## Notes for Session 11

## The Poisson distribution

## Scientific productivity example (McGinnis, Allison and Long, 1982, Allison, 1999)

An example of a data set that can be analyzed by Poisson methods is as follows: 557 male biochemists received their doctoral degree from 106 American universities in the late 1950s and 1960s.

| PDOC  | 1 if received postdoctoral training, 0 otherwise            |
|-------|-------------------------------------------------------------|
| AGE   | Age in years at completion of Ph.D.                         |
| MAR   | 1 if married, 0 otherwise                                   |
| DOC   | Measure of the prestige of the doctoral institution         |
| UND   | Measure of the selectivity of the undergraduate institution |
| AG    | 1 if degree is from an agricultural department, 0 otherwise |
| ARTS  | Number of articles published while a graduate student       |
| CITS  | Number of citations to published articles                   |
| DOCID | ID number of the doctoral institution                       |
|       |                                                             |

The frequency distribution of the number of publications is given as follows:



The goodness of fit test for a Poisson distribution however, is highly significant (i.e., does not support a Poisson-distributed variable). Notice that you must run a Poisson model before poisgof.

```
. quietly poisson arts
. poisgof
Goodness of fit chi-2 = 1087.821
Prob > chi2(556) = 0.0000
```

#### Analysis with a Poisson GLM

In the case of the Poisson mean, because  $\lambda$  is always positive, the function g(.) is chosen so that the linear predictor  $\eta = \beta_0 + \beta_1 X_1 + \dots + \beta_1 X$ , that can take any real-number value, gets mapped into the positive real numbers. A good candidate function (link) for the Poisson GLM is the logarithm as follows:

$$\log(\lambda) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = \eta$$

We carry out the Poisson regression using either the poisson or glm command in STATA. Here we prefer the glm command, because it produces the deviance that will be useful in the following.

| . xi: glm ar                      | ts age i.mar   | doc und i. | ag , nolo | g fam(po | isson)        |           |
|-----------------------------------|----------------|------------|-----------|----------|---------------|-----------|
| i.mar                             | _Imar_0-1      |            | (naturall | y coded; | _Imar_0 omit  | ted)      |
| i.ag                              | _Iag_0-1       |            | (naturall | y coded; | _Iag_0 omitte | ed)       |
|                                   |                |            |           |          |               |           |
| Generalized li                    | near models    |            |           | No.      | of obs =      | 557       |
| Optimization : ML: Newton-Raphson |                |            |           | Resi     | dual df =     | 551       |
| -                                 |                |            |           | Scal     | e parameter = | 1         |
| Deviance                          | = 1078.90      | 5935       |           | (1/d     | f) Deviance = | 1.958087  |
| Pearson                           | = 1497.3       | 6098       |           | (1/d     | f) Pearson =  | 2.717534  |
|                                   |                |            |           | • •      | ,             |           |
| Variance funct                    | cion: V(u) = u |            |           | [Poi     | ssonl         |           |
| Link function                     | : q(u) = 1     | n (u)      |           | [Log     | 1             |           |
| Standard error                    | rs : OTM       | ( )        |           | 15       | 1             |           |
| boundard offor                    |                |            |           |          |               |           |
| Log likelihood = $-817$ 464978    |                |            |           | ATC      | =             | 2 956786  |
| $BTC = -2404 \ 827512$            |                |            |           | 111.0    |               | 2.900,00  |
| 210                               | 2101.02        | 1012       |           |          |               |           |
|                                   |                |            |           |          |               |           |
| arts                              | Coef           | Std Err    | 7         | P> 7     | [95% Conf     | Intervall |
|                                   |                |            |           |          |               |           |
| are                               | - 0165613      | 0101663    | -1 63     | 0 103    | - 0364868     | 0033642   |
| Tmar 1                            | - 0153611      | 1300267    | -0 12     | 0 906    | - 2702088     | 2394865   |
|                                   | - 0000399      | 0004551    | -0.09     | 0.900    | - 0009319     | 0008521   |
| uoc                               | 0722211        | 0202225    | 2 20      | 0.017    | 012000        | 1217641   |
|                                   | 0421502        | .0303233   | 2.39      | 0.017    | - 1526105     | 2270201   |
|                                   | .0421093       | .033003    | 0.42      | 0.073    | - 1030360     | -23/9301  |
|                                   | 0401208        | .309/092   | -0.10     | 0.910    | 0039309       | .1230933  |
|                                   |                |            |           |          |               |           |

