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Abstract
Mathematical reasoning, which plays a critical role in students’ capacity to make 
sense of mathematics, is now emphasised more strongly in various curricula inter-
nationally. However, reasoning is sometimes difficult for teachers to recognise, let 
alone teach. This case study considers video of one teacher’s implementation of a 
problem-solving lesson in a year 1 primary school class in Australia. It examines the 
opportunities this teacher provided to leverage reasoning and contributes to the body 
of knowledge on ways reasoning may be elicited during problem solving. The new 
Eliciting Mathematical Reasoning Framework arising from the analysis of the data 
in this study builds on and extends previous research. It provides a tool to support 
researchers, teacher educators, professional learning providers, and teachers in rec-
ognising and eliciting reasoning.

Keywords Eliciting reasoning · Eliciting Mathematical Reasoning Framework · 
Problem solving · Reasoning within problem solving · Development of reasoning · 
Early years primary

Introduction

Brodie (2010) asserted that mathematical reasoning (MR) was crucial in understand-
ing mathematical concepts and flexibly using mathematical ideas and procedures to 
reconstruct prior mathematical knowledge. A renewed emphasis on reasoning is evi-
dent in curricula in recent years (Australian Curriculum, Assessment and Reporting 
Authority (ACARA), 2017; Common Core State Standards Initiative, 2010; Depart-
ment for Employment and Education (DfEE), 2014). For example, “Students are rea-
soning mathematically when they explain their thinking”s (ACARA, 2017); “[s]tudents 
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at all grades can listen or read the arguments of others, decide whether they make 
sense, and ask useful questions to clarify or improve the arguments” (Common Core, 
2010); “[students can d]escribe simple patterns and relationships involving numbers or 
shapes; decide whether examples satisfy given conditions” (DfEE, 2014); and students 
are using reasoning to connect new mathematical understandings with prior learning 
“when they adapt the known to the unknown, when they transfer learning from one 
context to another” (ACARA, 2017). However, Jeannotte and Kieran (2017) reported 
that the descriptions of MR in these curricular documents are imprecise and incon-
sistent, likely contributing to findings of Stylianides et al. (2007), Clarke et al. (2012), 
Loong et al. (2017) and Herbert et al. (2015) that many primary teachers display confu-
sion regarding the nature of MR. It is important to support teachers’ developing peda-
gogical practices to foster students’ reasoning (Stylianides et al., 2007) and to overcome 
challenges teachers face when implementing lessons that build students’ mathematical 
understandings (Lampert, 2001).

Reasoning takes place in classrooms when teachers (and researchers) use problem-
solving approaches to encourage students to build mathematical understandings (e.g.  
Lampert, 2001; Wood et al. 2006). Problem solving, for the purposes of this study, is an activ-
ity associated with working to solve unfamiliar, challenging problems (Liljedahl, 2016).  
Such problem-solving lessons provide teachers with opportunities to elicit reasoning, 
which may not be available in other approaches to teaching mathematics (Lampert, 
2001). In the problem-solving lesson that provided the data for this Reasoning Elicit-
ing Study, reasoning was elicited but was not the explicit focus. The teacher’s focus 
was instead on eliciting student communication of mathematical ideas that these stu-
dents were developing. Given the identified confusion of some teachers with the nature 
of reasoning, and the identified existence of reasoning as part of problem-solving, this 
study explores the nature of the eliciting of reasoning in a context in which complex 
reasoning terminology was not employed. This study addresses the following research 
question:

What was the nature of this teacher’s eliciting of reasoning during this prob-
lem-solving lesson?

An outcome of this study is the Eliciting Mathematical Reasoning Framework that 
provides insights into different types of eliciting of reasoning and illustrates their oper-
ationalisation in an early-years classroom. It is expected that such a framework will be 
useful to teachers, professional learning providers, teacher educators, and researchers 
working to increase teacher understanding of the nature of MR. The potential for an 
increase in the frequency, with which reasoning is elicited in lessons through guidance 
provided by Eliciting of Mathematical Reasoning Framework, could increase teachers’ 
familiarity with reasoning actions of students and increase teachers’ understanding of 
MR.
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Background

Mathematical reasoning

Brodie (2010) argued that reasoning arguments are developed to convince others 
of a claim, solve problems or bring together several ideas. Reid (2002) asserted 
that “[d]eveloping mathematical reasoning is central to mathematics education” 
(p. 5). The opportunities teachers provide for students to reason mathematically 
can enhance the development of their students’ reasoning (Long et al., 2012; Reid, 
2002; Stylianides et al., 2013). Classroom culture is influential in the development 
of reasoning when students are expected to clearly communicate their reasoning 
(Kilpatrick, et al., 2001) by expressing their ideas; explaining and justifying their 
thinking; and identifying flaws in others’ thinking (Long et al., 2012).

In order to increase consistency between the various meanings of “mathematical 
reasoning”, Jeannotte and Kieran (2017) conceptualised a model of MR for school 
mathematics. Their model structures the previously vague and sometimes contra-
dictory descriptions of MR into two aspects: structural and process. The structural 
aspect which is not relevant to this study is “the form in which the reasoning is 
expressed, be it deductive, inductive, or abductive” (p. 9). Their process aspect of 
reasoning is relevant to this study. It includes exemplifying, comparing, classifying, 
identifying patterns, justifying, generalising, conjecturing and proving—reasoning 
actions relevant to primary school mathematics (Lampert, 2001).

