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A b s t r a c t  

We prove a new isoperimetric inequality for a certain product measure that improves 
upon some aspects of the "large deviation" consequences of the isoperimetric inequality for the 
Gaussian measure. 

1. I n t r o d u c t i o n  

We denote by 3' the canonical Gaussian measure on R, of density 1 e -=2/2 with respect 

to Lebesgue measure. We dcnote by 3,oo the product measure on ~N, where each factor is 

endowed with 3'. Throughout  the paper, we set, for a = 1,2, 

k > l  

For two sets A,B of R N, we set 

A + B = { x + y ;  x c  A,  yE B}.  

Consider a (Borel) set A C ~ ,  and a C R such that 3`°°(A) = 3 , ( ( -ec ,a]) .  The isoperi- 

metric inequali ty for the Gauss measure states that  for u > 0, 

3`.~(A + uB2) > 3`((-co, a + u]) 

* Work partially supported by al~ N.S.F. grant. 

(1.1) 
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(the inner measure is needed as A + uB2 might fail to be measurable). This inequality plays a 

fundamental  role in the theory of Gaussian processes and Gaussian measures. It was discovered 

independently by C. Borell [B] and B.S. Tsirelson and V.N. Sudakov [ST]. They  derived this 

inequality f rom L6vy's isoperimetric inequality on the sphere, via Poincar6 lelnrna. Later, A. 

Ehrhard [Eli developed a more intrinsic approach of Gaussian symmetrizat ion that  also led 

hinl to other remarkable inequalities [E2]. 

Very often, the Gaussian isoperimetric inequality is used under the following form 

1 7°°(A) > ~- ~ 7 F ( A  + uB2) > 7 ( ( - c ~ , u ] )  (1.2) 

x ~-u~/2 For where the last term is evaluated through the classical estimate 71( ( -oo ,  u]) > 1 - 7-  " 

some applications (e.g. IT]) it is important  to have the sharp estimate (1.2). For many others 

it is sufficient to know, that  for some universal constant K,  one has 

1 
7°°(A) > ~- =~ 7 y ( A  + uB2) >_ 1 - 2e -*'~/K . (1.3) 

(The role of the factor 2 being to emphasize that  one cares only for large values of u.) 

In the terminology of V. Milman [M], (1.3) will be called the concentration of measure 

property (for the Gaussian measure). The main contribution of the present paper is the 

somewhat unexpected fact that  the concentration of measure property for the Gaussian measure 

is the consequence of a sharper principle, itself unrelated to Gaussian measure, and that  we 

present now. Throughout  the paper, we denote by # the probability measure on R of density 

½e-I*l with respect to Lebesgue measure, and by #oo its product  measure on R N. 

T h e o r e m  1.2. There exists a universal constant K with the following property.  Consider a 

set A C F~ N, and a E F~ such that  ~t°°(A) = # ( ( - o o ,  a]). Then 

In particular 

# .~(A  + x/'-~B2 + uB1) > t z ( ( - e ~ , a  + K ]  ) • 

~°~(A) > ~ ~ ~ 7 ( A  + vZ4B~ + ~B1) > 1 - ~e.~p - - E  

(1.4) 

A main difference between (1.4) and (1.1) is the fact that  A is now enlarged by a mixture 

of the ~1 and ~2 balls, in proportions that  vary with u. Consider a sequence (t~)k>l (having 

for simplicity only finitely many non-zero terms), and set f ( x )  -= ~ tkxk.  It is possible to 
k > l  

(1.5) 
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study the tai ls/ ,o~({f > u}) in an elementary way; but we will do it here using (1.5), in order 

to illustrate the role of the £1 and g2 balls. 

Consider 

A = { z E R N ;  t kzk  <_ 0}. 
k > l  

By symmetry,  / ,~(A)  _ ~- .>  1 If y E A 4- V/TB2 4- uB1,  we then have f ( y )  _< v/Tlltll= + ulltll~- 

Thus, by (1.5) 

This implies that  

1 - - u l K  
# ~ ( { f  > x/-glltl[2 4- =l l t l l~})  < - e  " • 

- -  - -  2 

~ ( { f  > ~,}) < l_e-- /~J, , l l~ 
- -  - -  2 

for u _> Iltll~/lltll~, while, for 0 < = < I / * l lg / l l z l l~  we  have 

/,oo({f > u}) < le-~=/KII*ll~. 
- -  - -  2 

(For the simplicity of notations we allow the value of the constant K to vary at each occurrence.) 

The exponents in these bounds are exactly of the right order. 

Another  feature that  differentiates (1.4) from (1.1) (and makes it closer to (1.3)) is the 

constant K on the right. It would be nice (but irrelevant for our purposes) to have a more 

exact form of (1.4). A natural  question to ask in that  direction is whether there exists, given 

u, a natural  "smallest" set W~ C R N such that  

~.~(A  4- W,,)  > #((-cxD, a 4- u]) (1.6) 

for all a E R, all sets A C •N, such that  #°°(A) = # ( ( - o o ,  a]). The difficulty of that  question 

is that  the shape of W~ is likely to vary depending on u. A worthy inequality (1.6) should, in 

particular, allow to recover excellent tail estimates for/z¢¢ ({ ~ tkxk > u});  but in view of the 
k > I  

variety  of the estimates known for this quantity, [HI this does not appear to be a simp]e task. 

We now explain why (1.5) improves upon (1.3). (The basic idea of this argument is due 

to G. Pisier [P].) Consider the increasing map ¢ from R to ~ that  transforms # into 3'. It is 

easy to see that  

V ~ , y c  R ,  I ¢ ( ~ ) - ¢ ( y ) 1 _ <  K m i n ( l z - Y l ,  I ~ - y l ~ / = )  - (1.7) 

Consider the map • from RN to itself given by q2((xk)k_>l) = (~b(xk))k_>l. It transforms #oo 

into 3 ,~.  Consider now a set A C HN, with "y(A) > 1/2. Then # ( ~ - I ( A ) )  = 7(A) _> 1/2. By 

(1.4) we have 
c~ - I  1 - u / K  

t-t. (q2 ( A ) 4- V/-uBe 4- uB1)  > 1 -  - e  " 
- 2 
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so tha t  

7 ~ ( ¢ ( ¢ - 1 ( A )  + v~B2  + uB1)) > 1 - ~-e - ~ / K  . 
- 2 

Now using (1.6) it  is simple to show tha t  

A,~ = q2(~2-1(A) + v/~B2 + uB1) C A + Kv/~B2 ; 

thus we recover (1.3). It can, however, happen  that  the set A= is much smaller  than  A+Kv/~B2. 

A str iking example  is when A is the cube 

A = { z ;  Vk<_n,  Izkl<_c,~} 

where cn is (say) chosen such tha t  7 ~ ( A )  = 1/2, so tha t  e,~ is of order  ( logn)  1/2. In that  case, 

and  when u << log n, it is simple to see tha t  

An intr iguing aspect  of the  improvement  of (1.3) via (1.4) is tha t  we break the rota t ional  

invariance tha t  is fundamenta l  to the Gaussian measure  7 ~°. Thus (working in R n ra ther  

than  R ~ )  if R denotes any ro ta t ion  of ~" ,  (with obvious nota t ions)  we have 7'~((RA)u) > 

1 - e x p ( - ~ / K ) .  

Having discovered tha t  (1.3) is a consequence of (1.4), one must  now ask whether  (1.4) 

i tself  is the  end of the  story. We will show tha t  in the set t ing of product  measures,  this seems 

to be the case. Indeed (Propos i t ion  5.1) if for a measure  8 on H, the produc t  measure 0 ~ 

on R N satisfies even a much weaker form of concentra t ion of measure  than  (1.4), the function 

8({Ix [ > a}) must  decrease exponent ia l ly  fast. 

The  main  difficulty in proving Theorem 1.1 is tha t ,  in contras t  with the Gaussian case, the 

measure  ~ does not  have many symmetr ies .  This l imits the use of rearrangements .  In section 

2, we show how an induct ion argument  reduces the proof  of Theorem 1.1 to tha t  of a certain 

s t a tement  in dimension 2. A special case of tha t  s t a t ement  is proved in sect ion 3. In section 

4, we use var ia t ional  a rguments  to prove that  this special  case is ac tual ly  the general case, 

thereby  finishing the proof  of Theorem 1.1. While  the main  ideas of the proof  of Theorem 1.1 

are ra ther  natura l ,  the proof  requires checking a number  of tedious facts. 

