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Stability

Dynamical systems, either occurring in nature or man made, usually function
in some specified mode. The most common such modes are operating points
that frequently turn out to be equilibria.

In this chapter we will concern ourselves primarily with the qualitative
behavior of equilibria. Most of the time, we will be interested in the asymp-
totic stability of an equilibrium (operating point), which means that when
the state of a given system is displaced (disturbed) from its desired operating
point (equilibrium), the expectation is that the state will eventually return to
the equilibrium. For example, in the case of an automobile under cruise con-
trol, traveling at the desired constant speed of 50 mph (which determines the
operating point, or equilibrium condition), perturbations due to hill climbing
(hill descending), will result in decreasing (increasing) speeds. In a properly
designed cruise control system, it is expected that the car will return to its
desired operating speed of 50 mph.

Another qualitative characterization of dynamical systems is the expecta-
tion that bounded system inputs will result in bounded system outputs, and
that small changes in inputs will result in small changes in outputs. System
properties of this type are referred to as input–output stability. Such prop-
erties are important for example in tracking systems, where the output of
the system is expected to follow a desired input. Frequently, it is possible to
establish a connection between the input–output stability properties and the
Lyapunov stability properties of an equilibrium. In the case of linear systems,
this connection is well understood. This will be addressed in Section 7.3.

4.1 Introduction

In this chapter we present a brief introduction to stability theory. We are
concerned primarily with linear systems and systems that are a consequence
of linearizations of nonlinear systems. As in the other chapters of this book,
we consider finite-dimensional continuous-time systems and finite-dimensional
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discrete-time systems described by systems of first-order ordinary differen-
tial equations and systems of first-order ordinary difference equations, respec-
tively.

In Section 4.2 we introduce the concept of equilibrium of dynamical sys-
tems described by systems of first-order ordinary differential equations, and
in Section 4.3 we give definitions of various types of stability in the sense of
Lyapunov (including stability, uniform stability, asymptotic stability, uniform
asymptotic stability, exponential stability, and instability).

In Section 4.4 we establish conditions for the various Lyapunov stability
and instability types enumerated in Section 4.3 for linear systems ẋ = Ax.
Most of these results are phrased in terms of the properties of the state tran-
sition matrix for such systems.

In Section 4.5 we introduce the Second Method of Lyapunov, also called
the Direct Method of Lyapunov, to establish necessary and sufficient condi-
tions for various Lyapunov stability types of an equilibrium for linear systems
ẋ = Ax. These results, which are phrased in terms of the system parameters
[coefficients of the matrix A], give rise to the Lyapunov matrix equation.

In Section 4.6 we use the Direct Method of Lyapunov in deducing the
asymptotic stability and instability of an equilibrium of nonlinear autonomous
systems ẋ = Ax + F (x) from the stability properties of their linearizations
ẇ = Aw.

In Section 4.7 we establish necessary and sufficient conditions for the
input–output stability (more precisely, for the bounded input/bounded out-
put stability) of continuous-time, linear, time-invariant systems. These results
involve the system impulse response matrix.

The stability results presented in Sections 4.2 through and including Sec-
tion 4.7 pertain to continuous-time systems. In Section 4.8 we present analo-
gous stability results for discrete-time systems.

4.2 The Concept of an Equilibrium

In this section we concern ourselves with systems of first-order autonomous
ordinary differential equations,

ẋ = f(x), (4.1)

where x ∈ Rn. When discussing global results, we shall assume that f : Rn →
Rn, while when considering local results, we may assume that f : B(h) → Rn

for some h > 0, where B(h) = {x ∈ Rn :‖ x ‖< h} and ‖ · ‖ denotes a norm on
Rn. Unless otherwise stated, we shall assume that for every (t0, x0), t0 ∈ R+,
the initial-value problem

ẋ = f(x), x(t0) = x0 (4.2)

possesses a unique solution φ(t, t0, x0) that exists for all t ≥ t0 and that
depends continuously on the initial data (t0, x0). Refer to Section 1.5 for
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conditions that ensure that (4.2) has these properties. Since (4.1) is time-
invariant, we may assume without loss of generality that t0 = 0 and we will
denote the solutions of (4.1) by φ(t, x0) (rather than φ(t, t0, x0)) with x(0) =
x0.

Definition 4.1. A point xe ∈ Rn is called an equilibrium point of (4.1), or
simply an equilibrium of (4.1), if

f(xe) = 0.

�

We note that
φ(t, xe) = xe for all t ≥ 0;

i.e., the equilibrium xe is the unique solution of (4.1) with initial data given
by φ(0, xe) = xe.

We will usually assume that in a given discussion, unless otherwise stated,
the equilibrium of interest is located at the origin of Rn. This assumption can
be made without loss of generality by noting that if xe �= 0 is an equilibrium
point of (4.1), i.e., f(xe) = 0, then by letting w = x − xe, we obtain the
transformed system

ẇ = F (w) (4.3)

with F (0) = 0, where
F (w) = f(w + xe). (4.4)

Since the above transformation establishes a one-to-one correspondence be-
tween the solutions of (4.1) and (4.3), we may assume henceforth that the
equilibrium of interest for (4.1) is located at the origin. This equilibrium,
x = 0, will be referred to as the trivial solution of (4.1).

Before concluding this section, it may be fruitful to consider some specific
cases.

Example 4.2. In Example 1.4 we considered the simple pendulum given in
Figure 1.7. Letting x1 = x and x2 = ẋ in (1.37), we obtain the system of
equations

ẋ1 = x2,

ẋ2 = −k sinx1, (4.5)

where k > 0 is a constant. Physically, the pendulum has two equilibrium
points: one where the mass M is located vertically at the bottom of the figure
(i.e., at 6 o’clock) and the other where the mass is located vertically at the
top of the figure (i.e., at 12 o’clock). The model of this pendulum, however,
described by (4.5), has countably infinitely many equilibrium points that are
located in R2 at the points (πn, 0)T , n = 0,±1,±2, . . . .
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Example 4.3. The linear, autonomous, homogenous system of ordinary dif-
ferential equations

ẋ = Ax (4.6)

has a unique equilibrium that is at the origin if and only if A is nonsingular.
Otherwise, (4.6) has nondenumerably many equilibria. [Refer to Chapter 1 for
the definitions of symbols in (4.6).]

Example 4.4. Assume that for

ẋ = f(x), (4.7)

f is continuously differentiable with respect to all of its arguments, and let

J(xe) =
∂f

∂x
(x)
∣∣∣∣
x=xe

,

where ∂f/∂x denotes the n× n Jacobian matrix defined by

∂f

∂x
=
[
∂fi
∂xj

]
.

If f(xe) = 0 and J(xe) is nonsingular, then xe is an equilibrium of (4.7).

Example 4.5. The system of ordinary differential equations given by

ẋ1 = k + sin(x1 + x2) + x1,

ẋ2 = k + sin(x1 + x2) − x1,

with k > 1, has no equilibrium points at all.

4.3 Qualitative Characterizations of an Equilibrium

In this section we consider several qualitative characterizations that are of
fundamental importance in systems theory. These characterizations are con-
cerned with various types of stability properties of an equilibrium and are
referred to in the literature as Lyapunov stability.

Throughout this section, we consider systems of equations

ẋ = f(x), (4.8)

and we assume that (4.8) possesses an equilibrium at the origin. We thus have
f(0) = 0.
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Definition 4.6. The equilibrium x = 0 of (4.8) is said to be stable if for
every ε > 0, there exists a δ(ε) > 0 such that

‖ φ(t, x0) ‖< ε for all t ≥ 0 (4.9)

whenever
‖ x0 ‖< δ(ε). (4.10)

�

In Definition 4.6, ‖ · ‖ denotes any one of the equivalent norms on Rn,
and (as in Chapters 1 and 2) φ(t, x0) denotes the solution of (4.8) with initial
condition x(0) = x0. The notation δ(ε) indicates that δ depends on the choice
of ε.

In words, Definition 4.6 states that by choosing the initial points in a
sufficiently small spherical neighborhood, when the equilibrium x = 0 of (4.8)
is stable, we can force the graph of the solution for t ≥ 0 to lie entirely inside
a given cylinder. This is depicted in Figure 4.1 for the case x ∈ R2.

Figure 4.1. Stability of an equilibrium

Definition 4.7. The equilibrium x = 0 of (4.8) is said to be asymptotically
stable if

(i) it is stable,
(ii) there exists an η > 0 such that lim

t→∞φ(t, x0) = 0 whenever ‖ x0 ‖< η. �

The set of all x0 ∈ Rn such that φ(t, x0) → 0 as t → ∞ is called the domain
of attraction of the equilibrium x = 0 of (4.8). Also, if for (4.8) condition (ii)
is true, then the equilibrium x = 0 is said to be attractive.

Definition 4.8. The equilibrium x = 0 of (4.8) is exponentially stable if
there exists an α > 0, and for every ε > 0, there exists a δ(ε) > 0, such that

‖ φ(t, x0) ‖≤ εeαt for all t ≥ 0

whenever ||x0|| < δ(ε). �
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Figure 4.2. An exponentially stable equilibrium

Figure 4.2 shows the behavior of a solution in the vicinity of an exponen-
tially stable equilibrium x = 0.

Definition 4.9. The equilibrium x = 0 of (4.8) is unstable if it is not stable.
In this case, there exists an ε > 0, and a sequence xm → 0 of initial points
and a sequence {tm} such that ‖ φ(tm, xm) ‖≥ ε for all m, tm ≥ 0. �

If x = 0 is an unstable equilibrium of (4.8), then it still can happen that
all the solutions tend to zero with increasing t. This indicates that instability
and attractivity of an equilibrium are compatible concepts. We note that the
equilibrium x = 0 of (4.8) is necessarily unstable if every neighborhood of the
origin contains initial conditions corresponding to unbounded solutions (i.e.,
solutions whose norm grows to infinity on a sequence tm → ∞). However, it
can happen that a system (4.8) with unstable equilibrium x = 0 may have
only bounded solutions.

The concepts that we have considered thus far pertain to local properties
of an equilibrium. In the following discussion, we consider global characteri-
zations of an equilibrium.

Definition 4.10. The equilibrium x = 0 of (4.8) is asymptotically stable in
the large if it is stable and if every solution of (4.8) tends to zero as t→ ∞.

�
When the equilibrium x = 0 of (4.8) is asymptotically stable in the large,

its domain of attraction is all of Rn. Note that in this case, x = 0 is the only
equilibrium of (4.8).

Definition 4.11. The equilibrium x = 0 of (4.8) is exponentially stable in
the large if there exists α > 0 and for any β > 0, there exists k(β) > 0 such
that

‖ φ(t, x0) ‖≤ k(β) ‖ x0 ‖ e−αt for all t ≥ 0

whenever ‖ x0 ‖< β. �
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We conclude this section with a few specific cases.
The scalar differential equation

ẋ = 0 (4.11)

has for any initial condition x(0) = x0 the solution φ(t, x0) = x0; i.e., all
solutions are equilibria of (4.11). The trivial solution is stable; however, it is
not asymptotically stable.

The scalar differential equation

ẋ = ax (4.12)

has for every x(0) = x0 the solution φ(t, x0) = x0e
at, and x = 0 is the only

equilibrium of (4.12). If a > 0, this equilibrium is unstable, and when a < 0,
this equilibrium is exponentially stable in the large.

As mentioned earlier, a system

ẋ = f(x) (4.13)

can have all solutions approaching an equilibrium, say, x = 0, without this
equilibrium being asymptotically stable. An example of this type of behavior
is given by the nonlinear system of equations

ẋ1 =
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)[1 + (x2
1 + x2

2)2]
,

ẋ2 =
x2

2(x2 − 2x1)
(x2

1 + x2
2)[1 + (x2

1 + x2
2)2]

.

For a detailed discussion of this system, refer to [6], pp. 191–194, cited at the
end of this chapter.

Before proceeding any further, a few comments are in order concerning
the reasons for considering equilibria and their stability properties as well as
other types of stability that we will encounter. To this end we consider linear
time-invariant systems given by

ẋ = Ax+Bu, (4.14a)
y = Cx+Du, (4.14b)

where all symbols in (4.14) are defined as in (2.7). The usual qualitative
analysis of such systems involves two concepts, internal stability and input–
output stability.

In the case of internal stability, the output equation (4.14b) plays no role
whatsoever, the system input u is assumed to be identically zero, and the focus
of the analysis is concerned with the qualitative behavior of the solutions of
linear time-invariant systems

ẋ = Ax (4.15)
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near the equilibrium x = 0. This is accomplished by making use of the vari-
ous types of Lyapunov stability concepts introduced in this section. In other
words, internal stability of system (4.14) concerns the Lyapunov stability of
the equilibrium x = 0 of system (4.15).

In the case of input–output stability, we view systems as operators de-
termined by (4.14) that relate outputs y to inputs u and the focus of the
analysis is concerned with qualitative relations between system inputs and
system outputs. We will address this type of stability in Section 4.7.

4.4 Lyapunov Stability of Linear Systems

In this section we first study the stability properties of the equilibrium x = 0
of linear autonomous homogeneous systems

ẋ = Ax, t ≥ 0. (4.16)

Recall that x = 0 is always an equilibrium of (4.16) and that x = 0 is the
only equilibrium of (4.16) if A is nonsingular. Recall also that the solution of
(4.16) for x(0) = x0 is given by

φ(t, x0) = Φ(t, 0)x0 = Φ(t− 0, 0)x0

� Φ(t)x0 = eAtx0,

where in the preceding equation, a slight abuse of notation has been used.
We first consider some of the basic properties of system (4.16).

