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 Annals of Mathematics, 128 (1988), 259-270

 Solution of the Littlewood-Offord problem
 in high dimensions

 By P. FRANKL and Z. FiYREDI

 Abstract

 Consider the 2' partial sums of arbitrary n vectors of length at least one in
 d-dimensional Euclidean space. It is shown that as n goes to infinity no closed

 ball of diameter A contains more than ([A] + 1 + o(l))(ln2I) out of these sums
 and this is best possible. For A - [A] small an exact formula is given.

 1. Introduction

 Investigating the number of zeros of random polynomials, Littlewood and

 Offord [14] were led to the following problem. Let d ? 1 and Rd be d-dimen-
 sional Euclidean space. Further let V = { v1, . . ., vn} be a set of n non-neces-

 sarily distinct vectors in Rd; I vi , the length of vi, is supposed to be at least one,
 1 < i < n. Consider 2V, the collection of all 2n partial sums

 n

 Eivi with ei = 0 or 1.

 For a positive real A, let

 m(V, A) = max{I S nl EVI: S is a closed ball of diameter }A.

 Now, the famous Littlewood-Offord problem is to determine or estimate

 m(n, A) = md(n, A) = max{m(V, A): V C Rd is a set of

 n vectors of length at least one

 In 1945 Erdds [1] determined md(n, A) for d = 1 and arbitrary A. Set
 s = [A] + 1.

 THEOREM 1.1 (Erdds). m1(n, A) is the sum of the largest s binomial
 coefficients (n) with 0 < i < n.

 We will outline his proof in Section 4. To see the lower lbollfld part, one can

 take v1 = v2 = * = Vn = 1. Note that for fixed A and nl -* oc, m1(iiA) =

 ([AJ + 1 + o(1))([n/21)
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 260 P. FRANKL AND Z. FUREDI

 There has been a lot of research related to this problem for d ? 2. In

 particular, Katona [7] and Kleitman [9] showed that m2(n, A) = ([n'2J) holds for

 A < 1. This was extended by Kleitman [10] to arbitrary d ? 2.
 Their proofs led to the creation of a new area in extremal set theory, to the

 so-called M-part Sperner theorems; see e.g., Fiiredi [2], Griggs, Odlyzko and

 Shearer [5].

 These results were used to give upper bounds on md(n, A). To mention a

 few, Kleitman [12] showed that m2(n, A) is upper-bounded by the sum of the

 2[ A/ r/ J largest binomial coefficients in n.
 Griggs [3] proved

 md(n, A) 2 2[A 1 (n/2j)

 Sali [16], [17] improved this bound to

 md(n, A) < 2dAV1( [n/2])

 Let us mention also that Griggs et al. [4] proved that for A > n/ VJ and for

 n > no(d) one has md(n, A) = 2n. This shows that for large d and A,
 md(n, A)/ml(n, A) can be arbitrarily large. Here we prove:

 THEOREM 1.2. For fixed d and A,

 (1.1) md(n, A) = ([Al + 1 + o(1))(lnn2I )

 whenever n -* 0o.

 One might think that Theorem 1.1 holds for arbitrary d, A and n > no( d, A).
 However, this is not true for d ? 2 and (s - 1)2 + 1 <A2 <s2, s ? 2, arbi-
 trary.

 Example 1.3 ([13]). Let v1 = v2= = v-1 be unit vectors and vn a
 unit vector orthogonal to v1. Take the sphere S of diameter A centered at

 (v1 + +vj)/2. Suppose that n + s is even. Then

 IEV n SI = 2 a (n .1)> m,(n, A).
 n-s/2<i<n+s/2

 Our second result says that if A - [A\J is very small then the bound of
 Theorem 1.1 is valid.

 THEOREM 1.4. Suppose that s - 1 < A < s - 1 + 1/lOs2; then

 md(n, A) = m1(n, A) holds forn > no(d, A).
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 THE LITTLEWOOD-OFFORD PROBLEM 261

 We need some geometric preliminaries as well. By a cone C we mean

 always a circular closed double cone with vertex at the origin. Thus if the axis of

 the cone is a line L and the angle of the cone is a then C consists of the points

 of those lines through the origin which have angle at most a/2 with L. A cone is

 the union of two halfcones.

