tk may be chosen arbitrarily, subject to the con
straint (1.8.1). Some of the formulae in Section 1.7 may be derived by proper
choice of the payment stream.

For instance, a debt of S = 1 can be repaid by the payments

Tl = TZ = .. . = Tn-l = i, Tn = 1 + i . (1.8.6)

(1.8.10)

In this case only interest is paid for first n - 1 years, and the entire debt ,
together with the last year 's interest , is repaid at the end of the nth year.
From (1.8.1) one finds

1 = i ail] + vn
, (1.8.7)

which is another form of (1.7.3).
The debt of S = 1 may also be repaid by constant payments of

1
Tl = TZ = .. . = Tn = - . (1.8.8)

ail]

As an alternative to repaying the creditor at times 1, ' . . ,n - 1, one could pay
only the interest on S as in (1.8.6). In order to cover the final repayment one
could make equal deposits to a fund that is to accumulate to 1 at the end of
n years ; from this it obvious that the annual deposit must be 1/ sill' Since
the total annual outgo must be the same in both cases, we arrive once again
at equation (1.7.10).

Suppose now that we repay a debt of S = n so that the principal out
standing decreases linearly to 0, Sk = n - k for k = 0, .. . ,n. From (1.8.3) it
is evident that Tk = i(n - k + 1) + 1. Using (1.8.1) one obtains the identity

n = i (Da)il] + ail] ' (1.8.9)

giving
n - ail]

(Da) = n
il] i

This result is a special case (m = q = 1) of (1.7.16).
The loan itself may consist of a series of payments. Assume that equal

payments of 1 are received by the debtor at times 0,1, . . . , n - 1. At the end
of each year interest on the received amounts is paid , and , in addition, the
total amount received is repaid at time n:

Tk = ik for k = 1, " ' , n - 1 , Tn = in + n . (1.8.11)

From the equality of the present values one obtains

ail] = i (Ia)il] + no" : (1.8.12)

Equation (1.7.13) is obtained for the special case of q = m = 1.
Many other ways of repayment may be thought up. Present values of

annuities-due can be derived if one assumes that interest is paid in advance.
Another variant is the assumption that interest is debited m times a year, and
that the debt is repaid q time a year in equal instalments (q a factor of m) .
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1.9 Internal Rate of Return
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An investor pays a pr ice p , which ent itles him to n future payments . Th e
payment s are denoted by r I, " ', r., and payment rk is due at tim e Tk, for
k = 1, . .. , n . What is th e resulting rat e of return?

The present value of th e payment st ream to be received by the investor is
a function of th e force of interest 8. Define

n

a(8) = L exp(- 8Tk)rk .
k=l

Let t be th e solution of th e equat ion

a(t) = p .

(1.9 .1)

(1.9 .2)

The internal rate oj return or investment yield is defined as i = et - 1.
Equation (1.9 .2) may be solved by standard numerical methods, such as

interval bisection or the Newton-Raphson method. We shall present a method
which is more efficient th an th e former and simpler th an th e latter of those
methods.

Consider th e function

j(8) = In (a(8)/r) , (1.9 .3)

(here r = rl + ... + r.; denotes the undi scounted sum of the payments) . It is
not difficult to verify th at

j (O) = 0, 1'(8) = a'(8)/a(8) < 0 ,
1"(8) = a"(8)/ a(8) - (a'(8)/a( 8))2 > O. (1.9.4)

(The last inequality may be verified by interpreting 1"(8) as a variance). In
terpret ing j (8)/ 8 as th e slope of a secant and notin g that j is a convex func
tion by (1.9.4) , we see that j(8)/ 8 is an increasing function of 8. Hence, for
o< s < t < u one has th e inequality

j( s)/ s < j(t) /t < f (u)/u ,

giving
f (t) j(t )
f( S)8 < t < f (u) u .

Thus we have proved th at

In (p/ r) In (p/r)
-:-'-'-:"'--;-..,... 8 < t < u .
In (a(s)/ r) In (a(u) / r)

(1.9 .5)

(1.9.6)

(1.9 .7)

If one has a lower bound s and an upp er bound u for the solution t of (1.9 .2) ,
th ese bounds may immediately be improved by (1.9 .7).
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The process may be iterated , yielding the following algorithm: Start with
an arbit rary value 80 , and calculate the values 81,82 , . .. by th e recurs ive for
mula

(1.9.8)

For 80 < t t he resulting sequence will be monotone increasing and converge
to t . For 80 > t the sequence will decrease monotonically to t . Thus any
arbit rary positive value may be chosen for 80 .

The method will be illustrat ed for a security (face amount Fr. 5000, yearly
coupons Fr. 300). Assum e that the secur ity has been bought for Fr. 5250, for
a remaining running t ime of 9 years. Thus we have

p 5250,

k (k = 1 . .. 9), , ,
300 (k = 1" ",8) ,

5300,

7700 .

Assuming we know that the curre nt yield of similar securit ies lies between
5% and 5.5%, we can use (1.9.7) with s = In 1.05 and u = In 1.055 to obtain
improved bounds for the investment yield. We thus establish the bounds
0.051461 < t < 0.051572, and obtain for i = et

- 1:

5.2808% < i < 5.2925% (1.9.9)

The algorithm defined by formul a (1.9.8) may be used to obtain grea te r pre
cision. In order to demonstrate its efficiency, we have chosen an art ificially
small initial value (80 = In 1.01 i.e. i o = 1%) and an artificially large initial
value (80 = In 1.1 i.e. io = 10%). The results have been compiled in the
following table. In both cases the solut ion is arrived at in 4 iterations.

k 8k ik 8k ik

0 0.009950 0.01 0.095310 0.1
1 0.050612 0.051914 0.052627 0.054037
2 0.051503 0.052853 0.051551 0.052902
3 0.051524 0.052875 0.051525 0.052876
4 0.051525 0.052875 0.051525 0.052875

A sufficient condit ion for the existe nce of an internal rate of return as
defined by (1.9.2) , is that all paym ents Tk are positive. If some of the payments
are negative (in practice thi s means that the investor has to supply additional
capital), equa tion (1.9.2) may have several roots. The internal rate of return
is not uniquely defined in such cases.



Chapter 2. The Future Lifetime
of a Life Aged x

2.1 The Model

Let us consider a person aged x years , also called a lif e aged x and denoted by
(x) . We denote his or her future lifet ime by T or , more explicit ly, by T( x) .
T hus x + T will be the age at death of the person .

The future lifetime T is a random variable with a probabi lity distribution
function

G(t) = Pr (T :::; t) , t 2 O. (2.1.1)

The funct ion G(t) represents the probability that the person will die within t
years, for any fixed t. We assume t hat G, the probability distributio n of T ,
is known. We also assume that G is cont inuous and has a probability density
g(t) = G'(t). T hus one may write

g(t)d t = Pdt < T < t + dt) , (2.1.2)

this being the probability that death will occur in the infinitesima l time in
terval from t to t + dt (or that (x) 's age at deat h will fall between x + t and
x + t + dt) .

Probab ilit ies and expected values of interest may be expressed in te rms of
the funct ions 9 and G. Nevertheless, the international actuaria l comm uni ty
uses a t ime-honoured notation, to which we shall adhere . For example, the
probability that a life aged x will die wit hin t years, is denoted by the symbol
tqx . We have thus the relation

(2.1.3)

Similarly,
tPx = 1 - G(t) (2.1.4)

denotes the probability that a life aged x will survive at least t years. Another
commonly used symbol is

sltqx Pr (s < T < s + t )
G(s + t ) - G(s)

(2.1.5)
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denoting the probability that the life aged x will survive s yea rs and subse
quently die within t years.

We denote by tPx+s th e condit iona l probabili ty that the person will survive
anot her t years , after havin g at tained the age x + s. Thus

1-G(s +t )
tpx+s = Pr (T>s + t IT>s) = 1-G(s) .

Similarly, we define

G(s + t) - G(s)
tqx+s = Pr( T:::;s+ t IT>s ) = 1-G(s) ,

(2.1.6)

(2.1.7)

t he condit iona l probability of dying within t yea rs, given that the age of x + s
has been attained .

Identities in frequent use are

and

1-G(s +t)
s+tPx = 1- G(s + t) = [1- G(s)] 1- G(s) = sPxtPx+s' (2.1.8)

G(s + t) - G(s)
slt qx = G(s + t ) - G(s) = [1 - G(s)] 1 _ G(s) = sPx tqx+s ' (2.1.9)

These identities have an obvious int erpretation.
The expected remaining lifetime of a life aged x is E(T) , and deno ted by

~x' It s definition is

~x = 10
00

tg(t )dt ,

or , in term s of the distribution function,

o t " t"ex = Jo [1 - G(t )]dt = Jo tPxdt.

(2.1.10)

(2.1.11)

If t = 1, the ind ex t is usually omitted in the symbols tqx' tPx' sltqx' T hus
qx is the probability of dying within 1 year, and slqx is the probability of
sur viving s yea rs and subsequent ly dying within 1 year.

2.2 The Force of Mortality

The force of mortality of (x ) at the age x + t is defined by

g(t) d
p'x+t = 1 _ G(t) = - dt In [1 - G(t )]. (2.2.1)
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From (2.1.2) and (2.1.4) one may derive an alte rnative expression for th e
probability of dyin g in the interval between t and t + dt :

Pr (t < T < t + dt) = tPxl1xHdt .

The expected future lifetime of (x) can now be written as

The approximat ion

(2.2.2)

(2.2.3)

(2.2.4)

is valid for small values of s , as one may verify by exchanging the roles of S

and t in (2.1.9) and comparing the result with (2.2.2).
The force of mortality may also be defined by

d
fixH = - dt In tPx .

Int egration of (2.2.5) yields

2.3 Analytical Distributions of T

(2.2.5)

(2.2.6)

We call the funct ion G an anal yti cal or "mathema t ical" probability distribu
t ion if it may be expressed by a simple formula. There are different reasons
for postulating an analyt ical distribution for T.

In the past efforts have been mad e to derive universally valid analyt ic
expressions for G(t) from cert ain basic postul at es, in analogy with th e laws
of physics. These efforts, seen from a 20th century point of view, now seem
rather naive and surrounded with a certai n mystique.

An ana lyt ical formula has the advan tage th at G(t) can readily be calcu
lated from a small number of numeric parameters. Stati stic al inference in
par ticular is facilitat ed when only a few parameters need to be estimated.
This may be an imp ortant consideration when the available dat a are scarce.

Analyti cal formulae also have some attractive theoretical prop erties. Their
populari ty is akin to the popul ari ty of the norm al distribution in statistics: A
norm al model is often used , partly motivat ed by th e Centra l Limit Theorem ,
but mainly for its mathemat ical tract ability.

Some exa mples of analyt ical distributions follow, each bearing the name
of its "inventor" .

De Moivre (1724) postul at ed th e existence of a maximum age w for human
beings and assumed th at T was uniforml y distributed between th e ages of 0
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and w - x , leading to g(t) = w~x for 0 < t < w - x . The force of mortality
then becomes

1
/-Lx+!= , O< t< w -x, (2.3.1)

w- x-t
which is an increasing function of t.

Gompert z (1824) postulated th at th e force of mortality would grow expo
nentially,

/-Lx+t = Bcx+t , t > 0 (2.3.2)

which reflects the aging process better than De Moivre's law and in addition
removes th e assumption of a maximum age w.

The law (2.3.2) was generalized by Mak eham (1860), who postulat ed the
law

/-Lx+t = A + ee» , t > O. (2.3.3)

Makeham 's mortality law adds a constant, age independent component A > 0
to th e exponentially growing force of mortality of (2.3.2).

A special case of the mortality laws of Gomp ertz (by putting c = 1) and
Makeham (by making B = 0) is that of a const ant force of mortality. Th e
probability distribution of T then becomes the exponential distribution. While
mathematically very simple, this distribution does not reflect human mortality
in a realisti c way.

From (2.3.3) and (2.2.6), and putting m = B / In c, the survival probability
in Makeham's model may be derived :

tPx = exp (-At - m cX(ct - 1)). (2.3.4)

Weibull (1939) suggested that the force of mortality grows as a power of
t , instead of exponent ially:

/-Lx+t = k(x + tt , (2.3.5)

with th e fixed parameters k > 0 and n > O. The survival probability th en
becomes

(2.3.6)

2.4 The Curtate Future Lifetime of (x)

We now return to the general model introduced in Sections 2.1 and 2.2 and
define th e random variables K = K(x) , S = S(x) , s(m) = s(m)(x) , all closely
related to th e original random variable T .

We define K = [T], the number of completed future years lived by (x) , or
the curtate future lifetime of (x). The probability distribution of th e integer
valued random variable K is given by

Pr (K = k) = Pr( k :::; T < k + 1) = kPx qx+k (2.4.1)
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for k = 0, 1, . ". The expected value of K is called the expected curtate future
lifetime of (x) and is denoted by ex . Thus

or

00 00

ex = L k Pr (K = k) = L k kPx qx+k
k=l k=l

00 00

ex = LPr(K 2: k) = L kPx '
k=l k=l

(2.4.2)

(2.4.3)

Use of the expected curtate lifetime has the advantage that (2.4.1) and (2.4.2)
are easier to evaluate than (2.1.11) and (2.2.3). Another advantage is that
one only needs th e distribution of K in order to find ex .

Let S be the fraction of a year during which (x) is alive in th e year of
death, i.e.

T=K +S . (2.4.4)

The random variable S has a cont inuous distribution between 0 and 1. Ap
proximating its expected value by ~ we find, from (2.4.4) , th e approximation

(2.4.5)

which may be used in practice for the expected future lifetime of (x) .
Let us assum e th at K and S are indep endent random variables, so that

the condit ional distribution of S , given K , is independent of K ; thus

preS :S ulK = k) = uqx+k
qx+k

will not depend on th e argument k, so that one can writ e

(2.4.6)

uqx+k = H(u) qx+k (2.4.7)

for k = 0,1 " " and 0 :S u :S 1, and some function H(u) .
If we assum e that H(u) = u (uniform distribution between 0 and 1), th en

the approximation (2.4.5) is exact . Moreover, using (2.4.4) and the assumed
independence, the variance of T becomes

1
Var(T) = Var(K) + 12 .

For positive integers m we define the random variable

s(m) = ~[mS + 1] .
m

(2.4.8)

(2.4.9)

Thus s-» is derived from S by rounding to th e next higher multiple of 11m .
The distribution of s (m) has its mass in th e points 1.- ,1. " "'1. Note that

m m

independence between K and S implies independence between K and s-».
Furthermore, if S has a uniform distribution between 0 and 1, th en s (m) has
a discrete uniform distribution.
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2.5 Life Tables

Chapter 2. The Future Lifetime of a Life Aged x

In the previous sect ions of this chapte r we considered a person of age x . The
probabili ty distribution of his future lifetime can be const ruc ted by adopti ng
a suitable life table.

A life tabl e is essent ially a tabl e of one-year death probabilities qx ' which
comp lete ly defines the distribution of K. In th e next sect ion we will show how
to approximate the distribution of T by interpolation in th e life table.

Life tables are const ruc ted from statist ical data (see Chapter 11). The
const ruction of a life table involves est ima t ion, gradua tion and ext rapolat ion
techniques (the lat ter are used to account for changing mortality patterns over
tim e) .

Life tables are const ructed for certain population groups, differentiated by
factors such as sex, race, generation and insur ance type . The init ial age x
can have a significant influence in such tables. For instance, let x denot e th e
age when th e person bought life insur ance. Since insur ance is only offered to
individuals of good health (somet imes only afte r a medical test) , it is reason
able to expect th at a person who has just bought insurance, will be of better
health th an a person who bought insur ance several years ago, other factors
(particularly age) being equal. This phenomenon is taken into account by
select life tables. In a select life table , t he probabilities of death are graded
according to the age at ent ry. Thus q [xl+t is the one-year probabili ty of death
for (x + t) with x as ent ry age. Selection leads to the inequaliti es

q [x ] < q[x-l]+l < q [x - 2]+2 < .. . . (2.5.1)

The selection effect has usually worn off afte r some years, say r years after
ent ry. We assume that

q[x - r]+r = q [x - r-l]+r+l = q [x - r - 2!+r+2 = ... = qx · (2.5.2)

The period r is called the select period, and t he table used afte r the select
period has expired , is called an ultimate life table.

Consider a person who buys a life insur ance policy at age x . With a select
period of 3 years , the following probabili t ies are needed in order to determine
th e distribution of K :

(2.5.3)

If a life table varies only with the at tained age x . it is called an aggregate
life table. It has the advantage of being single-ent ry, while a select life table is
double-entry. The one-year probab ility of death at a given attained age in an
aggrega te life table will ty pically be a weight ed average of the corresponding
probabili ties in the select life table and in th e ultimat e life table.

Though it is easy to use a select life table, cf. (2.5.3) , we shall, for sim
plicity, use the notation of the aggregat e life table in the sequel.
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T he distribut ion of K and its related quantities may be calculat ed from a life
table. For example,

kPx = Px Px+! Px+2 . . . Px+k-! ' k = 1,2,3 , . . . , (2.6.1)

d . (2.1.8) . To obtain the distribution of T by interp olat ion, assumptions are
made regarding the pattern of the probabilit ies of death, uqx ' or the force of
mortality, J1x+u' at intermediate ages x + u (x an integer and 0 < u < 1).

We shall discuss t hree such assu mptions.

Assumption a: Linearity of uqx

If One assu mes that uqx is a linear funct ion of u , interp olation between u = 0
and u = 1 yields

(2.6.2)

We have seen in Sectio n 2.4 that this is the case where K and S are indepen
dent , and S is uniformly dist ributed between 0 and 1. T hen

and (2.2.5) gives

J1x+u = 1 - uqx

(2.6.3)

(2.6.4)

Assumption b: lJ,x+u cons tant

A popular assu mpt ion is that the force of mortality is constant over each unit
inte rval. Let us denote the constant value of J1 x+u, (0 < u < 1) by J1x+! '

2

Using (2.2.5) one finds
(2.6.5)

It also follows that

From (2.4.6) one derives

1 _ pU

Pr(S::; nlK = k) = x+k .
1 - Px+k

(2.6.6)

(2.6.7)

T he conditional distr ibut ion of S . given K = k ; is thus a truncated exponent ial
dist ributio n, and it depends on k. T he random variab les Sand K are not
indepe ndent in this case.
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Assumption c: Linearity of l-uqx+u

This hypothesis, well-known in North America as th e Balducci assumption ,
states

Thi s leads to
Px

1 - (1 - u) qx .

From this and (2.2.5) we obt ain

lJ,x+u = 1 - (1 - u) qx '

and finally

(2.6.8)

(2.6.9)

(2.6.10)

u
Pr (8 ~ ulK = k) = () (2.6.11)

1 - 1 - U qx+k

Thi s shows th at th e random variables 8 and K are not independent under
th e Baldu cci hypothesis,

Under each of the three assumpt ions t he force of mortality is discontinuous
at integer values. More embarrass ing is th e fact th at under the Balduc ci
assumpt ion the force of mort ality decreases between consecut ive integers, cr.
(2.6.10).

For qx+k ....... 0 both (2.6.7) and (2.6.11) converge to u . Thus, if th e prob
abilities of death are small, 8 is "approximately" uniformly distributed and
independent of K (even under assumptions b or c).
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3.1 Introduction

Under a life insurance contract the benefit insured consists of a single payment,
the sum insured. The time and amount of this payment may be functions of
th e random variable T that has been introduced in Chapter 2. Thus th e time
and amount of the payment may be random variables th emselves.

The present value of the payment is denot ed by Z ; it is calculated on th e
basis of a fixed rat e of interest i (th e techn ical rat e of interest). Th e expected
present value of th e payment , E(Z) , is th e net single prem ium of th e contract .
This premium , however, does not in any way reflect th e risk to be carried by
the insurer. In order to assess this one requires furth er characterist ics of the
distribution of th e random variable Z , for example its variance.

3.2 Elementary Insurance Types

3.2.1 Whole Life and Term Insurance

Let us consider a whole life insurance; this provides for payment of 1 uni t at
the end of th e year of death. In thi s case th e amount of th e payment is fixed,
while th e t ime of payment (K + 1) is random. Its present value is

(3.2.1)

Th e random variable Z ranges over th e values v, v2 , v3 , .. . , and th e distribution
of Z is determined by (3.2.1) and th e distribution of K :

(3.2.2)

for k = 0, 1,2 , · ·· . Th e net single premium is denot ed by A x and given by
00

A E[ K+1] "k+l
x = V = LJ v kPx qx+k '

k=O

The variance of Z may be calculated by the identity

Var(Z) = E(Z2) - A; .

(3.2.3)

(3.2.4)
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Replacing v by e- b we see th at
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(3.2.5)

which is the net single premium calculated at twice the original force of in
terest . Thus calculat ing the variance is no more difficult th an calculat ing the
net single premium.

An insurance which provides for payment only if death occurs with in n
years is known as a term insurance of duration n . For example 1 unit is payable
only if death occurs during th e first n years, the actual tim e of payment still
being the end of the year of death . One has

z _ { VK+I for K = 0,1 , ... , n - 1 ,
- 0 for K = n , n + 1, n + 2, . . .

The net single premium is denoted by A~:"l ' It is

n- I

Al '" k+1x:"l = L v kPx qx+k .
k=O

(3.2.6)

(3.2.7)

Again the second moment E(Z 2) equals th e net single premium at twice the
origin al force of interest , as is seen from

{

e -2b(K+ I) for K = 0,1 , · ·· , n - 1 ,
Z2 = o for K = n ,n + 1, n + 2, . ..

3 .2.2 Pure Endowments

(3.2.8)

A pure endowment of duration n provides for payment of the sum insur ed only
if the insur ed is alive at the end of n years:

Z _ {O for K = 0,1 "" , n - 1 ,
- vn for K = n , n + 1, n + 2, · · ·

The net single premium is denoted by Ax:rh and is given by

A I _ .,n Px:ril - L n z :

The formula for the variance of a Bernoulli random vari able gives

(3.2.9)

(3.2.10)

(3.2.11)
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Assum e th at th e sum insur ed is payable at th e end of the year of death, if thi s
occurs within the first n years , otherwise at th e end of the nth year:

Z = {vK
+! for K = 0, 1, " ' ,n- 1 ,

u" for K = n , n + 1, n + 2, '" .
(3.2.12)

The net single premium is denoted by Ax:"l ' Denoting the present value of

(3.2.6) by Zl , and th at of (3.2.9) by Z2, one may obviously write

(3.2.13)

As a consequence,

and
Var( .6) = Var(Zd + 2 COV(Zl , Z2) + Var(Z2) '

The product Zl Z2 is always zero, hence

The variance of Z is thu s given by

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

As a consequence of the last ident ity, the risk in selling an endowment policy,
measured by th e variance, is less th an th at in selling a term insur ance to one
person and a pure endowment to another.

So far , for simplicity, we have assumed a sum insur ed of 1. If the sum
insured is C, then the net single prem ium is obtained by mul tiplying with C ,
and th e variance by multiplying with C2

•

Let us finally consider an m year deferred whole life insurance. Its present
value is

Z _ { ° for K = 0,1 , . .. , m - 1 , ()
- V K + 1 forK=m ,m+l,m+2, 3.2.18

The net single premium is denoted by mlAx' Alternative formulae for its net
single premium are

(3.2.19)

and
(3.2.20)

The second moment E(Z2) again equal s the net single premium at twice the
original force of interest.
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3.3 Insurances Payable at the Moment of Death

In th e previous sect ion it was assumed that the sum insured was payable at th e
end of th e year of death . This assumption does not reflect insur ance practice
in a realisti c way, but has th e advantage that the formulae may be evaluated
directly from a life table.

Let us now assume that th e sum insured becomes payable at th e inst ant of
death, i.e. at t ime T. The present value of a payment of 1 payable immediat ely
on death is

z = vT
.

Th e net single premium is denoted by A x. Using (2.2.2) we find that

(3.3.1)

(3.3.2)

A practical approximation may be derived under A ssumption a of Section 2.6.
Writing

T = K + S = (K + 1) - (1 - S) , (3.3.3)

and making use of the assumed independence of K and S , as well as th e
uniform distribution of S, so th at

(3.3.4)

we find

(3.3.5)

Thus th e calculat ion of A x is a simple extension of that of Ax.
A similar formula may be derived for term insurances. For endowments

th e factor i/8 is only used in the term insurance part:

(3.3.6)

Let us finally assume tha t th e sum insured is payable at th e end of the mth
part of the year in which death occurs, i.e. time K + s (m ) in the not ati on of
Section 2.4. The present value of a whole life insurance of 1 unit then becomes

(3.3.7)

For calculat ion of the net single premium we again use th e A ssumption a of
Section 2.6. We write

K + s(m) = (K + 1) - (1 - s(m ) ) (3.3.8)
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in (3.3.7) and use t he assumed independence of K and sv». as well as th e
equation

Then we obtain

A (m ) = E[VK +1]E[(1 + i) l-s<m)j = _ z_· A
x i(m) x ·

Equation (3.3.5) may be verified by lettin g m ....... 00 in (3.3.10).

3.4 General Types of Life Insurance

(3.3.9)

(3.3.10)

We commence by considering a life insurance with benefits varying from year
to year, and we assume that the sum insured is payable at th e end of the year
of death. If Cj denotes th e sum insured during the j th year after policy issue,
we have

(3.4.1)

The distribution of Z and, in par ticular , the net single premium and higher
moments are easy to calculate :

00

E[Zh] = '" ch vh(k + l l P qL...J k+l k x x-i-k :
k=O

(3.4.2)

The insurance describ ed may be represent ed as a combinat ion of deferred
life insurances, each of which has a constant sum insured. Thus th e net single
premium may be calculated in th e following way:

(3.4.3)

In the case that t he insurance covers only a term of n years, i.e. when Cn+ l =
Cn+2 = .. . = 0, th e insurance may also be represented as a combinat ion of
te rm insurances start ing immediat ely:

E(Z) = CnA~:"l + ( Cn-l - cn) A~:n _ 11 + ( Cn- 2 - Cn- l) A~:n _ 21+ ... . (3.4.4)

The alternative representati ons (3.4.3) and (3.4.4) are useful in calculating
th e net single premium, but not th e higher order moment s of Z .

If an insurance is payable immediat ely on death, the sum insured may in
general be a function c(t), t ;::: 0, and we have

The net single premium is

Z = c(T )vT
. (3.4.5)

(3.4.6)
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The actual calculat ion of the net single premium may be reduced to a calcu
lati on in the discrete model, see (3.4.2) with h = 1. From

00

E(Z) = L E[ZIK = k] Pr (K = k)
k=O

00

L E[c(k + 5) vk+s IK = k] Pr (K = k)
k=O
00

L E[c(k + 5)( 1+ i )l - slK = k]Vk+1Pr (K = k) , (3.4.7)
k=O

we obtain

by defining

00

E(Z) = L Ck+IV
k
+

1
kPx qx+k '

k=O

Ck+ 1 = E[c(k + 5)(1 + i)l-sIK = k] .

(3.4.8)

(3.4.9)

The condit ional distribution of 5 , given K = k , is needed in order to evaluate
the expression (3.4.9) . Two assumptions about mor tality at fractional ages
are appropriate for making thi s evaluat ion.

A ssumption a of Section 2.6 gives

whereas Assumption b of th e same sect ion results in

11 Jlx+k+! P~+k
Ck+ l = c(k + u )(1 + i )I- U 2 du .

o 1 - Px+k

(3.4.10)

(3.4.11)

As an illustration, consider the case of an exponent ially increasing sum
insured , c(t ) = eTt

. This reduces formula (3.4.10) to

eO _ e'
C - eTkk+l- -,,--.

u - T
(3.4.12)

Note th at T = 0 gives us (3.3.5) back. The alte rnat ive formula (3.4.11) results
III

1/ 1 eO _ P T
rk r'x+k+2 x+ke

Ck+1 = e .
1 - Px+k {) + I1x+k+! - T

2

(3.4.13)

(If the denominator in (3.4.12) or (3.4.13) should vanish , th e quotients become
eO . This will happen if th e integrand in (3.4.10) or (3.4.11), resp ectively, is
independent of u) .
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We begin by considering standa rd types where the sum insured is payable at
the end of the year of death. The net single premium may be readily calculated
and is useful also when th e sum insured is payable immediat ely on death.

Let us consider a standard in creasing whole life insurance, with Cj = j .
The present value of th e insurance is

Z = (K + 1)VK+1
.

The net single premium is denoted by (IA)x and is given by

00

(IA)x = L (k + 1)Vk
+

1
kPx qx+k .

k=O

For th e corresponding n-year term insurance we have

Z = { (K + 1)VK+1 for K = 0, 1," " n - 1° for K = n , n + 1, n + 2, ' "

(3.5.1)

(3.5.2)

(3.5.3)

It s net single premium is denoted by (IA ) ~:nj and may be obtained by limiting

the summation in (3.5.2) to the first n term s. Inspir ed by (3.4.3) and (3.4.4)
we may writ e

and

( I A ) l :::l = n A 1:::l - Al~_ Al~_ . . . _ Axl.~l .
x :n 1 x :n I x :n - 1 I x :n - 2 I .1 I

(3.5.4)

(3.5.5)

Note the difference between the symbols (IA)~:nj and (IA)x:nj - the latter
being equal to th e sum of t he former and th e net single premium for a pure
endowment of n .

The benefit s of a standard decreasing term insur ance decrease linearly from
n to 0, hence

Z={ (n-K)vK +1 forK=O,I , ·· · ,n-l
° for K = n ,n + 1, n + 2.· ··

(3.5.6)

St andard decreasing insur ance is commonly used to guar antee repayment of
a loan , provid ed tha t the debt outstanding also decreases linearly und er the
amortisation plan of the loan . The identities

n-l

(DA)~:nj = L(n - k)Vk
+

1
kPx qx+k

k=O
(3.5.7)
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(DA);:7il = A~:7il + A~:n -11 + A;:n_ 21 + .. . + A;:il (3.5.8)

are obvious.
Let us now assume that the sum insured is payable immediately on death,

i.e. Z is of the form (3.4.5), with some function c(t) . For these insurances we
shall use Assumption a of Section 2.6 throughout this section .

If the sum insured is incremented annually, we have c(t) = [t + 1], hence

Z = (K + l)vT
. (3.5.9)

The net single premium is denoted by (I A)x' Calculating the expectation of

(3.5.10)

and using the assumed independence of K and S as well as (3.3.4), we obtain
the practical formula

(3.5.11)

Let us now consider the situation where the sum payable is incremented q
times a year, by 1/g each time :

(3.5.12)

The corresponding net single premium is denoted by (I(q) A)x' Note that
(3.5.12) may be rewritten as

(3.5.13)

In computing the net single premium we use independence and the relation

(3.5.14)

Hence we obtain

. - d(q)
()- _ - - l

(I q A)x - (IA)x - Ax + d(q)8 Ax '

Substituting from (3.3.5) and (3.5.11), we find

(3.5.15)

(3.5.16)

This last expression may be evaluated directly.
In the case of a continuously increasing sum insured, c(t ) = t , the present

value is
(3.5.17)
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and th e net single premium

-- i i i-o
(IA)x = -g (IA)x - -g Ax + {j2 Ax
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(3.5.18)

(3.5.19)

is obtained by taking th e limit q --> 00 in (3.5.16).
The formulae (3.5.11), (3.5.16) and (3.5.18) may also be obtained by sub

stituting th e appropriate function c(t ) in (3.4.10) . As an example, taking
c(t ) = t leads to

t' - i i - 0
Ck+l = Jo (k + u)(l + i )1-

U du = k 811 + (Is)11 = k-g + {j2 '

which gives us (3.5.18).
Similar equations hold for th e corresponding term insurances, for example

. . . d (q)
(q) - 1 _ Z ) 1 Z 1 Z - 1

(I A)x:n] - -g (I A x:n] - -g Ax:n] + d(q )8 Ax:n] ' (3.5.20)

Obtaining an elegant derivation of (3.5.20) from (3.5.16) is left to th e reader.
Finally we consider an n-year cont inuous term insurance with an initi al

sum insured of n , which is redu ced q times a year , by l /q each time:

z={ (n+1 /q-K-S(q)) vT forT <n
o for T ;::: n . (3.5.21)

Thi s insurance may obviously be represented as the difference between a term
insurance with constant sum of n + l /q insured, and a term insurance with
increasing sum insured. The net single premium is given by

(q) - 1 _ ( 1) - 1 (q) - 1
(D A)x:n] - n + q Ax:n] - (I A)x:n] '

3.6 Recursive Formulae

(3.5.22)

Recursion formulae may be used to write algorithms, but they also have in
teresting th eoretical implications.

We start by considering a whole life insurance of 1 payable at the end of
th e year of death. One obviously has th e equation

(3.6.1}

Thus the values of Ax can be found recursively, starting with the highest pos
sible age. The recursive equat ion may be proved algebraically by substitution
of

kPx = Px k-1Px+1 (3.6.2)
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in all but th e first term of the summation (3.2.3) . A probabilistic proof may
be built on th e relation

E[vK+l] = v Pr (K = 0) + vE[vKIK 2: 1]Pr (K 2: 1). (3.6.3)

The int erpretation of (3.6.1) is instructive. The net single premium at age x
is the expected value of a random variable defined as discounted sum insured
in case of death , and discounted net single premium at age x + 1 in case of
survival.

Another interpretation is evident if we writ e (3.6.1) as

(3.6.4)

First the amount of A X +1 is reserved in any case (death or survival) . In case
of death an addit ional 1 - A

X
+1 is needed to cover the paym ent. The net

single premium of a one-year term insurance of this amount is v(l - A x+ l ) qx'

Applying (3.6.4) at age x + k we obtain

A X+k - V A X+ k+1 = v(1 - A x+k+ l ) qx+k ' k = 0,1 ,2· " . (3.6.5)

Multiplying th e above equat ion by vk and summing over all values of k we
obtain

DC

A x = L vkv (1 - A x+k+1) qx+k ' (3.6.6)
k=O

so that the net single premium at age x is evidently th e sum of the net single
premiums of a series of one-year term insurances.

Equation (3.6.4) may also be rewritten as

(3.6.7)

Thus th e interest earned has a dual effect : On the one hand it increases th e
net single premium (from age x to age x + 1), and on th e other it finan ces a
fictitious one-year term insur ance.

The cont inuous counterpart to a recursion formula is a differential equa
tion. Consider the function Ax, the expected value of vT . For h > 0 we
have

Ax E[vTjT:S h] Pr (T :S h) + E[vTIT > h] Pr (T > h)
T h -

E[v IT:S h] hqx + V A X+h hPx . (3.6.8)

Hence

(3.6.9)

Division by h and letting h --+ 0 yields

(3.6.10)
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Thi s equation can be recast in a form similar to (3.6.7):
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(3.6.11)

T he differential equation has a similar interp retat ion as (3.6.7) for an infinites
imal t ime inte rval, which is seen by multiplying (3.6.11) by dt.

Only the two simplest types of insur ance have been form ally discussed in
thi s section. The inte rpretations we have given for the recursion formulae
resp. differential equat ions above are, of course , also valid for the general case
and may therefore be used to derive the corres ponding recursion formulae and
different ial equations.
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Chapter 4. Life Annuities

4.1 Introduction

A life annuity consists of a series of payments which are made while th e
beneficiary (of initial age x) lives. Thus a life annuity may be represented as
an annuity-certain with a te rm dependent on the remaining lifetime T . It s
present value th us becomes a random variabl e, which we shall denote by Y .

The net single premium of a life annuity is its expected present value,
E(Y ). More generally, th e distribution of Y may also be of interest , as well
as its moments .

A life annuity may, on th e one hand, be the benefit of an insurance policy
as a combinat ion of pure endowment s; on the other hand, period ic payment of
premiums can also be considered as a life annuity, of course with the algebra ic
sign reversed.

4.2 Elementary Life Annuities

We consider a whole life annuity-due which provides for annual payment s of
1 unit as long as the beneficiary lives. Payments are made at the time points
0,1 , " ' , K . The present value of th is payment st ream is

Y 1 2 K ..
= + v + v + "'+ v = aK + 1 1;

the probability distribution of thi s random variable is given by

Pr (Y = ak+ 1[) = Pr (K = k) = kPx qx+k ' k = 0,1 ,2, ' " . (4.2.2)

The net single premium, denoted by ax ' is th e expected value of (4.2.1):

00

ax = L ak+ l l kpx qX+k '
k=O

The present value (4.2.1) may also be expressed as

00

Y = L Vk / {K?k} '
k=O

(4.2.3)

(4.2.4)
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where fA is the indicator function of an event A . The expectation of (4.2.4) is

00

.. '" kax = L.. v kPx '
k=O

(4.2.5)

Thus we have found two expressions for the net single premium of a whole life
annuity-due. In expression (4.2.3) we consid er the whole annuity as a unit ,
while in (4.2.5) we think of the annuity as a series of pure endowments.

The net single premium may also be expressed in terms of the net single
premium for a whole life insurance, the latter being given by (3.2.1) and
(3.2.3) . By virtue of (1.7.2) , the net single premium (4.2.1) equals

1 - V K +1

y=--
d

1 - Z

d
(4.2.6)

(4.2.7)
.. 1- Ax
aX=--d-'

After transforming this identity to

(This formula may also be obtained by viewing the life annuity as the difference
of two perpetuities-due, one starting at time 0, th e other at time K + 1.)
Taking expectations yields

(4.2.8)

we may interpret it in terms of a debt of 1 unit with annual interest in advance,
and a final payment of 1 unit at the end of the year of death. Of course th e
higher order moments of Y may also be derived from (4.2.6), so that, for
instance,

V (Y)
= Var(Z)

ar d2 '

The present value of an n-year temporary life annuity-due is

(4.2.9)

{
a~ for K = 0 1 . .. n - 1

Y = K+l 1 ""

aTll for K = n ,n + 1, n + 2" "
(4.2.10)

Similarly to (4.2.3) and (4.2.5) th e net single premium can be expressed by
either

n-l

ax :Tll = L ak + 1 IkPx qx+k + aTll nPx
k=O

(4.2.11)

or
n-l

.. '" kax :Tll = L.. v kPx '
k=O

(4.2.12)

Now we have
1- Z

Y=-d-' (4.2.13)
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but here Z is defined by (3.2.12). As a consequence,

or
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(4.2.14)

1 = d ax :711 + A x :711 ' (4.2.15)

T he corres ponding immediate life annuities provide for payments at times
l , 2, · · · ,K:

y = v + v2 + ... + vK = aKl ' (4.2.16)

T he random variables (4.2.1) and (4.2.16) differ only by the constant term l.
T hus the net single premium ax is given by

From equa tion (1.8.7) , with n = K + 1, we obtain

1 = i aKl + (1 + i)VK+1.