The reasoning actions within Jeanotte and Kieran’s (2017) process aspect are 
interrelated. Comparing and classifying cases enable identification of patterns and 
the formation of conjectures to be justified. Conjecturing includes a statement or 
collection of statements that are thought to be true but not yet known to be true 
(Taylor & Garnier, 2016), a reasoning action associated with generalising. Jus-
tifying includes the evaluation of conjectures (Winsler et al., 2007) using logical 
arguments to convince others of the validity of a claim (Jeannotte & Kieran, 2017; 
Mata-Pereira & da Ponte, 2017). Logical arguments can be considered proving 
when they “progress from empirical to deductive arguments through a dialectic 
between conjecturing and proving” (Stylianides & Stylianides, 2017, p. 122). 
Generalising involves moving from a few cases to making statements about a 
wider collection of cases or examining one case in detail to make sense of inter-
relationships between instances more generally (Jeanotte & Kieran, 2017; Wood  
et al., 2006). In Wood et al.’s study in a third-grade classroom, they report that few (3 out  
of 148 inquiry/arguments) involved “Constructing Synthesizing—Formulate math-
ematical arguments to explain discovered patterns” (p. 232), that is, the essence  
of generalising.

“Mathematical situations often present an overabundance of information, visual  
cues, and possible patterns, making it impossible to process everything at once” 
(Lobato et  al., 2013, p. 809). Krutetskii (1976) identified the “mental activ-
ity” of analysing, describing it as a preliminary process of exploring a problem 
by breaking it down into parts, “to generalise mathematical relations one must 
first dismember them” (p. 228). Krutetskii further identified the simultaneous 
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consideration of several elements as a more complex type of analysis. Thus, 
Krutetskii provides actions (breaking into parts, considering simultaneously) addi-
tional to Jeanotte and Keiran’s (2017) analytical processes of exemplifying, com-
paring and classifying to explore a problem. Exemplifying supports generalising 
from conjectures and validating (Jeanotte & Keiran, 2017). Comparing and clas-
sifying involve consideration of the examples generated in exploring a problem 
(exemplifying) to identify relationships (Mason, 1982) between the examples to 
produce conjectures. Students may search purposefully and systematically with 
the intention of verifying their conjectures. Krutetskii (1976) described capable 
students’ approaches to solving a problem as progressing from analysing to gen-
eralising: “they isolate different elements in its [the problems’] structure [analys-
ing], assess them differently, systematize them, … [and] seek out mathematical 
relationships [generalising]” (p. 227). Krutetskii identified even more complex 
processes, associated with simultaneous consideration of several elements, that 
were employed for purposes of judgement [validating].

For the purposes of this study, Jeannotte and Kieran’s (2017) process aspects of 
MR and Krutetskii’s (1976) analysing actions have been grouped into three broad 
types of reasoning: analysing, validating and generalising (see Table 1) to form the 
theoretical framework of reasoning processes employed.

The MR processes and actions and description displayed in Table 1 have been 
used to categorise the different types of reasoning elicited, to inform the coding of 
the data.

Eliciting reasoning during mathematical problem solving

The focus of this study is the eliciting of reasoning during problem solving, where 
problem solving is the process of grappling with new and unfamiliar tasks where 
the means of solution are unknown and/or there is not one specific solution (open 
task) (Silver, 1997). Silver described Eliciting as “the set of teaching actions that 
serve the function of drawing out students’ mathematical ideas” (p. 111). Although 
many researchers have referred to reasoning terminology (e.g. explain, justify; make 
decisions, conjecture) within problem-solving activity in schools (Clarke & Clarke, 
2003; English & Gainsburg, 2015; Lesh et  al., 2000; Lithner, 2017; Schoenfeld, 
1992), very few (e.g. Lampert, 2001) explicitly and consistently identify these as 
reasoning actions during the implementing of problem solving. Terms like “Conjec-
ture: Reasoning” (p. 369) are part of Lampert’s usual classroom language included 
on worksheets and used in discussions during problem solving, to explain students’ 
reasoning.

Eliciting of students’ mathematical ideas occurs during Williams’ (2014) Engaged to  
Learn (E2L) approach which was developed to increase students’ mathematical 
understandings through problem solving. The teacher does not provide mathemati-
cal input during students’ activity, but rather employs open questioning, and drawing  
of attention, with an absence of hinting, telling, affirming, and querying (see Williams,  
2020). Within E2L, students work in small groups on non-routine, complex but acces-
sible tasks that provide opportunities for explorations in which groups select which  
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mathematics, and which representations, to use. Through group reports and subse-
quent whole class discussion, a variety of mathematical ideas and representations 
are linked. The eliciting of mathematical thinking during the E2L approach is theo-
retically framed by Thought processes during problem solving (Wood et al., 2006) 
adapted from Williams (2002), which builds upon Dreyfus et al. (2001) and Krutetskii  
(1976) (see Table 2).

Strong synergies are evident between reasoning processes (Table  1) and math-
ematical thinking employed during problem solving (Table  2). The reasoning 
process of analysing is synonymous with Building-with actions of analyzing, and 
synthetic-analyzing, whilst validating is consistent with the Building-with action of 

Table 2  Thought processes during mathematical problem solving (Woods et al., 2006)

Mathematical thinking Examples of cognitive activity

Recognizing comprehending  + Understand concepts behind taught idea or known strategy
Recognizing applying  + Know when to use a known mathematical idea
Building-with analyzing  + Apply known mathematical procedures in a new context

 + Solve using a problem with a slight twist
 + Familiarise self with problem using specific numerical examples
 + Systematise the numerical results and search for patterns

Building-with synthetic-analyzing  + In contrast and comparison of two methods for the difference
 + Interconnect various representations, operations and assumptions
 + Use more than one pathway to solve a problem
 + Produce an independent generalisation—“small discovery”
 + Analyse one case or form a guiding principle to formulate a new 

rule
Building-with evaluative-analyzing  + Interconnect solution pathways for the purpose of identifying 

flaws and strengthening arguments
 + Pull together ideas for making a judgement
 + Evaluate whether a method or result is reasonable, efficient or 

elegant
Constructing synthesizing  + Formulate mathematical arguments to explain discovered patterns

 + Explore the problem from many perspectives rather than just 
work towards a solution

 + Integrate concepts to create new thoughts or ideas (new insight). 
Could vary in:

 + Number of concepts involved
 + Diversity of the domains that concepts were drawn from
 + Size of the conceptual leap
 + Spontaneity with which the process is undertaken
 + Progressively explore the problem to continually develop new 

insights
Constructing evaluating  + Progressively reflect on the situation as a whole for the purpose 

of recognizing inconsistent information and/or finding a more 
elegant solution pathway

 + Reflect on the process of problem solution for the purpose of 
recognizing its limitations and its application to other contexts

 + Reflect on the solution pathway developed and its possible contri-
bution to generic mathematical processes to employ in the future
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evaluative-analyzing and generalising and proving align with Constructing (synthe-
sizing and evaluating).

