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1. Introduction

Matrix concentration inequalities provide probabilistic bounds for the spectral-
norm deviation of a random matrix from its mean value. The monograph [Tropp,
2014] contains an overview of this theory and an extensive bibliography. This
machinery has revolutionized the analysis of non-classical random matrices that
arise in statistics [Koltchinskii, 2012], machine learning [Morvant et al., 2012],
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signal processing [Netrapalli et al., 2013], numerical analysis [Avron and Toledo,
2014], theoretical computer science [Wigderson and Xiao, 2008], and combina-
torics [Oliveira, 2009].

In the scalar setting, the core concentration results concern sums of inde-
pendent random variables. Likewise, in the matrix setting, the central results
concern independent sums. For example, the matrix Bernstein inequality [Tropp,
2011, Thm. 1.4] describes the behavior of independent, centered random ma-
trices that are subject to a uniform bound. There are also a few results that
apply to more general classes of random matrices, e.g., the matrix bounded
difference inequality [Tropp, 2011, Cor. 7.5] and the dependent matrix inequal-
ities of Mackey et al. [2014]. Nevertheless, it is common to encounter random
matrices that we cannot treat using these techniques.

In the scalar setting, there are concentration inequalities that can provide
information about the fluctuations of more complicated random variables. In
particular, Efron–Stein inequalities [Boucheron et al., 2003, 2005] describe the
concentration of functions of independent random variables in terms of random
estimates for the local Lipschitz behavior of those functions. These results have
found extensive applications [Boucheron et al., 2013].

The goal of this paper is to establish new Efron–Stein inequalities that de-
scribe the concentration properties of a matrix-valued function of independent
random variables. The main results appear below as Theorems 4.2 and 4.3.

To highlight the value of this work, we establish an improved version of the
matrix bounded difference inequality (Corollary 6.1). We also develop a more
substantial application to compound sample covariance matrices (Theorem 7.1).

We anticipate that our results have many additional consequences. For in-
stance, we envision new proofs of consistency for correlation matrix estima-
tion Shao and Zhou [2014], Cai and Jiang [2011] and inverse covariance matrix
estimation Ravikumar et al. [2011] under sparsity constraints.

Remark 1.1 (Prior Work). This paper significantly extends and updates our
earlier report Paulin et al. [2013]. In particular, the matrix Efron–Stein inequal-
ities are new. The application to compound sample covariance matrices is also
new. The manuscript Paulin et al. [2013] will not be published.

1.1. Technical Approach

In the scalar setting, the generalized Efron–Stein inequalities were originally es-
tablished using entropy methods Boucheron et al. [2003, 2005]. Unfortunately, in
the matrix setting, entropy methods do not seem to have the same strength [Chen
and Tropp, 2014].

Instead, our argument is based on ideas from the method of exchangeable
pairs [Stein, 1972, 1986]. In the scalar setting, this approach for proving concen-
tration inequalities was initiated in the paper [Chatterjee, 2007] and the the-
sis [Chatterjee, 2008]. The extension to random matrices appears in the recent
paper [Mackey et al., 2014].
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The method of exchangeable pairs has two chief advantages over alternative
approaches to matrix concentration. First, it offers a straightforward way to
prove polynomial moment inequalities, which are not easy to obtain using earlier
techniques. Second, exchangeable pair arguments also apply to random matrices
constructed from weakly dependent random variables.

The paper [Mackey et al., 2014] focuses on sums of weakly dependent ran-
dom matrices because the techniques are less effective for general matrix-valued
functionals. In this work, we address this shortcoming by developing a matrix
version of the kernel coupling construction from [Chatterjee, 2008, Sec. 4.1]. This
argument requires some challenging new matrix inequalities that may have in-
dependent interest. We also describe some new techniques for controlling the
evolution of the kernel coupling.

We believe that our proof of the Efron–Stein inequality via the method of
exchangeable pairs is novel, even in the scalar setting. As a consequence, our
paper contributes to the growing literature that uses Stein’s ideas to develop
concentration inequalities.

2. Notation and Preliminaries from Matrix Analysis

This section summarizes our notation, as well as some background results from
matrix analysis. The reader may prefer to skip this material at first; we have
included detailed cross-references throughout the paper.

2.1. Elementary Matrices

First, we introduce the identity matrix I and the zero matrix 0. The standard
basis matrix Eij has a one in the (i, j) position and zeros elsewhere. The di-
mensions of these matrices are determined by context.

2.2. Sets of Matrices and the Semidefinite Order

We write Md for the algebra of d×d complex matrices. The trace and normalized
trace are given by

trB =

d∑
i=1

bii and t̄rB =
1

d

d∑
i=1

bii for B ∈Md.

The symbol ‖·‖ always refers to the usual operator norm on Md induced by the `d2
vector norm. We also equip Md with the trace inner product 〈B, C〉 := tr[B∗C]
to form a Hilbert space.

Let Hd denote the real-linear subspace of Md consisting of d × d Hermitian
matrices. The cone of positive-semidefinite matrices will be abbreviated as Hd+.
Given an interval I of the real line, we also define Hd(I) to be the convex set of
Hermitian matrices whose eigenvalues are all contained in I.
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We use curly inequalities, such as 4, for the positive-semidefinite order on
the Hilbert space Hd. That is, for A,B ∈ Hd, we write A 4 B if and only if
B −A is positive semidefinite.

2.3. Matrix Functions

Let f : I → R be a function on an interval I of the real line. We can lift f
to form a standard matrix function f : Hd(I) → Hd. More precisely, for each
matrix A ∈ Hd(I), we define the standard matrix function via the rule

f(A) :=
∑d

k=1
f(λk)uku

∗
k, where A =

∑d

k=1
λk uku

∗
k

is an eigenvalue decomposition of the Hermitian matrix A. When we apply a
familiar scalar function to an Hermitian matrix, we are always referring to the
associated standard matrix function. To denote general matrix-valued functions,
we use bold uppercase letters, such as F ,H,Ψ.

2.4. Monotonicity & Convexity of Trace Functions

The trace of a standard matrix function inherits certain properties from the
scalar function. Let I be an interval, and assume that A,B ∈ H(I). When the
function f : I → R is weakly increasing,

A 4 B implies tr f(A) ≤ tr f(B). (2.1)

When the function f : I → R is convex,

tr f(τA + (1− τ)B) ≤ τ tr f(A) + (1− τ) tr f(B) for τ ∈ [0, 1]. (2.2)

See [Petz, 1994, Props. 1 and 2] for proofs.

2.5. The Real Part of a Matrix and the Matrix Square

For each matrix M ∈Md, we introduce the real and imaginary parts,

Re(M) := 1
2 (M + M∗) ∈ Hd and

Im(M) := 1
2i (M −M∗) ∈ Hd.

(2.3)

Note the semidefinite bound

Re(M)2 4 1
2 (MM∗ + M∗M) for each M ∈Md. (2.4)

Indeed, Re(M)2 + Im(M)2 = 1
2 (MM∗ + M∗M) and Im(M)2 < 0.

The real part of a product of Hermitian matrices satisfies

Re(AB) =
AB + BA

2
4

A2 + B2

2
for all A,B ∈ Hd. (2.5)
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This result follows when we expand (A−B)2 < 0. As a consequence,(
A + B

2

)2

4
A2 + B2

2
for all A,B ∈ Hd. (2.6)

In other words, the matrix square is operator convex.

2.6. Some Matrix Norms

Finally, we will make use of two additional families of matrix norms. For p ∈
[1,∞], the Schatten p-norm is given by

‖B‖Sp
:=
(

tr |B|p
)1/p

for each B ∈Md, (2.7)

where |B| := (B∗B)1/2. For p ≥ 1, we introduce the matrix norm induced by
the `dp vector norm:

‖B‖p→p := sup
x 6=0

‖Bx‖p
‖x‖p

for each B ∈Md (2.8)

In particular, the matrix norm induced by the `d1 vector norm returns the max-
imum `d1 norm of a column; the norm induced by `d∞ returns the maximum `d1
norm of a row.

3. Matrix Moments and Concentration

Our goal is to develop expectation and tail bounds for the spectral norm of a
random matrix. As in the scalar setting, these results follow from bounds for
polynomial and exponential moments. This section describes the mechanism by
which we convert bounds for matrix moments into concentration inequalities.

3.1. The Matrix Chebyshev Inequality

We can obtain concentration inequalities for a random matrix in terms of the
Schatten p-norm. This fact extends Chebyshev’s inequality.

Proposition 3.1 (Matrix Chebyshev Inequality). Let X ∈ Hd be a random
matrix. For all t > 0,

P {‖X‖ ≥ t} ≤ inf
p≥1

t−p · E ‖X‖pSp
.

Furthermore,

E ‖X‖ ≤ inf
p≥1

(
E ‖X‖pSp

)1/p
.

This statement repeats [Mackey et al., 2014, Prop. 6.2]. See also [Ahlswede and
Winter, 2002, App.] for earlier work.



Paulin, Mackey, and Tropp/Matrix Efron–Stein Inequalities 6

3.2. The Matrix Laplace Transform Method

We can also obtain exponential concentration inequalities from a matrix version
of the moment generating function.

Definition 3.2 (Trace Mgf). Let X be a random Hermitian matrix. The (nor-
malized) trace moment generating function of X is defined as

m(θ) := mX(θ) := E t̄r eθX for θ ∈ R.

We believe this definition is due to Ahlswede and Winter [2002].
The following proposition is an extension of Bernstein’s method. It converts

bounds for the trace mgf of a random matrix into bounds on its maximum
eigenvalue.

Proposition 3.3 (Matrix Laplace Transform Method). Let X ∈ Hd be a ran-
dom matrix with normalized trace mgf m(θ) := E t̄r eθX . For each t ∈ R,

P {λmax(X) ≥ t} ≤ d · inf
θ>0

exp{−θt+ logm(θ)}, (3.1)

P {λmin(X) ≤ t} ≤ d · inf
θ<0

exp{−θt+ logm(θ)}. (3.2)

Furthermore,

Eλmax(X) ≤ inf
θ>0

1

θ
[log d+ logm(θ)], (3.3)

Eλmin(X) ≥ sup
θ<0

1

θ
[log d+ logm(θ)]. (3.4)

Proposition 3.3 restates [Mackey et al., 2014, Prop. 3.3], which collects results
from Ahlswede and Winter [2002], Oliveira [2010], Tropp [2011], Chen et al.
[2012].

We will use a special case of Proposition 3.3. This result delineates the con-
sequences of a specific bound for the trace mgf.

Proposition 3.4. Let X ∈ Hd be a random matrix with normalized trace mgf
m(θ) := E t̄r eθX . Assume that there are nonnegative constants c, v for which

logm(θ) ≤ vθ2

2(1− cθ)
when 0 ≤ θ < 1/c.

Then, for all t ≥ 0,

P {λmax(X) ≥ t} ≤ d exp

(
−t2

2v + 2ct

)
. (3.5)

Furthermore,
Eλmax(X) ≤

√
2v log d+ c log d.

