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ARMA MODELING AND ESTIMATION IN R 

 

1. INTRODUCTION 

 

Import data into R, create a time series object, and construct time series plots 

mydatats1<- read.table("…./datats.txt") 

y <- mydatats1$V1 

j=ts(y, frequency=4, start = c(1960,1)) 

 

Below are presented the time series plot of the J&J data, of the log of J&J and of the first differences of 

the log of J&J data, together with their corresponding histograms. The log of J&J time series and the first 

differences of the log of J&J data are computed by: 

lj=log(j)        # compute the logartithm of the J&J   

dlj=diff(lj)   # compute the first differences of the log of J&J 

 

A nice graph can be produced by using the command par(mfrow=c(rows,col)), which splits the graph 

into (rows x col) subplots: 

par(mfrow=c(3,2))        # set up the graphics   

plot(j,type="l", col='red', lwd=1,main="Time Series plot of Johnson & Johnson", ylab="Quarterly earnings 

per share") 

hist(j, nclass=15, main="Histogram of Johnson & Johnson") 

plot(lj,type="l", col='red', lwd=1,main="Log of Johnson & Johnson", ylab="Log of Quarterly earnings per 

share") 

hist(lj, nclass=15, main="Histogram of log of Johnson & Johnson") 

plot(dlj,type="l", col='red', lwd=1,main="Differences of log of Johnson & Johnson") 

hist(dlj, nclass=15, main="Histogram of differences of log of J&J") 
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Figure 1: Time series plots and histograms for the J&J, log of J&J and the differences of log(J&J) 

 

We focus on the stationary time series, i.e. the differences of the logarithms of the J&J series. We can 

test for normality of dlj, and create the plot of the histogram together with a density plot, and also the 

normal QQplot: 

Shapiro.test(dlj)                                         # Shapiro test of normality 

Shapiro-Wilk normality test:   data:  dlj 

W = 0.97251, p-value = 0.07211 

par(mfrow=c(2,1))          

hist(dlj, prob=TRUE, 15)    # histogram     

lines(density(dlj))             # smooth it - ?density for details  

qqnorm(dlj,main="Normal QQplot of dlj")      # normal Q-Q plot   

qqline(dlj)                                                              # add a line     
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2. TIME SERIES ANALYSIS – BOX JENKINS METHODOLOGY 
2.1. Identification step  

It is based on the autocorrelation and partial autocorrelation plot. The acf( ) command and the pacf( ) 

command create an autocorrelation and a partial autocorrelation plot, respectively. Below are produced 

the autocorrelation and partial autocorrelation plots of the J&J data, the log of J&J and of the first 

differences of the log of J&J data using the command par(mfrow=c(3,2)). 

par(mfrow=c(3,2))        # set up the graphics   

acf(j, 48, main="ACF of J&J")        # autocorrelation function plot  

pacf(j, 48, main="PACF of J&J")    # partial autocorrelation function  

acf(lj, 48, main="ACF of log of J&J")         

pacf(lj, 48, main="PACF of log of J&J")       

acf(dlj, 48, main="ACF of differences of  log of J&J")        

pacf(dlj, 48, main="PACF of differences of  log of J&J")     
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Note that the lag values in the X axis are 1, 2, 3, 4, 5,… and correspond to lags 4, 8, 12, 16, 20,… 

because we have quarterly data, i.e. the frequency is 4. A better type of labeling can be produced by 

using the following set of commands: 

par(mfrow=c(3,2))        # set up the graphics   

acf(ts(j,freq=1), 48, main="ACF of J&J")        # autocorrelation function plot  

pacf(ts(j,freq=1), 48, main="PACF of J&J")    # partial autocorrelation function plot 

acf(ts(lj,freq=1), 48, main="ACF of log of J&J")         

pacf(ts(lj,freq=1), 48, main="PACF of log of J&J")       

acf(ts(dlj,freq=1), 48, main="ACF of differences of  log of J&J")        

pacf(ts(dlj,freq=1), 48, main="PACF of differences of  log of J&J")     
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2.2. Estimation of ARMA models 

The estimation of a specified ARMA model can be done by using the command arima() of R. A frequently 

used form of the command is:  

arima(y, order = c(p,d,q), seasonal = list(order = c(ps,ds,qs), period = freq), include.mean = TRUE, 

fixed = NULL, method = c("CSS-ML", "ML", "CSS"), optim.method = "BFGS") 

where  

y: is the univariate time series under consideration. 

order: specifies the non-seasonal part of the ARIMA model, i.e. p denotes the order of the 

Autoregressive part [AR(p)], q denotes the order of the Moving Average part [MA(q)] and d denotes the 

order of differencing I[(d)].  

