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The components of a GLM

Ordinary linear regression

To introduce GLMs we turn to the familiar general linear 
model.  There, the observations 
are distributed according to normal distributions

More importantly, we have that the expected value
is related to a p-dimensional vector                    as follows:

with β being an unknown p-dimensional parameter vector.

The components of Y are independent Normal variates with 
variance σ2 and (1)
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The generalization

To simplify the transition to GLM, we shall rearrange (1) 
slightly to produce the following three-part specification:

⚫ The random part: the components of Y have 
independent Normal distributions with Ε[Υ]=μ and 
constant variance σ2

⚫ The systematic component: covariates x1, x2, …, xp

produce a linear predictor η given by

⚫ The link between the random and the systematic 
components: μ= η
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The link function

⚫This generalization introduces a new symbol η for the 
linear predictor and the third component that specifies 
that μ and η are in fact identical. If we write ηi=g(μi) then 
g(.) is called the link function.

⚫Therefore, the association of the mean μi=E[yi] with Xi

is modeled by introducing a link function g so that ηi=g(μi) 
where ηi is a linear combination and is called the linear 
predictor.
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The canonical link

⚫ A special link function is called the canonical link.  This is 
when the canonical parameter is equal to the linear 
predictor:  

⚫ The canonical links have attractive statistical properties 
because in this case there exists a sufficient statistic  
(McCullagh and Nelder, 1989, p. 32)

⚫ The canonical links for Normal, Poisson and Binomial:

Normal η= μ Identity

Poisson η=log(μ)=log(λ) Log of rate

Binomial η=log[π/(1-π)] Logit
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Notes on the linear predictor

⚫ The linear predictor is linear in the parameters, not necessarily in 
the explanatory variables. For example, in polynomial regression, 
powers of the variables occur: 

⚫ The ‘log likelihood of the model’ is usually shorthand for ‘the log 
likelihood function of the model for the given data evaluated at 
the MLE’s of the parameters’ i.e. the maximum of the log 
likelihood function.

⚫ With minor exceptions the underlying theory (parameter 
estimation, inference, model assessment and comparison) proceeds 
in the same way for all GLM’s; it is just the distribution and the 
link that differ.

⚫ The link function is chosen to provide a suitable scale for the 
effects of explanatory variables to operate in a linear manner. 
Typically the range of μ will be transformed to the whole real line 
(- to ).
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Model fit

⚫ Fitting a GLM to data means defining the log likelihood of 
the parameters  given the data and maximizing this to give 
the MLE’s

⚫ The absolute value of maximized log likelihood will be very
dependent on the particular data observed and so is not of 
interest itself. 

⚫ However, the difference in this quantity of two models, one 
nested to other, does provide a measure of the comparative 
fit of the two models. 

⚫ The more general model will necessarily have the greater log 
likelihood, so the question is whether the difference in log 
likelihood is large enough to indicate that the more general 
model provides a ‘real’ improvement in it.
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Likelihood ratio test

⚫ Two models are called nested if one is “contained” in some 
sense in the other. For example, in multiple regression, the 
larger model would contain all effects of the smaller 
model.  

⚫ The likelihood-ratio test compares the maximized 
likelihood of the two nested models, i.e.,

where    and     are the MLEs in the smaller and larger 
models respectively. λ takes values from 0 to 1 with 
lower values favoring the larger model. 
In large samples

where v is the difference in dimension in the two models.
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Example

Consider the situation n1=n2=n3=n4=n5=10 
and y1=2, y2=1, y3=1, y4=3, y5=3. A plot of the log-
likelihood is as follows:
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Example

⚫ Consider the example: Binomial, n1=n2=n3=n4=n5=10; y1=2, y2=1, 
y3=1, y4=3, y5=3; 

⚫ In the previous example, testing the hypothesis H0: π=0.3  
by the likelihood-ratio test, we compare the log-likelihood of 
the binomial model under the null hypothesis 
l(0.3;y) =-26.307, while its maximum, evaluated at the MLE  
is l(0.2;y)=-25.020.