Methodology

In this Reasoning Eliciting Study, “we feel that we might get insight into the 
[research] question by studying a particular case” (Stake, 1995, p. 3, 4). The “case” 
is the bounded system (Stake, 1995) of the teacher’s (Earl’s1) interactions with his 
year 1 class of boys and girls (in a small rural government primary school in Aus-
tralia) during one 80-min problem-solving lesson (hitherto referred to as the “case” 
lesson). This Reasoning Eliciting Study sits within a broader study of a 6-year, 
whole-school professional learning program (PLP)—that included Earl’s school—
where teachers experimented with the Engage to Learn (E2L) approach to problem 
solving under the guidance of the PLP leader, Williams.

Herbert selected this lesson for this Reasoning Eliciting Study because, on inspec-
tion of lesson videos of the broader study, Williams identified frequent eliciting of 
reasoning in this lesson even though the term “reasoning” was not included in the 
talk of the teacher or the students during the lesson.

The findings provide insights into types of reasoning eliciting activity undertaken 
by this one teacher, in one lesson (Stake, 1995), rather than a complete list of all pos-
sible types of eliciting of reasoning actions. A case study approach is “open to the 
use of theory or conceptual categories that guide the research and analysis of data” 
(Meyer, 2001, p. 331). This case study is theoretically framed by literature related to 
reasoning (see Table 1) and thought processes during problem solving (see Table 2).

Earl and his class

Earl, with over 5 years teaching experience, participated in the PLP about eliciting 
mathematical thinking rather than reasoning. He developed his own refinements of 
E2L, informed by his previous observing, trialing, discussing and reflecting on prob-
lem-solving lessons implemented and observed by teachers during the PLP. The case 
lesson was one such lesson. Students worked in groups of two to four selected by the 
teacher with roles allocated by Earl. Roles included recorder, reporter, encourager 
and timekeeper. The class, year 1 students (21 students aged 5–7 years) from two 
composite classes (foundation/prep, year 1), undertook problem solving with Earl 
with once a week as part of the usual school program.

Note: Letters have been used to identify students, e.g. Student A.

Content of “case” lesson

Prior to the “case” lesson Earl had read the first page of the storybook “The Door-
bell Rang” (Hutchins & Keating, 1986): “I’ve made some [12] cookies for tea,” said 

1 Pseudonym.
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Ma. “Good,” said Victoria and Sam. “We’re starving.” “Share them between your-
selves,” said Ma. “I made plenty.” (p. 1).

He asked “how many whole biscuits will Sam and Victoria have each?”.
This single solution question focused students’ attention on the 12 cookies, how 

the cookies might be shared and types of language and representations they might 
decide to use in communicating to the class what they had done.

“Case” lesson

The “case” lesson followed this introductory lesson with the same storybook 
employed as a stimulus for students’ thinking. In the “case” lesson, Earl read the 
first three pages of the book, finishing with “‘No one makes cookies like Grandma,’ 
said Ma [and were just about to eat the 12 cookies] as the doorbell rang”. Earl set 
the book aside and set the groups to work on the task “with your group you’ll need 
to choose how many people are at the door and how Sam and Victoria will work out 
how everyone can get the same amount of whole cookies”.

Data collection

The lesson was video-recorded since “participant verbal reports [alone] of conver-
sations, behaviors and events distort and fail to include details necessary for deep 
understanding of the processes under study” (Woodside, 2010, p. 9). Four video 
cameras were employed to capture the classroom interactions. The data for this arti-
cle was from the video focused on the teacher that captured the reporter at the board, 
the class sitting on the floor and the teacher. The video images were sufficiently 
clear for identification of inscriptions, such as drawings, symbols and writing, which 
group reporters attended to on group worksheets as they reported to the class. The 
audio from the video was transcribed verbatim and used in conjunction with the 
video images to identify instances of eliciting of reasoning.

Data analysis

For the purpose of this study, “eliciting of mathematical reasoning” was consid-
ered to occur where teacher actions could result in student reasoning (whether or 
not it did). It was identified through the video data, supplemented by the transcript 
because “[s]peech and gesture together can often provide a clearer and more accu-
rate picture” (Kelly et al., 2002, p. 22).

Our fine-grained analysis is presented in a similar structure to Powell et  al. 
(2003), but with the primary focus of the analysis on the eliciting of reasoning rather 
than the development of mathematical thinking. The phases of analysis were:

• Herbert presented the research focus and video illustrations to the broader pro-
ject team.

• The broader project team, including researchers with a background in reasoning, 
discussed incidences of eliciting of reasoning seen in the video.
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• Herbert repeatedly viewed the video (Akerlind et al., 2005) to identify eliciting 
of reasoning and code as types of reasoning (Table 1), referring to the transcript 
as necessary (Herbert & Pierce, 2013; Herbert et al., 2015).

• Williams (informed by class observation, repeated viewing of the video, discus-
sion session with broader team, and the lesson transcript) reviewed Williams’ 
coding.

• Herbert and Williams discussed and came to consensus where there were dis-
crepancies in their code allocations.

• Herbert selected representative illustrations of each code category to include in 
the paper that were clear and concise.

• Williams identified and coded the types of mathematical thinking (Table 2) that 
might occur in response to the eliciting activity (Williams, 2007)

• Williams and Herbert discussed and where necessary refined the coding of math-
ematical thinking.