seasonal: specifies the seasonal part of the ARIMA model, i.e. ps denotes the order of seasonal AR part, 

qs denotes the order of seasonal MA part, ds denotes the order of seasonal differencing and period 
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refers to the frequency of the analyzed series, i.e. period=4 for quarterly data, period=12 for minthly 

data. 

include.mean: equals TRUE if the ARMA model includes the mean of the analyzed series, FALSE if the 

ARMA model has zero mean. 

fixed: is a vector of same length as the number of model parameters to be estimated (the ARMA 

parameters and the mean). It takes the value of 0, if the corresponding parameter will not be estimated, 

and takes NA if the corresponding parameter will be estimated.  

method: denotes the estimation method, i.e. maximum likelihood (ML), minimize conditional sum-of-

squares (CSS), or first conditional-sum-of-squares to find starting values and then maximum likelihood 

(CSS-ML). 

optim.method: denotes the optimization algorithm used.  

 

The general form of the ARMA model, which is estimated by the command arima() if 

include.mean=FALSE is: 

tqtqtptptt yyy εεqεqϕϕ ++++++= −−−− KK 1111 , 

and 

tqtqtptptt yyy εεqεqµϕµϕµ ++++−++−=− −−−− KK 1111 )()( , 

If include.mean=TRUE, which is the default choice of the command. Note that for ARIMA models, i.e. 

when differencing is used, the differenced series follows a zero mean ARMA model1. 

 

For illustration purposes, first, we will estimate some moving average (MA) models in R, using the 

differences of the logarithm of the J&J series (dlj), which is a stationary process (as shown in previous 

lectures). The command ma1fit=arima(dlj,order=c(0,0,1)) estimates a simple MA(1) model for the dlj 

series and returns the object/list ma1fit. Note that ma1fit is an object/list containing several results. For 

example, it contains the coefficients (ma1fit$coef), the estimated residual series (ma1fit$residuals), the 

Akaike Information Criterion AIC (ma1fit$aic). 

ma1fit=arima(dlj,order=c(0,0,1)) 

ma1fit     

 

 

1 In R the commands arima(diff(y),order=c(1,0,1)) and arima(y,order=c(1,1,1)) provide different model estimates!. 
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Call: arima(x = dlj, order = c(0, 0, 1)) 

Coefficients:           ma1      intercept 

                              -0.8246     0.0393 

                      s.e.   0.0582     0.0032 

sigma^2 estimated as 0.0234:  log likelihood = 37.5,  aic = -69 

The estimated model can be written in the form: 

ttty εε +−=− −18246.00393.0   or  ttty εε +−= −18246.00393.0  

That is, in the case of MA(q) models the estimated intercept of the model is also the mean of the 

analyzed series. This holds only for the MA models. 

We also estimate the MA(1) model in Eviews for comparison. The results are presented below: 

Dependent Variable: DLJ   
Method: Least Squares   
Sample (adjusted): 1960Q2 1980Q4  
Included observations: 83 after adjustments  
Convergence achieved after 8 iterations  
MA Backcast: 1960Q1   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.040051 0.002714 14.75513 0.0000 

MA(1) -0.851227 0.054221 -15.69910 0.0000 
     
     R-squared 0.476610     Mean dependent var 0.033667 

Adjusted R-squared 0.470148     S.D. dependent var 0.210213 
S.E. of regression 0.153016     Akaike info criterion -0.892751 
Sum squared resid 1.896518     Schwarz criterion -0.834466 
Log likelihood 39.04917     Hannan-Quinn criter. -0.869335 
F-statistic 73.76018     Durbin-Watson stat 2.196182 
Prob(F-statistic) 0.000000    

     
     Inverted MA Roots       .85   
     
     

 

Lets now fit a MA(4) model. The command is: 

ma4fit=arima(dlj,order=c(0,0,4)) 

ma4fit     

Call: arima(x = dlj, order = c(0, 0, 4)) 

Coefficients: 

           ma1          ma2       ma3        ma4      intercept 

       -0.6578    -0.1495   -0.4180   0.7598     0.0366 

s.e.   0.0939    0.1296     0.1035   0.0732     0.0068 

sigma^2 estimated as 0.01383:  log likelihood = 57.65,  aic = -103.31 

The estimated model can be written in the form: 
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tttttty εεεεε ++−−−=− −−−− 4321 7598.0418.01495.06578.00366.0   or  

tttttty εεεεε ++−−−= −−−− 4321 7598.0418.01495.06578.00366.0  

 