Taking expectations yields

(4.2.17)

(4.2.18)

(4.2.19)

in ana logy to (4.2.8) .
T he prese nt value of an m year deferred life an nuity-due wit h annual pay

ments of 1 unit is

y _ { 0 for K = 0,1 ,, " , m - 1 ,
- vtn + v tn+1 + ... + vK for K = m, m + 1, '" .

(4.2.20)

T he net single premium may be obtained from either one of the obvious rela
tions:

(4.2.21)

(4.2.22)

4.3 Payments made more Frequently than Once a Year

Consider the case where pay ments of 11m are made m times a year , i.e. at
times 0, 11m,21m,"', as long as the beneficiary, initially aged x, is alive. T he
net single premium of such an annuity is denoted by a~tn) . In ana logy with
(4.2.8) we have

(4.3.1)
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Hence we obtain
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··(m) __1 1_ A(m) (4 3 2)
ax - d (m ) d(m) x . . .

The equation may be interpreted in the following way: The life annuity
payable m times a year can be viewed as the difference of two perpetuities,
one start ing at time 0, the other at t ime K + sv» . Taking expectations then
yields (4.3.2).

To obtain expressions for a~m) in terms of ax we use again A ssumption a
of Section 2.6, so th at (3.3.10) allows us to express A~m) of (4.3.2) in term s
of Ax; if we th en replace Ax in turn by 1 - d ax' (4.3.2) becomes

Introducing
d i i - i(m)

o:(m ) = d(m) i (m ) and (3 (m) = d( m) i (m ) ,

we can then writ e (4.3.2) more economically as

(4.3.3)

(4.3.4)

(4.3.5)

For i = 5% the coefficients o:(m ) and (3(m) are tabulat ed below, with m = 12
(monthly payment s) and with m = 00 (continuous payment s) .

m oem ) (3(m )

12 1.000197 0.46651
00 1.000198 0.50823

Practi cal approximat ions in frequent use are

m-1
o:(m) :::::: 1 , (3 (m) :::::: -- .

2m
(4.3.6)

These approximations are obtained from the Taylor expansion of the coeffi
cients around 8 = 0, viz.

m 2 -1
o:(m) = 1 + __82 + ...

12m2 '

m -1 m 2 - 1
(3 (m) = -- + --8+ · · · .

2m 6m2

(4.3.7)

(4.3.8)

App arently these approxima tions are useful only when the force of interest is
sufficient ly small.
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The net single premium of a temporary life annuity-due with mthly pay
ments can now also be calculated with the help of a(m} and {3 (m}:

.. (m ) ·· (m ) n .. (m)
ax:Til ax - nPxV ax+n

a(m} iix - {3 (m} - nPxvn { a(m} iix+n - {3 (m}}

a(m} iix:
Til

- {3(m} {I - nPxvn} . (4.3.9)

The net single premium of an immediate life annuity (payments in arrears)
may be calculated in te rms of the corresponding life annuity-due:

a(m) = ii(m) _ ~{1 _ vn}
x:Til x:Til m nPx . (4.3.10)

Let us now return to th e calculation of ii~m) . Equati ons (4.2.8) and (4.3.1)
give the exact expression

··( m) _ d .. 1 {A(m) A}
ax - d(m) ax - d(m) x - z r » (4.3.11)

which may be interpreted in the following way: T he life annuity on the left
hand side provides payments of 11m at tim es 0, 11m, . .. , K + 8 (m ) - 11m;
it may be represented as the difference of two tempora ry annuities, the first
providing payments at t imes 0, 11m, .. . , K + 1 - 11m, the second providing
payments at t imes K + sv», K + 8 (m ) + 11m, ... , K + 1 - 11m. T his second
temporary annuity may in turn be viewed as the difference of two perp etui t ies
(one starting at K + sv», the other at K + I }. The first temporary annuity
has the same present value as an annuity-due which provides K + 1 annual
payments of dld(m). Taking expectations of the present values then yields
(4.3.11).

Under Assumption a, we may use equat ion (3.3.1O) , giving

(4.3.12)

thi s formul a has an obvious interpretation, which is not the case with th e
mathematically equivalent formula (4.3.5) .

4.4 Variable Life Annuities

We start by considering a life annuity which provid es payments of ro, r l , r2, · · ·
at the t ime points 0,1 , . .. , K . The present value is

00

Y = L vkrk I{K~k} ,
k=O

(4.4.1)



40

and the net single premium

00

E(Y ) = L vkrk kPx
k=O

Chapter 4. Life Annuiti es

(4.4.2)

may be readily calculated.
Take now a genera l life annuity with payments of Zo , ZI/m , Z2/m , . . . at time

points 0, 11m , 21m, " ' , K +s( m) - l l m . We start by replacing the m payment s
of each year by one advance payment with t he same present value:

m - I

r k = L Vj / mZk+j / m , k = 0, L 2, ' " .
j =O

(4.4.3)

The correc t ion term in the year of death amounts to a negative life insur ance,
the sum insur ed at tim e k + u, 0 < 11 < 1 being t he present value of the
omit ted payment s:

c(k + u) = L vj/m - uZk+j /m ;

jE J

(4.4.4)

here J = J(11) is the set of those j E {1, 2," ' , m - 1} for which j im > u. In
ord er to calcula te the net single premium we use Assump tion a of Section 2.6
and pro ceed along the lines of Section 3.4. Substituting (4.4.4) in equation
(3.4.10) we obtain

fl L(1 + i)l -j /mzk+j /m d u
i o J

1 m - I
"" "(1 ')I - j / m- L... J + 1 zk+j/m '

m j=1

(4.4.5)

The net single premium for a general life annuity with payments m t imes a
year is thus

00 00

"" k "" > k+ 1L... v rk kPx - L... Ck+ 1V kP x qx+k ,
k=O k=O

(4.4.6)

with th e coefficients defined in (4.4.3) and (4.4.5) .
The case of a cont inuously payabl e annuity is obtained by let t ing m --+ 00 .

Let the payment rat e at tim e t be r(t ). The present value is

(4.4.7)

The net single premium

(4.4.8)
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may be evalua ted by (4.4.6) , with coefficients

fal vUr (k + u) du ,

fal u(1 + i )l -ur (k + u ) du .

41

(4.4.9)

(4.4.10)

We illustrate th e point by a cont inuous life annuity with exponent ial
growth,

r(t ) = er t
.

From (4.4.9) and (4.4.10) we obtain

and
_ eD- r - 1 - (8 - T) r(k+l )

Ck+ l - (8 _ T)2 e

for T =I- 8, and

(4.4.11)

(4.4.12)

(4.4.13)

1
rk = eDk , Ck+l = 2 eD(k+l ) (4.4.14)

for T = 8. In the case of a constant payment rate (T = 0) , (4.4 .12) and (4.4 .13)
become simply

d
r k = -g ' Ck+l =f3(OO ) ,

which is in accordance with (4.3.12) .

4.5 Standard Types of Life Annuity

(4.4.15)

Consider a life annuity of the form (4.4 .1) with r» = k + 1. It s net single
premium, which we denote by (Ia)x' may be read ily calculated by means of
(4.4.2) .

A simple identi ty connects (Ia)x and (IA)x' Replacing n by K + 1 in th e
identity

an] = d (I a)n] + n o" ,

see (1.8 .12) , and taking expectations we obtain

(4.5.1)

(4.5.2)

which reminds us of (4.2.8).
We consider the case of m payments a year with annua l increments:

k + 1 .
Zk+j/m = -- , J = 0, 1, . . . , m - 1.

m
(4.5.3)
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The net single premium of th is life annuity is denoted by (Iii) ~m). Represent
ing t his annuity as a sum of deferred annui ties, we obtain, with (4.3.5)

00

(Ia··)x(m) = '" k .. (m)L.J kPxv ax+k
k=O
00

L kPxvk{ o:(m) iix+k - jJ(m )}
k=O

00 00

o: (m) L kPxvk iix+k - jJ (m ) L kPxVk
k=O k=O

o: (m) (I ii)x - jJ (m ) iix· (4.5.4)

(4.5.5)

This expression may be evaluated directly.
Letting m -> 00 we obtain th e corresponding continuous annuity with

payment rat e r(t) = [t + 1]. It s net single premium is given by

fooo [t + l]vt tPxdt

0: (00 ) (I ii)x - jJ(oo) iix·

The present value of a continuous life annuity with payment rate r(t) = t
is

Y = foT tvtdt = (la)Tl =

Taking expectations yields the formula

- T TaTl- v

8
(4.5.6)

(4.5.7)

This expression may be evaluated using (3.5.18) and (4.3.5) with m = 00 .

The derivation of th e corresponding formulae for stand ard decreasing life
and temporary annuit ies is left to th e reader.

4 .6 Recursion Formulae

We sha ll restrict our discussion to recursion formulae for th e function iix.
Replacing kPx by Px k-lPx+l in all except th e first term in (4.2.5) we find

(4.6.1)

Th e values of iix may be calculated successively, star tin g with th e highest
possible age.

An equivalent expression is

(4.6.2)
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The net single premium is seen to cover the payment due at age x and the
present value of t he net single premium at age x+I, less the expected mortality
gain.

Application of (4.6.2) at age x + k yields

We multiply thi s equa tion by vk and sum over k to obtain

00

.. .. '"' k+l "ax = aOOl - L...J v ax+k+1 qx+k .
k=O

(4.6.3)

(4.6.4)

The net single premium may thus be viewed as the present value of a perp e
t uity, reduced each year by the expected mortality gain.

Finally we can writ e (4.6.2) as

(4.6.5)

from which the role of the earned interest becomes evident .
In analogy with (4.6.5) one may derive the differential equat ion

by subst itut ing

(4.6.6)

(4.6.7)

in (3.6.II) .

4.7 Inequalities

The net single premium ax is occasionally confused with the present value
a~. T he values are different ; in fact one has th e inequality

ex I

(4.7.1)

In view of (4.6.7) and the ident ity V i = 1 - b all' with t = ex' an equivalent

inequality may be found :

(4.7.2)

Each of these inequalit ies is a direct consequence of Jensen 's inequality;
for instance the second inequality means
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(4.7.3)

which is obvious since vt is a convex function of t .
In what follows we shall generalise these inequalities. Consider the net

single premium Ax as a function of the force of interest b:

(4.7.4)

th is is the Laplace t ransform of the distribution of T . We also define the
functi on

(4.7.5)

For small values of b one may approximate (4.7.4) by 1- b ex. Thus l im6~o f (b)
exists, and has th e value

(4.7.6)

Lem m a : The fun ction f (b) is monotone increasing.

To prove the lemm a we take two positive numb ers u < w , and demonstr ate
that

f(w) > f (u ) .

Jensen 's inequality implies

Hence
f(w) W> f (u )W,

from which (4.7.7) follows. T his proves the lemm a.

T he lemm a implies th at f (b) > f (O), hence

(4.7.7)

(4.7.8)

(4.7.9)

(4.7.10)

From (4.7.6) one may derive the inequality (4.7.2) once more.
An interesting applicat ion uses three different forces of interest , b1 < b <

b2 . The lemm a implies tha t

(4.7.11)

and thus
(4.7 .12)

which allows us to est imate Ax(b) if the values of AAbd and Ax(b2 ) are
known.
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For instance, let
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A50 = 0.41272 for i = 4% ,

Aso = 0.34119 for i = 5% .

Bounds for the net single premiums A50 and a50 for i = 4!% may now be
found . From (4.7.12) with

81 = In 1.04, 8 = In 1.045 , 82 = In 1.05

we find immediately
0.37039 < Aso < 0.37904 .

T he identity aso = (1 - Aso)/ 8 t hen gives

14.304 > aso > 14.107.

Replacing T by K + 1 and all by

1- vt

all = - d- ' t > 0,

we obtain the inequalities

{Ax(8d }8/81 < Ax(8) < {Ax(82 )}8/82

by similar arguments.
T he first two derivatives of th e function Ax (8) are

A~(8) = -E[TvT
] = - (lA)x(8) ,

A~(8) = E[T2vT
] > O.

(4.7.13)

(4.7.14)

(4.7.15)

(4.7.16)

(4.7.17)

Thus Ax (8) is a monotonically decreasing, convex function of 8. Hence any
curve segment lies below the secant ,

but above the tangents

Ax(8) > Ax(8d - (8 - 8d (lA)x(8d ,

Ax(<5 ) > Ax(82 ) + (82 - 8) (lA)x(82 ) .

(4.7.18)

(4.7.19)

Sometimes one obtains narrower bounds from (4.7.18) and (4.7.19) than from
(4.7.12) . In the example above an improved upper bound is obtained from
(4.7.18):

Aso < 0.37687 :

T he lower bound for a50 is also improved :

a50 > 14.157 .
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4 .8 Payments Starting at Non-integral Ages

The initial age x will in general not be integer-valued, unless it is rounded .
We shall consider calculation ofax+u for integers x and 0 < u < 1.

Starting with the identity

uPx kPx+u = kPx uPx+k (4.8.1)

we use Assumption a of Section 2.6 to find

(4.8.5)

(4.8.4)

(4.8.3)

(4.8.2)(1 - u qx) kPx+u = kPx(1 - u qx+k) .

Multiplying by vk and summing over all k we obtain

(1 - u qx) ax+u = ax - u( l + i) Ax .

Now we replace Ax by 1 - d ax to obtain the desired formula:

(1+ ui) ax - u( l + i)ax+u = -'----'------=::._-'--------'-
1- uqx

By mea ns of (4.6.1) we can rewrite the above resu lt as

.. 1 - u .. u(l - qx) ..
a = a + a l 'x+u 1 - u qx x 1 - u qx x+

so t hat ax+u is a weighted mean of ax and ax+1'

In practical applications ax+u is often approximated by linear interpola
tion, i.e.

ax+u ~ (1 - u) ax + u ax+1 ' (4.8.6)

The approximation is parti cularly good for small values of qx' which is imme
diately evident from (4.8.5).

As an illust rat ion we take a70 = 8.0960, a7l = 7.7364, q70 = 0.05526. T he
resu lts are tabulated below.

u a70+u from a70+u from
(4.8.4),(4.8.5) (4.8.6)

1/ 12 8.0676 8.0660
2/ 12 8.0389 8.0361
3/ 12 8.0099 8.0061
4/ 12 7.9806 7.9761
5/12 7.9511 7.9462
6/12 7.9213 7.9162
7/12 7.8912 7.8862
8/ 12 7.8609 7.8563
9/12 7.8302 7.8263

10/ 12 7.7992 7.7963
11/12 7.7680 7.7664
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If linear interpolation is also permitted for annuities with more frequent
payments,

.. (m) ~ (1 _ ) ·· (m ) + .. (m) (487)ax+u ~ u ax u ax+l , . .

we obtain from (4.3.5) th e practical approximat ion

ii~~~ ;:::: a(m)(l - u) ii x + a(m)u ii x+1 - (3(m) . (4.8.8)

Similar relations may be derived for the net single premium of whole life
insurances starting at a fractional age. For instance, the following is an im
mediate consequence of (4.8.5):

A - 1 - u A + u(l - qx) A
x+u 1 - u qx x 1 - u qx x+ l '

"(4.8.9)
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5.1 Introduction

An insurance policy specifies on th e one hand th e benefits payable by th e
insurer (benefits may consist of one payment or a series of payments , see
Chapters 3 and 4), and on th e other hand th e premium(s) payable by th e
insured. Three forms of premium paym ent can be distinguished:

1. One single premium,
2. Periodic premiums of a constant amount (level premiums) ,
3. Periodic premiums of varying amounts .

For periodic premiums th e dur ation and frequency of premium payments
must be specified in addit ion to th e premium amount (s). In principle, premi
ums are paid in advance.

With respect to an insurance policy, we define th e total loss L to th e insurer
to be th e difference between th e present value of th e benefits and th e present
value of th e premium payments . This loss must be considered in th e algebraic
sense: an accept able choice of th e premiums must result in a range of th e
random variable L th at includes negative as well as positive values.

A premium is called a net premium if it sat isfies th e equivalence prin ciple

E[L] =0 . (5.1.1)

i.e. if th e expected value of th e loss is zero. If th e insurance policy is financed
by a single premium, th e net single premium as defined in Chapters 3 and
4 satisfies condit ion (5.1.1). If th e premium is to be paid periodically with
constant amounts, equat ion (5.1.1) determines th e net premium uniqu ely. Of
course, in payment mode 3 (variable premiums) . equat ion (5.1.1) is not suffi
cient for th e determination of the net premiums .

5.2 An Example

Let us consider a term insurance for a life of age 40 (duration: 10 years;
sum insured: 0 , payable at th e end of the year of death: premium IT payable
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(5.2.1)

annually in advance while the insured is alive, but not longer than 10 years) .
The loss L of the insurer is given by

{

CvK+l - IIa~ for K = 0.1.· ··,9 .
L= K+I 1

-II aWl for K 2 10 :

here K denotes the curtate-future-lifetime of (40). The random variable L
has a discrete distribution concentrated in 11 points:

Pr(L = CVk+1
- II a~)

k + 11

Pr(L = -II aWl)
kP40 Q40+k ' k = O. 1. . .. . 9,

IOP40 ' (5.2.2)

We shall determine the net annual premium. From (5.1.1) one obtains the
condition

(5.2.3)

resulting in
Al

II = C 40:Wl . ( 2 )5. .4
a4o:Wl

As an illustration. we take i = 4% and assume that the mortality of (40)
follows De Moivre s law with terminal age w = 100. This somewhat unre
alistic assumption allows the reader to check our calculations with a pocket
calculator. We have

so that

A~o:Wl

A40:~

1 1 2 1 10 1
60v + 60v + ...+ 60v = 60 aWl = 0.1352 .

~ VIO = 0.5630 . (5.2.5)

A40:Wl
a40:Wl

0.6982 .

(1 - A40:Wl) /d = 7.8476 . (5.2.6)

(5.2.4) then gives us the net annual premium:

II = 0.Q172C. (5.2.7)

The insurer cannot be expected to pay benefits in return for net premiums:
there should be a safety loading which reflects the assumed risk. In what
follows a method for determining premiums will be demonstrated , which takes
account of th e incurred risk.

To this end premiums are determined by a utility function u( ·): this is a
function satisfying u'(x) > 0 and u"(x) < 0, and measuring the utility that
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the insurer has of a mon et ary amount x. More specifically. we assume that
the utility function is exponent ial.

1
u( x) = -(1 - e- a X

) :

a
(5.2.8)

the parameter a > 0 measures the risk aversion of the insurer. The condit ion
(5.1.1) is now replaced by the condition

E[u(-L)] = u(O). (5.2.9)

i.e, premiums should now be det ermined in such a way that the expected
utility loss is zero. With the utility fun ction given by (5.2.8) . the annual
premium must sa t isfy

E[eaL
] = 1 .

From (5.2.2) with kP40 Q40+k = -to and lOP40 = 5/6. we obtain

1 ~ (c k+l IT .. ) 5 ( IT '· )60 L.. exp a v - a ak + 11 + (3 exp -a alol = 1 .
k=O

(5.2 .10)

(5.2.11)

We chose a = 10-6 arbit rarily for this example. The annua l premiums ob
tained from (5.2.11) are tabulated below .

Annual Percent of
Sum insured C premium II net premium

100.000 1,790 104%
500,000 10.600 123%

LOOO.OOO 26,400 153%
2.000.000 85.900 250%
3.000.000 221,900 430%
4.000,000 525,300 764%
5,000,000 1,073,600 1248%

Obviously. now the premium is not proportional to the sum insured , as is
the case with the net premium. but increases progressively with C. This is
perfectly reasonabl e: A sum insured of 100.000 units represents a small risk
to the insurer. hence the safety loading (4%) is modest. A sum insured of 5
million. on the other hand. represents a conside ra ble risk (at least if a = 10-6 ) .

which. in theory , makes a safety loading of 1148% acce ptable.
At first glance. this result seems to cont radic t insuran ce practi ce. since

premiums usually are proportional to the sum insured. The contradict ion ca n
be resolved by t he following considera t ion: Assume that the insurer charges
250% of the net premium for all valu es of C : then po licies wit h a sum insured
exceeding 2 million require reinsurance: policies with a lower sum insured are
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overcharged. which compensates for th e relatively high fixed costs of th ese
policies.

Net premiums are nevertheless of utmost importance in insurance practice.
Moreover . th ey are usually calculated on conservat ive assumptions about fu
ture interest and mortality, thu s creat ing an implicit safety loading.

5.3 Elementary Forms of Insurance

5.3.1 Whole Life and Term Insurance

We consider a whole life insura nce of 1 unit . payable at the end of th e year of
death . which is to be financed by net annual premiums. which we denot e by
Px ' Th e loss of th e insurer is

(5.3.1)

From (5.1.1) it follows immediatel y th at

(5.3.2)

Representing th e premium payments as th e difference of two perpetuities (one
start ing at time O. the other at time K + 1). we obtain

Thus

L = (1 + Px ) V K +1 _ Px
d d . (5.3.3)

(5.3.4)

Thi s equat ion shows th at th e insurer runs a greater risk (at least expressed by
th e variance of L) if the insurance is financed by net annual premiums rather
th an by a net single premium.

Equation (5.3.2) can be used to derive two formulae for Px which can be
given instruct ive interpretations. Dividing equat ion (4.2.8) by ax we obt ain
the ident ity

(5.3.5)

Thi s ident ity has the following interpretation: A debt of 1 can be amort ised
by annual advance payments of 1/ ax' Alternatively one can pay advance
interest (d ) on th e debt each year. and the amount of 1 at time K + 1: th e
net annual premium for th e corresponding life insurance is Px ' The identi ty
(5.3.5) means th at th e the total annual payment s are th e same in either way.
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The identity (5.3.5) reminds us of another identity from the theory of
interest ,

I 1
-..- =d+-..- ,
an] sn]

which also has a similar interpret ati on (see Section 1.8).
Replacing ax by (1 - Ax)/d in (5.3.2) , we find

p = dAx

x 1 - Ax .

The equivalent identity

(5.3.6)

(5.3.7)

(5.3.9)

(5.3.10)

Px = d Ax + P; Ax (5.3.8)

may be interp reted as follows: A coverage of 1 unit can be financed by annual
payment s of Px; on the other hand , one can imagine th at an amount of Ax is
borrowed to pay the net single premium. Interest on the debt of Ax is paid
annually in advance, and the debt is repaid at the end of the year of death; th e
annual premium for the corresponding life insur ance is Px Ax' The identity
(5.3.8) shows th at the total annual payment s are the sam e either way.

We shall consider a term insurance of duration n (sum insured 1 unit ,
payabl e at the end of th e year of death). The net annu al premium is denoted
by P;:n]' T he insur er 's loss is

{

vK+I - pI a for K = 0, 1, . . . ,n - 1 ,
L = x:n] K + 11

P I .. f K >- x:n]an] or _ n ,

or, as in (5.3.3) ,

L P I " (1 pI " ) K+IJ=- x:n] an] + + x:n] an _ K _ I I V {K<n } ·

The net annual premium is, of course,

(5.3.11)

(5.3.12)

5.3.2 Pure Endowments

Let the sum insur ed be 1 unit and th e durat ion n . The net annual premium
is denoted by Px:rh . The loss of the insurer is

{

- P ~ a~ for K = °1 . .. n - I
L = x:n I K + 1 I '"

vn - Px:rh an] for K 2: n .

The net annual premium is obviously

A 1
P 1 _ x:n]

x:n] - a .
x:n]

(5.3.13)
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The net annual premium is denoted by Px:n]' The equations

A x:n]
Px:n] =~

x:n]

and
Px:n] = P;:n] + Px:>h

are obvious. The insurer's loss is the sum of (5.3.9) and (5.3.12).
In analogy with (5.3.5) and (5.3.8) we have

_1_ -d P
a - + x:n]'

x:n]

(5.3.14)

(5.3.15)

(5.3.16)

Px:n] = d Ax:n] + Px:n] Ax:n] , (5.3.17)

with the corresponding interpretations. Equation (5.3.17) can also be obtained
by adding the relations

P;:n] = d A;:n] + Px:n] A;:n] ,

Px:>h = d Ax:Jh + Px:n] Ax:Jh '

each of these having an interpretation similar to that of (5.3.8).

5.3 .4 Deferred Life Annuities

(5.3.18)

(5.3.19)

The net annual premium payable during the deferment period for a life annuity
due of 1 p.a. starting at time n , is Px:>h ax+n '

5.4 Premiums Paid m Times a Year

If the net annual premium is paid by m installments of equal size, the su
perscript "(m)" is is attached to the appropriate premium symbol. The net
annual premiums

p(m) p(m) pI (m) P I (m)
x , x:Tn ' x:fil ' x:Til

are obtained by replacing ax' resp . ax:n]' by a~m), resp . a~~, in the denom

inators of (5.3.2), (5.3.11), (5.3.13), (5.3.14). The net annual premium of an
endowment paying 1 unit is for instance

p(m) = A / ..(m)
x:n] x:n] ax:n] .

The expression may be readily evaluated by means of formula (4.3.9).

(5.4.1)
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In order to compare P;~ with Px:n]' we subst itute in (5.4.1)

Ax:n] Px:n] axon] ,

a~~ d~) axon] - f3 (m) A; :n]

and obtain
P .p (rn ) _ x.n]

x:n] - d jd(rn ) - f3 (m) P; :n]
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(5.4.2)

(5.4.3)

(5.4.4)

(5.4.5)

(5.5.1)

(5.5.2)

If we now writ e th e last result in th e form
p ..(rn) p(rn ) f3 ( ) p (rn ) pI

x:n] = all x:n] - m x:n] x:n] '

two reasons for th e relation Px:n] < P~~ become apparent .
Analogous relations hold for other insurances, e.g.

r , a~) p~rn) - f3 (m) p~rn) Px ' (5.4.6)

pI a(rn) pi (rn ) _ f3 (m) pI (rn) pl. (5 4 7)
x:n] 11 x:n] x:n] x.n] , . .

I ..(rn) p I (rn ) f3 ( ) p I (rn ) pI ()
Px:n] all x:n] - m x:n] x:n] · 5.4.8

Equ at ion (5.4.6) is the limit of (5.4.5) as n ---. 00. Equation (5.4.5) is th e sum
of equat ions (5.4.7) and (5.4.8).

5.5 A General Type of Life Insurance

We return to th e genera l type of life insurance introduced in Section 3.4. Let
Cj be th e sum insured in th e jth year after policy issue. We assume th at the
insurance is to be financed by annual premiums IIo, III , II2 , · · · , Il k being th e
premium due at tim e k. The insurer 's loss is

K

L K+I ~ II k= CK + IV - L.., k V .
k=O

The premiums are net premiums if th ey sat isfy th e equation
00 00

L Ck+ I V k+ 1
kPx q x+ k = L IIk v

k
kP x

k=O k=O

Th e model is more general than it may appear at fined ance. If negati ve
values are permitted for the Il k, it includ es pure endowmen and life annuit ies.
For instance, th e endowment of Section 5.3.3 is obtained by set t ing

CI = C2 = . .. = Cn = 1 , Cn + l = Cn+2 = . .. = 0 ,

IIo = III = . . . = IIn- 1 = Px:n], lIn = -1 , IIn+1 = IIn+2 = . . . = O.

(5.5.3)
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5.6 Policies with Premium Refund
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A large variety of insurance forms and payment plans occur in practi cal insur
ance. Thi s makes it impractical to derive the net single premium explicitly for
every possible combination. The fundam ental rule to be followed in a given
sit uat ion is to specify the insurer's loss L , and then to apply the condit ion
(5.1.1). Thi s procedure will be illustrat ed with an example.

A pure endowment with 1 unit payable after n years is issued with the
provision that, in case of death before n, the premiums paid will be refunded
without interest . What should the net annual premium be if the premium
charged is to exceed the net annual premium by 40% ? (The 40% loading is
used to cover expenses).

We let P denote the net annual premium . The insurer's loss is obviously

{

(K+l)(1.4P)VK+I_Pii~ forK=O,I , ·· · ,n-l ,
L= K+I J

vn
- P ii1l1 for K 2': n .

The expected loss is

1.4P (IA)~:1l1 + Ax:rh - P iix:1l1 '

and applicat ion of (5.1.1) leads to the premium

Al
P _ x:1l1

- iix:1l1
- 1.4 (IA)~:1l1 .

5.7 Stochastic Interest

(5.6.1)

(5.6.2)

(5.6.3)

The interest rate that will apply in future years is of course not known. Thus
it seems reasonable to ask why future interest rat es have not been modelled
as a stochasti c process. Two reasons have led us to refrain from such a model:
1) Life insurance is particularly concerned with the long term development of
interest rat es and no commonly accepted stochastic model exists for making
long term predictions. 2) A reasonable assumption is that the remaining life
times of t he insured lives are, essenti ally, independent random variables. With
a fixed interest assumption, the insurer 's losses from different policies become
independent random variables. Th e probability distribution of th e aggregate
loss can t hen simply be obtained by convolution. In particular, the variance
of the aggregate loss is the sum of the individu al variances, which facilitates
the use of th e normal approximation. Stochasti c independence between poli
cies would be lost with the introduction of a stochasti c interest rat e, since all
policies are affected by the same interest development .
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Thus we shall cont inue using the assumpt ion of a fixed interest rate. The
practi cal evaluat ion of an insurance cover should analyse different interest
scenarios. It is also possible to let the interest assumption vary over time,
say using i j as th e interest assumpt ion for year j . Thi s would not lead to
mathematical complications, but would make th e not ation more laborious, so
th at we shall not follow in thi s direction.
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6.1 Introduction

Consider an insurance policy which is financed by net premiums. At th e
tim e of policy issue, the expected present value of future premiums equals the
expected present value of future benefit payments , making the expected loss
L of the insurer zero.

This equivalence between future payments and future benefits does not ,
in general, exist at a later time. T hus we define a random variable tL as the
difference at time t between the present value of future benefit payments and
the present value of future premium payments; we assume that tL is not iden
tically equal to zero, and we also assume that T > t . T he net premium reserve
at t ime t is denoted by tV , and it is defined as the conditiona l expect at ion of
.L , given that T > t.

Life insur ance policies are usually designed in such a way that the net
premium reserve is positive, or at least non-negative, for the insured should at
all t imes have an interest in continuing the insurance. Thus t he expected value
of future benefits will always exceed the expected value of future premium
payments. To compensate for this liability the insurer should always reserve
sufficient funds to cover the difference of these expected values, i.e. the net
premium reserve tV .

6.2 Two Examples

The net premium reserve at the end of the kth policy year for an endowment
insur ance (durat ion: n , sum insured: 1 payable after n years or at the end of
the year of death , annual premiums) is denoted by k Vx:

1il
and given by the

expression

k Vx:1il = Ax+k :n_ k 1- Px:1il iix+k :n_ k I' k = 0, 1, ' . . , n - 1 .

Obviously 0Vx:
1il

= 0 because of the definition of net premiums.

(6.2.1)
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Th e net premium reserve at th e end of year k of th e corresponding term
insurance is denot ed by kVx~iil ' It is given by

VI = A I _ pI ..
k x :iil x+k :n _ k 1 x :iil ax+ k :n - k I' (6.2.2)

For a numerical illustration, we assume a sum insured of 1000 units, initi al
age x = 40, and th e duration n = 10. Th e net premium reserve is thus
1000 k V4o:101 (1000 k '':~:101) for k = 0,1 , . . . , 9. As in Section 5.2 we assum e i =

4% and use De Moivre's survival function with w = 100 for our calculations.
As a first step we find the net annual premium 88.96 for the endowment

and 17.225 for the term insurance. Th e development of th e net premium
reserves is tabulated below; th e entries can easily be verified with a pocket
calculator. Though De Moivre's law is not very realistic, th e net premium
reserves follow a characteristic pattern .

Development of net premium reserve for an endowment and a term insurance

k ii
40+k :1O- k I A

40+k :1O- k 1
V A I VI

k 40:101 40+k:1O- k 1 k 40:101

x 1000 x 1000 x l 000 x l 000

0 7.84805 698.15 0 135.18 0.0
1 7.24269 721.44 77 126.02 1.3
2 6.60433 745.99 158 116.08 2.3
3 5.93076 771.89 244 105.30 3.1
4 5.21956 799.25 335 93.61 3.7
5 4.46813 828.15 431 80.94 4.0
6 3.67365 858.71 532 67.22 3.9
7 2.83306 891.04 639 52.36 3.6
8 1.94305 925.27 752 36.27 2.8
9 1.00000 961.54 873 18.85 1.6

Th e net premium reserve of the endowment grows steadily and approaches
th e sum insured towards th e end. The net premium reserve of 872.58 at th e
end of the 9th year can be easily verified: The sum of this net premium
reserve and the last premium payment of 88.96, plus interest on both , must
be sufficient to cover the payment of 1000 one year later.

The net premium reserve of th e term insurance is very small and nearly
constant . Initially it grows since th e premium slightly exceeds that of a corre
sponding one-year term insurance. Towards th e end th e net premium reserve
decreases again since th e insurer has no obligation if the insured survives. The
sum of th e net premium reserve at th e end of th e 9th year (1.62) and th e last
premium (17.23) is exact ly sufficient to cover a one-year term insurance for a
49-year old (18.85).
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We return to the general life insurance introduced in Section 5.5. The net
premium reserve at the end of year k is, according to t he definition,

In order to derive a relati on between k V and k+h V , we substitute

j Px+k = hPx+k j - hPx+k+h

(6.3.1)

(6.3.2)

in all except th e first h term s of (6.3.1), and use j' = j - h as summat ion
index. The resulting relation between k V and k+h V is

h-l h- l
" . " +1 hk V + L..- Ih+ j v

J
j Px+k = L..- Cj +k+ l v

J
jPx+k qx +k+j + hPx +k v k+hV. (6.3.3)

j =O j=O

It is not surprising th at thi s relati on has the following interpretation: If the
insur ed is alive at the end of year k, then th e net premium reserve, together
with the expected present value of the premiums to be paid during the next
h years is just sufficient to pay for the life insur ance during tho se years, plus
a pure endowment of k+ hV at the end of year k + h.

A recursive equation for the net premium reserve is obtained by letting
h=1:

(6.3.4)

Thus th e net premium reserve may be calculated recursively in two directions:
1) One may calculate 1V , 2V , .. . successively, starting with the initial value
oV = O. 2) If the insurance is of finite durat ion n , th en one may calculate
n -lV , n-2V , . . . in this order , start ing with the known value of n V . For ex
ample, in th e num erical example of Sect ion 6.2 we have 10V = 1000 for the
endowment , and 10V = 0 for the term insurance.

Equation (6.3.4) shows that th e sum of the net premium reserve at tim e
k and th e premium equals the expected present value of the funds needed at
t he end of the year (th ese being CH I in case of death, else k+l V). Another
interpret ation becomes evident when one writ es

(6.3.5)

T he amount of k+lV is needed in any case . The additiona l amount needed if
the insur ed dies , Ck+ l - k+l V , is th e net amount at risk.

Equation (6.3.5) shows th at th e premium can be decomposed into two
components, Ilk = Ilk + Ilk, where

(6.3.6)
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is the savings premium used to increase the net premium reserve, and

Il~ = (Ck+1 - k+1V )Vqx+k (6.3.7)

is th e premium of a one-year term insur ance to cover the net amount at risk,
or risk premium. Thus th e operation in year k + 1 may be interpreted as a
combinat ion of a pure savings operation and a one-year term insurance. We
are assuming, of course, th at th e insured is alive at t ime k.

Multiplying (6.3.6) by (1 + i)j-k and summing over k = 0,1 " " ,j - 1, we
obtain

j - I

jV = 2:(1 + i )j-k Ilk, (6.3.8)
k=O

which shows th at th e net premium reserve is th e accumulated value of the
savings premiums paid since policy issue.

The decomposition into savings premium and risk premium in th e numer
ical example of Section 6.2 is tabulated below.

Decomposition into savings premium and risk premium

Endowment Term insurance
k IIS Ilk IIS IIT

k k k
0 74.17 14.79 1.22 16.00
1 75.24 13.71 0.97 16.26
2 76.43 12.53 0.70 16.53
3 77.74 11.22 0.42 16.81
4 79.18 9.78 0.12 17.10
5 80.77 8.18 - 0.19 17.41
6 82.53 6.43 - 0.52 17.74
7 84.47 4.49 - 0.87 18.09
8 86.60 2.36 - 1.24 18.46
9 88.96 0.00 ~1.62 18.85

Writing (6.3.5) as

Ilk + d k+lV = ( k+1V - kV) + Il~ , (6.3.9)

we see that th e premium, plus t he interest earned on t he net premium reserve,
serves to modify (increase or decrease) the net premium reserve and to finance
th e risk premium. This equat ion is apparent ly a generalisat ion of (3.6.7).

Mult iplying (6.3.5) by (1 + i ), we obt ain an equat ion similar to (6.3.9):

Ilk + i ( kV + Ilk) = ( k+1V - kV) + (Ck+1 - k+1V) qx+k' (6.3.10)

Equations (6.3.9) and (6.3.10) differ in that th e valuation is performed at t ime
k in (6.3.9) , but at time k + 1 in (6.3.10).
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The derivations of th e previous section are valid also if Ck+ I < k+ I V , i.e. if
th e net amount at risk is negative. But in this case th e analysis may also be
modified. We start by expressing (6.3.4) as

(6.4.1)

The amount of Ck+ I is needed in any case; in case of survival , an additional
amount of k+I V - Ck+l falls due. The financial transactions during year k + 1
may thus be allocated partly to pure savings, and partly to a pure endowment
with a face amount of k+ I V - Ck+ I ' The premium Ilk may be viewed as th e
sum of a modified savings premium,

and th e survival risk premium

ilk = (k+ I V - Ck + I )V P x+k .

(6.4.2)

(6.4.3)

We note th at th e savings component will often be negative, too . Equation
(6.4.1) may also be expressed as

(6.4.4)

a formula which reminds us of (6.3.9).
The decomposition of premium into (6.4.2) and (6.4.3) is not very common,

and in what follows we shall not use it.