## Interpretation of the coefficients

The coefficients  $\beta_1, \dots, \beta_p$  denote the change in  $\log(\lambda)$  for each one-unit change in the corresponding explanatory variable. In our example, the only significant variable is UND, the selectivity index of the under graduate institution. So, if two observations *i* and *j* have a difference of one unit in explanatory variable  $X_4$  (UND), that is  $X_{4i} - X_{4j} = 1$ ,

while all the other explanatory variables are the same, then the difference in  $log(\lambda)$  will be  $\beta_4$ .

**a.** Given this information please calculate the impact of (thus interpret) the coefficients that were produced by the model.

### Overdispersion

By the assumptions of the Poisson model, the expected value (mean) of the Poisson distribution is theoretically equal to its variance. Frequently this is not the case and the variance is much higher than the mean. In that situation, we have what is called *overdispersion*. In this case, the scaled deviance value of 1.96 and scaled Pearson chi-square of 2.72 point to a potential problem with the model.

One way to deal with overdispersion is to divide the chi-square statistic that tests the significance of each variable by the scaled deviance or scaled Pearson chi-square (or equivalently multiply each standard error by the square root of the scaled deviance or scaled Pearson chi-square; Agresti, 1996).

To carry out the method suggested in Agresti (1996) by STATA we proceed as follows:

We divide each z statistic in the output above by the square root of the scaled Pearson chi-square statistic and re-calculate its significance. Here we go:

age

 di 2\*norm(-1.629/sqrt(2.717532))
 .32306707

**b.** Perform the calculations for the remaining coefficients.

We can do this a lot more simply by the following command:

. xi: glm arts age i.mar doc und i.ag , nolog fam(poisson) scale(x2) \_Imar\_0-1 (naturally coded; \_Imar\_0 omitted) \_Iag\_0-1 (naturally coded; \_Iag\_0 omitted) i.mar i.ag No. of obs = 557 Residual df = 551 Scale parameter = 1 Generalized linear models Optimization : ML: Newton-Raphson Deviance = 1078.905935 (1/df) Deviance = 1.958087 (1/df) Pearson = 2.717534 Pearson = 1497.36098 Variance function: V(u) = u[Poisson] Link function : g(u) = ln(u)[Log] Standard errors : OIM Log likelihood = -817.464978AIC = 2.956786 = -2404.827512 BIC \_\_\_\_\_ arts | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_+ age | -.0165613 .016759 -0.99 0.323 -.0494084 .0162858 \_Imar\_1 | -.0153611 .2143483 -0.07 0.943 -.4354761 .4047538 doc | -.0000399 .0007502 -0.05 0.958 -.0015103 .0014305 

 und |
 .0723311
 .0499882
 1.45
 0.148
 -.0256439
 .1703061

 \_Iag\_1 |
 .0421593
 .1646664
 0.26
 0.798
 -.2805809
 .3648995

 \_cons |
 -.0401208
 .6424335
 -0.06
 0.950
 -1.299267
 1.219026

 \_\_\_\_\_ (Standard errors scaled using square root of Pearson X2-based dispersion) arts | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_+\_\_\_\_ age |-.0165613.016759-0.9880.323-.0494084.0162858Imar\_1 |-.0153611.2143482-0.0720.943-.4354759.4047536doc |-.0000399.0007502-0.0530.958-.0015103.0014305und |.0723311.04998811.4470.148-.0256439.170306Iag\_1 |.0421593.16466630.2560.798-.2805808.3648994\_cons |-.0401209.642433-0.0620.950-1.2992661.219025 \_\_\_\_\_ (Standard errors scaled using square root of Pearson X2-based dispersion)

The results are identical to the calculations above.