Note, that if minimization of the conditional sum of squares (CSS) is used to estimate the model 

parameters, we receive the following results 

ma4afit=arima(dlj,order=c(0,0,4),method=c("CSS")) 

ma4afit     

Call: arima(x = dlj, order = c(0, 0, 4), method = c("CSS")) 

Coefficients: 

          ma1        ma2        ma3        ma4      intercept 

        -0.6216  -0.1615  -0.3922   0.6940     0.0353 

s.e.   0.0800   0.0977   0.0957    0.0778     0.0071 

sigma^2 estimated as 0.01645:  log likelihood = 52.68,  aic = NA 

 

Finally, if we want to estimate a restricted MA model (say with 01 =θ , 02 =θ , 03 =θ and only the 

fourth parameter will be estimated , i.e. 04 ≠θ ) we use the option fixed() described above as follows: 

ma4restricted=arima(dlj,order=c(0,0,4),fixed=c(0,0,0,NA,NA)) 

ma4restricted 

Call: arima(x = dlj, order = c(0, 0, 4), fixed = c(0, 0, 0, NA, NA)) 

Coefficients: 

         ma1  ma2   ma3     ma4      intercept 

            0       0        0       0.7633     0.0314 

s.e.      0       0        0       0.0815     0.0282 

sigma^2 estimated as 0.02211:  log likelihood = 38.67,  aic = -71.34 

 

Here, we will estimate some autoregressive (AR) models in R, using the differences of the logarithm of 

J&J series (dlj), which is a stationary process. The command ar1fit=arima(dlj,order=c(1,0,0)) estimates a 

simple AR(1) model for the dlj series and returns the object/list ar1fit. 

ar1fit=arima(dlj,order=c(1,0,0)) 

ar1fit     
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Call: arima(x = dlj, order = c(1, 0, 0)) 

Coefficients:            ar1      intercept 

                    -0.5226     0.0358 

                     s.e.   0.0950     0.0129 

sigma^2 estimated as 0.03195:  log likelihood = 24.98,  aic = -43.95 

The estimated AR(1) model can be written in the form: 

ttt yy εµϕµ +−=− − )( 11    or   ttt yy εϕµϕµ ++−= −111   or   ttt yy εϕϕµ ++−= −111)1(
 

i.e. ttt yy ε+−−=− − )0358.0(5226.00358.0 1    or   ttt yy ε+−−−= −15226.0))5226.0(1(0358.0
 

   or   ttt yy ε+= −10.5226-0.0545
 

Lets now fit an AR(4) model. The command is:
 

ar4fit=arima(dlj,order=c(4,0,0)) 

ar4fit     

Call: arima(x = dlj, order = c(4, 0, 0)) 

Coefficients:           ar1          ar2          ar3          ar4       intercept 

                            -0.6834   -0.6104   -0.6226   0.2819     0.0384 

                    s.e.   0.1123    0.1181    0.1241    0.1183     0.0037 

sigma^2 estimated as 0.007825:  log likelihood = 80.62,  aic = -149.25 

The estimated AR(4) model can be written in the form: 

tttttt yyyyy εµϕµϕµϕµϕµ +−+−+−+−=− −−−− )()()()( 44332211    or    

tttttt yyyyy ε+−+−−−−−−=− −−−− )038.0(281.0)038.0(622.0)038.0(610.0)038.0(683.0038.0 4321

 

Lets now fit an ARMA(4,1) model. The command is: 

arma41fit=arima(dlj,order=c(4,0,1)) 

arma41fit     

Call:arima(x = dlj, order = c(4, 0, 1)) 

Coefficients: 

             ar1           ar2           ar3          ar4           ma1      intercept 

         -0.4497   -0.3944   -0.4237    0.4910    -0.2465      0.0382 

s.e.    0.2720    0.2535    0.2344     0.2423     0.2937      0.0042 

sigma^2 estimated as 0.007751:  log likelihood = 80.99,  aic = -147.97 

The estimated AR(4) model can be written in the form: 
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ttttttt yyyyy εεθµϕµϕµϕµϕµ ++−+−+−+−=− −−−−− 1144332211 )()()()(    or    

ttttttt yyyyy εε +−−+−−−−−−=− −−−−− 14321 25.0)038.0(49.0)038.0(42.0)038.0(39.0)038.0(45.0038.0
 

Finally, if we want to estimate a restricted ARMA(4,1) model (say with 01 =ϕ , 02 =ϕ , 03 =ϕ and only 

the fourth autoregressive parameter 4ϕ  will be estimated together with the moving average parameter 

and the mean), we use the option fixed() as follows: 

arma41restricted=arima(dlj,order=c(4,0,1),fixed=c(0,0,0,NA,NA,NA)) 

arma41restricted 

Call: arima(x = dlj, order = c(4, 0, 1), fixed = c(0, 0, 0, NA, NA, NA)) 