6.5 The Net Premium Reserve of a
Whole Life Insurance

Consider th e whole life insurance introduced in Section 5.3.1. Its net premium
reserve at th e end of year k is denoted by k Vx and is by definition

(6.5.1)

We shall derive some equivalent formulae.
Replacing AX +k by 1 - d iix+k ' we find

(6.5.2)

Now, replacing Px + d by 1/ ax' we obt ain

(6.5.3)
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The formula
V _ A X+k - Ax ( )

k x-I _ A 6.5.4
x

may be verified if we replace ax by (1 - Ax)/d and aX+k by (1 - Ax+k)/d.
The identity PX+k ax+k = A X+k with (6.5.1) gives

and
kVx = (Px+k - Px) aX+k·

Finally we replace aX+k by 1/( PX+k + d) to find

(6.5.6)

(6.5.7)V - PX +k - Px

k x - Px+k + d .

The multitude of different formulae may seem confusing. Apart from
(6.5.1) the formulae (6.5.2), (6.5.5) and (6.5.6) are important because they
are easily interpreted and because they may be generalised to other types of
insurance.

Formula (6.5.2) expresses the fact that the net premium reserve equals the
sum insured, less the expected present value of future premiums and unused
interest. This reminds us of the ident ity Ax = 1 - d ax , which has a similar
interpretation.

Equation (6.5.5) may be interpreted by recognising that the future pre
miums of Px may serve to finance a whole life insurance with face amount
Px / Px+k ; the net premium reserve is then used to finance the remaining face
amount of 1 - Px / Px+k •

If the whole life insurance were to be bought at age x + k the net annual
premium would be Px+k ' The premium difference formula (6.5.6) shows that
the net premium reserve is the expected present value of the shortfall of the
premiums.

Equations (6.5.3), (6.5.4) and (6.5.7) are of lesser impo rtance and have
no obvious interpretation. However, they allow generalisation to endowment
insurance.

6.6 Net Premium Reserves at Fractional Durations

We return to the general insurance discussed in Section 6.3. Let us assume
that the insured is alive at time k+u (k an integer, 0 < u < 1), and denote the
net premium reserve by k+uV . Similarly to (6.3.5), the net premium reserve
can be expressed by

k+u V = k+l V v
1
-

u + (Ck+ l - k+l V)v
1
-

u
l-uqx+k+u . (6.6.1)



6.7. Allocation of th e Overall Loss to Pol icy Years 65

A ssumption a of Section 2.6 implies

(1 - u) qx+k
1-uqx+k+u = l ' (6.6.2)

- u qx+k

which permits direct evaluation of k+uV.

We can also express k+uV in terms of kV . In order to do so we subst it ute
(6.6.2) in (6.6.1) and use (6.3.7) and (6.3.6) . We obtain

k+uV = ( kV + Il~)(1 + i )U+ 1 - u Il~(1 + z}" . (6.6.3)
1 - U qx+k

In Section 6.3 we saw that the operation in year k + 1 could be decomp osed;
equat ion (6.6.3) gives the corresponding decomposition at a fractional dura
tion : The first te rm is the balance of a fictitious savings account at t ime k +u ,
and the second term is the part of the risk premium which is still "unearned"
at tim e k + u.

A thi rd possible formula is

V I - u (V Il)( ')U { 1 - u } V 1-u (6 )k+u = k + k 1+ t + 1 - k+1 V . .6.4
1 - u qx+k 1 - u qx+k

This shows th at k+uV is a weighted average of the accumulated value of
( k V + Ilk) and the discounted value of k+! V; the weights are ident ical to the
weight s in (4.8.5), for k = O. To prove (6.6.4) , we replace Ilk by Ilk + Ilk;
definition (6.3.6) then shows that (6.6.4) is equivalent to (6.6.3) .

In practical applications an approximat ion based on linear interpolation is
often used:

k+u V :::::: (1 - U)( kV + Ilk) + U k+! V . (6.6.5)

To see how good thi s approximation is, we replace Ilk by Ilk + Ilk and k+1V

by (k V + Ilk)(l + i ). Th e approximation is then

k+uV:::::: ( k V + IlD(I + ui) + (1- u) Il~ ,

which permits direct comparison with (6.6.3)

6.7 Allocation of the Overall Loss to Policy Years

(6.6.6)

We cont inue the discussion of the general life insurance. For k = 0,1 , . . " we
define Ak to be the loss incurred by the insur er during the year k + 1; thus the
beginn ing of th e year is used as reference point on the time scale. Three cases
can be distinguish ed: 1) The insured has died before tim e k, 2) th e insured
dies during year k + 1, 3) the insured survives to k + 1. The rand om vari able
Ak is thus defined by

if K :::; k: - 1 ,
if K= k ,
if K ~ k + 1 .

(6.7.1)
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Replacing Ilk by Ilk + Il;; and using (6.3.6), we find

(6.7.2)

(6.7.3)

Thus, if the insured is alive at time k, Ak is the loss produced by the one-year
term insurance covering the net amount at risk.

The overall loss of the insurer is given by equation (5.5.1). Th e obvious
result

00

L = LAkvk

k=O

may be verified directly through (6.7.1). Of course the sum is finite, running
from 0 to K .

Using (6.7.2) and (6.3.7) we find

(6.7.4)

which again implies

(6.7.5)

While (6.7.3) is generally valid , the validity of (6.7.5) requires that each year 's
payments are offset against the net premium reserve of that year.

The classical Hatt endorff 's Theorem states th at

(6.7.6)

(6.7.7)
00

Yar(L) = L v2kYar(Ak ) .

k=O

The second formula states that the varian ce of the insurer's overall loss
can be allocated to individu al policy years , and it is a direct consequence of
th e first formula and (6.7.3). The first formula is not directly evident since
the random variables Ao, AI, . .. are not independent .

In a proof of (6.7.6) we may assume k < j without loss of generality. Then
one has

E[Ak • Aj ]

E[Ak . AjlK ~ j] Pr(K ~ j)

- IlkE[AjIK ~ j] Pr(K ~ j)
= 0 ; (6.7.8)

here (6.7.4) has been used in the last ste p.
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The variance of Ak may be calculated as follows:
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E[A%]

E[A%IK 2: k] Pr(K 2: k)

Var(AklK 2: k) Pr(K 2: k)

(Ck+1 - k+lV? v2
P x+ k qx+k Pr(K 2: k)

(Ck+1 - k+1V?v
2

k+lPx qx+k · (6.7.9)

Substituting this into (6.7.7) we finally find

00

Var(L) = L v2k
+

2
( Ck+l - k+lV? k+ IP x q x+k ·

k=O
(6.7.10)

We now assume that the insured is alive at time h (h an integer) , and con
sider the loss defin ed in Section 6.1, being the difference between the expec ted
present valu es of future benefit payments and future premium paym ents. In
analogy to (6.7.10) we have

00

Var( hL ) = L v
2k

+
2

(Ch+k+ 1 - h+k+1V? k+ IPx+ h q x+ h+k ·
k=O

(6.7.11)

To prove this we consider a hypotheti cal insuran ce, issued at age x + hand
finan ced by t he "premiums"

ITo = IIh + hV , ITk = II h+k for k = 1,2 , . . .. (6.7.12)

The vari ance of L may be easily evaluated by mean s of equa t ion (6.7.10).
The results, for the numerical exa mple of Secti on 6.2, have been compiled in
th e table below.

Calculation of the varian ce of L by policy years

k

o
1
2
3
4
5
6
7
8
9

Sum

Endowment

12905
9918
7393
5292
3584
2240
1231
535
131

o
43229

Term insurance

15114
13940
12864
11876
10970
10140
9379
8682
8043
7457

108465
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We see th at the variance of L is much smaller for the endowment (43229)
th an for th e term insurance (108465) .

Equation (6.7.10) is useful in evaluat ing th e influence of th e financing
method on th e variance of L , when th e benefit plan is fixed . Consider for in
stance a pure endowment , with CI = C2 = . .. = O. The variance of L increases
with th e net premium reserve. Thus financing by a net single premium leads
to a greater variance th an financing by net annual premiums .

6.8 Conversion of an Insurance

In a technical sense th e net premium reserve "belongs" to th e insured and
may in principle be used to help finance a modification of the insurance policy
at any time.

A classical example is th e conversion of an insurance policy into a paid
up insurance, i.e. one for which no further premium payments are required .
Consider a whole life insur ance issued at age x with a sum insured of 1 unit ,
and financed by annual premiums of Px ' Assum e th at th e insured is alive at
t ime k, but, for whatever reasons, unable to pay further premiums. In such a
sit uation th e net premium reserve of k Vx could be considered as the net single
premium for a whole life insur ance with a sum insured of

(6.8.1)

see (6.5.5). Such conversions into paid-up insurance with reduced benefits are
very common for endowments (for which the net premium reserve is substan
ti al) .

A type of insurance known a." "un iversal life" or "flexi ble life", made pos
sible by modern data processing, offers th e insured a maximum degree of
flexibility. Here th e insured may adjust th e parameters of the insurance peri
odically (e.g. annually). The insured who "owns" the premium reserve of k V
at tim e k, may change any two of th e following parameters:

• Ilk , th e next premium to be paid ,

• CH I , th e sum insured in case of dea th during th e next year,

• k+1 V , th e target value of his "savings" one year ahead.

The third parameter is th en determined by th e recursive formula (6.3.4) . In
ot her words , the insured effectively decides next year 's premium, as well as its
decomposition into savings premium and risk premium. Certain restrictions
are usually imp osed to reduce the risk of ant iselection; for inst ance, th e new
sum insured (Ck+l) should not exceed th e form er sum insured (Ck) by more th an
a predetermined percent age, which could, possibly, depend on th e inflation
rat e.
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Consider the general life insurance of Section 6.3, and let us assume that the
insured is alive at time k. We assume further that the actually earned interest
rate during year k + 1 is i' , The technical gain at the end of the year is then

(6.9.1)

Essentially there are two ways in which this technical gain can be decomposed:

Method 1

Replacing 1 + i' by (i' - i) + (1 + i) in (6.9.1), one obtains

Ck+l = (kV + ITk)(i' - i) - Ak(l + i) . (6.9.2)

The technical gain thus consists of an investment gain and a mortality gain.

Method 2

Since the operation during year k + 1 may be considered as part savings
and part insurance, a reasonable approach is to allocate the technical gain
accordingly:

Here
Ck+1 = (kV + ITk)(i'-i)

is the gain from savings, and

C T _ { Ilk(1 +i') - (Ck+l- k+lV) if K = k ,
k+l - ITk(l + i' ) if K ~ k + 1

(6.9.3)

(6.9.4)

(6 .9.5)

is the gain from the insurance. The latter may again be decomposed into

(6.9.6)

see (6.7.2). The last equation shows the connection to Method 1.
When the technical interest rate i is chosen conservatively, the technical

gain, respectively Ck+1, will usually be positive . If this gain is to be passed on
to the insured through increased benefits , then Method 2 is preferable, since
the gain from savings may be written as

Ck+1 = k+l Vv(i' - i) .

The future benefits may th en be increased uniformly by

v(i' - i)100% ,

(6.9.7)

(6.9.8)
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provided that the insured agrees to future premiums being increased by the
same factor. As a result of this profit sharing, the insured will obtain a
modified insurance policy for which

Ck+l+h = v(l + i ' )ck+l+h , ITk+h = v(l + i') Ilk+h (6.9.9)

for h = 0,1 , . " . This will be the case if the insured is alive at the end of the
year. In case of death (K = k) , the gain from savings Gk+! may be paid in
addition to the sum insured of CHI .

6.10 Procedure for Pure Endowments

Consider a pure endowment (ci = Cz = .. . = 0). The technical gain at the
end of year k + 1 is

(6.10.1)

Since it is desirable to have an investment gain only in the case of survival
(K ~ k + 1), we decompose the technical gain in a slightly different way:

with

and

G G I GIlk+! = k+! + k+! ,

I { 0 if K = k ,
CHI = k+IVV(i' - i) if K ~ k+ 1 ,

(6.10.2)

(6.10.3)

GIl -I PX+kk+IV v(l+i') ifK=k , (60)
k+l-l-Qx+kk+IVV(l+i') ifK~k+1 .1 .4

The proof of this decomposition follows from (6.10.1) and the fact that

(6.10.5)

see (6.3.4). Note that th e expectation of Gk~1 is zero, which is not the case
with the expectation of Gk+! .

If th e insured survives , the gain given by (6.10.3) may be used to increase
the benefits, provided future premiums are increased accordingly, by a factor
determined by (6.9.8).

Similar derivations to the above may be made for life annuities, simply
by equating Tk , the contractually agreed payment at time k, to -Ilk . For
instance, if a pension fund has an investment yield of i' during a year , the
interest gained from th e annuities may be used to increase all annuities by the
factor given in (6.9.8).
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Let us finally consider the cont inuous counterpart to the genera l life insur ance
of Secti on 6.3.

The insur ance is now determined by two functions, the amount insured e(t)
and the premium rat e TI(t) , both at the moment t , t ~ O. The net premium
reserve at tim e t is

Vet) = l )O e(t + h)vhhPx+t J1x+t+hdh - /000 TI(t + h)vhhPxHdh . (6.11.1)

The premium rat e can be decomposed into a savings component ,

Wet) = V'et) - 8V (t ) ,

and a risk component ,

Wet) = (e(t) - V(t))J1x+t.

(6.11.2)

(6.11.3)

That TI(t) is the sum of those two components establishes Thi ele 's Different ial
Equation:

TI(t) + 8V(t) = V' et) + W(t) ; (6.11.4)

it is the cont inuous version of (6.3.9) and (6.3.10) and has a similar interpre
tation.

In the special case that

e(t ) = 1 , TI(t) = 0 , Vet) = AxH '

equat ion (6.11.4) leads to (3.6.11). If

e(t) = 0 , TI (t ) = -1 , V et) = axH ,

(6.11.5)

(6.11.6)

equat ion (6.11.4) confirms (4.6.6).
Working within the conti nuous model simplifies mat ters. There is for

inst ance only one method for analysing the technical gain, instead of two, as
in the discrete mod el of Sect ions 6.9 and 6.10.

We assume that the insur ed is alive at t ime t , and that the act ual force of
interest at t ime t is o(t). The technical gain in the infinitesimal t ime interval
from t to t + dt, which we denote be G(t , t + dt) , can be decomposed into

G(t , t + dt) = GS(t, t + dt) + Gr(t, t + dt) ;

here
GS(t, t + dt) = (8(t) - 8)V(t )dt

is the investment gain, and

Gr(t t + dt) = { -(e(t) - Vet)) if t < T < t + dt ,
, W (t)dt ifT > t+ dt ,

(6.11.7)

(6.11.8)

(6.11.9)
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is the mortality gain. Note that th e prob abili ty of deat h is JLx+tdt, and th e
probability of survival is 1 - JLx+tdt , so th at th e expected value of Cr(t , t +dt)
is zero. Note also that

Var[Cr(t , t + dt)IT > t] = (c(t) - V(t)?JLx+tdt ,

Var[Cr(t , t + dt)] = (c(t) - V(t) ? tPxJLx+tdt ,

(6.11.10)

(6.11.11)

and

(6.11.12)

Var(L) l JO v2tVar[Cr(t , t + dt)]

fooo v2t(c(t) - V (t)? tPxJLx+tdt ,

in analogy with (6.7.7) and (6.7.10).
Using a life annuity as an example, we shall demonstrat e how th e invest

ment gain may be used to increase the benefits cont inuously. Assum e th at a
cont inuous life annuity with constant payment rat e r(t ) is guaranteed at tim e
t . The net premium reserve at t ime t is thus

V(t) = r(t ) ax+t. (6.11.13)

At time t +dt th e payment ra te is to be increased to r(t +dt) = r(t )+ r'(t )dt ,
the cost of which must be covered by th e investment gain. This leads to the
condit ion

CS(t, t + dt) = r' (t ) dt ax+t . (6.11.14)

Using (6.11.8) and (6.11.13) we obt ain a differential equation for 1'(t ), viz.

(8(t) - 8)1'(t ) = 1"(t) , (6.11.15)

with solut ion

1'( t) = 1'(0) exp {l (8(s) - 8)ds} , (6.11.16)

which is in accordance with th e result derived at th e end of Section 6.10.
We have seen in thi s and th e last two sect ions how th e investment gain

can be used to increase th e benefits on an individually equitable basis. On
th e other hand , it is impossible to pass on th e mortality gain to th e insured
on an individual bas is: Death of th e insured causes a mortality loss (in case
of life insurance) or a mortality gain (in case of an annuity ), which naturally
cannot be passed on to th e insured.

It is, however , possible to pass on mor tality gain (or loss) to a group of
insureds. This will be demonstrat ed by an example which is remini scent of
th e historical Tontines.

Consider a group consist ing initially of n persons ; all have th e same init ial
age x and are initi ally guaranteed a life an nuity of constant rate 1. It has
been agreed to pass on any mortality gain (or loss) to th e annuitants in th e
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form of increased (or decreased) future payments. What will be the value of
rk(t) , the annuity rat e at tim e t , if th en only k of the initially n persons are
still alive?

Assuming that k persons are alive at t ime t and that all survive to time
t + dt , the mortality gain will be negative; per survivor it amounts to

(6.11.17)

see (6.11.9). The reduction in the annuity rate th en follows from the condition

(6.11.18)

which , in turn , implies the differential equation

(6.11.19)

If one of the k persons dies at tim e t , an immediate mortality gain of rk(t ) lLx+t
results; th is is distributed among the k - 1 survivors to increase the annuity
rat e. The new annuity rates follow from the condit ion that the net premium
reserve should be unchanged :

Thus one may writ e

k
rk-l(t) = k_1rdt) , k=2,3 , ·· · ,n .

(6.11.20)

(6.11.21)

The explicit solution is found using (6.11.19) , (6.11.21) and the initial condi
t ion Tn(O ) = 1 to be

n
rk(t)=y;;tPx , k = 1,2,· ··, n. (6.11.22)

Is is easy to check and not at all surprising that the organis er of such an
arrangement may in fact be considered to be functioning purely as a banker
as long as at least one person lives, and finally to be making a profit of

(6.11.23)

if z denotes the time of the last person 's death.
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7.1 The Model

In this chapter we extend the model introduced in Chapter 2 and reinterpret
th e remaining lifetim e random variable T .

Assume th at th e person under considerat ion is in a specific status at age
x . The person leaves th at status at tim e T due to one of m mutually exclusive
causes of decrement (numb ered conveniently from 1 to m) . We shall st udy a
pair of random variables, th e remaining lifetime in th e specified status T and
th e cause of decrement J .

In a classical example, disability insurance, the init ial status is "Active",
and possible causes of decrement are "Disablement" and "Death".

In another setting T is th e remaining lifetime of (x) , distinguishing be
tween two causes of decrement , death by "Accident" and by "Other causes".
This model is appropriate in connect ion with insurances which provide double
indemnity on accidental death.

The joint probability distribution of T and J can be written in terms of
the density functions 91(t), · · · ,9m(t ), so that

9j(t)dt = Pr(t < T < t + dt, J = j ) (7.1.1)

is the probability of decrement by cause j in th e infinitesimal time interval
(t , t + dt) . Obviously

g(t) = gl(t) + . . . + gm(t) . (7.1.2)

If th e decrement occurs at time t , the condit ional probability of j being th e
cause of decrement is

Pr(J = j!T = t) = gj(t) .
g(t)

We introduce th e symbols

tqj,x = Pr(T < i , J = j )

or, more generally,

t%,x+s = Pr(T < s + t , J = j \T > s) .

(7.1.3)

(7.1.4)

(7.1.5)
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Th e latter prob ability is calculated as follows:
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iSH
tqj,x+s = Js gj( z)dz j[l - G( s)] .

7.2 Forces of Decrement

(7.1.6)

For a life (x) th e force of decrement at age x + t in respect of th e cause j is
defined by

gj(t)
J-lj ,xH = 1 - G(t)

The aggregate force of decrement is

gj(t)

tPx

(7.2.1)

J-lxH = J-ll ,xH + ...+ J-lm,x+t ,

see (7.1.2) and definition (2.2.1).
Equ ation (7.1.1) can be expressed as

Pr( t < T < t + dt , J = j ) = tPxJ-lj,x+tdt .

Fur th ermore,

(7.2.2)

(7.2.3)

Pr(J = j lT = t) = J-lj ,x+t . (7.2.4)
J-lxH

If all forces of decrement are known , th e joint distribution of T and J may
be determined by first using (7.2.2) and (2.2.6) to determine tPx and th en
determining gj (t ) from (7.2.1).

7.3 The Curtate Lifetime of (x)

If th e one-year prob abilities of decrement ,

qj,x+k = Pr(T < k + 1, J = jlT > k) (7.3.1)

are known for k = 0,1 , ... and j = 1, . . . ,m, th e joint prob ability distribution
of the curtate time K = [T] and th e cause of decrement J may be evaluated.
Start by observing that

qx+k = ql,x+k + ...+ qm,x+k ,

from which kPx can be calculated; th en

Pr(K = k , J = j ) = kPx qj,x+k

for k = 0, 1, . . . and j = 1, . .. ,m .

(7.3.2)

(7.3.3)
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The joint distribution of T and J can be computed under suitable assump
tions concerning probabili t ies of decrement at fract ional ages. A popular as
sumption is that u%,x+k is a linear funct ion of u for 0 < u < 1, k an integer,
i.e.

(7.3.4)

Thi s assumpt ion implies Assumption a of Section 2.6, which may be verified
by summation over all j . From (7.3.4) follows

toge ther with the identity k+uPx = kP x (1 - u qx+k ) this yields

% ,x+k
J.1j ,x+k+u = 1

- uqx+k

(7.3.5)

(7.3.6)

Assumption (7.3.4) has the obvious advantage known from Chapter 2, that K
and S become independent rand om variables , and that S will have a uniform
distribution between 0 and 1. In addit ion one has

Pr(J = j lK = k , S = u ) = qj ,x+k ,
qx+k

(7.3.7)

a consequence of (7.2.4) and (7.3.6). The last relati on states that th e con
ditional prob abili ty of decrement by cause j is constant during th e year. In
closing we summ arise that S has a uniform distribution between 0 and 1, in
dependently of the pair (K , J) , and th at the distribution of (K, J ) is given by
(7.3.3).

7.4 A General Type of Insurance

Consider an insur ance which provides for payment of the amount Cj,k+1 at th e
end of year k+1, if decrement by cause j occurs during that year. The present
value of the insur ed benefit is thus

Z K+1
=CJ,K+1V ,

and th e net single premium is

m 00

E(Z ) = L L Cj,k +1Vk+
1

kPx qj ,x+k'
j=1 k=O

(7.4.1)

(7.4.2)

If the insur ance provides for payment immediately on death , the present value
of the insur ed benefit is

(7.4.3)
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and th e net single premium is
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(7.4.4)

This expression may be evaluated num erically by splitting each of t he m in
tegra ls, viz.

m 00 1

E(Z) = L L 10 cj ( k + u )vk+Ug j (k + u)du .
j =lk= O 0

(7 .4.5)

Use of assumption (7.3.4) allows us to subst itute (7.3.5) in the expression
above. Thus (7.4. 5) assumes th e form (7.4 .2) if we writ e

(7.4 .6)

In a practi cal calculation th e approximation

(7.4 .7)

will often be sufficiently accurate. The above derivations show that th e evalu
ation of th e net single premium in th e continuous model (7.4 .3) can be reduced
to a calculat ion within th e discrete model (7.4 .1) .

The insured 's exit from th e initial status will not always result in a single
payment ; anot her possibility is th e init iation of a life annuity. If, for instance,
th e cause j = 1 denotes disablement , then Cl (t) could be th e net single pre
mium of a temp orary life annuity start ing at age x + t . Thus in th e general
model the "payments" Cj,k+l (respectively Cj( t ) ) may th emselves be expected
values; however , th e formulae (7 .4.2) and (7.4.4) remain valid .

7.5 The Net Premium Reserve

Let us assume th at the general insurance benefits of Sect ion 7.4 are supported
by annual premiums of Ilo, Ill , Il2 , · · · . The net premium reserve at th e end
of year k is th en

m 00 00

kV = L L Cj,k+h+l Vh+l
hPx+k qj ,x+k+h - L Ilk+h v

h
hPx+k '

j =l h=O h=O

The recursive equation

m

kV + Ilk = k+lV V Px+k + L Cj,k+lV qj ,x+k
j = l

(7 .5.1)

(7.5.2 )



7.5. The Net Premium Reserve

is a generalisation of (6.3.4). It may be expressed as

m

kV + Ih = k+lV V+ ~]Cj ,k+l - k+lV)V qj,x+k .
j=l
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(7.5.3)

Thus the premium may again be decomposed into two components, the savings
premium

Ilk = k+l V V - k V

to increment the net premium reserve, and the risk premium

m

Il~ = ~]Cj,k+l - k+l V)V %,x+k
j=l

to insure the net amount at risk for one year.
The insurer's overall loss

may again be decomposed into

where

(7.5.4)

(7.5.5)

(7.5.6)

(7.5.7)

(7.5.8){
o liKSk-l

Ak = - Ilk + (CJ,k+l - k+lV)v if K = k ,
- Ilk if K ~ k + 1 ,

is the insurer's loss in year k + 1, evaluated at time k. Hattendorff's The
orem (Equations (6.7.4) -(6.7.7)) remains valid. The variance of L is most
conveniently evaluated by the formula

00

Var(L) = I:Var(AkIK ~ k)v2k
kPx,

k=O

now with
m

Var(AklK ~ k) = I:(Cj,k+l - k+lV?v2
qj,x+k - (Il~)2 .

j=l

(7.5.9)

(7.5.10)

The verification of the last formula is left to the reader.
The activities in year k+ 1 thus may be regarded as a combination of pure

savings on the one hand, and a one-year insurance transaction on the other
hand. The latter can be decomposed into m elementary coverages , one for
each cause of decrement. We may interpret the premium component

Ilj,k = (Cj ,k+l - k+lV)v qj,x+k (7.5.11)
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as paying for a one-year insurance of the amount (Cj,k+l - k+lV) , which covers
the risk from decrement cause j. The insurer 's loss during year k + 1 may be
decomposed accordingly:

(7.5.12)

if we define

if K S; k - 1,
if K = k and J = j ,
if K = k and J =J j , or K 2': k + 1

(7.5.13)
The technical gain at the end of the year ,

G _ { (kV + Ih)(1 + i') - CJ,k+l if K = k ,
k+l - (kV + IIk)(l + i') - k+l V if K 2': k + 1 ,

(7.5.14)

may similarly be decomposed into m + 1 components. For instan ce, the de
composition method 1 (Section 6.9) leads to

m

Gk+1 = ( kV + IIk)(i' - i) - L Aj,k(l + i ) .
j= l

7.6 The Continuous Model

(7.5.15)

The model of Section 6.11 can be generalised to the multiple decrement model
of this chapte r. Assum e that the insured benefit is defined by (7.4.3) and that
premium is paid cont inuously, with II(t) denoting the premium rate at time
t . The overall loss of the insur er is thus

(7.6.1)

The net premium reserve at time t is given by

~ 1000

h 10
00

hV(t) = ~ cj(t +h)v hPXH/Lj,X+t+hdh - II(t+h) v hPxHdh. (7.6.2)
j = l 0 0

The premium rate II(t) can be decomposed into a savings component IIS(t),
see (6.11.2) , and a risk component

m

W(t) = L(Cj(t) - V(t))/Lj,x+t ;
j=l

Thiele's differential equat ion (6.11.4) remains valid .

(7.6.3)
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The technical gain derived from the insur ance component in the infinites
imal interval from t to t + dt is denoted by OT(t, t + dt) . It is obvious that

{

0 if T < t ,
OT(t, t + dt) = -(cJ(t) - V(t)) if t < T < t + dt ,

rF(t)dt if T > t + dt .

As a consequence we have

(7.6.4)

Var[OT(t, +dt)IT > t]

and

E[{OT(t , t + dt)} 2lT > t]
m

L(Cj(t) - V(t)?J.Lj ,x+tdt
j=l

(7.6.5)

m

Var[OT(t, t + dt)] = L(Cj(t) - V(t)? tPx J.Lj,x+tdt .
j = l

Finally one obt ains

(7.6.6)

Var(L)

(7.6.7)

Note that this result is simpler than its discrete counte rpart , see (7.5.9) and
(7.5.10); this is not surprising in view of (7.5.10): th e risk premium for th e
infinitesimal interval is rF(t) dt, so its square vanishes in the limit . From
(7.6.7) it is also evident th at th e variance of L may be decomposed by causes
of decrement .



Chapter 8. Multiple Life Insurance

8.1 Introduction

Consider m lives with initi al ages X l , X 2, .. . , Xm- For simplicity we denot e
th e future lifetime of the kth life, T( Xk) in th e not ation of Chapter 2, by
Tk (k = 1, " ' , m) . On th e basis of these m elements we shall define a status u
with a future lifetime T(u) . We shall accordingly denot e by tPu th e condit ional
probability th at th e status u is still int act at time i , given that th e status
existed at time 0; t he symbols qu' J.lu+t etc., are defined in a similar way. We
shall also consider annuit ies which are defined in terms of u. The symbol au ,
for inst ance, denotes th e net single premium of an annu ity-due with 1 unit
payable annu ally, as long as u remains intact. We shall also analyse insurances
with a benefit payable at th e failure of th e status u. The symbol Au would
for inst ance denote the net single premium of an insured benefit of 1 unit ,
payable immediately upon th e failure of u .

8.2 The Joint-Life Status

The status
u = X l : X 2 : . .. : X m (8.2.1)

is defined to exist as long as all m participating lives survive. The failure time
of this joint-life status is

(8.2.2)

We shall assume in what follows that th e random variables Til T2 , " ' , Tm

are independent. The probability distribution of th e failure time of status
(8.2.1) is then given by

Pr(T(u) > t)

Pr(TI > i ,T2 > t, .. ·, Tm > t)
m m

II Pr(Tk > t) = II tPXk '

k=l k=l

(8.2.3)
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The instantaneous failure rat e of the joint-life status is, according to (2.2.5):

(8.2.4)

This identity is reminiscent of (7.2.2). Note , however, that unlike th e identity
in Chapter 7, the identity (8.2.4) presupposes that T}, · · · ,Tm are independent.

The prin ciples of Chapters 3 and 4 may now be applied to calculate, for
example, the net single premium for an insurance payable on th e first death ,

00

A X1:X2 :" ':Xm = L V
k

+
1

kPX1 :X2:" ':Xm qX I+k: X2+k :" -:Xm+k '
k=O

The net single premium for a joint-life annuity-due is

(8.2.5)

(8.2.6)

Identities similar to those derived in Chapter 4 will be valid, for example

(8.2.7)

The definitions and derivations of Chapters 5 and 6 can be generalised by
replacing (x) by (u).

If we denote by n] th e status which fails at time n , i.e.

T(n]) = n , (8.2.8)

then T(x : Til) = Minimum(T(x), n) ; it is then evident that the net single
premium symbols Ax:n] (endowment) and axon] (temporary annuity) are in
accordance with the joint-life notation.

8.3 Simplifications

A significant simplification results if all lives are subject to the Same Gomp ertz
mortality law, i.e.

(8.3.1)

After solving the equation

for w, the instantaneous joint-life failure rate may be expressed by

f.luH = f.lwH ' t ~ O.

(8.3.2)

(8.3.3)
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This implies t hat the failure ra te of th e joint-life status follows th e same Gom
pertz mortality law as an individual life with "initial age" w. All calculat ions
in respect of th e joint-life status may th en be performed in terms of th e single
life (w) . As an example we have

(8.3.4)

and
(8.3.5)

Some simplification also results if all lives follow th e same Makeham mor
tality law,

11x k + t = A + BcX k
+

t
.

Let w be the solution of the equa tion

th en (8.2.4) implies that

11u+ t = mllwH = /lwH:wH,," :wH , t ~ o.

(8.3.6)

(8.3.7)

(8.3.8)

This means that the m lives aged Xl, X 2 , .. . , X m may be replaced by m lives
of th e same "init ial age" w . As an example,

(8.3.9)

Note that the age w defined by (8.3.7) is a sort of mean of the component
ages Xl, X2,·· · , X m , while th e age w defined by (8.3.2) exceeds all component
ages X l , X2 ,· · · , X rn ·

Th e simplifications presented in thi s section, albeit very elegant, have lost
much of their practical value. Nowadays formul ae like (8.2.3), (8.2.5) or (8.2.6)
may be evaluated directly.

8.4 The Last-Survivor Status

The last-survivor status
u = X l : X2 : .. . : X m (8.4.1)

is defined to be intact while at least one of t he m lives survives, so that it fails
with the last death:

(8.4.2)

The joint-life status and the last-survivor status may be visualized by
elect ric circuits : Th e status (8.2.1) corresponds to connect ion in series of th e
m components , while the status (8.4.1) corresponds to a parallel connect ion.
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Pro babilities and net single premiums in respect of a last- survivor status
may be calculated using certain joint-life stat uses. To see t his, th e reader
should recall th e inclusion-exclusion formula in probability th eory. Letting
BI, B2 , . •. ,Bm denot e events , the probability of th eir union is

(8.4.3)

here Sk denotes th e symmetric sum

(8.4.4)

where th e summation ranges over all ('~) subsets of k events.
Denoting by Bk th e event that the kth life st ill lives at time t , we obtain

from (8.4.3)

P = stl - S2t + S3t - ... + (-1)m- ISmt ,
t X • x · . XI · 2 · ·· · · m

with th e notation
Skt = ""' tPx · .z , ' x . •L 1\' 12· .. - , 1k

(8.4.5)

(8.4.6)

Multiplying equat ion (8.4.5) by vt and summing over t , we obtain an analogous
formula for the net single premium of a last-survivor annuity:

(8.4.7)

here we have defined
(8.4.8)

Consider now an insured benefit of 1, payable upon the last death . Its net
single premium may be calculated as follows:

A
""X-I7: """XC:-2

7 : --:". c:-• •:-C:""'x""m-

Let us define th e symmetric sums

1 - d ii
""X-'--l 7: """XC:-2

7
: - . -'--. ·:-C:""'x""m-

1 - d(Sr - S~ + sg- ...). (8.4.9)

Sk
A

= ""' A x · 'x ' . ·x · .L 1 \ ' 12· .. - , 1k

Substituting

( m
k

) - st
S a. - -'--'-----__

k - d

in (8.4.9), we obtain th e formula

A =SA_SA+ SA_ · ··+ (_1)m- lsA .
Xl : X2 : • .• : X m I 23m

(8.4.10)

(8.4.ll)

(8.4.12)
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Note the similarity of equat ions (8.4.5), (8.4.7) and (8.4.12). Similar formu
lae may be derived for the net single premium of fractional or continuous
annuities, or insurances payable immediately on the last death.

As an illustration, consider the case of 3 lives with initial ages x, y and z.
In this case we have, for inst ance ,

a = Sl;; - S2;; + S 3;; ,
x :y:z

(8.4.13)

with

ax + ay+ az ,

ax:y+ ax:z + ay: z ,

ax :y :z . (8.4.14)

The net single premiums ax:y, ax:Z? ay:Z? as well as ax:y:z may be calculated
using equat ions (8.2.3) and (8.2.6).

8.5 The General Symmetric Status

We define the status
k

(8.5.1)

to last as long as at least k of the initi al rn lives survive, i.e. it fails upon the
(rn - k+ l)th death. The joint-life status (k = m) and the last-survivor stat us
(k = 1) are obviously special cases of this status.

The status

(8.5.2)
[k]

U= =-~,------;-_----:-;~

is defined to be intact when exactly k of the rn lives survive. The status starts
to exist at th e (m - k )th death and fails at th e (m - k +1)th death. The status
(8.5.2) may be of interest in the context of annuities, but not for insurances.

A general solution follows from the Schuette-Nesbitt formula , which is th e
topi c of th e next section. For arbitrarily chosen coefficients Co, C1, •• • ,Cm one
has

~ [k] ~ . t
~ Ck tPx . x · . x = ~ 6.JcoSj
k=O 1 . . 2 . .. ' . m j=O

(8.5.3)

and, similarly,
m m

L Ck a [k] = L tljcoS; .
k =O X l : X2 : . .. : X m j =O

(8.5.4)

Here the values Sj and Sf are defined by (8.4.6) and (8.4.8), for j = 1,2 , . . . , rn;
we also define S~ = 1 and sg = aDO]'
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For arbit rarily chosen coefficients db d2 , • •• , dm one also has

m k

Ldktpx . x' . X
k=l 1· 2 · ·· ·· Tn

m

= L t:,.j- 1d1SJ
j= l

(8.5.5)

and, similarly,

(8.5.6)

The last two formulae are a consequence of the former two: with

(8.5.7)

the left hand sides of (8.5.5) and (8.5.6) assume the form of (8.5.3) and (8.5.4).
The expressions (8.5.5) and (8.5.6) have the advantage th at they can be

generalized to life insurances:

m m

v:« A k =" t:,.j- 1d1S
J
A .

L k X ' x ' ' x Lk=l 1 · 2 · · · · · Tn j=l
(8.5.8)

This equation is obtained from (8.5.6) in the same way as (8.4.12) was obtained
from (8.4.7).