See [Mackey et al., 2014, Sec. 4.2.4] for the proof of Proposition 3.4.
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4. Matrix Efron–Stein Inequalities

The main outcome of this paper is a family of Efron–Stein inequalities for ran-
dom matrices. These estimates provide powerful tools for controlling the trace
moments of a random matrix in terms of the trace moments of a randomized
“variance proxy.” Combining these inequalities with the results from Section 3,
we can obtain concentration inequalities for the spectral norm.

4.1. Setup for Efron–Stein Inequalities

Efron–Stein inequalities apply to random matrices constructed from a family of
independent random variables. Introduce the random vector

Z := (Z1, . . . , Zn) ∈ Z

where Z1, . . . , Zn are mutually independent random variables. We assume that Z
is a Polish space to avoid problems with conditioning [Dudley, 2002, Thm. 12.2.2].
Let H : Z → Hd be a measurable function that takes values in the space of
Hermitian matrices, and construct the centered random matrix

X := X(Z) := H(Z)− EH(Z).

Our goal is to study the behavior of X, which describes the fluctuations of the
random matrix H(Z) about its mean value. We will assume that E ‖X‖2 <∞
so that we can discuss variances.

A function of independent random variables will concentrate about its mean
if it depends smoothly on all of its inputs. We can quantify smoothness by
assessing the influence of each coordinate on the matrix-valued function. For
each coordinate j, construct the random vector

Z(j) := (Z1, . . . , Zj−1, Z̃j , Zj+1, . . . , Zn) ∈ Z

where Z̃j is an independent copy of Zj . It is clear that Z and Z(j) have the same
distribution, and they differ only in coordinate j. Form the random matrices

X(j) := X(Z(j)) = H(Z(j))− EH(Z) for j = 1, . . . , n. (4.1)

Note that each X(j) follows the same distribution as X.
Efron–Stein inequalities control the fluctuations of the centered random ma-

trix X in terms of the discrepancies between X and the X(j). To present these
results, let us define the variance proxy

V :=
1

2

∑n

j=1
E
[(
X −X(j)

)2 ∣∣Z]. (4.2)

Efron–Stein inequalities bound the trace moments of the random matrix X in
terms of the moments of the variance proxy V . This is similar to the estimate
provided by a Poincaré inequality [Boucheron et al., 2013, Sec. 3.5].
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Passing from the random matrix X to the variance proxy V has a number
of advantages. There are many situations where the variance proxy admits an
accurate deterministic bound, so we can reduce problems involving random ma-
trices to simpler matrix arithmetic. Moreover, the variance proxy is a sum of
positive semidefinite terms, which are easier to control than arbitrary random
matrices. The examples in Sections 5, 6, and 7 support these claims.

Remark 4.1. In the scalar setting, Efron–Stein inequalities [Boucheron et al.,
2003, 2005] can alternatively be expressed in terms of the positive part of the
fluctuations:

V+ :=
1

2

∑n

j=1
E
[(
X −X(j)

)2
+

∣∣Z]
where (a)+ := max{0, a}. Our approach can reproduce these positive-part bounds
in the scalar setting but does not deliver positive-part expressions in the general
matrix setting. See Section 13.3 for more discussion.

4.2. Polynomial Efron–Stein Inequalities for Random Matrices

The first main result of the paper is a polynomial Efron–Stein inequality for a
random matrix constructed from independent random variables.

Theorem 4.2 (Matrix Polynomial Efron–Stein). Instate the notation of Sec-

tion 4.1, and assume that E ‖X‖2 <∞. For each natural number p ≥ 1,(
E ‖X‖2pS2p

)1/(2p) ≤√2(2p− 1)
(
E ‖V ‖pSp

)1/(2p)

.

The proof appears in Section 9.
We can regard Theorem 4.2 as a matrix extension of the scalar concentration

inequality [Boucheron et al., 2005, Thm. 1], which was obtained using the en-
tropy method. In contrast, our results depend on a different style of argument,
based on the theory of exchangeable pairs [Stein, 1986, Chatterjee, 2008]. Our
approach is novel, even in the scalar setting. Unfortunately, it leads to slightly
worse constants.

Theorem 4.2 allows us to control the trace moments of a random Hermitian
matrix in terms of the trace moments of the variance proxy. We can obtain
probability inequalities for the spectral norm by combining this result with the
matrix Chebyshev inequality, Proposition 3.1.

4.3. Exponential Efron–Stein Inequalities for Random Matrices

The second main result of the paper is an exponential Efron–Stein inequality
for a random matrix built from independent random variables.

Theorem 4.3 (Matrix Exponential Efron–Stein). Instate the notation of Sec-
tion 4.1, and assume that ‖X‖ is bounded. When |θ| ≤

√
ψ/2,

logE t̄r eθX ≤ θ2/ψ

1− 2θ2/ψ
logE t̄r eψV . (4.3)
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The proof appears in Section 12.1.
Theorem 4.3 is a matrix extension of the exponential Efron–Stein inequalities

for scalar random variables established in [Boucheron et al., 2003, Thm. 1] by
means of the entropy method. As in the polynomial case, we use a new argument
based on exchangeable pairs.

Theorem 4.3 allows us to control trace exponential moments of a random
Hermitian matrix in terms of the trace exponential moments of the variance
proxy. We arrive at probability inequalities for the spectral norm by combining
this result with the matrix Laplace transform method, Proposition 3.3. Although
bounds on polynomial trace moments are stronger than bounds on exponential
trace moments [Mackey et al., 2014, Sec. 6], the exponential inequalities are
often more useful in practice.

Remark 4.4 (Weaker Integrability Conditions). Theorem 4.3 holds under weaker
regularity conditions on X, but we have chosen to present the result here to avoid
distracting technical arguments.

4.4. Rectangular Matrices

Suppose now that H : Z → Cd1+d2 is a measurable function taking rectangular
matrix values. We can also develop Efron–Stein inequalities for the random
rectangular matrix X := H(Z)−EH(Z) as a formal consequence of the results
for Hermitian random matrices.

The approach is based on a device from operator theory called the Hermitian
dilation, which is defined as

H (B) :=

[
0 B
B∗ 0

]
∈ Hd1+d2 for B ∈ Cd1+d2 .

To obtain Efron–Stein inequalities for random rectangular matrices, we simply
apply Theorem 4.2 and Theorem 4.3 to the dilation H (X). We omit the de-
tails. For more information about these arguments, see [Tropp, 2011, Sec. 2.6],
[Mackey et al., 2014, Sec. 8], or [Tropp, 2014, Sec. 2.1.13].

5. Example: Self-Bounded Random Matrices

As a first example, we consider the case where the variance proxy is dominated
by an affine function of the centered random matrix.

Corollary 5.1 (Self-Bounded Random Matrices). Instate the notation of Sec-
tion 4.1. Assume that ‖X‖ is bounded, and suppose that there are nonnegative
constants c, v for which

V 4 vI + cX almost surely. (5.1)

Then, for all t ≥ 0,

P {λmax(X) ≥ t} ≤ d exp

(
−t2

4v + 6ct

)
.
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Furthermore,
Eλmax(X) ≤

√
4v log d+ 3c log d.

Proof. The result is an easy consequence of the exponential Efron–Stein inequal-
ity for random matrices, Theorem 4.3. When 0 ≤ θ < 1/(3c), we may calculate
that

logmX(θ) = logE t̄r eθX ≤ θ2/ψ

1− 2θ2/ψ
logE t̄r eψV

≤ θ2/ψ

1− 2θ2/ψ
logE t̄r eψ(vI+cX)

=
θ2/ψ

1− 2θ2/ψ

(
ψv + logE t̄r eψcX

)
. (5.2)

In the first inequality, we can introduce the bound (5.1) for V because the trace
exponential is monotone (2.1). Select ψ = θ/c to obtain a copy of mX(θ) on the
right-hand side of (5.2). Solve for mX(θ) to reach

logmX(θ) ≤ vθ2

1− 3cθ
when 0 ≤ θ < 1/(3c). (5.3)

Invoke Proposition 3.4 to complete the proof.

The hypothesis (5.1) is analogous with the assumptions in the result [Mackey
et al., 2014, Thm. 4.1]. In Section 6, we explain how this estimate supports a
matrix version of the bounded difference inequality. But the result also extends
well beyond this example.

6. Example: Matrix Bounded Differences

The matrix bounded difference inequality [Tropp, 2011, Mackey et al., 2014]
controls the fluctuations of a matrix-valued function of independent random
variables. This result has been used to analyze algorithms for multiclass classifi-
cation [Machart and Ralaivola, 2012, Morvant et al., 2012], crowdsourcing [Dalvi
et al., 2013], and non-differentiable optimization [Zhou and Hu, 2013].

Let us explain how to derive a refined version of the matrix bounded differ-
ences inequality from Theorem 4.3.

Corollary 6.1 (Matrix Bounded Differences). Instate the notation of Sec-
tion 4.1. Assume there are deterministic matrices A1, . . . ,An ∈ Hd for which

(
H(z1, . . . , zn)−H(z1, . . . , z

′
j , . . . , zn)

)2
4 A2

j for each index j. (6.1)

In this expression, zk and z′k range over all possible value of Zk. Compute the
boundedness parameter

σ2 :=
∥∥∥∑n

j=1
A2
j

∥∥∥ . (6.2)
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Then, for all t ≥ 0,

P {λmax (H(Z)− EH(Z)) ≥ t} ≤ d · e−t
2/(2σ2).

Furthermore,
Eλmax (H(Z)− EH(Z)) ≤ σ

√
2 log d.

Proof. Observe that the variance proxy satisfies

V =
1

2

n∑
j=1

E
[(
X −X(j)

)2 ∣∣Z]
=

1

2

n∑
j=1

E
[(
H(Z)−H(Z(j))

)2 ∣∣Z] 4 1

2

n∑
j=1

A2
j .

It follows from the definition (6.2) that V 4 1
2σ

2 I. Invoke Corollary 5.1 to
complete the argument.

Remark 6.2 (Related Work). Corollary 6.1 improves the constants in [Tropp,
2011, Cor. 7.5], and it removes an extraneous assumption from [Mackey et al.,
2014, Cor. 11.1]. It is possible to further improve the constants in the exponent

by a factor of 2 to obtain a bound of the form d·e−t2/σ2

; see the original argument
in [Paulin et al., 2013].

Remark 6.3 (Weaker Hypotheses). We can relax the assumption (6.1) to read

n∑
j=1

(
H(z1, . . . , zn)−H(z1, . . . , z

′
j , . . . , zn)

)2
4 A2

where A ∈ Hd is a fixed Hermitian matrix. In this case, σ2 := ‖A‖2.

7. Application: Compound Sample Covariance Matrices

In this section, we consider the compound sample covariance matrix :

Λ̂n :=
1

n
ZBZ∗. (7.1)

The central matrix B ∈ Hn is fixed, and the columns of Z ∈ Cp×n are random
vectors drawn independently from a common distribution on Cp.