 Let So denote the unit sphere centered at the origin. Then So n C is a
 spherical (double) cap of angle a. Let t(d, a) denote the minimum number of

 double caps of angle a needed to cover So. Let us recall the following upper
 bound on t(d, a) from [15]: If a < 7T/2 then

 a -d+1
 t(d, a) < d2 sin2

 For two disjoint cones C, D (that is, C n D consists of the origin only),

 considering their intersection with the plane P determined by the two axes, we

 can define (see Figure 1, next page) the angles a, /3 as the angles of the two open

 cones whose union is P - (C U D). Call min{ a, / } the angle between C and

 D. Note that if C has angle y and D has angle 8, then a + /3 + y + S =
 holds.

 2. The main lemmas

 By vectors we shall always mean vectors of length at least one in Rd. For a

 set V of vectors let EV denote the set of all 21Vl sums Ev E(v) v with ?(v) =
 0 or 1. Recall that

 m(V, A) = max IS n YVI.
 S a ball of
 diameter A

 Of course m(V, A) = m(V- {u} U {- u}, A) for any u E V; i.e., we

 can reverse a vector. Sometimes the Littlewood-Offord problem is reformulated

 in the following way:

 m(V, A) = max{IS n {>Ec(v)v: where ?(v) = 1, V E VII:

 S C Rd a ball of radius A

 Because of Kleitman's theorem we will suppose that A ? 1 (i.e., s ? 2),
 d 2 2.

 Define also

 p(V, A) = m(V, A)/21vl.

 Our first proposition says that p(V, A) is monotone decreasing.

 PROPOSITION 2.0. Let W C V be sets of vectors. Then

 (2.0) p(V, A) < p(W, A)
 holds for all A > 0.
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 262 P. FRANKL AND Z. FUREDI

 Proof Let S be an arbitrary ball of diameter A. Then

 IS n YVI < E IS n (u + 2W)l < 21V-wm(W, A),
 UC?(V- W)

 yielding

 m(V, A) < 21v-wlm(W, A).

 Dividing both sides by 21Vl, we see that (2.0) follows.

 LEMMA 2.1. Let C, D be disjoint cones in Rd with respective angles y, &.

 Let a and /P be the two angles between the cones (see Figure 1). Let h be a
 positive integer, A > 0, real such that

 (2.1) h min sin - sin 2- > A.

 Suppose further that IC n VI = c, ID n VI = d. Then

 (2.2) p(V, A) < h2/lcd

 FIGURE 1

 Proof Let v1,..., v, and w1, . . ., wd be the vectors from V, contained in C
 and D, respectively. When we apply Proposition 2.0 with W = { v1,...,

 Vc, w1, ..., Wd } C V, it follows that it is sufficient to prove (2.2) for W. Without
 loss of generality, we may assume that all vectors are in the same halfcone as

 shown in Figure 1. Let S be an arbitrary sphere of diameter A. We denote

 { 1, 2, . . ., i } by [i], and the set of all permutations of [i] by S[i]. Let us define
 the family Y by:

 F= {(A, B): A c [c], B c [d], E vi + > w cE S}.
 ieA jEB

 Let (7, t) be a random element of S[c] + S[d]. Consider the rectangle R,
 defined by
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 THE LITTLEWOOD-OFFORD PROBLEM 263

 Claim 2.2. K R l ?< h2.

 Proof Define I = {i: 3j,(7([i]), '([j])) E R flY); that is, I is the "pro-
 jection" on the side of the points in that rectangle. The set J is defined

 analogously, with the roles of i and j interchanged. If we prove III < h,
 IJI ? h, then the claim follows. Suppose the contrary and let, e.g., III ? h + 1.

 Then we can choose i1, i2 E I with il - i2 ? h. Choose jl, j2 E J such that

 (( [it] ) '[jt] )) E R n a, t = 1,2.

 Let u1, u2 be the corresponding sum of vectors. Suppose first that jl ? j2 and
 let L be a perpendicular line to the bisector of the angle /P. Then both the
 vectors vi and wj have projection of length at least sin(/3/2) on L.

 Consequently,

 U - U2 = L VIT(i, + L W?w
 i2 <i<'I j2 < 2<j?jl

 has projection of length at least

 ((i1 - i2) + ( - ij2))sin(/3/2) > h sin(13/2) > A,
 in contradiction with u1, u2 E S.

 If j2 > jl then we argue in the same way except for the perpendicular to
 the bisector of the angle a. E

 To conclude the proof of Lemma 2.1 we show that there is a choice of

 E S E S[d] with

 (2.3) JR nrvl > lylVJAcd2- .