Theorem 4.12. The equilibrium x = 0 of (4.16) is stable if and only if the
solutions of (4.16) are bounded, i.e., if and only if

sup
t≥t0

‖ Φ(t) ‖� k <∞,

where ‖ Φ(t) ‖ denotes the matrix norm induced by the vector norm used on
Rn and k denotes a constant.

Proof. Assume that the equilibrium x = 0 of (4.16) is stable. Then for ε = 1
there is a δ = δ(1) > 0 such that ‖ φ(t, x0) ‖< 1 for all t ≥ 0 and all x0 with
‖ x0 ‖≤ δ. In this case

‖ φ(t, x0) ‖=‖ Φ(t)x0 ‖=‖ [Φ(t)(x0δ)/ ‖ x0 ‖] ‖ (‖ x0 ‖ /δ) <‖ x0 ‖ /δ

for all x0 �= 0 and all t ≥ 0. Using the definition of matrix norm [refer to
Section A.7], it follows that

‖ Φ(t) ‖≤ δ−1, t ≥ 0.

We have proved that if the equilibrium x = 0 of (4.16) is stable, then the
solutions of (4.16) are bounded.
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Conversely, suppose that all solutions φ(t, x0) = Φ(t)x0 are bounded. Let
{e1, . . . , en} denote the natural basis for n-space, and let ‖ φ(t, ej) ‖< βj for
all t ≥ 0. Then for any vector x0 =

∑n
j=1 αjej we have that

‖ φ(t, x0) ‖ =‖
n∑
j=1

αjφ(t, ej) ‖≤
n∑
j=1

|αj |βj

≤ (max
j
βj)

n∑
j=1

|αj | ≤ k ‖ x0 ‖

for some constant k > 0 for t ≥ 0. For given ε > 0, we choose δ = ε/k. Thus,
if ‖ x0 ‖< δ, then ‖ φ(t, x0) ‖< k ‖ x0 ‖< ε for all t ≥ 0. We have proved that
if the solutions of (4.16) are bounded, then the equilibrium x = 0 of (4.16) is
stable. �

Theorem 4.13. The following statements are equivalent.

(i) The equilibrium x = 0 of (4.16) is asymptotically stable.
(ii) The equilibrium x = 0 of (4.16) is asymptotically stable in the large.
(iii) limt→∞ ‖ Φ(t) ‖= 0.

Proof. Assume that statement (i) is true. Then there is an η > 0 such that
when ‖ x0 ‖≤ η, then φ(t, x0) → 0 as t→ ∞. But then we have for any x0 �= 0
that

φ(t, x0) = φ(t, ηx0/ ‖ x0 ‖)(‖ x0 ‖ /η) → 0

as t→ ∞. It follows that statement (ii) is true.
Next, assume that statement (ii) is true. For any ε > 0, there must exist

a T (ε) > 0 such that for all t ≥ T (ε) we have that ‖ φ(t, x0) ‖=‖ Φ(t)x0 ‖< ε.
To see this, let {e1, . . . , en} be the natural basis for Rn. Thus, for some fixed
constant k > 0, if x0 = (α1, . . . , αn)T and if ‖ x0 ‖≤ 1, then x0 =

∑n
j=1 αjej

and
∑n
j=1 |αj | ≤ k. For each j, there is a Tj(ε) such that ‖ Φ(t)ej ‖< ε/k

and t ≥ Tj(ε). Define T (ε) = max{Tj(ε) : j = 1, . . . , n}. For ‖ x0 ‖≤ 1 and
t ≥ T (ε), we have that

‖ Φ(t)x0 ‖=‖
n∑
j=1

αjΦ(t)ej ‖≤
n∑
j=1

|αj |(ε/k) ≤ ε.

By the definition of the matrix norm [see the appendix], this means that
‖ Φ(t) ‖≤ ε for t ≥ T (ε). Therefore, statement (iii) is true.

Finally, assume that statement (iii) is true. Then ‖ Φ(t) ‖ is bounded
in t for all t ≥ 0. By Theorem 4.12, the equilibrium x = 0 is stable. To
prove asymptotic stability, fix ε > 0. If ‖ x0 ‖< η = 1, then ‖ φ(t, x0) ‖≤
‖ Φ(t) ‖ ‖ x0 ‖→ 0 as t→ ∞. Therefore, statement (i) is true. This completes
the proof. �
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Theorem 4.14. The equilibrium x = 0 of (4.16) is asymptotically stable if
and only if it is exponentially stable.

Proof. The exponential stability of the equilibrium x = 0 implies the asymp-
totic stability of the equilibrium x = 0 of systems (4.13) in general and, hence,
for systems (4.16) in particular.

Conversely, assume that the equilibrium x = 0 of (4.16) is asymptotically
stable. Then there is a δ > 0 and a T > 0 such that if ‖ x0 ‖≤ δ, then

‖ Φ(t + T )x0 ‖< δ/2

for all t ≥ 0. This implies that

‖ Φ(t+ T ) ‖≤ 1
2

if t ≥ 0. (4.17)

From Theorem 3.9 (iii) we have that Φ(t− τ) = Φ(t−σ)Φ(σ− τ) for any t, σ,
and τ . Therefore,

‖ Φ(t+ 2T ) ‖=‖ Φ(t + 2T − t− T )Φ(t+ T ) ‖≤ 1
4
,

in view of (4.17). By induction, we obtain for t ≥ 0 that

‖ Φ(t+ nT ) ‖≤ 2−n. (4.18)

Now let α = (ln2)/T . Then (4.18) implies that for 0 ≤ t < T we have that

‖ φ(t+ nT, x0) ‖ ≤ 2 ‖ x0 ‖ 2−(n+1) = 2 ‖ x0 ‖ e−α(n+1)T

≤ 2 ‖ x0 ‖ e−α(t+nT ),

which proves the result. �

Even though the preceding results require knowledge of the state transition
matrix Φ(t) of (4.16), they are quite useful in the qualitative analysis of linear
systems. In view of the above results, we can state the following equivalent
definitions.

The equilibrium x = 0 of (4.16) is stable if and only if there exists a finite
positive constant γ, such that for any x0, the corresponding solution satisfies
the inequality

‖ φ(t, x0) ‖≤ γ ‖ x0 ‖, t ≥ 0.

Furthermore, in view of the above results, if the equilibrium x = 0 of (4.16) is
asymptotically stable, then in fact it must be globally asymptotically stable,
and exponentially stable in the large. In this case there exist finite constants
γ ≥ 1 and λ > 0 such that

‖ φ(t, x0) ‖≤ γe−λt ‖ x0 ‖

for t ≥ 0 and x0 ∈ Rn.
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We now continue our investigation of system (4.16) by referring to the
discussion in Subsection 3.3.2 [refer to (3.23) to (3.39)] concerning the use
of the Jordan canonical form to compute exp(At). We let J = P−1AP and
define x = Py. Then (4.16) yields

ẏ = P−1APy = Jy. (4.19)

It is easily verified (the reader is asked to do so in the Exercises section)
that the equilibrium x = 0 of (4.16) is stable (resp., asymptotically stable or
unstable) if and only if y = 0 of (4.19) is stable (resp., asymptotically stable
or unstable). In view of this, we can assume without loss of generality that
the matrix A in (4.16) is in Jordan canonical form, given by

A = diag[J0, J1, . . . , Js],

where
J0 = diag[λ1, . . . , λk] and Ji = λk+iIi +Ni

for the Jordan blocks J1, . . . , Js.
As in (3.33), (3.34), (3.38), and (3.39), we have

eAt =

⎡
⎢⎢⎢⎣

eJ0t 0
eJ1t

. . .
0 eJst

⎤
⎥⎥⎥⎦ ,

where
eJ0t = diag[eλ1t, . . . , eλkt] (4.20)

and

eJit = eλk+it

⎡
⎢⎢⎢⎣

1 t t2/2 · · · tni−1/(ni − 1)!
0 1 t · · · tni−2/(ni − 2)!
...

...
...

...
0 0 0 · · · 1

⎤
⎥⎥⎥⎦ (4.21)

for i = 1, . . . , s.
Now suppose that Reλi ≤ β for all i = 1, . . . , k. Then it is clear that

limt→∞(‖ eJ0t ‖ /eβt) < ∞, where ‖ eJ0t ‖ is the matrix norm induced by
one of the equivalent vector norms defined on Rn. We write this as ‖ eJ0t ‖=
O(eβt). Similarly, if β = Reλk+i, then for any ε > 0 we have that ‖ eJit ‖=
O(tni−1eβt) = O(e(β+ε)t).

From the foregoing it is now clear that ‖ eAt ‖≤ K for some K > 0 if and
only if all eigenvalues of A have nonpositive real parts, and the eigenvalues
with zero real part occur in the Jordan form only in J0 and not in any of the
Jordan blocks Ji, 1 ≤ i ≤ s. Hence, by Theorem 4.12, the equilibrium x = 0
of (4.16) is under these conditions stable.
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Now suppose that all eigenvalues of A have negative real parts. From
the preceding discussion it is clear that there is a constant K > 0 and an
α > 0 such that ‖ eAt ‖≤ Ke−αt, and therefore, ‖ φ(t, x0) ‖≤ Ke−αt ‖ x0 ‖
for all t ≥ 0 and for all x0 ∈ Rn. It follows that the equilibrium x = 0 is
asymptotically stable in the large, in fact exponentially stable in the large.
Conversely, assume that there is an eigenvalue λi with a nonnegative real part.
Then either one term in (4.20) does not tend to zero, or else a term in (4.21)
is unbounded as t→ ∞. In either case, eAtx(0) will not tend to zero when the
initial condition x(0) = x0 is properly chosen. Hence, the equilibrium x = 0 of
(4.16) cannot be asymptotically stable (and, hence, it cannot be exponentially
stable).

Summarizing the above, we have proved the following result.

Theorem 4.15. The equilibrium x = 0 of (4.16) is stable, if and only if all
eigenvalues of A have nonpositive real parts, and every eigenvalue with zero
real part has an associated Jordan block of order one. The equilibrium x = 0
of (4.16) is asymptotically stable in the large, in fact exponentially stable in
the large, if and only if all eigenvalues of A have negative real parts. �

A direct consequence of the above result is that the equilibrium x = 0 of
(4.16) is unstable if and only if at least one of the eigenvalues of A has either
positive real part or has zero real part that is associated with a Jordan block
of order greater than one.

At this point, it may be appropriate to take note of certain conventions
concerning matrices that are used in the literature. It should be noted that
some of these are not entirely consistent with the terminology used in The-
orem 4.15. Specifically, a real n × n matrix A is called stable or a Hurwitz
matrix if all its eigenvalues have negative real parts. If at least one of the
eigenvalues has a positive real part, then A is called unstable. A matrix A,
which is neither stable nor unstable, is called critical, and the eigenvalues with
zero real parts are called critical eigenvalues .

We conclude our discussion concerning the stability of (4.16) by noting
that the results given above can also be obtained by directly using the facts
established in Subsection 3.3.3, concerning modes and asymptotic behavior of
time-invariant systems.

Example 4.16. We consider the system (4.16) with

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±j. According to Theorem 4.15, the equilib-
rium x = 0 of this system is stable. This can also be verified by computing the
solution of this system for a given set of initial data x(0)T = (x1(0), x2(0)),

φ1(t, x0) = x1(0) cos t+ x2(0) sin t,
φ2(t, x0) = −x1(0) sin t+ x2(0) cos t,
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t ≥ 0, and then applying Definition 4.6.

Example 4.17. We consider the system (4.16) with

A =
[

0 1
0 0

]
.

The eigenvalues of A are λ1 = 0, λ2 = 0. According to Theorem 4.15, the
equilibrium x = 0 of this system is unstable. This can also be verified by
computing the solution of this system for a given set of initial data x(0)T =
(x1(0), x2(0)),

φ1(t, x0) = x1(0) + x2(0)t,
φ2(t, x0) = x2(0),

t ≥ 0, and then applying Definition 4.9. (Note that in this example, the entire
x1-axis consists of equilibria.)

Example 4.18. We consider the system (4.16) with

A =
[

2.8 9.6
9.6 −2.8

]
.

The eigenvalues of A are λ1, λ2 = ±10. According to Theorem 4.15, the equi-
librium x = 0 of this system is unstable.

Example 4.19. We consider the system (4.16) with

A =
[
−1 0
−1 −2

]
.

The eigenvalues of A are λ1, λ2 = −1,−2. According to Theorem 4.15, the
equilibrium x = 0 of this system is exponentially stable.

4.5 The Lyapunov Matrix Equation

In Section 4.4 we established a variety of stability results that require explicit
knowledge of the solutions of (4.16). In this section we will develop stability
criteria for (4.16) with arbitrary matrix A. In doing so, we will employ Lya-
punov’s Second Method (also called Lyapunov’s Direct Method) for the case
of linear systems (4.16). This method utilizes auxiliary real-valued functions
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v(x), called Lyapunov functions , that may be viewed as generalized energy
functions or generalized distance functions (from the equilibrium x = 0), and
the stability properties are then deduced directly from the properties of v(x)
and its time derivative v̇(x), evaluated along the solutions of (4.16).

A logical choice of Lyapunov function is v(x) = xTx =‖ x ‖2, which rep-
resents the square of the Euclidean distance of the state from the equilibrium
x = 0 of (4.16). The stability properties of the equilibrium are then deter-
mined by examining the properties of v̇(x), the time derivative of v(x) along
the solutions of (4.16), which we repeat here,

ẋ = Ax. (4.22)

This derivative can be determined without explicitly solving for the solutions
of (4.22) by noting that

v̇(x) = ẋTx+ xT ẋ = (Ax)T x+ xT (Ax)

= xT (AT +A)x.