When the matrix B = n−1I, the compound sample covariance matrix Λ̂n

reduces to the classical empirical covariance n−1ZZ∗. The latter matrix can
be written as a sum of independent rank-one matrices, and its concentration
properties are well established [Adamczak et al., 2011]. For general B, however,

the random matrix Λ̂n cannot be expressed as an independent sum, so the
behavior becomes significantly harder to characterize. See, for example, the
analysis of Soloveychik [2014].
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The most common example of a compound sample covariance matrix is the
compound Wishart matrix [Speicher, 1998], where the columns of Z are drawn
from a multivariate normal distribution. These matrices have been used to esti-
mate the sample covariance under correlated sampling [Burda et al., 2011]. They
also arise in risk estimation for portfolio management [Collins et al., 2013].

We will use Theorem 4.3 to develop an exponential concentration inequality
for one class of compound sample covariance matrices.

Theorem 7.1 (Concentration of Compound Sample Covariance). Suppose that
the entries of Z ∈ Cp×n are iid random variables with mean zero, variance σ2,
and magnitude bounded by L. Let B ∈ Hn be fixed. For any t ≥ 0 we have

P {‖ZBZ∗ − E[ZBZ∗]‖ ≥ t}

≤ 2p exp

(
−t2

44(pσ2 + L2) ‖B‖2F + 32
√

3Lp ‖B‖ t

)
.

Furthermore,

E ‖ZBZ∗ − E[ZBZ∗]‖ ≤ 2

√
44(pσ2 + L2) log p ‖B‖2F + 32

√
3Lp log p ‖B‖ .

It is possible to obtain finer results when B is positive semidefinite. We have
also made a number of loose estimates in order to obtain a clear statement of
the bound.

7.1. Setup

Let Z be a p × n random matrix whose entries are independent, identically
distributed, zero-mean random variables with variance σ2 and bounded in mag-
nitude by L = 1. The general case follows by a homogeneity argument. Define
the centered random matrix

X(Z) = ZBZ∗ − E[ZBZ∗]

where B ∈ Hd. By direct calculation, the expectation takes the form

E[ZBZ∗] = σ2(trB) I. (7.2)

As in Section 4.1, we introduce independent copies Z̃ij of the entries Zij of Z
and define the random matrices

Z(ij) = Z + (Z̃ij − Zij) Eij for i = 1, . . . , p and j = 1, . . . , n.

Introduce the variance proxy

V :=
1

2

p∑
i=1

n∑
j=1

E
[(
X(Z)−X(Z(ij))

)2 ∣∣Z] . (7.3)

Theorem 4.3 allows us to bound λmax(X(Z)) in terms of the trace mgf of V .
Our task is to develop bounds on the trace mgf of V in terms of the problem
data.
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7.2. A Bound for the Variance Proxy

We begin with a general bound for V . First, we use the definitions to simplify
the expression (7.3), and then we invoke the operator convexity (2.6) of the
square function:

V =
1

2

∑
ij
E
[(

2(Z̃ij − Zij) Re(EijBZ∗) + |Z̃ij − Zij |2 EijBE∗ij
)2 ∣∣Z]

4
1

2

∑
ij
E
[
8|Z̃ij − Zij |2 Re(EijBZ∗)2 + 2 |Z̃ij − Zij |4 |bjj |2 Eii

∣∣Z] ,
where {bij}1≤i,j≤n denote the elements of B. Since Zij and Z̃ij are centered
variables that are bounded in magnitude by one,

E
[
|Z̃ij − Zij |2 |Z

]
≤ 2 and E

[
|Z̃ij − Zij |4 |Z

]
≤ 8.

Using the bound (2.4) for the square of the real part, we obtain

V 4
∑

ij

[
4(BZ∗ZB)jj Eii + 4ZBEjjBZ∗ + 8 |bjj |2 Eii

]
= 4p t̄r[ZB2Z∗] I + 4pZB2Z∗ + 8

(∑
j
|bjj |2

)
I. (7.4)

In the first term on the right-hand side of (7.4), we have used cyclicity of the
standard trace, and then we have rescaled to obtain the normalized trace.

7.3. A Bound for the Trace Mgf of the Random Matrix

Next, we apply the matrix exponential Efron–Stein inequality, Theorem 4.3, to
bound the logarithm of the trace mgf of the random matrix.

logE t̄r eθX ≤ θ2/ψ

1− 2θ2/ψ
logE t̄r eψV . (7.5)

Let us focus on the trace mgf of V . The trace exponential is monotone (2.1), so
we can introduce the bound (7.4) for V and simplify the expression:

logE t̄r eψV ≤ logE
[
e4ψp t̄r[ZB2Z∗] t̄r e4ψpZB2Z∗

]
+ 8ψ

(∑
j
|bjj |2

)
≤ 1

2
logE e8ψp t̄r[ZB2Z∗] +

1

2
logE t̄r e8ψpZB2Z∗ + 8ψ

(∑
j
|bjj |2

)
≤ logE t̄r e8ψpZB2Z∗ + 8ψ

(∑
j
|bjj |2

)
.

To reach the second line, we use the Cauchy–Schwarz inequality for expectation,
and we use Jensen’s inequality to pull the normalized trace through the square.
To arrive at the last expression, we apply Jensen’s inequality to draw out the
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normalized trace from the exponential. Substitute the last display into (7.5) and
write out the definition of X to conclude that

logE t̄r eθ(ZBZ∗−E[ZBZ∗])

≤ θ2/ψ

1− 2θ2/ψ

[
logE t̄r e8ψpZB2Z∗ + 8ψ

(∑
j
|bjj |2

)]
. (7.6)

This mgf bound (7.6) is the central point in the argument. The rest of the proof
consists of elementary (but messy) manipulations.

7.4. The Positive-Semidefinite Case

First, we develop an mgf bound for a compound sample covariance matrix based
on a positive-semidefinite matrix A < 0. Invoke the bound (7.6) with the choice
B = A, and introduce the estimate A2 4 ‖A‖A to reach

logE t̄r eθ(ZAZ∗−E[ZAZ∗])

≤ θ2/ψ

1− 2θ2/ψ

[
logE t̄r e8ψp‖A‖ZAZ∗ + 8ψ(maxj ajj)(trA)

]
.

Select ψ = θ/(8p ‖A‖), which yields

logE t̄r eθ(ZAZ∗−E[ZAZ∗])

≤ 1

1− 16p ‖A‖ θ

[
8p ‖A‖ θ logE t̄r eθZAZ∗ + 8θ2(maxj ajj)(trA)

]
.

Referring to the calculation (7.2), we see that

logE t̄r eθZAZ∗ = logE t̄r eθ(ZAZ∗−E[ZAZ∗]) + σ2(trA) θ.

Combine the last two displays, and rearrange to arrive at

logE t̄r eθ(ZAZ∗−E[ZAZ∗]) ≤ 8θ2 trA

1− 24p ‖A‖ θ
(
pσ2 ‖A‖+ maxj ajj

)
. (7.7)

At this point, we can derive probabilistic bounds for λmax(ZAZ∗ − E[ZAZ∗])
by applying Corollary 5.1.

7.5. The General Case

To analyze the case where B ∈ Hn is arbitrary, we begin once again with (7.6).
To control the mgf on the right-hand side, we need to center the random matrix
ZB2Z∗. Applying the calculation (7.2) with B 7→ B2, we obtain

logE t̄r e8ψpZB2Z∗ = logE t̄r e8ψp (ZB2Z∗−E[ZB2Z∗]) + 8pσ2 ‖B‖2F ψ.
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We have used the fact that trB2 = ‖B‖2F. Since B2 is positive semidefinite, we
may introduce the bound (7.7) with A = B2 and θ = 8ψp. This step yields

logE t̄r e8ψpZB2Z∗ ≤
512p2 ‖B‖2F ‖B‖

2
(pσ2 + 1)ψ2

1− 192p2 ‖B‖2 ψ
+ 8pσ2 ‖B‖2F ψ.

This argument relies on the estimate maxj(B
2)jj ≤ ‖B‖2.

Introduce the latter display into (7.6). Select ψ = (384p2 ‖B‖2)−1, and invoke

the inequality
∑
j |bjj |

2 ≤ ‖B‖2F. A numerical simplification delivers

logE t̄r eθ(ZBZ∗−E[ZBZ∗]) ≤
11 ‖B‖2F (pσ2 + 1)θ2

1− 768p2 ‖B‖2 θ2

=
11 ‖B‖2F (pσ2 + 1)θ2

(1−
√

768p ‖B‖ θ)(1 +
√

768p ‖B‖ θ)

≤
11 ‖B‖2F (pσ2 + 1)θ2

1−
√

768p ‖B‖ θ
.

Tail and expectation bounds for the maximal eigenvalue follow from Proposi-
tion 3.4 with v = 22 ‖B‖2F (pσ2 + 1) and c = 16

√
3p ‖B‖).

The bounds for the minimum eigenvalue follow from the same argument.
In this case, we must consider negative values of the parameter θ, but we can
transfer the sign to the matrix B and proceed as before. Together, the bounds
on the maximum and minimum eigenvalue lead to estimates for the spectral
norm.

8. Random Matrices, Exchangeable Pairs, and Kernels

Now, we embark on our quest to prove the matrix Efron–Stein inequalities of
Section 4. This section outlines some basic concepts from the theory of exchange-
able pairs; cf. [Stein, 1972, 1986, Chatterjee, 2007, 2008]. Afterward, we explain
how these ideas lead to concentration inequalities.

8.1. Exchangeable Pairs

In our analysis, the primal concept is an exchangeable pair of random variables.

Definition 8.1 (Exchangeable Pair). Let Z and Z ′ be random variables taking
values in a Polish space Z. We say that (Z,Z ′) is an exchangeable pair when
it has the same distribution as the pair (Z ′, Z).

In particular, Z and Z ′ have the same distribution, and E f(Z,Z ′) = E f(Z ′, Z)
for every integrable function f .
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8.2. Kernel Stein Pairs

We are interested in a special class of exchangeable pairs of random matrices.
There must be an antisymmetric bivariate kernel that “reproduces” the matrices
in the pair. This approach is motivated by Chatterjee [2007].

Definition 8.2 (Kernel Stein Pair). Let (Z,Z ′) be an exchangeable pair of
random variables taking values in a Polish space Z, and let Ψ : Z → Hd be a
measurable function. Define the random Hermitian matrices

X := Ψ(Z) and X ′ := Ψ(Z ′).

We say that (X,X ′) is a kernel Stein pair if there exists a bivariate function
K : Z2 → Hd for which

K(z, z′) = −K(z′, z) for all z, z′ ∈ Z (8.1)

and
E[K(Z,Z ′) |Z] = X almost surely. (8.2)

When discussing a kernel Stein pair (X,X ′), we assume that E ‖X‖2 <∞. We
sometimes write K-Stein pair to emphasize the specific kernel K.

The kernel is always centered in the sense that

E[K(Z,Z ′)] = 0. (8.3)

Indeed, E[K(Z,Z ′)] = −E[K(Z ′, Z)] = −E[K(Z,Z ′)], where the first identity
follows from antisymmetry and the second follows from exchangeability.

