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Example 1: Estimating Excess
Let X ∼ N(µ, σ2) be a random variable representing the outcome of a biological measurement (e.c. cholesterol
level) in a population with known parameters µ, σ. We want to compute the expected excess from a normal level
d, i.e., θ1 = E(max(X−d, 0)). This quantity can be computed numerically as follows: θ1 =

∫∞
d

(x−d)f(x)dx,
where f(x) the probability density function of the normal distribution with parameters µ, σ2.

To approximate the value of θ1 with simulation, we let θ1 = E(Y ), where Y = h(X) = max(X − d, 0). Then
we can create a random sample x1, . . . , xN of size N from N(µ, σ2), compute the quantities y1, . . . , yn, where
yj = h(xj) = max(xj , 0) and estimate θ1 from the sample mean

θ̂1 =
∑N
j=1 xj

N
.

In addition, by treating y1, . . . , yn as a random sample from the distribution of Y , we can create a (1−α)100%
confidence interval for E(Y ) using the central limit theorem approximation :

θ̂1 − tα/2,N−1
s√
N
≤ θ1 ≤ θ̂1 + tα/2,N−1

s√
N

where s is the sample standard deviation.

To implement the above, we create an R function with parameters µ, σ, d,N, a, where 1− a is the confidence
level:
normexcessest=function(m, s, d, N, a)
{

x=rnorm(N, m, s)
y=rep(0,N)
for (j in 1:N)
{

y[j]=max(x[j]-d,0)
}
theta1est=mean(y)
sy=sd(y)
halflength=qt(1-a/2, N-1)*s/sqrt(N)
confint=c(theta1est-halflength, theta1est, theta1est+halflength)
return(confint)

}

As an application, assume that the level of LDL cholesterol in the population follows normal distribution
with mean 92 and standard deviation 15 and the critical level is set at d = 100. We can now estimate
θ1 = E(max(X − 100, 0) with a 95% confidence interval by simulating a pseudorandom sample of size
N = 10000:
ldlexcess=normexcessest(92,15,100, 10000, 0.05)
ldlexcess

## [1] 2.471656 2.765686 3.059717
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Example 2: Estimating Conditional Excess
In the Example θ1 is the expected excess for the entire population, where any individual whose measurement
is X ≤ d is counted as zero. For example if we consider a random sample of 20 measurements
x=rnorm(20, 92, 15)
x

## [1] 114.59500 93.47105 86.68142 95.51268 79.83165 75.67152 101.36716
## [8] 99.63922 105.11193 96.89739 118.19196 87.66091 94.63889 109.93221
## [15] 107.38426 74.43636 68.96959 67.97844 87.35727 88.21708

and compute the excess above 100 for each of them
y=rep(0,20)
for (j in 1:20)
{

y[j]=max(x[j]-100,0)
}
y

## [1] 14.595005 0.000000 0.000000 0.000000 0.000000 0.000000 1.367156
## [8] 0.000000 5.111931 0.000000 18.191961 0.000000 0.000000 9.932214
## [15] 7.384256 0.000000 0.000000 0.000000 0.000000 0.000000

we see that there are 14 measurements below 100 and those are counted as zero excess. The mean excess of
the sample in this case is
thest=sum(y)/20
thest

## [1] 2.829126

However it may also be of interest to estimate the mean excess only for those individuals whose measurement
actually exceeds the level d. In the above example the mean excess would be the average excess of the 6
observations that are above 100:
y1=y[y>0]
mean(y1)

## [1] 9.430421

Mathematically, the new quantity is the conditional expectation θ2 = E[max(X − d, 0)|X − d > 0]. We can
see that

θ1 = E[max(X − d, 0)]
= P (X − d <= 0) E[max(X − d, 0)|X − d ≤ 0] + P (X − d > 0) E[max(X − d, 0)|X − d > 0]
= P (X − d > 0) E[max(X − d, 0)|X − d > 0] = P (X − d > 0)θ2

from which it follows that
θ2 = θ1

P (X − d > 0) .

Therefore, one way to estimate θ2 is to create a sample of size N from X ∼ N(µ, σ2), transform it to the
vector of excess values yj = max(xj − d, 0) and compute the sum of yj , SN =

∑N
j=1 yj and the number of yj

that are strictly positive Nd =
∑N
j=1 1(yj > 0). We can then compute estimates of θ1 and p:

θ̂1 = SN
N
, p̂ = N2

N
.
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Now an estimate of θ2 is

θ̂2 = θ̂1

p̂
= SN
N2

.