Like Pea (2006), this analysis provides more “complete records of complex phe-
nomena than earlier methods” (p. 1325).

Results

This section presents the findings from the analysis of the interactions during the 
reporting session recorded in the video data. Where the data is sufficient to make 
inferences {} brackets are used to enclose the researchers’ inferences. In response to 
the task (see “Methodology”) different groups chose various numbers of people at 
the door including 4, 6, 8, 10, 12, and 17.

Student D: We think there were 10 people at the door.
Student E: there are four people [at the door]
Student F: We thought 17 was how much people were at the door.

Earl asked the students to “work out how many whole cookies each person 
should get to be fair”. Working with their chosen number of people and 12 cook-
ies, groups investigated the problem in whatever way they chose. Earl employed the 
E2L approach as groups explored his question, concluding the lesson with a report-
ing session. The reporter from each group successively attaching their group’s A3 
worksheet to the board for the purpose of explaining their group’s thinking to the 
class. Earl asked questions of each reporter and then encouraged other class mem-
bers to ask questions. Figure 1 shows an image taken from the video illustrating one 
group’s work on this problem which includes diagrammatic, numerical and verbal 
representations.

The results are presented in the order in which MR processes are displayed 
in Table  1 (analysing, validating and generalising) with associated thought 
processes (Table  2) indicated in {}. Excerpts of interactions are included to 
provide evidence of these eliciting of reasoning actions. The quotes, which 
illustrate the types of comments and questions Earl employed, are not neces-
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sarily sequential so “*” is used to separate the quotes. Where the quotes are 
sequential, they are grouped together with a single asterisk and the line of 
space between these quotes has been omitted.

Eliciting actions for mathematical reasoning

Crucial to the eliciting of types of reasoning was Earl’s encouraging of students’ 
contributions which resulted in their communication, both oral and other forms, of 
their mathematical thinking. Through the process of coding outlined above, these 
three main eliciting categories emerged:

• Eliciting types of reasoning (with subcategories analysing, validating and gener-
alising)

• Eliciting communication of reasoning (with subcategories oral and other repre-
sentations)

• Eliciting reasoning through encouraging student contributions (with subcatego-
ries share thoughts with class, value contribution, share ideas in easy to under-
stand ways, understand ideas of others)

Eliciting types reasoning

Data illustrating each of the three subcategories analysing, validating and generalis-
ing are now presented.

Fig. 1  Reporter linking numeri-
cal and diagrammatic represen-
tations utilised by her group
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Analysing

At the beginning of the lesson, students were encouraged to explore the problem 
posed by Earl.

* Earl: With your group this morning, you need to choose how many 
people are at the door so that everyone can get the same amount 
of whole cookies.

During the reporting session, students were encouraged to listen and try to under-
stand the thinking of others, their solution processes and their solutions. Opportuni-
ties for reasoning were further encouraged by Earl communicating that class mem-
bers asking questions of reporters helped to deepen the thinking that occurred.

* Earl: Now yesterday whilst people were reporting, the questions that were 
being asked really helped us to understand the maths and really really encour-
aged the reporter to think a little bit deeper about what they had done, so I’m 
going to encourage that today.

The following excerpt illustrates how Earl’s eliciting encouraged students to 
explain their analysis of the problem more fully.

* Student D: We think there is 10 people at the door.
Earl: What did that mean? {pose question to elicit mathematical meaning 

about group focus}
Student D: That means they get one cookie each. There’s 2 people inside and 

10 people outside [holding up 2 fingers] which makes 12 people 
{elicit connections between cookies and people}.

Earl: Is there a sum that you know that would show that? {elicit links between 
representations}

Student D: [Reads 10 + 2 = 12 from worksheet] Ten plus two equals 12
Earl: 12 cookies altogether so what does that mean for the people? {elicit link 

between cookies and people in numeric representation}
Student D: They all get one each.

This exchange, where Earl’s questions elicited Student D’s explanation, is one of 
the many instances that occurred in the reporting stage of the lesson where a student 
responded to Earl’s question with further explanation of their group’s analysis of the 
problem, thus demonstrating Earl’s eliciting of reasoning from the students in his 
class in several ways.

The following excerpt illustrates Earl’s eliciting of analysing (inspecting compo-
nent parts) to find out more through simultaneously thinking about symbolic and 
physical representations (synthetic-analysis) and his encouragement of class mem-
bers to ask questions to assist them in understanding more.
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* [Student F’s inscription seen in the video]: 3 + 3 + 3 + 3 + 3 + 2 = 17.

Earl: I’m wondering if some people might like to think about that. There’re 
some questions already happening about this work. {Elicit thinking 
from others about what they do or do not understand for the purpose of 
asking questions to understand more}.

Validating

Also evident in the data were instances where Earl’s eliciting encouraged his stu-
dents to justify (validate) their solutions. Illustrations of eliciting of validating are 
given next.

Earl expected other students to consider groups’ findings and test the reasonable-
ness of the work presented. The following exchange demonstrates how Earl’s elicit-
ing led to a student justifying their group’s solution processes and solution, indicat-
ing Earl’s success in eliciting this reasoning process.

* Earl: What have you done and why? {eliciting of justification of mathematics used}.
Student E: I’ve done that because there are four people and this is my box 

[pointing to one circle] and this is Jacob’s box this is Victoria’s box 
and this is Sam’s box and they’ve each got three each and it shares 
the twelve.

Earl: Can you show us how it is twelve? {further eliciting of justification of 
mathematics used}.

Student E: I just did it before 3, 6, 9, 12 [showing one finger for each count].
Earl: Are you counting by something?
Student E: Yes counting by threes.
Earl: I saw you write something there and it’s not something we do all the time 

but I think it’s pretty important for the rest of these guys to see it. As you 
were drawing these circles you were writing some numbers there. What 
were those numbers? {Eliciting justification of representation employed}

Student E: Those were just counting numbers like 1,2,3,4,5,6 … 12 [pointing 
to each number inside the circles].