If the matrix A is such that v̇(x) is negative for all x �= 0, then it is reasonable
to expect that the distance of the state of (4.22) from x = 0 will decrease
with increasing time, and that the state will therefore tend to the equilibrium
x = 0 of (4.22) with increasing time t.

It turns out that the Lyapunov function used in the above discussion
is not sufficiently flexible. In the following discussion, we will employ as a
“generalized distance function” the quadratic form given by

v(x) = xTPx, P = PT , (4.23)

where P is a real n×n matrix. The time derivative of v(x) along the solutions
of (4.22) is determined as

v̇(x) = ẋTPx+ xTP ẋ = xTATPx+ xTPAx

= xT (ATP + PA)x;

i.e.,
v̇ = xTCx, (4.24)

where
C = ATP + PA. (4.25)

Note that C is real and CT = C. The system of equations given in (4.25) is
called the Lyapunov Matrix Equation.

We recall that since P is real and symmetric, all its eigenvalues are real.
Also, we recall that P is said to be positive definite (resp., positive semidef-
inite) if all its eigenvalues are positive (resp., nonnegative), and it is called
indefinite if P has eigenvalues of opposite sign. The concepts of negative def-
inite and negative semidefinite (for P ) are similarly defined. Furthermore,
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we recall that the function v(x) given in (4.23) is said to be positive defi-
nite, positive semidefinite, indefinite, and so forth, if P has the corresponding
definiteness properties.

Instead of solving for the eigenvalues of a real symmetric matrix to deter-
mine its definiteness properties, there are more efficient and direct methods
of accomplishing this. We now digress to discuss some of these.

LetG = [gij ] be a real n×nmatrix (not necessarily symmetric). Recall that
the minors of G are the matrix itself and the matrix obtained by removing
successively a row and a column. The principal minors of G are G itself and
the matrices obtained by successively removing an ith row and an ith column,
and the leading principal minors of G are G itself and the minors obtained
by successively removing the last row and the last column. For example, if
G = [gij ] ∈ R3×3, then the principal minors are

⎡
⎣
g11 g12 g13
g21 g22 g23
g31 g32 g33

⎤
⎦ ,

[
g11 g12
g21 g22

]
, [g11],

[
g11 g13
g31 g33

]
,

[
g22 g23
g32 g33

]
, [g22], [g33].

The first three matrices above are the leading principal minors of G. On the
other hand, the matrix [

g21 g22
g31 g32

]

is a minor but not a principal minor.
The following results, due to Sylvester, allow efficient determination of the

definiteness properties of a real, symmetric matrix.

Proposition 4.20. (i) A real symmetric matrix P = [pij ] ∈ Rn×n is positive
definite if and only if the determinants of its leading principal minors are
positive, i.e., if and only if

p11 > 0, det
[
p11 p12

p12 p22

]
> 0, . . . ,detP > 0.

(ii) A real symmetric matrix P is positive semidefinite if and only if the de-
terminants of all of its principal minors are nonnegative. �

Still digressing, we consider next the quadratic form

v(w) = wTGw, G = GT ,

where G ∈ Rn×n. Now recall that there exists an orthogonal matrix Q such
that the matrix P defined by

P = Q−1GQ = QTGQ
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is diagonal. Therefore, if we let w = Qx, then

v(Qx) � v(x) = xTQTGQx = xTPx,

where P is in the form given by

P = diag[Λi] i = 1, . . . , p,

where Λi = diagλi. From this, we immediately obtain the following useful
result.

Proposition 4.21. Let P = PT ∈ Rn×n, let λM (P ) and λm(P ) denote the
largest and smallest eigenvalues of P , respectively, and let ‖ · ‖ denote the
Euclidean norm. Then

λm(P ) ‖ x ‖2≤ v(x) = xTPx ≤ λM (P ) ‖ x ‖2 (4.26)

for all x ∈ Rn (refer to [1]). �

Let c1 � λm(P ) and c2 = λM (P ). Clearly, v(x) is positive definite if and
only if c2 ≥ c1 > 0, v(x) is positive semidefinite if and only if c2 ≥ c1 ≥ 0, v(x)
is indefinite if and only if c2 > 0, c1 < 0, and so forth.

We are now in a position to prove several results.

Theorem 4.22. The equilibrium x = 0 of (4.22) is stable if there exists a
real, symmetric, and positive definite n× n matrix P such that the matrix C
given in (4.25) is negative semidefinite.

Proof. Along any solution φ(t, x0) � φ(t) of (4.22) with φ(0, x0) = φ(0) = x0,
we have

φ(t)TPφ(t) = xT0 Px0 +
∫ t

0

d

dη
φ(η)TPφ(η)dη = xT0 Px0 +

∫ t

0

φ(η)TCφ(η)dη

for all t ≥ 0. Since P is positive definite and C is negative semidefinite, we
have

φ(t)TPφ(t) − xT0 Px0 ≤ 0

for all t ≥ 0, and there exist c2 ≥ c1 > 0 such that

c1 ‖ φ(t) ‖2≤ φ(t)TPφ(t) ≤ xT0 Px0 ≤ c2 ‖ x0 ‖2

for all t ≥ 0. It follows that

‖ φ(t) ‖≤ (c2/c1)1/2 ‖ x0 ‖

for all t ≥ 0 and for any x0 ∈ Rn. Therefore, the equilibrium x = 0 of (4.22)
is stable (refer to Theorem 4.12). �
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Example 4.23. For the system given in Example 4.16 we choose P = I, and
we compute

C = ATP + PA = AT +A = 0.

According to Theorem 4.22, the equilibrium x = 0 of this system is stable (as
expected from Example 4.16).

Theorem 4.24. The equilibrium x = 0 of (4.22) is exponentially stable in
the large if there exists a real, symmetric, and positive definite n× n matrix
P such that the matrix C given in (4.25) is negative definite.

Proof. We let φ(t, x0) � φ(t) denote an arbitrary solution of (4.22) with
φ(0) = x0. In view of the hypotheses of the theorem, there exist constants
c2 ≥ c1 > 0 and c3 ≥ c4 > 0 such that

c1 ‖ φ(t) ‖2≤ v(φ(t)) = φ(t)TPφ(t) ≤ c2 ‖ φ(t) ‖2

and
−c3 ‖ φ(t) ‖2≤ v̇(φ(t)) = φ(t)TCφ(t) ≤ −c4 ‖ φ(t) ‖2

for all t ≥ 0 and for any x0 ∈ Rn. Then

v̇(φ(t)) =
d

dt
[φ(t)TPφ(t)] ≤ (−c4/c2)φ(t)TPφ(t)

= (−c4/c2)v(φ(t))

for all t ≥ t0. This implies, after multiplication by the appropriate integrating
factor, and integrating from 0 to t, that

v(φ(t)) = φ(t)TPφ(t) ≤ xT0 Px0e
−(c4/c2)t

or
c1 ‖ φ(t) ‖2≤ φ(t)TPφ(t) ≤ c2 ‖ x0 ‖2 e−(c4/c2)t

or
‖ φ(t) ‖≤ (c2/c1)1/2 ‖ x0 ‖ e− 1

2 (c4/c2)t, t ≥ 0.

This inequality holds for all x0 ∈ Rn. Therefore, the equilibrium x = 0 of
(4.22) is exponentially stable in the large (refer to Sections 4.3 and 4.4). �

In Figure 4.3 we provide an interpretation of Theorem 4.24 for the two-
dimensional case (n = 2). The curves Ci, called level curves , depict loci where
v(x) is constant; i.e., Ci = {x ∈ R2 : v(x) = xTPx = ci}, i = 0, 1, 2, 3, . . . .
When the hypotheses of Theorem 4.24 are satisfied, trajectories determined
by (4.22) penetrate level curves corresponding to decreasing values of ci as t
increases, tending to the origin as t becomes arbitrarily large.
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Figure 4.3. Asymptotic stability

Example 4.25. For the system given in Example 4.19, we choose

P =
[

1 0
0 0.5

]
,

and we compute the matrix
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C = ATP + PA =
[
−2 0

0 −2

]
.

According to Theorem 4.24, the equilibrium x = 0 of this system is exponen-
tially stable in the large (as expected from Example 4.19).

Theorem 4.26. The equilibrium x = 0 of (4.22) is unstable if there exists a
real, symmetric n × n matrix P that is either negative definite or indefinite
such that the matrix C given in (4.25) is negative definite.

Proof. We first assume that P is indefinite. Then P possesses eigenvalues of
either sign, and every neighborhood of the origin contains points where the
function

v(x) = xTPx

is positive and negative. Consider the neighborhood

B(ε) = {x ∈ Rn :‖ x ‖< ε},

where ‖ · ‖ denotes the Euclidean norm, and let

G = {x ∈ B(ε) : v(x) < 0}.

On the boundary of G we have either ‖ x ‖= ε or v(x) = 0. In particular,
note that the origin x = 0 is on the boundary of G. Now, since the matrix C
is negative definite, there exist constants c3 > c4 > 0 such that

−c3 ‖ x ‖2≤ xTCx = v̇(x) ≤ −c4 ‖ x ‖2

for all x ∈ Rn. Let φ(t, x0) � φ(t) and let x0 = φ(0) ∈ G. Then v(x0) = −a <
0. The solution φ(t) starting at x0 must leave the set G. To see this, note that
as long as φ(t) ∈ G, v(φ(t)) ≤ −a since v̇(x) < 0 in G. Let −c = sup{v̇(x) :
x ∈ G and v(x) ≤ −a}.

Then c > 0 and

v(φ(t)) = v(x0) +
∫ t

0

v̇(φ(s))ds ≤ −a−
∫ t

0

cds

= −a− tc, t ≥ t0.

This inequality shows that φ(t) must escape the set G (in finite time) because
v(x) is bounded from below on G. But φ(t) cannot leaveG through the surface
determined by v(x) = 0 since v(φ(t)) ≤ −a. Hence, it must leave G through
the sphere determined by ‖ x ‖= ε. Since the above argument holds for
arbitrarily small ε > 0, it follows that the origin x = 0 of (4.22) is unstable.

Next, we assume that P is negative definite. Then G as defined is all of
B(ε). The proof proceeds as above. �
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The proof of Theorem 4.26 shows that for ε > 0 sufficiently small when P is
negative definite, all solutions φ(t) of (4.22) with initial conditions x0 ∈ B(ε)
will tend away from the origin. This constitutes a severe case of instability,
called complete instability.

Example 4.27. For the system given in Example 4.18, we choose

P =
[
−0.28 −0.96
−0.96 0.28

]
,

and we compute the matrix

C = ATP + PA =
[
−20 0

0 −20

]
.

The eigenvalues of P are ±1. According to Theorem 4.26, the equilibrium
x = 0 of this system is unstable (as expected from Example 4.18).

In applying the results derived thus far in this section, we start by choosing
(guessing) a matrix P having certain desired properties. Next, we solve for
the matrix C, using (4.25). If C possesses certain desired properties (i.e., it
is negative definite), we draw appropriate conclusions by applying one of the
preceding theorems of this section; if not, we need to choose another matrix P .
This points to the principal shortcoming of Lyapunov’s Direct Method, when
applied to general systems. However, in the special case of linear systems
described by (4.22), it is possible to construct Lyapunov functions of the
form v(x) = xTPx in a systematic manner. In doing so, one first chooses the
matrix C in (4.25) (having desired properties), and then one solves (4.25) for
P . Conclusions are then drawn by applying the appropriate results of this
section. In applying this construction procedure, we need to know conditions
under which (4.25) possesses a (unique) solution P for a given C. We will
address this topic next.

We consider the quadratic form

v(x) = xTPx, P = PT , (4.27)

and the time derivative of v(x) along the solutions of (4.22), given by

v̇(x) = xTCx, C = CT , (4.28)

where
C = ATP + PA (4.29)

and where all symbols are as defined in (4.23) to (4.25). Our objective is to
determine the as yet unknown matrix P in such a way that v̇(x) becomes a
preassigned negative definite quadratic form, i.e., in such a way that C is a
preassigned negative definite matrix.
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Equation (4.29) constitutes a system of n(n + 1)/2 linear equations. We
need to determine under what conditions we can solve for the n(n+ 1)/2 ele-
ments, pik, given C and A. To this end, we choose a similarity transformation
Q such that

QAQ−1 = Ā, (4.30)

or equivalently,
A = Q−1ĀQ, (4.31)

where Ā is similar to A and Q is a real n×n nonsingular matrix. From (4.31)
and (4.29) we obtain

(Ā)T (Q−1)TPQ−1 + (Q−1)TPQ−1Ā = (Q−1)TCQ−1 (4.32)

or

(Ā)T P̄ + P̄ Ā = C̄, P̄ = (Q−1)TPQ−1, C̄ = (Q−1)TCQ−1. (4.33)

In (4.33), P and C are subjected to a congruence transformation and P̄ and
C̄ have the same definiteness properties as P and C, respectively. Since every
real n×n matrix can be triangularized (refer to [1]), we can choose Q in such
a fashion that Ā = [āij ] is triangular ; i.e., āij = 0 for i > j. Note that in this
case the eigenvalues of A, λ1, . . . , λn, appear in the main diagonal of Ā. To
simplify our notation, we rewrite (4.33) in the form (4.29) by dropping the
bars, i.e.,

ATP + PA = C, C = CT , (4.34)

and we assume that A = [aij ] has been triangularized ; i.e., aij = 0 for i > j.
Since the eigenvalues λ1, . . . , λn appear in the diagonal of A, we can rewrite
(4.34) as

2λ1p11 = c11

a12p11 + (λ1 + λ2)p12 = c12 (4.35)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note that λ1 may be a complex number; in which case, c11 will also be com-
plex. Since this system of equations is triangular, and since its determinant is
equal to

2nλ1 . . . λn
∏
i<j

(λi + λj), (4.36)

the matrix P can be determined (uniquely) if and only if this determinant is
not zero. This is true when all eigenvalues of A are nonzero and no two of
them are such that λi + λj = 0. This condition is not affected by a similarity
transformation and is therefore also valid for the original system of equations
(4.29).
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We summarize the above discussion in the following lemma.