This is consistent with the previous discussion, where we estimate the conditional excess by averaging over
only the positive measurements.

We can now create a function that implements the estimation of the conditional excess by simulating a sample
of size N from X:
condnormexcess=function(m,s,d,N)
{
x=rnorm(N, m, s)
y=rep(0,N)
for (j in 1:N)
{

y[j]=max(x[j]-d,0)
}
N2=length(y[y>0])
thetaj2est=sum(y)/N2

}

For the LDL example, we now estimate the conditional excess of LDL above 100, given that an individual
does have LDL>100 as
ldlcondexcess=condnormexcess(92,15,100,10000)
ldlcondexcess

## [1] 9.24575

Regarding bias and confidence intervals, things are not so simple. Parameter θ2 has not been expressed as an
expectation, but rather as the ratio of two expectations and it is estimated as the ration of the two respective
estimates. However in this case the estimator is not unbiased. Thus, even if we obtain a confidence interval
for its mean, this is not necessarily a confidence interval for θ2.

One approach to deal with this problem is to express θ2 as the expectation of Y = X − d, where X follows
the conditional distribution X|X > d:

F (x|X > d) = P (X ≤ x|X > d) = F (x)
1− F (d) , x > d.

If we generate N i.i.d. observations from this distribution, i.e., a random sample, then the sample mean will
be un unbiased estimate of θ2 and the usual approach for constructing a confidence interval can be applied.
However the above conditional distribution is not available to simulate using a prebuilt generator and we
must create an ad-hoc random number generator for it. An easy way to do this is by thinking as follows:

Assume we create successive i.i.d. observations from the N(µ, σ2) distribution. As long as an observation is
below d we reject it, and we accept the first value that is above d. Assume that X̃ is the first observation
that is accepted. Then X̃ is a random variable and its distribution is

P (X̃ ≤ x) = P (X ≤ x|Xis accepted) = P (X ≤ x|X > d),

i.e., the conditional distribution of X|X > d. We can create this generator with the following function.
condexcgen=function(m,s,d)
{

x=rnorm(1,m,s)
while (x <=d)

x=rnorm(1,m,s)
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return(x)
}

We can create a sample of size N = 1000 from the distribution for µ = 92, σ = 15, d = 100 and plot the
histogram:
x=rep(0,1000)
for (j in 1:1000)

x[j]=condexcgen(92,15,100)
hist(x)
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Now that we have a generator from this distribution, we can estimate its mean θ2 using a method similar to
that for θ1. The only difference is that we use our generator instead of rnorm, and now yj = xj − d. Also,
since we only need y we do not need to store all generated values of x:
condexcessest=function(m, s, d, N, a)
{

y=rep(0,N)
for (j in 1:N)
{

x = condexcgen(m,s,d)
y[j]=x-d

}
theta2est=mean(y)
sy=sd(y)
halflength=qt(1-a/2, N-1)*s/sqrt(N)
confint=c(theta2est-halflength, theta2est, theta2est+halflength)
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return(confint)
}

Applying the function in our example with N = 10000 replications,
condldlexcess=condexcessest(92,15,100,10000,0.05)
condldlexcess

## [1] 9.112945 9.406976 9.701006

Using this method, we can obtain a confidence interval for θ2 in addition to the point estimate, which could
also be derived with the simpler first method. The interpretation of this estimate is that the individuals
whose LDL is above 100, are expected to have LDL on average 9.4069755 units above the acceptable limit of
100, i.e., 109.4069755 units.

Example 3: Assess estimator bias
Consider a random variable X following exponential distribution with parameter λ unknown. The mean of
this distribution is 1/λ and we can easily obtain an unbiased estimator for it by collecting a sample of size n
and computing the sample mean.

However for the rate itself things are not as simple. Assume that we have a sample x1, . . . , xn of size n from
this distribution and we want to estimate λ. The maximum likelihood etimator for λ is known and is equal
to λ̂ = n∑n

i=1
xi = 1

x̄n
, i.e. equal to the inverse of the estimator of the mean. This estimator is biased, since

E(1/x̄n) 6= 1/E(x̄n) = 1/(1/λ) = λ. The question is to estimate the bias of λ̂ as a function of the sample size
n and the true (unknown) value λ, i.e, b(n, λ) = Eλ(1/X̄n)− λ, where X̄n =

∑n

i=1
Xi

n and X1, . . . , Xn i.i.d.
random variables with exponential distribution with rate λ.

