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An Introduction to State-Space and
Input–Output Descriptions of Systems

2.1 Introduction

State-space representations provide detailed descriptions of the internal be-
havior of a system, whereas input–output descriptions of systems emphasize
external behavior and a system’s interaction with this behavior.

In this chapter we address the state-space description of systems, which
is an internal description of systems, and the input–output description of
systems, also called the external description of systems. We will address
continuous-time systems described by ordinary differential equations and
discrete-time systems described by ordinary difference equations. We will
emphasize linear systems. For such systems, the input–output descriptions
involve the convolution integral for the continuous-time case and the convo-
lution sum for the discrete-time case.

This chapter is organized into three parts. In the first of these (Section 2.2),
we develop the state-space description of continuous-time systems, whereas in
the second part (Section 2.3), we present the state-space representation of
discrete-time systems. In the third part (Section 2.4), we address the input–
output description of both continuous-time and discrete-time systems. Re-
quired background material for this chapter includes certain essentials in or-
dinary differential equations and linear algebra. This material can be found
in Chapter 1 and the appendix, respectively.

2.2 State-Space Description of Continuous-Time Systems

Let us consider once more systems described by equations of the form

ẋ = f(t, x, u), (2.1a)
y = g(t, x, u), (2.1b)

where x ∈ Rn, y ∈ Rp, u ∈ Rm, f : R×Rn×Rm → Rn, and g : R×Rn×Rm →
Rp. Here t denotes time and u and y denote system input and system output,
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respectively. Equation (2.1a) is called the state equation, (2.1b) is called the
output equation, and (2.1a) and (2.1b) constitute the state-space description
of continuous-time finite-dimensional systems.

The system input may be a function of t only (i.e., u : R → Rm), or
as in the case of feedback control systems, it may be a function of t and x
(i.e., u : R × Rn → Rm). In either case, for a given (i.e., specified) u, we let
f(t, x, u) = F (t, x) and rewrite (2.1a) as

ẋ = F (t, x). (2.2)

Now according to Theorems 1.13 and 1.14, if F ∈ C(R × Rn, Rn) and if
for any compact subinterval J0 ⊂ R there is a constant LJ0 such that
‖ F (t, x) − F (t, x̃) ‖≤ LJ0 ‖ x − x̃ ‖ for all t ∈ J0 and for all x, x̃ ∈ Rn,
then the following statements are true:

1. For any (t0, x0) ∈ R×Rn, (2.2) has a unique solution φ(t, t0, x0) satisfying
φ(t0, t0, x0) = x0 that exists for all t ∈ R.

2. The solution φ is continuous in t, t0, and x0.
3. If F depends continuously on parameters (say, λ ∈ Rl) and if x0 depends

continuously on λ, the solution φ is continuous in λ as well.

Thus, if the above conditions are satisfied, then for a given t0, x0, and
u, (2.1a) will have a unique solution that exists for t ∈ R. Therefore, as
already discussed in Section 1.8, φ(t, t0, x0) characterizes the state of the
system at time t. Moreover, under these conditions, the system will have
a unique response for t ∈ R, determined by (2.1b). We usually assume that
g ∈ C(R ×Rn ×Rm, Rp) or that g ∈ C1(R×Rn ×Rm, Rp).

An important special case of (2.1) is systems described by linear time-
varying equations of the form

ẋ = A(t)x +B(t)u, (2.3a)
y = C(t)x +D(t)u, (2.3b)

where A ∈ C(R,Rn×n), B ∈ C(R,Rn×m), C ∈ C(R,Rp×n), and D ∈
C(R,Rp×m). Such equations may arise in the modeling process of a physical
system, or they may be a consequence of a linearization process, as discussed
in Section 1.6.

By applying the results of Section 1.7, we see that for every initial condi-
tion x(t0) = x0 and for every given input u : R → Rm, system (2.3a) possesses
a unique solution that exists for all t ∈ R and that is continuous in (t, t0, x0).
Moreover, if A and B depend continuously on parameters, say, λ ∈ Rl, then
the solutions will be continuous in the parameters as well. Indeed, in accor-
dance with (1.87), this solution is given by

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)B(s)u(s)ds, (2.4)
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where Φ(t, t0) denotes the state transition matrix of the system of equations

ẋ = A(t)x. (2.5)