As an illustration we consider a continuous annuity payable to 4 lives of
initi al ages w, x , y , z. The payment rate starts at 8 and is reduced by 50%
for each death. The net single premium of this annuity is obviously

8a 14J + 4 a [3J + 2 a [2J +a [1]
w:x : y :z w : x :y: z w : x :y : z w:x :y:z (8.5.9)

thus we have the coefficients Co = 0, C1 = 1, C2 = 2, C3 = 4, C4 = 8. The
difference table is as follows:

k q /lq /l2q /l3q /l4 ck

0 0 1 0 1 0
1 1 1 1 1
2 2 2 2
3 4 4
4 8

Th e net single premium of the annuity is thus S? + sg, with

S~

sg =

aw + ax + ay + az ,

aw :x:y + aw :x: z + aw :y:z + ax:y:z . (8.5.10)
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As a second illustration we consider a life insurance for 3 lives (initial ages
x , y , z ), for which the sum insured is 2 on th e first death , 5 on the second
death, and 10 on the third death, each payable at the end of the year. The
net single premium of this insurance is

2A 3 + 5A z + lOA (8.5.11)
x : y :z x : y :z x : y :z

Starting with dl = 10, dz = 5, d3 = 2 we may complete the difference table :

k dk t,.dk t,.Zdk

1 10 -5 2
2 5 -3
3 2

The net single premium of th e insurance is thus 10S~ - 5 S~ + 2 S: , with

S~ Ax + A y + A"

S~ Ax:y + Ax:z + Ay :"

S: Ax :y :z ' (8.5.12)

8.6 The Schuette-Nesbitt Formula

Let Bll Bz," ' , Bm denote arbitrary events. Let N denot e th e numb er of
event s that occur; N is a random variable ranging over {O, 1, ... , m} . For
arbit rarily chosen coefficients Co, CI , "' , Cm , the formula

m m

L c., Pr(N = n) = L t,.k cOSk
n =O k=O

holds , with Sk defined as in (8.4.4) , and So = 1.
To prove (8.6.1) we use the shift operator E defined by

E Ck = Ck+ l ·

(8 .6.1)

(8.6.2)

The shift operator and th e difference operator are connected through th e re
lation E = 1 + 6.. Since 1 - IBj is th e indicator function of the complement
of Bj , it is easy to see that

m m

II(1 - IBj + h jE)
j=l
m

II(1+ IBj6.)
j= l

m

l.: (l.:IBhnBhn...nBjJ 6.k
.

k=O

(8.6.3)
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Taking expectat ions we obtain th e operator identity

m m

L Pr(N = n)En = L s.s» ,
n=O k=O

(8.6.4)

Applying this operator to th e sequence of Ck at k = 0, we obtain (8.6.1)
The Schuette-Nesbitt formula (8.6.1) is an elegant and useful generalisation

of th e much older formulae of Waring , which express Pr(N = n) and Pr(N ~

n) in terms of 5 1,52 , " ' , 5m •

Equation (8.5.3) follows from (8.6.1) when Bj is taken to be th e event
r, ~ t.

Finally we shall present an applicat ion which lies outside th e field of ac
tuarial mathematics. Letting Cn = z" in (8.6.1) , we obtain an expression for
th e generating function of N ,

m

E[zN] = L(z -1 )k5k .
k=O

(8.6.5)

Consider as an illustration th e following matching problem. Assume that m
different letters are inserted into m addressed envelopes at random. Let Bj

be th e event that letter j is inserted into th e correct envelope, and let N be
th e numb er of letters with correct address. From

1
Pr(BilnBhn · ··nBj k ) = ( ) ( k ) 'mm-1 . .. m- +1

it follows that Sk = 11k!. The generat ing function of N is thus

(8.6.6)

(8.6.7)

For m --+ 00 this function converges to ez - 1 , which is the generating function
of th e Poisson distribution with parameter 1. For large values of m, th e
distribution of N may thus be approximat ed by th e Poisson distribution with
parameter 1.

8.7 Asymmetric Annuities

In general a compound status is less symmetric. For example, th e status

(8.7.1)

is intact , if at least one of (w) and (x) and at least one of (y) and (z) survives.
The failure time of th e status is

T = Min(Max(T(w),T( x)) , Max(T(y) ,T( z))) . (8.7.2)
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For th is status the net single premium of an annuity can be calculated in
terms of the net single premiums of joint -life statuses. This follows from the
relations

respect ively

tPu:v = tPu + tPv - tPu:v ' (8.7.3)

(8.7.4)

which are valid for arbit ra ry statuses u and v . Consider for example an annuity
of 1 unit while the status (8.7.1) lasts. By repeated applicat ion of (8.7.4) we
obtain an expression for the net single premium,

aw :x :y + ai"ll'X:z - aw :x :y :z
aw :y + ax :y - aw :x :y

+aw :z + ax :z - aw :x :z
-aw :y:z - ax :y:z + aw :x :y :z . (8.7.5)

Reversionary annuities are relevant when st udying widows' and orphans '
insurance. The symbol ax / y denotes the net single premium of a cont inuous
payment stream of rate 1, which st arts at the death of (x) and te rmina tes at
th e death of (y). This net single premium can be calculated with t he aid of
th e relation

(8.7.6)

(8.8.1)

8.8 Asymmetric Insurances

Consider the m lives of Secti on 8.2 and assume independence of their future
lifetimes. A general insurance on the first death provides a benefit of Cj (t) if
life j dies first at time t (i.e. the joint-life status fails due to cause j) . Such an
insurance is mathematically equivalent to t he insur ance discussed in Section
7.4. In ana logy to formul a (7.4.4), the net single premium of this first-death
insurance is

f 100

Cj(t)v
t

tPX1:X2:- OO :XmJ1xJ+tdt.
j= l 0

The reversionary annuity considered in the previous sect ion is of this type.
Defining

we obtain

(8.8.2)

(8.8.3)

This expression presupposes independence between T( x) and T(y) , in contrast
to (8.7.6).
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In the special case with Ck(t) = 1 and Cj(t ) = 0 for j =I- k, th e net single
premium is denoted by

A 1
X l :"' :X k - l :X k: X k + l :" ' :Xm

(8.8.4)

and given by th e expression

A j = (O OO v
t

tPX \ :X2:"' :Xm!lxk+tdt .
X l:- " :Xk -l :X k:Xk+l :" ' :Xm io (8.8.5)

(8.8.6)

Note that the symbols introduced in Chapter 3 to denote th e net single pre
mium of a pure endowment, and th at of a term insurance, are special cases of
(8.8.4) ; th ese are obt ained by interpreting ill as a status which fails at tim e n.

The net single premium (8.8.5) is very easy to calculate if all lives observe
the same Gompertz mortality law, see formula (8.3.1). In th at case,

CX k

J.lxk+t = --;;J.lX\+t:X2+t:" -:Xm+t ,
C

with w defined by (8.3.2); it follows th at

(8.8.7)

We shall now consider an insurance which pays a benefit of 1 unit at the
time of death of (Xk) , provided th at thi s is the rth death. Its net single
premium is denoted by

A r
X l ;-'-:Xk _ l :X k :X k + l :" ': X m

(8.8.8)

In order th at a payment be mad e at the death of (Xk) , exactly m - r of th e
other m - 1 must survive (Xk) ' Hence we have

(8.8.9)

Substituting as in equat ion (8.5.3) , we obtain a linear combinat ion of net
single premiums of th e form (8.8.4) is, which makes th e calculat ion easier.
Consider for instance

A- 2 - roo t [2J d
w:x:y:z - Jo v tP w : x : y tPz J.lzH t .

We now use (8.5.3) with Co = Cj = C3 = 0, C2 = 1 and find that

[21 s: 3 S t 3
tP w : x : y = 2 - 3 = tPw:x + tPw:y + tPx :y - tPw:x:y .

Substituting the last expression in (8.8.10) yields

(8.8.10)

(8.8.11)

(8.8.12)



Chapter 9. The Total Claim Amount in a
Portfolio

9.1 Introduction

We consider a certain portfolio of insurance policies and the total amount of
claims arising from it during a given period (e.g. a year). We are particularly
interested in th e probability distribution of the total claim amount , which
will allow us to est imate th e risk and show wheth er or not th ere is a need for
reinsurance.

We assume th at the portfolio consists of n insurance policies. The claim
made in respect of policy h is denot ed by Sh . Let us denote th e possible values
of th e random variable Sh by 0, sis ,S2h, . .. ,Smh, and define

(9.1.1)

for j = 1, .. . , m and h = 1, ' .. ,n . With respect to th e general insurance typ e
of Chapter 7, qjh may be taken to be th e probability of a decrement due to
cause i , and Sjh may be taken to be the corresponding amount at risk (i.e. th e
difference between th e payment to be made and th e available net premium
reserve) .

The total, or aggregate , amount of claims is

(9.1.2)

To enable us to calculate th e distribution of S we shall assume that the random
variables SI,S2, . .. ,Sn are independent .

9.2 The Normal Approximation

The first and second order moments of S may be readily calculated. One has

n n

E[S] = L E[Sh] , Var[S] = L Var[Shl ,
h=1 h=1

(9.2.1)



94

with
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(9.2.2)
m m

E[5h] = L Sjhqjh, Var [5hl = L S]hqjh - E[5h]2.
j = 1 j = 1

For a large portfolio (large n) it seems reasonable to approximate the
probabil ity distribution of 5 by a norm al distribution with parameters Jl =
E[5] and 0-2 = Var[5 ]. However, the quality of this approximation depends
not only on the size of the portfolio, bu t also on its homogeneity. Moreover ,
thi s approximat ion is not uniformly good: in general the results are good
around th e mean E[5] and less sat isfacto ry in th e "tails" of th e distribution.

Th ese weakn esses of th e approximat ion by th e normal distri bution may be
partially relieved by sophist icated procedures, such as the Esscher Method or
th e Normal Power Approximation. However , thes e meth ods have lost some of
their int erest: if a high-p owered compute r is available, th e distribution of 5
can be calculated more or less "exactly" .

9.3 Exact Calculation of the Total Claim Amount
Distribution

The probabil ity distribution of 5 is obtained by th e convolut ion of the proba
bility distributions of 51, . .. ,5n . The distribution s of 51+ 52, 51+52+ 53, 51+
52 + 53 + 54, .. ., are found successively. If the distribution of 51+ . . . + 5h- 1

is known, the distribution of 51 + . . . + 5h may be calculated by the formula

m

Pr(51 + .. . + 5h = x) = I: Pr(5 1 + . .. + 5h- 1 = X - Sjh) qjh

j=1

+ Pr(51 + ... + 5h- 1 = X)Ph . (9.3.1)

With this procedure it is desirable that th e Sjh are multiples of some basic
monetary unit. Of course , in general thi s will not be t he case unless the basic
monetary unit is chosen very small. The original distribution of 5h is th en
appropriately modified . Two methods are popular in this respect .

Method 1 (Rounding)

The method starts by replacing Sj h by a rounded value Sj h' which is a multiple
of th e chosen monetary unit. In order to keep th e expected total claim amount
the same th e probabilities are adjusted accordingly by the substitutions:

Method 2 (Dispersion)

Let Sjh denote the largest multipl e (of the desired monetary unit ) not exceed
ing Sjh , and let sth denote th e least multiple which exceeds Sjh . The original
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distribution of Sh has a point mass of Qjh at Sj h' The dispersion method con
sists of re-allocating this point mass to s j h and St h in such a way that the
expectat ion is unchanged. The new point masses qjh and qj,. must therefore
satisfy th e equat ions

(9.3.3)

th at is
__ St h - Sjh + SJh - s j h

Qj h - + qjh , qJh = + qjh· (9.3.4)
Sj h - Sjh sJh - sJh

Consider as an illustration a portfolio of three policies with , for example:

Pr(Sl = 0) = 0.8 , Pr(Sl = 0.5) = 0.1 , Pr(Sl = 2.5) = 0.1 ,
Pr(Sz = 0) = 0.7 , Pr(Sz = 1.25) = 0.2 , Pr(Sz = 2.5) = 0.1 ,
Pr(S3 = 0) = 0.6 , Pr(S3 = 1.5) = 0.2 , Pr(S3 = 2.75) = 0.2 .

(9.3.5)

The convolut ion of th e three distri butions ranges over the values 0, 0.5,
1.25, 1.5, 1.75, 2, 2.5, 2.75, . . . , 6.5, 7.75, and it may in principle be cal
culated. Calculating th e convolut ion of th e modified distributions is much
easier, however. We shall use Method 2 to approximat e th e distribution of Sh

by a distribution on th e integers. The modifications prescribed by Method 2
are set out in the t able below:

0.05 • 0.05 ~ 0.05

I I I I , 1 I , I I , I , , , , I I I I I , I I I I I I I I I , I ' , , , , , I I ' , I , I ! , I
o 0.5 1 2 2.5 3

• 0.05 ~ 0.05

1" ! I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
o 1 1.25

0.1 0.1

2 2.5

0.05

3

I I I I I I I I I I I I I I I I I I I I , I , I I ' , , , I I I I' I I I I I ! I , I , I ! , ! I
o 1 1.5 2 2.75 3
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Hence, th e modified distributions are as follows:

x=O x = l x = 2 x=3

Pr(S1 = x ) 0.85 0.05 0.05 0.05
Pr(S2 = x) 0.70 0.15 0.10 0.05
Pr(S3 = x ) 0.60 0.10 0.15 0.15

Application of (9.3.1) with h = 2 and h = 3 yields th e distribution of
5 = 51 + 52+ 53 in two ste ps:

o 0.5950
1 0.1625
2 0.1275
3 0.0900
4 0.0150
5 0.0075
6 0.0025
7
8
9

0.357000
0.157000
0.182000
0.180375
0.061500
0.038625
0.018000
0.003625
0.001500
0.000375

Pr(S ::; x )

0.357000
0.514000
0.696000
0.876375
0.937875
0.976500
0.994500
0.998125
0.999625
1.000000

In a realist ic portfolio (say a pension fund with 1000 members) t he original
distribution of th e 5h will always have to be modified beforehand . In order to
keep th e notation simple we shall assume that the distribut ion in (9.1.1) has
already been modified , and that th e Sjh are int egers (one may always achieve
this by proper choice of th e monet ary unit). Thus we may simply assume th at
Sjh = j , keeping in mind th e possibility th at some qjh vanish.

9.4 The Compound Poisson Approximation

Assume th at the distribution of 5h is given by

Pr(5h = 0) = Ph , Pr(5h = j) = qjh (j = 1,2, ,,, , m) .

The generating function of this distribution is

m m

Ph + Lqjhzj = 1 + L%h(zj -1).
j = 1 j=1

(9.4.1)

(9.4.2)
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(9.4.3)

The distribution of Sh may now be approximated by the corresponding com
pound Poisson distribution whose generating function is

gh(Z) = exp (~qjh(zj - 1)) .

By comparing (9.4.2) and (9.4.3) one will see that the approximation is best
for small values of the qjh.

If we now use the compound Poisson approximation for all terms in (9.1.2) ,
the resulting approximation of S will have as generating function

(9.4.4)

with the notation
n

qj = L qjh . (9.4.5)
h=l

But this means that the distribution of S can also be approximated by a
compound Poisson distribution. In the corresponding model the total claim
amount is

(9.4.6)

here N denotes the random number of claims, and Xi denotes the amount of
the ith claim. Furthermore, the random variables N , Xl, X 2 , ' " are indepen
dent, N has a Poisson distribution with parameter

and the probability that the amount of an individual claim is j is

p(j)=qj /q (j=1 ,2, oo · ,m).

The probability distribution of S is then given by the formula

00

Pr(S = x) = LP*k(x)e-qqk/k! .
k=O

(9.4.7)

(9.4.8)

(9.4.9)

In the numerical example in the previous section we had ql = 0.3, q2 = 0.3,
q3 = 0.25. Thus q = 0.85, and each of the random variables Xi may take the
values 1,2 or 3, with probabilities p(l) = 30/85, p(2) = 30/85, p(3) = 25/85 .

The model (9.4.6), called the collective risk model, is particularly appro
priate if the portfolio is subject to changes during the year. Even in such
a dynamic portfolio it will be possible to estimate the expected number of
claims (q) and the individual claim amount distribution.

Note that (9.4.6) can be written as

(9.4.10)
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if we let N, denot e th e number of claims for amount j. It can be proved
that th e random variables N I , N2 , · · · , Nm are independent , and th at Nj has
a Poisson distribution with parameter qj (so that qj is th e frequency of claims
for amount j ).

The distribution of S can in principle be calculated by either (9.4.9) or
(9.4.10). A third method, th e recursive method, will be presented in th e next
sect ion.

9.5 Recursive Calculation of the Compound Poisson
Distribution

Let us denot e th e probabilities Pr(S = x ) by j(x) and the cumulat ive distri
bution function by F( x) = Pr(S :::; x ). Thus, for example,

j(O) = Pr(S = 0) = Pr(N = 0) = e- q
• (9.5.1)

Panjer directed th e at tent ion of actuaries to th e useful recursive formula

1 m
j(x) = - "Ljqj j(x - j) , x = 1, 2,3, · · · ,

X j = I

(9.5.2)

which enables us to calculate th e values j( l ), j(2) , j(3) ,· · · successively.

In t he numerical example considered above th e calculations are as follows:

j(O)

j(l )

j(2)

j(3)

j(4)

e- O.85 ,
0.3 j(O) ,
1
2(0 .3 j(l) + 0.6 j(O)) ,

1
3 (0.3 j(2) + 0.6 j(l) + 0.75 j(O)) ,

1
4(0 .3 j(3) + 0.6 j(2) + 0.75 j(l )) ,

(9.5.3)

The numerical result s have been compiled in the following table; t he partial
sums F(x ) could, of course, also have been calculated recursively.



9.5. Recursive Calculation of the Compound Poisson Distribution

x f( x) F(x) x f( x) F(x)

0 0.427415 0.427415 10 0.001302 0.998886
1 0.128224 0.555639 11 0.000645 0.999531
2 0.147458 0.703098 12 0.000277 0.999808
3 0.147244 0.850342 13 0.000111 0.999920
4 0.057204 0.907546 14 0.000049 0.999969
5 0.043220 0.950766 15 0.000019 0.999988
6 0.026287 0.977053 16 0.000007 0.999995
7 0.010960 0.988014 17 0.000003 0.999998
8 0.006434 0.994448 18 0.000001 0.999999
9 0.003136 0.997584
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The generating function of S can be used to prove the recursive formula
(9.5.2). On the one hand, it is defined by

00

g(z) = L f( x)zX,
x=o

while, on the other hand, (9.4.4) implies that

m

ln g(z) = L qj(zj -1) .
j =l

From th e identity
d d
dzg( z) = g(z) dz ln g(z)

we obtain

~ x f (X)zx- l = (~ f (Y) ZY) (~ jqjzj- l)
Comparing th e coefficients of zx- l , we find

m

x f (x ) = L f( x - j)jqj ,
j =l

(9.5.4)

(9.5.5)

(9.5.6)

(9.5.7)

(9.5.8)

which establishes (9.5.2)
Until now we have tacitly assumed that only positive claims could occur,

that is that all terms in (9.4.6) are positive. If negative claims can occur ,
the total amount of claims can be decomposed into S+, the sum of positive
claims, and S- , the sum of the absolut e values of the negative claims:

S = S+ - S- (9.5.9)

It can be shown that both S+ and S- have compound Poisson distributions
and are independent . We can now compute the distributions of S+ and S
separately, e.g. from (9.5.2), and finally obtain the distribution of S by con
volution.
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9. 6 Reinsurance
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If inspection of th e distribution of S shows that th e risk is too high th e ac
quisition of proper reinsurance is indicated. Different forms of reinsurance are
availabl e, two of which will be discussed in this and th e next sect ion.

Quite generally a reinsur ance contract guarantees the insurer th e reim
bursement of an amount R (a function of th e individual claims and thus a
random variab le) in return for a reinsurance premium II. The insurer 's reten
tion is

S=S+II-R . (9.6.1)

With prop er reinsurance the distribution of S will be more favourabl e than
th e distribution of S . Let us define j(x) = Pr(S = x) and F( x) = Pr(S :s; x).

An Excess of Loss reinsurance with priority 0: reimburses the excess Xi - 0:

for all individual claims which exceed 0: .

Let us assume in our numerical example that excess of loss reinsurance
with 0: = 1 can be purchased for a premium of II = 1.2. The original claims
which can assume the values 1,2,3, are all reduced to 1 by th e reinsurance
arrangement . Thus the insurer 's retention is

S = 1.2 + N; (9.6.2)

here N denotes the number of claims and has a Poisson distribution with
parameter 0.85. The distribution of S is tabulated below:

x j(x) F(x)

1.2 0.427415 0.427415
2.2 0.363303 0.790718
3.2 0.154404 0.945121
4.2 0.043748 0.988869
5.2 0.009296 0.998165
6.2 0.001580 0.999746
7.2 0.000224 0.999970
8.2 0.000027 0.999997
9.2 0.000003 1.000000

Since th e reinsurance premium contains a loading , II > E[R], it is clear
from (9.6.1) th at E[S] > E[S] ; in our example we have E[S] = 2.05, while
E[S] = 1.65. The purpose of reinsurance is to reduce the probabilities of large
total claims ; indeed in our example we have F(6 .2) = 0.999746, which exceeds
th e corresponding probability without reinsurance by far (F(6) = 0.977053).
In th e next section we shall present a reinsurance form which is extremely
effect ive in this respect .
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9.7 Stop-Loss Reinsurance
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Under a stop-loss reinsurance contract with deductible (3, the excess R =
(S - (3)+ of the total claims over the specified deductible is reimbursed. In
this case

SA = S II _ (S _ (3)+ = { S + £1 if S < (3 , ( 7 )+ {3 + II if S ? (3 . 9. .1

Let us now assume that a stop-loss cover for the deductible (3 = 3 has
been bought at a premium of II = 1.1. The insurer's portion of the total
claim amount will be limited to 3. The distribution of S can be derived from
the distribution of S:

x j(x) F(x)

1.1 0.427415 0.427415
2.1 0.128224 0.555639
3.1 0.147458 0.703098
4.1 0.296903 1.000000

The expected value of S is quite large, E[S] = 2.41, but the "risk" has been
reduced to a minimum.

We shall finally consider calculation of the net stop-loss premium, which
we denote by p((3):

p((3) = E[(S - (3)+] = ioo(x - (3)dF(x) .

By partial integration we obtain

p((3) = i oo
[l - F(x)]dx .

Hence, for integer values of (3, we may write

00

p({3) = ~]1 - F(x)],
x={3

or, written recursively,

p((3 + 1) = p((3) - [1 - F({3)].

(9.7 .2)

(9.7.3)

(9.7.4)

(9.7 .5)

Thus the values p(l), p(2),p(3),' " can be computed successively, starting
with p(O) = E[S] . Of course, these computations can be combined with the
recursive calculation of F(x) (see Section 9.5).

In our example the stop-loss premiums assume the following values .
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(3 p({3)

o 1.650000
1 1.077415
2 0.633054
3 0.336152
4 0.186494
5 0.094040
6 0.044807
7 0.021860
8 0.009874
9 0.004322
10 0.001906

Of course, t he actual stop-loss premium II will exceed th e net premium
p((3) significantly. Our example, with II = 1.1 and p(3) = 0.336152 cor
responds to a 227% loadin g. Loadings of this order of magnitude are not
uncommon.

The net premium is still of interest , since it allows one to calculate th e
expected value of th e retention, which is

E[S] = E[S] + II - p((3) .

In our example we have again E[S] = 1.65 + 1.1 - 0.34 = 2.41.

(9.7.6)
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10.1 Introduction

T he ope rat ions of an insurance cont ract will involve certain expenses , whether
undertaken by pension funds or by insurance companies. In the case of a
pension fund th ese expenses are most often lumped together and considered
separately from th e strict ly technical insurance analysis. In the case of insur 
ance companies, on the other hand, the cost element is built into th e model,
as explicitly and equitably as possibl e. As we shall see, however , the result
ing premiums and reserves are very closely relat ed to the net premiums and
reserves we have been discussing so far , and which will therefore cont inue to
hold our primary interest.

Exp enses can be classified into three main groups:

a. Acquisition Expenses

These comprise all expenses connected with a new policy issue: agents' com
mission and travel expenses, medical examinat ion, policy writing, advert ising.
These expenses are charged against the policy as a single amount., which is
proportional to the sum insured. The corresponding rate will be denoted by
Q .

b . Collection Expenses

These expenses are charged at th e beginning of every year in which a premium
is to be collected. We assume that these expenses are proportional to the
expense-loaded premium (see 10.2), at a rate which we will denote by {3.

c. Administration Expenses

All other expenses are included in this ite m, such as wages, rents, data pro
cessing costs, investment costs , taxes, license fees etc . These costs are charged
agai nst the policy during its ent ire cont ract period , at th e beginning of ev
ery policy year, usuall y as a proportion of th e sum insur ed, respectively the
annuity level, and the corresponding rat e is denoted by 'Y .
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This tradi tional allocation of expenses is somewhat arbit rary. Some expense
items will obviously be fixed costs, independent of th e sum insured . Neverthe
less, th e assumption of proportionality is ret ained for th e sake of simplicity.
The factors 0', f3 and, will, however , depend on th e type of insurance in
volved . Exp enses in respect of an individual insurance are relatively higher
th an expenses in respect of a group insur ance; for the latter th e acquisition
expense is often even waived ent irely (i.e. 0' = 0).

10.2 The Expense-Loaded Premium

Th e expense- loaded prem ium (or adequate premium) , which we will denote by
P" , is th e amount of annual premium of which th e expected present value is
just sufficient to finance the insured benefits, as well as the incurred costs in
respect of the insurance policy. Hence we may writ e

P" = p + P" + p l3 + P'' ; (10.2.1)

here P denotes the net annual premium , while P" , p l3 and Pt denote th e
three components of th e expense loading.

We consider as a first example an endowment (sum insured: 1, duration :
n, age at issue: x ). The expense-loaded annual premium must sat isfy th e
condit ion

(10.2.2)

(10.2.3)

(10.2.4)

so th at
a Ax:Ttl + 0' + ,iix:Ttl

Px:Ttl = (1 - f3rax:Ttl

The expense-loaded annual premium will be expressed in terms of the net
annual premium if we replace 0' by O' (Ax:Ttl + diix:Ttl) in the above formula:

a 1 + 0' cal+,
Px:Ttl = 1 - f3 Px:Ttl + 1 - f3 .

If we now divide (10.2.2) by iix:Ttl ' we obtain (10.2.1) in the specific form :

(10.2.5)

As a second example we consider the same endowment, but with a short er
premium paying period m < n . The expense-loaded annual premium is ob
tained from th e condit ion

(10.2.6)
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Its components are

(10.2.7)

(10.2.8)

p a _ p ~ f3 pa axon]- +.. + + / .. ,
ax:ffi] ax:ffi]

with , of course , P = Ax:n]/ ax:ffi]'
For deferred annuities financed by annual premiums it is customary to

charge acquisition expenses as a fraction of th e expense-loaded annual pre
mium , in th e same way as collection expenses. Here it is also possible to use
two administ rat ion expense rates, a rat e / 1 for the premium paying period ,
and another rate /2 for the annuity's durat ion.

For simplicity, th e reader may identify th e expense-loaded premium with
th e gross premium; th e necessary safety loading is th en taken to be implicit
in th e "net" premium, through conservat ive assumptions about interest and
mortality rates. In practice, th e gross premium may also differ from the
expense-loaded premium in that either surcharges for small policies or dis
counts for large policies are used .

In some count ries th e premium quot ed by th e insurance company consists
of th e net prem ium and administration expenses, but not acquisition and
collect ion expenses. This premium (Germ an: Invent arpramie) ,

p inv = P+ p1 ,

covers the act ual costs of insured benefits and internal administ ration ex
penses.

10.3 Expense-Loaded Premium Reserves

P" ..
- ax+k :n _ kl

ax+k :n - k I
- 0:------'

The expense-loaded premium reserve (or adequat e reserve) at th e end of year
k is denoted by k V". It is defined as the difference between th e expected
present value of future benefits plus expenses, and th at of future expense
loaded premiums. The expense-loaded premium reserve can be separa ted into
components similar to those of the expense-loaded premium:

kva = kV + .v- + kV1 . (10.3.1 )

Here k V denotes th e net premium reserve, k vais th e negative of th e expected
present value of future P" ; and the reserve for administration expenses is the
difference in expected present value between future administ ration expenses
and future P1.

For an endowment we have

kVx~n]

axon]

- 0:(1 - kVx:n]) (10.3.2)
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and kV 1 = 0 for k = 1,2, · · · , n . Thus
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kVx~"l = (1+ a) kVx:"l - a .

If the premium paying period is reduced to m years, then

(10.3.3)

(10.3.4)kV'" = _P'" aX+k:m_ k 1 = -a(l - kVX:ffll)

for k = 1,2, . . . , m-1 , and k V'" = 0 for k 2: m . The reserve for administration
expenses is then

for k = 1,2,"' , m - 1, and

V1 - a
k - 'Y x+k:n_ k 1

(10.3.5)

(10.3.6)

for k 2: m.
The idea to include the negative acquisition cost reserve k V'" in the pre

mium reserve is due to Zillm er. In the first few years , the expense-loaded
premium reserve may be negative if a is large . Hence th e need for upper
bounds on a arose. One suggestion was to choose the value of a at most
equal to th e one for which the expense-loaded premium reserve is zero at the
end of the first year. Consider an endowment as an illustration. The con
dition 1Vx~"l 2: 0 together with (10.3.3) implies that the acquisition expense
rate cannot exceed

With th e substitutions

v (P P ) ..1 x:"l = x+l :n- 11- x:"l ax+1:n - 11 '
and

1 - 1Vx:"l = aX+ 1:n _ 11/ ax:"l '

the upp er bound becomes

Thus it is evident that

a
P + P'" = Px·.::::In + -a" = P ::---7l ... I x+l:n - 11

x:"l

(10.3.7)

(10.3.8)

(10.3.9)

(10.3.10)

(10.3.11)
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This result should not come as a surprise: Since 1V + 1va= 0, the premiums
of P + P" paid from age x + 1 and onward must be sufficient to cover the
future benefits. It is also clear tha t then

(10.3.12)

holds for k = 2, 3, .. . , n.
In practical insur ance, the maximum value of a is usuall y given as a fixed

percent age (say a = 3 ~% ) .

In some count ries the expense-loaded premium reserve does not include
an acquisition cost reserve. The modified expense-loaded reserve (Germ an :
Inventardeckungskapital) then becomes

k
v inv = k V + k V Y, (10.3.13)



Chapter 11. Estimating Probabilities of
Death

11.1 Problem Description

The one-year probability of death qx has to be est imated from statistical dat a;
th ese dat a will be generated by a certai n group of lives (e.g. policyholders),
which has been und er observation for a certain period (one or more calendar
years), the observation period. The est ima ted value of qx will be denoted by

qx·
If all observations are complete, meaning that each life has been observed

from age x until age x + 1 or prior death, th e stat ist ical analysis is quite
simple. Unfortunately, this is in pract ice not the case, as will be illustrat ed
by the so-called Lexis diagram:

Time

A
g
e

x

x + l

Observation period.
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In thi s diagram each life und er observation corresponds to a diagonal line
segment showing the tim e interval during which the life has been observed.
The horizontal borders of the rectangle are made up by the age group und er
consideration, and the vertical borders represent beginning and end of the
observat ion period . Lives aged x before the observat ion period begins are
incompletely observed (some may have died without this being observed);
similarly, lives aged x+1 after t he observation period ends will be incompletely
observed. Another source of incomplete observat ions is lives which ente r the
group between the ages of x and x + 1, when they buy an insurance policy;
as well as lives leaving th e group between th e ages of x and x + 1 for reasons
ot her than death, such as policy termination.

Let n lives cont ribute to the observat ions in the rectangle. Assume that
life no. i is observed between the ages of x + t, and x + s, (0 ::; ti < s, ::; 1).
The sum

(11.1.1)

is called the the exposure. The to tal length of all line segments in the Lexis
diagram is J2 Ex.

Let Dx denot e t he numb er of deaths observed in the rect angle (unlike Ex,
Dx is of course an integer) . Denote by I the set of observat ions i which were
terminated by death, and define, for i E I ,

s~m ) = [m si + l] / m ,

i.e. s;m) is obtained by rounding s, to the next mth par t of the year.

11. 2 The Classical Method

(11.1.2)

The idea behind the classical method is to equate the expected number of
deaths to the observed number of deaths in ord er to derive an est imat or iix.

The expected number of deaths is in some sense

n

2:: 1-t iqX+t i - 2:: 1-s;qx+s; .
i=1 il/.[

(11.2.1)

This expression is simplified by Assumption c of Section 2.6, which states th at
1- uqx+u = (1 - u )qx. The expected num ber of deaths then becomes

n

2::(1 - ti)qx - 2::(1 - s;)qx = Exqx + 2::(1 - Si)qx .
i=1 il/.[ iE[

(11.2 .2)

Equatin g this expression to the observed number of deaths, we obtain the
classical est imator

(11.2 .3)
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(11.2.4)

This estimator works well if the volume of data is large. The denominator
is sometimes approximated. For instance, under the assumption that deaths,
on the average, occur at age x + ~ , the estimator is simply

A D x
qx = E +!D .

x 2 x

The estimator (11.2.3) does not work satisfactorily with sparse data. One
problem is that the numerator may exceed the denominator, giving an obvi
ously useless est imate of qx; another is th at the estimator is not amenable to
confidence est imat ion or hypothesis testing, since its statistical properties are
hard to evaluate . Alternative suggestions will be presented below.

11.3 Alternative Solution

Let m be a positive integer , and define h = 11m. We shall estimate hqx using
the method of the previous section . To this end we assume that h-uqx+u is a
linear function of u , i.e.

(11.3.1)

In order to make use of all data we also assume that the force of mortality
between the ages of x and x + 1 is a periodic function with period h. This
assumption implies, for j = 1,2 ,· · · , m - 1, that

(11.3.2)

Making use of the two assumptions, one may now argue that th e expected
number of deaths is

mEx hqx + m L(s)m) - s.) hqx ·
iEI

(11.3.3)

(11.3.4)

Equating this to th e observed numb er of deaths, one obtains th e estimator

A hDx
hqx = (m) ·

Ex + LiEI(Si - Si)

Assumption (11.3.2) implies that Px = (hPx)m. An est imator of qx is thus
obtained from (11.3.4) by

(11.3.5)

This alternat ive procedure does not become interesting until we let m ----t

00. In the limiting case the assumptions (11.3.1) and (11.3.2) coincide with
Assumption b in Section 2.6, stating fJ x+u = fJx+l for 0 < u < 1, and the

2
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(11.3.6)

expected numb er of deaths (11.3.3) becomes E xJ-Lx+! ' Thi s leads us to est imate
2

the constant value of the force of mortality by th e ratio

A Dx

J-Lx+ ~ = E '
x

The probability qx is then est imated by

(11.3.7)

11.4 The Maximum Likelihood Method

T he moment method of th e previous sections may be criticised on the grounds
that equat ing "expected" numb er of deaths in th e expressions (11.2.1) , (11.2.2)
and (11.3.3) to th e observed number of deaths, is a heuristic approach. How
ever, the estimators (11.3.6) and (11.3.7) can also be derived by a different
method.

We assume that th e n lives are independent . The likelihood function of
th e observat ions is then

II J-Lx+s; s;- t;Px+t; . II s;-t;Px+t; .
i EI i ¢ I

(11.4.1)

The assumption of a piecewise constant force of mortality simplifies this to

(11.4.2)

Thi s expression is maximised by /1x+! = D x / Ex , so th at (11.3.6) is also th e
2

maximum likelihood estimator. The invariance prin ciple th en implies th at iix
defined by (11.3.7) will also be th e maximum likelihood est imator of qx.

11.5 Statistical Inference

Actually, both Dx and E x are random variables. However , it is convenient to
tr eat E x as a non-random quantity. Let us therefore assume th at t he random
variable D x has a Poisson distri bution with mean

..\ = J-L x+! E x ,
2

(11.5.1)

with unknown parameter J-Lx+! ' The probability of D x deaths, apart from
2

a factor which is independent of J-L x+! ' th en is identical with t he likelihood
2

(11.4.2). The point estimators (11.3.6) and (11.3.7) th erefore retain th eir
validi ty.
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It is also possible to treat D x as a non-random quantity, assuming th at Ex
follows a gamma distribution with parameters o = D; and j3 = J.l x+! ' This

2

approach is also compa tible with th e likelihood (11.4.2); we shall not pursue
thi s here.

The following table displays confidence limits for th e parameter of a Pois
son distribution , for an observed value of n . The lower limit AI is defined in
such a way that th e probability of an observation of n or great er, calculated
for the value AI, is equal to w; similarly, th e probab ility of observing n or less
for AU is equal to w .

Th e confidence interval for A may be read off directly in th e table from
th e number of observed death s Dx. Dividing th e confidence limits by E x, th e
confidence interval for J.lx+! is obtained. Finally the limits may be transformed

2
to give a confidence interval for qx. As an illustration, assume th at Dx = 19
and Ex = 2000. The 90% confidence intervals are then 12.44 < A < 27.88,
0.00622 < J.lx+! < 0.01394, 0.00620 < qx < 0.01384.

2

The est imated prob abilities qx (called "crude" rates in practi ce) may fluc-
tu at e wildly from one age interval to th e next . In such a situation one may use
one of th e more or less sophisticated methods of gradu ation th eory in order to
obt ain a smooth function. We shall not discuss th ese methods in t his book.