This interaction demonstrates eliciting communication of Recognizing an appro-
priate selection of number of people, and appropriate mathematics in various rep-
resentations, and of Build-With through connecting representations to justify. Earl 
requested explanation “what have you done?” and justification “why?” (first line 
of this exchange). When the student provided a partial justification, indicated by 
“because”, Earl elicited further explanation about the step not explained (Can you 
show us how it is twelve?). Earl’s request for further elaboration (Are you counting 
by something?) contributed to the explanation by drawing attention to the counting 
the student had done, but not mentioned. Earl’s question “what were those num-
bers?” was intended to elicit connections between diagrammatic and symbolic rep-
resentations (synthetic-analysis), but this question did not explicitly elicit that con-
necting since the student responded with only names symbolic representation but 
not its meaning in this context. That said, the student had connected cookies and 
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people in the first line of the transcript, indicating awareness of the meanings of this 
mathematics in the context under study.

Generalising

Whilst there are many examples in the data of Earl eliciting justifying, there are very 
few where he was identified to be eliciting generalising. Groups chose a variety of 
numbers of people at the door so there was some potential for Earl to elicit evidence 
of various generalisations (e.g. if there are more than 12 people it is not possibly to 
give out whole cookies fairly; sometimes there are cookies left). In the following 
exchange with a reporter, Student B, Earl attempted to draw out mathematical think-
ing that had the potential to lead to conjecture then generalisation.

* Earl: How many people at the door. 17 that’s a lot of people at the door 
so what’s going to happen with the cookies? {eliciting Building-With: 
analyzing and synthetic-analyzing (simultaneously considering cook-
ies and people)}.

Student B: They are all going to get one each {it can be inferred that synthetic-
analysis has not occurred for this student}.

Earl: One each? How many cookies are there?
Student B: 17
Earl: Why, is my question! Why did your group decide that 17 was not going 

to work out? Why?

The inferred intent of this eliciting activity was to encourage connections between 
number of people and the number of cookies (synthetic-analysis), for the purpose of 
highlighting that 17 does not work. Finding why it does not work could open up an 
opportunity to conjecture, test, and finally make a generalisation such as “if there are 
more than 12 people, whole cookies cannot be shared fairly”. Student B was unclear 
about the thinking about this that occurred in his group.

Eliciting communication of reasoning

Earl accepted communication through any representation, for example, oral, ges-
tural, symbolic or diagrammatic. Data illustrating each of the subcategories of com-
munication are now presented (oral communication and communicating through 
other representations).

Oral communication

Integral to Earl’s eliciting of reasoning was his expectation of sharing thinking with 
other group members, and communicating of group thinking to the whole class, 
with students contributing comments and questions to elicit further elaboration from 
reporters. The following quotes demonstrate Earl’s belief in the importance of the 
students communicating ideas clearly. He encouraged students to listen to each other 
and to try to understand their ideas. These foci illustrate Earl’s eliciting of students’ 
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mathematical thinking through the sharing of each group’s thinking and his encour-
agement of students’ questions as crucial to the class developing understandings.

* Earl: Okay, lots of great ideas coming out there [Student A] so let’s just go 
really quite slowly so that [Student B] and [Student C] can get up to 
speed as much as they can be- [Student B], do you understand all the 
maths that is going on here? {expecting students to communicate in 
inclusive ways}

* Earl: Listen, it’s important to work together. … I think you’ll need to describe. 
You’ll need to be really clear for this guy … yesterday whilst people 
were reporting the questions that were being asked really helped us to 
understand the maths {Valuing contributions from class members}.

Earl’s requests for further explanations and for reasons why certain actions were  
     taken were interspersed as appropriate.

Earl encouraged class members to ask the reporter questions to clarify their  
    explanations. He also encouraged the reporters to elaborate their answers to these  
    questions.

* Earl: There’re some questions already happening about this work so Student 
F, people with their hands up [indicating Child F should choose]

Student F: [indicating which student would respond]: Student E.
Student E: What’s the 1 + 1 + 1 + for?
Earl: Oh you’re seeing some of the maths crossed out. Student F, this stuff up 

here [pointing to work sample] what was that?
Student F: People, then crossed it out.
Earl: So these were the people and you [your group] crossed them out. How 

many people were you working out with this?
Student F: 17.
Earl: What did you discover? Why did you cross it out? {further eliciting of 

thinking about 17}.

Earl then used this opportunity to elicit explaining of why 17 people did not work.
Throughout the entire lesson, Earl demonstrated the expectation that students 

should communicate their reasons. This quote illustrates that expectation.

* Earl: Which bit are you going to talk about champ? Okay, tell us about why 
that one? [Eliciting of justification of selection of number of people].

The classroom norms Earl established emphasised the importance of students 
developing logical understanding (Skemp, 1979): communicating their mathemati-
cal thinking in their group and to the class as a whole.

Communicating through other representations

Pictorial representations were common. Groups used either drawings only, combina-
tions of drawings, words and number symbols or explicitly linked pictorial represen-
tations with numeric representations. Representing of reasoning in diverse ways that 
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enabled eliciting of connections between these representations was evident. Diver-
sity of representations was encouraged and added to the richness of the reporting of 
groups’ solution processes.

The following eliciting from Earl demonstrated his valuing of a wide variety of 
representations.

* Earl: Student C—the group work was pretty much normal and they had all 
the working out and their maths ideas were all recorded on sheets and 
from these [worksheets] and from the important maths thinking.

* Earl: Can you show us that [on the diagram] somehow?
* Earl: If you’ve changed your ideas. If you’ve tried something but you weren’t 

quite sure if it worked, please don’t scratch it out. That might actually 
help another group or that might help you later on to see some of the 
thinking you were doing.

* Earl: Sometimes we draw different diagrams so that we can get thinking 
about our work.

These exchanges illustrate that Earl is prepared to accept a diagram as a form 
of communicating of reasoning, and written forms of “working out”. His state-
ments indicate that all working towards a solution is acceptable and valued, which is 
emphasising the importance of interim thinking.