On the other  hand,  the impor t an t  par t  of Theorem 1.1 is certainly (1.5). For tuna te ly  this 

is much easier to prove. In section 5, we give a simple proof  of the following ( tha t  is weaker 

than  Theorem 1.1). 
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T h e o r e m  1.2.  There exists a universal constant K with the following property. Consider a 

set A C  R N, and for x • ~N, set 

OA(x) = inf {u  > 0 ; x • A + v/-ffB2 + uB1}  • 

Then 

so tha t  

We observe tha t  by Markov 's  inequality, this gives 

1 #C°(A) > ~ ~ #.~({OA(x) >_ K u } )  <_ 4 e x p ( - u )  , 

/ u ' , ,  

i.z,~ ( A 

For u large enough, this is equivalent to (1.5). 

The  reader  is cer ta in ly  advised to read the proof  of Theorem 1.2 first, going back to 

previous sections whenever necessary. 

2. I n d u c t i o n  

We denote  by ~(x)  = ½e-t~l the densi ty  of/~ with respect  to Lebesgue measure.  We set 

• ( x )  = = 
o o  

W e  s e t  = 0 ,  = 1. 

The  sets v'~B2 + uB1 of Theorem 1.1 are not easy to manipula te .  Our  first task will be 

to replace them by more amenable  sets. 

Consider  a pa ramete r  L > 0, to be determined later .  For  x C R, we set ~(x) = 

L f i l l  ~ du. There  is no magic in this formula. The proper t ies  of ~ we really need are L J O  ] - ~  

tha t  L~(x)  resembles x ~ for Ix t < 1 and I x] for Ix I > 1, and moreover  (for technical  reasons) 

tha t  ~ '(x) is s t r ic t ly  increasing for x > 0. 

We now define, for u > 0, 

k > l  l < k < n  

We show that  

V(u)  C 4x/T~uB2 + 4LuB1.  (2.0) 
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Indeed,  consider  y E V(u ) .  Define z = (zk) C R N by  zk = yk if [yk[ _< 1, zk = 0 otherwise. 

Since ~(x) >_ x z / 4 L  for Ixl -< ~, we have  z C ~ / ~ - - ~ B ~ .  Since ~(x) _> 1xI/4L for Izl -> ~, we 

have  IlY - Zttl _< 4L~.  This  proves  (2 .0) .  

To prove T h e o r e m  1.1, it  suffices to prove the  following. 

T h e o r e m  2.1 .  One  can def;ermine L with the foJ1owing property.  For a11 A C R N, 

#°°(A)  = q(a)  ~ ~ ( A  + V(u) )  > ,~(a + u) .  

(One  can  t h e n  l ake  the  c o n s t a n t  K of T h e o r e m  1.1 equal  to 4L.)  Deno te  now by  ~'~ the  

power  of # on  0~ "~. By a n  obvious a p p r o x i m a t i o n  a r g u m e n t ,  i t  suffices to prove t ha t  we can  

find L such tha t  the  following holds: 

(I,~) for each compac t  set A for R n, and  u >_ 0, 

I~'~(A) = ¢(a)  ~ I~'~(A + V,~(u)) > ¢ (a  + u) .  

This  s t a t e m e n t  will be  proved by i n d u c t i o n  on n.  T h e  first t ask  is to prove the  case n = 1. 

In  t ha t  case, one has ac tua l ly  a m u c h  more  accura te  resul t  ( tha t  is the  exact  ana logue  of (1.1)). 

P r o p o s i t i o n  2.2.  Consider a compact set A C •. T1aen 

/~(A) = (I)(a) =4>/~(A + [ - u ,  u]) > ~ ( a  + u ) .  

The  proof  uses r ea r rangemen t s .  We first consider  the  case where  A is a n  in te rva l  [v,w]. 

L e m m a  2.3.  Consider v < w,  v + w < O. Consider v' < v (possibly v I = - o c )  a n d w  ~ such 

that  ~ ( [v ,  ~1) = , ( [ v ' ,  ~0']). Then  ~([~  - ~ , ~  + ~]) > , ( [ ~ '  - ~ , ~ '  + ~]). 

P r o o f i  Define the  func t ion  y = y(x)  by 

¢ ( v )  - ¢ ( ~ )  = , ( [ ~ ,  v]) _- , ( [ v ,  w ] ) .  

T h u s  y '~ (y )  -- ~ (x ) .  Set now 

h(x)  = , ( I x  - ~ , v  + ~]) = ~ ( y  + ~) - ¢ ( ~  - ~ ) .  

T h u s  

1 
- ~ ( y ) [ ~ ( x ) ~ ( v  + ~) - ~ ( y ) ~ ( x  - ~)] 
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e- l~ l - ly÷~l  _ e - ly l - I~ -~ l  . 

B u t  we have,  for u > 0 

the  func t ion  x --~ Ix + u I - txl increases .  (2.1) 

Since y is obv ious ly  an  increas ing  func t ion  of x, we have  x + y _< v + w _< 0 for x _< v, so t h a t  

y _< - x .  Thus ,  by (2.1), 

i.e., 

T h u s  h ' ( x )  < 0 for x < v. 

l im  y(m) = w ' ) .  
• - - - + - -  o o  

L e m m a  2 .4 .  

e ( z  + ~). 

ly+~l-lyl _<l-~+ul-I~1 

[u + ul + l~l <_ lyl + Ix - ~1. 

This  proves  the  resul t  (observe  t h a t  when  v ~ = - e %  we have  

[] 

Consider v <_ w, and z such that ~(v)+~(w)  = ~(z). Then ~(v+u)+ff~(w+u) >_ 

P r o o f i  Th is  could be  deduc ted  f rom the  prev ious  l e m m a ,  a l t hough  a di rect  a r g u m e n t  is 

s impler .  We  define y = y(x) by ~ ( y )  + ~ ( x )  = ~5(z), so tha t  y'T(y) = - ~ ( x ) .  We set 

h (x )  = ¢I'(y + u)  + O(x + u),  so tha t  h ' (x )  = y'~(y + u) + T(x + u) has the  s ign of  

- ~ ( x ) ~ ( y  + u) + ~(u)~(x  + ~) = e -'~+~'-I~l - e- '~'- '  ~÷~' 

For  x < v, we have  y > w, so tha t  y > w > v > x. By  (2.1) we have  ]z + u ] - I z l  < l y + u l - l Y l ,  

i.e. I x + u  I +  lYl -< t x l + l Y + U l ,  so tha t  h '  > 0. T h e  restdt  follows by l e t t ing  x - - - + - e c ,  since 

y---~z. [] 

We now prove  P r o p o s i t i o n  2.2. It  suffices to  cons ider  the  case where  A is a f ini te  union 

of  d is jo int  in tervals .  T h e  p roo f  proceeds  by induc t ion  over  the  n u m b e r  of b o u n d e d  intervals  of 

A. W h e n  n = 0, e i the r  A consists  of one u n b o u n d e d  interval ,  and  the re  is no th ing  to  prove,  or 

else it  consists  of two such intervals ,  and  the  resul t  follows f rom L e m m a  2.4. 

For  t he  i n d u c t i o n  s tep f rom n to n + 1, we can wr i t e  A = B U I ,  where  I = [v,w] and 

where  B is a un ion  of intervals ,  at mos t  n of which are  bounded .  If  

( .  + [ -~ ,  ~]) n (s  + [ -~ ,  ~]) ¢ ~,  (2.2) 
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we could replace I and one of the intervals of B by one single interval  containing both ,  without  

increasing A + [ -u ,u] ,  thus the result holds in that  case. Suppose now tha t  

( B + [  u, u]) n ( t  + [ - u ,  u]) = 0 

and suppose,  for definiteness, tha t  v < w. We set 

' i n f { x > 0 ,  ~y ,  ~([x,y])  p(±) Ix u, y + u] n (B + [ - u ,  u]) 0} 7 2  - - - -  z , - -  

and we denote  by  w ~ the value of y corresponding to x = v w. If we replace I by [v~,wt], we do 

not  change t t (B) ,  but ,  Lemma 2.3 shows tha t  we decrease # (B  + I - u ,  u]). If v' = - o o ,  Iv', w'] 

is unbounded  and we have reduced to the case of n bounded intervals.  If v ~ > -cx~, we have 

reduced to the  case (2.2). [] 

We can and do assume L > 1. Then {(x) < [x[, and thus V~(u) D [--u,u],  so tha t  

Propos i t ion  2.1 shows tha t  (I1) holds. 

Set R = R U { - ~ ,  cxD}. For  a (Borel) function f :  R ---+ R, we set 

/ .  ¢ ( f ( x ) ) d # ( x )  = #2({(x ,y)  E R 2 ; y <_ f ( x ) ) ) .  ~ ( f )  

In Sections 3 and 4, we will prove the following fact. 