Lemma 4.28. Let A ∈ Rn×n and let λ1, . . . , λn denote the (not necessarily
distinct) eigenvalues of A. Then (4.34) has a unique solution for P corre-
sponding to each C ∈ Rn×n if and only if

λi �= 0, λi + λj �= 0 for all i, j. (4.37)

�

To construct v(x), we must still check the definiteness of P . This can be
done in a purely algebraic way; however, in the present case, it is much easier
to apply the results of this section and argue as follows:

(a) If all the eigenvalues λi of A have negative real parts, then the equilibrium
x = 0 of (4.22) is exponentially stable in the large, and if C in (4.29)
is negative definite, then P must be positive definite. To prove this, we
note that if P is not positive definite, then for δ > 0 and sufficiently
small, (P − δI) has at least one negative eigenvalue, whereas the function
v(x) = xT (P − δI)x has a negative definite derivative; i.e.,

v1
(L)(x) = xT [C − δ(A+AT )]x < 0

for all x �= 0. By Theorem 4.26, the equilibrium x = 0 of (4.22) is unstable.
We have arrived at a contradiction. Therefore, P must be positive definite.

(b) If A has eigenvalues with positive real parts and no eigenvalues with zero
real parts, we can use a similarity transformation x = Qy in such a way
that Q−1AQ is a block diagonal matrix of the form diag[A1, A2], where
all the eigenvalues of A1 have positive real parts, whereas all eigenvalues
of A2 have negative real parts (refer to [1]). (If A does not have any
eigenvalues with negative real parts, then we take A = A1). By the result
established in (a), noting that all eigenvalues of −A1 have negative real
parts, given any negative definite matrices C1 and C2, there exist positive
definite matrices P1 and P2 such that

(−AT1 )P1 + P1(−A1) = C1, AT2 P2 + P2A2 = C2.

Then w(y) = yTPy, with P = diag[−P1, P2] is a Lyapunov function for
the system ẏ = Q−1AQy (and, hence, for the system ẋ = Ax), which sat-
isfies the hypotheses of Theorem 4.26. Therefore, the equilibrium x = 0
of system (4.22) is unstable. If A does not have any eigenvalues with neg-
ative real parts, then the equilibrium x = 0 of system (4.22) is completely
unstable.]

In the above proof, we did not invoke Lemma 4.28. We note, however, that
if additionally, (4.37) is true, then we can construct the Lyapunov function
for (4.22) in a systematic manner.

Summarizing the above discussion, we can now state the main result of
this subsection.
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Theorem 4.29. Assume that the matrix A [for system (4.22)] has no eigen-
values with real part equal to zero. If all the eigenvalues of A have negative
real parts, or if at least one of the eigenvalues of A has a positive real part,
then there exists a quadratic Lyapunov function

v(x) = xTPx, P = PT ,

whose derivative along the solutions of (4.22) is definite (i.e., it is either
negative definite or positive definite). �

This result shows that when A is a stable matrix (i.e., all the eigenval-
ues of A have negative real parts), then for system (4.22) the conditions of
Theorem 4.24 are also necessary conditions for exponential stability in the
large. Moreover, in the case when the matrix A has at least one eigenvalue
with positive real part and no eigenvalues on the imaginary axis, then the
conditions of Theorem 4.26 are also necessary conditions for instability.

Example 4.30. We consider the system (4.22) with

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±j, and therefore condition (4.37) is vio-
lated. According to Lemma 4.28, the Lyapunov matrix equation

ATP + PA = C

does not possess a unique solution for a given C. We now verify this for two
specific cases.

(i) When C = 0, we obtain
[

0 −1
1 0

] [
p11 p12

p12 p22

]
+
[
p11 p12

p12 p22

] [
0 1

−1 0

]
=
[

−2p12 p11 − p22

p11 − p22 2p12

]

=
[

0 0
0 0

]
,

or p12 = 0 and p11 = p22. Therefore, for any a ∈ R, the matrix P = aI
is a solution of the Lyapunov matrix equation. In other words, for C = 0,
the Lyapunov matrix equation has in this example denumerably many
solutions.

(ii) When C = −2I, we obtain
[

−2p12 p11 − p22

p11 − p22 2p12

]
=
[
−2 0

0 −2

]
,

or p11 = p22 and p12 = 1 and p12 = −1, which is impossible. Therefore, for
C = −2I, the Lyapunov matrix equation has in this example no solutions
at all.
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It turns out that if all the eigenvalues of matrix A have negative real parts,
then we can compute P in (4.29) explicitly.

Theorem 4.31. If all eigenvalues of a real n×n matrix A have negative real
parts, then for each matrix C ∈ Rn×n, the unique solution of (4.29) is given
by

P =
∫ ∞

0

eA
T t(−C)eAtdt. (4.38)

Proof. If all eigenvalues of A have negative real parts, then (4.37) is satisfied
and therefore (4.29) has a unique solution for every C ∈ Rn×n. To verify that
(4.38) is indeed this solution, we first note that the right-hand side of (4.38) is
well defined, since all eigenvalues of A have negative real parts. Substituting
the right-hand side of (4.38) for P into (4.29), we obtain

ATP + PA =
∫ ∞

0

AT eA
T t(−C)eAtdt+

∫ ∞

0

eA
T t(−C)eAtAdt

=
∫ ∞

0

d

dt
[eA

T t(−C)eAt]dt

= eA
T t(−C)eAt

∣∣∣
∞

0
= C,

which proves the theorem. �

4.6 Linearization

In this section we consider nonlinear, finite-dimensional, continuous-time dy-
namical systems described by equations of the form

ẇ = f(w), (4.39)

where f ∈ C1(Rn, Rn). We assume that w = 0 is an equilibrium of (4.39). In
accordance with Subsection 1.6.1, we linearize system (4.39) about the origin
to obtain

ẋ = Ax + F (x), (4.40)

x ∈ Rn, where F ∈ C(Rn, Rn) and where A denotes the Jacobian of f(w)
evaluated at w = 0, given by

A =
∂f

∂w
(0), (4.41)

and where
F (x) = o(‖ x ‖) as ‖ x ‖→ 0. (4.42)

Associated with (4.40) is the linearization of (4.39), given by

ẏ = Ay. (4.43)
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In the following discussion, we use the results of Section 4.5 to establish
criteria that allow us to deduce the stability properties of the equilibrium
w = 0 of the nonlinear system (4.39) from the stability properties of the
equilibrium y = 0 of the linear system (4.43).

Theorem 4.32. Let A ∈ Rn×n be a Hurwitz matrix (i.e., all of its eigevnalues
have negative real parts), let F ∈ C(Rn, Rn), and assume that (4.42) holds.
Then the equilibrium x = 0 of (4.40) [and, hence, of (4.39)] is exponentially
stable.

Proof. Theorem 4.29 applies to (4.43) since all the eigenvalues of A have
negative real parts. In view of that theorem (and the comments following
Lemma 4.28), there exists a symmetric, real, positive definite n× n matrix P
such that

PA+ATP = C, (4.44)

where C is negative definite. Consider the Lyapunov function

v(x) = xTPx. (4.45)

The derivative of v with respect to t along the solutions of (4.40) is given by

v̇(x) = ẋTPx+ xTP ẋ

= (Ax+ F (x))TPx+ xTP (Ax + F (x))

= xTCx+ 2xTPF (x). (4.46)

Now choose γ < 0 such that xTCx ≤ 3γ ‖ x ‖2 for all x ∈ Rn. Since it
is assumed that (4.42) holds, there is a δ > 0 such that if ‖ x ‖≤ δ, then
‖ PF (x) ‖≤ −γ ‖ x ‖ for all x ∈ B(δ) = {x ∈ Rn :‖ x ‖≤ δ}. Therefore, for
all x ∈ B(δ), we obtain, in view of (4.46), the estimate

v̇(x) ≤ 3γ ‖ x ‖2 −2γ ‖ x ‖2= γ ‖ x ‖2 . (4.47)

Now let α = min‖x‖=δ v(x). Then α > 0 (since P is positive definite). Take
λ ∈ (0, α), and let

Cλ = {x ∈ B(δ) = {x ∈ Rn :‖ x ‖< δ} : v(x) ≤ λ}. (4.48)

Then Cλ ⊂ B(δ). [This can be shown by contradiction. Suppose that Cλ is not
entirely inside B(δ). Then there is a point x̄ ∈ Cλ that lies on the boundary of
B(δ). At this point, v(x̄) ≥ α > λ. We have thus arrived at a contradiction.]
The set Cλ has the property that any solution of (4.40) starting in Cλ at t = 0
will stay in Cλ for all t ≥ 0. To see this, we let φ(t, x0) � φ(t) and we recall
that v̇(x) ≤ γ ‖ x ‖2, γ < 0, x ∈ B(δ) ⊃ Cλ. Then v̇(φ(t)) ≤ 0 implies that
v(φ(t)) ≤ v(x0) ≤ λ for all t ≥ t0 ≥ 0. Therefore, φ(t) ∈ Cλ for all t ≥ t0 ≥ 0.

We now proceed in a similar manner as in the proof of Theorem 4.24 to
complete this proof. In doing so, we first obtain the estimate
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v̇(φ(t)) ≤ (γ/c2)v(φ(t)), (4.49)

where γ is given in (4.47) and c2 is determined by the relation

c1 ‖ x ‖2≤ v(x) = xTPx ≤ c2 ‖ x ‖2 . (4.50)

Following now in an identical manner as was done in the proof of Theo-
rem 4.22, we have

‖ φ(t) ‖≤ (c2/c1)
1
2 ‖ x0 ‖ e 1

2 (γ/c2)t, t ≥ 0, (4.51)

whenever x0 ∈ B(r′), where r′ has been chosen sufficiently small so that
B(r′) ⊂ Cλ. This proves that the equilibrium x = 0 of (4.40) is exponentially
stable. �

It is important to recognize that Theorem 4.32 is a local result that yields
sufficient conditions for the exponential stability of the equilibrium x = 0 of
(4.40); it does not yield conditions for exponential stability in the large. The
proof of Theorem 4.32, however, enables us to determine an estimate of the
domain of attraction of the equilibrium x = 0 of (4.39), involving the following
steps:

1. Determine an equilibrium, xe, of (4.39) and transform (4.39) to a new
system that translates xe to the origin x = 0 (refer to Section 4.2).

2. Linearize (4.39) about the origin and determine F (x), A, and the eigen-
values of A.

3. If all eigenvalues of A have negative real parts, choose a negative definite
matrix C and solve the Lyapunov matrix equation

C = ATP + PA.

4. Determine the Lyapunov function

v(x) = xTPx.

5. Compute the derivative of v along the solutions of (4.40), given by

v̇(x) = xTCx+ 2xTPF (x).

6. Determine δ > 0 such that v̇(x) < 0 for all x ∈ B(δ) − {0}.
7. Determine the largest λ = λM such that CλM ⊂ B(δ), where

Cλ = {x ∈ Rn : v(x) < λ}.

8. CλM is a subset of the domain of attraction of the equilibrium x = 0 of
(4.40) and, hence, of (4.39).
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The above procedure may be repeated for different choices of matrix C
given in step (3), resulting in different matrices Pi, which in turn may result
in different estimates for the domain of attraction, CiλM

, i ∈ Λ, where Λ is an
index set. The union of the sets CiλM

� Di, D = ∪iDi, is also a subset of the
domain of attraction of the equilibrium x = 0 of (4.39).

Theorem 4.33. Assume that A is a real n × n matrix that has at least one
eigenvalue with positive real part and no eigenvalue with zero real part. Let
F ∈ C(Rn, Rn), and assume that (4.42) holds. Then the equilibrium x = 0 of
(4.40) [and, hence, of (4.39)] is unstable.

Proof. We use Theorem 4.29 to choose a real, symmetric n × n matrix P
such that the matrix PA+ATP = C is negative definite. The matrix P is not
positive definite, or even positive semidefinite (refer to the comments following
Lemma 4.28). Hence, the function v(x) = xTPx is negative at some points
arbitrarily close to the origin. The derivative of v(x) with respect to t along
the solutions of (4.40) is given by (4.46). As in the proof of Theorem 4.32, we
can choose a γ < 0 such that xTCx ≤ 3γ ‖ x ‖2 for all x ∈ Rn, and in view of
(4.42) we can choose a δ > 0 such that ‖ PF (x) ‖≤ −γ ‖ x ‖ for all x ∈ B(δ).
Therefore, for all x ∈ B(δ), we obtain that

v̇(x) ≤ 3γ ‖ x ‖2 −2γ ‖ x ‖2= γ ‖ x ‖2 .

Now let
G = {x ∈ B(δ) : v(x) < 0}.

The boundary of G is made up of points where v(x) = 0 and where ‖ x ‖= δ.
Note in particular that the equilibrium x = 0 of (4.40) is in the boundary
of G. Now following an identical procedure as in the proof of Theorem 4.26,
we show that any solution φ(t) of (4.40) with φ(0) = x0 ∈ G must escape G
in finite time through the surface determined by ‖ x ‖= δ. Since the above
argument holds for arbitrarily small δ > 0, it follows that the origin x = 0 of
(4.40) is unstable. �

Before concluding this section, we consider a few specific cases.