The structure of Earl’s lesson and the evidence of his classroom norms show that 
Earl is accepting verbal responses to questions and that these may be connected to 
other representations. Earl’s question “anything else you can tell us?” uses “tell” 
more broadly than only a verbal response. Diagrammatic and symbolic responses 
were also used to communicate solution paths.

* Earl: You have been experimenting with that symbol and that operation a little bit.
* Earl: And you’ve got something else on your sheet that I think that you might 

be able to share with the group. What’s all that down the bottom there?
Student D: Twelve times one equals twelve [pointing to 12 × 1 = 12 on work sample].
Earl: Could you explain 12 times 1 = 12 what does that mean?

These statements and questions suggest that Earl has noticed and accepted sym-
bolic representations as a suitable way to communicate students’ thinking. When 
considered in conjunction with other questions and comments Earl made during the 
lesson, it is most likely that he is trying to help the class to connect verbal, diagram-
matic and symbolic representations to increase students’ understandings of sym-
bolic representations. Earl’s eliciting of reasoning about why particular mathemat-
ics was used and the form in which it was communicated (Recognizing) go beyond 
explanation of known mathematical procedures. Students select and combine math-
ematics in unfamiliar ways as they progress towards curtailing their mathematical 
thinking (synthesis) to communicate their new ideas through connections between 
representations.
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Eliciting reasoning through encouraging student contributions

This eliciting of reasoning process occurred through action types which encouraged 
students to participate in reasoning actions: Sharing ideas in easy to understand 
ways, Valuing contributions, and Understanding ideas of others.

Share thoughts with class:

* Earl: Now yesterday … the questions that were being asked really helped us 
to understand the maths … so I’m going to encourage that today.

Value contribution:

* Earl: Okay, lots of great ideas coming out there [Student A].

Share ideas in easy to understand ways:

* Earl: So let’s just get really quite slowly so that [Student B] and [Student C] 
can get up to speed as much as they can be.

Understand ideas of others:

* Earl: [Student B], do you understand all the maths that is going on here?

Such multiple actions to establish and sustain the classroom culture were 
employed before, during and after teacher eliciting of student reasoning. Earl’s 
activity elicits mathematical thinking as he encourages students to:

• share their thoughts [“lots of great ideas coming up”] rather than only completed 
ideas;

• think more deeply about what they have found [“[your] questions really helped 
us to understand”];

• share their own ideas in easy to understand ways [“[go] quite slowly so … [oth-
ers] can get up to speed”]; and

• understand the ideas of others [“do you understand all the maths that is going on 
here”].

He demonstrated that he considered it important that all students have opportu-
nity to understand, and that he was monitoring this.

By valuing all contributions, it appears that Earl has increased the likelihood that 
groups put forward tentative ideas. This should progress the development of ideas 
faster. In doing so, there is potential for students to develop a stronger understand-
ing of mathematics relevant to the task, and further understanding of explorations 
undertaken by their group and other groups. Encouraging elaborations that include 
the connecting of representations (Building-with: synthetic-analysis) and the justi-
fying of ideas reported (Building-with: evaluative-analysis) should increase class 
members’ understandings of ideas. A question that remains unanswered is whether 
Constructing, synthesis, would occur in later lessons in this problem-solving task 
when students have generated further instances of different numbers of people at the 
door to support generalising from patterns generated.
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Summary of Analysis

Illustrations of Earl’s eliciting of mathematical reasoning actions have been mapped 
against the categories: Eliciting types of reasoning, Eliciting communication of rea-
soning and Encouraging student contribution to communicating mathematical ideas 
and sustaining these communications, which could be considered classroom norms 
that set the scene for reasoning. This encouraging of student contributions was cru-
cial to eliciting of reasoning because it valued inclusivity, encouraged interim think-
ing including partially developed ideas and made transparent the expectation that 
the class value the same. This task enabled group choice of numbers of people at the 
door, solution processes employing multiple representations (including mathemati-
cal arguments), autonomous selection of modes of communication and opportunities 
for both teacher and students to elicit reasoning. As such, it is potentially useful for 
others interested in illustrations of eliciting of reasoning, especially in early years, 
and as a tool to experiment with to develop such skills.

Earl’s strategies for progressing mathematical understanding included elicited 
student responses that (a) shared, explained and discussed what they had done (ana-
lysing); (b) gave reasons for the mathematics they used (validating); (c) encouraged 
conjecturing (that could lead to generalising); (d) employed communication through 
different representations (and connected representations); and (e) contributed by 
sharing. Eliciting of reasoning was embedded in Earl’s eliciting of mathematical 
thinking. In addition, Earl explicitly sustained classroom norms that encouraged stu-
dents to reason by valuing their ideas, providing opportunities to learn and encour-
aging them to take on eliciting roles themselves. Earl highlighted the usefulness of 
such activity throughout the lesson. Earl’s faith in his students was demonstrated by 
his statements indicating that all students would be able to understand if ideas were 
clearly presented.

Discussion

Findings from this study add to the growing literature connecting reasoning and 
problem solving by emphasising the role of the eliciting of reasoning in developing 
new (to the students) mathematical understandings during problem-solving activity. 
Previous research connecting problem solving and reasoning has focused differently 
to this study, by not specifically focusing on the eliciting of reasoning (e.g. Yackel 
& Cobb, 1996; English & Gainsburg, 2015; Schoenfeld, 1992; Lithner, 2017; Lesh 
et al., 2000; Lampert, 2001).