 Let (A, B) Ea be arbitrary, IAI = a, IBI = b. Then the probability
 p(A,B) of (A, B) E1 R satisfies

 p(A, B) = 1 > (Icj) ( dJ) - 2Vc 2cd > VJ2-cd

 Thus, the expected size E( Ill n I) of R nfi Y satisfies

 E(IR n si) = E p(A, B) > JIyJ7jcd2- ,
 (A, B) e

 proving (2.3).

 LEMMA 2.3. Suppose that W C C is a set of vectors, C is a cone with angle

 y and A, A' are positive reals with A'cos(y/2) > A. Then

 (2.4) m(W, A) < m1(I WI, A).
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 264 P. FRANKL AND Z. FUREDI

 Proof Suppose without loss of generality that the axis of C is the real line.
 Set I WI = r and let xl, ..., Xr be the projections of the vectors w E W on the
 axis. Set yi = xi/cos(y/2). Then IyiI ? 1 for i = 1,..., r. By definition

 MP Xi) . I .., xr)} A) = m Y({Y1.. Yr}, A') < ml(r, A)
 holds. On the other hand,

 md(W, A) < m({Xi,.X, r} ,A)
 is obvious, proving (2.4).

 For our final lemma we need to prove first a geometric proposition. For
 vectors vl,..., vr and w define

 A(vl *... ,vr; W) = {v1 + vi + w: O < i < r, =O.1}.

 PROPOSITION 2.4. Let /3 and a be positive reals, /3> a, a < r/3, and
 s ? 2 a positive integer satisfying

 23 a
 a sin

 (2.5) s-1< A <(s-1)cos- + 2
 4(s - 1)cos-

 2

 Let v1, v2,. .v.,r be vectors of at least unit length in a halfcone C with angle a
 and let w, Iw I 2 1 be a vector having angle at least /3/2 and at most T - /3/2
 with the axis. Then for every ball S of diameter A,

 IS n A(vl ... , vr; w) I < 2s- 1.

 Proof Denote by A(i) the sum vi + V2 + .. +?vi (A(O) = 0), and let
 B(j) = A(j) + w for 0 < i, j < r. We may suppose that /3 < 7/2. Let S be a
 ball with diameter A and suppose on the contrary that it contains at least 2s
 vectors from A(v1,..., vr; w). Let I = {i: A(i) E S) and J = { j: B(j) E S).
 Consider a line c through the center of S and parallel to the axis of C. Consider

 the projections A'(i) and B'(j) of the points A(i) and BQj) on the line c. Now
 a

 IA'(i)A'(i') I ? li -il * cosj

 holds. As the right-hand side of (2.5) is smaller than s cos(a/2) we have that III
 (and IJI) is at most s. So if S contains 2s vectors from A(v1,..., vr, w) then
 there exist k and 1 such that A(i) E S, B(j) E S for k < i < k + s - 1,
 1 < j < 1 + s - 1. Consider a plane P orthogonal to c which cuts a piece from S
 with width A - (s - 1)cos(a/2). Denote this piece by H. Then A(k), B(l) E H.
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 THE LITTLEWOOD-OFFORD PROBLEM 265

 The diameter of H is

 II ~~a\ a /3a
 (2.6) 2 /((s - 1)cos-) - (s -_l)cosa) < sin 2

 So IA(k)B(1)I < 1, implying 1 0 k. Suppose, say, 1 < k and consider the
 A(l)B(l)A(k) triangle. We have I A(l) B(l) I ? 1, IA(l)A(k) ? 1, and the angle
 at A(l) is at least (3 - a)/2. Hence the length of the side A(k)B(l) is at least
 2 sin(( /3 - a)/4), which contradicts (2.6). So S cannot contain 2s elements from
 A(v 1 ... ) , vr; w).

 LEMMA 2.5. Let a, /, s and A be as in Proposition 2.4. Let W be a set of
 vectors contained in a cone C of angle a and let w be a vector having angle at
 least /3/2 with the axis of the cone. Set r = I W. Then

 (2.7) m(W U {w},A A) < (2s - 1) Lr/2)

 Proof We can reverse the directions of the vectors; so we can suppose that
 W is contained in a halfcone of C and the angle of W, and the axis of C is at
 most 7/2. Let S be a fixed sphere of diameter A. Let us consider a random
 ordering v1, v2...., yr of the elements of W. As in the proof of Lemma 2.1,
 there exists an ordering with

 tS nA(vj, ... )vr; W) I 2S n E(W u fw))|/(r/2

 On the other hand, Proposition 2.4 implies

 IS n A(vj, ..., vr; w) I < 2s - 1, which proves (2.7)

 3. Proof of Theorems 1.2 and 1.4

 Set s = [AJ + 1 and choose 0 < a < 7T/2 such that

 a
 (3.1) scos- >A.