Example 4.34. The Lienard Equation is given by

ẅ + f(w)ẇ + w = 0, (4.52)

where f ∈ C1(R,R) with f(0) > 0. Letting x1 = w and x2 = ẇ, we obtain

ẋ1 = x2,

ẋ2 = −x1 − f(x1)x2.
(4.53)

Let xT = (x1, x2), f(x)T = (f1(x), f2(x)), and let
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J(0) = A =

⎡
⎣
∂f1
∂x1

(0) ∂f1
∂x2

(0)

∂f2
∂x1

(0) ∂f2
∂x2

(0)

⎤
⎦ =

[
0 1

−1 −f(0)

]
.

Then
ẋ = Ax+ [f(x) −Ax] = Ax+ F (x),

where

F (x) =
[

0
[f(0) − f(x1)]x2

]
.

The origin x = 0 is clearly an equilibrium of (4.52) and hence of (4.53). The
eigenvalues of A are given by

λ1, λ2 =
−f(0)±

√
f(0)2 − 4

2
,

and therefore, A is a Hurwitz matrix. Also, (4.42) holds. Therefore, all the
conditions of Theorem 4.32 are satisfied. We conclude that the equilibrium
x = 0 of (4.53) is exponentially stable.

Example 4.35. We consider the system given by

ẋ1 = −x1 + x1(x2
1 + x2

2),

ẋ2 = −x2 + x2(x2
1 + x2

2).
(4.54)

The origin is clearly an equilibrium of (4.54). Also, the system is already in
the form (4.40) with

A =
[
−1 0

0 −1

]
, F (x) =

[
x1(x2

1 + x2
2)

x2(x2
1 + x2

2)

]
,

and condition (4.42) is clearly satisfied. The eigenvalues of A are λ1 =
−1, λ2 = −1. Therefore, all conditions of Theorem 4.32 are satisfied and
we conclude that the equilibrium xT = (x1, x2) = 0 is exponentially stable;
however, we cannot conclude that this equilibrium is exponentially stable in
the large. Accordingly, we seek to determine an estimate for the domain of
attraction of this equilibrium.

We choose C = −I (where I ∈ R2×2 denotes the identity matrix), and
we solve the matrix equation ATP + PA = C to obtain P = (1/2)I, and
therefore,

v(x1, x2) = xTPx =
1
2
(x2

1 + x2
2).

Along the solutions of (4.54) we obtain

v̇(x1, x2) = xTCx + 2xTPF (x)

= −(x2
1 + x2

2) + (x2
1 + x2

2)
2.
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Clearly, v̇(x1, x2) < 0 when (x1, x2) �= (0, 0) and x2
1 + x2

2 < 1. In the language
of the proof of Theorem 4.32, we can therefore choose δ = 1.

Now let

C1/2 = {x ∈ R2 : v(x1, x2) =
1
2
(x2

1 + x2
2) <

1
2
}.

Then clearly, C1/2 ⊂ B(δ), δ = 1, in fact C1/2 = B(δ). Therefore, the set
{x ∈ R2 : x2

1+x
2
2 < 1} is a subset of the domain of attraction of the equilibrium

(x1, x2)T = 0 of system (4.54).

Example 4.36. The differential equation governing the motion of a pendu-
lum is given by

θ̈ + a sin θ = 0, (4.55)

where a > 0 is a constant (refer to Chapter 1). Letting θ = x1 and θ̇ = x2, we
obtain the system description

ẋ1 = x2,

ẋ2 = −a sinx1.
(4.56)

The points x(1)
e = (0, 0)T and x(2)

e = (π, 0)T are equilibria of (4.56).

(i) Linearizing (4.56) about the equilibrium x
(1)
e , we put (4.56) into the form

(4.40) with

A =
[

0 1
−a 0

]
.

The eigenvalues of A are λ1, λ2 = ±j√a. Therefore, the results of this
section (Theorem 4.32 and 4.33) are not applicable in the present case.

(ii) In (4.56), we let y1 = x1 − π and y2 = x2. Then (4.56) assumes the form

ẏ1 = y2,

ẏ2 = −a sin(y1 + π).
(4.57)

The point (y1, y2)T = (0, 0)T is clearly an equilibrium of system (4.57).
Linearizing about this equilibrium, we put (4.57) into the form (4.40),
where

A =
[

0 1
a 0

]
, F (y1, y2) =

[
0

−a(sin(y1 + π) + y1)

]
.

The eigenvalues of A are λ1, λ2 = a,−a. All conditions of Theorem 4.33
are satisfied, and we conclude that the equilibrium x

(2)
e = (π, 0)T of system

(4.56) is unstable.
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4.7 Input–Output Stability

We now turn our attention to systems described by the state equations

ẋ = Ax+Bu,

y = Cx+Du,
(4.58)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. In the preceding
sections of this chapter we investigated the internal stability properties of
system (4.58) by studying the Lyapunov stability of the trivial solution of the
associated system

ẇ = Aw. (4.59)

In this approach, system inputs and system outputs played no role. To ac-
count for these, we now consider the external stability properties of system
(4.58), called input–output stability: Every bounded input of a system should
produce a bounded output. More specifically, in the present context, we say
that system (4.58) is bounded-input/bounded-output (BIBO) stable, if for zero
initial conditions at t = 0, every bounded input defined on [0,∞) gives rise
to a bounded response on [0,∞).

Matrix D does not affect the BIBO stability of (4.58). Accordingly, we will
consider without any loss of generality the case where D ≡ 0; i.e., throughout
this section we will concern ourselves with systems described by equations of
the form

ẋ = Ax +Bu,

y = Cx.
(4.60)

We will say that the system (4.60) is BIBO stable if there exists a constant
c > 0 such that the conditions

x(0) = 0,
||u(t)|| ≤ 1, t ≥ 0,

imply that ‖ y(t) ‖≤ c for all t ≥ 0. (The symbol ‖ · ‖ denotes the Euclidean
norm.)

Recall that for system (4.60) the impulse response matrix is given by

H(t) = CeAtB, t ≥ 0,
= 0, t < 0, (4.61)

and the transfer function matrix is given by

Ĥ(s) = C(sI −A)−1B. (4.62)

Theorem 4.37. The system (4.60) is BIBO stable if and only if there exists
a finite constant L > 0 such that for all t,

∫ t

0

‖ H(t− τ) ‖ dτ ≤ L. (4.63)
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Proof. The first part of the proof of Theorem 4.37 (sufficiency) is straightfor-
ward. Indeed, if ‖ u(t) ‖≤ 1 for all t ≥ 0 and if (4.63) is true, then we have
for all t ≥ 0 that

‖ y(t) ‖ =‖
∫ t

0

H(t− τ)u(τ)dτ ‖

≤
∫ t

0

‖ H(t− τ)u(τ) ‖ dτ

≤
∫ t

0

‖ H(t− τ) ‖ ‖ u(τ) ‖ dτ

≤
∫ t

0

‖ H(t− τ) ‖ dτ ≤ L.

Therefore, system (4.60) is BIBO stable.
In proving the second part of Theorem 4.37 (necessity), we simplify matters

by first considering in (4.60) the single-variable case (n = 1) with the input–
output description given by

y(t) =
∫ t

0

h(t− τ)u(τ)dτ. (4.64)

For purposes of contradiction, we assume that the system is BIBO stable, but
no finite L exists such that (4.63) is satisfied. Another way of stating this is
that for every finite L, there exists t1 = t1(L), t1 > 0, such that

∫ t1

0

|h(t1, τ)|dτ > L.

We now choose in particular the input given by

u(t) =

⎧⎪⎨
⎪⎩

+1 if h(t− τ) > 0,
0 if h(t− τ) = 0,
−1 if h(t− τ) < 0,

(4.65)

0 ≤ t ≤ t1. Clearly, |u(t)| ≤ 1 for all t ≥ 0. The output of the system at t = t1
due to the above input, however, is

y(t1) =
∫ t1

0

h(t1 − τ)u(τ)dτ =
∫ t1

0

|h(t1 − τ)|dτ > L,

which contradicts the assumption that the system is BIBO stable.
The above can now be generalized to the multivariable case. In doing so,

we apply the single-variable result to every possible pair of input and output
vector components, we make use of the fact that the sum of a finite number
of bounded sums will be bounded, and we recall that a vector is bounded if
and only if each of its components is bounded. We leave the details to the
reader. �
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In the preceding argument we made the tacit assumption that u is con-
tinuous, or piecewise continuous. However, our particular choice of u may
involve nondenumerably many switchings (discontinuities) over a given finite-
time interval. In such cases, u is no longer piecewise continuous; however, it
is measurable (in the Lebesgue sense). This generalization can be handled, al-
though in a broader mathematical setting that we do not wish to pursue here.
The interested reader may want to refer, e.g., to the books by Desoer and
Vidyasagar [5], Michel and Miller [13], and Vidyasagar [20] and the papers by
Sandberg [17] to [19] and Zames [21], [22] for further details.

From Theorem 4.37 and from (4.61) it follows readily that a necessary and
sufficient condition for the BIBO stability of system (4.60) is the condition

∫ ∞

0

‖ H(t) ‖ dt <∞. (4.66)

Corollary 4.38. Assume that the equilibrium w = 0 of (4.59) is exponentially
stable. Then system (4.60) is BIBO stable.

Proof. Under the hypotheses of the corollary, we have

‖
∫ t

0

H(t− τ)dτ ‖ ≤
∫ t

0

‖ H(t− τ) ‖ dτ

=
∫ t

0

‖ CΦ(t − τ)B ‖ dτ ≤‖ C ‖‖ B ‖
∫ t

0

‖ Φ(t− τ) ‖ dτ.

Since the equilibrium w = 0 of (4.59) is exponentially stable, there exist δ > 0,
λ > 0 such that ‖ Φ(t, τ) ‖≤ δe−λ(t−τ), t ≥ τ . Therefore,

∫ t

0

‖ H(t− τ) ‖ dτ ≤
∫ t

0

‖ C ‖‖ B ‖ δe−λ(t−τ)dτ

≤ (‖ C ‖‖ B ‖ δ)/λ � L

for all τ, t with t ≥ τ . It now follows from Theorem 4.37 that system (4.60) is
BIBO stable. �

In Section 7.3 we will establish a connection between the BIBO stability
of (4.60) and the exponential stability of the trivial solution of (4.59).

Next, we recall that a complex number sp is a pole of Ĥ(s) = [ĥij(s)]
if for some pair (i, j), we have |ĥij(sp)| = ∞. If each entry of Ĥ(s) has
only poles with negative real values, then, as shown in Chapter 3, each entry
of H(t) = [hij(t)] has a sum of exponentials with exponents with real part
negative. It follows that the integral

∫ ∞

0

‖ H(t) ‖ dt

is finite, and any realization of Ĥ(s) will result in a system that is BIBO
stable.
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Now conversely, if ∫ ∞

0

‖ H(t) ‖ dt

is finite, then the exponential terms in any entry of H(t) must have nega-
tive real parts. But then every entry of Ĥ(s) has poles whose real parts are
negative.

We have proved the following result.

Theorem 4.39. The system (4.60) is BIBO stable if and only if all poles of
the transfer function Ĥ(s) given in (4.62) have only poles with negative real
parts. �

Example 4.40. A system with H(s) = 1/s is not BIBO stable. To see this
consider a step input. The response is then given by y(t) = t, t ≥ 0, which is
not bounded.

4.8 Discrete-Time Systems

In this section we address the Lyapunov stability of an equilibrium of discrete-
time systems (internal stability) and the input–output stability of discrete-
time systems (external stability). We establish results for discrete-time sys-
tems that are analogous to practically all the stability results that we pre-
sented for continuous-time systems.

This section is organized into five subsections. In the first subsection we
provide essential preliminary material. In the second and third subsections
we establish results for the stability, instability, asymptotic stability, and ex-
ponential stability of an equilibrium and boundedness of solutions of systems
described by linear autonomous ordinary difference equations. These results
are used to develop Lyapunov stability results for linearizations of nonlinear
systems described by ordinary difference equations in the fourth subsection. In
the last subsection we present results for the input–output stability of linear
time-invariant discrete-time systems.

4.8.1 Preliminaries

We concern ourselves here with finite-dimensional discrete-time systems de-
scribed by difference equations of the form

x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k),

(4.67)
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, k ≥ k0, and k, k0 ∈ Z+. Since (4.67)
is time-invariant, we will assume without loss of generality that k0 = 0, and
thus, x : Z+ → Rn, y : Z+ → Rp, and u : Z+ → Rm.

The internal dynamics of (4.67) under conditions of no input are described
by equations of the form

x(k + 1) = Ax(k). (4.68)

Such equations may arise in the modeling process, or they may be the conse-
quence of the linearization of nonlinear systems described by equations of the
form

x(k + 1) = g(x(k)), (4.69)

where g : Rn → Rn. For example, if g ∈ C1(Rn, Rn), then in linearizing (4.69)
about, e.g., x = 0, we obtain

x(k + 1) = Ax(k) + f(x(k)), (4.70)

where A = ∂f
∂x (x)

∣∣∣
x=0

and where f : Rn → Rn is o(||x||) as a norm of x (e.g.,

the Euclidean norm) approaches zero. Recall that this means that given ε > 0,
there is a δ > 0 such that ‖ f(x) ‖< ε ‖ x ‖ for all ‖ x ‖< δ.