⚫ Then, the likelihood ratio under the two models is,

which is asymptotically distributed as a chi-square 
distribution with one degree of freedom.  The p-value 
associated with the above value of  is 0.109, which is non-
significant.
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Deviance

⚫ A saturated model is one with the maximum possible 
number of parameters, with no redundancies. Usually this 
implies the same number of parameters as observations, 
and a model whose fitted values exactly reproduce the 
observations. 

⚫ Consider           the maximized likelihood associated with a 
model that fits as many parameters as observations 
(saturated model). This is the maximum achievable log-
likelihood. The discrepancy of any other model (with 
maximized likelihood ) from this saturated model is 
measured by: 
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Deviance (continued)

⚫ The numerator of the fraction on the left is called the 
deviance for the model under consideration. The scaled 
version of this

for some appropriate scale 
parameter φ, is called the scaled deviance.

⚫ If the current model for n observations has p 
parameters, and is appropriate for the data, then the 
sampling distribution of the scaled deviance is 
asymptotically X2 with n-p degrees of freedom. 

⚫ This can be used as the basis for the test of the null 
hypothesis that the current model is an adequate one.
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Example: The normal distribution
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In the saturated model, the MLE of i is just yi, so

In the current model we have some linear predictor:

and the fitted values are then

and

Hence the scaled deviance (and thus the likelihood-ratio 
criterion) is



Example: The normal distribution
(continued)

⚫S has a X2
n-(p+1) distribution if the current model is 

appropriate. In practice σ2 is unknown. (This is why in the 
normal distribution case the F-test is more appropriate 
than the X2 test). 

⚫For other GLM’s (remember the scale parameter is 
equal to 1 for Poisson and for binomial for ungrouped 
data) φ is known to be equal to 1, so we can use the scale 
deviance to assess fit. 

⚫Note that for the normal model, the deviance  D=σ2S is
the residual sum of squares.
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Nested models

⚫ Let’s see an example for how the scaled deviance can be 
used to compare two nested models.

⚫ Example: If model 1 has linear predictor for i-th unit
and model 2, with the same distribution, link 

function and scale parameter, has linear predictor
then model 1 is nested in 

model 2 because it can be derived from it by setting 
β2=β3=0.

⚫ The relative fit of two nested models can be compared by 
comparing their respective scaled deviances. The change in 
scaled deviance comparing models 1 and 2 is:

or minus twice the log likelihood ratio (l1, l2 and ls denote 
the log likelihood of models 1, 2 and the saturated model)
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Nested models (continued)

⚫ If model 1 has p1 parameters and model 2 has p2>p1

parameters, then under the null hypothesis that both 
models fit equally well, and given that each is an 
adequate fit, then asymptotically
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Example: Normal distribution

⚫ We have seen that in this case the scaled deviance is 
RSS/ σ2, so

⚫ Under the null hypothesis this has a             
distribution. 

⚫ In practice, σ2 has to be estimated, and the residual 
mean square from the more complex model is used for 
this:

⚫ and the ratio

is referred to an Fp2-p1,n-p2 distribution.
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Some notes on nested models

⚫ The F test for comparing normal linear models is ‘exact’, 
i.e. not just asymptotic.

⚫ The X2 test for change in deviance is typically a much 
better asymptotic approximation than the X2 test for 
comparison with the saturated model. 

⚫ There is disagreement over the terminology for the 
deviance. The terms for D and S above are used as the 
standard reference, McGullagh and Nelder, and in Stata. 
Clayton and Hills call S the deviance (not scaled deviance).

⚫ In a Poisson or binomial model, the scale parameter is 1, 
so S and D coincide and the changes in deviance can be 
referred directly to a X2 distribution: these tests are log 
likelihood ratio tests.