P r o p o s i t i o n  2.5.  The parameter  L can be chosen such that the following holds. Consider a 

non-decreasing function f : R --* R. Consider u ~_ O, and set 

f ( x )  = s u p { f ( z )  + u -  ~(x - x ' ) ;  ~(x - x ')  ~ u } .  (2.3) 

Then 

The rest of tha t  section is devoted to prove that  Propos i t ion  2.5 implies tha t  (I,~) ~ (I,~+1), 

thereby  proving Theorem 2.1. The  first task is to show tha t  Propos i t ion  2.5 implies a similar 

result when f is no longer assumed to be non-decreasing.  This follows from the next result 

where, as well as in the rest of the paper ,  for a function f ,  we denote  by f- the  function given 

by (2.3) ( the value of u being fixed). 

P r o p o s i t i o n  2.6.  Consider a (Bore1) function g : • -+ ~.  De//ne its non-decreasing rear- 

rangement  f : R --+ ~ by 

f ( - x )  = sup{y;  #({g_> y}) < ~ ( x ) ) .  (2.4) 
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Then f is non-decreasing, ¢I,(f) = I,(g),  I , ( f )  _< ¢(7)- 

Proof." For notat ional  convenience, we will show instead tha t  the (non-increasing) function 

given by 

f ( ~ )  = s u p { y ;  ~ ( { g  _> y})  _< ~(~)} 

satisfies ~ ( : )  = ~(g) ;  ~ ( 7 )  -< ¢(~)- 

To prove tha t  O(f )  = ~(g) ,  we have to prove that  the subgraphs of f and g have the same 

measure for r 2. By Fubini theorem, it suffices to show that  for all y, p ( { f  _> y}) = p({g _> y}). 

Consider x such tha t  ~(x)  = #({g >_ y}). Then f ( x )  >_ y by definition, so that  { f  > y} D 

(--oo, m], and 

/ , ({f  >__ y) )  >_ # ( ( - 0 %  x]) = ~(x)  = , ( { g  _> y}) .  

Consider now x such that  q'(x) > / , ( { g  >_ y}). Then  f ( x )  < y, so that  { f  >_ y} C [ -oo ,  m], 

a n d / , ( { f  > y))  _< ~(x) .  T h u s / z ( { f  >_ y}) _</,({g > y}). 

To prove that  q,(f)  __< q,(g) it suffices, using Fubini theorem again, to show that  for all 

y we have /~({7 >_ Y}) _< >({g >_ Y}) or, equivalently, # ({7  > Y}) _< #({g > Y}). Define b 

by ¢I,(b) = # ( { f  > y}). Since f ,  and hence f ,  is non-increasing, we have f ( x )  > y for z < b. 

Consider now x'  _< x < b. Set s = x - m', and assume that  {(s) < u. Since f is non-increasing, 

we have 

¢(~')  < ~({/>_ f ( ~ ' ) } )  = ~ ( { g  >_ f ( ~ ' ) } ) .  

By Proposi t ion 2.2, we have 

• (x) = ¢ ( x ' +  s) < #({g > f (x ' ) }  + [ - s , s ] ) .  

For g(v) >_ f (x ' )  and Iwl < s, we have 

y(v  + w) >_ g(v) + ~ - ~(w) > f ( x ' )  + ~ - ~ ( s ) .  

Thus 

¢ ( . )  _< ~({~ _> f ( . ' )  + ~ _ ~(.  - ~,)}). (2.5) 

Since f is non-increasing, we have 

7 ( x )  = s u p { f ( ~ ' )  + ~ - 4(~ - ~');  x' _< ~ ,  ( (x  - x')  _< , ) .  
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Taking the supremum in (2.5) over z '  gives 

9 ( z )  _< ~({~ > 7(z)})  _< ~({~ > y}) 

and thus, taking the supremum over z < b we have t t ({ f  > y}) < tt({~ > y})). 

We now prove the implication (I, 0 ==> (I,~+l). Assuming that  (I,~) holds, 

compact subset A of R n+l. For z E R, we denote by Az the set {z E I~ n ; (z, x) E A}. 

S t e p  1. For a ,x  t ¢ R, such that  ~(z - z I) < u, we have 

A~, + Yn(u - ~(z - z '))  C (A + V,~+l(U))~. 

Indeed, consider v ¢ V,~(u - ~(z - z ' ) ) .  By definition, 

k < n  

and thus (v , z  - x') E V,~+~(u). Consider now z E A~,, so that  ( z , z ' )  ~ A. We have 

(z + v , z )  = ( z , z ' )  + (v , z  - z ')  e A + V,~+l(u) 

i.e., z + v e (A + V,~+l(U))=. 

S t e p  2. Define g(z) = q~-l(/~=(A~)). By Fubini theorem, we have 

q~(a). 

By Fubini theorem again, we have 

(A + V,~+l(u)) = / ,  #~((A + V~+l (u))~)dt t (z) .  

Step 1 shows that ,  whenever ~(a -- a t) < u, we have 

(A + V~+l(u))~ D A~, + V,~(u - ( (x  - z ' ) )  

so that,  by induction hypothesis (L~), we have 

+ > + - - 

and, taking the supremum over x ' ,  

#~((A + V,~+l(u))~) > ¢(~(x)) .  

Thus 
p 

tE~+I(A + V=+l(u)) > Jn ¢(~(x) )d t~(x)=  ~(~) ,  
H 

and the conclusion follows from Propositions 2.5, 2.6. 

[] 

consider a 

[] 
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3. B a s i c  i n e q u a l i t y  

The  a im of t!~s sect ion is to prove the following. 

P r o p o s i t i o n  3.1.  It is possible to choose the p a r a m e t e r  L such that the following holds. 

Consider a non-decreaslng function f : N --~ ~,  and set 

f ( x )  = sup f ( y  ) - ~(:~ - y) = s u p / ( y )  -- ~(x - y ) .  (3.1) 
NER y>~ 

Then for u > O, we have 

~ ( f )  = ~ (a )  :=~ ¢ ( f +  u) ~ ¢ ( a  + u ) .  

This s t a t ement  is weaker than  Proposi t ion  3.5. Indeed, fixing u > 0, we have 

f(~,) + ~ = s~p/(y) - ~(:~ - ~,) + 
y 

> s u p { f ( y ) - ~ ( x - y ) + u ;  ~ ( x - y ) _ < u }  = 7 ( x ) .  

Our  first task is to show tha t  Proposi t ion  3.1 follows from the following. 

P r o p o s i t i o n  3.2.  (Basic inequality) Consider a non-decreasing function f from N to N. Then 

( ~  ef(~) dp(x)) ( ~  e-~(~) d#(x)) <_1. (3.2) 

We collect inequali t ies for tha t  purpose.  We note tha t  

1 = i f ~ < O  
~(x )  = i Y _  e - I t ld t= 

1 - ,  i f z  _>0. o~ i - -  ~-e 

Thus ai,(x) = O(e*), where O(t) = t/2 for t < 1, O(t) = 1 - 1 / 2 t  for t_> 1. SinceO(O) = 0 

and O' decreases, we have O(t/M) > O(t)/M for M _> 1. Thus 

Observe also tha t  ~5(z) _< ~-el , .  

v > 0 ~ ~ ( ~  - v) >_ e - v ¢ ( ~ ) .  (3.3) 

L e m m a  3.3.  Consider a function g: • -~ ~, such that f e-g d~ < 1. Then ~(g + v) > ~(v) 

for all v C ~. 

P r o o f i  Suppose first tha t  v > O. Since 
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R 1 /  l e ,  , (1-¢(g(z)+v))d~(x)<_ ~ e -g-"dl~_< 2 - = 1 - ¢ ( v )  

so tha t  

¢ ( g  + v) = f ¢ (g (x )  + v) d~(x)  > ¢ ( v ) .  

In  par t icular ,  for v = 0, we have 

1 (3.4) ¢ (g)  _> ¢(0)  = ~ .  

Suppose now tha t  v ~ 0. Then,  by (3.3) and (3.4), we have 

[] 

We now deduce Propos i t ion  3.1 from Propos i t ion  3.2. We suppose  first tha t  a _< O, so 

tha t  ¢ ( a )  = 1 r e  . Since ¢ ( f ( z ) )  < ½e ](*), and ¢ ( a )  = ¢ ( f ) ,  we get f e  Sd/z > e ~, so tha t  

f e f - ~  d# > 1. Obviously, we have f ~ - a  = ] ' -  a. The  basic inequal i ty  (3.2) implies tha t  

f e - ( ] ' - a ) d l ~  < 1. Len'~na 3.3, used with v = a +  u, g = ] ' -  a concludes the  proof  in that  case. 