It is also possible to use an exist ing life table as a standa rd and to pos
tul at e th at th e forces of mortality in th e observed group are a constant (age
independent) multiple of the forces of mortality in th e standard life table. De
noting th e forces of mor tality in th e standard table by J.l~+! , we thus assume

2

th at
(11.5.2)

the obj ective now being to estimat e th e factor f. Under th e assumption th at
th e number of deaths occuring in different age groups are independent random
variables, we see th at th e total numb er of death s,

(11.5.3)
x

follows a Poisson distribut ion with mean

A = LJ.lx+!Ex = fLJ.l~+ ! Ex .
x x

Th e estimator forX is then ). = D , and we find

(11.5.4)

(11.5.5)

thi s expression is referred to as th e mortality ratio. A confidence interval for
A may easily be transformed into a confidence interval for f .
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For inst ance, assume th at a total of

D = D40 + D41 + .. .+ D49 = 932 (11.5.6)

deaths have been observed in the age group between 40 and 50, while the
expected number of deaths according to a standard table is

49

L J1~+!EX = 1145.7 .
x=40 2

(11.5.7)

Then one obt ains j = 932/1145 .7 = 0.813 = 81.3%. In order to construct
a confidence interval for f , we find approximate 90% confidence limit s for )..1

and )..U by solving

932 - )..1
1\1 = 1.645 ,

V)..I

932 - )"u
I'\:;; = -1.645 ,-r» (11.5.8)

(note that we have made use of the normal approximation to the Poisson
distribution). One obtains )..1 = 883.1 and )..U = 983.6, and after division by
(11.5.7) the confidence interval turns out to b e 0.771 < f < 0.856.
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Confidence limits for the pa rameter of a Poisson distribut ion

).,1 (w = 0.01) )..1 (w = 0.05) n )..U (w = 0.05) )..U (w= O.Ol)

0.00 0.00 0 3.00 4.61
0.01 0.05 1 4.74 6.64
0.15 0.36 2 6.30 8.41
0.44 0.82 3 7.75 10.05
0.82 1.37 4 9.15 11.60
1.28 1.97 5 10.51 13.11

1.79 2.61 6 11.84 14.57
2.33 3.29 7 13.15 16.00
2.91 3.98 8 14.43 17.40
3.51 4.70 9 15.71 18.78
4.13 5.43 10 16.96 20.14

4.77 6.17 11 18.21 21.49
5.43 6.92 12 19.44 22.82
6.10 7.69 13 20.67 24.14
6.78 8.46 14 21.89 25.45
7.48 9.25 15 23.10 26.74

8.18 10.04 16 24.30 28.03
8.89 10.83 17 25.50 29.31
9.62 11.63 18 26.69 30.58

10.35 12.44 19 27.88 31.85
11.08 13.25 20 29.06 33.10

11.82 14.07 21 30.24 34.36
12.57 14.89 22 31.42 35.60
13.33 15.72 23 32.59 36.84
14.09 16.55 24 33.75 38.08
14.85 17.38 25 34.92 39.31

15.62 18.22 26 36.08 40.53
16.40 19.06 27 37.23 41.76
17.17 19.90 28 38.39 42.98
17.96 20.75 29 39.54 44.19
18.74 21.59 30 40.69 45.40

22.72 25.87 35 46.40 51.41
26.77 30.20 40 52.07 57.35
30.88 34.56 45 57.69 63.23
35.03 38.96 50 63.29 69.07
39.23 43.40 55 68.85 74.86
43.46 47.85 60 74.39 80.62
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11.6 The Bayesian Approach

The idea behind the Bayesian method is to view J.lx + ! as th e value assumed by
2

a random variable 8 with prior probability density u(19) . Because of (11.4.2)
the posterior density then is

(11.6.1)

The parameter J.lx+ ! may th en be estimated by th e posterior mean of 8 . The
2

uncertainty at tached to th e est imate may be quantified by th e percentil es of
the posterior distribution of 8.

A common assumption is that th e prior distribution of 8 is a gamma
distribution with parameters a and {J. From (11.6.1) it is easy to see that
th e posterior distribution will again be a gamma distribution, now with th e
parameters

Hence we obtain

ii = a + Dx , ~ = {J + Ex . (11.6.2)

(11.6.3)

a result that reminds us of credibility th eory. An est imat or of qx is obtained
by taking the posterior expectat ion of

(11.6.4)

(11.6.5)

namely

qx= 1- (~~1r
Th e percentiles of th e posterior gamma distribution can be found using th e
table of confidence limit s of the Poisson parameter , since it can be shown that
)..1 is th e w-percent ile of a gamma distribution with parameters n and 1, and
that )..U is th e (1 - w)-percent ile of a gamma distribution with parameters
n + 1 and 1. Thus the posterior probability that th e true value of 8 lies
between )..1 / ~ and )..U/~ , is 1 - 2w. To find )..1 we put n = ii , and for )..U we
put n = ii - 1.

11.7 Multiple Causes of Decrement

We return to th e model introduced in Chapter 7, where a decrement could be
t he result of any of m causes. As before we observe th e exposure Ex and th e
number of decrements Dx (for simplicity we shall refer to th ese as number of
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deaths). In addition we are informed of the numb er of deaths by cause j , for
j = 1,2 , " " m, denoted by Dj •x ' Obviously

D 1•x + D2,x + ... + Dm,x = Dx · (11.7.1)

The probability qx can be estimated by the methods discussed before. We
shall now discuss estimation of the prob abilities qj,x '

Let us assume piecewise constant forces of decrement, i.e.

!-Lj,x+u = Pj,x+! for 0 < u < 1 . (11.7.2)

Equation (7.2.2) shows then that the aggregat e force of decrement also will
be piecewise constant . Assum ing again that the n lives under observation are
independent, we see that the likelihood function is given by

m

II (Pj,x+!)D j,x exp(-/lx+!Ex) .
j=1

Maximum likelihood est imators are thus

(11.7.3)

j=1 ,2, ·· · ,m . (11.7.4)

The corresponding estimator for

is th en

(11.7.5)

(11.7.6)

with fix defined by (11.3.7).
In th e Bayesian setting th e m forces of decrement are considered as realisa

tions of th e random variables 8 1,82 , . . . , 8 m , which have a prior probability
density u(191 ,192 , · · · ,19m ) . The posterior prob ability density is then propor
tion al to

m

II (19 j )Dj.x exp(-19Ex)U(19 1,192 , . . . , 19m) ,
j=1

(11.7.7)

with the definition 19 = 191 + 192 + ...+ 19m. Now /lj,x+! is th e posterior mean
of 8 j , and fij,x is the posterior mean of

(11.7.8)

if we writ e 8 = 8 1 + 8 2 + ... + 8 m .
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The analysis is particularly simple under the assumption that the random
variables 8 j are independent , 8 j having a gamma distri bution with parame
ters a j and {3. In that case th e 8 j are also independent a posteriori, and 8 j

has a gamma distribution with parameters

(11.7.9)

(11.7 .10)

which results in th e est imate

, aj aj + D j,x
Jij,x+! = ~ = {3 + E x .

Since the rati o 8 j /8 is independent of 8 and has a beta distribution, we can
calculate the mean of (11.7.8) , obtaining

(11.7 .11)

here a = al + a2 + ...+ amand fix is defined by (11.6.5) .

11.8 Interpretation of Results

The probability of death at a given age will often be non-stat ionary in th e
sense tha t the general mortality declines as t ime proceeds. Let us denot e th e
one-year prob ability of death of a person aged x at calenda r t ime t by q;.
On the basis of stat istical da ta from a certa in observation period , th e values
q;,q;+1'q;+2' ... are est imated; here t is taken to be th e middl e of the ob
servat ion period . A life table const ructed in this way is called a current, or
cross-sectional life table. Such a life table is, of course, an art ificial const ruc
tion.

The probabilities of death'and expected values introduced in th e preceding
chapters all refer to one specific life. Assuming t hat the initi al age of the
insured is x at time t , t he proper probabilities to use are q;,q~"tL q~"t~ , ..'.
The corresponding life table is called a longitudinal or generation life table,
since it relat es to th e genera t ion of persons born at time t - x . This life
table defines th e probability distribution of K = K( x) . The probabili ties of
death in a genera t ion life table must be est imated by a suitable method of
extrapolat ion.
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A.I Introduction

In thi s appendix we give an introduction to th e use of commutation functions.
These functions were invent ed in the 18th century and achieved great popu
larity, which can be ascribed to two reasons :

Reason 1

Tables of commutation functions simplify th e calculat ion of numerical values
for many actu arial functions.

Reason 2

Exp ected values such as net single premiums may be derived within a deter
ministic mod el closely relat ed to commutation functions.

Both reasons have lost th eir significance, th e first with the advent of powerful
computers, the second with the growing acceptance of mod els based on prob
ability theory, which allows a more complete understanding of th e essent ials
of insurance. It may therefore be taken for granted that th e days of glory for
th e commut ation functions now b elong to th e past.

A.2 The Deterministic Model

Imagine a cohort of lives, all of th e same age, observed over time, and denote
by Lx the number st ill living at age x . Thus dx = Lx - LX +1 is th e number of
deaths between the ages of x and x + 1.

Probabilities and expected values may now be derived from simpl e pro
portions and averages. So is, for inst ance.

(A.2.1)
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th e proportion of persons alive at age x + i , relative to t he number of persons
alive at age x, and th e probability th at a life aged x will die within a year is

(A.2.2)

(A.2.3)

(A.3.1)

In Chapter 2 we introduced the expected curtate future lifet ime of a life
aged x . Replacing kPx by IX+k/lx in (2.4.3), we obtain

IX+l + IX+2 + .. .
ex = - - ----,-- - -

i.

The numerator in thi s expression is th e total numb er of complete future years
to be "lived" by th e Ix lives (x) , so that ex is th e average number of completed
years left.

A.3 Life Annuities

We first consider a life annuity-due with annual payments of 1 unit , as intro
duced in Section 4.2, th e net single premium of which annuity was denot ed
by ax. Replacing kPx in (4.2.5) by IX+k/lx , we obtain

Ix + Vlx+l + v 21x+2+ ...
ax =

Ix

or
Ix ax = Ix + Vlx+l + v21x+2 + ... . (A.3.2)

Thi s result is often referred to as th e equivalence principle, and its interpre
tation within the deterministic model is evident: if each of the Ix persons
living at age x were to buy an annui ty of the given typ e, the sum of net single
premiums (the left hand side of (A.3.2)) would equal the present value of the
benefits (th e right hand side of (A.3.2)).

Multiplying both numerator and denominator in (A.3.1) by vX
, we find

(A.3.3)

With the abbreviat ions

we th en obtain the simple formula

.. Nx<: »:
x

(A.3.4)

(A.3.5)

Thus th e manual calculation of ax is ext remely easy if tables of t he com
mutation function s Dx and N, are available. The function Dx is called th e
"discounted number of survivors".
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Similarly one may obtain formulas for the net single premium of a tempo
rary life annuity,

(A.3.6)

immediat e life annuities,
N X +1

ax = ---rJ ' (A.3.7)
x

and general annuities with annual payments: formula (4.4.2) may naturally
be tr anslated to

E(Y) = roDx + r1Dx+1+ T2 Dx+2 + ...
Dx

For th e special case Tk = k + 1 we obtain the formul a

(I a)x = ~x ;
x

here the commutat ion function Sx is defined by

Sx D'; + 2Dx+1+ :~Dx+2 + .
N; + N X+1 + N X+2 + .

A.4 Life Insurance

(A.3.8)

(A.3.9)

(A.3.1O)

In addition to (A.3.4) and (A.3.1O) we now define th e commutation functions

vX+1dx,

Cx + Cx+1+ CX+2+ ,
Cx + 2Cx+1+ :~Cx+2 + .
M x + M X +1 + M X +2 + .

Replacing kPxqx+k in equat ion (3.2.3) by dx+k/lx, we obt ain

od; + v 2dx+1 + v3dx+2 + .. .
A x =

i,
Cx + Cx+ 1+ Cx+2+ ...

Dx

Similarly one obt ains

vdx + 2v2dx+1+ 3v3dx+2+ ...
i:

Cx + 2Cx+1+ 3Cx+2+ ...
Dx

(A.4.1)

(A.4.2)

(A.4.3)
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Obviously these formulae may be derived within the deterministic mod el by
means of the equivalence principle. In order to determine Ax one would start
with

(A.4.4)

by imagining that Lx persons buy a whole life insurance of 1 unit each, payable
at the end of the year of death, in return for a net single premium.

Corresponding formulae for term and endowment insurances are

M x - M x+n

Dx

Mx - Mx+n + Dx+n

Dx

Cx + 2Cx+1 + 3Cx+2 + ... + nCx+n - 1

Dx

Mx + M X +1 + M X +2 + ...+ Mx+n - 1 - nMx+n

Dx

(A.4 .5)

which speak for themselves.
The commutation functions defined in (A.4 .1) can be expressed in terms

of the commutation functions defined in Sect ion 3. From dx = Lx -Lx+! follows

(A.4 .6)

Summation yields th e identities

and
R; = Nx - dSx '

Dividing both equat ions by-D, , we retrieve the identities

1 - d ax '
ax - d(Ia) x ,

see equat ions (4.2.8) and (4.5.2) .

(A.4 .7)

(A.4 .8)

(A.4 .9)

A.5 Net Annual Premiums and Premium Reserves

Consider a whole life insurance with 1 unit payabl e at the end of the year of
death, and payable by net annual premiums. Using (A.3.5) and (A.4 .2) we
find

(A.5.l)
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Of course, the deterministi c approach, i.e. the condit ion

leads to the sam e result.
The net premium reserve at th e end of year k then becomes

V - A P .. - M X +k - PxNx+k
k x - x+k - xax +k - D

x+k

This result may also be obtained by the deterministic condition

kVxl x+k + Pxl x+k + vPxlx+k+1 + v
2

Pxl x+k+2 + ...
= vdx+k + v 2d

x+k+1 + v 3d
x+k+2 + ... .
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(A.5.2)

(A.5.3)

(A.5.4)

Here one imagines that each person alive at tim e k is allotted the amount k Vx ;

th e condition (A.5.4) states that the sum of the net premium reserve and the
present value of future premiums must equal the present value of all future
benefit payments.

The interested reader should be able to apply th is technique to other , more
general situations.
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In practice, the accumulation factor for a time interval of length h is occa
sionally approximat ed by

(1 + i )h~ 1 + hi. (B.1)

Thi s approximation is obt ained by neglecting all but the linear terms in th e
Taylor expansion of the left hand side above; alte rnatively th e right hand side
may be obtained by linear interpolation between h = 0 and h = 1. Similarly
an approximation for th e discount factor for an interval of length h is

vh = (1 - d)h ~ 1 - hd . (B.2)

The approximations (B.1) and (B.2) have little practical importance since the
advent of pocket calculators.

Interest on transactions with a savings account is sometimes calculated
according to the following rule: If an amount of r is deposited (drawn) at
time tz (0 < u < 1), it is valued at time 0 as

ro" ~ r(l - ud) .

At th e end of th e year (tim e 1) th e amount is valued as

(B.3)

r (l + i)l - u r(l + i )vU
~ r(l + i)(l - ud)

r { l + (1 - u )i } . (B.4)

Thi s technique amounts to accumulation from time u to tim e 1 according to
(B.1) or discounting from u to 0 according to (B.2). With a suitably chosen
variable force of interest th e rule is exact ; this variable force of interest is
determined by equat ing the accumulat ion factor s:

1 + (1 -u)i = exp ([ 8(t)dt)

Differentiating th e logarithms gives th e expression

(B.5)

i
8(u) - ----,------.,.-

-l+(l-u)i
d

1 - ud
(13.6)
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for 0 < u < 1. T he force of interest thus increases from 8(0) = d to 8(1) = i
during th e year.

Th e technique sketched above is based on th e assumpt ion th at th e accu
mulation factor for the tim e interval from u to 1 is a linear function of u ; this
assumpt ion is analogous to Assumption c of Section 2.6, concerning mortality
for fraction al durations. The similarity between (B.6) and (2.6.10) is evident .
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c.o Introduction

APPENDIX C. EXERCISES

These exercises provide two types of practice. The first type consists of theo
retical exercises, some demonstrations, and manipulation of symbols. Some of
these problems of the first kind are based on Society of Actuaries questions from
examinations prior to May 1990. The second type of practice involves using a
spreadsheet program. Many exercises are solved in Appendix D. For the spread
sheet exercises, we give a guide to follow in writing your own program. For the
theoretical exercises, we usually give a complete description. We provide guides
for solving the spreadsheet problems, rather than computer codes. The student
should write a program and use the guide to verify it. We use the terminology
of Excel in the guides. The terminology of other programs is analogous.

I would like to thank Hans Gerber for allowing me to contribute these exer
cises to his textbook. It is a pleasure to acknowledge the assistance of Georgia
State University graduate students, Masa Ozeki and Javier Suarez who helped
by checking solutions and proofreading the exercises.

I hope that students will find these exercises challenging and enlightening.

Atlanta, June 1995 Samuel H. Cox
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C.l Mathematics of Compound Interest:
Exercises

A bond is a contract obligating one party, the borrower or bond issuer, to pay
to the other party, the lender or bondholder, a series of future payments defined
by the face value, F, and the coupon rate, c. At the end of each future period
the borrower pays cF to the lender. The bond matures after N periods with a
final coupon payment and a simultaneous payment of the redemption value C.
Usually C is equal to F. Investors (lenders) require a yield to maturity of i ;:: 0
effective per period. The price, P, is the present value of future cash flows paid
to the bondholder. The five values are related by the following equation.

I-vN

P=cF--. -+CvN

~

where v = 1/(1 + i).

C.l.1 Theory Exercises

1. Show that
i(m) _ d(m) = i(m)d(m)

m

2. Show that d < d(2) < d(3) < . . . < 8 < .. . < i(3) < i(2) < i and

'2
i(m) _ d(n) < ---,,........,.~_~

- min(m,n) '

3. A company must retire a bond issue with five annual payments of 15,000.
The first payment is due on December 31, 1999. In order to accumulate the
funds, the company begins making annual payments of X on January 1, 1990
into an account paying effective annual interest of 6%. The last payment is to
be made on January 1, 1999. Calculate X.

4. At a nominal annual rate of interest i. convertible semiannually, the present
value of a series of payments of 1 at the end of every 2 years, which continue
forever, is 5.89. Calculate j .

5. A perpetuity consists of yearly increasing payments of (1 + k), (1 + k)2,
(1 + k)3, etc ., commencing at the end of the first year . At an annual effective
interest rate of 4%, the present value one year before the first payment is 51.
Determine k,

6. Six months before the first coupon is due a ten-year semi-annual coupon
bond sells for 94 per 100 of face value. The rate of payment of coupons is
10% per year . The yield to maturity for a zero-coupon ten-year bond is 12%.
Calculate the yield to maturity of the coupon payments.
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7. A loan of 1000 at a nominal rate of 12% convertible monthly is to be repaid
by six monthly payments with the first payment due at the end of one month.
The first three payments are x each, and the final three payments are 3x each.
Calculate x .

8. A loan of 4000 is being repaid by a 3D-year increasing annuity immediate.
The initial payment is k, each subsequent payment is k larger than the preceding
payment. The annual effective interest rate is 4%. Calculate the principal
outstanding immediately after the ninth payment.

9. John pays 98.51 for a bond that is due to mature for 100 in one year . It
has coupons at 4% convertible semiannually. Calculate the annual yield rate
convertible semiannually.

10. The death benefit on a life insurance policy can be paid in four ways. All
have the same present value:

(i) A perpetuity of 120 at the end of each month, first payment one month after
the moment of death;

(ii) Payments of 365.47 at the end of each month for n years, first payment one
month after the moment of death;

(iii) A payment of 17,866.32 at the end of n years after the moment of death;
and

(iv) A payment of X at the moment of death.

Calculate X .

C .1.2 Spreadsheet Exercises

1. A serial bond with a face amount of 1000 is priced at 1145. The owner
of the bond receives annual coupons of 12% of the outstanding principal. The
princip al is repaid by the following schedule:

(i) 100 at the end of each years 10 through 14, and

(ii) 500 at the end of year 15.

(a) Calculate the investment yield using the built-in Goal Seek procedure.

(b) Use the graphic capability of the spreadsheet to illustrate the investment
yield graphically. To do this, construct a Data Table showing various investment
yield values and the corresponding bond prices. From the graph, determine
which yield corresponds to a price of 1,145.

2. A deposit of 100,000 is made into a newly established fund. The fund pays
nominal interest of 12% convertible quarterly. At the end of each six months
a withdrawal is made from the fund. The first withdrawal is X, the second is
2X. the th ird is 3X. and so on. The last is the sixth withdrawal which exactly
exhausts the fund . Calculate X.
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3. A loan is to be repaid by annual installments 100, 200, 300, 300, 200 and
100. In the fifth installment, the amount of principal repayment is equal to six
times the amount of interest. Calculate the annual effective interest rate.

4. A company borrows 10,000. Interest of 350 is paid semiannually, but no
principal is paid until the entire loan is repaid at the end of 5 years . In order to
accumulate the principal of the loan at the end of five years, the company makes
equal semiannual deposits, the first due in six months, into a fund that credits
interest at a nominal annual rate of 6% compounded semiannually. Calculate
the internal rate of return effective per year for the company on the entire
transaction.

5. Deposits of 100 are made into a fund at the beginning of each year for 10
years. Beginning ten years after the last deposit, X is withdrawn each year from
the fund in perpetuity.
(a) i = 10%. Calculate X.
(b) Draw the graph of X as a function of i for i varying from 1% to 21% in
increments of 2%.

6. A bank credits savings accounts with 8% annual effective interest on the first
100,000 of beginning year account value and 9% on the excess over 100,000. An
initial deposit of 300,000 is made. One year later level annual withdrawals of X
begin and run until the account is exactly exhausted with the tenth withdrawal.
Calculate X.

7. In order to settle a wrongful injury claim, an annuity is purchased from an
insurance company. According to the annuity contract, the insurer is obliged to
make the following future payments on July 1 of each year indicated:

Year Amount
1995 50,000
1996 60,000
1997 75,000
1998 100,000
1999 125,000
2000 200,000

The insurer is considering hedging its future liability under the annuity contract
by purchasing government bonds. The financial press publishes the market
prices for the following government bonds available for sale on July 1, 1994.
Each bond has a face amount of 10,000, each pays annual coupons on July 1,
and the first coupon payment is due in one year.

Maturity Coupon Rate Price
1995 4.250% 9,870
1996 7.875% 10,180
1997 5.500% 9,600
1998 5.250% 9,210
1999 6.875% 9,740
2000 7.875% 10,120
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Determine how many bonds of each maturity the insurer should buy on July
1, 1994 so that the aggregate cash flow from the bonds will exactly match
the insurer's obligation under the terms of the claim settlement. Assume that
fractions of bonds may be purchased.

8 . A loan of 100,000 is repayable over 20 years by semiannual payments of
2500, plus 5% interest (per year convertible twice per year) on the outstanding
balance. Immediately after the tenth payment the lender sells the loan for
65,000. Calculate the corresponding market yield to maturity of the loan (per
year convertible twice per year) .

9. A bond with face value 1000 has 9% annual coupons. The borrower may
call the bond at the end of years 10 though 15 by paying the face amount plus
a call premium, according to the schedule:

For example, if the borrower elects to repay the debt at the end of year 11 (11
years from now), a payment of 1000 + 80 = 1080 plus the coupon then due of
90 would be paid to the lender. The debt is paid; no further payments would
be made. Calculate the price now, one year before the next coupon payment,
to be certain of a yield of at least 8% to the call date.

10. Equal deposits of 200 are made to a bank account at the beginning of each
quarter of a year for five years . The bank pays interest from the date of deposit
at an annual effective rate of i. One quarter year after the last deposit the
account balance is 5000. Calculate i.
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C.2 The Future Lifetime of a Life Aged x:
Exercises

These exercises sometimes use the commutation function notation introduced
in Appendix A and the following notation with regard to mortality tables. The
Illustrative Life Table is given in Appendix E. It is required for some exercises.

A mortality table covering the range of ages x (0 ~ x < w) is denoted by
l:z:, which represents th e number lo of the new-born lives who survive to age x .
The probability of surviving to age x is s(x) = l:z:/lo . The rule for calculating
conditional probabilities establishes this relationship to tP:z::

s(x + t) l:z:+t
tP:z: = Pr(T(O) > x + tIT(O) > x) = s(x) =-y;-'

In the case that the conditioning involves more information than mere survival,
the notation tP[:z:] is used . Thus if a person age x applies for insurance and is
found to be in good health, the mortality function is denoted tP[:z:] rather than
tP:z: . The notation [x] tens us that some information in addition to T(O) > x
was used in preparing the survival distribution. This gives rise to the select and
ultimate mortality table discussed in th e text.

Here are some additional mortality functions:

d:z:
m:z: central death rate = L

x

L:z: average number of survivors to (x, x + 1)

= 1:Z:+
1

lydy = 11

l:z: +tdt

d:z: number of deaths in (x ,x + 1) = l:z: -l:z:+I .

Since tP:z:IJ.:z:+t = -1ft tP:z: , th en in terms of l:z: we have l:z:+tlJ.:z:+t = -1ftl:z:+t or,
letting y = x + t , we have lylJ.y = - d~ly for an y. The following are useful for
calcul ating Var(T) and Var(K) :

E[T
2

] = 100

tZP:z:IJ.:z:+t dt

100

2t tp:z:dt

00

E[K2
] = L kLIP:z:Q:z:+k-1

k =1
00

L(2k + 1)k+1P:Z:,
k=O
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C.2.! Theory Exercises

1. Given:
100-x-t

tP", = 100 - x

for 0 ~ x < 100 and 0 ~ t ~ 100 - x. Calculate J1.45.

2. Given:

tP", = 1 - C~O) 1.5

for x = 60 and 0 < t < 100. Calculate E[T(x)].

3. Given : J1.",+t = -81 + __3_ for 0 ~ t < 85. Calculate 20P", .
5 - t 105 - t

4. Given: tP", = C~:: t) 3 for t2': o. Calculate the complete life expectancy

of a person age x = 41.

5. Given: q", = 0.200.

Balducci assumption.

6. Given:

Calculate m", = J q", using assumption c, the
fo tp",dt

(i) J1.", +t is constant for 0 ~ t < 1 and

(ii) q", = 0.16 .

Calculate the value of t for which tP", = 0.95 .

7. Given:

(i) The cur ve of death 1",J1.", is constant for 0 ~ x < w.

(ii) w = 100.

Calcul ate the variance of th e remainin g lifetime random variable T(x) at x = 88.

8. Given :

(i) Wh en the force of mortality is J1.", +t, 0 < t < I, then q", = 0.05.

(ii) Wh en the force of mortality is Il",+t - C, 0 < t < I, then q", = 0.07.

Cal culate c.

9. Pr ove:

(i) tP", = exp ( - f: +t J1. sds) and

(ii) lx tp", = (J1.", - J1.", +d tP",·

10. You are given th e following excerpt from a select and ultimate mortality
t able with a two-year select period.
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x 100qrxl 100qrxl+l 100qx+2
30 0.438 0.574 0.699
31 0.453 0.599 0.734
32 0.472 0.634 0.790
33 0.510 0.680 0.856
34 0.551 0.737 0.937

Calculate 100(1IQ[301+1) .

11. Given:
Lx = (121 _ x)1/2

for 0 $ x $ 121. Calculate the probability that a life age 21 will die after
attaining age 40, but before attaining age 57.

12. Given the following table of values of ex :

Age x ex
75 10.5
76 10.0
77 9.5

Calculate the probability that a life age 75 will survive to age 77. Hint: Use the
recursion relation ex = Px(1 + ex+r).

13. Mortality follows de Moivre's law and E[T(16)] = 36. Calculate Var(T(16)) .

14. Given:
7800 - 70t - t2

tP30 = 7800

for 0 $ t $ 60. Calculate the exact value of qsO - j.tSO.

15. Given :

_ (100-x-t)2
tPx - 100 - x

for 0 $ t $ 100 - x . Calculate Var(T(x)).

16. Given: qx = 0.420 and assumption b applies to the year of age x to x + 1.
Calculate m x , the central death rate exactly. (See exercise 5.)

17. Consider two independent lives, which are identical except that one is a
smoker and the other is a non-smoker. Given :

(i) j.tx is the force of mortality for non-smokers for 0 $ x < w.

(ii) cJ1-x is the force of mortality for smokers for 0 $ x < w, where c is a constant,
c> 1.
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Calculate the probability that the remaining lifetime of the smoker exceeds that
of the non-smoker.

18. Derive an expression for the derivative of q", with respect to x in terms of
the force of mortality.

19. Given: /1-'" = kx for all x > 0 where k is a positive constant and 10P35 = 0.81.
Calculate 2OP40 .

20. Given:

(i) l", = 1000(w3 - x3) for 0 ::; x ::; wand

(ii) E[T(O)] = 3w/4.

Calculate Var(T(O» .

C.2.2 Spreadsheet Exercises

1. Put the Illustrative Life Table l", values into a spreadsheet. Calculate d", and
1000q", for x = 0, 1, . . . , 99.

2. Calculate e"" x = 0,1,2, .. . ,99 for the Illustrative Life Table. Hint: Use
formula (2.4.3) to get egg = P9g = a for this table. The recursive formula
e", = p",{1 + e",+d follows from (2.4.3). Use it to calculate from the higher age
to the lower.

3. A sub-standard mortality table is obtained from a standard table by adding
a constant c to the force of mortality. This results in sub-standard mortality
rates q~ which are related to the standard rates q", by q~ = 1 - e-C(l - q",). Use
the Illustrative Life Table for the standard mortality. A physician examines a
life age x = 40 and determines that the expectation of remaining lifetime is 10
years. Determine the constant c, and the resulting substandard table. Prepare
a table and graph of the mortality ratio (sub-standard q~ to standard q",) by
year of age, beginning at age 40.

4. Draw the graph of /1-'" = Be", x = 0,1,2, ... , 110 for B = 0.0001 and each
value of c = 1.01,1.05,1.10,1.20. Calculate the corresponding values of l", and
draw the graphs. Use lo = 100, 000 and round to an integer.

5. Let q", = 0.10. Draw the graphs of /1-",+" for u running from ato 1 increments
of 0.05 for each of the interpolation formulas given by assumptions a, b, and c.

6. Substitute uq", for /1-",+u in Exercise 5 and rework.

7. Use the method of least squares (and the spreadsheet Solver feature) to fit a
Gompertz distribution to the Illustrative Life Table values of tP", for x = 50 and
t = 1,2, . . . , 50. Draw the graph of the table values and the Gompertz values
on the same axes.

8. A sub-standard mortality table is obtained from a standard table by mul
tiplying the standard q", by a constant k ~ 1, subject to an upper bound of 1.
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Thus the substandard q; mortality rates are related to the standard rates q:I: by
q; = min(kq:I:l 1).
(a) For values of k ranging from 1 to 10 in increments of 0.5, calculate points
on the graph of tP; for age x = 45 and t running from 0 to the end of the table
in increments of one year. Draw the graphs in a single chart.
(b) Calculate the sub-standard life expectancy at age x = 45 for each value of
k in (a) .
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C.3 Life Insurance

C.3.1 Theory Exercises

1. Given :

(i) The survival function is s(x) = 1 - x/100 for 0 ~ x ~ 100.

(ii) The force of interest is 8 = 0.10.

Calculate 50,oooibo.

2. Show that
(IA)x - A;:11
(IA)x+l + AX+ l

simplifies to vpx'

3. Zl is the present value random variable for an n-year continuous endowment
insurance of 1 issued to (x). Z2 is the present value random variable for an
n-year continuous term insurance of 1 issued to x . Given:

(i) Var(Z2) = 0.01

(ii) vn = 0.30

(iii) nPx = 0.8

(iv) E[Z21 = 0.04.

Calculate Var(Zd .

4. Use the Illustrative Life Table and i = 5% to calculate A
45

:2li1 .

5. Given:

(i) A
X

: n1 = U

(ii) Al = Yx :nl

(iii) Ax +n = z.

Determine the value of Ax in terms of u, y, and z.

6. A continuous whole life insurance is issued to (50). Given:

(i) Mortality follows de Moivre's law with w = 100.

(ii) Simple interest with i = 0.01.

(iii) bt = 1000 - 0.lt2.
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Calculate the expected value of the present value random variable for this in
surance.

7. Assume that the forces of mortality and interest are each constant and
denoted by Jl- and D, respectively. Determine Var(v T ) in terms of Jl- and D.

8. For a select and ultimate mortality table with a one-year select period,
q[",] = 0.5q", for all x ~ O. Show that A", - AI"'] = 0.5vq",(1 - A"'+l)'

9. A single premium whole life insurance issued to (x) provides 10,000 of insur
ance during the first 20 years and 20,000 of insurance thereafter, plus a return
without interest of the net single premium if the insured dies during the first 20
years. The net single premium is paid at the beginning of the first year . The
death benefit is paid at the end of the year of death. Express the net single
premium using commutation functions .

10. A ten-year term insurance policy issued to (x) provides the following death
benefits payable at the end of the year of death.

Year of Death Death Benefit
1 10
2 10
3 9
4 9
5 9
6 8
7 8
8 8
9 8
10 7

Express the net single premium for this policy using commutation functions.

11. Given:

(i) The survival function is s(x) = 1 - x/IOO for 0 :s; x :s; 100.

(ii) The force of interest is D= 0.10.

(iii) The death benefit is paid at the moment of death.

Calculate the net single premium for a l O-year endowment insurance of 50,000
for a person age x = 50.

12. Given:

(i) s(x) = e-O.02'" for x ~ 0

(ii) D= 0.04.

Calculate the median of the present value random variable Z = vT for a whole
life policy issued to (y).

13. A 2-year term insurance policy issued to (x) pays a death benefit of 1 at
the end of the year of death. Given:
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(i) qx = 0.50

(ii) i = 0

(iii) Var(Z) = 0.1771

APPENDIX C. EXERCISES

where Z is the present value of future benefits. Calculate qx+! .

14. A 3-year term life insurance to (x) is defined by the following table:

Year t Death Benefit q"'+t
a 3 0.20
1 2 0.25
2 1 0.50

Given: v = 0.9, the death benefits are payable at the end of the year of death and
the expected present value of the death benefit is n. Calculate the probability
that the present value of the benefit payment that is actually made will exceed
n.
15. Given :

(i) A76 = 0.800

(ii) D76 = 400

(iii) D77 = 360

(iv)] i = 0.03.

Calculate A77 by use of the recursion formula (3.6.1).

16. A whole life insurance of 50 is issued to (x) . The benefit is payable at the
moment of death. The probability density function of the future lifetime, T, is

(t) = {t/5000 for 0 ::5 t ::5 100
9 0 elsewhere.

The force of interest is constant: 8 = 0.10. Calculate the net single premium.

17. For a continuous whole life insurance, E[v2T ] = 0.25 . Assume the forces of
mortality and interest are each constant. Calculate E[vT ].

18 . Th ere are 100 club members age x who each contribute an amount w to
a fund . The fund earns interest at i = 10% per year . The fund is obligated to
pay 1000 at the moment of death of each member. The probability is 0.95 that
the fund will meet its benefit obligations. Given the following values calculated
at i = 10%: Ax = 0.06 and 2A", = 0.01. Calculate w. Assume that the future
lifetimes are independent and that a normal distribution may be used.

19. An insurance is issued to (x) that

(i) pays 10,000 at the end of 20 years if x is alive and

(ii) returns the net single premium Il at the end of the year of death if (x) dies
during the first 20 years .
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Express n using commutation functions .

20. A whole life insurance policy issued to (x) provides the following death
benefits payable at the end of the year of death.

Year of Death Death Benefit
1 10
2 10
3 9
4 9
5 9
6 8
7 8
8 8
9 8
10 7

each other year 7

Calculate the net single premium for this policy.

C.3.2 Spreadsheet Exercises

1. Calculate the A", column of the Illustrative Life Table at i = 5% . Use the
recursive method suggested by formula (3.6.1). Construct a graph showing the
values of A", for i = 0,2.5%,5%,7.5%,10% and x = 0,1,2, . . . ,99.

2. The formula for increasing life insurances, in analogy to (3.6.1), is (I A)", =
vq",+ vp",(Ax+ 1 + I A",+d . Use this (and (3.6.1)) to calculate a table of values
of (I A)", for the Illustrative Life Table and i = 5%.

3. Calculate the net single premium of an increasing 20 year term insurance
for issue age x = 25, assuming that the benefit is 1 the first year, 1 + 9 the
second year, (1 + g? the third year and so on. Use the Illustrative Life Table
at i = 5% and 9 = 6% . Try to generalize to a table of premiums for all issue
ages x = 0, 1,2, . . . ,99.

4. Calculate the net single premium for a decreasing whole life insurance with
an initial benefit of 100 - x at age x, decreasing by 1 per year. The benefit is
paid at the moment of death. Use the Illustrative Life Table at i = 5% and
x = 50. Generalize so that x and i are input cell values, and your spreadsheet
calculates the premium for reasonable interest rates and ages.

5. For a life age x = 35, calculate the variance of the present value random
variable for a whole life insurance of 1000. The interest rate i varies from 0 to
25% by increments of 0.5%. Mortality follows the Illustrative Life Table . Draw
the graph.
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CA Life Annuities

CA.! Theory Exercises

1. Using assumption a and the Illustrative Life Table with interest at the
effective annual rate of 5%, calculate a~~3Ol.

2. Demonstrate that
(10. ) - a -1x x : 1

simplifies to ax:11·

3. (lrilii)x is equal to E[Y] where

if 0 :5T < n and

if T :2: n

The force of mortality is constant, J.Lx = 0.04 for all z, and the force of interest

is constant, 8 = 0.06. Calculate -in (lrqii)x ·

4. Given the following information for a 3-year temporary life annuity due,
contingent on the life of (x) :

t Payment PxH
0 2 0.80
1 3 0.75
2 4 0.50

and v = 0.9. Calculate the variance of the present value of the indicated pay
ments.

5. Given:

(i) i; = 100,000(100 - x) , 0 :5 x :5 100 and

(ii) i = O.

Calculate (lii)95 exactly.

6 . Calculate 1OIa~~~ using the Illustrative Life Table, assumption a and

i = 5%. (The symbol denotes an annuity issued on a life age 25, the first
payment deferred 10 years, paid in level monthly payments at a rate of 1 per
year during the lifetime of the annuitant but not more than 10 years.)

7. Given:

(i)
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(ii) a(12) = 1.00028 and ,8(12) = 0.46812

(iii) assumption a applies: deaths are distributed uniformly over each year of
age.

C I I (/ ..)(12)
a cu ate a 70: 101'

8. Show:
n-l

nP",da,i] + I)1-vk+1)kP",Q",+k = 1- A",:nl
k =O

9. Y is the present value random variable of a whole life annuity due of 1 per
year issued to (x) . Given: a", = 10, evaluated with i = 1/24 = e6 - 1, and
a", = 6, evaluated with i = e26 - 1. Calculate the variance of Y.

10. a",:nl is equal to ElY] where

if 0 $ K < nand

if K 2: n .

Show that
v [Y] = M(-28) - M(_8)2

ar d2

where M(u) = E(e U min(K+l ,n» is the moment generating function of the random
variable min(K + 1, n).

11. Given i = 0.03 and commutation function values:

Calculate the commutation M 28 .

12. Given the following functions valued at i = 0.03:

x a",
72 8.06
73 7.73
74 7.43
75 7.15

Calculate P73 .
13 . Given the following information for a 3-year life annuity due, contingent on

the life of (x) :
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t Payment P",+t
a 2 0.80
1 3 0.75
2 4 0.50

Assume that i = 0.10. Calculate the probability that the present value of the
indicated payments exceeds 4.

14. Given l", = 100,000(100 - x), 0::; x::; 100 and i = O. Calculate the present
value of a whole life annuity issued to (80). The annuity is paid continuously at
an annual rate of 1 per year the first year and 2 per year thereafter.