By using (2.3b) and (2.4) we obtain the system response as

y(t) = C(t)Φ(t, t0)x0 + C(t)
∫ t

t0

Φ(t, s)B(s)u(s)ds +D(t)u(t). (2.6)

When in (2.3), A(t) ≡ A,B(t) ≡ B,C(t) ≡ C, and D(t) ≡ D, we have the
important linear time-invariant case given by

ẋ = Ax+Bu, (2.7a)
y = Cx+Du. (2.7b)

In accordance with (1.84), (1.85), (1.87), and (2.4), the solution of (2.7a) is
given by

φ(t, t0, x0) = eA(t−t0)x0 +
∫ t

t0

eA(t−s)Bu(s)ds (2.8)

and the response of the system is given by

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t). (2.9)

Linearity

We have referred to systems described by the linear equations (2.3) [resp.,
(2.7)] as linear systems. In the following discussion, we establish precisely in
what sense this linearity is to be understood. To this end, for (2.3) we first
let y1 and y2 denote system outputs that correspond to system inputs given
by u1 and u2, respectively, under the condition that x0 = 0. By invoking
(2.6), it is clear that the system output corresponding to the system input
u = α1u1+α2u2, where α1 and α2 are real scalars, is given by y = α1y1+α2y2;
i.e.,

y(t) = C(t)
∫ t

t0

Φ(t, s)B(s)[α1u1(s) + α2u2(s)]ds+D(t)[α1u1(t) + α2u2(t)]

= α1C(t)
∫ t

t0

Φ(t, s)B(s)u1(s)ds+ α2C(t)
∫ t

t0

Φ(t, s)B(s)u2(s)ds

+ α1D(t)u1(t) + α2D(t)u2(t)
= α1y1(t) + α2y2(t). (2.10)

Next, for (2.3) we let y1 and y2 denote system outputs that correspond to
initial conditions x(1)

0 and x(2)
0 , respectively, under the condition that u(t) = 0
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for all t ∈ R. Again, by invoking (2.6), it is clear that the system output
corresponding to the initial condition x0 = α1x

(1)
0 + α2x

(2)
0 , where α1 and α2

are real scalars, is given by y = α1y1 + α2y2; i.e.,

y(t) = C(t)Φ(t, t0)[α1x
(1)
0 + α2x

(2)
0 ]

= α1C(t)Φ(t, t0)x
(1)
0 + α2C(t)Φ(t, t0)x

(2)
0

= α1y1(t) + α2y2(t). (2.11)

Equations (2.10) and (2.11) show that for systems described by the lin-
ear equations (2.3) [and, hence, by (2.7)], a superposition principle holds in
terms of the input u and the corresponding output y of the system under the
assumption of zero initial conditions, and in terms of the initial conditions
x0 and the corresponding output y under the assumption of zero input. It is
important to note, however, that such a superposition principle will in gen-
eral not hold under conditions that combine nontrivial inputs and nontrivial
initial conditions. For example, with x0 �= 0 given, and with inputs u1 and u2

resulting in corresponding outputs y1 and y2 in (2.3), it does not follow that
the input α1u1 + α2u2 will result in an output α1y1 + α2y2.

2.3 State-Space Description of Discrete-Time Systems

State-Space Representation

The state-space description of discrete-time finite-dimensional dynamical sys-
tems is given by equations of the form

xi(k + 1) = fi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , n, (2.12a)
yi(k) = gi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , p, (2.12b)

for k = k0, k0+1, . . . , where k0 is an integer. (In the following discussion, we let
Z denote the set of integers and we let Z+ denote the set of nonnegative inte-
gers.) Letting x(k)T = (x1(k), . . . , xn(k)), f(·)T = (f1(·), . . . , fn(·)), u(k)T =
(u1(k), . . . , um(k)), y(k)T = (y1(k), . . . , yp(k)), and g(·)T = (g1(·), . . . , gm(·)),
we can rewrite (2.12) more compactly as

x(k + 1) = f(k, x(k), u(k)), (2.13a)
y(k) = g(k, x(k), u(k)). (2.13b)

Throughout this section we will assume that f : Z × Rn × Rm → Rn and
g : Z ×Rn ×Rm → Rp.

Since f is a function, for given k0, x(k0) = x0, and for given u(k), k =
k0, k0 + 1, . . . , (2.13a) possesses a unique solution x(k) that exists for all
k = k0, k0 + 1, . . . . Furthermore, under these conditions, y(k) is uniquely
defined for k = k0, k0 + 1, . . . .