We suppose now tha t  a > 0, and we set h ( x )  = - ] ' ( - x )  - u .  Thus  

h(x)  -- suph(y) -- ~(x -- y) = sup - - ] ' ( - - y )  -- u --  ¢(cc --  y ) .  
Y Y 

Since ] ' ( - y )  > f ( - x )  - ~ ( x  --  y), it  follows tha t  

h ( x )  + u ~ - f ( - x ) .  (3.5) 

Define b by ¢(b)  = ¢ (h ) ,  so that  

= f ¢ ( f ( x )  + ~) d . ( ~ )  = ¢(2"+ ~). (3,6) 

Since a ~ 0, we have, since f ~ i f +  u, 

I < ¢(a) = ¢(f) < ¢(;+ u) = 1 - ¢(b) 

so that b <_ O. Since b _< O, we already know that ¢(b + ~) <_ ¢(~ + ~). By (3.5) we have, 

setting ~-(,) = - :(-x) 

¢(b + u) _< ¢(~ + ~) _< ¢(~-) : 1 - ¢ ( f )  = 1 - ¢(a)  = ¢(-a)  

and thus a + b + u < O, so tha t ,  by (3.6) 

¢ ( a  + u) < ¢ ( - b )  = 1 - ¢(b)  = ¢ ( f f +  u ) .  [] 

A main  step in the  proof  of the basic inequal i ty  is as follows. 
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P r o p o s i t i o n  3.4. There exists a universal constant K1 with the following property. Consid- 

ering a non-decreasing function f from R to R, such that f e f d# = 1. Suppose tha~ the (right) 

derivative i f ( x )  o f f  is ~_ 1/K1 for each t. Then we have 

e - f d # - K 1  e - I f  dI.L<_ 1. 

L e m m a  3.5.  f ( f  - f (o ) )  2 d~ < 4 f f  2 dw 

Proof :  

yields 

Consider a function g on R, such that  g(O) = O, lIg'll~ < ~ .  In tegra t ing by parts 

/0 /0 g 2 ( ~ ) ~ - ,  d .  = 2 g ( . ) a ' ( x ) ~  -~  d .  

by Cauchy-Schwartz.  Thus 

Changing x in --z we get 

so that  

L e m m a  3.6.  

P r o o f :  

x ~ a  

so that  

Jo Jo g=(=)e-"  dx < 4 g ' (x)~e  -"  d= .  

g2(x)e* dx ~_ 4 g'(z)2e ~ dx 
o ~  o o  

g2 dt z ~_ 4 f 9 ' 2  dt~. [] 

f f  a >_ O, b <_ O, we have 

~aa z¢ KI e -a - -  - - d ( o )  (3.7) ef  d# ~- Ka - 1  2 

f ~  K1 eb e f(b) (3.8) 
o~ ey d# > KI +--------~ 2 

f_~ K1 eb e -f(b) (3.9) 
ooe-  fd#_~  K I ~  2 

We prove only (3.7), the others being similar. Since ]]f't]o~ -< 1/K1,  we have, for 

f ( x )  ~ f ( a )  + (x - a) /K1 

½foo e f(~) d#(x)  ~_ e f(a)+(~-a)/K~ e -~ dz 

/? = ½e "f(a)-a/K1 e -z(1-1/g~) dx 

_ K1 e -a ef(a ) . 

K I - 1  2 
[] 
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L e m m a  3.7.  If(O)[ < 1/2 f fK1 is large enough. 

P r o o f :  Using (3.8), we have 

/ 2 /? 1 = e S dtt = e f ( ' )  d#(z )  + e s ( ' )  dt t (z)  

K1 1) e/(°) leY(O ) _ 2K1 -k 1 ef(O ) 
-> 2(K~ + + 2- 2K~ + 2 

so tha t  e f(°) < ~ In a similar  way, using (3.7), we get e - f (°)  > 2K~-2 [] 
- -  2 K 1 + 1 "  - -  2 K 1 - - 1 "  

We now set 

c = i n f { x E  R,  f ( z ) > _ - l } ;  d = s u p { a  E N ;  f ( x ) _ < l } .  

Observe tha t ,  by the previous lemma,  we have c < 0 < d. 

d L e m m a  3.8.  K . / :  f '2  dt t >_ e c + e -d  + f~ ( f ( x )  -- f(O)) 2 d/z(~). 

P r o o f i  We apply  Lemma 3.5 to the function 

g(x)  = m a x ( - 1 ,  r a in ( l ,  f ( z ) ) )  - f(O), 

and we observe,  tha t ,  since If(O)[ <_ 1/2 by Lemma 3.7, we have g(x)  2 >_ 1/4 for z < d or 

x > c .  

L e m m a  3.9.  f(O) 2 < K fd f'2 d#. a C  - -  

P r o o f i  F o r c < ~ , < d ,  w e h a v e - 1  < f ( z )  < 1, s o t h a t  

les(*)  - d ( ° ) l  < ~ 2 1 f ( ,  ) - f ( 0 ) l  • 

Thus,  using Cauchy Schwartz and Lemma 3.8 

Ja(eY(~') eY(°))d# ~e2jfc d - I f ( z )  - f ( 0 ) l  d l z ( x )  (3.XO) 
c 

<_ K T  

where T 2 = f :  f '2  d#. Now by (3.7), (3.9) and Lemma 3.8 we get 

1 - e I d# = e I dp, q- e -f d# 
c o o  

<_ K(e ~ + e -d) <_ K T  2 . 
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j f c  d e f(O) -- e l(O) d# < K ( e  ~ + e -d)  ~ K T  2 , 

I I - e / ( ° ) ]  < K(T+T 2) < K T  

since T < 1 / K 1 .  This implies the result.  [] 

P r o o f  o f  P r o p o s i t i o n  3.4.  For It] < 1, we have e - t  + e t < 2 + 4t 2 (since the function 

t - 2 ( e  - t  + e t - 2) increases).  Thus,  for c < z < d we have 

e - f ( z )  < 2 -- ¢ f(x) 4- 4f2(z)  

so tha t  

Now 

/? /? /? e - f  d# < (2 - e f )  d# + 4 f2  d # .  (3.11) 
c c 

/ /? /2 e - y  d# < e - f  dtt + e - y  d# + e - y  d# 

/ < e - I  d# + K(e  c + e - a )  
c 

by (3.9). Since f ( 2  - e f )  d# = 1, we have, by (3.7) 

/' i /2 (2 - eZ) d r  _< 1 - (2 - eS)  d r  - (2 - d )  d r  
c oo 

<_ 1 + K ( e  c + e - d ) .  

Combining  with (3.11), (3.12) yields 

/ / e - I d # < _ l + K ( e  ~ + e  - d ) + 4  f ~ d #  
c 

< 1 + K ( e  ° + e - d )  + S f ( 0 )  ~ + S ( f ( x )  -- f ( 0 ) )  ~ d . ( x )  

since f 2 ( x )  <_ 2(f (0)  2 + ( f ( z )  - f (0))2) .  It follows from Lemmas 3.8 and 3.9 tha t  

e -  f d/z _< 1 + K f '2 d r  
c 

<_ 1 + K f '2  e - /  dtz 

(3.12) 

since e - f ( z )  > 1/e  for x _< d. [] 
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P r o o f  o f  t h e  b a s i c  i n e q u a l i t y .  S t e p  1. We show tha t  it  suffices to consider  the case 

where  f is of the  type  f ( ~ )  = inf  g(y)+ ~(x - y ) ,  where g is a non-decreas ing  s tep  func t ion  (i.e., 
Y 

takes on ly  f ini te ly m a n y  values in  ~) .  Indeed,  consider  a non-dec reas ing  s tep func t ion  g > f .  

Define f ' (x)  = i~ fg (y )  + ~(x - y). I t  is s imple to see t ha t  f '  > f ,  and  ~ < g. Since f '  > f ,  

we have f e f '  d#  > 1. If we know tha t  the  resul t  holds for f ' ,  we conclude tha t  f e - ~ '  d# _< 1, 

so t ha t  f e -g d/z < 1. Since g is a rb i t ra ry ,  we get f e-']'d~ < 1. 

S t e p  2. For  ~r~T C R, we define 

It follows f rom Step 1 t ha t  we can  assume tha t  the  s u b g r a p h  of f is the  in te r sec t ion  of a f inite 

sequence of sets R(c~i, ~'0, where ~ < ~i+1, ~-i < T~+I. 

For  s < x, we define 

H ( ~ ,  ~) = s u p  Y ( v )  - ~ ( v  - ~ ) .  

T h a t  H(x,  x) = f(x).  We now prove the  following fact. F ix  x, a n d  consider  the  largest  i such 

t ha t  (x , f (x) )  is on the  b o u n d a r y  of R(cr i , r i ) .  Assume tha t  cri < x. T h e n  for e l  < s < x, we 

h a v e  H ( ~ , , )  = f ( ~ )  - ~ ( ~  - , ) .  

Consider  s < y < x. We have f(y) < "ri + ~(y - ~ri), so tha t  

y ( u )  - ¢ ( y  - , )  _< ~-, + ¢ ( y  - ,~,)  - ~ ( v  - ~ ) .  

Since c~i < s, and  since ~' increases on R +,  the  func t ion  z --+ ~(z - cri) - ¢(z - s) increases. 