 2

 Recall the definition of t(d, a) from the introduction and set t = t(d, a/5). Let
 C1,..., Ct be cones with angle a/5 which cover Rd. Suppose by symmetry that

 (3.2) I V n C1I > I VI /t holds.

 Consider the cone C (of angle a) which has the same axis as C1. Define
 k = 2t2([(A + 1)/sin(a/10)1)4/A.
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 266 P. FRANKL AND Z. FUREDI

 If IC n VI ? n - k, then Proposition 2.0 and Lemma 2.3 imply

 (n - k n

 m(V, A\) < 2 kS (n - k \=(1 + o(l))s( n

 as desired.

 Suppose next I V - Cl > k. Note that if a vector v E V - C is contained in
 Ci, 2 < i < t, then C1 and Ci are disjoint and the angle between them is at least
 0.3 a. Suppose by symmetry, that

 (3.3) j(V-C) nC21 jk/t.
 Applying Lemma 2.1 to C1 and C2 with h = [(A + 1)/sin(a/10)1 and using

 (3.2) and (3.3) we obtain

 (3 .4) p (V, AX) < h2t/nk < S/fi7rn/~2
 for our choice of h and k, which concludes the proof of Theorem 1.2.

 In the case of Theorem 1.4 we first note that (3.4) implies for n > no(d, A)
 that m(V, A) < ml(n, A), as desired. Choose a positive but very small (e.g.,
 sin( a/2) = 1/2s2). Then we may assume that

 V- CI < k.

 Let ,B be a small angle satisfying cos(f//2) = 1 - (1/2s). Then

 (3-5) SCos P > A5
 2

 Let D be the cone with angle /3 and the same center as C. If V C D, then

 Lemma 2.3 concludes the proof. Thus we may suppose that there is a vector

 w e (V-D).

 Setting W = V n C, using s - 1 < l < s- 1 + 1/lOs2, we see that

 Proposition 2.0 and Lemma 2.5 imply

 2s - 1?+ o(1m
 p(V,5) <p(WU{w},^)< U 2 A)]) 2n <m1(n,5 ),

 which concludes the proof.

 4. The case when the diameter is an integer

 We call a family of vectors optimal if md(n, l\) = m(V, A). In the case of

 s - 1 < A < s - 1 + (1/lOs2) we obviously have infinitely many optimal
 families, because we can perturb slightly the set of vectors V = { n copies of the

 same vector of length Al/(s - 1) }.
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 THE LITTLEWOO>-OFFORD PROBLEM 267

 THEOREM 4.1. Suppose A is an integer, n > no(d, A). Then the only
 optimal family V consists of n copies of a unit vector.

 For the proof of 4.1 we need the following theorem of Erdds. He noticed

 the connection of the Littlewood-Offord problem to extremal set theory.

 Definitions. 2x denotes the power set of X; Yf c 2X) denotes a family of
 sets and is called a k-Spemer family if it does not contain k + 1 members

 F1, ..., Fk e such that FlF2 F

 THEOREM 4.2 (Erdds [1] and Sperner [18] for k = 1). Let Y be a k-Sperner
 family over an n element set X. Then

 IYI < sum of the largest k binomial coefficients (n).

 Here equality holds if and only if Y consists of all the subsets of X of

 sizes [(n - k + 1)/2J,...,[(n - k + 1)/2J + (k - 1) or [(n - k + 1)/21,...,
 [(n - k + 1)/21 + (k - 1) (i.e., for n - k odd there exists only one optimal

 family; in case n - k is even there are two optimal families).

 With a set of vectors V and a ball S we associate a family Y= Y(V, 5) =

 { Ic { 1,2 .. ., n}: ZGIvi e S }. A consequence of 4.2 and the proof of 1.4 is
 the following.

 LEMMA 4.3. Suppose that n > no(d, A), V is an optimal family of vectors,
 A is an integer, S is a ball of diameter A with IS n EVI = m1(d, LA). Then there
 are a direction w and a small / > 0 (e.g., cos2(/3/2) = 1 - (1/2s)) such that

 every v e V is contained in a cone of angle a and axis w. If all v E V are

 contained in a halfcone of that cone then for every sequence of vectors

 {v 1,...,Vn} =V,

 vl + +vj? e Sforn1 < j < n1 + lS

 where n1 = nl(S) = [(n -A)/21 or [(n - )/21.