15. As in exercise 14, l", = 100,000(100 - x), 0::; x ::; 100 and i = O. Calculate
the present value of a temporary 5-year life annuity issued to (80). The annuity
is paid continuously at an annual rate of 1 per year the first year and 2 per year
for four years thereafter.

16. Given C = 0, 100

ttp",dt = g, and Var(iiTl) = h, where T is the future

lifetime random variable for (x) . Express E[T] in terms of 9 and h.

17. Given:

Calculate (Dliho:101 which denotes the present value of a decreasing annuity.

The first payment of 10 is at age 70, the second of 9 is scheduled for age 71, and
so on. The last payment of 1 is scheduled for age 79.

18. Show that
aT]8", - li2j 8"'+l + lil] 8"'+2

D",

simplifies to A", .

19. For a force of interest of C> 0, the value of E (iiTl) is equal to 10. With

the same mortality, but a force of interest of 28, the value of E (iiTl) is 7.375.

Also Var(iiTl) = 50. Calculate it", .

20. Calculate ii",+u using the Illustrative Life Table at 5% for age x+u = 35.75.
Assumption a applies .

C.4.2 Spreadsheet Exercises

1. Calculate li", based on the Illustrative Life Table at i = 5% . Use the
recursion formula (4.6.1) . Construct a graph showing the values of li", for i =
0,2.5%,5%,7.5%,10% and x = 0, 1,2, ... ,99.
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2. Consider again the structured settlement annuity mentioned in exercise 7
of Section C.l. In addition to the financial data and the scheduled payments,
include now the information that the payments are contingent upon the survival
of a life subject to the mortality described in exercise 3 of Section C.2. Calculate
the sum of market values of bonds required to hedge the expected value of the
annuity payments.

3. A life age x = 50 is subject to a force of mortality VSOH obtained from the
force of mortality standard as follows:

{
/-LSO+t + c for 0 s t ~ 15

VSO+t = h .
/-LSO+t ot erwise

where /-LSOH denotes the force of mortality underlying the Illustrative Life Table.
The force of interest is constant 8 = 4%. Calculate the variance of the present
value of an annuity immediate of one per annum issued to (50) for values of
c = -0.01, -0.005,0,0.005, and 0.01. Draw the graph.

4. Create a spreadsheet which calculates ii~~~ and A",+u for a given age, x + u,
with x an integer and 0 ~ u ~ 1, and a given interest rate i. Assume that
mortality follows the Illustrative Life Table. Use formulas (4.8.5) and (4.3.5)
(or (4.8.6) and (4.3.5) if you like.) for the annuity and analogous ones for the
life insurance.

5. Use your spreadsheet's built-in random number feature to simulate 200 values
of Y = 1 +v + ... + vK = aK +1! where K = K(40}. Use i = 5% and assume
mortality follows the Illustrative Life Table. Compare the sample mean and
variance to the values given by formulas (4.2.7) and (4.2.9).
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C.5 Net Premiums

C.5.l Notes

The exercises sometimes use the notation based on the system of International
Actuarial Notation. Appendix 4 of Actuarial Mathematics by Bowers et al.
describes the system. Here are the premium symbols and definitions used in
these exercises.

P (.4",) denotes the annual rate of payment of net premium, paid continu
ously, for a whole life insurance of 1 issued on the life of (x), benefit paid at the
moment of death.

P (.4",:ill) denotes the annual rate of payment of net premium for an endow
ment insurance of 1 issued on the life of (x). The death benefit is paid at the
moment of death.

A life insurance policy is fully continuous if the death benefit is paid at the
moment of death, and the premiums are paid continuously over the premium
payment period.

Policies with limited premium payment periods can be described symboli
cally with a pre-subscript. For example, nP (.4",) denotes the annual rate of
payment of premium, paid once per year, for a whole life insurance of 1 issued
on the life of (x), benefit paid at the moment of death. For a policy with the
death benefit paid at the end of the year of death the symbol is simplified to
.r;

C.5.2 Theory Exercises

1. Given: .20 P 25 = 0.046, P 25:201 = 0.064, and A45 = 0.640. Calculate P~:2O]'

2. A level premium whole life insurance of 1, payable at the end of the year of
death, is issued to (x). A premium of G is due at the beginning of each year,
provided (x) survives. Given:

(i) L = the insurer's loss when G = P",

(ii) L* = the insurer's loss when G is chosen such that EIL*] = -0.20

(iii) Var[L] = 0.30

Calculate Var[L*].

3. Use the Illustrative Life Table and i = 5% to calculate the level net annual
premium payable for ten years for a whole life insurance issued to a person
age 25. The death benefit is 50,000 initially, and increases by 5,000 at ages
30,35,40,45 and 50 to an ultimate value of 75,000. Premiums are paid at the
beginning of the year and the death benefits are paid at the end of the year.

4. Given the following values calculated at d = 0.08 for two whole life policies
issued to (x):
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Death Benefit Premium Variance of Loss
Policy A 4 0.18 3.25
Policy B 6 0.22

147

Premiums are paid at the beginning of the year and the death benefit sare paid
at the end of the year. Calculate the variance of the loss for policy B.

5. A whole life insurance issued to (x) provides 10,000 of insurance. Annual
premiums are paid at the beginning of the year for 20 years. Death claims are
paid at the end of the year of death. A premium refund feature is in effect
during the premium payment period which provides that one half of the last
premium paid to the company is refunded as an additional death benefit. Show
that the net annual premium is equal to

1O,000Ax

6. Obtain an expression for the annual premium nPx in terms of net single
premiums and the rate of discount d. (nPx denotes the net annual premium
payable for n years for a whole life insurance issued to x.)

7. A whole life insurance issued to (x) provides a death benefit in year j of
bj = 1,000(1.06)j payable at the end of the year . Level annual premiums are
payable for life. Given: 1,000?x = 10 and i = 0.06 per year. Calculate the net
annual premium.

8. Given :

(i) Ax = 0.25

(ii) Ax +2o = 0.40

(iii) Ax:20j = 0.55

(iv) i = 0.03

(v) assumption a applies .

Calculate 1000P (Ax:2Oj) .
9. A fully continuous whole life insurance of 1 is issued to (x). Given:

(i) The insurer's loss random variable is L = vT
- P (Ax) aT] '

(ii) The force of interest 8 is constant.

(iii) The force of mortality is constant: fLx+t = u, t ~ O.

Show that Var(L) = fL/(28 + fL) .

10. A fully-continuous level premium 10-year term insurance issued to (x) pays
a benefit at death of 1 plus the return of all premiums paid accumulated with
interest. The interest rate used in calculating the death benefit is the same as
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that used to determine the present value of the insurer's loss. Let G denote the
rate of annual premium paid continuously.
(a) Write an expression for the insurer's loss random variable L.
(b) Derive an expression for Var[LJ.
(c) Show that, if G is determined by the equivalence principle, then

( .iP )2
Var[LJ= 2iP + ,dol

",:10] lOP",

The pre-superscript indicates that the symbol is evaluated at a force of interest
of 26, where 6 is the force of interest underlying the usual symbols.

11. Given:

(i) i = 0.10

(ii) a30:9] =5.6

(iii) v 10
IOP30 = 0.35

Calculate 1000 Pio,iOl

12. Given:

(i) i = 0.05

(ii) 10, OOOA", = 2,000.

Apply assumption a and calculate 10, 00a? (A",) - 10, OOOP (A",).
13. Show that

simplifies to A45 •

14. Given:

(i) A", = 0.3

(ii) 6 = 0.07 .

A whole life policy issued to (x) has a death benefit of 1,000 paid at the moment
of death . Premiums are paid twice per year . Calculate the semi-annual net
premium using assumption a.

15. Given the following information about a fully continuous whole life insur
ance policy with death benefit 1 issued to (x):

(i) The net single premium is A", = 0.4.

(ii) 6 = 0.06

(iii) Var[L] = 0.25 where L denotes the insurer's loss associated with the net
annual premium ? (A",).
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Under the same conditions, except that the insurer requires a premium rate of
G = 0.05 per year paid continuously, the insurer's loss random variable is L*.
Calculate VarlL*].

16. A fully discrete 20-year endowment insurance of 1 is issued to (40). The
insurance also provides for the refund of all net premiums paid accumulated at
the interest rate i if death occurs within 10 years of issue. Present values are
calculated at the same interest rate i. Using the equivalence principle, the net
annual premium payable for 20 years for this policy can be written in the form:

A40: 201
k

Determine k.

17. L is the loss random variable for a fully discrete, 2-year term insurance of 1
issued to (x). The net level annual premium is calculated using the equivalence
principle. Given:

(i) q:z; = 0.1,

(ii) q:z;+l = 0.2 and

(iii) v = 0.9.

Calculate Var(L).

18. Given:

(i) A;:i'l = 0.4275

(ii) c= 0.055, and

(iii) j.t:z;+t = 0.045, t ~ 0

Calculate 1,000P (A:z; :n1)'

19 . A 4-year automobile loan issued to (25) is to be repaid with equal annual
payments at the end of each year. A four-year term insurance has a death
benefit which will payoff the loan at the end of the year of death, including the
payment then due. Given:

(i) i = 0.06 for both the actuarial calculations and the loan,

(ii) a25:41 = 3.667, and

(iii) 4q25 = 0.005.

(a) Express the insurer's loss random variable in terms of K, the curtate future
lifetime of (25), for a loan of 1,000 assuming th at the insurance is purchased
with a single premium of G.
(b) Calculate G, the net single premium rate per 1,000 of loan value for this
insurance.
(c) The automobile loan is 10,000. The buyer borrows an additional amount to
pay for the term insurance. Calculate the total annual payment for the loan.
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20. A level premium whole life insurance issued to (x) pays a benefit of 1 at
the end of the year of death. Given:

(i) A~ = 0.19

(ii) 2 A", = 0.064, and

(iii) d = 0.057

Let G denote the rate of annual premium to be paid at the beginning of each
year while (x) is alive.
(a) Write an expression for the insurer's loss random variable L.
(b) Calculate E[L] and Var[L], assuming G = 0.019.
(c) Assume that the insurer issues n independent policies, each having G =
0.019. Determine the minimum value of n for which the probability of a loss
on the entire portfolio of policies is less than or equal to 5%. Use the normal
approximation.

C.5.3 Spreadsheet Exercises

1. Reproduce the Illustrative Life Table values of C". Calculate M" recursively,
from the end of the table where Mgg = Cgg , using the relation M", = C'" +M"'-l '
Calculate the values of S" = M" + M,,+l + ... using the same technique.

2 . Use the Illustrative Life Table to calculate the initial net annual premium
for a whole life insurance policy issued at age x = 30. The benefit is inflation
protected: each year the death benefit and the annual premium increase by a
factor of 1 + i. where j = 0.06. Calculate the initial premium for interest rates
of i = 0.05,0.06,0.07 and 0.08. Draw the graph of the initial premium as a
function of i .

3. Use i = 4%, the Illustrative Life Table, and the utility function u(x) =
(l-e - a")/a, a = 10-6 , to calculate annual premiums for lo-year term insurance,
issue age 40, using formula (5.2.9) : E[u(-L)] = u(O). Display your results in
a table with the sum insured C, the calculated premium, and the ratio to the
net premium (loading). Draw the graph of the loading as a function of the sum
insured. Do the same for premiums based on a = 10-4 , 10-5 , 10-7 and 10-8

also. Show all the graphs on the same chart.

4 . A whole life policy is issued at age 10 with premiums payable for life. If
death occurs "before age 15, the death benefit is the return of net premiums paid
with interest to the end of the year of death. If death occurs after age 15, the
death benefit is 1000. Calculate the net annual premium. Use the Illustrative
Life Table and i = 5%. Convince yourself that the net premium is independent
of q", for x < 15. (This problem is based on problem 21 at the end of Chapter
4 of Life Contingencies by C. W. Jordan.)

5. A 2o-year term insurance is issued at age 45 with a face amount of 100,000.
The net premium is determined using i = 5% and the Illustrative Life Table.
The benefit is paid at the end of the year. Net premiums are invested in a fund
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earning j per annum and returned at age 65 if the insured survives. Calculate
the net premium for values of j running from 5% to 9% in increments of 1%.

6. Determine the percentage z of annual salary a person must save each year
in order to provide a retirement income which replaces 50% of final salary.
Assume that the person is age 30, that savings earn 5% per annum, that salary
increases at a rate of j = 6% per year, and that mortality follows the Illustrative
Life Table. Draw the graph of z as a function of j running from 3% to 7% in
increments of 0.5%

7. Mortality historically has improved with time. Let q", denote the mortality
table when a policy is issued. Suppose that the improvement (decreasing q",)
is described by ktq", where t is the number of years since the policy was issued
and k is a constant, 0 < k < 1. Calculate the ratio of net premiums on the
initial mortality basis to net premiums adjusted for t = 10 years of mortality
improvement. Use x = 30, k = 0.99, the Illustrative Life Table for the initial
mortality and i = 5%.
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C.6 Net Premium Reserves

Here are the additional symbols and definitions for reserves used in these ex
ercises. Policies with premiums paid at the beginning of the year and death
benefits paid at the end of the year of death are called fully discrete policies.
Policies with premiums paid continuously and death benefits paid at the mo
ment of death are called fully continuous.

k V (Ax) denotes the net premium reserve at the end of year k for a fully
continuous whole life policy issued to (x).

k V (Ax :nl ) denotes the net premium reserve at the end of year k for a fully
continuous n-year endowment insurance policy issued to (x).

Policies with limited premium payment periods can be described symbol
ically with a pre-superscript. For example, kV(Ax} denotes the net premium
reserve at the end of year k for an n-payment whole life policy issued to (x) with
the benefit of 1 paid at the moment of death. Note that the corresponding net
premium is denoted nP(Ax}.

C .6 .1 Theory Exercises

1. A 20-year fully discrete endowment policy of 1000 is issued at age 35 on the
basis of the Illustrative Life Table and i = 5%. Calculate the amount of reduced
paid-up insurance available at th e end of year 5, just before the sixth premium
is due . Assume that the entire reserve is available to fund the paid-up policy as
described in section 6.8.

2. Given: 10V25 = 0.1 and 10V35 = 0.2. Calculate 20V25 •

3. Given: 20V(A40 } = 0.3847, a40 = 20.00, and a60 = 12.25. Calculate
20 V (;140) - 20V (A40 ) .

4. Given the following information for a fully discrete 3-year special endowment
insurance issued to (x):

k Ck+l qx+k

0 2 0.20
1 3 0.25
2 4 0.50

Level annual net premiums of 1 are paid at the beginning of each year while (x)
is alive. The special endowment amount is equal to the net premium reserve for
year 3. The effective annual interest rate is i = 1/9 . Calculate the end of policy
year reserves recursively using formula (6.3.4) from year one with oV = O.

5 . Given: i = 0.06, qx = 0.65, Qx+l = 0.85, and Qx+2 = 1.00. Calculate 1Vx '

(Hint due to George Carr 1989: Calculate the annuity values recursively from
ax+ 2 back to ax . Use (6.5.3}.)

6. A whole life policy for 1000 is issued on May 1, 1978 to (60). Given:

(i) i = 6%
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(ii) Q70 = 0.033

(iii) 100010V60 = 231.14

(iv) 1000P60 = 33.00, and

(v) 100011 V60 = 255.40
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A simple method widely used in practice is used to approximate the reserve on
Decemb er 31, 1988. Calculate the approximate value.

7. Given : For k = 0, 1,2, .. . klq% = (0 .5)k+l . Show that the variance of the loss
random variable L for a fully discrete whole life insurance for (x) is

where v = (1 + i) -l .

8. Given, for a fully discrete 20-year deferred life annuity of 1 per year issued
to (35):

(i) Mortality follows th e Illustrative Life Table.

(ii) i = 0.05

(iii) Level annual net premiums are payable for 20 years.

Calcul ate th e net premium reserve at the end of 10 years for this annuity.

9. A sp ecial fully discrete 2-year endow ment insurance with a maturity value of
1000 is issued to (x) . The death benefit in each year is 1000 plus t he net level
premiu m reserve at the end of that year. Given i = 0.10 and the following data:

k Q%+k Ck+l kV
0 0.10 1000 + 1V 0
1 0.11 2000 ?
2 1000

Calcul ate the net level premium reserve 1V.

10. Use the Illustrative Life Tables and i = 0.05 to calculate 100015~5:20]'

11 . Use the Illustrative Life Tables and i = 0.05 to calculate 1000 15Vl 'lill'
45:20 1

12. Given the data in exercise 4, calculate th e variance of th e loss A1 allocated
to policy year two .

13. Given:

k uk] k-llq%

1 1.000 0.33
2 1.930 0.24
3 2.795 0.16
4 3.600 0.11
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Calculate 2Vx :4].

14. A fully discrete whole life policy with a death benefit of 1000 is issued to
(40). Use the Illustrative Life Table and i = 0.05 to calculate the variance of
the loss allocated to policy year 10.

15. At an interest rate of i = 4%, ~V15 = 0.585 and ~~V15 = 0.600. Calculate
P3S ·

16. A fully discrete whole life insurance is issued to (x) . Given : Px = 4/11,
t Vx = 0.5, and aXH = 1.1. Calculate i.

17. For a special fully discrete whole life insurance of 1000 issued on the life
of (75), increasing net premiums, ilk, are payable at time k, for k = 0,1,2, ....
Given:

(i) ilk = ilo(1.05)k for k = 0, 1,2, ...

(ii) Mortality follows de Moivre's law with w = 105.

(iii) i = 5%

Calculate the net premium reserve at the end of policy year five.

18. Given for a fully discrete whole life insurance for 1500 with level annual
premiums on the life of (x):

(i) i = 0.05

(ii) The reserve at the end of policy year h is 205 .

(iii) The reserve at the end of policy year h - 1 is 179.

(iv) ax = 16.2

Calculate 1000qx+h-l

19. Given :

(i) 1 + i = (1.03)2

(ii) Qx+l0 = 0.08

(iii) lOOO1OVx = 311.00

(iv) 1000?x = 60.00

(v) 1000 11 Vx = 340.86

(a) Approximate 1000 10.5Vx by use of the traditional rule: interpolate between
reserves at integral durations and add the unearned premium.
(b) Assumption a applies. Calculate the exact value of 1000 10.5V",.

20 . Given: Q31 = 0.002, a32: IT] = 9, and i = 0.05. Calculate 1V3 1:14]'
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C.6.2 Spreadsheet Exercises
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1. Calculate a table of values of t V30 for t = 0,1,2, .. . ,69, using the Illustrative
Life Table and i = 4%. Recalculate for i = 6% and 8%. Draw the three graphs
of t V30 as a function of t, corresponding to i = 4%,6% , and 8%. Put the graphs
on a single chart .

2. A 10-year endowment insurance with a face amount of 1000 is issued to (50).
Calculate the savings Ilk and risk Ilk components of the net annual premium
1000Pso:10] (formulas 6.3.6 and 6.3.7) over the life of the policy. Use the Illus-

trative Life Table and i = 4%. Draw the graph of Ilk as a function of the policy
year k. Investigate its sensitivity to changes in i by calculating the graphs for
i = 1% and 7% and showing all three on a single chart.

3. A 10,000 whole life policy is issued to (30) on the basis of the Illustrative
Life Table at 5%. The actual interest earned in policy years 1 - 5 is i' = 6%.
Assume the policyholder is alive at age 35 and the policy is in force.
(a) Calculate the technical gain realized in each year using method 2 (page 69).
(b) Calculate the accumulated value of the gains (using i' = 6%) at age 35.
(c) Determine the value of i' (level over five years) for which the accumulated
gains are equal to 400.

4 . This exercise concerns a flexible life policy as described in section 6.8. The
policyholder chooses the benefit level Ck+I and the annual premium Ilk at the
beginning of each policy year k+ 1. The choices are subject to these constraints:

(i) Ilo = 100, OOOPx , the net level annual premium for whole life in the amount
of 100,000.

(ii) 0 ::; Ilk+1 ::; 1.2Il k for k = 0,1 , .

(iii) CI ::; Ck+I ::; 1.2ck for k = 1,2, .

(iv) k+1 V ~ 0 for k =0,1,2, . . .

The initial policyholder's account value is 0V = o. Thereafter the policyholder's
account values accumulate according to the recursion relation (6.3.4) with the
interest rate specified in the policy as i = 5% and mortality following the Illus
trative Life Table with x = 40. Investigate the insurer's cumulative gain on the
policy under two scenarios: .

(8d The policyholder attempts to maximize insurance coverage at minimal
costs over the first five policy years . The strategy is implemented by choosing
CHI == 1.2ck for k = 1,2, .. . and choosing the level premium rate which meets
the constraints but has sV = o. Calculate the insurer's annual gains assuming
if = 5.5% and the policyholder dies during year 5.
(82) The policyholder elects to maximize savings by choosing minimum coverage
and maximum premiums. Calculate the present value of the insurer's annual
gains assuming if = 5.5% and the policyholder survives to the end of year 5.
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C.7 Multiple Decrements: Exercises

C.7.1 Theory Exercises

1. In a double decrement table J1-1 ,x+t = 0.01 for all t ~ 0 and J1-2,x+t = 0.02 for
all t ~ O. Calculate ql ,x.

2. Given J1-j,x+t = j/150 for j = 1,2,3 and t > O. Calculate E[T I J = 31 .

3. A whole life insurance policy provides that upon accidental death as a pas
senger on public transportation a benefit of 3000 will be paid. If death occurs
from other accidental causes, a death benefit of 2000 will be paid. Death from
causes other than accidents carries a benefit of 1000. Given, for all t ~ 0:

(i) J1-j ,x +t = 0.01 where j = 1 indicates accidental death as a passenger on public
transportation.

(ii) J1-j ,x+t = 0.03 where j = 2 indicates accidental death other than as a pas
senger on public transportation.

(iii) J1-j,x+t = 0.03 where j = 3 indicates non-accidental death.

(iv) 6 = 0.03.

Calculate the net annual premium for issue age x assuming continuous premi 
ums and immediate payment of claims .

4 . In a doubl e decrement table, J1-1 ,x +t = 1 and J1-2 ,x+t = t~1 for all t ~ O.
Calculate

m x = 1 .

10 tPx dt

5. A two year term policy on (x) provides a benefit of 2 if death occurs by
accidental means and 1 if death occurs by other means. Benefits are paid at the
moment of death . Given for all t ~ 0:

(i) J1-1,x+t = t/20 where 1 indicates accidental death.

(ii) J1-2 ,x +t = t/l0 where 2 indi cates other than accidental death.

(iii) 6 = 0

Calculate the net single premium.

6. A multiple decrement model has 3 causes of decrement. Each of the decre
ments has a uniform distribution over .each year of age so that the equation
(7.3.4) holds for at all ages and durations. Given :

(i) J1-1 ,30 +0.2 = 0.20

(ii) J1-2,30+0.4 = 0.10

(iii) J1-3,30+0 .8 = 0.15
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Calculate q30.

7. Given for a double decrement table:

X ql ,x q2,x Px

25 0.01 0.15 0.84
26 0.02 0.10 0.88
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(a) For a group of 10,000 lives aged x = 25, calculate the expected number of
lives who survive one year and fail due to decrement j = 1 in the following year.
(b) Calculate the effect on the answer for (a) if Q2,25 changes from 0.15 to 0.25.

8 . Given the following data from a double decrement table:

(i) QI,63 = 0.050

(ii) Q2,63 = 0.500

(iii) IIQ63 = 0.070

(iv) 21 QI ,63 = 0.042

(v) 3P63 = O.

For a group of 500 lives aged x = 63, calculate th e expected number of lives
who will fail due to decrement j = 2 between ages 65 and 66.

9. Given the following for a double decrement table:

(i) J.!1,x +O.5 = 0.02

(ii) Q2,x = 0.01

(iii) Each decrement is uniformly distributed over each year of age, thus (7.3.4)
holds for each decrement .

Calculate 1OOOQI,x .

10. A multiple decrement table has two causes of decrement : (1) accident and
(2) other than accident . A fully continuous whole life insurance issued to (x)
pays CI if death results by accident and C2 if death results other than by accident.
The force of decrement 1 is a positive constant J.!I . Show that the net annual
pr emium for this insurance is c2Fx + (CI - C2 ) J.!I .
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c.s Multiple Life Insurance: Exercises

C.B.l Theory Exercises

1. The following excerpt from a mortality table applies to each of two indepen
dent lives (80) and (81) :

x qx
80 0.50
81 0.75
82 1.00

Assumption a applies. Calculate qJO:81 ' q80:~1' q80:81 and Q80:8l '

2. Given :

(i) 6 = 0.055

(ii) /-Lx+t = 0.045, t ~ 0

(iii) /-Ly +t = 0.035, t ~ 0

Calculate Aiy as defined by formula (8.8 .8).

3. In a certain population, smokers have a force of mortality twice that of non
smokers. For non-smokers, s(x) = 1 - x/75, 0 :5x :5 75. Calculate ~55:65 for a
smoker (55) and a non-smoker (65) .

4 . A fully-continuous insurance policy is issued to (x) and (y) . A death benefit
of 10,000 is payable upon the second death. The premium is payable continu
ously until th e last death. The annual rate of payment of premium is e while
(x) is alive and reduces to 0.5e upon th e death of (x) if (x) dies before (y) . The
equ ivalence principl e is used to determine e. Given:

(i) 6 = 0.05

(ii) ax = 12

(iii) ay = 15

(iv) ax y = 10

Calculate e.

5. A fully discrete last-survivor insurance of 1 is issued on two independent lives
each age x . Level net annual premiums are paid until the first death. Given:

(i) Ax = 0.4

(ii) Ax x = 0.55

(iii) ax = 9.0
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Calculate the net annual premium.

6. A whole life insurance pays a death benefit of 1 upon the second death of
(x) and (y) . In addition, if (x) dies before (y), a payment of 0.5 is payable at
the time of death. Mortality for each life follows the Gompertz law with a force
of mortality given by J1-z. = Be", z ~ O. Show that the net single premium for
this insurance is equal to

where C
W = C"+ cy.

7. Given:

(i) Male mortality has a constant force of mortality J1- = 0.04.

(ii) Female mortality follows de Moivre's law with w = 100.

Calculate the probability that a male age 50 dies after a female age 50.

8. Given:

(i) Z is the present-value random variable for an insurance on the independent
lives of (x) and (y) where

Z = {vT(Y) if T(y) > T(x)
o otherwise

(ii) (x) is subject to a constant force of mortality of 0.07.

(iii) (y) is subject to a constant force of mortality of 0.09.

(iv) The force of interest is a constant 8 = 0.06.

Calculate Var[ZJ.

9. A fully discrete last-survivor insurance of 1000 is issued on two independent
lives each age 25. Net annual premiums are reduced by 40% after the first death.
Use the Illustrative Life Table and i = 0.05 to calculate the initial net annual
premium.

10. A life insurance on John and Paul pays death benefits at the end of the
year of death as follows:

(i) 1 at the death of John if Paul is alive,

(ii) 2 at the death of Pau'l if John is alive,

(iii) 3 at the death of John if Paul is dead and

(iv) 4 at the death of Paul if John is dead .

The joint distribution of the lifetimes of John and Paul is equivalent to the joint
distribution of two independent lifetimes each age x, Show that the net single
premium of this life insurance is equal to 7Ax - 2Axx.
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C.8.2 Spreadsheet Exercises

1. Use the Illustrative Life Table and i = 5% to calculate the joint life annuity,
a,"'l/! the joint-and-survivor annuity, a"':II' and the reversionary annuity, a"'/II '
for independent lives lives age x = 65 and y = 60.

2. (8.4.8) A joint-and-survivor annuity is payable at the rate of 10 per year at
the end of each year while either of two independent lives (60) and (50) is alive.
Given:

(i) The Illustrative Life Table applies to each life.

(ii) i = 0.05

Calculate a table of survival probabilities for the joint-and-survivor status. Use
it to calculate the variance of the annuity's present value random variable.

3. Use the Illustrative Life Table and i = 5% to calculate the net level annual
premium for a second-to-die life insurance on two independent lives age (35)
and (40) . Assume that premiums are paid at the beginning of the year as long
as both insured lives survive. The death benefit is paid at the end of the year
of the second death.

4 . Calculate the net premium reserve at the end of years 1 through 10 for the
policy in exercise 3. Assume that the younger life survives 10 years and that
the older life dies in th e sixth policy year.

5. Given :

(i) j.L", = A + Be" for x ~ 0 where A = 0.004, B = 0.0001, c = 1.15, and

(ii) 6 = 5%.

Approximate a30:40 and A!0:40'
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C.g The Total Claim Amount in a Portfolio

C.9.! Theory Exercises
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1. The claim made in respect of policy h is denoted 8 h • The three possible
values of 8h are as follows:

{
a if the insured life (x) survives,

8h = 100 if the insured surrenders the policy, and
1000 if the insured dies.

The probability of death is q1,x = 0.001, the probability of surrender is m,x =
0.15, and the probability of survival is Px = 1 - q1,x - Q2,x. Use the normal
approximation to calculate the probability that the aggregate claims of five
identically distributed policies 8 = 8 1 + ...+ 85 exceeds 200.

2. The aggregate claims 8 are approximately normally distributed with mean
fJ, and variance a 2 • Show that the stop-loss reinsurance net premium p(f3) =
E[(X - (3)+] is given by

( fJ, - (3) (fJ, - (3)p(f3) = (fJ, - (3)if! -a- + a</J -a-

where if! and </J are the standard normal distribution and density functions .

3 . Consider the compound model described by formula (9.4.6): 8 = X + ..+XN
where N, Xi are independent, and Xi are identically distributed. Show that the

moment generating function of 8 is Ms(t) = MN(log(Mx(t))) where MN(t)
and Mx(t) are the moment generating functions of Nand X . This provides a
means of estimating moments of 8 from estimates of moments of X and N. For
example, E[8] = E[N]E[X] and

E[82
] = E[N2]E[X]2 + E[N] (E[X2

J - E[X]2) .

4. A reinsurance contract provides a payment of

R = { 8 - f3 if f3 < 8 < 'Y
'Y - f3 if 8 ? 'Y

Express E[R] in terms of the cummulative distribution function of S.

5. (a)

(b)

Express F(x) in terms of the function p(f3).

Given that p(f3) = (2 + f3 + t(32
) ,f3 ? 0, find F(x) and j(x).
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6. Suppose that /(0) , /(1) , /(2), . .. are probabilities for which the following
holds:

/(1)

/(x)

= 3/(0), /(2) = 2/(0) + 1.5/(1),
1
- (3/(x - 3) + 4/(x - 2) + 3/(x - 1)) for x = 3,4, . . .
x

What is the value of /(O)?

7. Suppose that log 8 is normally distributed with parameters, IJ and a . Cal
culate the net stop-loss premium p(f3) = £[(8 - (3)+J for a deductible f3.

8. (a) For the portfolio defined by (9.3.5), calculate the distribution of
aggregate claims by applying the method of dispersion with a span of 0.5.

(b) Apply the compound Poisson approximation with the same disceti-
zation.
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C.IO Expense Loadings

C.lO.l Theory Exercises
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1. Consider the endowment policy of section 6.2, restated here for convenience:
sum insured = 1000, duration n = 10, initial age x = 40, De Moivre mortality
with w = 100, and i = 4%.

(i) The acquisition expense is 50. No other expenses are recognized ({3 = 'Y = 0) .
Calculate the expense-loaded annual premium and the expense-loaded premium
reserves for each policy year.

(ii) Determine the maximum value of acquisition expense if negative expense
loaded reserves are to be avoided .

2. Give a verbal interpretation of -.\:V<>.

3. Consider the term insurance policy of section 6.2, restated here for conve
nience: sum insured = 1000, duration n = 10, initial age x = 40, De Moivre
mortality with w = 100, and i = 4%.

(i) The acquisition expense is 40. No other expenses are recognized ({3 = 'Y = 0).
Calculate the expense-loaded annual premium and the expense-loaded premium
reserves for each policy year.

(ii) If the expense-loaded premium reserves are not allowed to be negative, what
is the insurer's initial investment for selling such a policy?

4. Calculate the components 1000P, 1000P<> , 1000Pt3 and 1000Jn of the ex
pense-loaded premium 1000pa for a whole life insurance of 1000 issued to a life
age 35. The policy has level annual premiums for 30 years, becoming paid-up
at age 65. The company has expenses as follows:

acquisition expense
collection expenses
administration expens

12 at the time of issue,
15% of each expense-loaded premium, and
1 at the beginning of each policy year .

Use the Illustrative Life Table and i = 5%.

5. For the policy described in exercise 4, calculate components 1000.\:V, 1000.\:V<>,
and 1000.\:V"Y of the expense-loaded premium reserve 1000.\:va for year k = 10.
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C.I0.2 Spreadsheet Exercises

1. Develop a spreadsheet to calculate the expense-loaded premium components
and the expense-loaded premium reserve components for each policy year of a
20-year endowment insurance issued to a life age 40. Use the Illustrative Life
Table and i = 6%. Assume that acquisition expense is 20 per 1000 of insurance,
collection expense is 5% of the expense-loaded premium, and administration
expense is 3 at the beginning of each policy year.
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C.II Estimating Probabilities of Death

C.H.l Theory Exercises

1. Consider the following two sets of data:
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(a) D:z; = 36
(b) o; = 360

E:z; = 4820
E:z; = 48200

For each set, calculate a 90% confidence interval for q:z;.

2. We model the uncertainty about 0 (the unknown value of Jl:Z;+l/2) by a gamma
distribution such that E[OI = 0.007 and Var(O) = 0.000007. An additional 36
deaths are observed for an additional exposure of 4820. Calculate our posterior
expectation and standard deviation of B, and our estimate for q:z; .

3. Write down the equations from which

(i) ),.1 and

(ii) ),.U are obtained .

(iii) Rewrite these equations in terms of integrals over /(x; n), the probability
density function of the gamma distribution with shape parameter n and scale
parameter 1.

4. In a clinical experiment, a group of 50 rats is under observation until the 20th
rat dies. At that time the group has lived a total of 27.3 rat years . Estimate
the force of mortality (assumed to be constant) of this group of rats. What is
their life expectancy?

5. A certain group of lives has a total exposure of 9758.4 years between ages x
and x + 1. There were 357 deaths by cause one, 218 deaths by cause two , and
528 deaths by all other causes combined. Estimate the probability that a life
age x will die by cause one within a year .

6. There are 100 life insurance policies in force, insuring lives age x . An additional
60 polices are issued at age x + t. Four deaths are observed between age x and
x + 1; we assume that these deaths occur at age x + 0.5. Calculate the classical
estimator given by formula (11.2.3), and the maximum likelihood estimator based
on the assumption b, a constant force of mortality (11.4.2).

7. The force of mortality is constant over the year age (x ,x+ 11 . Ten lives enter
observation at age x . Two lives enter observation at age x+O.4 . Two lives leave
observation at age x+0.8, one leaves at age x+0.2 and one leaves at age x+0.5.
There is one death at age x +0.6. Calculate the maximum likelihood estimate
of the force of mortality.
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8. A double decrement model is used to study two causes of death in the interval
of age (x, x + 1).

The forces of each cause are constant.

1,000 lives enter the study at age x.

40 deaths occur due to cause 1 in (x,x+ 1] .

50 deaths occur due to cause 2 in (x, x + IJ.

Calculate the maximum likelihood estimators of the forces of decrement.

9. The Illustrative Life Table is used for a standard table in a mortality study.

The study results in the following values of exposures E:z; and deaths D:z; over
[40,45)

x E:z; D:z;
40 1150 6
41 900 5
42 1200 12
43 1400 9
44 1300 13

Calculate the mortality ratio j and the 90% confidence interval for f. Calculate

the estimates of 1/40 ,1/411 . .. 1/45 corresponding to j.
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D.O Introduction

We offer solutions to most theory exercises which we hope students will find
useful. When the solution is straightforward we simply give the answer. For
the spreadsheet exercises we describe the solution and give some values to use
to verify your work. We leave the joy of writing the program to the student.

We have tried hard to avoid errors. We hope that students and other users
who discover errors will inform us promptly. We are also interested in seeing
elegant or insightful solutions and new problems.

The solutions occasionally refer to the Illustrated Life Table and its func
tions. They are in Appendix E.
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D.1 Mathematics of Compound Interest

D.l.I Solutions to Theory Exercises

1. This follows easily from equation (1.5.8).

2. Fix i > 0 and consider the function f(x) = [(1 + i)% -1]x- 1 = (e6%- 1)/x.
From the power series expansion

it is easy to see that f'(x) > 0 for all x > O. It follows that f(x) increases from
f(O+) = 8 to f(l) = i. Therefore g(x) = f(x- 1

) decreases on [1,00) from i to
8. Thus, i(m) = g(m) decreases to 8 as m increases. Similarly, d(m) increases to
8 as m increases .

3. The accumulated value of the deposits as of January 1, 1999 is XSTIljO .06'

The present value of the bond payments as of January 1,1999 is 15,000aSjO.06'

Equate the two values and solve for X = 4794.

4. Let i be the effective annual interest rate. Then 1 + i = (1 + j/2)2. The
equation of value is

Hence (1 + j /2)4 = 1 + 1/5.89 and so j = 8%.

5. Let u =* and write the equation of value as follows:

51 l+k (l+k)2
1.04 + 1.04 + ...

= u+u2+ ...
u

l-u
l+k

0.04 - k '

Solve for k = 2%.

1 _ e-106

a(8) = 5 6/2 .
e -1

This is equivalent to 10.19% per year convertible

6. Use equation (1.9.8) with a starting value of 8 = 12%. The price of the
coupon payments is p = 94 - 100(1.12) -10 = 61.80. The sum of the payments
is r = 100 and

The solution is 8 = 9.94%.
semiannually.
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7. The equation of value is
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1000 x(v + v 2 + v3
) + 3x(v4 + v5 + v 6

)

x(3a6] - 2a3])

x(l1.504459)

where the symbols correspond to a values of i = 1%. So x = 86.92.

8. At the time of the loan,

4000 kv + 2kv2 + 3kv3 + .. .+ 30kv30

= k(Ia)3O]

.. 30 30
k a301- v

0.04

so k = 18.32. Note that the initial payment is less than the interest (160)
required on the loan so the loan balance increases. Immediately after the ninth
payment the outstanding payments, valued at the original loan interest rate, is
found as follows:

lOkv + llkv2 + ... + 30kv21 9ka2T] + k (Ia)2T]

(18.32)(9(14 .02916) + 134.37051)

4774.80.