Remark 8.3 (Matrix Stein Pairs). The analysis in [Mackey et al., 2014] is
based on a subclass of kernel Stein pairs called matrix Stein pairs. A matrix
Stein pair (X,X ′) derived from an auxiliary exchangeable pair (Z,Z ′) satisfies
the stronger condition

E[X −X ′
∣∣Z] = αX for some α > 0. (8.4)

That is, a matrix Stein pair is a kernel Stein pair with K(Z,Z ′) = α−1(X−X ′).
Although Mackey et al. [2014] describe several classes of matrix Stein pairs, most
exchangeable pairs of random matrices do not satisfy (8.4). Kernel Stein pairs
are more common, so they are commensurately more useful.

8.3. The Method of Exchangeable Pairs

Kernel Stein pairs are valuable because they offer a powerful tool for evaluating
moments of a random matrix. We express this claim in a fundamental technical
lemma, which generalizes both [Chatterjee, 2007, Eqn. (6)] and [Mackey et al.,
2014, Lem. 2.3].
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Lemma 8.4 (Method of Exchangeable Pairs). Suppose that (X,X ′) ∈ Hd×Hd
is a K-Stein pair constructed from an auxiliary exchangeable pair (Z,Z ′) ∈ Z2.
Let F : Hd → Hd be a measurable function that satisfies the regularity condition

E ‖K(Z,Z ′)F (X)‖ <∞. (8.5)

Then

E [XF (X)] =
1

2
E [K(Z,Z ′)(F (X)− F (X ′))] . (8.6)

Proof. Definition 8.2, of a kernel Stein pair, implies that

E[XF (X)] = E
[
E[K(Z,Z ′) |Z]F (X)

]
= E[K(Z,Z ′)F (X)],

where we justify the pull-through property of conditional expectation using the
regularity condition (8.5). The antisymmetry (8.1) of the kernel K delivers the
relation

E[K(Z,Z ′)F (X)] = E[K(Z ′, Z)F (X ′)] = −E[K(Z,Z ′)F (X ′)].

Average the two preceding displays to reach the identity (8.6).

Lemma 8.4 has several immediate consequences for the structure of a K-Stein
pair (X,X ′) constructed from an auxiliary exchangeable pair (Z,Z ′). First, the
matrix X must be centered:

EX = 0. (8.7)

This result follows from the choice F (X) = I.
Second, we can develop a bound for the variance of the random matrix X.

Since X is centered,

Var[X] = E
[
X2
]

=
1

2
E
[

Re
(
K(Z,Z ′)(X −X ′)

)]
.

This claim follows when we apply Lemma 8.4 with F (X) = X and extract the
real part (2.3) of the result. Invoke the matrix inequality (2.5) to obtain

Var[X] 4
1

4
E
[
K(Z,Z ′)2 + (X −X ′)2

]
(8.8)

In other words, we can obtain bounds for the variance in terms of the variance
of the kernel K and the variance of X −X ′.

8.4. Conditional Variances

To each kernel Stein pair (X,X ′), we may associate two random matrices called
the conditional variance and kernel conditional variance of X. We will see that
X is concentrated around the zero matrix whenever the conditional variance
and the kernel conditional variance are both small.
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Definition 8.5 (Conditional Variances). Suppose that (X,X ′) is a K-Stein
pair, constructed from an auxiliary exchangeable pair (Z,Z ′). The conditional
variance is the random matrix

VX :=
1

2
E
[
(X −X ′)2 |Z

]
, (8.9)

and the kernel conditional variance is the random matrix

V K :=
1

2
E
[
K(Z,Z ′)2 |Z

]
. (8.10)

Because of the bound (8.8), the conditional variances satisfy

Var[X] 4
1

2
E
[
VX + V K

]
,

so it is natural to seek concentration results stated in terms of these quantities.

9. Polynomial Moments of a Random Matrix

We begin by developing a polynomial moment bound for a kernel Stein pair.
This result shows that we can control the expectation of the Schatten p-norm
in terms of the conditional variance and the kernel conditional variance.

Theorem 9.1 (Polynomial Moments for a Kernel Stein Pair). Let (X,X ′) be
a K-Stein pair based on an auxiliary exchangeable pair (Z,Z ′). For a natural
number p ≥ 1, assume the regularity conditions

E ‖X‖2pS2p
<∞ and E ‖K(Z,Z ′)‖2p <∞.

Then, for each s > 0,

(
E ‖X‖2pS2p

)1/(2p) ≤√2p− 1

(
E
∥∥∥∥1

2

(
sVX + s−1 V K

)∥∥∥∥p
Sp

)1/(2p)

.

The symbol ‖·‖Sp
refers to the Schatten p-norm (2.7), and the conditional vari-

ances VX and V K are defined in (8.9) and (8.10).

We establish this result, which holds equally for infinite dimensional operators
X, in the remainder of this section. The pattern of argument is similar to the
proofs of [Chatterjee, 2008, Thm. 3.14] and [Mackey et al., 2014, Thm. 7.1], but
we require a nontrivial new matrix inequality.

9.1. The Polynomial Mean Value Trace Inequality

The main new ingredient in the proof of Theorem 9.1 is the following matrix
trace inequality.
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Lemma 9.2 (Polynomial Mean Value Trace Inequality). For all matrices A,
B, C ∈ Hd, all integers q ≥ 1, and all s > 0, it holds that

|tr [C(Aq −Bq)]| ≤ q

4
tr
[
(s (A−B)2 + s−1 C2)(|A|q−1

+ |B|q−1
)
]
.

Lemma 9.2 improves on the estimate [Mackey et al., 2014, Lem. 3.4], which
drives concentration inequalities for matrix Stein pairs. Since the result does
not have any probabilistic content, we defer the proof until Appendix B.

9.2. Proof of Theorem 9.1

The argument follows the same lines as the proof of [Mackey et al., 2014,
Thm. 7.1], so we pass lightly over certain details. Let us examine the quan-
tity of interest:

E := E ‖X‖2pS2p
= E tr |X|2p = E tr

[
X ·X2p−1

]
where · denotes the usual matrix product. To apply the method of exchangeable
pairs, Lemma 8.4, we first check the regularity condition (8.5):

E
∥∥K(Z,Z ′) ·X2p−1

∥∥ ≤ E
(
‖K(Z,Z ′)‖ ‖X‖2p−1 )

≤
(
E ‖K(Z,Z ′)‖2p

)1/(2p)(E ‖X‖2p )(2p−1)/(2p)
<∞,

where we have applied Hölder’s inequality for expectation and the fact that
the spectral norm is dominated by the Schatten 2p-norm. Thus, we may invoke
Lemma 8.4 with F (X) = X2p−1 to reach

E =
1

2
E tr

[
K(Z,Z ′) ·

(
X2p−1 − (X ′)2p−1

)]
.

Next, fix a parameter s > 0. Apply the polynomial mean value trace inequality,
Lemma 9.2, with q = 2p− 1 to obtain the estimate

E ≤ 2p− 1

8
E tr

[(
s (X −X ′)2 + s−1K(Z,Z ′)2

)
·
(
X2p−2 + (X ′)2p−2

)]
=

2p− 1

4
E tr

[(
s (X −X ′)2 + s−1K(Z,Z ′)2

)
·X2p−2

]
= (2p− 1)E tr

[
1

2

(
sVX + s−1V K

)
·X2p−2

]
.

The second line follows from the fact that (X,X ′) is an exchangeable pair,
and the third line depends on the definitions (8.9) and (8.10) of the conditional

variances. We have used the regularity condition E ‖X‖2pS2p
< ∞ to justify the

pull-through property of conditional expectation.
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Now, we apply Hölder’s inequality for the trace followed by Hölder’s inequal-
ity for the expectation. These steps yield

E ≤ (2p− 1)

(
E
∥∥∥∥1

2

(
sVX + s−1 V K

)∥∥∥∥p
Sp

)1/p (
E ‖X‖2pS2p

)(p−1)/p

= (2p− 1)

(
E
∥∥∥∥1

2

(
sVX + s−1 V K

)∥∥∥∥p
Sp

)1/p

E(p−1)/p.

Solve this algebraic identity for E to determine that

E1/(2p) ≤
√

2p− 1

(
E
∥∥∥∥1

2

(
sVX + s−1 V K

)∥∥∥∥
Sp

)1/(2p)

.

This completes the proof of Theorem 9.1.

10. Constructing a Kernel via Markov Chain Coupling

Theorem 9.1 is one of the main steps toward the polynomial Efron–Stein in-
equality for random matrices. To reach the latter result, we need to develop
an explicit construction for the kernel Stein pair along with concrete bounds
for the conditional variance. We present this material in the current section,
and we establish the Efron–Stein bound in Section 11. The analysis leading to
exponential concentration inequalities is somewhat more involved. We postpone
these results until Section 12.

10.1. Overview

For a random matrix X that is presented as part of a kernel Stein pair, The-
orem 9.1 provides strong bounds on the polynomial moments in terms of the
conditional variances. To make this result effective, we need to address several
more questions.

First, given an exchangeable pair of random matrices, we can ask whether it
is possible to equip the pair with a kernel that satisfies (8.2). In fact, there is
a general construction that works whenever the exchangeable pair is suitably
ergodic. This method depends on an idea [Chatterjee, 2008, Sec. 4.1] that ul-
timately relies on an observation of Stein, cf. [Stein, 1986]. We describe this
approach in Sections 10.2 and 10.3.

Second, we can ask whether there is a mechanism for bounding the conditional
variances in terms of simpler quantities. We have developed some new tools for
performing these estimates. These methods appear in Sections 10.4 and 10.5.
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10.2. Kernel Couplings

Stein noticed that each exchangeable pair (Z,Z ′) of Z-valued random variables
yields a reversible Markov chain with a symmetric transition kernel P given by

Pf(z) := E[f(Z ′) |Z = z]

for each function f : Z → R that satisfies E |f(Z)| <∞. In other words, for any
initial value Z(0) ∈ Z, we can construct a Markov chain

Z(0) → Z(1) → Z(2) → Z(3) → · · ·

where E[f(Z(i+1)) |Z(i)] = Pf(Z(i)) for each integrable function f . This require-
ment suffices to determine the distribution of each Z(i+1).

When the chain (Z(i))i≥0 is ergodic enough, we can explicitly construct a ker-
nel that satisfies (8.2) for any exchangeable pair of random matrices constructed
from the auxiliary exchangeable pair (Z,Z ′). To explain this idea, we adapt a
definition from [Chatterjee, 2008, Sec. 4.1].

Definition 10.1 (Kernel Coupling). Let (Z,Z ′) ∈ Z2 be an exchangeable pair.
Let (Z(i))i≥0 and (Z ′(i))i≥0 be two Markov chains with arbitrary initial values,

each evolving according to the transition kernel P induced by (Z,Z ′). We call
(Z(i), Z

′
(i))i≥0 a kernel coupling for (Z,Z ′) if

Z(i) ⊥⊥ Z ′(0)

∣∣Z(0) and Z ′(i) ⊥⊥ Z(0)

∣∣Z ′(0) for all i. (10.1)

The notation U ⊥⊥ V |W means U and V are independent conditional on W .