 We need one more proposition.

 PROPOSITION 4.4. Let w, U15 ... , an e Rd be vectors 0.4n < nj < n/2, and
 suppose that IL uIui-n1wI < rforeveryIc {1,...,n} uwith II =n1. Then

 jUi - W12 < 5r2.

 Proof Define wi = ui-w. We have I~iZwiI < r for every I C [n],
 [II = n , and we have to prove that Zwi2 < 5r2. The standard calculation is the
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 268 P. FRANKL AND Z. FUREDI

 following:

 (n = (n:1: 2 (n ,- (E W

 > E )(wi)

 Proof of 4.1. Suppose that n > 2OA\3. Lemma 4.3 implies that ILi, I vi I < A\
 holds for every Ic {1,..., n}, lj = L\. Suppose that Ic {1,...,n}, Ilj =A
 such that for u = Z{vi: i e I}, 1uj = A - x is maximal. Then all the sums of
 n1 vectors from { vi: i 0 I } are in S n (S - u) which is contained in a sphere of

 radius 2 - 1X2. Let O1 be the center of S n (S - u), and n w1 = Q Then

 4.4 gives

 E lvi -w12< XA.
 i0I

 Then one can choose J c { 1.. ., n} - I, IJI = A in such a way that

 Z _v1- W112 < -xA( L/n \) < (x/4\).
 jEJ

 Then all the v1 (j e I) have components to direction w with length at least

 1 - x/4l\. Hence jEvj ? A - x/2, a contradiction if x # 0. If x = 0, then it

 easily follows that all the vectors are the same unit vector. D

 5. Concluding remarks

 Let us mention that the proof of Theorem 1.2 actually gives md(n, l\) <

 ml(n, LA)(1 + (c(d, A)/n)) where c(d, A) is a constant depending only on d
 and l\.

 Next we describe a construction showing that for [l - LA small and
 d large there exists a positive constant c'(d, A) such that md(n, l\) ?

 ml(n, L)(1 + (c'(d, A)/n)) holds.
 Moreover, c'(d, A) -x cX if d --x, l\ -x cX and [Al - A- 0.

 Example 5.1. Let n, k, s be positive integers and suppose for convenience

 that n + s - k is even. Let v= = = vn-, w1,..., wkbe unit vectors
 where v1, W,,..., Wk are pairwise orthogonal. Consider the sphere, S of diame-
 ter (k + S2)1/2 centered around ((n - k)v1 + w 1 . +?wk)/2. Then S con-
 tains all partial sums from Z({v,...., Vn-k, W,1..., wk}) involving at least
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 THE LITTLEWOO>-OFFORD PROBLEM 269

 (n - k - s)/2 and at most (n - k + s)/2 out of vP,..., Vnk. That is,

 mk+L(n, (k + s2)/)2 2k , (n-k)
 (n - k - s/2) < i < (n - k + s/2)

 k ? o(1) \ )/
 = (1 + 2n )m (n, (k ? s2)/)

 holds for k + S2 < (S + 1)2, i.e., k < 2s.
 A sharpened version of Proposition 2.4 (we did not use that the points

 A(l), A(k), A(k + s - 1) lie almost on a line) gives that Theorem 1.3 holds for a

 slightly larger interval, especially for s = 2 if 1 < LA < F2, and for s = 3 if
 2 < LA < V5. So we can construct a new proof for some theorems of Katona [8]

 and Kleitman [11], [13]. But the length of our interval is only O(1/s2). Now we
 have the following:

 Conjecture 5.2. For n > no(d, l), if s-1 < A\ < (s- 1)2 + 1, then
 md(n, L\) = ml(n, A).

 Let us consider now open spheres. Let fd(n, L\) = max{ IS n EVj: S C Rd
 is an open sphere of diameter lA and V is a set of n vectors of length at least

 one}.

 COROLLARY 5.3. For fixed d and A and n -x oo, if A\ is not an integer then

 fd(n, A\) = ([Al + 1 + o(1))([n/2I).

 Similarly, Theorem 1.3 gives the value of fd(n, A) for n > no(d, A), s - 1 <
 A\ < s - 1 + 1/10s2.

 Problem 5.4. Determine (if it exists) lim, t,,fd(n, A)([n 2J) for d,
 LA fixed, LA an integer. E

 Finally we would like to mention that Katona formulated an interesting

 generalization of the Littlewood-Offord problem. L. Jones [6] answered some of
 his questions.
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