T h u s  

~ + ~ ( v  - ~ )  - ¢ ( y  - , )  < ~ + ¢ ( ~  - ~ )  - ¢ ( ~  - s )  = y ( ~ )  - ¢ ( ~  - , ) .  

S t e p  3. We define 

We no te  t ha t  H(x,  s) < ]'(s). 

Thus ,  for y < x 

so t h a t  

S W(x) = e -H(~'s) d#(s). 
o o  

w(~) >_ e -~(~,') a#(~) > e-~') a , ( , ) ,  
o o  o o  

l ira W(z) > / e -Y 'd ,u .  
;c ---~ o o  
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To conclude ,  i t  suffices to show tha t  f W'(x)  dx < 1. Since H(x,  x) = f ( x ) ,  we have  

w ' ( x )  = e - ~ ( % , ( x )  - H ( x ,  ~)~-H(~,.) e . ( s ) .  
G O  

(Thus  we can  d i f fe ren t ia te  under  the  in tegra l  s ign follows f r o m  the  fact  t ha t  ° H ( x , s )  is 

hounded by H~'H~-) Since H(~ ,  ~) _< ](~) ,  we have 

w ' ( ~ )  < ~-~(~) (~ (~ )  - / _ L  O H ( ~ , ~ ) d , ( 8 ) )  . (3.13) 

Cons ide r  the  larges t  i such t h a t  x is on the  b o u n d a r y  of ROri,'ri). Suppose  first t ha t  ~r i < m. 

S tep  2 shows t h a t  for ai  < 8 < x, we have  H ( x , s )  = f ( x )  - ~(x - s) so t h a t  

~---~H(x, 8) = f ' ( x )  - ~'(x - 8) 

= ~'(~ - ~i) - ~'(~ - 8) 

since y (y )  = ~i + ~(Y -- ¢i)  for y close enough to ~. 

We recal l  t ha t  ~ ' ( t )  = L - - ~ "  If x > (r i + 2, we thus  have ,  for 8 > x - 1 

0 2 1 1 
-~xH(X,8) > 3L 2L - 6L" 

If x _< (ri + 2, for 8 > (x + Gi) /2,  s e t t ing  t = x - Gi < 2, we have  

g ( x , 8 ) > - ~  l + t  1 + t / 2 ]  = - L 2 ( t + l ) ( t + 2 )  >- 24----L 

Thus ,  in b o t h  cases a-~H(x, s) is > ~ r a in ( l ,  x - G i )  on an in te rva l  of  l eng th  > ½ rain(2,  x-o ' , ) .  

Thus ,  since ~ ( y )  > ~ ( x )  for lY - xl -< 2, and  since ~-~H(x,8) >_ O, we have  

H(x,  8) d#(s) ~_ - ~ p ( x )  man( l ,  (x - Gi) 2) 
o o  

1 ( ~  - ~)~ 
> 

K L  P(X) (1 + Ix - ~il)= 

1 
= K L ~ ( X ) ( L  ~ (x -- (ri)) 2 

= L ~ ( ~ ) { ' ( x  - ~)~  

= L ~ ( z ) f ' ( x ) 2  . 

C o m b i n i n g  wi th  (3.13) we get 

/ L ~ 2 
_< • (3.14) 

Suppose  n o w  t h a t  x < ~r~. In  tha t  case f ' ( x )  = 0, so t h a t  (3.14) st i l l  hold.  If we take  

L = KK~,  where  K~ is t he  cons t an t  of P r o p o s i t i o n  3.6, we see f rom (3.14) t h a t  fR W' (x )dx  <_ 1. 

This  comple t e s  the  proof.  



111 

4. V a r i a t i o n a l  a r g u m e n t s  

We will now show that,  provided L is large enough, Proposit ion 2.5 follows from Proposi- 

tion 3.1. The method is as follows. We fix the values of a and u. We show that  there exists an 

f such that q~(f) = ¢I,(a), and that  ~(7)  is as small as possible. We then show that  7 being 

given by (2.3), we have 7 = ] ' +  u (in which case ~(7)  > q~(a + u) by Proposition 3.1). 

The first task is to show that  the infimum of 62(7 ) is actually obtained. We recall that  

a, u are fixed, and we set 

D 

Y =  { f :  R -+ R,  f non-decreasing, ¢ ( f )  = ,I~(a)}. 

L e m m a  4.1. Consider a n  ultrafilter ~ o n  ~ .  Define f ( x )  = lim g(z) .  Then f E ~ .  
g--* bi 

P r o o f :  It is a well known (and elementary) fact that  the map h ~ f :  h ( x ) d x  is pointwise 

continuous on the set g7 of non-decreasing functions from [0, 1] to [0, 1]. The map f ---+ ~ ( f )  is 

thus pointwise continuous on the set of G ~ all non-decreasing maps from ~ to R, as is seen by 

transport ing G I to G by the map f ---+ • o f o q~-l. [] 

We define ~ > 0 by 4(~)  = ~. Since 4(¢) _< , ~ / t ,  w e  have  ~ > t ~ .  W e  can and  do  assume 

L > 2, so tha t  cr > 2U. 

L e m m a  4.2. Consider an ultrafilter bl on .7:. Then i f  f • iF is given by f ( x )  = l imug(x) ,  we 

have  lira ~ ( ~ )  > ~ ( 7 ) .  g---~U 

P r o o f :  Since ~ is non-decreasing whenever g is, and since (as mentioned in the proof of 

Lemma 4.1) • is pointwise continuous on the set of non-decreasing functions, it suffices to 

show that  for all ~, lim ~(x) _> 7(x).  Given y with ]y - x] < er, we have 
g--~b/ 

g(u)  + ~ _ ~(y - ~) ~ ~ ( ~ ) .  

Taking the limit along U gives 

and thus f (x )  < l i ~ ( x )  by definition of 7. [] 

Lemmas 4.1, 4.2 implies that  we can find f C 9 v for which ~(7)  is minimal. Observe that 

~(7)  -< q~(a + u), since the constant function a belongs to ~ .  We fix such an f ,  and we want 

to prove that  7 = ] ' +  u. 
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L e m m a  4 .3 .  We have f ( 2 u )  C R, f ( ~  - 2u) E R. 

P r o o f :  We observe tha t  f ( x )  > f ( x  + o ) - ~ ( ~ ) + u  = f ( x + a ) .  Set f ' ( x )  = f ( x + a ) .  It  

suffice to show tha t  if e i ther  f ( 2 u )  = - c o  or f(~r - 2u) = oo we would have f f ( f ' )  > ~ ( a  + u). 

Cons ider  the  func t ion  g from R to R given by 

g(y) = i n f { x ;  f ( - x )  <_y}. 

It  is s imple  to see tha t  ~ (g )  = ~ ( f ) ,  since, by  F u b i n i  theorem,  b o t h  n u m b e r s  are equal  to 

/ ( { ( ~ , y ) ;  v_< f(~)}).  

We set 

g ' ( y ) = i n f { x ;  f ' ( - x )  <_y}. 

T h u s  g' = g + o-, and  ¢5(g' ) = q~(f').  T h u s  ¢5(f') = q~(g + 0). Thus  it suffices to show 

tha t  if e i ther  g _< - 2 u  (case f ( 2 u )  = - o o )  or g >_ - o  + 2u (case f(cr -- 2U) = OO) we have 

¢(g + o) > ¢(a + u). 

C a s e  g < - 2 u .  Since O(g) = ¢ ( a ) ,  we have a _< - 2 u .  We have 

¢(g + o) > ~(g + 2~) = . /~(g(x)  + 2~) d,(x) 

= e=U~(a) = ~(a + 2u) > ~ ( a  + u) 

since ~ ( t  + 2u) = e2Ud2(t) for t + 2u < 0, an d  since a _< - 2 u .  

C a s e g _ >  - c ~ + 2 u .  W e d e f i n e b b y ( I ) ( g + ( r ) = l  ~ ( b ) , s o t h a t b < - 2 u .  Let h =  - ( g + e r ) ,  

so t ha t  ~ ( h )  = ~(b) .  Since h < - 2 u ,  the preceding case shows tha t  O(h + 2u) > ~(b  + 2u). 

B u t  

g2(h + 2u) = 1 - ¢ ( g  + o- - 2u) _< 1 - g2(9 ) = 1 - <I,(a) = ¢ ( - - a ) .  

T h u s  - a  >_ b + 2u, so tha t  - b  >_ a + 2u, and  

(I)(g + ~r) = 1 - (I)(b) = (I)(-b) _> ~ ( a  + 2u) > (I)(a + u ) .  [] 

We deno te  by  I = ] a , f l [  the  in ter ior  of f - l ( R ) .  T h u s  a _< 2u , /3  _> ( ~ - 2 u .  We set J = I - ( r .  

We no te  t h a t  

x E J ~ 7 ( z )  E ~ .  

