Time Series

Loukia Meligkotsidou, National and Kapodistrian University of Athens

MSc in Statistics and Operational Research, Department of Mathematics

Difference Equations

A Difference Equation is an expression relating a variable y_{t} to its previous values.

Linear First-order Difference Equation: (only the first lag of y_{t} appears in the equation)

$$
y_{t}=\phi y_{t-1}+w_{t},
$$

where w_{t} is called the input variable and y_{t} is called the output variable.

Difference Equations

A Difference Equation is an expression relating a variable y_{t} to its previous values.

Linear First-order Difference Equation:
(only the first lag of y_{t} appears in the equation)

$$
y_{t}=\phi y_{t-1}+w_{t}
$$

where w_{t} is called the input variable and y_{t} is called the output variable.

Linear Second-order Difference Equation:

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+w_{t} .
$$

Solving a Difference Equation by Recursive Substitution

First-order Difference Equation:

$$
y_{t}=\phi y_{t-1}+w_{t}
$$

Solving a Difference Equation by Recursive Substitution

First-order Difference Equation:

$$
y_{t}=\phi y_{t-1}+w_{t}
$$

Therefore,

$$
\begin{gathered}
y_{1}=\phi y_{0}+w_{1} \\
y_{2}=\phi y_{1}+w_{2}=\phi\left(\phi y_{0}+w_{1}\right)+w 2=\phi^{2} y_{0}+\phi w_{1}+w_{2}
\end{gathered}
$$

Solving a Difference Equation by Recursive Substitution

First-order Difference Equation:

$$
y_{t}=\phi y_{t-1}+w_{t}
$$

Therefore,

$$
\begin{gathered}
y_{1}=\phi y_{0}+w_{1} \\
y_{2}=\phi y_{1}+w_{2}=\phi\left(\phi y_{0}+w_{1}\right)+w 2=\phi^{2} y_{0}+\phi w_{1}+w_{2}
\end{gathered}
$$

By recursive substitution

$$
y_{t}=\phi^{t} y_{0}+\phi^{t-1} w_{1}+\phi_{t-2} w_{2}+\ldots+\phi w_{t-1}+w_{t}
$$

The Effect of the Input Variable

Solving the difference equation by recursive substitution expresses the output variable, y_{t}, as a linear function of the initial value, y_{0}, and the historical values of w.

The Effect of the Input Variable

Solving the difference equation by recursive substitution expresses the output variable, y_{t}, as a linear function of the initial value, y_{0}, and the historical values of w.

The effect of w_{t} on y_{t+j} is given by

$$
\frac{\partial y_{t+j}}{\partial w_{t}}=\phi^{j}
$$

thus it depends only on j, the length of time separating y_{t+j} and w_{t}, and not on t.

The Effect of the Input Variable

Solving the difference equation by recursive substitution expresses the output variable, y_{t}, as a linear function of the initial value, y_{0}, and the historical values of w.

The effect of w_{t} on y_{t+j} is given by

$$
\frac{\partial y_{t+j}}{\partial w_{t}}=\phi^{j}
$$

thus it depends only on j, the length of time separating y_{t+j} and w_{t}, and not on t.

Different values of ϕ can produce a variety of dynamic responses of y to w.

The Effect of the Input Variable

- If $0<\phi<1$, the multiplier ϕ^{j} decays geometrically towards zero. In this case, the system is stable.
- If $-1<\phi<0, \phi^{j}$ alternates signs, with $\left|\phi^{j}\right|$ decaying geometrically towards zero. The system is still stable.
- If $\phi>1, \phi^{j}$ increases exponentially over time.
- If $\phi<-1$, the system also exhibits explosive oscillation.

The Effect of the Input Variable

- If $0<\phi<1$, the multiplier ϕ^{j} decays geometrically towards zero. In this case, the system is stable.
- If $-1<\phi<0, \phi^{j}$ alternates signs, with $\left|\phi^{j}\right|$ decaying geometrically towards zero. The system is still stable.
- If $\phi>1, \phi^{j}$ increases exponentially over time.
- If $\phi<-1$, the system also exhibits explosive oscillation.