As in Section 4.7, we will study the external qualitative properties of system
(4.67) by means of the BIBO stability of such systems. Consistent with the
definition of input–output stability of continuous-time systems, we will say
that the system (4.67) is BIBO stable if there exists a constant L > 0 such
that the conditions

x(0) = 0,
‖ u(k) ‖ ≤ 1, k ≥ 0,

imply that ‖ y(k) ‖≤ L for all k ≥ 0.
We will study the internal qualitative properties of system (4.67) by study-

ing the Lyapunov stability properties of an equilibrium of (4.68).
Since system (4.69) is time-invariant, we will assume without loss of gen-

erality that k0 = 0. As in Chapters 1 and 2, we will denote for a given set of
initial data x(0) = x0 the solution of (4.69) by φ(k, x0). When x0 is under-
stood or of no importance, we will frequently write φ(k) in place of φ(k, x0).
Recall that for system (4.69) [as well as systems (4.67), (4.68), and (4.70)],
there are no particular difficulties concerning the existence and uniqueness of
solutions, and furthermore, as long as g in (4.69) is continuous, the solutions
will be continuous with respect to initial data. Recall also that in contrast to
systems described by ordinary differential equations, the solutions of systems
described by ordinary difference equations [such as (4.69)] exist only in the
forward direction of time (k ≥ 0).

We say that xe ∈ Rn is an equilibrium of system (4.69) if φ(k, xe) ≡ xe
for all k ≥ 0, or equivalently,

g(xe) = xe. (4.71)
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As in the continuous-time case, we will assume without loss of generality that
the equilibrium of interest will be the origin; i.e., xe = 0. If this is not the
case, then we can always transform (similarly as in the continuous-time case)
system (4.69) into a system of equations that has an equilibrium at the origin.

Example 4.41. The system described by the equation

x(k + 1) = x(k)[x(k) − 1]

has two equilibria, one at xe1 = 0 and another at xe2 = 1.

Example 4.42. The system described by the equations

x1(k + 1) = x2(k),
x2(k + 1) = −x1(k)

has an equilibrium at xTe = (0, 0).

Throughout this section we will assume that the function g in (4.69) is
continuous, or if required, continuously differentiable. The various definitions
of Lyapunov stability of the equilibrium x = 0 of system (4.69) are essentially
identical to the corresponding definitions of Lyapunov stability of an equilib-
rium of continuous-time systems described by ordinary differential equations,
replacing t ∈ R+ by k ∈ Z+. We will concern ourselves with stability, insta-
bility, asymptotic stability, and exponential stability of the equilibrium x = 0
of (4.69).

We say that the equilibrium x = 0 of (4.69) is stable if for every ε > 0
there exists a δ = δ(ε) > 0 such that ‖ φ(k, x0) ‖< ε for all k ≥ 0 whenever
‖ x0 ‖< δ. If the equilibrium x = 0 of (4.69) is not stable, it is said to
be unstable. We say that the equilibrium x = 0 of (4.69) is asymptotically
stable if (i) it is stable and (ii) there exists an η > 0 such that if ‖ x0 ‖< η,
then limk→∞ ‖ φ(k, x0) ‖= 0. If the equilibrium x = 0 satisfies property
(ii), it is said to be attractive, and we call the set of all x0 ∈ Rn for which
x = 0 is attractive the domain of attraction of this equilibrium. If x = 0 is
asymptotically stable and if its domain of attraction is all of Rn, then it is
said to be asymptotically stable in the large or globally asymptotically stable.
We say that the equililbrium x = 0 of (4.69) is exponentially stable if there
exists an α > 0 and for every ε > 0, there exists a δ(ε) > 0, such that
‖ φ(k, x0) ‖≤ εe−αk for all k ≥ 0 whenever ‖ x0 ‖< δ(ε). The equilibrium
x = 0 of (4.69) is exponentially stable in the large if there exists α > 0 and
for any β > 0, there exists k(β) > 0 such that ‖ φ(t, x0) ‖≤ k(β) ‖ x0 ‖ e−αk
for all k > 0 whenever ‖ x0 ‖< β. Finally, we say that a solution of (4.69)
through x0 is bounded if there is a constant M such that ‖ φ(k, x0) ‖≤M for
all k ≥ 0.
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4.8.2 Linear Systems

In proving some of the results of this section, we require a result for system
(4.68) that is analogous to Theorem 3.1. As in the proof of that theorem,
we note that the linear combination of solutions of system (4.68) is also a
solution of system (4.68), and hence, the set of solutions {φ : Z+ × Rn →
Rn} constitutes a vector space (over F = R or F = C). The dimension of
this vector space is n. To show this, we choose a set of linearly independent
vectors x1

0, . . . , x
n
0 in the n-dimensional x-space (Rn or Cn) and we show, in

an identical manner as in the proof of Theorem 3.1, that the set of solutions
φ(k, xi0), i = 1, . . . , n, is linearly independent and spans the set of solutions
of system (4.68). (We ask the reader in the Exercise section to provide the
details of the proof of the above assertions.) This yields the following result.

Theorem 4.43. The set of solutions of system (4.68) over the time interval
Z+ forms an n-dimensional vector space. �

Incidentally, if in particular we choose φ(k, ei), i = 1, . . . , n, where ei, i =
1, . . . , n, denotes the natural basis for Rn, and if we let Φ(k, k0 = 0) � Φ(k) =
[φ(k, e1), . . . , φ(k, en)], then it is easily verified that the n × n matrix Φ(k)
satisfies the matrix equation

Φ(k + 1) = AΦ(k), Φ(0) = I,

and that Φ(k) = Ak, k ≥ 0 [i.e., Φ(k) is the state transition matrix for system
(4.68)].

Theorem 4.44. The equilibrium x = 0 of system (4.68) is stable if and only
if the solutions of (4.68) are bounded.

Proof. Assume that the equilibrium x = 0 of (4.68) is stable. Then for ε = 1
there is a δ > 0 such that ‖ φ(k, x0) ‖< 1 for all k ≥ 0 and all ‖ x0 ‖≤ δ. In
this case

‖ φ(k, x0) ‖=‖ Akx0 ‖=‖ Akx0δ/ ‖ x0 ‖ ‖ (‖ x0 ‖ /δ) <‖ x0 ‖ /δ

for all x0 �= 0 and all k ≥ 0. Using the definition of matrix norm [refer to
Section A.7] it follows that ‖ Ak ‖≤ δ−1, k ≥ 0. We have proved that if the
equilibrium x = 0 of (4.68) is stable, then the solutions of (4.68) are bounded.

Conversely, suppose that all solutions φ(k, x0) = Akx0 are bounded. Let
{e1, . . . , en} denote the natural basis for n-space and let ‖ φ(k, ej) ‖< βj for
all k ≥ 0. Then for any vector x0 =

∑n
j=1 αje

j we have that

‖ φ(k, x0) ‖ =‖
n∑
j=1

αjφ(k, ej) ‖≤
n∑
j=1

|αj |βj ≤ (max
j
βj)

n∑
j=1

|αj |

≤ c ‖ x0 ‖, k ≥ 0,
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for some constant c. For given ε > 0, we choose δ = ε/c. Then, if ‖ x0 ‖< δ,
we have ‖ φ(k, x0) ‖< c ‖ x0 ‖< ε for all k ≥ 0. We have proved that if
the solutions of (4.68) are bounded, then the equilibrium x = 0 of (4.68) is
stable. �

Theorem 4.45. The following statements are equivalent:

(i) The equilibrium x = 0 of (4.68) is asymptotically stable,
(ii) The equilibrium x = 0 of (4.68) is asymptotically stable in the large,
(iii) limk→∞ ‖ Ak ‖= 0.

Proof. Assume that statement (i) is true. Then there is an η > 0 such that
when ‖ x0 ‖≤ η, then φ(k, x0) → 0 as k → ∞. But then we have for any
x0 �= 0 that

φ(k, x0) = Akx0 = [Ak(ηx0/ ‖ x0 ‖)] ‖ x0 ‖ /η → 0 as k → ∞.

It follows that statement (ii) is true.
Next, assume that statement (ii) is true. Then for any ε > 0 there must

exist aK = K(ε) such that for all k ≥ K we have that ‖ φ(k, x0) ‖=‖ Akx0 ‖<
ε. To see this, let {e1, . . . , en} be the natural basis for Rn. Thus, for a fixed
constant c > 0, if x0 = (α1, . . . , αn)T and if ‖ x0 ‖≤ 1, then x0 =

∑n
j=1 αje

j

and
∑n
j=1 |αj | ≤ c. For each j there is a Kj = Kj(ε) such that ‖ Akej ‖< ε/c

for k ≥ Kj . Define K = K(ε) = max{Kj(ε) : j = 1, . . . , n}. For ‖ x0 ‖≤ 1 and
k ≥ K we have that

‖ Akx0 ‖=‖
n∑
j=1

αjA
kej ‖≤

n∑
j=1

|αj |(ε/c) ≤ ε.

By the definition of matrix norm [see Section A.7], this means that ‖ Ak ‖≤ ε
for k > K. Therefore, statement (iii) is true.

Finally, assume that statement (iii) is true. Then ‖ Ak ‖ is bounded for all
k ≥ 0. By Theorem 4.44, the equilibrium x = 0 is stable. To prove asymptotic
stability, fix ε > 0. If ‖ x0 ‖< η = 1, then ‖ φ(k, x0) ‖≤‖ Ak ‖ ‖ x0 ‖→ 0 as
k → ∞. Therefore, statement (i) is true. This completes the proof. �

Theorem 4.46. The equilibrium x = 0 of (4.68) is asymptotically stable if
and only if it is exponentially stable.

Proof. The exponential stability of the equilibrium x = 0 implies the asymp-
totic stability of the equilibrium x = 0 of systems (4.69) in general and, hence,
for systems (4.68) in particular.

Conversely, assume that the equilibrium x = 0 of (4.68) is asymptotically
stable. Then there is a δ > 0 and a K > 0 such that if ‖ x0 ‖≤ δ, then

‖ Φ(k +K)x0 ‖≤ δ

2
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for all k ≥ 0. This implies that

‖ Φ(k +K) ‖≤ 1
2

if k ≥ 0. (4.72)

From Section 3.5.1 we have that Φ(k − l) = Φ(k − s)Φ(s − l) for any k, l, s.
Therefore,

‖ Φ(k + 2K) ‖=‖ Φ[(k + 2K) − (k +K)]Φ(k +K) ‖≤ 1
4

in view of (4.72). By induction we obtain for k ≥ 0 that

‖ Φ(k + nK) ‖≤ 2−n. (4.73)

Let α = (ln 2)
K . Then (4.73) implies that for 0 ≤ k < K we have that

‖ (k + nK, x0) ‖ ≤ 2 ‖ x0 ‖ 2−(n+1)

= 2 ‖ x0 ‖ e−α(n+1)K

≤ 2 ‖ x0 ‖ e−α(k+nK),

which proves the result. �

To arrive at the next result, we make reference to the results of Subsec-
tion 3.5.5. Specifically, by inspecting the expressions for the modes of system
(4.68) given in (3.131) and (3.132), or by utilizing the Jordan canonical form
of A [refer to (3.135) and (3.136)], the following result is evident.

Theorem 4.47. (i) The equilibrium x = 0 of system (4.68) is asymptoti-
cally stable if and only if all eigenvalues of A are within the unit circle
of the complex plane (i.e., if λ1, . . . , λn denote the eigenvalues of A, then
|λj | < 1, j = 1, . . . , n). In this case we say that the matrix A is Schur
stable, or simply, the matrix A is stable.

(ii) The equilibrium x = 0 of system (4.68) is stable if and only if |λj | ≤
1, j = 1, . . . , n, and for each eigenvalue with |λj | = 1 having multiplicity
nj > 1, it is true that

lim
z→λj

{
dnj−1−l

dznj−1−l [(z − λj)nj (zI −A)−1]
}

= 0, l = 1, . . . , nj − 1.

(iii) The equilibrium x = 0 of system (4.68) is unstable if and only if the
conditions in (ii) above are not true. �

Alternatively, it is evident that the equilibrium x = 0 of system (4.68)
is stable if and only if all eigenvalues of A are within or on the unit circle
of the complex plane, and every eigenvalue that is on the unit circle has an
associated Jordan block of order 1.
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Example 4.48. (i) For the system in Example 4.42 we have

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±
√
−1. According to Theorem 4.47, the

equilibrium x = 0 of the system is stable, and according to Theorem 4.44
the matrix Ak is bounded for all k ≥ 0.

(ii) For system (4.68) let

A =
[

0 −1/2
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±1/
√

2. According to Theorem 4.47, the
equilibrium x = 0 of the system is asymptotically stable, and according
to Theorem 4.45, limk→∞ Ak = 0.

(iii) For system (4.68) let

A =
[

0 −1/2
−3 0

]
.

The eigenvalues of A are λ1, λ2 = ±
√

3/2. According to Theorem 4.47,
the equilibrium x = 0 of the system is unstable, and according to Theo-
rem 4.44, the matrix Ak is not bounded with increasing k.

(iv) For system (4.68) let

A =
[

1 1
0 1

]
.

The matrix A is a Jordan block of order 2 for the eigenvalue λ = 1.
Accordingly, the equilibrium x = 0 of the system is unstable (refer to the
remark following Theorem 4.47) and the matrix Ak is unbounded with
increasing k.

4.8.3 The Lyapunov Matrix Equation

In this subsection we obtain another characterization of stable matrices by
means of the Lyapunov matrix equation.

Returning to system (4.68) we choose as a Lyapunov function

v(x) = xTBx,B = BT , (4.74)

and we evaluate the first forward difference of v along the solutions of (4.68)
as



180 4 Stability

Dv(x(k)) � v(x(k + 1)) − v(x(k)) = x(k + 1)TBx(k + 1) − x(k)TBx(k)

= x(k)TATBAx(k) − x(k)TBx(k)

= x(k)T (ATBA−B)x(k),

and therefore,
Dv(x) = xT (ATBA−B)x � −xTCx,

where
ATBA−B = C, CT = C. (4.75)

Theorem 4.49. (i) The equilibrium x = 0 of system (4.68) is stable if there
exists a real, symmetric, and positive definite matrix B such that the
matrix C given in (4.75) is negative semidefinite.