# Accounting for overdispersion: The Negative Binomial distribution

The negative binomial model is fit in STATA either by the nbreg command, or the glm command by specifying family (nbinom) as the family of distributions. The default is a log link.

| . xi: glm arts<br>i.mar<br>i.ag                                                                 | age i.mar<br>_Imar_0-1<br>_Iag_0-1                                | doc und i.a                                                      | g , famil<br>(naturall<br>(naturall             | y(nbinom<br>y coded;<br>y coded;                   | ) nolog<br>_Imar_0 omit<br>_Iag_0 omitt                                 | ted)<br>ed)                                                          |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| Generalized lin<br>Optimization<br>Deviance<br>Pearson                                          | ear models<br>: ML: Newt<br>= 602.339<br>= 805.473                | on-Raphson<br>0862<br>5374                                       |                                                 | No.<br>Resi<br>Scal<br>(1/d<br>(1/d                | of obs =<br>dual df =<br>e parameter =<br>f) Deviance =<br>f) Pearson = | 557<br>551<br>1.093174<br>1.461839                                   |
| Variance function: $V(u) = u+(1)u^2$<br>Link function : $g(u) = ln(u)$<br>Standard errors : OIM |                                                                   |                                                                  |                                                 | [Neg<br>[Log                                       | . Binomial]                                                             |                                                                      |
| Log likelihood = -705.6949434<br>BIC = -2881.394361                                             |                                                                   |                                                                  |                                                 | AIC                                                | =                                                                       | 2.555458                                                             |
| arts                                                                                            | Coef.                                                             | Std. Err.                                                        | Z                                               | P> z                                               | [95% Conf.                                                              | Interval]                                                            |
| age  <br>_Imar_1  <br>doc  <br>und  <br>_Iag_1  <br>_cons                                       | 0179105<br>0082171<br>.0000457<br>.0709433<br>.0463118<br>0272584 | .014638<br>.179777<br>.0006079<br>.0404426<br>.1362171<br>.54196 | -1.22<br>-0.05<br>0.08<br>1.75<br>0.34<br>-0.05 | 0.221<br>0.964<br>0.940<br>0.079<br>0.734<br>0.960 | 0466004<br>3605735<br>0011458<br>0083228<br>2206688<br>-1.08948         | .0107794<br>.3441394<br>.0012373<br>.1502094<br>.3132925<br>1.034964 |

The coefficients are similar to those generated by the poisson regression model, and the dispersion value is a great deal closer to 1.0. The undergraduate selectivity index is significant at the 10% level but not the 5% level in this analysis. No other factors are significant.

## Number of utterances about prognosis

The data set of Christakis and Levinson, 1998) describes the analysis of the number of utterances concerning prognosis by a doctor during a patient visit. The relevant variables and information were given in the lecture. The dataset is prognosis.dta. The frequency distribution of the LENGTHPX variable is given below:



We see that the data are highly skewed with a substantial proportion of observations at zero. The goodness of fit test however, is significant, implying that the marginal (i.e., without considering the explanatory variables) distrbution of lengthpx is not Poisson.

### Offset

The way we incorporate the length of observation (duration of visit) is by adding what is called an "offset" variable to the model, that is,  $\log E(Y_i) = \log(t_i) + \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}$ . This is done by adding the option offset (varname) or lnoffset (varname) in the glm command. The latter is what we need if the variable has not been transformed to the logarithmic scale already. The results of the analysis for these data are as follows:

| . xi: glm lengt                                                                                        | thpx ptage i                                                                                | .ptsex eza                                                                      | compt mdli                                               | kept i.su                                                   | ırgeon claims,                                                                  | family(po                                                                         |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| i.ptsex<br>i.surgeon                                                                                   | _Iptsex_0<br>_Isurgeon                                                                      | -1<br>_0-1                                                                      | (naturall<br>(naturall                                   | y coded;<br>y coded;                                        | _Iptsex_0 omi<br>_Isurgeon_0 o                                                  | tted)<br>mitted)                                                                  |
| Generalized line<br>Optimization<br>Deviance                                                           | ear models<br>: ML: Newt<br>= 682.029                                                       | on-Raphson<br>9077                                                              |                                                          | No. o<br>Resio<br>Scale<br>(1/d:                            | of obs =<br>dual df =<br>e parameter =<br>f) Deviance =                         | 121<br>114<br>1<br>5.982718                                                       |
| Pearson                                                                                                | = 899.625                                                                                   | 6873                                                                            |                                                          | (1/d:                                                       | f) Pearson =                                                                    | 7.891453                                                                          |
| Variance function: V(u) = u<br>Link function : g(u) = ln(u)<br>Standard errors : OIM                   |                                                                                             |                                                                                 |                                                          | [Pois<br>[Log]                                              | sson]<br>]                                                                      |                                                                                   |
| Log likelihood<br>BIC                                                                                  | = -455.905<br>= 135.309                                                                     | 6163<br>7855                                                                    |                                                          | AIC                                                         | =                                                                               | 7.651333                                                                          |
| lengthpx                                                                                               | Coef.                                                                                       | Std. Err.                                                                       | Z                                                        | P> z                                                        | [95% Conf.                                                                      | Interval]                                                                         |
| ptage  <br>_Iptsex_1  <br>ezcompt  <br>_Mdlikept  <br>_Isurgeon_1  <br>claims  <br>_cons  <br>_minutes | 0014421<br>.5482447<br>.19809<br>0864474<br>1.343119<br>.0519112<br>-3.175498<br>(exposure) | .0030592<br>.1048295<br>.0760462<br>.074387<br>.1303695<br>.0231909<br>.3188584 | -0.47<br>5.23<br>2.60<br>-1.16<br>10.30<br>2.24<br>-9.96 | 0.637<br>0.000<br>0.009<br>0.245<br>0.000<br>0.025<br>0.000 | 0074381<br>.3427827<br>.0490422<br>2322432<br>1.087599<br>.0064579<br>-3.800449 | .0045538<br>.7537067<br>.3471378<br>.0593484<br>1.598638<br>.0973645<br>-2.550547 |

**c.** What kind of offset did we add to this model? Why isn't there any coefficient associated with variable minutes?

### Interpretation of the analysis results

Almost all variables are significant. It seems that there are 73% more utterances about prognosis when the subject is male ( $e^{0.548}$ -1=0.73).

**d.** In a similar fashion with the operations above, interpret the meaning of the rest of the coefficients.

However, the results of this analysis are questionable, as the scaled Pearson chi-square and scaled deviance statistics are much larger than 1.0.

Thus, significant overdispersion is likely present in these data.

# **Correcting for overdispersion**

To correct for overdispersion, we scale the test statistics corresponding to the coefficients by the scaled Pearson chi-square statistic. Only surgeon is significant in predicting prognosis utterances.