9. Let j = i(2) /2 and solve 98.51 = 2(1 + j)-l + 102(1 + j)-2 for (1 + j)-l =
0.9729882. This corresponds to i(2) = 5.55%.

10. From (i) and (ii) we get 12(120) a~) = 12(365.47) a~g) and solve for
vn = 0.6716557. Now use (iii) and (iv) to solve for X = 12000.

D.1.2 Solutions to Spreadsheet Exercises

1. (a) The investment yield is 9.986%.

2. Guide: Set up a spreadsheet with a trial value of X. Since a total of X +2X+
3X + ... + 6X = 21X is withdrawn, a good trial value is about 100,000/20 =
5,000. Use the fundamental formula (1.2.1) to calculate the fund balance at the
end of each half-year. Then experiment with X until an end-of- period six bal
ance of zero is found. X = 6,128.(Alternatively, in the last stage, use Goal
Seek to determine the value of X which makes the target balance zero.) Note
that the end-of-period six balance is the fund balance beginning the seventh
half-year. Adapting notation of the text to half-years we have Fo = 100,000,
F1 =Fo(1.03)2 - X, F2 = F1(1.03)2F1 - 2X, and so on.

3. Guide: Set up an amortization table using a spreadsheet and a trial value
of i = 0.03. In a cell apart from the table, calculate the target P - 61 for the
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fifth year . Then use Goal Seek to determine i so that the target cell is zero.
i = 10.93%.

4. Guide: The fund deposit X satisfies X 810] :0.03 = 10,000. In effect, the
company accepts 10,000 now in exchange for 10 semiannual payments of 300+X .
Calculate X using the spreadsheet financial functions. The internal rate of
return j equates the future cash flows300+X to 10,000. Set up your spreadsheet
with a trial value of j . Use the Goal Seek feature to detemine the value of j .
i = 7.80%

5. Guide: Put i = 10% and a trial value of X into cells. Calculate the net
present value of the payments of 100 minus the payments of X in another cell
as follows:

00" X 19·· _ 100 - VlO lOO- V19 X
1 a 101- v aool - d

Use the Goal Seek feature to determine the valaue of X for which the resent
value is zero. X = 375.80

6. Guide: Set up a spreadsheet to amortize the loan using a trial value of
X = 30,000. The interest credited in year k is

0.08 min(100000, B) + 0.09 max(O,B - 100000)

where Bk is the beginning year balance. B« = 300,000, B1 = 300,000+8,000+
18,000 - X , and so on recursively. Use the Goal Seek feature to determine X
so that B 11 = 0 (beginning year 11 = end of year 10). X = 45,797.09

7. Guide: Work from the last year back to the present. The required cash
flow for the last year is known and so is the coupon, so you can calculate the
number of longest maturity bonds to buy. Then work on the next to the last
year , knowing the required cash flow and the number of bonds paying a coupon
(but maturing in the following year) . And so on.

The total market value is 450,179. You need 1.87 bonds maturing in 1995,
etc .

8. Guide: Use th e Goal Seek feature. The market yield is 7.46

9. Guide: Use the Goak Seek feature to find the price for each call date to yield
8%. The price is the minimum of these: 1,085.59.

10. Guide: With a trial value for the interest rate, use the future value function
(FV) to find the balance after 20 quarters. Use Goal Seek to set the future value
to 5000. The solution is i = 8.58%



~41 100

tP41 dt

= roo ( 42 )3
Jo 42 + t

= (42)3(42+t)-21°O
-2 0

= 21.
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D.2 The Future Lifetime of a Life Aged x

D.2.1 Solutions to Theory Exercise

1. Use equation (2.2.5). J.L45 = -ft In(tp",) evaluated at t = 45 - x. Thus

J.L45 = _~ In (100 - x - t)
dt 100-x

= 100 ~ x - t It=45-",
1

= 55°

2. Use equation (2.1.11).

E[T(x)] = 100

tP",dt

1100 (1 -C~Oy.5) dt

3. Use (2.2.6). First: f~o J.L"'+tdt = -In(85 - t) - 31n(105 - t)l~ =

-In (~ (~5)3). Then 2OP", = ~ UtS)3 = 0.4057.

4. Use (2.1.11) .

5. The symbol m", denotes the central death rate: Deaths d", = I", - I"'+l and

average population = 1"'+1 Iydy =1",11
I~:t dt. Divide each of deaths and

average population by I", to obtain m", = ---f::--dt. Use (2.6.9).
fo tP",

11 11 1- q", dt

O
tP",dt =

o 1 - (1 - t)q",
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=

pz In[1 _ (1 _ t)qzJl
1

qz 0

-pz In(pz)
qz

The formula for mz is the reciprocal of this quantity multiplied by qz. To work
the exercise substitute qz = 0.2 and pz = 0.8. The answer is mz = 0.224.

6. Use equation (2.2.6). «» = pz = 1 - 0.16 = 0.84 so tPz = e-t/-J = (0.84)t =
0.95 and, t = In(0.95)/ In(0.84) = 0.294.

7. Since lz/1-z is constant, lz is linear. Thus T(88) is uniform on (0,12). Therefore
Var(T) = (12)2/12 = 12.

8. Before: 0.95 = exp ( - f0
1

/1-zHdt) = pz. After: 0.93 = exp (- f0
1(/1-z+t

- c)dt)

= pzec = 0.95ec . Therefore eC = 93/95, c = log(93/95) = -0.0213.

9. Make the change of variables x + s = y in equation (2.2.6) to prove (i). Use
the rules for differentiating integrals to prove (ii).

10.

1001Iq[30]+l = 100 (P[30] +1) (qI30]+2)

= (1 - q[30]+1) (100qd
= (1 - 0.00574)(0.699)

= 0.695

11.
l40 -l57 (81)1/2 - (64)1/2

l21 = (100)1/2 = 0.10

12 . Use this relation:

ez = E[K(x)J = PzE[K(x)IT(x) ~ IJ + qzE[K(x)IT(x) < IJ = pz(1 + ez+d·

Thus pz = ez/ (1 + ez+d· 2P75 = P75P76 = H~g.5 1~~·~.0 = 0.909.

13. T(16) is uniform on (0, w - 16) since we have a de Moivre mortality table.
Hence E[T(16)J = (w-16)/2 and Var[T(16)J = (w-16)2/12. Therefore w-16 =
2(36) = 72 and Var[TJ = (72)2/12 = (72)(6) = 432.

14. qso = 1 - 21P30/20P30 = 111/6000. And /1-30H = - tP~O /ttP30 = 78oci~ig:-t2.
Therefore, qso - /1-50 = 1/6000.

15. E[TJ = f;oo-z tpzdt = fo
a (a~t)2 dt = ~ where a = 100 - z: E[T 2J =

f01OO
-
z

2ttpzdt = 2fi ttpzdt. Use integration by parts to obtain E[T2j = a;.
Hence Var(T) = E(T ) - E(T)2 = a2(1/ 6 - 1/9) = (100 - x)2/18.
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16. mx = ~I. and , because of the constant force of mortality, tPx = e-/Jt
o .Pzdt

where J.L = -In(px). Hence, f0
1

tPxdt = qx/J.L and m x = J.L = 0.545.

17. Let T = T(x) be the lifetime of the non-smoker and Til = TIl(X) be the life

time of the smoker. Use formula (2.2.6): Pr(TIl > t) = exp ( - f~ CJ.Lx+udu) =

(tPx)C where tPx = Pr(T > t). Hence Pr(TIl > T) = fooo Pr(TIl > t)g(t)dt =
fooo(tPx)Cg(t)dt = - f;" w(t)Cw'(t)dt where w(t) = tPx' Hence, Pr(TIl > T) =

[w(t)]C+ll
oo

= 1/(c+ 1).
c+ 1 0

18. See exercise 9. qx = 1 - Px = 1 - exp (- i:: J-Lydy) which we get by a

change of variable of integration in formula (2.2 .6). Now apply the rules for
differentiation of integrals:

d (l x

+
1

):: = - exp - x J.Lydy (-J.Lx+1 + J.Lx) = Px(J.Lx+ 1 - J.Lx) .

f:
45 f:4519. 35 J.Lx dx = 400k and so 0.81 = 101>35 = exp( - 35 J.Lxdx) = exp( - 400k ).

Similarly 20P40 = exp( - f4r.:: J.Lxdx) = e-1OOOk = ((0 .81) 1/400)1000 = (0.81)5/2 =
(0.9)5 = 0.59

20 . E[X2] = 2 f; xxpodx = 3w2/5. VarIX] = (3w2/5) - (3w/4)2 = w2(3/5 
9/16) = 3w2/80.

D .2.2 Solutions to Spreadsheet Exercises

1. See appendix E.

2. Check value: eo = 71.29.

3. C = 0.09226 . Assume that "expectat ion of remaining life" refers to complete
life expectation and that assumption a applies , so that ex = ex + 0.5.

4 . Use formula (2.3.4) with A = O. Check values: 140= 99,510 when c = 1.01
and 150 = 680 when c = 1.20.

5. Under assumption a, J.Lx+O.6 = 0.10638 for example .

6. Under assumption b, 0.4qx = 0.04127 for example .

7. Use trial values such as B = 0.0001 and c = 1 to calculate Gompertz
values, and the sum of their squared differences from the table values. Use the
optimization feature to determine values of B and C which minimize the sum.
Solution : B = 2.69210-5 and c = 1.105261.

8. For k = 7.5, e45 = 12.924. For k = 1, e45 = 30.890.
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D.3 Life Insurance

D.3.1 Solutions to Theory Exercises
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1. The issue age is x = 30. From (i), T = T(30) is uniformly distributed on
(0,70). The present value random variable is Z = 50,00OvT . Hence, A30 =
E[Z] = 50,000 I;a vt 7~dt = (50,000/70)(1 - e- 7 )/ (O.1O) = 7,136.

2. Use the recursion relation:

An alternative solution in terms of commutation functions goes like this: The
numerator can be written as follows:

Hx -Cx

Dx

The denominator is RS±b+M S± 1 . Hence the ratio is Dx+1/ Dx = vpx '
s ± 1

3. Let Z3 be the present value random variable for the pure endowment, so
Z1 = Z2+Z3 . It follows that Var(Zd = Var(Z2)+2Cov(Z2, Z3)+ Var(Z3) ' Now
use the fact that Z2Z3 = 0 to obtain COV(Z2' Z3) = -E[Z2]E[Z3]. Z3 is vn times
the Bernoulli random variable which is 1 with probability nPx, zero otherwise.
Hence Var(Zt} = 0.01 + 2(-E[Z2]E[Z3]) + Var(Z3) = 0.01 - 2(0.04)(0.24) +
(0.30)2(0.8){1 - 0.8) = 0.0052.

4. A45:2O] = (M45 - M65 + D65)/D45 = 0.40822.

5 . Use the recursion relation Ax = A~:nl +vnnPxAx+n and the relation Ax:nl =

A~:nl + vnnPx. In terms of the given relations these are Ax = y + vnnPxZ and
u = y + vnnPx. Hence Ax = y + {u - y) z = (1 - z)y + u z.

6. From (ii), the discount function is Vt = 1/{1 + O.OIt) = 100/(100 + t).
The benefit function is: bt = {lO,OOO - t2)/1O = (100 + t){100 - t)/lO. Hence
Z = vrbr = 10{100 - T) and so E[Z] = 10(100 - E[T]). Now use item (i):
T = T(50) is uniform on (0, 50] so E[T] = 25 and E[Z] = 750.

7. E[vT ] = r~-6te-l'tl-£dt = Ax = _1-£_ and E[(vT)2] = 2Ax = _1-£_
l» 1-£+8 1-£+28

Therefore, Var[v
T

] = 2 Ax - Ax
2 = .. . = (1-£ + 2;)~: + 8)2 '

8. Consider th e recursion relation Ax = vqx(1 - Ax+d + vAx+1. The analog
for select mortality with a one year select per iod goes like this: Since the select
period is one year, K([x] + 1) and K(x + 1) are identically distributed. Hence,
using the theorem on conditional expectations, we have Alx] = E[vK1x]+1] =
vq[x] + E[vK[x+1 J+1+1](1 - q!x]) = vqlx] + E[vK(x+1)+1]v(1 - q[xj) = vqlx] +
Ax+1v{1 - q[x]) ' Hence, A[x] = vqlx](1 - Ax+d + vAx+1. By combining the
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two recursion relations, we see that AI: - AI"') = v(q", - ql",))(l - A"'+l) =
0.5vq",(1 - A",+d.

9. Let P be the single premium. Use formula (3.4.3). The benefit function is
Ck+1 = If),000 + P for k = 0,1, . . . ,19 and Ck+1 = 20, 000 for k = 20,21, . ...
Hence P D", = (10, 000 + P)M", + (la, 000 - P)M",+20 . Now solve for P =
10 000 M", + M"'+20

, D", - (M", - M",+20)

10. Use formula (3.4.3). Make a column of differences of the death benefit
column Ck. In calculating the differences, use a death benefit of a at age x-I
and age x+ 11. Also put in the ages to avoid confusion about which age to use
in the solution. You will obtain a table like this:

Age at Death Year of Death Ck Ck - Ck-I
X 1 10 10

x+1 2 10 0
x+2 3 9 -1
x+3 4 9 a
x+4 5 9 a
x+5 6 8 -1
x+6 7 8 a
x+7 8 8 a
x+8 9 8 a
x+9 10 7 -1
x+ 10 11 a -7

From the table, we see that the net single premium is written in terms of com
mutation functions as follows:

10M", - M",+2 - M",+5 - M"'+9 - 7M",+IO
D",

11.

Z={ if T < 10
otherwise

T is uniform on (0,50). Hence, the net single premium is

= 50 000 [40 e-(O.lO)lO + rIO vt2-dt]
'50 Jo 50

10, 000[1 + 3e-Ij = 21, 036.

12. Let m be the answer. m = v T , where tPy = 0.5. Since tPy = 8~~~)t) =
e -O.02t = 0.5, then m = eO.04t = (e -O.02t)2 = (v.5)2 = 0.25.

13 . Since i = 0, then Z = a or 1. Z = 1 if K = a or K = 1 which occurs with
probability 2q", = q", + P",q",+1 = 1/2 + 1/2q",+1 . And Z = a if K > 1, which
occurs with probability l-(q",+P",q"'+l) = 1/2-1/2q"'+l' Hence Zis Bernoulli;
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its variance is (1/2 + 1/2q",+d(1/2 - 1/2q",+d = 1/4(1 - q~+l)' Set this equal
to 0.1771 and solve. The result is q"'+l = 0.54.

14. Calculate values of Z and its density function f(t) in the given table.
Obtain the following:

t c(t) q"'+t Z f(t) Zf(t)
0 3 0.20 2.700 0.2 0.5400
1 2 0.25 1.620 0.2 0.3240
2 1 0.50 0.729 0.3 0.2187

>3 0 0 0.3 0

II = 1.0827. The values of Z which are greater than II = 1.0827 are Z = 2.7
and Z = 1.620. Hence Pr[Z > II] = 0.2 + 0.2 = 0.4.

15. A", = vq", +VP",A"'+l so A76 = vq76 + (D77 / D76)A77 since D77 / D76 = vp76 .
Since P76 = (1 + i) (D77 / D76) = (1.03)(360/400) = (1.03)(0.9) = 0.927 then
0.8 = (1.03)-1(1 - 0.927) + (0.9)A 77 • Now solve for A77 = 0.810.

16 . The net single premium is 50 Jo1OOvtg(t)dt. Integrate by parts to get a net
single premium of 1 - 11e- 1O = 0.999501.

17. See Exercise 7. E[v2T ] = 0.25 implies that ;;fu = 0.25 so 3J1- = 26.

E[vT
] = s!h =~ = 0.4.

18. 0.95 = Pr[(Zl +Z2+" ·+ Z1Oo)1000 ~ 100w] where the random variables Zi
are independent and identically distributed like vT . Now Y = (1/100) 'Ek~l Zk
is approximately normal with mean E[Z] = 0.06 and variance equal to
(1/100)Var(Z) = (1/100)[0.01 - (0.06)2] = 0.64(10-6 ) . Thus the mean and
standard deviation of Yare 0.06 and 0.008. Therefore 0.95 = Pr(Y ~

w/I000) implies that w = 1000(0.06 + (1.645)(0.008)) = 73.16.

19. Use II = II A~:201+1O, 000v2020P", or IID", = II(M",-M"'+20)+10, 000D"'+20

and solve for II.

20. Use formula (3.4.3). Make a column of differences of the death benefit
column Ck. Use a death benefit of 0 at age x-I.

Age at Death Year of Death Ck Ck - Ck-1

X 1 10 10
x+l 2 10 0
x+2 3 9 -1
x+3 4 9 0
x+4 5 9 0
x+5 6 8 -1
x+6 7 8 0
x+7 8 8 0
x+8 9 8 0
x+9 10 7 -1

> x+1O >11 7 0
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Then the net single premium is given as follows:

lOMx - Mx +2 - Mx +5 - Mx +9
Dx

D.3.2 Solution to Spreadsheet Exercises

1. For i = 2.5%,5.0%, and 7.5%, the single premium life insurance at age zero
is Ao = 0.19629,0.06463 and 0.03717.

2. At i = 5%, (I A)o = 2.18345.

3. Guide: Set up a table with benefits and probabilities of survival to get them.
The net single premium is 0.0445.

4. Guide: Use the VLOOKUPO function to construct the array of survial
probabilites for a given issue age. Check values: (DA)so :501= 9.23 at i = 5%.

(DA)25:751= 3.50·at i = 6%.

5. Guide: Set up a spreadsheet to calculate the values of Ax and 2Ax. According
to formula (3.2.4), the second moment can be calculated by changing the force
of interest from 6 to 26. Put 6 in a cell and let it drive the interest calculations.
Use th e Data Table (or What if?) feature to find the two values of E[vK +1] ,

corresponding to 6 and 26. Check values: Var(vK+l) = 20,190 when i = 5%,
and Var(v K+1) = 17,175 when i = 2%.
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D.4 Life Annuities

D.4.1 Solutions to Theory Exercises
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1. Use formula (4.3 .9) with m = 2,x = 40,n = 30. ii4o:3Ol = Dio1(N
4o

N70 ) = 15.1404, D70 / D40 = V
30P40 = 0.1644, 0(2) = i(2;:(2l = 1.00015, and

fl(2) = 0.25617. The answer is ii~~301 = 14.9286.

2. Use the recursion formula (4.6.2) for u:z::T] to develop the following recursion

formula: (Iii):z: = ii:z::T] + vp:z: (ii:z:+1 + (Iii):Z:+1)' The ratio simplifies conse

quently to vp:z: = u:z::T] .

3. (l,qa):z: = Jon tvttp:z:dt + J; nvttp:z:dt. Differentiate before making the sub
stitutions Vt = e-O.06t and tP:z: = e-O.04t. Use Liebnitz's rule for differentiating
integrals:

nvn nP:z: +100

v ttp:z:dt - nvn nP:z:

100

VLtp:z:dt =100

e- o.1Otdt = lOe-o.1On
•

4. Arrange the calculations in a table:

Event Pr[Event] Present Value (PV) (PV)Pr[Event] (PV)"Pr[Event]
K=O 0.2 2.00 0.400 0.800
K=1 0.2 4.70 0.940 4.418
K? 2 0.6 7.94 4.764 37.826

E[PV] = 6.104 and E[PV2 ] = 43.044. Hence, the variance is 43.044-(6.104)2 =
5.785.

5. (Ia)9s = (igs + ll(igs + 21(igs + 31(igs + .... Since w = 100, i = 0 and T(95) is
uniform on (0,5), then the five non-zero terms are (igs = E[T(95)] = 2.5,ll(igS =
P9Sa96 = (0.8)(2) = 1.6,21£19S = 2P9s(ig7 = (0.6)(1.5) = 0.9,31(igs = 3P9sags =
(004)(1) = 0.4 and 41(igs = 4P9Sa99 = (0.2)(0.5) = 0.1 . Hence, the answer is
5.5. Alternatively, we can calculate expected present values conditionally on the
year of death. There are five years of interest and they are equally likely. This
yields (0.5 + 2.0 + 4.5 + 8.0 + 12.5)/5 = 5.5.

6. Use formula (4.3.9) or its equivalent in terms of commutation functions.
lOlii2S:!iil = D2S-

1 (N3S - N4S ) = 4.85456, (D35-D4S)/D2S = 0.24355,0(12) =
1.00020, and ,8(12) = 0.46651. Hence,
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Another solution is based on formula (4.3.2) and (3.3.10), adjusted for tempo
rary rather than whole life contracts:

i 1 10
i(l2) A35: iO] + 10P35 V

i
= i(12) (M3S - M4S) 1D35 + D4s1D3S = 0.61814.

Hence,

7. Use formula (4.3.9) to derive a formula analogous to formula (4.5.4) for
temporary annuities. Then use the formulas analogous to (A.3.6) and (A.3.9)
to write the result in terms of commutation functions:

(Iii)~7'~ Q(m) ((Iii)z:ril) - [J(m) (iiz:,il - nvnnPz)

= Q(m) Sz - SZ+E
z-

nNz+n _ [J(m)Nz - NZ7;z- nD:z:+n

Now calculate the Nand D values by differencing the successive values of the
given values of S . We need N70 = S70 - S71 = 9597, Nso = Sso - SSI = 2184,
D70 = N70 - N71 = 9597 - 8477 = 1120, and D80 = N80 - NS1 = 368. We get
(I · · ) ( 1 2~ = 29 16a 70: 101 . .
8.

9. Use formulas (4.2.9), (3.2.4) and (3.2.5). Var(Y) = d-2 (E[e-2c5(K + l ) j _ A;).
Now use A:z: = 1 - dii:z: twice. A:z: evaluated at 0 is 1 - (0.04)10 = 0.6. The
discount corresponding to 20 is I -v2 = 1- (0.96)2 = 0.0784 so E[e-2c5(K + l) j =
"A:z: evaluated at 20," is 1 - (0.0784)(6) = 0.5296. Therefore and Var(Y) =
(0.5296 - (0.6)2)/(0.04)2 = 106.

10 . Use formulas (4.2.13) and (3.2.12).
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alj S", - a"21 S",+I + allS"'+2

D",

11. Use formula (Ao4 .7). N28 = S28 - S29 = 97, N29 = S29 - S30 = 93, and
D28 = N28 - N29 = 4. Hence, M28 = 4 - (3/103)97 = 1.1748 where we used the
commutation function version of formula (4.2.8): D", = dN", + M",.

12. Use the recursion relation a", = 1 + vp",a",+I. 7.73 = 1 + (1.03)-lp73(7043)
so P73 = (1.03)(6.73)/7043 = 0.93.

13. The values of the present value random variable Y are 2, 2 + 3v = 4.7273,
and 2 + 3v + 4v2 = 8.0331. Hence, Pr(Y > 4) = Pr(K > 0) = 1 - 0.20 = 0.80

14. Use formula (404.8) with r(t) = 1 if 0 $ t < 1 and r(t) = 2 for t ~

1. Integration by parts applied to E(Y) = 1:0r(t)(l - 0.05t)dt with w(t) =

I~ r(s)ds yields E(Y) = 0.051020 w(t)dt = 19.025. Alternatively, the annuity
can be viewed as the sum of two annuities each having constant rate of payment
of 1 per year. The first begins paying at age 80, the second at age 81. Using
this approach we have E(Y) = a80 + VP80a81 = E(T(80)) + 0.95E(T(81)) where
T(80) and T(81) are uniformly distributed on (0,20) and (0,19), respectively.
Again we get E(Y) = 10 + 0.95(9.5) = 19.025.

15. Consider the sum of two annuities approach, as in exercise 14: E(Y) =
a80:5] + vpsoas l:4J = E[min(T(80),5)] + 0.95E[min(T(81 ),4)] = (2.5)(0.25) +
(5)(0 .75) + (0.95)[(2)(4/19) + 4(15/19)] = 7.775.

16. Since 6 = 0, h = Var(T) = E(T2) - (E(T))2 . Also E(T2) = 10"" t2g(t)dt =
21000 t(l - G(t))dt = 2g by parts integration. Hence, E(T) = ,j2FTi.

17. (Da)70:101 = Diol (10N70 - S71 + Ssd = 42.09.

18 .

vS", - (1+ V)S",+I + S"'+2
D",

vN", - N",+I
D",

The formula (Ao4 .6) Cy = vDy - Dy+l , summed over y running from x to the
end of the table, gives M", = vN« - N",+I, from which we see the simplification
to A", .

19. Let Z = e- IiT and Y = aTl = 6- 1(1- Z ). From the given data, we find that

E(Z) = 1 -106, E(Z2) = 1 -14.755, and 50 = Var(Y) = 6- 2 (E(Z2) - E(Z)2).
First solve for 6 = 3.5%. Then Ax = 1 - se; = 0.65.

20. Apply formula (4.8.9) to obtain A35.75 = 0.17509. Apply formula (3.3.5) to
obtain A35.75 = 0.18046. Then a35.75 = (1 - ih5.75)/6 = 16.79725.

D.4.2 Solutions to Spreadsheet Exercises

1. Set up your spreadsheet to calculate the required annuity value with reference
to a single age and interest rate. Use VLOOKUPO references to the mortality
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values, which may be on a separate sheet. Then use the Data Table feature to
calculate the array of values for x running down a column and i accross a row.
Check values: (i30 = 18.058 at i = 5% and (i20 = 13.753 at i = 7.5%.

2. The expected market value is 309,153.

3. Guide: Set up a table to calculate A", and EIZ2] with a reference to a single
value of c. Use formula (3.2.4). Then use the Table feature to allow for different
values of c.

4. For i = 5%, (i~~~5 = 18.3831 and A24.5 = 0.11255. For i = 6%, (i~~~ =
15.37108 and A30.25 = 0.10369.

5. Guide: From the Illustrative Life Table set up a table with the cummula
tive distribution function of K. Fill a column with 200 random numbers from
the interval [0, 1] using RANDO. Use the VLOOKUPO function to find the
corresponding value of K . Evaluate Y for each value of K, then calculate the
sample mean and variance using the built-in functions . The theoretical answers
are (i40 = 16.632 and Var(Y) = 10.65022.
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D.5 Net Premiums:Solutions

D.5.! Theory Exercises
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1. Use formula (5.3.15) : P25:wl = Pi5:wl + P25:~1 = 0.064. Now use the

relation 2OP25 = Pi5:wl + P25:~lA45 = 0.046 to obtain

P25:2~1 = (0.064 - 0.046)/(1 - 0.64) = 0.05.

Therefore Pi5:Wl = 0.064 - 0.05 = 0.014.

2. U = vK+! - Ga K+Jj = -G/d + (1 + G/d)v K+! and hence

Yar[L*] = (1 + G/d)2Yar[vK+!] = (d + G)2d-2Yar[vK+!] .

Similarly,

and
Yar[L] = (d+ P.:r)2d-2Yar[vK+l ] = 0.30.

Now use E[L] = 0 and E[U] = -0.20 to find that 0 = A",-P",a", = l-(d+P",)a",
and - 0.2 = 1 - (d + G)a",. Hence

Yar[L*] = (d + G)2d-2Yar[vK+!] = 0.30(d + G)2/(d + p",)2

= 0.30[(d+G)/(d + p",)]2 = 0.432.

3. Let P denote the net annual premium.

P = 5.000(lOA25+ 51A25 + IOI A25 + !51A25 + 2ol A25 + 25IA25
a25 : 101

5.000(lOM25 + M30 + M35 + M40 + M45 + M50
N25 - N35

1012.33.

4.

Loss A =4 K+! 018"v -. aK+l1

= -0.18/d+ (4 +0.18/d)vK+! = -2.25+6.25vK+!

Using the table we find that Yar[Loss A] = 3.25 = (6.25)2Yar[vK+!]. Simi
larly, Loss B = 6vK+! - 0.220.K+1j = -2.75 + 8.75vK+! and Yar[Loss B] =

(8.75)2Yar[vK+!] = (8.75)2(3.25)/(6.25)2 = 6.37.
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5. Let Q be the answer . The death benefit is 10,000 + Q/2 initially. After
the premiums are paid up it reduces to 10,000. Hence, the expected value of
the present value of benefits is 10, OOOA x + (Q/2) A~: 20] . The expected present

value of premiums is Qax:201' The equivalence principle implies that

Now rearrange the denominator.

aX:201-(A~:2Ol)/2 = ax:2O] -(I-dax:2Ol - Ax:k 1)/2
(1 + d/2)ax:201- (1 - V2020Px)/2.

Hence,

6. Ax = nPxax:,q = nPx(1 - Ax:,q)/d. Hence nPx = dAx/(1 - Ax:,q) .

7. The present value of death benefits is 1000(1.06)v in year 1, 10000(1.06)2v2
in year 2, etc. Since v = 1/1.06, the present value of death benefits is 1000,
independent of the year of death . Let Q be the net annual premium. The
expected present value of net annual premiums is Qax. Hence Q = 1, OOO/ax =
1000(d+ P",) = 1000(0.06/l.06) + 1000Px = 66.60.

8. Solve the two equations:

Ax - A~:201 + v~OPxAx+20 and Ax:2Ol - A~:2O] = V
2020Px for V

2020P", = 0.5

and A~: 201 = 0.05.

Use Ax: 2Ol = 1 - dax:2O] to find ax:201= 15.45. This yields lOOOP (A",:2O]) =

1000 ( A~: 201 + v2020Px) /ax: 201 = 1000 [(~ )A~ : 201 + v2OZ0Px] /ax:201 = 35.65

9. L = vT - P(Ax) = -P(Ax)/6 + (6 + P(Ax))(6)-lvT . By the continuous
payment analog of formula (5.3.5), we have a,,(6+P(Ax)) = 1. Hence, Var(L) =
Var(vT)/(6G.

x)2. By exercise 7 of chapter 3,

Var[vTJ = E[v
2T

] - (E[v
T

])2 = (26 + :)~: + J1.)2 ·

Finally, Var(L) = J1./(26 + J1.) since G.x = 1/(6 + J1.).

10. (a) The insurer's loss random variable is the present value of benefits less
the present value of premiums. The death benefit payable at the moment of
death is 1 + GS'I'l ' provided T < 10. The present value of death benefits is
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vT(l + CST]) = vT + CaT] if T < 10 and 0 if T ~ 10. The present value of

premiums is CaT] if T < 10 and CaW] if T ~ 10. Therefore, the insurer's loss

is

{

vT ifT < 10
L = -CaTill otherwise.

(b) E[L] = E[vTIT < lO]lOqx + (-CaW] hoPx = A;:W] - CaW] 10Px'

E[l}] = E[v 2TIT < lO]IOQx + (-Cauq)2IOPx = 2A;:TOl +C2(aTill)2IOPx.

2 - I - 2 - I - 2
Var[L] = Ax:Till + (CaTill) 10Px - (Ax :101 - CaTillloPx) .

(c) If G is determined by the equivalence principle, then C = A;:Till /(aTOl10px) .

This can be substituted into the last expression to find

Var[L] = 2A;:101 + (A; :Till)2/IoPx .

11. a30:Till = 1 + a30:9] = 6.6. Hence A30:Till = 1 - da30:Till = 0.4 Therefore

A~o:IOl = A30:TOl - V
101OP30 = 0.4 - 0.035 = 0.05. Hence, 1000P;0:101 =

1000A~0:Till/a30:Till = 7.58.

12 . Ax = 0.2 and Ax = (i/8)Ax = 0.2049593 by assumption a. Hence, ax = (1
Ax)/d = 16.8 and hence 10000P(Ax) = 10000Ax/ax = 2,049.59/16.8 = 122.
Also, ax = (1 - Ax)/8 = 16.2951. Hence, 10000F(Ax) = 2049.59/16.2951 =
125.78 and the answer is 3.78.

13.

1 _ A30:151 - A30

15E30

A30:151 - A30
l---~--

A30:-fsl
A30 :-fsl - A30 :151 + A30

A30:-fsl
A30 - Aio:151

A30:I~l
M30 - (M30 - M45 ) _ A

D
45

- 45·

8 - 0.07
14 . Under assumption a, Ax = -;- Ax = 007 0.03 = 0.289622.

t e ·-l
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ax = 1 -/x = 10.507587

Using (4.3.5), a~2) =Q(2)ax - rP) = 10.252457.

(
(2)( - ) 500AxTherefore, 1000 0.5P Ax) = -::(2) = 14.63.

ax

15. Var[LJ = 0.25 where L = vT - ? (Ax) iiTl = (Oiix ) - 1 vT - P (Ax) /0.

Therefore Var[LJ = Var[vT]I (6iix )2 = (100/36)Var[vT). Hence 0.25 = Var[L) =
(100/36)Var[vT] and Var[vTJ = 0.09. L* = vT - GiiTl = (1 + G/o)vT - G/o

and Var[L*] = (1l/6)2Var[vT) and hence Var[L*J = (1l/6)2Var[vT) = 0.3025.

~16. Let P = .O~20 = net annual premium. Then Pii40: 201 = A40: 201+
E[W) where W = Pv K +15K+t1 if K < 10 and W = 0 if K ~ 10. Since

E[W) = P (ii40:10] - IOE4051O] ) ' P (ii40:201 - ii40:10] + IOE4051O] ) = A40:201
and therefore

k ii40:201 - ii40:10] + IOE4051O]

= (iiso:10] + 510]) IOE40.

17. Let P denote the annual premium. Then L = -P - Pv with proba
bility (0.9)(0.8) = 0.72, L = v2 - P - Pv with probability (0.9)(0.2) = 0.18
and L = v - P with probability 0.1. By the equivalence principle, P =
(vqx + v2pxqx+l) / (1 + vpx) = 0.13027621. Thus the values of L are L =
-0.2475 with probability 0.72. L = 0.5625 with probability 0.18 and L =
0.7697 with probability 0.1. Hence Var[LJ = E[L2) = (-0.2475)2(0.72) +
(0.5625)2(0.18) + (0.7697?(0.1) = 0.160

- ( -) - - -1 t» -(6+)t18 . I,OOOP Ax:nl = 1,000A x:nj / ax :nl ' 0.4275 = Ax:n1 = Jo J1.e I' dt =
0.45 (1 - e-0. 1n ) and hence e-0. 1n = 0.05. Therefore Ax:nj = 0.05 + 0.4275 =
0.4775 and Q.x:nl = (1-0.4775)/0.055 = 9.5. I, OOO? (Ax:nl) =
1,000(0.4775)/9.5 = 50.26.

19. The loan payment for a loan of 1, 000 is P = 1, OOO/a41 = 288.60. The death

benefit paid at K +1 is bK+l = Pii 4_ KI if K < 4 and bK+1 = 0 otherwise. The

present value of the death benefit is Z = vK+1bK+ 1 = Pv K+! (1 - v4- K) [d if
K < 4 and Z = 0 if K ~ 4.

(a) L = Z - G = P (v K +! - vS) [d - G if K < 4 and L = - G if K ~ 4.

(b) 0 = E[L) = E[Z) - G = P (A;S:41 - VS4Q2S) /d- G.

So now calculate as follows: A2~: 41 = A2S:41 - V44P2S = 1 - dii2S:41 - v44P25 =

0.0043. G = 288.6(0.0043 - 0.00373629)/d = 2.87.
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(c) Let C* denote the additional amount of the borrowing to pay for term
insurance and L* denote the loss random variable in this case.

{

10,000+0· (vk+1 _ vS) 1 _ C* (k < 4)
L* = a 4'] d

-C* (otherwise)

E[L*] - 10,000 + C* (Ai S) C* 0- a41 d 2s:41 -v 4Q2S - =

Using the result in (ii), A;s:41-vs4Q25 = 0.0005638. Therefore

(10,000 +C*)(0.0028745)- C* = 0, and C* = 28.827866.The annual payments is

(10,000+28,827866)/a41 = 2,894.23.

20 . (a) L = vK + 1 - Cli K+1/ = (1 + C/d)v K + 1 - C/d where K is the curtate

lifetime of (x) .

(b) E[L] = A:z: - Cli:z: = (1 + C/d)A:z: - C/d = -0.08 and
Var[L] = (1 + C/d)2(2A:z: - Ai) = 0.0496.

(c) 0.05 = probability of loss = Pr[S > 0] where S = L1 + .. .+ LN and the
L, are independent and distributed like L. Thus E[S] = N E[L] = N(-0.08)
and Var[S] = NVar[L] = N(0.0496) and, using the normal approximation, we
have 0.95 = Pr[S :'5 0] = Pr(Z :'5 (0 - N( -0.08))/(0.0496N)1/2) = Pr(Z :'5
N 1/2(0.3592)). This gives 1.645 = Nl/2(0.3592) and N = 20.97. So a portfolio
of N = 21 would have a probability of a loss of a little less than 0.05.

D.5.2 Solutions to Spreadsheet Exercises

1. Check value: So = 21,834,463.

2. For i = 5%, the premium is 0.0253. For i = 8%, it is 0.0138.

Guide: Set up a spreadsheet with survival probabilities, increasing benefits
and increasing premiums. Calculate the expected present value of benefits and
premiums and use the solver feature to find the initial premium so that the
difference is O.

3. Some values of the premium P are as follows:

P = 36675.49 with C = 500,000, a = 10-6, and

P = 43920.03 with C = 500,000, a = lO-s ,

P = 375046 with C = 1,000 ,000, a = lO-s.

Guide : Set up a table with columns for the present value of benefits and present
value of premiums for each of the ten years. Find Land U(-L) and calculate
E[U( -L)]. Use the solver feature to find the premium so that formula (5.2.9)
holds.

4. P=3.0807.
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Guide: Set up a table with probabilities of survival, death benefits and premi
ums. Set the death benefits according to the refund condition. Set the expected
present value of premiums and benefits equal by using the solver function and
letting the premium vary. Try it with different death probabilities for the first
five years .

5. Guide: Set up a spreadsheet with survival probabilities and present value of
premiums. Find the balance and present the value of benefits . Use the solver
feature to find the premium that equates the present value of premiums to the
present value of benefits .

6. z = 8.5% for j = 3% and z = 14.3% for j = 6%

Guide: Set up a spreadsheet with survival probabilities and cash flows. Cash
flows consist of savings during the pre-retirement period and payments during
the retirement period. Use the solver feature to find z so that the expected
NPV of the cash flows at 5% is O.