The Eliciting Mathematical Reasoning Framework

The main contribution of this study is the Eliciting Mathematical Reasoning Frame-
work that has emerged, which brings together and extends previous research on MR 
to include the eliciting of MR during problem solving in the early years.
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The Eliciting Mathematical Reasoning Framework (Table  3) was formulated 
through the simultaneous analysis of eliciting of reasoning actions (Table  1), 
thought processes during problem solving (Table 2) and additional actions identi-
fied during the analyses of data. This framework synthesises findings arising from 
answering the research question: “What was the nature of this teacher’s eliciting of 
reasoning during this problem-solving lesson?” It classifies the nature of the elicit-
ing of reasoning that occurred into three categories: Eliciting of types of Reasoning, 
Eliciting communication of reasoning and Eliciting reasoning through encouraging 
student contributions (Table  3, column 1); documents the purposes for which the 
teacher employed this eliciting of reasoning (column 2); and illustrates the teacher’s 
eliciting of reasoning activity and the mathematical purposes such eliciting of rea-
soning addressed (column 3). Eliciting communication of reasoning is consistent 
with the emphasis on communication of reasoning advocated in curriculum docu-
ments (ACARA, 2017; Common Core State Standards Initiative, 2010; Department 
for Employment and Education (DfEE), 2014) and thus adds support to the useful-
ness of the framework for teachers applying curriculum requirements.

The first two categories in this framework (Eliciting types of reasoning and Elicit-
ing communication of reasoning) explicitly refer to the eliciting reasoning. The third 
category (Eliciting reasoning through encouraging student contributions) (Table 3, 
row 3) is a catalyst to this eliciting of reasoning. It builds a classroom culture in 
which students feel safe to participate, share their interim thinking and explain their 
reasoning (Inoue et al., 2019).

Category 1: eliciting types of reasoning The eliciting of reasoning occurred through-
out the lesson, for example, when Earl commented “12 cookies altogether” then 
asked “so what does that mean for the people?” he drew attention to the need for 
students to give reasons (Table 3, Eliciting types of reasoning: analysing) for what 
was on their sheet and the need to make connections between the physical situation 
and mathematics within it (Table 3, Eliciting types of reasoning: validating). Like 
Yackel (2001), Earl expected his students “to clarify aspects of their mathematical 
thinking that they think might not be readily apparent to others” (Yackel, 2001, p. 
13) and justify their mathematical claims “So what did that mean?” These expecta-
tions are consistent with Kilpatrick et al.’s (2001) statement “[c]lassroom norms can 
be established in which students are expected to justify their mathematical claims 
and make them clear to others” (p. 130). It appears that Earl endeavored to elicit 
a conjecture from the group that chose 17 “‘Why?’ is my question. Why did your 
group decide that 17 was not going to work out? Why?” (see Results: “Generalis-
ing”). The reporter did not respond with reasoning, most likely because he had not 
fully understood the group discussion at that time. Since forming conjectures fre-
quently involves identifying commonalities across cases (Lannin et al., 2011), this 
group may not have been exposed to sufficient cases (numbers of people at the door) 
at this time or may need more time to undertake such thinking (Clarke & Clarke, 
2003).

Category 2:  eliciting communication of reasoning   Skemp (1979) described 
being able to communicate mathematical ideas developed as an additional 
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type of mathematical understanding—logical understanding (beyond relational 
understanding—the communicating of relational understandings developed). 
Illustrations of eliciting of reasoning associated with communicating this rea-
soning are thus contributing to opportunities for students to develop deeper 
mathematical understanding. Other researchers have emphasised the impor-
tance of students communicating reasoning to convince others through oppor-
tunities to express their ideas and build mathematical understanding (Brodie, 
2010; Long et  al., 2012; Reid, 2002; Stylianides, et  al., 2013). Earl (as in  
Williams, 2005) elicited mathematical ideas in common language from the students  
(as illustrated through this student response “There’s 2 people inside and 10 
people outside [holding up 2 fingers] which makes 12 people”) and provided 
mathematical terms when the majority of the class appeared to understand a 
conceptual idea and were expressing it in common language “You have been 
experimenting with that symbol and that operation a little bit.”

This category includes both oral communication of reasoning and communica-
tion of reasoning through the use of other representations (e.g. see student work in  
Fig.  1 where verbal, diagrammatic and symbolic representations were employed). 
Reasoning may be expressed and conveyed through a variety of representations 
(Bakker & Hoffmann, 2005) as evident in Earl’s interactions with his students 
“sometimes we draw different diagrams so that we can get thinking about our work”. 
Earl also accepted students’ gestures as their responses when they pointed to vari-
ous places on the worksheet and, like Lampert (2001), progressed student work by  
his introduction of language. Earl’s focus was on encouraging students to connect 
mathematical representations and explain to others how they made those connec-
tions. In eliciting clearer communication of thought processes employed, simple  
analysis (Wood et al., 2006) was encouraged when Earl’s eliciting of reasoning drew 
attention to parts of a symbolic representation (e.g. “Could you explain 12 times 1 = 12  
what does that mean?”) and synthetic-analysis (see Table  2) when students were 
asked to make connections between different representations (e.g. “… these circles 
… and … [those] numbers there. What were those numbers?”). Evaluative-analysis 
(see Table 2) in conjunction with synthetic-analysis was encouraged through Earl’s 
eliciting of justifying of mathematics generated and supporting its reasonableness 
by drawing on another representation “…on your page you had this sum …. Do you 
know why this sum?” Language associated with reasoning emerged as he pursued 
this purpose.

Category 3:  eliciting reasoning through encouraging student contributions This 
includes teacher valuing of students’ explanations, and discussions, and teacher 
asking of questions whilst encouraging students to participate in such questioning 
as well, to increased opportunities to learn. The attention the teacher paid to the 
pace and clarity of the reports “so let’s just get really quite slowly so … [they] can 
get up to speed …”, and to whether learning was occurring for individual students 
“do you understand all the maths that is going on here?”, demonstrated a valu-
ing of all class members. Such actions made explicit the classroom norms and the 
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socio-mathematical norms (Yackel & Cobb, 1996; Yackel, 2001). Lampert (2001), 
like Earl, “involved other students in supporting and furthering [student’s] think-
ing” (p. 145), which further contributed to the culture developed. Earl’s “handing 
over questioning to the class” was a strategy he appeared to employ when insuf-
ficient reasoning had been elicited by his own actions. Earl’s valuing of students’ 
ideas (echoed in the work of Funahashi and Hino (2014), Smith and Stein (2011) 
and Kilpatrick et al. (2001)) encouraged them to communicate more of their think-
ing (Table  3, Value contribution). Inoue et  al. (2019) found that highly effective 
teachers of inquiry-based learning, like Earl, were adaptable and inclusive. They, 
like Earl, addressed “‘students’ whole person development and creat[ed] a collabo-
rative and inclusive learning community” (p. 376). The present study contributes to 
the body of research on ways to develop classroom cultures in which reasoning can 
flourish by illustrating a diversity of this teacher’s actions that contributed to this 
development.