2.3 State-Space Description of Discrete-Time Systems 51

As in the case of continuous-time finite-dimensional systems [see (2.1)], k0

denotes initial time, k denotes time, u(k) denotes the system input (evaluated
at time k), y(k) denotes the system output or system response (evaluated at
time k), x(k) characterizes the state (evaluated at time k), xi(k), i = 1, . . . , n,
denote the state variables, (2.13a) is called the state equation, and (2.13b) is
called the output equation.

A moment’s reflection should make it clear that in the case of discrete-time
finite-dimensional dynamical systems described by (2.13), questions concern-
ing existence, uniqueness, and continuation of solutions are not an issue, as
was the case in continuous-time systems. Furthermore, continuity with re-
spect to initial data x(k0) = x0, or with respect to system parameters, is
not an issue either, provided that f(·) and g(·) have appropriate continuity
properties.

In the case of continuous-time systems described by ordinary differential
equations [see (2.1)], we allow time t to evolve “forward” and “backward.”
Note, however, that in the case of discrete-time systems described by (2.13), we
restrict the evolution of time k in the forward direction to ensure uniqueness
of solutions. (We will revisit this issue in more detail in Chapter 3.)

Special important cases of (2.13) are linear time-varying systems given by

x(k + 1) = A(k)x(k) +B(k)u(k), (2.14a)
y(k) = C(k)x(k) +D(k)u(k), (2.14b)

where A : Z → Rn×n, B : Z → Rn×m, C : Z → Rp×n, and D : Z → Rp×m.
When A(k) ≡ A,B(k) ≡ B,C(k) ≡ C, and D(k) ≡ D, we have linear time-
invariant systems given by

x(k + 1) = Ax(k) +Bu(k), (2.15a)
y(k) = Cx(k) +Du(k). (2.15b)

As in the case of continuous-time finite-dimensional dynamical systems,
many qualitative properties of discrete-time finite-dimensional systems can
be studied in terms of initial-value problems given by

x(k + 1) = f(k, x(k)), x(k0) = x0, (2.16)

where x ∈ Rn, f : Z ×Rn → Rn, k0 ∈ Z, and k = k0, k0 + 1, · · · . We call the
equation

x(k + 1) = f(k, x(k)), (2.17)

a system of first-order ordinary difference equations. Special important cases
of (2.17) include autonomous systems described by

x(k + 1) = f(x(k)), (2.18)

periodic systems given by
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x(k + 1) = f(k, x(k)) = f(k +K,x(k)) (2.19)

for fixed K ∈ Z+ and for all k ∈ Z, linear homogeneous systems given by

x(k + 1) = A(k)x(k), (2.20)

linear periodic systems characterized by

x(k + 1) = A(k)x(k) = A(k +K)x(k) (2.21)

for fixed K ∈ Z+ and for all k ∈ Z, linear nonhomogeneous systems

x(k + 1) = A(k)x(k) + g(k), (2.22)

and linear, autonomous, homogeneous systems characterized by

x(k + 1) = Ax(k). (2.23)

In these equations all symbols used are defined in the obvious way by making
reference to the corresponding systems of ordinary differential equations (see
Subsection 1.3.2).

Difference Equations of Order n

Thus far we have addressed systems of first-order difference equations. As
in the continuous-time case, it is also possible to characterize initial-value
problems by nth-order ordinary difference equations, say,

y(k + n) = h(k, y(k), y(k + 1), . . . , y(k + n− 1)), (2.24)

where h : Z × Rn → R, n ∈ Z+, k = k0, k0 + 1, . . . . By specifying an initial
time k0 ∈ Z and by specifying y(k0), y(k0 + 1), . . . , y(k0 + n − 1), we again
have an initial-value problem given by

y(k + n) = h(k, y(k), y(k + 1), . . . , y(k + n− 1)),
y(k0) = x10, . . . , y(k0 + n− 1) = xn0.

(2.25)

We call (2.24) an nth-order ordinary difference equation, and we note once
more that in the case of initial-value problems described by such equations,
there are no difficult issues involving the existence, uniqueness, and continu-
ation of solutions.