To do this with simulation, we must simulate the estimation process a number N of times (replications). In
each replication we generate a sample of size n from the distribution with the given λm compute the estimate
λ̂ and find the difference of the two. Repeating this N times and taking the sample mean of the N differences
we can obtain an estimate of the bias for the given n, λ. Note the difference between N , which is the number
of simulated replications (scenarios) and n, which is the sample size of the estimator λ̂ whose bias we want to
assess.

To do this we create a function that simulates the estimation once under given λ and n and computes the
difference of this estimate from the true value:
simulexpbias=function(l, n)
{

x=rexp(n,l)
lhat=1/mean(x)
return(lhat-l)

}

Function simulexpbias generates one replication of the estimation process, i.e., one simulated value of the
bias. We next apply the to estimate the bias of the MLE under sample size n = 10 and λ = 2 based on
N = 10000 replications
expbiasest=function(l,n,N)
{

x=rep(0,N)
for (i in 1:N)
{

x[i]=simulexpbias(l,n)
}
biasest=mean(x)
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return(biasest)
}
biasest=expbiasest(2,10,10000)
biasest

## [1] 0.2024302

We can also use this function to assess the behavior of the bias with respect to λ and n. For example, to see
how the bias changes with the sample size, we fix λ = 1 and repeat the simulation for n = 10, 15, . . . , 100.
N=10000
l=2
nval=seq(10, 100, by=5)
nn=length(nval)
x=rep(0,nn)
for (i in 1:nn)
{

x[i]=expbiasest(l, nval[i], N)
}
plot(x~nval, type='b')
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We see that the bias approaches zero as n increases.

Example 4: Power of t-test
Let X ∼ N(µ, σ2) with unknown µ, σ. We consider the two-sided hypothesis test

H0 : µ = µ0, H1 : µ 6= µ0
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Assume we obtain a sample x1, . . . , xn from this distribution. Based on this sample the decision rule of the
test at significance level α is : Reject H0 if |t| > tα2,n−1, and do not reject H0 otherwise, where s is the
sample standard deviation and t ≡ x̄n−µ0

s√
n

is the test t-statistic. Equivalently, H0 is rejected if p < α, where p
is the p-value of the test.

We want to estimate the power of the t-test, i.e., the probability P0 = 1− β, where β is the type-II error, i.e.,
the probability of incorrectly accepting the null hypothesis, given that the true value of the mean is µ 6= 0,
i.e., β(µ, σ) = P (acceptH0|µ, σ). Therefore, P0 is the probability of correctly rejecting the null hypothesis if
it is not true. Of course a test is more reliable when the power is higher under a given α level. The power is
not a single value, but a function of the true parameter value µ. Intuitively we expect that it increases when
µ is further from µ0, since then it should be easier for the test to identify the correct answer. Finally, for
µ = µ0, in which case H0 is true, P0 = α, i.e., equal to the type-I error.

For the t-test under a normal distribution the power can be computed analytically, with a rather complicated
formula that involves the noncentral t distribution. The R function power.t.test can be used to compute
the power exactly. For example for the two-sided test H0 : µ = 11, H1 : µ 6= 11, with sample size n = 10,
α = 0.05 and true distribution parameters µ = 10, s = 2, the power can be found as follows (delta = µ− µ0)
p1=power.t.test(n=10, delta=-1, sd=2, sig.level = 0.05, type="one.sample", alternative = "two.sided")
p1

##
## One-sample t test power calculation
##
## n = 10
## delta = 1
## sd = 2
## sig.level = 0.05
## power = 0.2928286
## alternative = two.sided
p1$power

## [1] 0.2928286

Although there are are analytical expressions for the power of the t-test, we will estimate it using simulation,
as another example of the use of simulation methods for evaluating statistical methodologies. Since the exact
value is known, we can also evaluate the quality of the simulation approximation (in general the true value is
not known and this is typically the reason we use simulation).

The building block of the simulation experiment will be a function that simulates one replication of the t-test
under given µ, σ, µ0, α, n: It generates a random sample of size n from N(µ, σ2), performs the two-sided t-test
at significance level α, and returns a binary variable R = 1 if H0 is rejected and R = 0 otherwise:
simulatettest=function(m,s,m0,a,n)
{

x=rnorm(n, m, s)
t=t.test(x, mu=m0, conf.level = 1-a, alternative = "two.sided")
tp=t$p.value
if (tp<a) return(1) else return(0)

}

Note that the t-test inside the function could also be implemented directly without calling the t.test function,
by computing the t-statistic as above.