Note that, for $|\phi|<1$, the system is stable. For $|\phi|>1$, the system is explosive. An interesting possibility is the borderline case, $\phi=1$:

$$
y_{t+j}=y_{t}+w_{t}+w_{t-1}+\ldots+w_{t+j-1}+w_{t+j}
$$

Hence, $\frac{\partial y_{t+j}}{\partial w_{t}}=1$, for $j=0,1,2, \ldots$

First-order Difference Equations - The Backward Operator

$$
y_{t}=\phi y_{t-1}+w_{t}
$$

or, equivalently,

$$
\begin{aligned}
& y_{t}=\phi B y_{t}+w_{t} \\
& (1-\phi B) y_{t}=w_{t}
\end{aligned}
$$

where " 1 " denotes the identity operator, i.e $1 y_{t}=y_{t}$, and $(1-\phi B)^{-1}(1-\phi B)=1$.

First-order Difference Equations - The Backward Operator

$$
y_{t}=\phi y_{t-1}+w_{t}
$$

or, equivalently,

$$
\begin{aligned}
& y_{t}=\phi B y_{t}+w_{t} \\
& (1-\phi B) y_{t}=w_{t}
\end{aligned}
$$

where " 1 " denotes the identity operator, i.e $1 y_{t}=y_{t}$, and $(1-\phi B)^{-1}(1-\phi B)=1$.
Therefore,

$$
y_{t}=(1-\phi B)^{-1} w_{t}
$$

In order for the output variable to be bounded, the right hand side of this equation has to converge.

Second-order Difference Equations

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+w_{t}
$$

or, equivalently,

$$
\begin{aligned}
& \left(1-\phi_{1} B-\phi_{2} B^{2}\right) y_{t}=w_{t} \\
& \left(1-\lambda_{1} B\right)\left(1-\lambda_{2} B\right) y_{t}=w_{t}
\end{aligned}
$$

where $\lambda_{1}+\lambda_{2}=\phi 1$ and $\lambda_{1} \lambda_{2}=-\phi_{2}$.

Second-order Difference Equations

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+w_{t}
$$

or, equivalently,

$$
\begin{aligned}
& \left(1-\phi_{1} B-\phi_{2} B^{2}\right) y_{t}=w_{t} \\
& \left(1-\lambda_{1} B\right)\left(1-\lambda_{2} B\right) y_{t}=w_{t}
\end{aligned}
$$

where $\lambda_{1}+\lambda_{2}=\phi 1$ and $\lambda_{1} \lambda_{2}=-\phi_{2}$.
Solving the system: $\lambda_{1}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$ and $\lambda_{2}=\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$.

Second-order Difference Equations

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+w_{t}
$$

or, equivalently,

$$
\begin{aligned}
& \left(1-\phi_{1} B-\phi_{2} B^{2}\right) y_{t}=w_{t} \\
& \left(1-\lambda_{1} B\right)\left(1-\lambda_{2} B\right) y_{t}=w_{t}
\end{aligned}
$$

where $\lambda_{1}+\lambda_{2}=\phi 1$ and $\lambda_{1} \lambda_{2}=-\phi_{2}$.
Solving the system: $\lambda_{1}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$ and $\lambda_{2}=\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$.
Therefore,

$$
y_{t}=\left(1-\lambda_{1} B\right)^{-1}\left(1-\lambda_{2} B\right)^{-1} w_{t}
$$

In order for the output variable to be bounded, the right hand side of this equation has to converge.

pth Order Difference Equations - AR(p) Models

- The previous calculations and observations generalise to p th Order Difference Equations.

pth Order Difference Equations - AR(p) Models

- The previous calculations and observations generalise to p th Order Difference Equations.
- AR models are pth Order Stochastic Difference Equations. These models are used to describe dynamic relationships observed in discrete-time data.

pth Order Difference Equations - AR(p) Models

- The previous calculations and observations generalise to p th Order Difference Equations.
- AR models are p th Order Stochastic Difference Equations. These models are used to describe dynamic relationships observed in discrete-time data.
- Similarly, Stochastic Differential Equations are used to model continuous-time data.

Autoregressive Models

$\operatorname{AR}(1)$ Model: $\left(1-\phi_{1} B\right) y_{t}=\Phi(B) y_{t}=\epsilon_{t}$ where $\Phi(B)=\left(1-\phi_{1} B\right)$ and the $\Phi(B)^{-1}$ is such that $\Phi(B) \Phi(B)^{-1}=1$.

Autoregressive Models

$\operatorname{AR}(1)$ Model: $\left(1-\phi_{1} B\right) y_{t}=\Phi(B) y_{t}=\epsilon_{t}$ where $\Phi(B)=\left(1-\phi_{1} B\right)$ and the $\Phi(B)^{-1}$ is such that $\Phi(B) \Phi(B)^{-1}=1$.

Then,

$$
y_{t}=\left(1-\phi_{1} B\right)^{-1} \epsilon_{t}
$$

The time series, y_{t} is stationary if the righthand side of this equation converges.