| . xi: glm ler                     | ngthpx ptage i | .ptsex ezc  | compt mdli | lkept i.s | urgeon claims  | , family(po |
|-----------------------------------|----------------|-------------|------------|-----------|----------------|-------------|
| i ntsov                           | .set( minutes) |             | (natural)  | v codod.  | Intsor 0 om    | i++od)      |
| i surgoon                         | U              | <br>0_1     | (natural)  | Ly coded; | USEX_0 ON      | nittod)     |
| 1.Surgeon                         |                | _0 1        | (Haculal)  | Ly coueu, | U              | JIIII CCEU) |
| Generalized li                    | near models    |             |            | No.       | of obs =       | 121         |
| Optimization : ML: Newton-Raphson |                |             |            | Resi      | dual df =      | 114         |
|                                   |                |             |            | Scal      | e parameter =  | 1           |
| Deviance                          | = 682.029      | 9077        |            | (1/d      | f) Deviance =  | 5.982718    |
| Pearson                           | = 899.625      | 6873        |            | (1/d      | f) Pearson =   | 7.891453    |
|                                   |                |             |            |           |                |             |
| Variance funct                    | v(u) = u       |             |            | [PO1      | ssonj          |             |
| Link function                     | : g(u) = 1     | .n (u)      |            | [Log      | ]              |             |
| Standard error                    | rs : OIM       |             |            |           |                |             |
| Log likelihood                    | 4 = -455 905   | 6163        |            | ATC       | =              | 7 651333    |
| BIC                               | = 135.309      | 7855        |            | 1110      |                |             |
| -                                 |                |             |            |           |                |             |
|                                   |                |             |            |           |                |             |
| lengthpx                          | Coef.          | Std. Err.   | Z          | P> z      | [95% Conf.     | Interval]   |
| ptage                             | 0014421        | .0085938    | -0.17      | 0.867     | 0182857        | .0154014    |
| Iptsex 1                          | .5482447       | .2944842    | 1.86       | 0.063     | 0289337        | 1.125423    |
| ezcompt                           | .19809         | .2136269    | 0.93       | 0.354     | 2206111        | .6167911    |
| mdlikept                          | 0864474        | .2089659    | -0.41      | 0.679     | 496013         | .3231182    |
| Isurgeon 1                        | 1.343119       | .3662305    | 3.67       | 0.000     | .6253199       | 2.060917    |
|                                   | .0519112       | .0651472    | 0.80       | 0.426     | 075775         | .1795973    |
| cons                              | -3.175498      | .8957284    | -3.55      | 0.000     | -4.931093      | -1.419902   |
| minutes                           | (exposure)     |             |            |           |                |             |
|                                   |                |             |            |           |                |             |
| (Standard erro                    | ors scaled usi | ng square r | coot of Pe | earson X2 | -based disper: | sion)       |

#### Correcting for overdispersion by negative-binomial regression

The previous analysis may be inefficient, so we also undertake a negative binomial regression analysis.

. xi: glm lengthpx ptage i.ptsex ezcompt mdlikept i.surgeon claims, family(nb > inom) lnoffset( minutes) nolog i.ptsex \_\_Iptsex\_0-1 (naturally coded; \_Iptsex\_0 omitted) i.surgeon \_\_Isurgeon\_0-1 (naturally coded; \_Isurgeon\_0 omitted) No. of obs Generalized linear models = 121 NO. OF ODS=121Residual df=114Scale parameter=1 Optimization : ML: Newton-Raphson Deviance = 197.2955808 Pearson = 203.1605871 (1/df) Deviance = 1.730663 (1/df) Pearson = 1.78211 Variance function:  $V(u) = u+(1)u^2$ [Neg. Binomial] Link function : q(u) = ln(u)[Log] Standard errors : OIM Log likelihood = -276.385523AIC = 4.684058 = -349.4245414 BIC \_\_\_\_\_ lengthpx | Coef. Std. Err. z P>|z| [95% Conf. Interval] 

 ptage |
 .0002238
 .0078626
 0.03
 0.977
 -.0151867
 .0156342

 \_Iptsex\_1 |
 .5829174
 .224159
 2.60
 0.009
 .1435738
 1.022261

 ezcompt |
 .129117
 .1464301
 0.88
 0.378
 -.1578809
 .4161148

 mdlikept |
 -.1062
 .153993
 -0.69
 0.490
 -.4080207
 .1956208

 \_Isurgeon\_1 |
 1.40706
 .2687397
 5.24
 0.000
 .8803401
 1.933781

 \_claims |
 .0514741
 .055639
 0.93
 0.355
 -.0575763
 .1602545

 cons | -2.758854 .7874139 -3.50 0.000 -4.302157 -1.215551 minutes | (exposure) 

**e.** Interpret the results from this output and compare with the results of the unadjusted and adjusted poisson regressions that were undertaken originally?