We can reduce the study of (2.25) to the study of initial-value problems
determined by systems of first-order ordinary difference equations. To accom-
plish this, we let in (2.25) y(k) = x1(k), y(k + 1) = x2(k), . . . , y(k + n− 1) =
xn(k). We now obtain the system of first-order ordinary difference equations

x1(k + 1) = x2(k),
· · ·

xn−1(k + 1) = xn(k),
xn(k + 1) = h(k, x1(k), . . . , xn(k)). (2.26)
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Equations (2.26), together with the initial data xT0 = (x10, . . . , xn0), are equiv-
alent to the initial-value problem (2.25) in the sense that these two problems
will generate identical solutions [and in the sense that the transformation of
(2.25) into (2.26) can be reversed unambiguously and uniquely].

As in the case of systems of first-order ordinary difference equations, we
can point to several important special cases of nth-order ordinary difference
equations, including equations of the form

y(k + n) + an−1(k)y(k + n − 1) + · · · + a1(k)y(k + 1) + a0(k)y(k) = g(k), (2.27)

y(k + n) + an−1(k)y(k + n − 1) + · · · + a1(k)y(k + 1) + a0(k)y(k) = 0, (2.28)

and

y(k + n) + an−1y(k + n − 1) + · · · + a1y(k + 1) + a0y(k) = 0. (2.29)

We call (2.27) a linear nonhomogeneous ordinary difference equation of order
n, we call (2.28) a linear homogeneous ordinary difference equation of order
n, and we call (2.29) a linear, autonomous, homogeneous ordinary difference
equation of order n. As in the case of systems of first-order ordinary differ-
ence equations, we can define periodic and linear periodic ordinary difference
equations of order n in the obvious way.

Solutions of State Equations

Returning now to linear homogeneous systems

x(k + 1) = A(k)x(k), (2.30)

we observe that

x(k + 2) = A(k + 1)x(k + 1) = A(k + 1)A(k)x(k)
· · ·

x(n) = A(n− 1)A(n− 2) · · ·A(k + 1)A(k)x(k)

=
n−1∏
j=k

A(j)x(k);

i.e., the state of the system at time n is related to the state at time k by
means of the n×n matrix

∏n−1
j=k A(j) (as can easily be proved by induction).

This suggests that the state transition matrix for (2.30) is given by

Φ(n, k) =
n−1∏
j=k

A(j), n > k, (2.31)

and that
Φ(k, k) = I. (2.32)
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As in the continuous-time case, the solution to the initial-value problem

x(k + 1) = A(k)x(k)
x(k0) = xk0 , k0 ∈ Z, (2.33)

is now given by

x(n) = Φ(n, k0)xk0 =
n−1∏
j=k0

A(j)xk0 , n > k0. (2.34)

Continuing, let us next consider initial-value problems determined by lin-
ear nonhomogeneous systems (2.22),

x(k + 1) = A(k)x(k) + g(k),
x(k0) = xk0 . (2.35)

Then

x(k0 + 1) = A(k0)x(k0) + g(k0),
x(k0 + 2) = A(k0 + 1)x(k0 + 1) + g(k0 + 1)

= A(k0 + 1)A(k0)x(k0) +A(k0 + 1)g(k0) + g(k0 + 1),
x(k0 + 3) = A(k0 + 2)x(k0 + 2) + g(k0 + 2)

= A(k0 + 2)A(k0 + 1)A(k0)x(k0) +A(k0 + 2)A(k0 + 1)g(k0)
+A(k0 + 2)g(k0 + 1) + g(k0 + 2)

= Φ(k0 + 3, k0)xk0 + Φ(k0 + 3, k0 + 1)g(k0)
+ Φ(k0 + 3, k0 + 2)g(k0 + 1) + Φ(k0 + 3, k0 + 3)g(k0 + 2),

and so forth. For k ≥ k0 + 1, we easily obtain the expression for the solution
of (2.35) as

x(k) = Φ(k, k0)xk0 +
k−1∑
j=k0

Φ(k, j + 1)g(j). (2.36)

In the time-invariant case

x(k + 1) = Ax(k) + g(k),
x(k0) = xk0 , (2.37)

the solution is again given by (2.36) where now the state transition matrix

Φ(k, k0) = Ak−k0 , k ≥ k0, (2.38)

in view of (2.31) and (2.32). The solution of (2.37) is then

x(k) = Ak−k0xk0 +
k−1∑
j=k0

Ak−(j+1)g(j), k > k0. (2.39)
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We note that when xk0 = 0, (2.36) reduces to

xp(k) =
k−1∑
j=k0

Φ(k, j + 1)g(j), (2.40)

and when xk0 �= 0 but g(k) ≡ 0, then (2.36) reduces to

xh(k) = Φ(k, k0)xk0 . (2.41)

Therefore, the total solution of (2.35) consists of the sum of its particular
solution, xp(k), and its homogeneous solution, xh(k).