Assume we repeat the simulation N times with given values of n, µ, σ, α using different simulated samples at
each replication. Let R1, . . . , RN be the outcomes of each replication. Then an estimate of the power is the
proportion of replications in which H0 was rejected i.e., the outcome was R = 0. Therefore the estimate of
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the power is P̂ = R̄N .

For example, to estimate the power of a t-test with sample size n = 10, α = 0.05, true distribution parameters
µ = 10, σ = 2 and hypothesized value µ0 = 11, we perform a simulation experiment with N = 10000
replications of the simulattetst function:
N=10000
n=10
a=0.05
m=10
s=2
m0=11
x=rep(0,N)
for (i in 1:N)
{

x[i]=simulatettest(m,s,m0,a,n)
}
powerest=mean(x)
sx=sd(x)
hlength=qt(0.975, N-1)*sd(x)/sqrt(N)
powerconfint=c(powerest-hlength, powerest+hlength)
powerest

## [1] 0.2992
powerconfint

## [1] 0.2902236 0.3081764

We observe that the confidence interval contains the exact value, which we computed before for the same test.

Since we want to use these calculations repeatedly to compute the power function, we create a new function
that simulates the t-test under given parameters with N replications and returns a point estimate and a 95%
confidence interval for the power.
estpowerttest=function(m,s,m0,a,n,N)
{

x=rep(0,N)
for (i in 1:N)
{

x[i]=simulatettest(m,s,m0,a,n)
}
powerest=mean(x)
sx=sd(x)
hlength=qt(0.975, N-1)*sd(x)/sqrt(N)
powerconfint=c(powerest-hlength, powerest+hlength)
results=list(est=powerest, confint=powerconfint)

}
p1=estpowerttest(10,2,11,0.05,10,10000)
p1

## $est
## [1] 0.2906
##
## $confint
## [1] 0.2816995 0.2995005
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p1$est

## [1] 0.2906
p1$confint

## [1] 0.2816995 0.2995005

In our first simulation study we will estimate the power function of the one-sample two-sided t test:

H0 : µ = 10 : H1 : µ 6= 10

with sample size n = 15, significance level a = 0.05 population standard deviation σ = 2 (considered unknown)
and population mean µ varying between 6 and 14 with a step size of 0.1. We will make a plot of the confidence
interval of the power function, as well as the exact value for comparison:
N=1000
mval=seq(6,14,0.1)
s=2
a=0.05
n=15
m0=10
nm=length(mval)
powerest=rep(0,nm)
powerconfint=matrix(rep(0,2*nm), nm, 2)
powerexact=rep(0,nm)
for (i in 1:nm)
{

m=mval[i]
p1=estpowerttest(m,s,m0,a,n,N)
powerest[i]=p1$est
powerconfint[i,]=p1$confint
pex=power.t.test(n, delta=m-m0, sd=2, sig.level = 0.05, type="one.sample", alternative = "two.sided")
powerexact[i]=pex$power

}
plot(powerest~mval, type='l', ylim=c(0,1), col=1)
lines(powerconfint[,1]~mval, col=2)
lines(powerconfint[,2]~mval, col=2)
lines(powerexact~mval, col=3)
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We observe that the true value is almost always inside the confidence interval.

In the second experiment we will plot the estimated power functions for the same parameters as above but
with sample sizes n = 10, 20, 50.
N=1000
mval=seq(6,14,0.1)
s=2
a=0.05
nval=c(10,20,50)
m0=10
nm=length(mval)
nn=length(nval)
powerest=matrix(rep(0,nm*nn), nm, nn)

for (j in 1:nn)
{

for (i in 1:nm)
{

n=nval[j]
m=mval[i]
p1=estpowerttest(m,s,m0,a,n,N)
powerest[i,j]=p1$est

}
}

plot(powerest[,1]~mval, type='l', ylim=c(0,1), col=1)
for (i in 2:nn)
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lines(powerest[,i]~mval, type='l', col=i)
legend(x=12, y=0.3, legend=nval, lty=1, col=1:nn)
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The graphs show how the power of the t-test increases with the sample size, in particular for values of the
true mean close to the hypothesized value.
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