For an example of kernel coupling, consider the simple random walk on the
hypercube {±1}n where two vertices are neighbors when they differ in exactly
one coordinate. We can start two random walks at two different locations on the
cube. At each step, we select a uniformly random coordinate from {1, . . . , n} and
a uniformly random value from {±1}. We update both of the walks by replacing
the same chosen coordinate with the same chosen value. The two walks arrive at
the same vertex (i.e., they couple) as soon as we have updated each coordinate
at least once.

10.3. Kernel Stein Pairs from the Poisson Equation

Chatterjee [Chatterjee, 2008, Sec.4.1] observed that it is often possible to con-
struct a kernel coupling by solving the Poisson equation for the Markov chain
with transition kernel P .

Proposition 10.2. Let (Z(i), Z
′
(i))i≥0 be a kernel coupling for an exchangeable

pair (Z,Z ′) ∈ Z2. Let Ψ : Z → Hd be a bounded, measurable function with
EΨ(Z) = 0. Suppose there is a positive constant L for which∑∞

i=0

∥∥∥E [Ψ(Z(i))−Ψ(Z ′(i))
∣∣Z(0) = z, Z ′(0) = z′

]∥∥∥ ≤ L for all z, z′ ∈ Z.
(10.2)
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Then (Ψ(Z),Ψ(Z ′)) is a K-Stein pair with kernel

K(z, z′) :=
∑∞

i=0
E
[
Ψ(Z(i))−Ψ(Z ′(i))

∣∣Z(0) = z, Z ′(0) = z′
]
. (10.3)

The proof of this result is identical with that of [Chatterjee, 2008, Lem. 4.1
and 4.2], which establishes Proposition 10.2 in the scalar setting. We omit the
details.

Remark 10.3 (Regularity). Proposition 10.2 holds for functions Ψ that satisfy
conditions weaker than boundedness. We focus on the simplest case to reduce
the technical burden.

10.4. Bounding the Conditional Variances I

The construction described in Proposition 10.2 is valuable because it leads to
an explicit description of the kernel. In many examples, this formula allows us
to develop a succinct bound on the conditional variances. We encapsulate the
required calculations in a technical lemma.

Lemma 10.4. Instate the notation and hypotheses of Proposition 10.2, and
define the kernel Stein pair (X,X ′) = (Ψ(Z),Ψ(Z ′)). For each i = 0, 1, 2, . . . ,
assume that

E
[(

E
[
Ψ(Z(i))−Ψ(Z ′(i))

∣∣Z(0) = Z,Z ′(0) = Z ′
])2 ∣∣Z] 4 β2

i Γi (10.4)

where βi is a nonnegative number and Γi ∈ Hd is a random matrix. Then the
conditional variance (8.9) and kernel conditional variance (8.10) satisfy

VX 4
1

2
β2

0 Γ0 and V K 4
1

2

(∑∞

j=0
βj

)∑∞

i=0
βi Γi.

Proof. By a continuity argument, we may assume that βi > 0 for each index i.
Write

Yi := E
[
Ψ(Z(i))−Ψ(Z ′(i))

∣∣Z(0) = Z,Z ′(0) = Z ′
]
.

The definition (8.9) of the conditional variance VX immediately implies

VX =
1

2
E
[
(X −X ′)2

∣∣Z] =
1

2
E
[
Y 2

0

∣∣Z] 4 1

2
β2

0 Γ0.

The semidefinite relation follows from the hypothesis (10.4).
According to the definition (8.10) of the kernel conditional variance V K and

the kernel construction (10.3), we have

V K =
1

2
E
[
K(Z,Z ′) |Z

]
=

1

2
E
[(∑∞

i=0
Yi

)2 ∣∣Z]
=

1

2

∑∞

i=0

∑∞

j=0
E
[

Re(YiYj)
∣∣Z].
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The semidefinite bound (2.5) for the real part of a product implies that

V K 4
1

2

∑∞

i=0

∑∞

j=0

1

2

(
βj
βi

E
[
Y 2
i

∣∣Z]+
βi
βj

E
[
Y 2
j

∣∣Z])
4

1

2

∑∞

i=0

∑∞

j=0

1

2

(
βj
βi
β2
i Γi +

βi
βj
β2
j Γj

)
=

1

2

(∑∞

j=0
βj

)∑∞

i=0
βi Γi.

The second relation depends on the hypothesis (10.4).

10.5. Bounding the Conditional Variances II

The random matrices Γi that arise in Lemma 10.4 often share a common form.
We can use this property to obtain a succinct bound for the conditional variance
expression that appears in Theorem 9.1. This reduction allows us to establish
Efron–Stein inequalities.

Lemma 10.5. Instate the notation and hypotheses of Lemma 10.4. Suppose

Γi = E
[
W(i) |Z

]
where W(i) ∼ Γ0 for each i ≥ 1. (10.5)

Then, for each weakly increasing and convex function f : R+ → R,

E tr f
(
β−2

0 VX + (
∑∞
i=0 βi)

−2 V K
)
≤ E tr f (Γ0) .

Proof. Abbreviate B =
∑∞
i=0 βi. Lemma 10.4 provides that

VX 4
1

2
β2

0 Γ0 and V K 4
1

2
B
∑∞

i=0
βi Γi.

Since f is weakly increasing and convex on R+, the function tr f : Hd+ → R is
weakly increasing (2.1) and convex (2.2). Therefore,

E tr f
(
β−2

0 VX +B−2 V K
)
≤ E tr f

(
1

2
Γ0 +

1

2B

∑∞

i=0
βi Γi

)
≤ 1

2
E tr f(Γ0) +

1

2B

∑∞

i=0
βi E tr f(Γi).

In view of (10.5), Jensen’s inequality and the tower property together yield

E tr f(Γi) = E tr f
(
E
[
W(i) |Z

])
≤ E tr f(W(i)) = E tr f(Γ0).

Combine the latter two displays to complete the argument.

11. The Polynomial Efron–Stein Inequality for a Random Matrix

We are now prepared to establish the polynomial Efron–Stein inequality, The-
orem 4.2. We retain the notation and hypotheses from Section 4.1, and we
encourage the reader to review this material before continuing. The proof is
divided into two parts. First, we assume that the random matrix is bounded
so that the kernel coupling tools apply. Then, we use a truncation argument to
remove the boundedness assumption.



Paulin, Mackey, and Tropp/Matrix Efron–Stein Inequalities 24

11.1. A Kernel Coupling for a Vector of Independent Variables

We begin with the construction of an exchangeable pair. Recall that Z :=
(Z1, . . . , Zn) ∈ Z is a vector of mutually independent random variables. For
each coordinate j,

Z(j) := (Z1, . . . , Z̃j , . . . , Zn) ∈ Z

where Z̃j is an independent copy of Zj . Form the random vector

Z ′ := Z(J) where J ∼ uniform{1, . . . , n}. (11.1)

We may assume that J is drawn independently from Z. It follows that (Z,Z ′)
is exchangeable.

Next, we build an explicit kernel coupling (Z(i), Z
′
(i))i≥0 for the exchangeable

pair (Z,Z ′). The Markov chains may take arbitrary initial values Z(0) and Z ′(0).
For each time i ≥ 1, we let both chains evolve via the same random choice:

1. Independent of prior choices, draw a coordinate Ji ∼ uniform{1, . . . , n}.
2. Draw an independent copy Z̃(i) of Z.
3. Form Z(i) by replicating Z(i−1) and then replacing the Ji-th coordinate

with the Ji-th coordinate of Z̃(i).
4. Form Z ′(i) by replicating Z ′(i−1) and then replacing the Ji-th coordinate

with the Ji-th coordinate of Z̃(i).

By construction, (Z(i), Z
′
(i))i≥0 satisfies the kernel coupling property (10.1). This

coupling is drawn from [Chatterjee, 2008, Sec. 4.1]. Note that this is just a
glorification of the hypercube example in Section 10.2!

11.2. A Kernel Stein Pair

Let H : Z → Hd be a bounded, measurable function. Construct the random
matrices

X := H(Z)− EH(Z) and X ′ := H(Z ′)− EH(Z). (11.2)

To verify that (X,X ′) is a kernel Stein pair, we use Lemma 10.2 to construct
a kernel. For all z, z′ ∈ Z,

K(z, z′) :=

∞∑
i=0

E
[
H(Z(i))−H(Z ′(i))

∣∣Z(0) = z, Z ′(0) = z′
]
. (11.3)

To verify the regularity condition for the lemma, notice that the two chains cou-
ple as soon as we have refreshed all n coordinates. According to the analysis of
the coupon collector problem [Levin et al., 2009, Sec. 2.2], the expected coupling
time is bounded by n(1+log n). Since ‖H(Z)‖ is bounded, the hypothesis (10.2)
is in force.
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11.3. The Evolution of the Kernel Coupling

Draw a realization (Z,Z ′) of the exchangeable pair, and write J for the coordi-
nate where Z and Z ′ differ. Let (Z(i), Z

′
(i))i≥0 be the kernel coupling described in

the last section, starting at Z(0) = Z and Z ′(0) = Z ′. Therefore, the initial value
of the kernel coupling is a pair of vectors that differ in precisely one coordinate.
Because of the coupling construction,

H(Z(i))−H(Z ′(i)) = (H(Z(i))−H(Z ′(i))) · 1[J /∈ {J1, . . . , Ji}].

The operator Schwarz inequality [Bhatia, 2007, Eqn. (3.19)] implies that(
E
[
H(Z(i))−H(Z ′(i))

∣∣Z,Z ′])2

=
(
E
[
(H(Z(i))−H(Z ′(i))) · 1[J /∈ {J1, . . . , Ji}]

∣∣Z,Z ′])2

4 E
[
(H(Z(i))−H(Z ′(i)))

2
∣∣Z,Z ′] · E [1[J /∈ {J1, . . . , Ji}]

∣∣Z,Z ′]
= (1− 1/n)i · E

[(
H(Z(i))−H(Z ′(i))

)2 ∣∣Z,Z ′]. (11.4)

Take the conditional expectation with respect to Z, and invoke the tower prop-
erty to reach

E
[(

E
[
H(Z(i))−H(Z ′(i))

∣∣Z,Z ′])2 ∣∣Z]
4 (1− 1/n)i · E

[(
H(Z(i))−H(Z ′(i))

)2 ∣∣Z]. (11.5)

11.4. Conditional Variance Bounds

To obtain a bound for the expression (11.5) that satisfies the prerequisites of
Lemma 10.5, we will replace Z ′(i) with a variable Z∗(i) that satisfies

(Z(i), Z
∗
(i)) ∼ (Z,Z ′) and Z∗(i) ⊥⊥ Z | Z(i).