(ii) The equilibrium x = 0 of system (4.68) is asymptotically stable in the
large if there exists a real, symmetric, and positive definite matrix B such
that the matrix C given in (4.75) is negative definite.

(iii) The equilibrium x = 0 of system (4.68) is unstable if there exists a real,
symmetric matrix B that is either negative definite or indefinite such that
the matrix C given in (4.75) is negative definite. �

In proving Theorem 4.49 one can follow a similar approach as in the proofs
of Theorems 4.22, 4.24 and 4.26. We leave the details to the reader as an
exercise.

In applying Theorem 4.49, we start by choosing (guessing) a matrix B
having certain desired properties and we then solve for the matrix C, using
equation (4.75). If C possesses certain desired properties (i.e., it is negative
definite), we can draw appropriate conclusions by applying one of the results
given in Theorem 4.49; if not, we need to choose another matrix B. This
approach is not very satisfactory, and in the following we will derive results
that will allow us (as in the case of continuous-time systems) to construct
Lyapunov functions of the form v(x) = xTBx in a systematic manner. In
doing so, we first choose a matrix C in (4.75) that is either negative definite
or positive definite, and then we solve (4.75) for B. Conclusions are then made
by applying Theorem 4.49. In applying this construction procedure, we need
to know conditions under which (4.75) possesses a (unique) solution B for
any definite (i.e., positive or negative definite) matrix C. We will address this
issue next.

We first show that if A is stable, i.e., if all eigenvalues of matrix A [in
system (4.68)] are inside the unit circle of the complex plane, then we can
compute B in (4.75) explicitly. To show this, we assume that in (4.75) C is a
given matrix and that A is stable. Then

(AT )k+1BAk+1 − (AT )kBAk = (AT )kCAk,

and summing from k = 0 to l yields
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AT BA−B+(AT )2BA2−AT BA+ · · ·+(AT )l+1BAl+1−(AT )lBAl =
l∑

k=0

(AT )kCAk

or

(AT )l+1BAl+1 −B =
l∑

k=0

(AT )kCAk.

Letting l → ∞, we obtain

B = −
∞∑
k=0

(AT )kCAk. (4.76)

It is easy to verify that (4.76) is a solution of (4.75). We have

−AT
[ ∞∑
k=0

(AT )kCAk
]
A+

∞∑
k=0

(AT )kCAk = C

or

−ATCA+ C − (AT )2CA2 +ATCA− (AT )3CA3 + (AT )2CA2 − · · · = C.

Therefore (4.76) is a solution of (4.75). Furthermore, if C is negative definite,
then B is positive definite.

Combining the above with Theorem 4.49(ii) we have the following result.

Theorem 4.50. If there is a positive definite and symmetric matrix B and a
negative definite and symmetric matrix C satisfying (4.75), then the matrix
A is stable. Conversely, if A is stable, then, given any symmetric matrix C,
(4.75) has a unique solution, and if C is negative definite, then B is positive
definite. �

Next, we determine conditions under which the system of equations (4.75)
has a (unique) solution B = BT ∈ Rn×n for a given matrix C = CT ∈ Rn×n.
To accomplish this, we consider the more general equation

A1XA2 −X = C, (4.77)

where A1 ∈ Rm×m, A2 ∈ Rn×n, and X and C are m× n matrices.

Lemma 4.51. Let A1 ∈ Rm×m and A2 ∈ Rn×n. Then (4.77) has a unique
solution X ∈ Rm×n for a given C ∈ Rm×n if and only if no eigenvalue of A1

is a reciprocal of an eigenvalue of A2.

Proof. We need to show that the condition on A1 and A2 is equivalent to
the condition that A1XA2 = X implies X = 0. Once we have proved that
A1XA2 = X has the unique solution X = 0, then it can be shown that (4.77)
has a unique solution for every C, since (4.77) is a linear equation.
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Assume first that the condition onA1 andA2 is satisfied. NowA1XA2 = X
implies that Ak−j1 XAk−j2 = X and

Aj1X = Ak1XA
k−j
2 for k ≥ j ≥ 0.

Now for a polynomial of degree k,

p(λ) =
k∑
j=0

ajλ
j ,

we define the polynomial of degree k,

p∗(λ) =
k∑
j=0

ajλ
k−j = λkp(1/λ),

from which it follows that

p(A1)X = Ak1Xp
∗(A2).

Now let φi(λ) be the characteristic polynomial of Ai, i = 1, 2. Since φ1(λ) and
φ∗2(λ) are relatively prime, there are polynomials p(λ) and q(λ) such that

p(λ)φ1(λ) + q(λ)φ∗2(λ) = 1.

Now define φ(λ) = q(λ)φ∗2(λ) and note that φ∗(λ) = q∗(λ)φ2(λ). It follows
that φ∗(A2) = 0 and φ(A1) = I. From this it follows that A1XA2 = X implies
X = 0.

To prove the converse, we assume that λ is an eigenvalue of A1 and λ−1 is
an eigenvalue of A2 (and, hence, is also an eigenvalue of AT2 ). Let A1x

1 = λx1

and AT2 x
2 = λ−1x2, x1 �= 0 and x2 �= 0. Define X = (x2

1x
1, x2

2x
1, . . . , x2

nx
1).

Then X �= 0 and A1XA2 = X . �

To construct v(x) by using Lemma 4.51, we must still check the definiteness
of B. To accomplish this, we use Theorem 4.49.

1. If all eigenvalue of A [for system (4.68)] are inside the unit circle of the
complex plane, then no reciprocal of an eigenvalue of A is an eigenvalue,
and Lemma 4.51 gives another way of showing that (4.75) has a unique
solution B for each C if A is stable. If C is negative definite, then B is
positive definite. This can be shown as was done for the case of linear
ordinary differential equations.

2. Suppose that at least one of the eigenvalues of A is outside the unit circle
in the complex plane and thatA has no eigenvalues on the unit circle. As in
the case of linear differential equations (4.22) (Section 4.5), we use a simi-
larity transformation x = Qy in such a way that Q−1AQ = diag[A1, A2],
where all eigenvalues of A1 are outside the unit circle while all eigenvalues
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of A2 are within the unit circle. We then proceed identically as in the case
of linear differential equations to show that under the present assump-
tions there exists for system (4.68) a Lyapunov function that satisfies the
hypotheses of Theorem 4.49(iii). Therefore, the equilibrium x = 0 of sys-
tem (4.68) is unstable. If A does not have any eigenvalues within the unit
circle, then the equilibrium x = 0 of (4.68) is completely unstable. In this
proof, Lemma 4.51 has not been invoked. If additionally, the hypotheses
of Lemma 4.51 are true (i.e., no reciprocal of an eigenvalue of A is an
eigenvalue of A), then we can construct the Lyapunov function for system
(4.68) in a systematic manner.

Summarizing the above discussion, we have proved the following result.

Theorem 4.52. Assume that the matrix A for system (4.68) has no eigenval-
ues on the unit circle in the complex plane. If all the eigenvalues of the matrix
A are within the unit circle of the complex plane, or if at least one eigenvalue
is outside the unit circle of the complex plane, then there exists a Lyapunov
function of the form v(x) = xTBx,B = BT , whose first forward difference
along the solutions of system (4.68) is definite (i.e., it is either negative defi-
nite or positive definite). �

Theorem 4.52 shows that when all the eigenvalues of A are within the
unit circle, then for system (4.68), the conditions of Theorem 4.49(ii) are also
necessary conditions for exponential stability in the large. Furthermore, when
at least one eigenvalue of A is outside the unit circle and no eigenvalues are
on the unit circle, then the conditions of Theorem 4.49(iii) are also necessary
conditions for instability.

We conclude this subsection with some specific examples.

Example 4.53. (i) For system (4.68), let

A =
[

0 1
−1 0

]
.

Let B = I, which is positive definite. From (4.75) we obtain

C = ATA− I =
[

0 −1
1 0

] [
0 1

−1 0

]
−
[

1 0
0 1

]
=
[

0 0
0 0

]
.

It follows from Theorem 4.49(i) that the equilibrium x = 0 of this system
is stable. This is the same conclusion that was made in Example 4.48.

(ii) For system (4.68), let

A =
[

0 − 1
2

−1 0

]
.

Choose
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B =
[

8
3 0
0 5

3

]
,

which is positive definite. From (4.75) we obtain

C = ATBA−B =
[

0 −1
− 1

2 0

] [
8
3 0
0 5

3

] [
0 − 1

2
−1 0

]
−
[

8
3 0
0 5

3

]
=
[
−1 0

0 −1

]
,

which is negative definite. It follows from Theorem 4.49(ii) that the equi-
librium x = 0 of this system is asymptotically stable in the large. This is
the same conclusion that was made in Example 4.48(ii).

(iii) For system (4.68), let

A =
[

0 − 1
2

−3 0

]
.

Choose

C =
[
−1 0

0 −1

]
,

which is negative definite. From (4.75) we obtain

C = ATBA−B =
[

0 −3
− 1

2 0

] [
b11 b12
b12 b22

] [
0 − 1

2
−3 0

]
−
[
b11 b12
b12 b22

]

or [
(9b22 − b11) 1

2b12
1
2b12 (1

4b11 − b22)

]
=
[
−1 0

0 −1

]
,

which yields

B =
[
−8 0

0 −1

]
,

which is also negative definite. It follows from Theorem 4.49(iii) that the
equilibrium x = 0 of this system is unstable. This conclusion is consistent
with the conclusion made in Example 4.48(iii).

(iv) For system (4.68), let

A =
[

1
3 1
0 3

]
.

The eigenvalues of A are λ1 = 1
3 and λ2 = 3. According to Lemma 4.51,

for a given C, (4.77) does not have a unique solution in this case since
λ1 = 1/λ2. For purposes of illustration, we choose C = −I. Then

−I = ATBA−B =
[

1
3 0
1 3

] [
b11 b12
b12 b22

] [
1
3 1
0 3

]
=
[
b11 b12
b12 b22

]

or ⎡
⎣
− 8

9b11
1
3b11

1
3b11 b11 + 6b12 + 8b22

⎤
⎦ =

[
−1 0

0 −1

]
,

which shows that for C = −I, (4.77) does not have any solution (for B)
at all.
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4.8.4 Linearization

In this subsection we determine conditions under which the stability properties
of the equilibrium w = 0 of the linear system

w(k + 1) = Aw(k) (4.78)

determine the stability properties of the equilibrium x = 0 of the nonlinear
system

x(k + 1) = Ax(k) + f(x(k)), (4.79)

under the assumption that f(x) = o(‖ x ‖) as ‖ x ‖→ 0 (i.e., given ε > 0, there
exists δ > 0 such that ‖ f(x(k)) ‖< ε ‖ x(k) ‖ for all k ≥ 0 and all ‖ x(k) ‖<
δ). [Refer to the discussion concerning (4.68) to (4.70) in Subsection 4.8.1.]

Theorem 4.54. Assume that f ∈ C(Rn, Rn) and that f(x) is o(‖ x ‖) as
‖ x ‖→ 0. (i) If A is stable (i.e., all the eigenvalues of A are within the unit
circle of the complex plane), then the equilibrium x = 0 of system (4.79) is
asymptotically stable. (ii) If at least one eigenvalue of A is outside the unit
circle of the complex plane and no eigenvalue is on the unit circle, then the
equilibrium x = 0 of system (4.79) is unstable. �

In proving Theorem 4.54 one can follow a similar approach as in the proofs
of Theorems 4.32 and 4.33. We leave the details to the reader as an exercise.

Before concluding this subsection, we consider some specific examples.

Example 4.55. (i) Consider the system

x1(k + 1) = −1
2
x2(k) + x1(k)2 + x2(k)2,

x2(k + 1) = −x1(k) + x1(k)2 + x2(k)2.
(4.80)

Using the notation of (4.79), we have

A =
[

0 − 1
2

−1 0

]
, f(x1, x2) =

⎡
⎣
x2

1 + x2
2

x2
1 + x2

2

⎤
⎦ .

The linearization of (4.80) is given by

w(k + 1) = Aw(k). (4.81)

From Example 4.48(ii) [and Example 4.53(ii)], it follows that the equilib-
rium w = 0 of (4.81) is asymptotically stable. Furthermore, in the present
case f(x) = o(‖ x ‖) as ‖ x ‖→ 0. Therefore, in view of Theorem 4.54, the
equilibrium x = 0 of system (4.80) is asymptotically stable.
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(ii) Consider the system

x1(k + 1) = −1
2
x2(k) + x1(k)3 + x2(k)2,

x2(k + 1) = −3x1(k) + x4
1(k) − x2(k)5.

(4.82)

Using the notation of (4.78) and (4.79), we have in the present case

A =
[

0 − 1
2

−3 0

]
, f(x1, x2) =

⎡
⎣
x3

1 + x2
2

x4
1 − x5

2

⎤
⎦ .

Since A is unstable [refer to Example 4.53(iii) and Example 4.48(iii)] and
since f(x) = o(‖ x ‖) as ‖ x ‖→ 0, it follows from Theorem 4.54 that the
equilibrium x = 0 of system (4.82) is unstable.

4.8.5 Input–Output Stability

We conclude this chapter by considering the input–output stability of discrete-
time systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k),

(4.83)

where all matrices and vectors are defined as in (4.67). Throughout this sub-
section we will assume that k0 = 0, x(0) = 0, and k ≥ 0.