System Response

Finally, we observe that in view of (2.14b) and (2.36), the system response of
the system (2.14), is of the form

y(k) = C(k)Φ(k, k0)xk0 + C(k)
k−1∑
j=k0

Φ(k, j + 1)B(j)u(j)

+D(k)u(k), k > k0, (2.42)

and
y(k0) = C(k0)xk0 +D(k0)u(k0). (2.43)

In the time-invariant case, in view of (2.39), the system response of the
system (2.15) is

y(k) = CAk−k0xk0 + C

k−1∑
j=k0

Ak−(j+1)B(j)u(j) +Du(k), k > k0, (2.44)

and
y(k0) = Cxk0 +Du(k0). (2.45)

Discrete-time systems, as discussed above, arise in several ways, including
the numerical solution of ordinary differential equations (see, e.g., our dis-
cussion in Exercise 1.4 of Euler’s method); the representation of sampled-data
systems at discrete points in time (which will be discussed in further detail
in Chapter 3); in the modeling process of systems that are defined only at
discrete points in time (e.g., digital computer systems); and so forth.

As a specific example of a discrete-time system we consider a second-order
section digital filter in direct form,

x1(k + 1) = x2(k),
x2(k + 1) = ax1(k) + bx2(k) + u(k),

(2.46a)

y(k) = x1(k), (2.46b)

k ∈ Z+, where x1(k) and x2(k) denote the state variables, u(k) denotes the
input, and y(k) denotes the output of the digital filter. We depict system
(2.46) in block diagram form in Figure 2.1.
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Figure 2.1. Second-order section digital filter in direct form

2.4 Input–Output Description of Systems

This section consists of four subsections. First we consider rather general
aspects of the input–output description of systems. Because of their simplicity,
we address the characterization of linear discrete-time systems next. In the
third subsection we provide a foundation for the impulse response of linear
continuous-time systems. Finally, we address the external description of linear
continuous-time systems.

2.4.1 External Description of Systems: General Considerations

The state-space representation of systems presupposes knowledge of the in-
ternal structure of the system. When this structure is unknown, it may still
be possible to arrive at a system description—an external description—that
relates system inputs to system outputs. In linear system theory, a great deal
of attention is given to relating the internal description of systems (the state
representation) to the external description (the input–output description).

In the present context, we view system inputs and system outputs as ele-
ments of two real vector spaces U and Y , respectively, and we view a system
as being represented by an operator T that relates elements of U to elements
of Y . For u ∈ U and y ∈ Y we will assume that u : R → Rm and y : R → Rp

in the case of continuous-time systems, and that u : Z → Rm and y : Z → Rp

in the case of discrete-time systems. If m = p = 1, we speak of a single-
input/single-output (SISO) system. Systems for which m > 1, p > 1, are
called multi-input/multi-output (MIMO) systems. For continuous-time sys-
tems we define vector addition (on U) and multiplication of vectors by scalars
(on U) as

(u1 + u2)(t) = u1(t) + u2(t) (2.47)

and
(αu)(t) = αu(t) (2.48)

for all u1, u2 ∈ U,α ∈ R, and t ∈ R. We similarly define vector addition
and multiplication of vectors by scalars on Y . Furthermore, for discrete-time
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systems we define these operations on U and Y analogously. In this case the
elements of U and Y are real sequences that we denote, e.g., by u = {uk} or
u = {u(k)}. (It is easily verified that under these rather general conditions, U
and Y satisfy all the axioms of a vector space, both for the continuous-time
case and the discrete-time case.) In the continuous-time case as well as in the
discrete-time case the system is represented by T : U → Y , and we write

y = T (u). (2.49)

In the subsequent development, we will impose restrictions on the vector
spaces U, Y , and on the operator T , as needed.

Linearity. If T is a linear operator, the system is called a linear system. In
this case we have

y = T (α1u1 + α2u2)
= α1T (u1) + α2T (u2)
= α1y1 + α2y2 (2.50)

for all α1, α2 ∈ R and u1, u2 ∈ U where yi = T (ui) ∈ Y , i = 1, 2, and y ∈ Y .
Equation (2.50) represents the well-known principle of superposition of linear
systems.