Autoregressive Models

$\operatorname{AR}(1)$ Model: $\left(1-\phi_{1} B\right) y_{t}=\Phi(B) y_{t}=\epsilon_{t}$ where $\Phi(B)=\left(1-\phi_{1} B\right)$ and the $\Phi(B)^{-1}$ is such that $\Phi(B) \Phi(B)^{-1}=1$.

Then,

$$
y_{t}=\left(1-\phi_{1} B\right)^{-1} \epsilon_{t}
$$

The time series, y_{t} is stationary if the righthand side of this equation converges.

The polynomial $\Phi(z)=\left(1-\phi_{1} z\right)$ is called the characteristic polynomial of the $\operatorname{AR}(1)$ model. We have that

$$
\left(1-\phi_{1} z\right)^{-1}=1+\phi_{1} z+\phi_{1}^{2} z^{2}+\ldots
$$

Autoregressive Models

$\operatorname{AR}(1)$ Model: $\left(1-\phi_{1} B\right) y_{t}=\Phi(B) y_{t}=\epsilon_{t}$ where $\Phi(B)=\left(1-\phi_{1} B\right)$ and the $\Phi(B)^{-1}$ is such that $\Phi(B) \Phi(B)^{-1}=1$.

Then,

$$
y_{t}=\left(1-\phi_{1} B\right)^{-1} \epsilon_{t}
$$

The time series, y_{t} is stationary if the righthand side of this equation converges.

The polynomial $\Phi(z)=\left(1-\phi_{1} z\right)$ is called the characteristic polynomial of the $\operatorname{AR}(1)$ model. We have that

$$
\left(1-\phi_{1} z\right)^{-1}=1+\phi_{1} z+\phi_{1}^{2} z^{2}+\ldots
$$

The $A R(1)$ model is stationary if the root of its characteristic polynomial lies outside of the unit circle, that is if $\left|\frac{1}{\phi_{1}}\right|>1$. Solving for ϕ_{1} we get the stationarity condition $\left|\phi_{1}\right|<1$.

Autoregressive Models

$\operatorname{AR}(2)$ Model: $\left(1-\phi_{1} B-\phi_{2} B^{2}\right) y_{t}=\Phi(B) y_{t}=\epsilon_{t}$ where $\Phi(B)=\left(1-\phi_{1} B-\phi_{2} B^{2}\right)=\left(1-\lambda_{1} B\right)\left(1-\lambda_{2} B\right)$, with $\lambda_{1}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$ and $\lambda_{2}=\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$.

Autoregressive Models

$\operatorname{AR}(2)$ Model: $\left(1-\phi_{1} B-\phi_{2} B^{2}\right) y_{t}=\Phi(B) y_{t}=\epsilon_{t}$
where $\Phi(B)=\left(1-\phi_{1} B-\phi_{2} B^{2}\right)=\left(1-\lambda_{1} B\right)\left(1-\lambda_{2} B\right)$, with $\lambda_{1}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$ and $\lambda_{2}=\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$.
Then,

$$
y_{t}=\left(1-\lambda_{1} B\right)^{-1}\left(1-\lambda_{2} B\right)^{-1} \epsilon_{t}
$$

The time series, y_{t} is stationary if the righthand side of this equation converges.

Autoregressive Models

$\operatorname{AR}(2)$ Model: $\left(1-\phi_{1} B-\phi_{2} B^{2}\right) y_{t}=\Phi(B) y_{t}=\epsilon_{t}$
where $\Phi(B)=\left(1-\phi_{1} B-\phi_{2} B^{2}\right)=\left(1-\lambda_{1} B\right)\left(1-\lambda_{2} B\right)$, with
$\lambda_{1}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$ and $\lambda_{2}=\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}$.
Then,

$$
y_{t}=\left(1-\lambda_{1} B\right)^{-1}\left(1-\lambda_{2} B\right)^{-1} \epsilon_{t}
$$

The time series, y_{t} is stationary if the righthand side of this equation converges.
The polynomial $\Phi(z)=\left(1-\phi_{1} z-p h i_{2} z^{2}\right)$ is called the characteristic polynomial of the $\operatorname{AR}(2)$ model. The $\operatorname{AR}(2)$ model is stationary if the roots of its characteristic polynomial lie outside of the unit circle, that is if $\left|\frac{1}{\lambda_{1}}\right|>1$ and $\left|\frac{1}{\lambda_{2}}\right|>1$.
Find the stationarity conditions of the AR(2) model.