We now s ta r t  to exploit  the  fact tha t  ~ ( 7 )  is as smal l  as possible. For  the  convenience  of 

no t a t i ons ,  we wri te  ( f  + g ) -  for f + g. 
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Consider a bounded continuous function v from R to R, that is zero outside I.  

l i m s u p * - l ( ¢ ( ( f  + * v ) - )  -- ¢ (7 ) )  >-- 0 
s~O+ 

(resp. > 0).  

Since W < 1/2, ¢ is lipschitz. Since v is bounded, by donlinated convergence we have 

/ v T ( f )  diz = l i m , - l ( ¢ ( f  + sv) -- ¢ ( f ) ) .  
s---*O 

5 = f ~ ( f ) d , ;  v = l i m s u p s - l ( ¢ ( ( f  + , v ) - )  - ¢ ( 7 ) .  
s---+0+ 

and fix 5' < 5, 7' > 7. Thus for all s small enough we have 

¢ ( f  + , v )  >_ ¢ ( f )  + 5's 

¢ ( ( f  + s v ) - )  < ¢ (7 )  + ~ ' , .  

(4.1) 

(4.2) 

Consider the non-decreasing rearrangement gs of f + sv, defined in Proposit ion 2.6. From that 

proposition follows that  ¢(gs)  = ¢(Y + *v), ¢ ( ~ )  < ¢ ( ( I  + sv) - ) -  Thus, from (4.2), for s 

small enough, we have 

~(Ys) ~ ¢(f)  + *3". (4.3) 

Consider the number t(s) such that  ¢(g~ + t(s)) = ¢(a) ,  so that  g~ + t(s) e Y .  Since ~(7)  is 

the minimum of ¢(ff) for g E 5 r-, we have 

¢(7)  <_ ¢((g~ + t (s ) ) - )  = ~ ( ~  + t ( , ) ) .  

Combining with (4.3), we see that  

¢(ff8 + t (s))  - ¢ (gs )  >- - - ' 7 ' .  (4.4) 

It is clear that  gs + t ( , )  is the non-increasing rearrangement of f + ,v  + t(s). Thus 

¢ ( f )  = ¢(a)  = ~2(gs + t(s)) = ¢ ( f  q- , v  + t ( s ) ) ,  

and by (4.1), for s small enough, we have 

¢ ( f  + sv) - ¢ ( f  + sv + t(s)) > 6 ' , .  (4.5) 
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Since i~(x) _ ¢(y)  <_ as - y for x > y, we have, for all functions h 

vt >_ o, ,~(h + t) - ¢ (h)  _< t.  (4.6) 

We suppose now that  5' > O. Since ~I, is increasing, (4.5) show that t(s) <_ O, and using 

(4.6) for t = - t ( s ) ,  h =  f + s v + t ( s ) ,  we get - t ( s )  2 5%, i.e. t(s) <_ -5 ' s .  By (4.4) we now 

have 

3'' > f , - ~ ( ¢ ( ~ . ( , ) )  - ~ ( ~ ( , )  + t( , ) )  d~(~) 

_> f , - ~ ( ¢ ( ~ , ( ~ ) )  - ¢ ( ~ ( ~ )  - ~'~)) d~(~) .  

For A > 0, x ,y  E [ - A , A ] ,  x < V, we have 

¢(v)  - ¢ (x )  ~ (x - v )~ (A) .  

It clearly follows that  for some constant  B that  depends on f ,  u only, we have 3"~ _> B5 r. Thus 

5 > 0 implies 3" > O. 

Suppose now that  3'' < 0. By (4.4) we see now that  t(s) > O, and by (4.6) that t(s) >_ 

( - 7 ' ) s .  By (4.5) we have 

s - l ( O ( f  + sv 4- ( -3 ' ' )s )  - ¢ ( f  + sv)) < - 5 ' .  

Lett ing s --4 O, we get by Fatou 's  lemma that  

( - 7 ' )  f ~ ( f )  d~ < - g  

so that  7 < 0 implies 6 < O, and thus 5 > 0 implies 3' > O. 

For x E J,  we define 

[] 

A~ = A closure {y; x _ < y _ < x + a ,  f (x )  < f ( y ) - ~ ( y - x ) + u + e } .  

While the idea of the following result is well known, we provide a proof since we cannot 

find an exact reference. 

L e m m a  4.5. l im s - l ( ( f + s v ) - ( x ) - f ( x ) ) =  sup v(z) .  
s~O+ zCA~ 

P r o o f :  a) Consider z E A~, and e > O. Thus we can find y such that x <_ y <_ x + cr and that 
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( f  + s v ) - ( x )  -- -f(x) ~ sv (y )  -- ¢ ~ s v ( z )  -- e(1 q- ~). 

This holds for all ¢ > 0. Thus 

( :  + , , , ) - (= )  - 7(=) _> ,, ,(z) 

and thus 

l i m i n f s - ~ ( ( f  + s v ) - ( x )  - -:(x)) > v ( z ) .  
s---+O + 

Since z is arbi t rary in A, ,  we have 

l i m i n f s - l ( ( f  + sv)-(x) - f ( x ) )  > sup v(z). 
s ~ O +  z C A x  

b) Consider now B > sup v(z ) .  Since v is continuous, the set {v < B} is a neighborhood of 
zf fA= 

As. Thus, by definition of As we can find ¢ > 0 such that  

: ( y )  - ~(y - ~) + ~  + ~  ~ 7 ( = ) ~ ( y )  < B .  

Distinguishing whether v(y)  < B or not, we have 

( f  + sv ) - (x )  = sup{f(y)  -- ~(y -- x)  + u q- s v ( y ) ;  x ( y (_ x + ~}  

_< ~ a x { 7 ( = )  + ~B, 7 ( = )  - ~ + ~11,,11~} 

so that 

and hence 

for all B > sup v(z). 
zEA= 

L e m m a  4.6. 

l i m s u p s - l ( ( f  + s v ) - ( x )  - f ( x ) )  <_ B 
s~O+ 

Consider x l , x 2  E Y, x l  < x2, zl G A= 1, z2 E A , : .  T h e n  zl < z2. 

P r o o f i  

[] 

We first observe that  for z C As, there is a sequence (z~) converging to z such that  
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Since f is non-decreas ing ,  se t t ing  f + ( z )  = lira f ( y ) ,  we have  
y ~ z ~ y ) . z  

7 ( ~ )  <_ f + ( z )  - e ( z  - ~)  + ~ .  (4 .7)  

We now argue  by con t rad ic t ion ,  and assume tha t  z2 < Zl. T h u s  xl  < x2 < z2 < zl _< 

xl  + ~ .  F o r x l  _< y < x l  + ~ ,  we have  

f ( y )  - g ( y -  x~) + u < 7(x~)  

so tha t ,  l e t t i ng  y --+ z2, y > z2 we get  

f + ( z 2 )  - { (z2  - a~) + u < f ( x a )  <_ f + ( z ~ )  - e ( z l  - z~)  + u (4.8) 

where  t he  second inequa l i ty  follows f rom (4.7). A s imilar  a r g u m e n t ,  using now the  fact tha t  

zl _< Xl +c~ < x 2 + ~  gives 

f + ( z ~ )  - ~(z l  - x2)  + '* <_ Y ( x ~ )  <_ f+(z ,~)  - e(z~ - x~) + ,*. 

A d d i n g  w i t h  (4.8) gives 

~(z~ - < )  + {(z2 - ~2) < ~(z2 - x l )  + ~(z~ - x=) .  

so t h a t  

~ ( z ,  - ~2)  - ~(Zl  - ~1)  >_ e(z2 - ~ , )  - ~(z2 - = 1 ) .  

B u t  since {' increases s t r ic t ly  on ~ + ,  and since xl  < x2, the  func t ion  z ~ { ( z -  x 2 ) -  ~ ( z -  x l )  

decreases  s t r i c t ly  for z > x l .  This  con t rad ic t s  the  fact  tha t  z 1 > 2: 2. [] 

P r o p o s i t i o n  4 .7 .  F o r  aii  x E J ,  A s  has e x a c t l y  one po in t .  

P r o o f :  By  def ini t ion,  A~ is not  empty .  Suppose  tha t  for some x E ./, A~ con ta ins  two points .  