For i ≥ 0, define Z∗(i) as being equal to Z(i) everywhere except in coordinate J ,

where it equals Z ′J . Since (J, Z ′J) ⊥⊥ Z | Z(i), we have our desired conditional
independence. Moreover, this definition ensures that Z∗(i) = Z ′(i) whenever J /∈
{J1, . . . , Ji}. Therefore,

E
[(
H(Z(i))−H(Z ′(i))

)2 ∣∣Z] 4 E
[(
H(Z(i))−H(Z∗(i))

)2 ∣∣Z].
Consequently, the hypothesis (10.4) of Lemma 10.4 is valid with

Γi := E
[(
H(Z(i))−H(Z∗(i))

)2 ∣∣Z] (11.6)

and βi := (1− 1/n)i/2.
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Now, let us have a closer look at the form of Γi. The tower property and
conditional independence of (Z∗(i), Z) imply that

Γi = E
[
E
[(
H(Z(i))−H(Z∗(i))

)2 ∣∣Z(i), Z
] ∣∣Z]

= E
[
E
[(
H(Z(i))−H(Z∗(i))

)2 ∣∣Z(i)

] ∣∣Z].
Since

Γ0 = E
[(
H(Z)−H(Z ′)

)2 ∣∣Z], (11.7)

we can express the latter observation as

Γi = E
[
W(i)

∣∣Z] where W(i) ∼ Γ0

by setting

W(i) := E
[(
H(Z(i))−H(Z∗(i))

)2 ∣∣Z(i)

]
.

This is the second hypothesis required by Lemma 10.5.

11.5. The Polynomial Efron–Stein Inequality: Bounded Case

We are prepared to prove the polynomial Efron–Stein inequality, Theorem 4.2,
for a bounded random matrix X of the form (11.2).

Let p be a natural number. Since (X,X ′) is a kernel Stein pair, Theorem 9.1
provides that for any s > 0,

(
E ‖X‖2pS2p

)1/(2p)

≤
√

2p− 1

(
E
∥∥∥∥1

2

(
sVX + s−1 V K

)∥∥∥∥p
Sp

)1/(2p)

. (11.8)

The regularity condition holds because both the random matrix X and the
kernel K are bounded.

Rewrite the Schatten p-norm in terms of the trace:

E
∥∥∥∥1

2

(
sVX + s−1 V K

)∥∥∥∥p
Sp

= E tr
[s

2

(
VX + s−2 V K

)]p
. (11.9)

This expression has the form required by Lemma 10.5. Indeed, the function
t 7→ (st/2)p is weakly increasing and convex on R+. Furthermore, we may
choose β0 = 1 and

s :=

∞∑
i=0

βi =

(
1−

(
1− 1

n

)−1/2
)−1

< 2n.

Lemma 10.5 now delivers the bound

E tr
[s

2

(
VX + s−2 V K

)]p
≤ E tr

[
1

2
sΓ0

]p
≤ E

∥∥∥2 · n
2

Γ0

∥∥∥p
Sp

. (11.10)



Paulin, Mackey, and Tropp/Matrix Efron–Stein Inequalities 27

Next, we observe that the random matrix 1
2nΓ0 coincides with the variance

proxy V defined in (4.2). Indeed,

1

2
nΓ0 =

1

2
n E

[(
H(Z)−H(Z ′)

)2 ∣∣Z]
=

1

2

n∑
j=1

E
[(
H(Z)−H(Z(j))

)2 ∣∣Z]
=

1

2

n∑
j=1

E
[(
X −X(j)

)2 ∣∣Z] = V . (11.11)

The first identity is (11.7). The second follows from the definition (11.1) of
Z ′. The last line harks back to the definition (4.1) of X(j) and the variance
proxy (4.2).

Sequence the displays (11.8), (11.9), (11.10), and (11.11) to reach(
E ‖X‖2pS2p

)1/(2p)

≤
√

2(2p− 1)
(
E ‖V ‖pSp

)1/(2p)

when X is bounded.

(11.12)
This complete the proof of Theorem 4.2 under the assumption that X is bounded.

11.6. The Polynomial Efron–Stein Inequality: General Case

Finally, we establish Theorem 4.2 by removing the stipulation that X is bounded
from (11.12). We assume E ‖X‖2pS2p

<∞ so that there is something to prove.
Let R > 0 be a parameter, and introduce the truncated random matrix

XR = X · 1{‖X‖S2p
≤ R}

where 1 denotes the 0–1 indicator of an event. Apply (11.12) to the bounded
and centered random matrix XR − EXR to obtain(

E ‖XR − EXR‖2pS2p

)1/(2p)

≤
√

2(2p− 1)
(
E ‖VR‖pSp

)1/(2p)

(11.13)

where

VR :=
1

2

n∑
j=1

E
[(
XR −X

(j)
R

)2 ∣∣Z] and X
(j)
R := X(j)1{‖X(j)‖S2p

≤ R}.

To complete the argument, we just need to take the limits as R→∞.
For the left-hand side of (11.13), first observe that ‖XR‖S2p

↑ ‖X‖S2p
every-

where. Therefore,
E ‖XR‖2pS2p

↑ E ‖X‖2pS2p
(11.14)

because of the monotone convergence theorem. Now we are left to show that
E ‖XR − EXR‖2pS2p

− E ‖XR‖2pS2p
→ 0 as R→∞. This follows from the bound

‖XR‖S2p
− ‖EXR‖S2p

≤ ‖XR − EXR‖S2p
≤ ‖XR‖S2p

+ ‖EXR‖S2p
,
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and the fact that limR→∞ ‖EXR‖S2p
= 0. To show this fact, first write

‖EXR‖S2p
= ‖−E(−X + XR)‖S2p

=
∥∥∥E(−X · 1{‖X‖S2p

≥ R})
∥∥∥
S2p

≤ E(‖X‖S2p
· 1{‖X‖S2p

≥ R}),

and then apply the monotone convergence theorem.
To treat the right-hand side of (11.13), observe that limR→∞ VR → V almost

surely because of the dominated convergence theorem for conditional expecta-
tion. Indeed,∥∥(XR −X

(j)
R

)2∥∥
Sp

=
∥∥XR −X

(j)
R

∥∥2

S2p

≤ 2 ‖XR‖2S2p
+ 2

∥∥X(j)
R

∥∥2

S2p
≤ 2 ‖X‖2S2p

+ 2
∥∥X(j)

∥∥2

S2p
.

The first relation follows from the identity ‖A2‖Sp
= ‖A‖2S2p

. The right-hand

side is integrable because X(j) has the same distribution as X, and we can use
Lyapunov’s inequality to increase the powers from two to 2p.

We can apply the dominated convergence theorem again to see that

E ‖VR‖pSp
→ E ‖V ‖pSp

. (11.15)

To see why, extend the argument in the last paragraph to reach

‖VR‖pSp
≤ (2n)p

n∑
j=1

E
[
‖X‖2pS2p

+
∥∥X(j)

∥∥2p

S2p

∣∣Z]
The right-hand side is integrable because of the tower property and our assump-
tion on the integrability of ‖X‖S2p

.

Take the limit of (11.13) as R→∞ using the expressions (11.14) and (11.15).
This completes the proof of Theorem 4.2.

12. Exponential Concentration Inequalities

In this section, we develop an exponential moment bound for a kernel Stein pair.
This result shows that we can control the trace mgf in terms of the conditional
variance and the kernel conditional variance.

Theorem 12.1 (Exponential Moments for a Kernel Stein Pair). Suppose that
(X,X ′) is a K-Stein pair, and assume that ‖X‖ is bounded. For ψ > 0, define

r(ψ) :=
1

ψ
inf
s>0

logE t̄r exp

(
ψ

2

(
sVX + s−1 V K

))
. (12.1)

When |θ| <
√
ψ,

logE t̄r eθX ≤ ψ r(ψ)

2
log

(
1

1− θ2/ψ

)
≤ r(ψ) θ2

2(1− θ2/ψ)
.

The conditional variances VX and V K are defined in (8.9) and (8.10).
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The rest of this section is devoted to establishing this result. The pattern of
argument is similar with the proofs of [Chatterjee, 2008, Thm. 3.13] and [Mackey
et al., 2014, Thm. 5.1], but we require another nontrivial new matrix inequality.

Theorem 12.1 has a variety of consequences. In Section 12.1, we use it to
derive the exponential Efron–Stein inequality, Theorem 4.3. Additional appli-
cations of the result appear in Section 13.

Remark 12.2 (Regularity Assumptions). Theorem 12.1 instates a boundedness
assumption on X to avoid some technical issues. In fact, the result holds under
weaker conditions.

12.1. Proof of Exponential Efron–Stein Inequality

Theorem 12.1 is the last major step toward the matrix exponential Efron–Stein
inequality, Theorem 4.3. The proof is similar to the argument in Section 11.5
leading up to the polynomial Efron–Stein inequality so we proceed quickly.

Recall the setup from Section 4.1. We rely on the kernel Stein pair (X,X ′)
that we constructed in Section 11.1, as well as the analysis from Section 11.3.
From Theorem 12.1 we obtain that for any s > 0,

logE t̄r eθX ≤ θ2/ψ

2(1− θ2/ψ)
logE t̄r exp

(
sψ

2

(
VX + s−2 V K

))
.

Since t 7→ esψt/2 is weakly increasing and convex on R+, by choosing s as in
(11.5), Lemma 10.5 implies that

E t̄r exp

(
sψ

2

(
VX + s−2 V K

))
≤ E t̄r exp

(
sψ

2
Γ0(Z)

)
≤ E t̄r exp

(
2
nψ

2
Γ0(Z)

)
= E t̄r e2ψV .

The identity n
2 Γ0(Z) = V was established in (11.11). Combine the two displays,

and make the change of variables ψ 7→ ψ/2 to complete the proof of Theorem 4.3.

12.2. The Exponential Mean Value Trace Inequality

To establish Theorem 12.1, we require another trace inequality.

Lemma 12.3 (Exponential Mean Value Trace Inequality). For all matrices
A,B,C ∈ Hd and all s > 0 it holds that∣∣t̄r [C(eA − eB)

]∣∣ ≤ 1

4
t̄r
[(
s (A−B)2 + s−1 C2

)(
eA + eB

)]
.

We defer the proof to Appendix C.
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12.3. Some Properties of the Trace Mgf

For the proof, we need to develop some basic facts about the trace moment
generating function.

Lemma 12.4 (Properties of the Trace Mgf). Assume that X ∈ Hd is a centered
random matrix that is bounded in norm. Define the normalized trace mgf m(θ) =
E t̄r eθX for θ ∈ R. Then

logm(θ) ≥ 0 and logm(0) = 0. (12.2)

The derivative of the trace mgf satisfies

m′(θ) = E t̄r
[
XeθX

]
and m′(0) = 0. (12.3)

The trace mgf is a convex function; in particular

m′(θ) ≤ 0 for θ ≤ 0 and m′(θ) ≥ 0 for θ ≥ 0. (12.4)

Proof. The result m(0) = 0 follows immediately from the definition of the trace
mgf. Since EX = 0,

logm(θ) = logE t̄r eθX ≥ log t̄r eθ EX ≥ 0.

The first inequality is Jensen’s, which depends on the fact (2.1) that the trace
exponential is a convex function.