Generic eliciting

It has become apparent from the data presented that there is a general type of elic-
iting of reasoning that could be applicable to a variety of problem-solving tasks. 
These include generic non-task specific questions and questions that can be adapted 
variables in other tasks. Such question types may assist teacher who are not yet 
familiar with the nature of reasoning and/or how to elicit it.

Non‑task specific questions  Earl frequently employed generic eliciting of reason-
ing actions (see Table 3, column 3). For example: “What was your thinking today?” 
[Analysing]; “Why?” [Justifying]; “so let’s just get really quite slowly so … these 
students … can get up to speed …” [Share ideas in easy to understand ways]. Such 
generic action types could elicit reasoning when implementing other problem-solving 
tasks (e.g. Wood et al., 2006).

Questions changing context variables  In addition, Earl employed eliciting of rea-
soning actions that could be adapted to other problem-solving situations. For exam-
ple, a change in the variables (cookies and people) in say “12 cookies altogether so 
what does that mean for the people?” (Table 3, Category 1) might in another task 
be “12 lions altogether so what does that mean for the area of the cage?” Some of 
the illustrations in Table 3 have thus provided insights into how eliciting of reason-
ing may be transferrable from one task to another. In summary, this study illustrates 
and categorises generic types of eliciting of reasoning that may facilitate students’ 
reasoning.

Contribution of the eliciting of mathematical reasoning study

The Eliciting Mathematical Reasoning Framework benefits researchers, educa-
tors, professional learning leaders, and teachers. It provides an analysis tool for  
researchers, guidance for professional learning leaders and educators, and supports 
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early years teachers building their pedagogical expertise in eliciting of reasoning. 
The framework thus has the potential to support researchers and teacher educators  
as they address reported difficulties many teachers have with identifying and elicit-
ing reasoning (Jacobs et al., 2010; Clarke et al., 2012; Herbert et al., 2015; Long et  
al., 2017). This research further contributes to existing knowledge about reasoning by:

• highlighting what mathematical reasoning during problem-solving can look like 
in early years

• illustrating teacher questions and classroom norms that can elicit mathematical 
reasoning

• highlighting potential for eliciting reasoning in other problem-solving contexts
• illustrating task design that offers opportunities for frequent eliciting of math-

ematical reasoning

Importantly, this study suggests that reasoning could be elicited by teachers who 
do not yet have secure knowledge of reasoning including reasoning terms, without 
this absence hindering their experimentation within problem-solving activity.

Fruitful areas for further research arising from this study also include: “How 
could this framework be employed as a useful analysis tool for teacher professional 
learning?” “How would other teachers, using the same problem-solving task, opera-
tionalise the eliciting of reasoning?” “Would subsequent parts of the task lead to 
the eliciting of types of reasoning not elicited so far?” “Are the types of reason-
ing elicited dependent upon the problem-solving task employed?”, “Can this task be 
employed to elicit reasoning at other year levels?” The robustness of the framework 
can be investigated through further research in other contexts: early years class-
rooms, other year levels and diverse subject domains.

Conclusion

The Eliciting Mathematical Reasoning Framework captures the intertwined nature 
of the eliciting of reasoning and progressing mathematical thinking during problem 
solving. Eliciting of reasoning, before and during student communicating of their 
mathematical thinking, was an engine that drove further progress in such thinking. 
The three categories of the Eliciting Mathematical Reasoning Framework help make 
transparent the roles the teacher played in setting up situations in which reasoning 
was more likely to occur and eliciting reasoning through the eliciting of commu-
nicating of mathematical ideas represented on group developed worksheets. The 
nature of the task, and the E2L Approach employed, provided opportunities for the 
teacher to undertake these roles. Within a safe and collaborative classroom envi-
ronment, the nature of the task encouraged idiosyncratic group reasoning and the 
approach encouraged and stimulated communication of that reasoning at the group 
and the whole class level.

Although these findings from one case, of one teacher interacting with one class 
for one lesson, are not generalizable, they have provided insights into categories of 
eliciting actions. Further research could examine whether each category is necessary 
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and whether these three categories are sufficient. The applicability of the Eliciting 
Mathematical Reasoning Framework to eliciting of reasoning in other classrooms 
with other teachers and other tasks is signaled by the generic Teachers’ Eliciting of 
Reasoning Actions identified.

The interrogation of videos of classroom interactions in an early years primary 
mathematics problem-solving lesson demonstrates the usefulness of this approach 
for researching teachers’ actions for eliciting MR. This methodological approach 
with microanalysis of classroom video to identify teachers’ eliciting of reasoning 
actions could be employed in problem-solving lessons in other early year contexts, 
other year levels and may be adaptable to lessons in other areas of the curriculum. 
The theoretical lenses employed to identify MR and mathematical thinking, integral 
to the development of the Eliciting Mathematical Reasoning Framework, should 
help to inform its use as an analysis tool for researchers.

The Eliciting Mathematical Reasoning Framework contributes to research on 
eliciting MR by identification and illustration of types of eliciting of reasoning 
actions that occurred. It provides guidance for researchers, teacher educators and 
teachers intending to leverage the power of reasoning to build students’ understand-
ings of mathematical ideas through progressive connections between them.
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