Wald test

⚫ Wald tests are based on the asymptotic distribution of the 
maximum-likelihood estimator    of θ.  Thus, in large samples 
(under some regularity conditions), the distribution of θ is 

⚫ a multivariate normal distribution with mean equal to the 
unknown parameter, and variance-covariance matrix equal to 
the inverse of the information matrix.  The latter is the nxn 
matrix of minus the expectation of the second derivatives, 
i.e

with
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Wald test (continued)

⚫ Using the asymptotic distribution of    , under the null 
hypothesis               , the quadratic form

approximately, where       is the observed information 
matrix, i.e., the matrix comprised of minus the second 
derivatives of the log likelihood without having taken their 
expectation.  

⚫ In the univariate case, the square root of the above test 

is asymptotically distributed according to a standard normal 
distribution.  
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Wald test (continued)

⚫Notice that we do not assume normally 
distributed . In that case, the ratio above 
would be exactly distributed according to a t
distribution.  

⚫Unless this assumption holds, the small-sample 
properties of the above ratio are unknown.  
The long-term properties (whether one 
assumes a t or a standard normal distribution) 
are asymptotically identical.
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Example of the Binomial 
distribution (continued)

The observed information in the case of the binomial 
distribution is:

So given the data presented above, the Wald test for the 
null hypothesis H0: π=0.3 would be:

which asymptotically is a z test that in the case of a two-
sided alternative hypothesis would produce a p-value . Note 
that the result of the Wald test is consistent, but not 
identical with the likelihood ratio results shown previously.
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Example: Plasma levels of retinol

⚫ Low plasma concentrations of retinol, beta-
carotene, or other carotenoids might be 
associated with increased risk of developing 
certain types of cancer.  The following data 
(from Therese Stuckel, Dartmouth University), 
were taken from n=315 subjects that had had a 
surgical procedure during a three-year period 
that involved biopsy or extraction of non-
cancerous lesions. This cross-sectional study 
explored factors determining the levels of 
these substances.



Plasma levels of retinol – variables 
in dataset

AGE: Age in years

SEX: Sex (1=Male, 2=Female).

SMOKSTAT: Smoking status (1=Never, 2=Former, 3=Current Smoker)

QUETELET: Quetelet (weight/(height2))

VITUSE: Vitamin Use (1=Yes, fairly often, 2=Yes, not often, 3=No)

CALORIES: Number of calories consumed per day.

FAT: Grams of fat consumed per day.

FIBER: Grams of fiber consumed per day.

ALCOHOL: Number of alcoholic drinks consumed per week.

CHOLESTEROL: Cholesterol consumed (mg per day).

BETADIET: Dietary beta-carotene consumed (mcg per day).

RETDIET: Dietary retinol consumed (mcg per day)

BETAPLASMA: Plasma beta-carotene (ng/ml)

RETPLASMA: Plasma Retinol (ng/ml)



Example: Plasma levels of retinol

In our example, consider the association of plasma levels of retinol (retplasm,  the
outcome) with alcohol consumption (alcohol, the predictor).  An outlier has been
removed from the data.

. reg  retplasm alcohol

Source |       SS       df       MS              Number of obs =     314

-------------+------------------------------ F(  1,   312) =   16.19

Model |   671843.17     1   671843.17           Prob > F      =  0.0001

Residual |  12948338.7   312  41501.0855           R-squared     =  0.0493

-------------+------------------------------ Adj R-squared =  0.0463

Total |  13620181.9   313   43514.958           Root MSE      =  203.72

------------------------------------------------------------------------------

retplasm |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

alcohol |   9.365251   2.327637     4.02   0.000     4.785401     13.9451

_cons |   578.8857   13.04634    44.37   0.000     553.2158    604.5556

Higher alcohol consumption is associated with higher plasma levels of retinol, a 
possibly carcinogenic substance.  The output lists the F test of the overall
significance of regression, the R-square and a t test assessing the significance of
the predictor (equal here to the square root of the F statistic).



Example (continued)

Contrast this with the output from the STATA command glm.