Coefficients: 

           ar1    ar2   ar3     ar4          ma1      intercept 

             0       0      0     0.8603   -0.8140     0.0337 

s.e.      0       0       0     0.0599    0.0933     0.0113 

sigma^2 estimated as 0.008292:  log likelihood = 78.35,  aic = -148.7 

This restricted ARMA(4,1) model can be written in the form: 

tttt yy εεθµϕµ ++−=− −− 1144 )(    or   tttt yy εε +−−=− −− 14 814.0)0337.0(8603.00337.0  

tttt yy εεθϕϕµ +++−= −− 11444 )1(    or   tttt yy εε +−+= −− 14 814.08603.00047.0 . 

 

2.3 Diagnostic plots  

Now we will provide some diagnostic plots for the residuals of the above model. Based on the residuals 
of the restricted ARMA(4,1) model, we will present the autocorrelation plots and the partial 
autocorrelation plots of the estimated residuals (examine the assumption of autocorrelation of 
residuals), the autocorrelation plots and the partial autocorrelation plots of the squared residuals  (a 
kind of plots to examine heteroskedasticity in the residual series), as well as some normality plots 
(examine the assumption of normality of residuals). 

arma41residuals=arma41restricted$residuals 

arma41residuals 

residuals=ts(arma41residuals, frequency=4, start = c(1960,2)) 

residuals 
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par(mfrow=c(3,2))        # set up the graphics   

acf(ts(residuals,freq=1), 48, main="ACF of residuals")         

pacf(ts(residuals,freq=1), 48, main="PACF of residuals")  

acf(ts(residuals^2,freq=1), 48, main="ACF of squared residuals")         

pacf(ts(residuals^2,freq=1), 48, main="PACF of squared residuals")  

qqnorm(residuals,main="Normal QQplot of residuals")   

qqline(residuals)   

 

 

Based on the residual plots presented above, it seems that the assumptions with respect to the residuals 
are satisfied, thus the restricted ARMA(4,1) models is a appropriate candidate model for modeling the 
stationary series of the differences of logarithm of J&J. Obviously, other alternative model specifications 
can be used.  
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2.4 Predictions 

In this paragraph we compute predictions based on an estimated ARMA model using the command 

predict() of R. A frequently used form of the command is predict(modelfit, n.ahead), where modelfit is 

the estimated time series model, and n.ahead denotes the time steps ahead to predict. For our 

estimated restricted ARMA(4,1) model, predictions for 8 quarters ahead (i.e. two years) are obtained by 

using the following commands 

forecast=predict(arma41restricted,8)    

forecast                                         

 

$pred 

                    Qtr1                  Qtr2                 Qtr3                 Qtr4 

1981  0.43859949    -0.08064274      0.08044484    -0.27229300 

1982  0.38204628    - 0.06467171     0.07391625    -0.22955356 

$se 

                     Qtr1                 Qtr2                Qtr3               Qtr4 

1981   0.09105964    0.11741583      0.11741583      0.11741583 

1982   0.14115168    0.15488933      0.15488933      0.15488933 

A plot of the analyzed time series together with the forecasts plus/minus one standard error is obtained 
by using the commands 

# plot of forecasts with 1 s.e  

UL=forecast$pred+forecast$se 

LL=forecast$pred-forecast$se 

minx = min(dlj,LL); maxx = max(dlj,UL)  

ts.plot(dlj, forecast$pred, xlim=c(1960,1982), ylim=c(minx,maxx))  

lines(forecast$pred, col="red", type="o")  

lines(UL, col="blue", lty="dashed")  

lines(LL, col="blue", lty="dashed") 
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2.5 Useful Comment 

Note that in R, the results of the commands arima(dlj,order=c(1,0,0)) and arima(lj,order=c(1,1,0)) 
provide different results. See the estimation output below: 

ar1=arima(dlj,order=c(1,0,0)) 

ar1 

Call: arima(x = dlj, order = c(1, 0, 0)) 

Coefficients:          ar1   intercept 

                            -0.5226     0.0358 

                    s.e.   0.0950     0.0129 

sigma^2 estimated as 0.03195:  log likelihood = 24.98,  aic = -43.95 

  dar1<-arima(lj, order=c(1,1,0)) 

 dar1 

Call: arima(x = lj, order = c(1, 1, 0)) 

Coefficients:        ar1 

                        -0.4737 

                 s.e.   0.0974 

sigma^2 estimated as 0.03482:  log likelihood = 21.44,  aic = -38.89 
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