As in the continuous-time case, we say that system (4.83) is BIBO stable
if there exists a constant c > 0 such that the conditions

x(0) = 0,
‖ u(k) ‖ ≤ 1, k ≥ 0,

imply that ‖ y(k) ‖≤ c for all k ≥ 0.
The results that we will present involve the impulse response matrix of

(4.83) given by

H(k) =
{
CAk−1B, k > 0,
0, k ≤ 0, (4.84)

and the transfer function matrix given by

Ĥ(z) = C(zI −A)−1B. (4.85)

Recall that

y(n) =
n∑
k=0

H(n− k)u(k). (4.86)

Associated with system (4.83) is the free dynamical system described by the
equation

p(k + 1) = Ap(k). (4.87)
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Theorem 4.56. The system (4.83) is BIBO stable if and only if there exists
a constant L > 0 such that for all n ≥ 0,

n∑
k=0

‖ H(k) ‖≤ L. (4.88)

�

As in the continous-time case, the first part of the proof of Theorem 4.56
(sufficiency) is straightforward. Specifically, if ‖ u(k) ‖≤ 1 for all k ≥ 0 and if
(4.88) is true, then we have for all n ≥ 0,

‖ y(n) ‖ =‖
n∑
k=0

H(n− k)u(k) ‖≤
n∑
k=0

‖ H(n− k)u(k) ‖

≤
n∑
k=0

‖ H(n− k) ‖ ‖ u(k) ‖≤
n∑
k=0

‖ H(n− k) ‖≤ L.

Therefore, system (4.83) is BIBO stable.
In proving the second part of Theorem 4.56 (necessity), we simplify matters

by first considering in (4.83) the single-variable case (n = 1) with the system
description given by

y(t) =
t∑

k=0

h(t− k)u(k), t > 0. (4.89)

For purposes of contradiction, we assume that the system is BIBO stable, but
no finite L exists such that (4.88) is satisfied. Another way of expressing the
last assumption is that for any finite L, there exists t = k1(L) � k1 such that

k1∑
k=0

|h(k1 − k)| > L.

We now choose in particular the input u given by

u(k) =

⎧
⎪⎨
⎪⎩

+1 if h(t− k) > 0,
0 if h(t− k) = 0,
−1 if h(t− k) < 0,

0 ≤ k ≤ k1. Clearly, |u(k)| ≤ 1 for all k ≥ 0. The output of the system at
t = k1 due to the above input, however, is

y(k1) =
k1∑
k=0

h(k1 − k)u(k) =
k1∑
k=0

|h(k1 − k)| > L,

which contradicts the assumption that the system is BIBO stable.
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The above can now be extended to the multivariable case. In doing so
we apply the single-variable result to every possible pair of input and output
vector components, we make use of the fact that the sum of a finite number of
bounded sums will be bounded, and we note that a vector is bounded if and
only if each of its components is bounded. We leave the details to the reader.

Next, as in the case of continuous-time systems, we note that the asymp-
totic stability of the equilibrium p = 0 of system (4.87) implies the BIBO
stability of system (4.83) since the sum

‖
∞∑
k=1

CAk−1B ‖≤
∞∑
k=1

‖ C ‖ ‖ Ak−1 ‖ ‖ B ‖

is finite.
Next, we recall that a complex number zp is a pole of Ĥ(z) = [ĥij(z)] if for

some (i, j) we have |ĥij(zp)| = ∞. If each entry of Ĥ(z) has only poles with
modulus (magnitude) less than 1, then, as shown in Chapter 3, each entry of
H(k) = [hij(k)] consists of a sum of convergent terms. It follows that under
these conditions the sum ∞∑

k=0

‖ H(k) ‖

is finite, and any realization of Ĥ(z) will result in a system that is BIBO
stable.

Conversely, if
∞∑
k=0

‖ H(k) ‖

is finite, then the terms in every entry of H(k) must be convergent. But then
every entry of Ĥ(z) has poles whose modulus is within the unit circle of the
complex plane. We have proved the final result of this section.

Theorem 4.57. The time-invariant system (4.83) is BIBO stable if and only
if the poles of the transfer function

Ĥ(z) = C(zI −A)−1B

are within the unit circle of the complex plane. �

4.9 Summary and Highlights

In this chapter we first addressed the stability of an equilibrium of continuous-
time finite-dimensional systems. In doing so, we first introduced the concept
of equilibrium and defined several types of stability in the sense of Lyapunov
(Sections 4.2 and 4.3). Next, we established several stability conditions of
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an equilibrium for linear systems ẋ = Ax, t ≥ 0 in terms of the state tran-
sition matrix in Theorems 4.12–4.14 and in terms of eigenvalues in Theo-
rem 4.15 (Section 4.4). Next, we established various stability conditions that
are phrased in terms of the Lyapunov matrix equation (4.25) for system
ẋ = Ax (Section 4.5). The existence of Lyapunov functions for ẋ = Ax of
the form xTPx is established in Theorem 4.29. In Section 4.6 we established
conditions under which the asymptotic stability and the instability of an equi-
librium for a nonlinear time-invariant system can be deduced via linearization;
see Theorems 4.32 and 4.33.

Next, we addressed the input–output stability of time-invariant linear,
continuous-time, finite-dimensional systems (Section 4.7). For such systems
we established several conditions for bounded input/bounded output stability
(BIBO stability); see Theorems 4.37 and 4.39.

The chapter is concluded with Section 4.8, where we addressed the
Lyapunov stability and the input–output stability of linear, time-invariant,
discrete-time systems. For such systems, we established results that are anal-
ogous to the stability results of continuous-time systems. The stability of
an equilibrium is expressed in terms of the state transition matrix in Theo-
rem 4.45, in terms of the eigenvalues in Theorem 4.47, and in terms of the
Lyapunov Matrix Equation in Theorems 4.49 and 4.50. The existence of Ly-
punov functions of the form xTPx for x(k + 1) = Ax(k) is established in
Theorem 4.52. Stability results based on linearization are presented in Theo-
rem 4.54 and for BIBO stability in Theorems 4.56 and 4.57.

4.10 Notes

The initial contributions to stability theory that took place toward the end
of the nineteenth century are primarily due to physicists and mathematicians
(Lyapunov [11]), whereas input–output stability is the brainchild of electrical
engineers (Sandberg [17] to [19], Zames [21], [22]). Sources with extensive cov-
erage of Lyapunov stability theory include, e.g., Hahn [6], Khalil [8], LaSalle
[9], LaSalle and Lefschetz [10], Michel and Miller [13], Michel et al. [14], Miller
and Michel [15], and Vidyasagar [20]. Input–output stability is addressed in
great detail in Desoer and Vidyasagar [5], Vidyasagar [20], and Michel and
Miller [13]. For a survey that traces many of the important developments of
stability in feedback control, refer to Michel [12].

In the context of linear systems, sources on both Lyapunov stability and
input–output stability can be found in numerous texts, including Antsaklis
and Michel [1], Brockett [2], Chen [3], DeCarlo [4], Kailath [7], and Rugh [16].
In developing our presentation, we found the texts by Antsaklis and Michel
[1], Brockett [2], Hahn [6], LaSalle [9], and Miller and Michel [15] especially
helpful.

In this chapter, we addressed various types of Lyapunov stability and
bounded input/bounded output stability of time-invariant systems. In the
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various stability concepts for such systems, the initial time t0 (resp., k0) plays
no significant role, and for this reason, we chose without loss of generality
t0 = 0 (resp., k0 = 0). In the case of time-varying systems, this is in general not
true, and in defining the various Lyapunov stability concepts and the concept
of bounded input/bounded output stability, one has to take into account the
effects of initial time. In doing so, we have to distinguish between uniformity
and nonuniformity when defining the various types of Lyapunov stability of
an equilibrium and the BIBO stability of a system. For a treatment of the
Lyapunov stability and the BIBO stablity of the time-varying counterparts of
systems (4.14), (4.15) and (4.67), (4.68), we refer the reader to Chapter 6 in
Antsaklis and Michel [1].

We conclude by noting that there are graphical criteria (i.e., frequency
domain criteria), such as, the Leonhard–Mikhailov criterion, and algebraic
criteria, such as the Routh–Hurwitz criterion and the Schur–Cohn criterion,
which yield necessary and sufficient conditions for the asymptotic stability of
the equilibrium x = 0 for system (4.15) and (4.68). For a presentation of these
results, the reader should consult Chapter 6 in Antsaklis and Michel [1] and
Michel [12].
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Exercises

4.1. Determine the set of equilibrium points of a system described by the
differential equations

ẋ1 = x1 − x2 + x3,

ẋ2 = 2x1 + 3x2 + x3,

ẋ3 = 3x1 + 2x2 + 2x3.

4.2. Determine the set of equilibria of a system described by the differential
equations

ẋ1 = x2,

ẋ2 =

{
x1 sin(1/x1), when x1 �= 0,
0, when x1 = 0.

4.3. Determine the equilibrium points and their stability properties of a sys-
tem described by the ordinary differential equation

ẋ = x(x− 1) (4.90)

by solving (4.90) and then applying the definitions of stability, asymptotic
stability, etc.

4.4. Prove that the equilibrium x = 0 of (4.16) is stable (resp., asymptotically
stable or unstable) if and only if y = 0 of (4.19) is stable (resp., asymptotically
stable or unstable).
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4.5. Apply Proposition 4.20 to determine the definiteness properties of the
matrix A given by

A =

⎡
⎣

1 2 1
2 5 −1
1 −1 10

⎤
⎦ .

4.6. Use Theorem 4.26 to prove that the trivial solution of the system
[
ẋ1

ẋ2

]
=
[

3 4
2 1

] [
x1

x2

]

is unstable.

4.7. Determine the equilibrium points of a system described by the differential
equation

ẋ = −x+ x2,

and determine the stability properties of the equilibrium points, if applicable,
by using Theorem 4.32 or 4.33.

4.8. The system described by the differential equations

ẋ1 = x2 + x1(x2
1 + x2

2),

ẋ2 = −x1 + x2(x2
1 + x2

2)
(4.91)

has an equilibrium at the origin xT = (x1, x2) = (0, 0). Show that the trivial
solution of the linearization of system (4.91) is stable. Prove that the equi-
librium x = 0 of system (4.91) is unstable. (This example shows that the
assumptions on the matrix A in Theorems 4.32 and 4.33 are absolutely essen-
tial.)

4.9. Use Corollary 4.38 to analyze the stability properties of the system given
by

ẋ = Ax+Bu,

y = Cx,

A =
[
−1 0

1 −1

]
, B =

[
1

−1

]
, C = [0, 1].

4.10. Determine all equilibrium points for the discrete-time systems given by

(a)

x1(k + 1) = x2(k) + |x1(k)|,
x2(k + 1) = −x1(k) + |x2(k)|.
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(b)

x1(k + 1) = x1(k)x2(k) − 1,
x2(k + 1) = 2x1(k)x2(k) + 1.

4.11. Prove Theorem 4.43.

4.12. Determine the stability properties of the trivial solution of the discrete-
time system given by the equations

[
x1(k + 1)
x2(k + 1)

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x1(k)
x2(k)

]

with θ fixed.

4.13. Analyze the stability of the equilibrium x = 0 of the system described
by the scalar-valued difference equation

x(k + 1) = sin[x(k)].

4.14. Analyze the stability of the equilibrium x = 0 of the system described
by the difference equations

x1(k + 1) = x1(k) + x2(k)[x1(k)2 + x2(k)2],

x2(k + 1) = x2(k) − x1(k)[x1(k)2 + x2(k)2].

4.15. Determine a basis of the solution space of the system
[
x1(k + 1)
x2(k + 1)

]
=
[

0 1
−6 5

] [
x1(k)
x2(k)

]
.

Use your answer in analyzing the stability of the trivial solution of this system.

4.16. Let A ∈ Rn×n. Prove that part (iii) of Theorem 4.45 is equivalent to
the statement that all eigenvalues of A have modulus less than 1; i.e.,

lim
k→∞

‖ Ak ‖= 0

if and only if for any eigenvalue λ of A, it is true that |λ| < 1.

4.17. Use Theorem 4.44 to show that the equilibrium x = 0 of the system

x(k + 1) =

⎡
⎢⎢⎣

1 1 1 · · · 1
0 1 1 · · · 1
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎤
⎥⎥⎦x(k)

is unstable.
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4.18. (a) Use Theorem 4.47 to determine the stability of the equilibrium x = 0
of the system

x(k + 1) =

⎡
⎣

1 1 −2
0 1 3
0 9 −1

⎤
⎦x(k).

(b) Use Theorem 4.47 to determine the stability of the equilibrium x = 0 of
the system

x(k + 1) =

⎡
⎣

1 0 −2
0 1 3
0 9 −1

⎤
⎦x(k).

4.19. Apply Theorems 4.24 and 4.49 to show that if the equilibrium x =
0 (x ∈ Rn) of the system

x(k + 1) = eAx(k)

is asymptotically stable, then the equilibrium x = 0 of the system

ẋ = Ax

is also asymptotically stable.

4.20. Apply Theorem 4.49 to show that the trivial solution of the system
given by [

x1(k + 1)
x2(k + 1)

]
=
[

0 2
2 0

] [
x1(k)
x2(k)

]

is unstable.

4.21. Determine the stability of the equilibrium x = 0 of the scalar-valued
system given by

x(k + 1) =
1
2
x(k) +

2
3

sinx(k).

4.22. Analyze the stability properties of the discrete-time system given by

x(k + 1) = x(k) +
1
2
u(k)

y(k) =
1
2
x(k)

where x, y, and u are scalar-valued variables. Is this system BIBO stable?

4.23. Prove Theorem 4.47.

4.24. Prove Theorem 4.49 by following a similar approach as was used in the
proofs of Theorems 4.22, 4.24, and 4.26.

4.25. Prove Theorem 4.54 by following a similar approach as was used in the
proofs of Theorems 4.32 and 4.33.