. glm  retplasm alcohol

Iteration 0:   log likelihood = -2113.9991

Generalized linear models                          No. of obs      =       314

Optimization     : ML: Newton-Raphson              Residual df     =       312

Scale param     =  41501.09

Deviance         =  12948338.69                    (1/df) Deviance =  41501.09

Pearson          =  12948338.69                    (1/df) Pearson  =  41501.09

Variance function: V(u) = 1                        [Gaussian]

Link function    : g(u) = u                        [Identity]

Standard errors  : OIM

Log likelihood   = -2113.999055                    AIC             =   13.4777

BIC              =  12948327.19

------------------------------------------------------------------------------

retplasm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

alcohol |   9.365251   2.327637     4.02   0.000     4.803167    13.92734

_cons |   578.8857   13.04634    44.37   0.000     553.3153    604.4561



The STATA glm command

⚫ The previous output includes the following:
Maximization history (number of iterations in the iterative 

maximization procedure)

 The value of the maximized log-likelihood (-2113.9991 here)

 The variance function and link (here 1 and identity respectively)

 The AIC and BIC numbers (useful for comparing different models)

 The MLE estimate of β, which is identical to the OLS estimate 
presented above

 A z test of the significance of the predictor (alcohol).  This is 
identical to the t test listed in the regression output above 
(i.e.            ), but the distributional assumptions are slightly 
different in the generalized linear model and the general linear 
model as we mentioned earlier.

 The deviance (12948338.69) and the (1/df) Deviance (41501.09), 
equal respectively to the residual sum of squares and mean squares
in the linear model.
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Example (continued)

The effect of alcohol consumption on plasma retinol levels is 
given graphically as follows:

. quietly glm retplasm alcohol

. predict yhat

(option mu assumed; predicted mean retplasm)

(1 missing value generated)

. graph yhat retplasm alcohol, xlab ylab c(l.) s(io) border
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Example: Assessing the significance of fat 
as a predictor of plasma retinol levels

Consider the following output (note the use of sequential
sums of squares – option sequential):
. anova retplasm alcohol fat, continuous(alcohol fat) seq

Number of obs =     314     R-squared     =  0.0617

Root MSE      = 202.716     Adj R-squared =  0.0556

Source |    Seq. SS     df       MS           F     Prob > F

-----------+----------------------------------------------------

Model |  839986.495     2  419993.248      10.22     0.0001

|

alcohol |   671843.17     1   671843.17      16.35     0.0001

fat |  168143.325     1  168143.325       4.09     0.0439

|

Residual |  12780195.4   311  41093.8758   

-----------+----------------------------------------------------

Total |  13620181.9   313   43514.958

The sequential option produces SSE(fat|alcohol=168143.325). 
The F statistic associated with it is F=4.09.  Comparing this to 
an F distribution with 1 and 311 degrees of freedom, we obtain 
a p-value of 0.0439, which is just significant at the 5% alpha 
level, arguing for addition of fat in the model.



Example (continued):  The test
command

There are several ways to obtain SSE(fat|alcohol= 168143.325) 
besides using the anova command. 

We could for example subtract SSE(fat, alcohol= 12780195.4) 
from SSE(alcohol= 12948338.69).  The result would be 
SSE(fat|alcohol=168143.325).  

Alternatively, we can use the test command after having run the 
reg command as follows:

. test fat

( 1) fat = 0.0

F( 1, 311) = 4.09

Prob > F = 0.0439

or after the anova command as follows:
. test fat

Source |  Partial SS    df       MS           F     Prob > F

-----------+----------------------------------------------------

fat |  168143.325     1  168143.325       4.09     0.0439

Residual |  12780195.4   311  41093.8758



Model-building in GLM

Example: Consider the output from the STATA command glm:

. glm retplasm alcohol fat

Iteration 0: log likelihood = -2111.9469

Generalized linear models No. of obs = 314

Optimization : ML: Newton-Raphson Residual df = 311

Scale param = 41093.88

Deviance = 12780195.36 (1/df) Deviance = 41093.88

Pearson = 12780195.36 (1/df) Pearson = 41093.88

Variance function: V(u) = 1 [Gaussian]

Link function : g(u) = u [Identity]