7. The ratio is 1.0601.
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D.6. NET PREMIUM RESERVES:SOLUTIONS

D.6 Net Premium Reserves:Solutions

D.6.1 Theory Exercises

1. P35:201= 0.03067, P40:T51= 0.04631, Reduced Paid-up = 337.84.

2. Use the formula

a45

a25

a35 a45

a25 a35
= (1- 10V25)(I- lOV35) = 0.72

189

and 20 V25 = 0.28.

- (-) ( -) aGO (-) 12253. 20V A40 - 20 V A40 = 1 - -=- - 20V A40 = 1 - -2'0 - 0.3847 = 0.0028.
a40

4.

5. aZ+l = 1.14151, az = 1.37691, Answer: 0.171.

6. Answer: 258.31

7. Use

Var(L) = Var [v K +1 _ Pz 1 - ~K+l]

= (1 + pz/d)2Var[vK+l]

1 (E[e-(K+l)251_ (E[e-(K+l)51)2)
(1 - Az )2

Calculate the moment generating function of K + 1,

M(-s) = Az =~ e-(k+l)skIQz = f>k+l(0.5)k+l = v(0.5) = _v_
L..J 1 - v(0.5) 2 - v
k=O k=O

where v = «» , Obtain E [e-(K+l)5] by setting s = 6, and E [e-(K+l)25] by
setting s = 26. Substitute and simplify. It is not easy.

8. Answer: 4.88.

9. Answer: 480.95.

10. Answer 644.50.
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11. Premium = 7.92, Reserve = 33.72.

{

0 with probability 0.2
12. Al = 3v - I V -1 with probability 0.2

2Vv - I V-I with probability 0.6

E[AI ] = 0, and Var[AJ] = 0.1754

13. Answer : 0.2841.

14 . Use formula (6.7.9): Var[A91= v2(1.000)2(1 - 10V40)29P40P49q49 =

(_1_)2(1.000)2(14.63606/16.632258)2 8,950,9940.00546 = 3,685.83
1.05 9,313,144

15. The recursion relation between the two reserves is especially simple since
we are beyond the premium paying period: 0.585(1.04) = 0.600p38 + ©8 and
hence P38 = [1 - (1.04)(0.585)] + (0.4) = 0.979.

16. Use tV., = 1 - (Px + d) ax+t to solve for d = 1\ and i = 0.10.

17. Answer : 15.25.

18. Answer : 3.99.

19. (a) lOOOIO.SVx = 0.5(311 + 340.86) + 0.5(60) = 355.93.

(b)

1OOOIO.SVx = 1OOO(vO.so.sPx+10+0.S (II Vx ) ) + 1OOOv°.sO.sqx+10+0.S

U . b . 0.5qx+lo 4 T
se assumptwn a to 0 t am o.sqx+lo+o.s = 0 - 96 ' his yields

1 - .5qx+lo
10001O.SVx = 1000(1.03) -1 (ifG) + (1.03) -1 (~~) (340.86) = 357.80.

20. Answer : 0.058

D .6 .2 Solutions to Spreadsheet Exercises

1. IOV30 = 0.09541 with i = 4%

ISV30 = 0.11002 with i = 6%

Guide: Use formula (6.5.4).

2. For i = 6%, n~ = 0.0706 and nii = 0.0052.

For i = 4%, n3= 0.0791 and no = 0.0052.

3. (a.) G I = 15.6

c, = 20.1

(b.) accumulated gain = 98.5
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(c.) i' = 23.24%

191

4. (5t} III . ... I II4 = 231.09 and G2 = 361.03

(52) the present values of gains is 1,396.5

Guide: Set up a table with premiums, benefits, revenues and gains. Use
formula (6.9.1) to calculate the gains . Use the solver feature to find II, so that
sV = 0 with III = II2 = II3 = II4 = II.
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D.7 Multiple Decrements:Solutions

D.7.1 Theory Exercises

1. tPx = exp ( - f~ J-Lx+s ds) = e- O
.
03t ql,x = fol

91 (t)dt = f; tPxJ-LI,xHdt =
0.00985.

2. Because T is exponential with parameter J-L = 0.04,
1 roo

E[T I J = 3] = Pr(J = 3) J
o

ttPxJ-L3,x+tdt

1 3 roo
= Pr(J = 3) 150 l» ttPx dt

1 3 150 roo
= Pr(J = 3) 1506 Jo ttPxJ-Lx+tdt

1 1 1 1(1)
= Pr(J = 3) 2E[T] = Pr(J = 3) 2 0.04 .

Also Pr(J = 3) = J-L3/J-L = 0.5, hence E[TIJ = 3] = E[T] = 25.

3. The present value of future benefits is

1000 1
00

(391(t) + 292(t) + 93(t)) e- t6dt = 1000100 0.12e-o.07te-o.o3tdt

= 1200

The net annual premium paid continuously, P, satisfies Pax = 1200. Since Tis
exponentially distributed with parameter 0.07, then ax = 1/(0.07 + 0.03) = 10.
Hence, P = 120.

4. f~ J-Lx+s ds = 2t-log(t+l) and so tPx = (t+l)e- 2t.l 1
tPxdt = 0.75-1.25e- 2.

1 - 2e-
2

= 1.25567.
m x = 0.75 _ 1.25e- 2

5. The NSP is equal to

12

2tPxJ-LI,x+tdt +12

tPxJ-L2,xHdt =12

(~~ + ItO) tPxdt

Since tPx = exp (- f~ ~ds) = exp ( -it ),then the NSP is given by

2r2 (-3t2) 410 J
o

texp 40 dt = 3" (1 - e-O
.
3

) = 0.3456.

6. Apply equation (7.3.6) three times. Use the relation ql,30+q2 ,30+q3,30 = q30
to solve for Q30 = 0.375.

7. (a) 10000(0.84)(0.02) = 168 (b) 10000(1 - 0.01 - 0.25)(0.02) = 148.

8. 50021Q2 ,63 = 50Op63P64Q2,65 Now calculate in order:
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(i) P63 = 1 - ql,63 - 1/2,63 = 0.45

(ii) P63q64 = llq63 = 0.07

(iii q64 = 4~ and 2P63 = 0.38

(iv) 2P63ql ,65 = 0.042 so ql .65 = °O?3~2

( ) 1 d 0 .338
V q65 = an so q2,65 = 0 .38

Hence, 50021q2,63 = 500(0.338) = 169.

9. 0.02 = 1 -q~~5q% and Ql.% + Q2.% = Q% so 1000Q% = 19.703.

10 . The NSP is given by

1
00

Clv
t
tP%/-L l,%+tdt + 1

00
C2v t tP%/-L2.%+td t

= Cl/-Ll a% + c2100 v
t
tp% (/-L%+t - /-Ll,%+d dt

= CtJ1.tG.: + C2Az - C2JJliizo

Hence, the net annual premium is NSP lii% = (Cl - C2) /-Ll + C2?% '

193
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D.B Multiple Life Insurance: Solutions

D.S.l Theory Exercises

1. Apply equations (2.6.3) and (2.6.4).

q~:Sl = 11

tPSO:S1J1.SO+tdt

= 11
tPSOtPSl (J1.S0H) dt

= 11

tpSlqsodt

= qso(1- 0.5qSl) = 0.3125.

Similarly

qSO:~l 11

(1 - tPso) tPSl (J1.Sl+t) dt

= 0.5qSOqSl

0.1875

qSO:Sl qJO:Sl + qSO:~l

= qso(l - 0.5qsd + qSl(1 - 0.5qso)

= qso + qSl - qSOqSl

0.875

qSO:Sl = QSOqSl

= 0.325.

2.

A;y 100

v
t(1-tPy)tPzJ1.

z H dt

= 100

e-ot(l _ e-l'",t)e-l'wtJ1.z dt

= J1.z (fi:J1.z - fi+J1.:+J1.ti)

= 0.1167.

3. For non-smokers,

75 - x - t
tPz = 75 _ x for 0 :5 t :5 75 - x.
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Let I denote the mortality functions for smokers. Since J.L~ = 2J.Lz, z ~ 0, then

tP~ = exp( _lx
+

t
J.L~dz)

exp ( _21x
+

t

J.LzdZ)

(tPx)2

Hence

o to
e65:55 l« tP65tp~dt

110

tP65 (tpss)2 dt

to(~) (~)2l« 10 20 dt

13
= 3

24.

4. From the equation obtained from the equivalence principle, we have

1O,000Axy = eax + 0 .5e(ay - axy).

Use A xy = 1 - 8axy and axy = ax + ay - axy together with the given values to
determine e = 103.45.

5 . Let II denote the answer. By the equivalence principle,

Since ax = 1 +ax = 10 and Ax = 1 - dax , then d = 0.06. Since A xx = 1- diix x ,

then axx = 7.5. Since A xx + Au = 2Ax, Axx = 0.25. Hence II = 3~ .

6. The net single premium is

Now use the following result from the discussion of Gompertz' Law in section
8.3:
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C:z:~ d' ) 100

v
ttP:z:y~w+tdt

(c- ~d') Aw

= c--wAw

where CW = c'" + d'. The solution now follows easily by using A:z:y = Aw.

7.

00 q~OM:50F 100

tP50MtP50F~~+tdt

1
50 1

e-o.04 t _ dt
o 50

0.4323.

Therefore, ooq~M:50F = 1 - ooqloM:50F = 0.5677.

8.

E[Z] =

=

Var[Z]

-2
Ay ::z:

= 100

v
t
(1 - tP:z:) tPy~dt

~y ~y

8+~ - 8+~y+~:z:
21

110
0.1909091
2 -2

Ay ::z:
~y ~y

28+~y 28+~y+~:z:

3
28

= 0.1071429

= 0.0706966

TI =
0.4TIo.25:25 + 0.6TIo.25:25

1000 (2A25 - A 25:25)

1.20.25 - 0.20.25:25
= 3.5349.

9. Let TI denote the initial premium.

1000A25:25

10.

E[(';)] roo t ( )Paul ( )John J'• = Jo v tP:z: tP:z:~:z:+t l.U.
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= .4~%

E[(ii)] = 2E[(i)]

E[(iii)] 100

t ( )Paul ( )John dt= 3 0 v 1 - tp% tP%/l.%H

= 3 (.4% - .4~%)

E[(iv)] 4 (.4% - .4~%)

Total = 7.4% - 4 .4~% = 7.4% - 2.4%%.

D.8.2 Solutions to Spreadsheet Exercises

197

1. Check values: Q65:60 = 7.9479, Q65:60 = 12.7011, and Q65/60 = 3.10736.

Guide: Set up a table with values for tP60 and tP65 . Use formulas (8.2.3)
and (8.7.3) to calculate the corresponding joint and last surviver probabilities.
Calulate the annuities based on this probabilities. Use the discrete version of
(8.7.6) to calculate the reversionary annuity.

2. The variance is 589.772.

Guide : From the Illustrative Life Table, calculate probabilities of survival for
the last-survivor status. See the guide to exercise 1. Find the present value
for the annuities certain and calculate the expected present value. Use formula
(4.2.9).

3. P = 0.0078

Guide : Calculate probabilities of survival for the joint and last-survivor status.
Find the insurance single premium for the last survivor status and the annuity
for the joint status.

4. 3V = 0.0258 7V = 0.2247

Guide: Use equation (6.3.4) to find the reserve for the first fiveyears. Recognize
that after the death of (40), the reserves are the net single premiums for (35).

5. ii30:40 ~ 7.02017 and .41>:40 ~ 0.14558

Guide : For a Makeham law, the formula (7.3.4) provides tp%. Integrate numeri
cally to find ii% for typical values of z, A, Band c in four cells. Now use the fact
that /l.30:40(t) = A' +BcwH = /l.w+t where A' = 2A and CW = c'"+cI', so ii30:40 =
iiw with these values in the appropriate cells: x = log (e30 + c40) /logc = 41.58,
c = 1.15, A = 0.008, and B = 0.0001. To obtain .41>:40 either evaluate an
integral numerically or use the relations:

-1 c'" (- )-A%y = C
W

A%y - A(1 - cY-%)ii%y and Axy = 1 - 8iixy
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D.9 The Total Claim Amount in a Portfolio

D.9.! Theory Exercises

1. E[SI] = 1000(0.001) + 100(0.15) = 16 and Var[Sd = 10002(0.001) +
1002(0.15) - 162 = 2244. E[SJ = 5EiSI] = 80 and Var[SJ = 5Var[SI] = 11,220.
Pr(S > 200) = 1 - 11>((200 - 80)/y(l1,220))) ~ 1 -11>(1.1329) ~ 0.1286. The
exact value is Pr(S > 200) = 1 - Pr(S = 0) - Pr(S = 100) - Pr(S = 200) =
1 - (0.849)5 - 5(0.15)(0.849)4 - 10(0.15)2(0.849)3~ 0.032.

2. p((3) = E[(S - (3)+] = a J;(x - k)4>(x)dx where 4>(x) = e-z 2
/
2/ ..;'fi and

k = ((3 - J.Io)/u. Hence p((3) = a J; x4>(x)dx - uk(l -11>(k)). Now use the fact
that x4>(x) = -4>'(x) to obtain

p((3) = u4>(k) - uk(1 -11>(k)) = u4>(-k) + (J.Io - (3)11>(-k)

= =
3. Ms(t) = L E[exp(t (Xl + ...+ XIc)] Pr(N = k) = L(Mx(t))1c Pr(N = k)

Ic=O Ic=O
co

= L exp(k log(Mx(t))) Pr(N = k) = MN(log(Mx(t)))
Ic=O

Differentiate to get the moment relations:

M~(t) = Mf..,(log(Mx(t)) ~;~~~ and

Ms(t) = MN(log(Mx (t))) (~;gD2

+ u; (log(Mx(t))) [Mx(t)M~:)(t)2(Mx(t))2]Evaluate with t = O.

4. E[R] = i"Y[l - F(x)]dx

5. (a) F(x) = 1 + p'(x), x;::: 0

(b) F(x) = 1- (1 +~x+~x2) e-x and f(x) = (~+ ~x2) e-x
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8. (a)

x Pr(81 + 82 = x) Pr(81 + 82 + 83 = x) F(x)
0 0.56 0.336 0.336
0.5 0.07 0.042 0.378
1.0 0.08 0.048 0.426
1.5 0.09 0.166 0.592
2.0 0.01 0.020 0.612
2.5 0.15 0.162 0.774
3.0 0.01 0.087 0.861
3.5 0.01 0.023 0.884
4.0 0.01 0.053 0.937
4.5 0.012 0.949
5.0 0.01 0.024 0.973
5.5 0.D18 0.991
6.0 0.002 0.993
6.5 0.004 0.997
7.0 0.001 0.998
7.5 0.001 0.999
8.0 0.001 1.000

(b)

z f(x) F(x)
0 0.4066 0.4066
0.5 0.0407 0.4472
1.0 0.0427 0.4899
1.5 0.1261 0.6160
2.0 0.1364 0.7524
2.5 0.0659 0.8183
3.0 0.0365 0.8548
3.5 0.0446 0.8994
4.0 0.0372 0.9366
4.5 0.0214 0.9580
5.0 0.0126 0.9707
5.5 0.0101 0.9807
6.0 0.0075 0.9882
6.5 0.0045 0.9927
7.0 0.0026 0.9954
7.5 0.0018 0.9971
8.0 0.0012 0.9983



-35.6
-31.3
-27.1
-22.9
-18.8
-14.8
-10.9
-7.10
-3.50
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D.lO Expense Loadings

D.lO.l Theory Exercises

La,
Development of Endowment Reserves
k Net Premium Expense-Loaded
o 0
1 77 31
2 158 116
3 244 206
4 ~5 3~

5 431 403
6 532 509
7 639 621
8 n2 UO
9 873 867

l.b. 83.60

2. r:«VO is the unamortized acquisition expense at the end of policy year k.

3.a. The expense-loaded premium is 22.32
Development of Term Insurance Reserves
k Net Premium Expense-Loaded
a 0.0
1 1.3
2 2.3
3 3.1
4 3.7
5 4.0
6 3.9
7 3.6
8 2.8
9 1.6

3.b. The one-year net cost of insurance is 100Ovq., = 16.03. The first year
loading is 22.32 - 16.03 = 6.29. The acquisition expense is 40, requiring an
investment of 40 - 6.29 = 33.71.

4. 1000P = I1.C6, IOOOpo = 0.78, 1000ptl = 2.28, and 1000P'" = 1.13. The
expense-loaded premium is 1000pa = 15.25.

5. The first 10 years of reserves are given below. They can be developed easily
using a spreadsheet program and the recursion relations:
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k q.,+k 1000kV 100010V'" 100010V'" 1000kV"
0 0.00201 0.00 0.00 0.00 0.00
1 0.00214 9.63 -11.81 0.13 -2.05
2 0.00228 19.62 -11.61 0.27 8.29
3 0.00243 30.01 -llAO 0.42 19.03
4 0.00260 40.80 -11.18 0.58 30.19
5 0.00278 51.99 -10.95 0.74 41.78
6 0.00298 63.60 -10.71 0.91 53.80
7 0.00320 75.64 -10.47 1.10 66.27
8 0.00344 88.12 -10.21 1.29 79.20
9 0.00371 101.05 -9.94 1.49 92.61

10 0.00400 114.43 -9.65 1.71 106.49

{

VP.,+k k+1 V'" + 'Y - P'"
10 V'" = VP.,+k k+1 V'" + 'Y

'Y

for 0 s k s 29
for 30 s k s 64
for k = 64

kV'" = {~P"+k 10+1V'" - P'" for 0 s k s 29
for k ;::: 30

{

V (P"+k 10+1 V" + 1000q.,+k) - (1 - fJ)P" + 'Y for 0 s k s 29
10V" = V (P"+k 10+1 V" + 1000q.,+k) + 'Y for 30 $ k $ 64

'Y + 1000v for k = 64

D.I0.2 Spreadsheet Exercises

1. Guide: Use the recursion formulas. Here are the results: 1000P = 28.42, 1000P'"
1.70, 1000pfJ = 1.74, and 1000P'" = 3.0. The expense-loaded premium is 1000P"

= 34.68.
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k qx+k 1000k V 1000k V'" 1000 kV"Y 1000k V"
0 0.00278 0.00 -20 .00 0.00 -20.00
1 0.00298 27.42 -19.45 0.00 7.97
2 0.00320 56.38 -18 .87 0.00 37.51
3 0.00344 86 .97 -18.26 0.00 68.71
4 0.00371 119.28 -17.61 0.00 101.67
5 0.00400 153.42 -16.93 0.00 136.49
6 0.00431 189.51 -16.21 0.00 173.30
7 0.00466 227.68 -15.45 0.00 212.23
8 0.00504 268.06 -14.64 0.00 253.42
9 0.00546 310.79 -13.78 0.00 297.01

10 0.00592 356 .05 -12.88 0.00 343 .17
11 0.00642 404 .01 -11.92 0.00 392.09
12 0.00697 454 .88 -10.90 0.00 443 .98
13 0.00758 508.87 -9.82 0.00 499.05
14 0.00824 566 .24 -8 .68 0.00 557 .57
15 0.00896 627 .27 -7.45 0.00 619.82
16 0.00975 692 .28 -6 .15 0.00 686.12
17 0.01062 761.62 -4.77 0.00 756.85
18 0.01158 835.69 -3 .29 0.00 832.41
19 0.01262 914.98 -1.70 0.00 913 .28
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D.II

D.ll.l

(a)
1. (b)

Estimating Probabilities of Death

Theory Exercises

(0.00553, 0.00981)
(0.00682, 0.00811)

2. 0.007388, 0.00112, 0.007360

3.8.

or

b.

c.
roo I(x;n)dx = 1 - wJ).'
roo I(x; n + l)dx = w

J>."
4. 0.7326, 1.365 years

5. 0.0346

6. The classical estimator is 4/145 ~ 0.02759. The MLE is 1 - exp( -4/143} ~
0.02758.

7. P, = 1/9.1

8. P, = 1~~0' q= 1 - er. = 0.0861.

ql = ~q = 0.0383

q2 = ~q = 0.0478

9. Observed deaths = 45. Expected deaths =19.4 from the Illustrative Life
Table . From the table in section 11.5, we get a 90% confidence interval 34.56 ::;
>. ::; 57.69. Therefore j = 45/19.4 = 2.32 and the 90% interval is (1.78, 2.97).



Appendix E

Tables
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E.G Illustrative Life Tables

Basic Functions and Net Single Premiums at i = 5% 1

x lz dz 1000qz a% 1000Az 1000 (2A z ) x
0 10,000,000 204 ,200 20.42 19.642724 64.63 28.72 0
1 9,795,800 13,126 1.34 19.982912 48.43 11.47 1
2 9,782,674 11 ,935 1.22 19.958801 49.58 11.33 2
3 9,770,739 10 ,943 1.12 19.931058 50.90 11.28 3
4 9,759,796 10,150 1.04 19.899898 52.39 11.33 4
5 9,749 ,646 9,555 0.98 19.865552 54.02 11.46 5
6 9,740,091 9,058 0.93 19.828262 55.80 11.67 6
7 9,731,033 8,661 0.89 19.788078 57 .71 11.95 7
8 9,722,372 8,458 0.87 19.745056 59.76 12.29 8
9 9,713,914 8,257 0.85 19.699446 61.93 12.69 9

10 9,705,657 8,250 0.85 19.651122 64.23 13.15 10
11 9,697,407 8,243 0.85 19.600339 66.65 13.66 11
12 9,689,164 8,333 0.86 19.546971 69.19 14.23 12
13 9,680,831 8,422 0.87 19.491083 71.85 14.84 13
14 9,672,409 8,608 0.89 19.432543 74.64 15.50 14
15 9,663,801 8,794 0.91 19.371410 77.55 16.21 15
16 9,655,007 8,979 0.93 19.307550 80.59 16.98 16
17 9,646,028 9,164 0.95 19.240821 83.77 17.81 17
18 9,636,864 9,348 0.97 19.171075 87.09 18.70 18
19 9,627,516 9,628 1.00 19.098154 90.56 19.67 19
20 9,617,888 9,906 1.03 19.022085 94.19 20 .71 20
21 9,607,982 10,184 1.06 18.942699 97.97 21.82 21
22 9,597,798 10,558 1.10 18.859825 101.91 23.02 22
23 9,587,240 10,929 1.14 18.773468 106 .03 24.31 23
24 9,576,311 11,300 1.18 18.683440 110.31 25.69 24
25 9,565,011 11,669 1.22 18.589547 114.78 27.17 25
26 9,553,342 12,133 1.27 18.491584 119.45 28.77 26
27 9,541,209 12,690 1.33 18.389518 124.31 30.49 27
28 9,528 ,519 13,245 1.39 18.283311 129 .37 32.33 28
29 9 ,515,274 13 ,892 1.46 18.172737 134 .63 34 .30 29
30 9,501 ,382 14,537 1.53 18.057738 140 .11 36.41 30
31 9,486,845 15,274 1.61 17.938070 145.81 38 .67 31
32 9,471 ,571 16 ,102 1.70 17.813654 151. 73 41.09 32
33 9,455,469 16,925 1.79 17.684401 157.89 43.68 33
34 9,438,544 17,933 1.90 17.550034 164 .28 46.45 34
35 9,420,611 18,935 2.01 17.410616 170 .92 49.40 35
36 9,401,676 20,120 2.14 17.265850 177.82 52 .56 36
37 9,381,556 21 ,390 2.28 17.115771 184 .96 55 .93 37
38 9,360,166 22,745 2.43 16.960229 192 .37 59.52 38
39 9,337,421 24,277 2.60 16.799062 200.04 63 .35 39
40 9,313,144 25 ,891 2.78 16.632259 207 .99 67.41 40
41 9,287,253 27,676 2.98 16.459630 216 .21 71.74 41
42 9,259,577 29,631 3.20 16.281129 224 .71 76.34 42
43 9,229,946 31 ,751 3.44 16.096696 233.49 81.23 43
44 9,198,195 34,125 3.71 15.906249 242.56 86.41 44
45 9,164,070 36,656 4.00 15.709844 251.91 91.90 45
46 9,127 ,414 39,339 4.31 15.507365 261.55 97 .71 46
47 9,088,075 42 ,350 4.66 15.298671 271.49 103 .86 47
48 9,045,725 45,590 5.04 15.083893 281.72 110.36 48
49 9,000,135 49,141 5.46 14.862997 292.24 117.23 49
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Basic Functions and Net Single Premiums at i = 5%
:z; i", d", 1000q", liz 1000A", 1000 (2A",) :z;

50 8,950,994 52,990 5.92 14.636061 303.04 124.46 50
51 8,898 ,004 57,125 6.42 14.403131 314.14 132.08 51
52 8,840,879 61,621 6.97 14.164220 325.51 140.10 52
53 8,779 ,258 66,547 7.58 13.919449 337.17 148.53 53
54 8,712,711 71,793 8.24 13.669034 349.09 157.36 54
55 8,640,918 77,423 8.96 13.413011 361.29 166.63 55
56 8,563,495 83,494 9.75 13.151498 373.74 176.33 56
57 8,480 ,001 90,058 10.62 12.884699 386.44 186.47 57
58 8,389,943 97,156 11.58 12.612883 399.39 197.05 58
59 8,292,787 104,655 12.62 12.336384 412.55 208.08 59
60 8,188,132 112,669 13.76 12.055342 425.94 219.56 60
61 8,075,463 121,213 15.01 11.770064 439.52 231.49 61
62 7,954 ,250 130,291 16.38 11.480898 453 .29 243.87 62
63 7,823,959 139,892 17.88 11.188205 467.23 256.69 63
64 7,684,067 149,993 19.52 10.892369 481.32 269.94 64
65 7,534,074 160,626 21.32 10.593780 495 .53 283.63 65
66 7,373,448 171,728 23.29 10.292913 509.86 297.73 66
67 7,201,720 183,212 25.44 9.990230 524.27 312.23 67
68 7,018,508 195,044 27.79 9.686158 538.75 327.11 68
69 6,823,464 207,229 30.37 9.381167 553.28 342.37 69
70 6,616,235 219,527 33.18 9.075861 567.82 357.96 70
71 6,396 ,708 231,945 36.26 8.770664 582.35 373.88 71
72 6,164,763 244,248 39.62 8.466182 596.85 390.09 72
73 5,920,515 256,358 43.30 8.162908 611.29 406.56 73
74 5,664,157 267,971 47 .31 7.861452 625.65 423.26 74
75 5,396 ,186 278,929 51.69 7.562297 639.89 440.15 75
76 5,117,257 288,972 56.47 7.265989 654.00 457.21 76
77 4,828,285 297,809 61.68 6.973063 667.95 474.38 77
78 4,530,476 305,218 67.37 6.683979 681.71 491.66 78
79 4,225,258 310,810 73.56 6.399299 695.27 508.97 79
80 3,914,448 314,330 80.30 6.119411 708.60 526.31 80
81 3,600,118 315,514 87.64 5.844708 721.68 543.60 81
82 3,284,604 314,041 95.61 5.575590 734.50 560.84 82
83 2,970,563 309,770 104.28 5.312277 747.03 577.99 83
84 2,660,793 302,506 113.69 5.055031 759.28 594.95 84
85 2,358,287 292,168 123.89 4.803941 771.24 611.84 85
86 2,066,119 278,802 134.94 4.558938 782.91 628.49 86
87 1,787 ,317 262,539 146.89 4.319797 794.29 645.05 87
88 1,524 ,778 243,675 159.81 4.085991 805.43 661.36 88
89 1,281,103 222,592 173.75 3.856599 816.35 677.76 89
90 1,058,511 199,815 188.77 3.630178 827.13 694.07 90
91 858,696 175,973 204.93 3.404320 837.89 710.54 91
92 682,723 151,749 222.27 3.175241 848.80 727.33 92
93 530,974 127,890 240.86 2.936743 860.15 745.41 93
94 403 ,084 105,096 260.73 2.678823 872.44 764.65 94
95 297,988 84,006 281.91 2.384461 886.46 787.86 95
96 213,982 74,894 350.00 2.024369 903.60 817.60 96
97 139,088 66,067 475 .00 1.654770 921.21 847.96 97
98 73,021 49,289 675.00 1.309539 937.65 885.10 98
99 23,732 23,732 1000.00 1.000000 952.35 914.67 99
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E .l Commutation Columns

Illustrative Life Table and i = 5%
X D" N" C" M" x
0 10,000,000 .0 196 ,427,244 .2 194 ,476 .190 646 ,321.725 0
1 9,329 ,333 .3 186,427 ,244 .2 11 ,905.669 451 ,845 .535 1
2 8,873,17 3.7 177 ,097 ,910 .9 10,309.902 439,939.866 2
3 8,440,331. 7 168 ,224,737.2 9,002.833 429,629.964 3
4 8,029,408 .3 159,7 84, 405.5 7,952.791 420,627.131 4
5 7,639 ,102 .8 151 ,754 ,997.2 7,130.088 412,674 .340 5
6 7,268 ,205.9 144,115,894.4 6,437.351 405,544 .252 6
7 6,915,663.5 136 ,847 ,688 .5 5,862.106 399,106.901 7
8 6,580 ,484 .1 129 ,932 ,025.0 5,452.102 393 ,244.795 8
9 6,261 ,675.6 123 ,351 ,540.9 5 ,069.082 387 ,792 .693 9

10 5,958 ,431.5 117 ,089 ,865.3 4,823.604 382,723.611 10
11 5,669 ,873.0 111,131 ,433.8 4,590.011 377 ,900.007 11
12 5,395 ,289 .1 105,461 ,560 .8 4,419.168 373,309.996 12
13 5,133,951.4 100 ,066 ,271.7 4 ,253 .682 368 ,890 .828 13
14 4,885,22 3.8 94,932,320 .3 4,1 40 .595 364,637.146 14
15 4,648,4 53.5 90 ,047,096 .5 4,028.633 360,4 96.55 1 15
16 4,423 ,070 .0 85,3 98,643.0 3 ,917 .508 356,4 67.918 16
17 4,208 ,530.1 80 ,975 ,573 .0 3,807.831 352, 550.4 10 17
18 4,004 ,316.0 76,767,042.9 3 ,699 .321 348,742 .579 18
19 3,809,935.0 72,762 ,726.9 3,6 28 .69 2 345 ,043 .258 19
20 3,624,880 .8 68 ,952,79 1.9 3 ,555.6 83 341,414.566 20
21 3,448 ,711.8 65,327,911.1 3,481.399 337 ,858.883 21
22 3,281,006.0 61,879,199.3 3 ,437.382 334 ,377.484 22
23 3,121,330.2 58 ,598 ,193 .3 3,388.732 330,940.102 23
24 2,969,306.7 55,476,863 .1 3,336.921 327 ,551.370 24
25 2,824,574.3 52 ,507,556 .4 3 ,281.798 324,214.449 25
26 2,686,788.9 49 ,682 ,982 .1 3 ,249 .804 320,932 .651 26
27 2,555 ,596.8 46 ,996,193.2 3,237.138 317,682.847 27
28 2,430,664.6 44,440,596.4 3,217.824 314,445.709 28
29 2,311,700.8 42,009,931.8 3 ,214 .296 311 ,227.885 29
30 2,198,405.5 39 ,698,231.0 3,203.366 308 ,013.589 30
31 2,090,516.2 37 ,499,825.5 3 ,205 .496 304,810.223 31
32 1,987,762 .3 35 ,409 ,309.3 3 ,218 .348 301,604.727 32
33 1,889,888.6 33,421 ,547.0 3,221.755 298,386.379 33
34 1,796,672 .2 31,531 ,658.4 3 ,251.079 295,164.624 34
35 1,707,865.3 29 ,734 ,986 .2 3 ,269 .268 291,913 .545 35
36 1,623,269.1 28 ,027,1 20 .9 3,308.445 288,644.277 36
37 1,542,662.1 26 ,403,851.8 3,349.789 285 ,335.832 37
38 1,465 ,852 .2 24 ,861 ,189 .7 3,392.370 281,986.043 38
39 1,392 ,657.4 23 ,395,337 .5 3 ,448.443 278, 593.673 39
40 1,322 ,891.9 22,002,680. 1 3 ,502 .576 275 ,145 .230 40
41 1,256,394 .5 20,679,788.2 3 ,565.765 271 ,642 .654 41
42 1,193 ,000 .4 19,423,393.7 3,635.854 268,076.889 42
43 1,132,555.0 18,230,393 .3 3,710.464 264,441.035 43
44 1,074 ,913 .3 17 ,097 ,838 .3 3 ,797 .993 260 ,730 .571 44
45 1,019 ,929 .0 16,022,925.0 3,885.414 256 ,932 .578 45
46 967,475.5 15,002,996.0 3 ,971.241 253,047.164 46
47 917 ,434 .0 14 ,035,520.5 4,071.618 249 ,075 .923 47
48 869,675.1 13 ,118 ,086.5 4 ,174 .399 245,004.305 48
49 824,087.6 12 ,248,411.4 4 ,285 .278 240,829.906 49
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Illustrative Life Table and i = 5%
x D", N", c", M", x

50 780,560.0 11,424,323 .8 4,400 .881 236,544 .628 50
51 738,989.6 10,643,763.8 4,518.379 232 ,143.747 51
52 699,281.3 9,904,774.2 4,641.901 227,625.368 52
53 661,340 .3 9,205,492.9 4,774.263 222,983.467 53
54 625,073.6 8,544,152 .6 4,905.357 218,209 .204 54
55 590,402.8 7,919,079.0 5,038 .129 213,303.847 55
56 557,250 .3 7,328,676.2 5,174.462 208,265 .718 56
57 525,540.1 6,771,425 .9 5,315.486 203,091.256 57
58 495,198 .9 6,245,885.8 5,461.362 197,775 .770 58
59 466,156 .6 5,750,686.9 5,602 .760 192,314.408 59
60 438,355 .9 5,284 ,530.3 5,744.566 186,711.648 60
61 411,737 .3 4,846,174.4 5,885.897 180,967.082 61
62 386,244 .8 4,434,437.1 6,025.437 175,081.185 62
63 361,826.8 4 ,048,192.3 6,161.376 169,055.748 63
64 338,435 .6 3,686,365.5 6,291.679 162,894 .372 64
65 316,027.9 3,347,929 .9 6,416 .853 156,602.693 65
66 294,562.1 3,031,902.0 6,533 .683 150,185.840 66
67 274,001.7 2,737,339.9 6,638.678 143,652 .157 67
68 254,315.3 2,463 ,338.2 6,730.866 137,013.479 68
69 235,474 .2 2,209 ,022.9 6,810.823 130,282 .613 69
70 217,450 .3 1,973,548.7 6,871.439 123,471.790 70
71 200,224 .1 1,756,098.4 6,914.416 116,600.351 71
72 183,775.2 1,555,874.3 6,934.453 109,685.935 72
73 168,089 .5 1,372 ,099.1 6,931.684 102,751.482 73
74 153,153.6 1,204 ,009.6 6,900.656 95,819.798 74
75 138,959.9 1,050 ,856.0 6,840.801 88,919.142 75
76 125,502.0 911,896.1 6,749.626 82,078.341 76
77 112,776 .0 786 ,394.1 6,624 .796 75,328.715 77
78 100,781.0 673,618.1 6,466 .295 68,703 .919 78
79 89,515 .6 572,837.1 6,271.206 62,237 .624 79
80 78,981.7 483 ,321.5 6,040.218 55,966.418 80
81 69,180.5 404,339.8 5,774.257 49,926.200 81
82 60,111.9 335,159.3 5,473 .619 44,151.943 82
83 51,775 .8 275,047.4 5,142.073 38,678.324 83
84 44,168 .2 223,271.6 4,782.374 33,536 .251 84
85 37,282 .6 179,103.4 4,398 .990 28,753.877 85
86 31,108.3 141,820.8 3,997 .853 24,354 .887 86
87 25,629.1 110,712 .5 3,585 .383 20,357.034 87
88 20,823.2 85,083.4 3,169 .300 16,771.651 88
89 16,662.4 64,260.2 2,757 .228 13,602.351 89
90 13,111.7 47,597 .8 2,357.230 10,845.123 90
91 10,130.1 34,486.1 1,977.109 8,487.893 91
92 7,670.6 24,356.0 1,623.757 6,510.784 92
93 5,681.6 16,685.4 1,303.294 4,887 .027 93
94 4,107 .7 11,003.8 1,020.006 3,583.733 94
95 2,892 .1 6,896 .1 776.493 2,563.727 95
96 1,977.9 4,004.0 659.303 1,787.234 96
97 1,224.4 2,026 .1 553.902 1,127.931 97
98 612.2 801.7 393.559 574.029 98
99 189.5 189.5 180.470 180.470 99



E.2. MULTIPLE DECREMENT TABLES 211

E.2 Multiple Decrement Tables

Illustrative Service Table
x £z d1,z d2,z d3,z d 4,z

30 100,000 100 19,990 0 0
31 79,910 80 14,376 0 0
32 65,454 72 9,858 0 0
33 55,524 61 5,702 0 0
34 49,761 60 3,971 0 0
35 45,730 64 2,693 46 0
36 42,927 64 1,927 43 0
37 40,893 65 1,431 45 0
38 39,352 71 1,181 47 0
39 38,053 72 989 49 0
40 36,943 78 813 52 0
41 36,000 83 720 54 0
42 35,143 91 633 56 0
43 34,363 96 550 58 0
44 33,659 104 505 61 0
45 32,989 112 462 66 0
46 32,349 123 421 71 0
47 31,734 133 413 79 0
48 31,109 143 373 87 0
49 30,506 156 336 95 0
50 29,919 168 299 102 0
51 29,350 182 293 112 0
52 28,763 198 259 121 0
53 28,185 209 251 132 0
54 27,593 226 218 143 0
55 27,006 240 213 157 0
56 26,396 259 182 169 0
57 25,786 276 178 183 0
58 25,149 297 148 199 0
59 24,505 316 120 213 0
60 23,856 313 0 0 3,552
61 19,991 298 0 0 1,587
62 18,106 284 0 0 2,692
63 15,130 271 0 0 1,350
64 13,509 257 ° 0 2,006
65 11,246 204 0 ° 4,448
66 6,594 147 ° 0 1,302
67 5,145 119 0 0 1,522
68 3,504 83 0 0 1,381
69 2,040 49 0 0 1,004
70 987 17 0 0 970
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