Next, consider the derivative of the trace mgf. For each θ ∈ R,

m′(θ) = E t̄r

[
d

dθ
eθX

]
= E t̄r

[
XeθX

]
, (12.5)

where the dominated convergence theorem and the boundedness of X justify the
exchange of expectation and derivative. The claim m′(0) = 0 follows from (12.5)
and the fact that EX = 0.

Similarly, the second derivative of the trace mgf satisfies

m′′(θ) = E t̄r
[
X2 eθX

]
≥ 0 for each θ ∈ R.

The inequality holds because X2 and eθX are both positive semidefinite, so the
trace of their product must be nonnegative. We discover that the trace mgf is
convex, which means that the derivative m′ is an increasing function.

12.4. Bounding the Derivative of the Trace Mgf

The first step in the proof of Theorem 12.1 is to bound the trace mgf of the
random matrix X in terms of the two conditional variance measures.
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Lemma 12.5 (The Derivative of the Trace Mgf). Instate the notation and
hypotheses of Theorem 12.1. Define the normalized trace mgf m(θ) := E t̄r eθX .
Then

|m′(θ)| ≤ 1

2
|θ| · inf

s>0
E t̄r

[(
sVX + s−1V K

)
eθX

]
for all θ ∈ R. (12.6)

Proof. Assume that the kernel Stein pair (X,X ′) is constructed from an aux-
iliary exchangable pair (Z,Z ′). By (12.3), the result holds trivially for θ = 0,
so we may assume that θ 6= 0. The form of the derivative (12.3) is suitable
for an application of the method of exchangeable pairs, Lemma 8.4. Since X is
bounded, the regularity condition (8.5) is satisfied, and we obtain

m′(θ) =
1

2
E t̄r

[
K(Z,Z ′)

(
eθX − eθX

′)]
. (12.7)

The exponential mean value trace inequality, Lemma 12.3, implies that

|m′(θ)| ≤ 1

8
· inf
s>0

E t̄r
[(
s (θX − θX ′)2 + s−1K(Z,Z ′)2

)
·
(
eθX + eθX

′)]
=

1

4
· inf
s>0

E t̄r
[(
s (θX − θX ′)2 + s−1K(Z,Z ′)2

)
· eθX

]
=

1

4
|θ| · inf

t>0
E t̄r

[(
t (X −X ′)2 + t−1K(Z,Z ′)2

)
· eθX

]
=

1

2
|θ| · inf

t>0
E t̄r

[
t

2
E
[
(X −X ′)2

∣∣Z] · eθX +
1

2t
E
[
K(Z,Z ′)2

∣∣Z] · eθX] .
The first equality follows from the exchangeability of (X,X ′); the second follows

from the change of variables s = |θ|−1
t; and the final one depends on the

pull-through property of conditional expectation. We reach the result (12.6) by
introducing the definitions (8.9) and (8.10) of the conditional variance and the
kernel conditional variance.

12.5. Decoupling via an Entropy Inequality

The next step in the proof uses an entropy inequality to separate the conditional
variances in (12.6) from the matrix exponential.

Fact 12.6 (Young’s Inequality for Matrix Entropy). Let U be a random matrix
in Hd that is bounded in norm, and suppose that W is a random matrix in Hd+
that is subject to the normalization E t̄rW = 1. Then

E t̄r(UW ) ≤ logE t̄r eU + E t̄r[W logW ].

This fact appears as [Mackey et al., 2014, Prop. A.3]; see also [Carlen, 2010,
Thm. 2.13].
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12.6. A Differential Inequality

To continue the argument, we fix a parameter ψ > 0. Rewrite (12.6) as

|m′(θ)| ≤ |θ|m(θ)

ψ
inf
s>0

E t̄r

[(
ψ

2

(
sVX + s−1V K

))
· eθX

m(θ)

]
Invoke Fact 12.6 to obtain

|m′(θ)| ≤ |θ|m(θ)

ψ

(
inf
s>0

logE t̄r exp

(
ψ

2

(
sVX + s−1V K

))
+ E t̄r

[
eθX

m(θ)
log

eθX

m(θ)

])
.

In view of (12.2),

log
eθX

m(θ)
= θX − logm(θ) · I 4 θX.

Identify the function r(ψ) defined in (12.1) and the derivative of the trace mgf
to reach

|m′(θ)| ≤ |θ|m(θ) r(ψ) +
θ |θ|
ψ
·m′(θ). (12.8)

This inequality is valid for all ψ > 0, and all θ ∈ R.

12.7. Solving the Differential Inequality

We begin with the case where θ ≥ 0. The result (12.4) shows that m′(ϕ) ≥ 0
for ϕ ∈ [0, θ]. Therefore, the differential inequality (12.8) reads

m′(ϕ) ≤ ϕm(ϕ) r(ψ) + (ϕ2/ψ)m′(ϕ) for ϕ ∈ [0, θ].

Rearrange this expression to isolate the log-derivative m′(ϕ)/m(ϕ):

d

dϕ
logm(ϕ) ≤ r(ψ)ϕ

1− ϕ2/ψ
when 0 ≤ ϕ ≤ θ <

√
ψ.

Recall the fact (12.2) that logm(0) = 0, and integrate to obtain

logm(θ) =

∫ θ

0

d

dϕ
logm(ϕ) dϕ ≤

∫ θ

0

r(ψ)ϕ

1− ϕ2/ψ
dϕ =

ψ r(ψ)

2
log

(
1

1− θ2/ψ

)
when 0 ≤ θ <

√
ψ. Making an additional approximation, we find that

logm(θ) ≤
∫ θ

0

r(ψ)ϕ

1− θ2/ψ
dϕ =

r(ψ) θ2

2(1− θ2/ψ)

for the same parameter range.
Finally, we treat the case where θ ≤ 0. The result (12.4) shows that m′(ϕ) ≤ 0

for ϕ ∈ [θ, 0], so the differential inequality (12.8) becomes

m′(ϕ) ≥ ϕm(ϕ) r(ψ) + (ϕ2/ψ)m′(ϕ) for ϕ ∈ [θ, 0].

The rest of the argument parallels the situation where θ is positive.
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13. Complements

The tools in this paper are applicable in a wide variety of settings. To indicate
what might be possible, we briefly present two additional concentration results
for random matrices arising as functions of dependent random variables. We
also indicate some prospects for future research.

13.1. Matrix Bounded Differences without Independence

A key strength of the method of exchangeable pairs is the fact that it also applies
to random matrices that are built from weakly dependent random variables. This
section describes an extension of Corollary 6.1 that holds even when the input
variables exhibit some interactions.

To quantify the amount of dependency among the variables, we use a Do-
brushin interdependence matrix [Dobrushin, 1970]. This concept involves a cer-
tain amount of auxiliary notation. Given a vector x = (x1, . . . , xn), we write

x−i = (x1, . . . xi−1, xi+1, . . . , xn)

for the vector with its ith component deleted. Let Z = (Z1, . . . , Zn) be a vector
of random variables taking values in a Polish space Z with sigma algebra F .
The symbol µi(·

∣∣Z−i) refers to the distribution of Zi conditional on the random
vector Z−i. We also require the total variation distance dTV between probability
measures µ and ν on (Z,F):

dTV(ν, µ) := sup
A∈F
|ν(A)− µ(A)| . (13.1)

With this foundation in place, we can state the definition.

Definition 13.1 (Dobrushin Interdependence Matrix). Let Z = (Z1, . . . , Zn)
be a random vector taking values in a Polish space Z. Let D ∈ Rn×n be a matrix
with a zero diagonal that satisfies the condition

dTV

(
µi(·

∣∣x−i), µi(· ∣∣y−i)) ≤∑n

j=1
Dij1[xj 6= yj ] (13.2)

for each index i and for all vectors x,y ∈ Z. Then D is called a Dobrushin
interdependence matrix for the random vector Z.

The kernel coupling method extends readily to the setting of weak depen-
dence. We obtain a new matrix bounded differences inequality, which is a sig-
nificant extension of Corollary 6.1. This statement can be viewed as a matrix
version of Chatterjee’s result [Chatterjee, 2008, Thm. 4.3].

Corollary 13.2 (Dobrushin Matrix Bounded Differences). Suppose that Z :=
(Z1, . . . , Zn) in a Polish space Z is a vector of dependent random variables with
a Dobrushin interdependence matrix D with the property that

max
{
‖D‖1→1 , ‖D‖∞→∞

}
< 1. (13.3)
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Let H : Z → Hd be a measurable function, and let (A1, . . . ,An) be a determin-
istic sequence of Hermitian matrices that satisfy

(H(z1, . . . , zn)−H(z1, . . . , z
′
j , . . . , zn))2 4 A2

j

where zk, z
′
k range over the possible values of Zk for each k. Compute the bound-

edness and dependence parameters

σ2 :=
∥∥∥∑n

j=1
A2
j

∥∥∥ and b :=

[
1− 1

2

(
‖D‖1→1 + ‖D‖∞→∞

)]−1

.

Then, for all t ≥ 0,

P {λmax (H(Z)− EH(Z)) ≥ t} ≤ d · e−t
2/(bσ2).

Furthermore,
Eλmax (H(Z)− EH(Z)) ≤ σ

√
b log d.

Observe that the bounds here are a factor of b worse than the independent
case outlined in Corollary 6.1. The proof is similar to the proof in the scalar
case in [Chatterjee, 2008]. We refer the reader to our earlier report [Paulin et al.,
2013] for details.

13.2. Matrix-Valued Functions of Haar Random Elements

This section describes a concentration result for a matrix-valued function of a
random element drawn uniformly from a compact group. This corollary can be
viewed as a matrix extension of [Chatterjee, 2008, Thm. 4.6].

Corollary 13.3 (Concentration for Hermitian Functions of Haar Measures).
Let Z ∼ µ be Haar distributed on a compact topological group G, and let Ψ :
G → Hd be a measurable function satisfying EΨ(Z) = 0. Let Y, Y1, Y2, . . . be
i.i.d. random variables in G satisfying

Y ∼ Y −1 and zY z−1 ∼ Y for all z ∈ G. (13.4)

Assume
‖Ψ(z)‖ ≤ R for all z ∈ G,

and
S2 = sup

g∈G

∥∥E [(Ψ(g)−Ψ(Y g))2
]∥∥ <∞.

Compute the boundedness parameter

σ2 :=
S2

2

∑∞

i=0
min

{
1, 4RS−1dTV(µi, µ)

}
where µi is the distribution of the product Yi · · ·Y1. Then, for all t ≥ 0,

P {λmax (Ψ(Z)) ≥ t} ≤ d · e−t
2/(2σ2).

Furthermore,
Eλmax (Ψ(Z)) ≤ σ

√
2 log d.
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Corollary 13.3 relates the concentration of Hermitian functions to the con-
vergence of random walks on a group. In particular, Corollary 13.3 can be used
to study matrices constructed from random permutations or random unitary
matrices. The proof is similar to the proof of the scalar result; see our earlier
report [Paulin et al., 2013] for details.

13.3. Conjectures and Consequences

We conjecture that the following trace inequalities hold.