Standard errors : OIM

Log likelihood = -2111.946946 AIC = 13.471

BIC = 12780178.12

------------------------------------------------------------------------------

retplasm | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

alcohol | 9.990265 2.336708 4.28 0.000 5.410401 14.57013

fat | -.6975524 .3448463 -2.02 0.043 -1.373439 -.0216661

_cons | 630.7705 28.7483 21.94 0.000 574.4249 687.1162



Example (continued)

In the plasma retinol levels example, the likelihood-ratio criterion 
can be calculated by subtracting the deviance D(X1,X2)=
12780195.36 from D(X1)= 12948338.69 and dividing by 41093.88 
((1/df) Deviance).  The result is 4.09, which compared to a chi-
square distribution with one degree of freedom produces a p value 
of 0.0431 as seen from the following output:

. display chi2tail(1,4.09)

.04313765

Alternatively, we can use the test command as follows:

. test fat

( 1)  [retplasm]fat = 0.0

chi2(  1) =    4.09

Prob > chi2 =    0.0431



Example: Joint significance of fat and 
fiber after accounting for alcohol

To account for the joint significance of daily fat 
and fiber intake after alcohol consumption has 
been accounted for we proceed as follows:

. reg retplasm alcohol fat fiber

Source |       SS       df       MS              Number of obs =     314

-------------+------------------------------ F(  3,   310) =    6.81

Model |  841663.312     3  280554.437           Prob > F      =  0.0002

Residual |  12778518.5   310  41221.0276           R-squared     =  0.0618

-------------+------------------------------ Adj R-squared =  0.0527

Total |  13620181.9   313   43514.958           Root MSE      =  203.03

------------------------------------------------------------------------------

retplasm |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

alcohol |   9.964244   2.343874     4.25   0.000      5.35233    14.57616

fat |  -.6767318   .3604768    -1.88   0.061    -1.386023    .0325589

fiber |  -.4526052   2.244069    -0.20   0.840    -4.868137    3.962927

_cons |   635.0317   35.71259    17.78   0.000      564.762    705.3014



Example (continued)

We could calculate the F criterion  

manually but the test command simplifies things 
significantly:
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. test fat fiber

( 1) fat = 0.0

( 2) fiber = 0.0

F( 2, 310) = 2.06

Prob > F = 0.1292

The result indicates that the two predictors are jointly
non-significant at the 95% significance level.
Compare the previous output to that of the test command 
after fitting a GLM with alcohol, fiber and fat as the 
predictors of retinol plasma levels (retplasm) (next slide)



Example (continued)

. glm  retplasm alcohol fat fiber

Iteration 0:   log likelihood = -2111.9263

Generalized linear models                          No. of obs      =       314

Optimization     : ML: Newton-Raphson              Residual df     =       310

Scale param     =  41221.03

Deviance         =  12778518.55                    (1/df) Deviance =  41221.03

Pearson          =  12778518.55                    (1/df) Pearson  =  41221.03

Variance function: V(u) = 1                        [Gaussian]

Link function    : g(u) = u                        [Identity]

Standard errors  : OIM

Log likelihood   = -2111.926345                    AIC             =  13.47724

BIC              =  12778495.55

------------------------------------------------------------------------------

retplasm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

alcohol |   9.964244   2.343874     4.25   0.000     5.370336    14.55815

fat |  -.6767318   .3604768    -1.88   0.060    -1.383253    .0297898

fiber |  -.4526052   2.244069    -0.20   0.840    -4.850899    3.945688

_cons |   635.0317   35.71259    17.78   0.000     565.0363    705.0271

------------------------------------------------------------------------------

. test fat fiber

( 1)  [retplasm]fat = 0.0

( 2)  [retplasm]fiber = 0.0

chi2(  2) =    4.12

Prob > chi2 =    0.1275



Example (continued)

Thus, the multiple-regression model and the GLM 
are producing almost identical results.

Addition of the predictors fat and fiber jointly 
is not significant in terms of the overall 
reduction of unexplained variability (error) in the 
model, after the effect of alcohol has been 
accounted for.
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