T h e n  we can  find zl < z2 such tha t  As conta ins  a poin t  < zl and a po in t  > z2. By L e m m a  

4.6, for y # x, we have  A v A [z~,z2] = 0. Cons ider  now a pos i t ive  con t inuous  func t ion  v tha t  

is s u p p o r t e d  by [z~, z2]. It  fol lows f r o m  L e m m a  4.5 t h a t  for y # x, we have  

l ira , - ~  ( ( f  + * ~ ) - ( V )  - 7 ( Y ) )  = O .  
s---+O + 

By d o m i n a t e d  convergence ,  we have  

lira , - 1 ( ¢ ( ( f  + , v ) - )  - ¢ ( 7 ) )  = O. 
s ~ O +  
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But  since f v~a(f)  d/~ > 0, this  contradic ts  Lemma 4.3. [] 

We define A(x)  by  A ,  = {A(x)}. We note tha t ,  by (4.7) we have 

- f (x)  < f + ( A ( x ) )  - ~ ( A ( x )  - x )  + u .  (4.9) 

Moreover,  if f is continuous at  A(x) ,  we have 

f ( x )  = f ( A ( x ) )  - ¢ ( A ( x )  - x )  + u .  (4.9') 

For y C I ,  we set 

w ( y )  = s u p { z  e g ; A ( z ) _ < y } .  

P r o p o s i t i o n  4.8.  For some cons tan t  C we flare 

Vy C I ,  ~ (7 (x ) )  d#(x)  = C T ( f ( x ) )  d t t ( x ) .  (4.10) 

In part icu]ar w is one to one and cont inuous .  

P r o o f :  I t  follows from Lemma 4.5 and dominated  convergence tha t ,  for a bounded  continuous 

funct ion v suppor ted  by J ,  we have 

l im s - l ( ~ ( ( f  + s v ) - )  - @(-f)) = f v(A(~))~(y(~)) d/~(x). 
8--+0+ J j  

By Lemma 4.3, we have 

f v ( ~ ) ~ ( s ( ~ ) ) 0  ~ f~ v(A(~))~(7(~)~ d~(~) -- 0. d#(z)  

Thus,  there  exists a constant  C such tha t  for all continuous bounded  functions v with support  

in f ,  we have 

j ~(A(.))~(7(.)) ~.(~) = C f~ v(.)~(f(~)) d . ( ~ )  

If we approx ima te  the ind ica tor  function of ]a,  y] by v we get 

/o f ~(7 (x ) )  dt t (x)  = C ~o(f(x)) d # ( z )  

where B = {~ >_ ~ - ~,  A(~) < y). 

We observe tha t  A(w(m) )  = z for z e [ and w ( A ( x ) )  = x for x • J .  

We now define 

z = { y c z ;  ~ ( y ) = y - ~ } .  

Since w is continuous,  Z is closed in I .  Our  object ive is to prove tha t  Z = (~ (at  which point  

the proof  will be a lmost  finished). 
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L e m m a  4.9 .  Suppose  that  f is not  cont inuous at p E I .  Then  Y C Z.  

P r o o f :  Cons ider  z < y. By (4.9) we have 

- f (w(z) )  < f + ( A ( z o ( z ) ) )  - ~ ( A ( w ( z ) )  - w ( z ) )  + u 

< f + ( z )  - { (z  - w( z ) )  + u 

< f + ( y )  - { ( y -  w ( z ) )  + u 

as s o o n  as (y - z)ll~'lloo _< -}(y - z) < f + ( y )  - t - ( y ) .  Thus ,  by def ini t ion of 7,  we mus t  have 

w ( z )  + o < y. Since w is con t inuous ,  ]erring z --* y we have w ( y )  + c~ <_ y, so t ha t  w(y )  = y -  o'. 

[] 

Lemma 4.10. For  a: E I,  we have f ( x  + ~r) <_ f ( z )  G f ( z  + ¢ )  + u. Thus  

e - ~ ( f ( z  + ~))  G ~o(7(x)) G e=~o(f(z + ~ ) ) .  

P r o o f i  We  have  

and  also 

(4.11) 

f(a:)  _> f ( x  + rr) - ~(cr) + u = f(m + ~r) 

f (m) < sup f ( y ) - ~ ( y - x ) + u < f ( a ~ q - r r ) q - u .  [] 
I~-*l<~ 

L e m m a  4 .11 .  Cons idery ,  < y=, Yl,Y2 E Z U { a , f l } .  T h e n i f w e s e t  - t - o o - ~ r l + { - o o {  = - ¢ ;  

- I ~  - < + to< = ~ ,  ~,e have  

e -~-Iy~-~I+Iy~I _< C <_ e '*-Iya-~I+Iy=I . 

P r o o f i  By  (4.10) we have 

Thus ,  by  (4.11), 

c ~(f(x)) d~(x) < ~ ~(f(~ + ~))~(~) & 
1 J Yl --(7 

_~ e ~ ~ ( f ( x ) ) ~ ( ~  - o') dx 
1 

_ ~ ( f ( ~ ) )  d . ( ~ ) .  

Thus 
C _< e ~ sup{e- t* -~ l+ l* l  ; Yl ~ X ~ Y2}  

< e~-Iya-°l+l~al 

since the  func t ion  m --+ - I  x - a I + Ixl is non-decreas ing .  The  o ther  inequa l i ty  is proved in  as 

s imi lar  way. [] 
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C o r o l l a r y  4.12.  F o r y l , y 2  C Z ,  we have 

- ] Y l  - o'[ + [Yl[ ~ 2u  + ( - [Y2  - o'[ + ly21).  

(Note  that  we no longer assume Yl <_ Y2. The  case o f  interest  is ac tual ly  Yl > Y2.) 

P r o o f :  We use Lemma 4.11 for the pair a ,y2 ,  and then for the pair Yl,fl- [] 

L e m m a  4.13.  H y  E I ,  y ~ Z ,  we have 

l imsup f ( z )  - f ( y )  <_ ~'(o'). 
z-.v+ z - y 

P r o o f :  By Lemma 4.9, f is continuous at y. Thus for I z - w(y)] < o, we have 

f ( z )  - ~(z -- w(y ) )  + u <_ - f (w(y))  = f ( y )  - ~(y - w(y ) )  + u .  

Using this for y < z < w(y)  + c% we get 

f ( z )  - f ( v )  < ¢ ( z  - w ( v ) )  - ~ ( v  - w ( v ) )  

z - y  z - y  

This implies the result since ~'(y - w(y ) )  ~ ~'(a) as ~' increases on •+. [] 

L e m m a  4 .14 .  ~r~'(~r) <_ 2u. 

P r o o f i  

 _J0 ° = ~ ( ~ )  = 1 + = 

1 ¢r ~ 

2 L l + ( r  

1/o  d:e > L(1 + o') :e d:~ 

1 2~'(~). [] 

L e m m a  4.15.  Suppose  [x, A(x)] A Z = 0. Then  

f ( x )  + u <_ -f(x) <_ f ( x )  + 3u .  

Proof." Since ~(0) = 0, we have f ( z )  _> f ( x )  + u. Since 7 is continuous at A(x) by Lemma 

4.9, we have by (4.9 t) that  

: ( z )  = f ( A ( x ) )  - ~(A(~z) - ~) + u 

< f ( A ( x ) )  + u .  

By Lemmas 4.13, 4.14, we have 

f ( A ( z ) )  _< f (x )  + (A(x) - z)('(~r) _< f (x)  + ~r¢'(~) < f ( z )  + 2u.  [] 
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L e m m a  4 .16 .  a) Suppose that  for some a' > a,  we have (a,  a ')  A Z = O. Then a = - o o  and 

C < e ~'~. 

b) Suppose that  for some/3'  </3, we have (/3',/3) N Z = O. Then /3  = oo and C >_ e -3~. 

P r o o f i  We prove only  a) since b) is similar .  T h e  fact tha t  a = - o o  follows f rom Lemmas  

4.9 and  4.13. By P ropos i t i on  4.8 we have 

C qo(f(x)) d#(x)  = ~ ( i ( : c ) )  d#(~c). 
c:~ J--oo 

Now for ~ < ~(~'), we ha~e A(~) < ,~', so that 17(x) -/(x)l _< 3~ by Lemma 4.15 and 

T ( f ( x ) )  _< e ' ~ p ( f ( x ) ) .  T h u s  

/_ ~' fw(a~) 
C T ( f ( x ) )  d , ( x )  ~ e 3u / 7~(f(x)) d#(x)  

~o a--oo 

// _ ~ ~(f(x)) d.(~). [] 
o o  

P r o p o s i t i o n  4 .17 .  Suppose that L > 30. Then  Z = ~. 

Proof."  S t e p  1 We have ~(x) < Ixl/L, so tha t  ~r > Lu > 30u. Since a _< 2u, fl > ~r - 2u, the 

value of the  func t ion  - I x  - cr I + Ixl at fl (resp. a )  is at  least cr - 4u (rasp. at most  - ¢  + 4u). 

T h u s  Corol lary  4.12 shows tha t  a , f l  c anno t  be  bo th  c luster  poin ts  of Z ,  for otherwise,  we 

would  have 

~ r - 4 u  < 2 u + ( - ~ r + 4 u ) .  

For  def ini teness ,  we assume tha t  a ¢ Z.  By L e m m a  4.16 a), we have a = - c ~ ,  C < e 3~. 