Conjecture 13.4 (Signed Mean Value Trace Inequalities). For all matrices
A,B,C ∈ Hd, all positive integers q, and any s > 0 it holds that

tr
[
C(eA − eB)

]
≤ 1

2
tr
[
(s (A−B)2

+ + s−1 C2
+) eA

+ (s (A−B)2
− + s−1 C2

−) eB)
]
.

and

tr
[
C(Aq −Bq)

]
≤ q

2
tr
[
(s (A−B)2

+ + s−1 C2
+) |A|q−1

+ (s (A−B)2
− + s−1 C2

−) |B|q−1
)
]
.

This statement involves the standard matrix functions that lift the scalar func-
tions (a)+ := max{a, 0} and (a)− := max{−a, 0}. Extensive simulations with
random matrices suggest that Conjecture 13.4 holds, but we did not find a proof.

These inequalities would imply one-sided matrix versions of the exponential
Efron–Stein and moment bounds, similar to those formulated for the scalar
setting in [Boucheron et al., 2003] and [Boucheron et al., 2005]. In the scalar
case, Conjecture 13.4 is valid, so it is possible to obtain the results of [Boucheron
et al., 2003] and [Boucheron et al., 2005] by the exchangeable pair method.

Appendix A: Operator Inequalities

Our main results rely on some basic inequalities from operator theory. We are
not aware of good references for this material, so we have included short proofs.

A.1. Young’s Inequality for Commuting Operators

In the scalar setting, Young’s inequality provides an additive bound for the
product of two numbers. More precisely, for indices p, q ∈ (1,∞) that satisfy
the conjugacy relation p−1 + q−1 = 1, we have

ab ≤ 1

p
|a|p +

1

q
|b|q for all a, b ∈ R. (A.1)

The same result has a natural extension for commuting operators.
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Lemma A.1 (Young’s Inequality for Commuting Operators). Suppose that A
and B are self-adjoint linear maps on the Hilbert space Md that commute with
each other. Let p, q ∈ (1,∞) satisfy the conjugacy relation p−1 + q−1 = 1. Then

AB 4
1

p
|A|p +

1

q
|B|q .

Proof. Since A and B commute, there exists a unitary operator U and diagonal
operators D and M for which A = UDU∗ and B = UMU∗. Young’s inequal-
ity (A.1) for scalars immediately implies that

DM 4
1

p
|D|p +

1

q
|M|q .

Conjugating both sides of this inequality by U , we obtain

AB = U(DM)U∗ 4 1

p
U |D|p U∗ +

1

q
U |M|q U∗ =

1

p
|A|p +

1

q
|B|q .

The last identity follows from the definition of a standard function of an oper-
ator.

A.2. An Operator Version of Cauchy–Schwarz

We also need a simple version of the Cauchy–Schwarz inequality for operators.
The proof follows a classical argument, but it also involves an operator decom-
position.

Lemma A.2 (Operator Cauchy–Schwarz). Let A be a self-adjoint linear oper-
ator on the Hilbert space Md, and let M and N be matrices in Md. Then

|〈M , A(N)〉| ≤
[
〈M , |A| (M)〉 · 〈N , |A| (N)〉

]1/2
.

The inner product symbol refers to the trace, or Frobenius, inner product.

Proof. Consider the Jordan decomposition A = A+ − A−, where A+ and A−
are both positive semidefinite. For all s > 0,

0 ≤
〈
(sM − s−1N), A+(sM − s−1N)

〉
= s2 〈M , A+(M)〉+ s−2 〈N , A+(N)〉 − 2 〈M , A+(N)〉 .

Likewise,

0 ≤
〈
(sM + s−1N), A−(sM + s−1N)

〉
= s2 〈M , A−(M)〉+ s−2 〈N , A−(N)〉+ 2 〈M , A−(N)〉 .

Add the latter two inequalities and rearrange the terms to obtain

2 〈M , A(N)〉 ≤ s2 〈M , |A| (M)〉+ s−2 〈N , |A| (N)〉 ,
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where we have used the relation |A| = A+ + A−. Take the infimum of the
right-hand side over s > 0 to reach

〈M , A(N)〉 ≤
[
〈M , |A| (M)〉 · 〈M , |A| (N)〉

]1/2
. (A.2)

Repeat the same argument, interchanging the roles of the matrices sM −s−1N
and sM + s−1N . We conclude that (A.2) also holds with an absolute value on
the left-hand side. This observation completes the proof.

Appendix B: The Polynomial Mean Value Trace Inequality

The critical new ingredient in Theorem 9.1 is the polynomial mean value trace
inequality, Lemma 9.2. Let us proceed with a proof of this result.

Proof of Lemma 9.2. First, we need to develop another representation for the
trace quantity that we are analyzing. Assume that A,B,C ∈ Hd. A direct
calculation shows that

Aq −Bq =
∑q−1

k=0
Ak(A−B)Bq−1−k.

As a consequence,

tr [C(Aq −Bq)] =
∑q−1

k=0

〈
C, Ak(A−B)Bq−1−k〉 . (B.1)

To bound the right-hand side of (B.1), we require an approriate mean inequality.
To that end, we define some self-adjoint operators on Md:

Ak(M) := AkM and Bk(M) := MBk for each k = 0, 1, 2, . . . , q − 1.

The absolute values of these operators satisfy

|Ak| (M) = |A|kM and |Bk| (M) = M |B|k for each k = 0, 1, 2, . . . , q − 1.

Note that |Ak| and |Bq−k−1| commute with each other for each k. Therefore,
Young’s inequality for commuting operators, Lemma A.1, yields the bound

|AkBq−k−1| = |Ak| |Bq−k−1| 4
k

q − 1
|Ak|(q−1)/k

+
q − k − 1

q − 1
|Bq−k−1|(q−1)/(q−k−1)

=
k

q − 1
|A1|q−1

+
q − k − 1

q − 1
|B1|q−1

. (B.2)

Summing over k, we discover that∑q−1

k=0
|AkBq−k−1| 4

q

2
|A1|q−1

+
q

2
|B1|q−1

. (B.3)

This is the mean inequality that we require.
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To apply this result, we need to rewrite (B.1) using the operators Ak and
Aq−k−1. It holds that

tr [C(Aq −Bq)] =

q−1∑
k=0

〈C, (AkBq−k−1)(A−B)〉

≤

[
q−1∑
k=0

〈C, |AkBq−k−1| (C)〉 ·
q−1∑
k=0

〈A−B, |AkBq−k−1| (A−B)〉

]1/2

. (B.4)

The second relation follows from the operator Cauchy–Schwarz inequality, Lem-
ma A.2, and the usual Cauchy–Schwarz inequality for the sum.

It remains to bound to two sums on the right-hand side of (B.4). The mean
inequality (B.2) ensures that

q−1∑
k=0

〈C, |AkBq−k−1| (C)〉 ≤ q

2

〈
C,

(
|A1|q−1

+ |B1|q−1 )
(C)

〉
=
q

2

〈
C, |A|q−1

C + C |B|q−1
〉

=
q

2
tr
[
C2
(
|A|q−1

+ |B|q−1 )]
. (B.5)

Likewise,

q−1∑
k=0

〈A−B, |AkBq−k−1| (A−B)〉 ≤ q

2
tr
[
(A−B)2

(
|A|q−1

+|B|q−1 )]
. (B.6)

Introduce the two inequalities (B.5) and (B.6) into (B.4) to reach

tr [C(Aq −Bq)]

≤ q

2

(
tr
[
C2
(
|A|q−1

+ |B|q−1 )] · tr [(A−B)2
(
|A|q−1

+ |B|q−1 )])1/2

.

The result follows when we apply the numerical inequality between the geometric
mean and the arithmetic mean.

Appendix C: The Exponential Mean Value Trace Inequality

Finally, we establish the trace inequality stated in Lemma 12.3. See the manuscript
[Paulin, 2012] for an alternative proof.

Proof of Lemma 12.3. To begin, we develop an alternative expression for the
trace quantity that we need to bound. Observe that

d

dτ
eτAe(1−τ)B = eτA(A−B)e(1−τ)B.

The Fundamental Theorem of Calculus delivers the identity

eA − eB =

∫ 1

0

d

dτ
eτAe(1−τ)B dτ =

∫ 1

0

eτA(A−B)e(1−τ)B dτ.
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Therefore, using the definition of the trace inner product, we reach

tr
[
C
(
eA − eB

)]
=

∫ 1

0

〈
C, eτA(A−B)e(1−τ)B

〉
dτ. (C.1)

We can bound the right-hand side by developing an appropriate matrix version
of the inequality between the logarithmic mean and the arithmetic mean.

Let us define two families of positive-definite operators on the Hilbert space
Md:

Aτ (M) = eτAM and B1−τ (M) = Me(1−τ)B for each τ ∈ [0, 1].

In other words, Aτ is a left-multiplication operator, and B1−τ is a right-multi-
plication operator. It follows immediately that Aτ and B1−τ commute for each
τ ∈ [0, 1]. Young’s inequality for commuting operators, Lemma A.1, implies that

AτB1−τ 4 τ · |Aτ |1/τ + (1− τ) · |B1−τ |1/(1−τ)
= τ · |A1|+ (1− τ) · |B1| .

Integrating over τ , we discover that∫ 1

0

AτB1−τdτ 4
1

2
(|A1|+ |B1|) =

1

2
(A1 + B1). (C.2)

This is our matrix extension of the logarithmic–arithmetic mean inequality.
To relate this result to the problem at hand, we rewrite the expression (C.1)

using the operators Aτ and B1−τ . Indeed,

tr
[
C
(
eA − eB

)]
=

∫ 1

0

〈C, (AτB1−τ )(A−B)〉dτ

≤
[∫ 1

0

〈C, (AτB1−τ )(C)〉dτ ·
∫ 1

0

〈A−B, (AτB1−τ )(A−B)〉dτ
]1/2

.

(C.3)

The second identity follows from the definition of the trace inner product. The
last relation follows from the operator Cauchy–Schwarz inequality, Lemma A.2,
and the usual Cauchy–Schwarz inequality for the integral.

It remains to bound the two integrals in (C.3). These estimates are an im-
mediate consequence of (C.2). First,∫ 1

0

〈C, (AτB1−τ )(C)〉 dτ ≤ 1

2
〈C, (A1 + B1)(C)〉

=
1

2

〈
C, eAC + CeB

〉
=

1

2
tr
[
C2
(
eA + eB

)]
. (C.4)

The last two relations follow from the definitions of the operators A1 and B1,
the definition of the trace inner product, and the cyclicity of the trace. Likewise,

∫ 1

0

〈A−B, (AτB1−τ )(A−B)〉dτ =
1

2
tr
[
(A−B)2

(
eA + eB

)]
. (C.5)
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Substitute (C.4) and (C.5) into the inequality (C.3) to reach

tr
[
C
(
eA − eB

)]
≤ 1

2

(
tr
[
C2
(
eA + eB

)]
· tr
[
(A−B)2

(
eA + eB

)])1/2

.

We obtain the result stated in Lemma 12.3 by applying the numerical inequality
between the geometric mean and the arithmetic mean.
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