By L a m i n a  4.11, we h a v e -  ly-~rI+lyl <_ 4u for y C Z,  so tha t  y < ~r/2+2u. Since/3 > ~ r -u ,  and  

~r > 6u , /3  c a n n o t  be a c lus ter  po in t  of Z .  By P ropos i t i on  4.15 b), we have /3  -- ~ ,  C _> e -3~. 

Thus ,  by L a m i n a  4.11, we h a v e - 4 u  < - l Y - ~ r ] + I Y l  for y E  Z,  so tha t  z_> ~ r / 2 - 2 u .  Thus  

° 2u].  z c  [ ~ - 2 u ,  7 +  

S t e p  2 Suppose  now tha t  Z ¢ (D. Consider  the  smal les t  poin t  z E Z.  We have 

S -° ~(y(~)) d~(~) = c ~(f(x)) d~(~). 
o o  ~ o  

By Lemma 4.14, we have ~ ( f ( x ) )  _< e 3 ~ ( f ( x ) )  for x _< z - cr; since z _> 0, we have 

C ~ ( f ( x ) )  d#(x)  < e 3~ ~ ( f ( x ) )  d # ( x ) .  
O D  o o  
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By L e m m a  4.13, for x < 0, we have I f ( x )  - f (O) l  < Ixl~'(0"), so t ha t  

~ ( f ( z ) )  >_ e~'('~)~,o(f(O)). 

For  x _< z - o,  we h a v e  I f ( x )  - f ( z  - ~r)l < ]z - a - x]~'((r), aga in  by  L e m m a  4.13, so tha t  

~ ( f ( x ) )  _< ~( . . . .  *)~'(~)~(f (z  - ~ ) ) .  

The  proof  of L e m m a  3.6 t h e n  shows tha t  (since z - c~ _< 0) 

T ( f ( x ) ) d # ( x )  > (1 + ~ ' ( c ~ ) ) - i ~ ( f ( 0 ) )  

/_z-~ 1 
~ ( f ( ~ ) )  d ~ ( ~ )  < ~ ( 1  - ~ ' ( ~ ) ) - l ~ - l ~ - ~ l ~ , ( y ( ~  - ~ ) ) .  

o o  

T h u s  

C ~  e 3 u ( 1 - } - ~ ' ( o ' ) ) ( 1 -  ~ ' ( o ' ) ) - l e - l z - a l c f l ( f l ; ( O ) ~ ) )  

Now, since Iz - ~r t < ¢ 

I f ( z  - ~) - f (0 ) l  _< ~ ' ( ~ )  _< 2u 

so t ha t  ( p ( f ( z  - o')) < e 2 ~ ( f ( O ) ) .  Since Iz - ~r I > ~r/2 - 2u,  we have 

c < g ' - ~ / 2 1  + ~ ' (~)  
1 - ~'(~)  " 

We no te  t ha t  1+~ < 1 + 3 x  for x < 1/3.  Since ~'((r) < 1 / L ,  and  since ~'(~r) < ~r/L,  we get 

since cr _> L u  

C < e 7u-~/2+z~'(a)  < e , / 

<_ j ~ - L ~ (  ~ - ~  ) . 

Since L > 30, this con t rad ic t s  the  fact tha t  C > e -z~.  [] 

We can  now finish the  proof  of T h e o r e m  1.1. 

P r o p o s i t i o n  4 .18 .  S u p p o s e  t h a t  Z = (~. T h e n  -f  = ] ' +  u.  

P r o o f i  We  have shown tha t  when  Z = ~, I =  ~. By L e m m a  4.13, for y_> x + ~ r ,  we have, 

since ~l is inc reas ing  

so t ha t  

T h u s  

f ( y )  - ~(y - ~) <_ f ( ~  + ~) - ~(~) 

f ( x  + 0") -- ~(~r) + U ~ f ( y )  -- ~ ( y - -  X) q- U. 

] (~)  + ~ = s u p / ( y )  - ~ ( y  - ~ )  + ~, < s u p  f ( y )  - ~ ( y  - ~ )  + ~, = 7 ( ~ ) .  
y y<~+cr 

[] 
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5. P r o o f  of  T h e o r e m  1.2 

For a compact set A of W ~, we set 

hA(x) = inf {u _> 0 ; x e A + V,~(u)} . 

To prove Theorem 1.2, it suffices, by (2.0) and an obvious approximation argument ,  to show 

that  for alI n we have 

f ~ .  e x p h A ( x ) d ' ~ ( x )  < 2 / , ~ ( A )  , (H~) 

provided the parameter  L has been chosen large enough. 

The proof of (H,~) will be by induct ion over n. We first consider the case n = 1. Define a 

by/~(A) = e-% Since t t ( [ - a , a ] )  = 1 - e  -~, there exists b • A with Ibt _< a. Thus Ix-bl <_ Izl+a 

and since ~(u) < u/L,  we have hA(x) <_ (Ix] + a) /L  . Thus,  if we assume L > 2, we have 

JR ~ L e(l~l+~)/L e-I~ldx exp hA(x)d#(x ) <_ 

- 1 -1-1/Le~/L -- < 2e~ = 2 /#(A)  @ 

This proves (H1). Let us point out that  a more cautious computa t ion  using e.g. Proposition 

2.2 allows the removal of the factor 2 in the right hand side of (HI)  (and, as the proof will 

show, also in the right hand side of Theorem 1.2). 

Consider now a compact subset A of W ~+1. For x • [~, we denote by Ax the set {z • 

W ~ ; (z ,x)  • A}. Consider x' • R, z • R ~, and u such that  z • A~, + V~(u). Then,  by 

definition of Vn+l(U), we have, for all x • [{ that 

Thus we have 

and hence 

(z ,x)  E A +  V,~+l (u + ~(x - x')) . 

< - x') + hAo,(z)  

exph A((z,x))  _< exp~(x - x ')  exphA. , ( z ) .  

By the induct ion hypothesis, we have 

R e~(~-~') 
exp hA ((z, x))d#n(z) <_ 2 ,n(A~,------ ~ . 

Thus 

L exphA((Z,x))d  (z) < 2 inf 
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By Fubini  theorem, we have 

9fa /R e~(~-~') ehA(V)dtt=+l(y) < 2 inf --777---7,, dtt(z) . (5.1) 
n + l  ~:tCR 

Consider the function g(z) given by exp g(x) = tt=(A~). By Fubini theorem, we have 

f expg(x)d#(ac) =/*'~+I(A). On the other hand, the right hand side of (5.1) is 

2 £ e-~(~)d#(x) 

where ~(x) = sup (g(x')  - ~(z - x ' ) ) .  Thus to prove that  (H=) =:> (H,,+I),  it suffices to show 
z ' E R  

that  

jfR e-~(~)dl-t(x) fa  e~(~)dl-t(z) <_ l . 

The basic inequality (3.2) shows that  this it true when g is non-decreasing. To reduce the 

general case to that  case, consider the non-decreasing rearrangement f of g given by (2.4). 

Since t t ({ f  > y}) = tt({g > y}) for all y E R, we have fR eg(~')dtt(az) = fRef(~)d#(z)" It 

suffices to show that  for all t, 

, ( { f ( ~ )  > Y}) < , ({~(x)  > Y}) • 

The argument to prove this is identical to that  of Proposit ion 2.6. Theorem 1.2 is proved. 

Finally, we prove that  even a weak form of the concentration of measure property can hold 

only for powers of measures with exponential tails. 

P r o p o s i t i o n  5.1. Consider a probability 8 on R, and its power 8 °a on [~N. Assume that there 

exists uo C R with the following property. For each Bore1 set A C R N 

3 
e~(A)  > 1/2 ~ O~(A + uoB~)  >_ ~ , 

where Boo = {z E ~ N ; V k  > 1 ,  Izkl < 1}. Thent~({Iz I > u } )  < K  e x p ( - u / g ) .  

1 would serve the a is not magical. Any number > C o m m e n t .  The choice of the number ¥ 

same purpose. 

P r o o f i  Consider u > 0. Let n be the smallest integer such that  t~([-u,u]) '~ > 1/2. Set 

A = { z 6 R ~ ; V k < < _ n ,  I~kl < u }  

so that  8 ~ ( A )  >_ 1/2. Then  

A + uoB~ = {z 6 R~ ; vk< , I kl + 



Thus 

Thus, we have 
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3 O~(A + , , o B o o )  = O ( [ - u  - ~,o, u + Uo]) '~ _> ~ .  

o({1=1 > ~})  _< 1 - -  ( ½ ) 1 / ~  ~ o({1=1 > ~ + ~o}) _< 1 - -  ( ¼ ) 1 / , ~  . 

Since 1 - (½)l/n is of order 1 log2, while 1 - (¼)1/,~ is of order ~ log  4 g, it follows that  for u 

large enough we have 

where 7 < 1. The result follows easily. [] 
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