With or Without Memory. We say that a system is memoryless, or without
memory, if its output for each value of the independent variable (t or k) is
dependent only on the input evaluated at the same value of the independent
variable [e.g., y(t1) depends only on u(t1) and y(k1) depends only on u(k1)].
An example of such a system is the resistor circuit shown in Figure 2.2, where
the current i(t) = u(t) denotes the system input at time t and the voltage
across the resistor, v(t) = Ri(t) = y(t), denotes the system output at time t.

Figure 2.2. Resistor circuit

A system that is not memoryless is said to have memory. An example
of a continuous-time system with memory is the capacitor circuit shown in
Figure 2.3, where the current i(t) = u(t) represents the system input at time
t and the voltage across the capacitor,
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y(t) = v(t) =
1
C

∫ t

−∞
i(τ)dτ,

denotes the system output at time t. Another example of a continuous-time
system with memory is described by the scalar equation

y(t) = u(t− 1), t ∈ R,

and an example of a discrete-time system with memory is characterized by
the scalar equation

y(n) =
n∑

k=−∞
x(k), n, k ∈ Z.

Figure 2.3. Capacitor circuit

Causality. A system is said to be causal if its output at any time, say t1 (or
k1), depends only on values of the input evaluated for t ≤ t1 (for k ≤ k1). Thus,
y(t1) depends only on u(t), t ≤ t1 [or y(k1) depends only on u(k), k ≤ k1].
Such a system is referred to as being nonanticipative since the system output
does not anticipate future values of the input.

To make the above concept a bit more precise, we define the function
uτ : R → Rm for u ∈ U by

uτ (t) =

{
u(t), t ≤ τ,

0, t > τ,

and we similarly define the function yτ : R→ Rp for y ∈ Y . A system that is
represented by the mapping y = T (u) is said to be causal if and only if

(T (u))τ = (T (uτ ))τ for all τ ∈ R, for all u ∈ U.

Equivalently, this system is causal if and only if for u, v ∈ U and uτ = vτ it
is true that

(T (u))τ = (T (v))τ for all τ ∈ R.
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For example, the discrete-time system described by the scalar equation

y(n) = u(n) − u(n+ 1), n ∈ Z,

is not causal. Neither is the continuous-time system characterized by the scalar
equation

y(t) = x(t+ 1), t ∈ R.

It should be pointed out that systems that are not causal are by no means
useless. For example, causality is not of fundamental importance in image-
processing applications where the independent variable is not time. Even when
time is the independent variable, noncausal systems may play an important
role. For example, in the processing of data that have been recorded (such
as speech, meteorological data, demographic data, and stock market fluctua-
tions), one is not constrained to processing the data causally. An example of
this would be the smoothing of data over a time interval, say, by means of the
system

y(n) =
1

2M + 1

M∑
k=−M

u(n− k).

Time-Invariance. A system is said to be time-invariant if a time shift in the
input signal causes a corresponding time shift in the output signal. To make
this concept more precise, for fixed α ∈ R, we introduce the shift operator
Qα : U → U as

Qαu(t) = u(t− α), u ∈ U, t ∈ R.

A system that is represented by the mapping y = T (u) is said to be time-
invariant if and only if

TQα(u) = Qα(T (u)) = Qα(y)

for any α ∈ R and any u ∈ U . If a system is not time-invariant, it is said to
be time-varying.

For example, a system described by the relation

y(t) = cosu(t)

is time-invariant. To see this, consider the inputs u1(t) and u2(t) = u1(t− t0).
Then

y1(t) = cosu1(t), y2(t) = cosu2(t) = cosu1(t− t0)

and
y1(t− t0) = cosu1(t− t0) = y2(t).

As a second example, consider a system described by the relation

y(n) = nu(n)

and consider two inputs u1(n) and u2(n) = u1(n− n0). Then
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y1(n) = nu1(n) and y2(n) = nu2(n) = nu1(n− n0).

However, if we shift the output y1(n) by n0, we obtain

y1(n− n0) = (n− n0)u1(n− n0) �= y2(n).

Therefore, this system is not time-invariant.

2.4.2 Linear Discrete-Time Systems

In this subsection we investigate the representation of linear discrete-time
systems. We begin our discussion by considering SISO systems.

In the following, we employ the discrete-time impulse (or unit pulse or
unit sample), which is defined as

δ(n) =

{
0, n �= 0, n ∈ Z,

1, n = 0.
(2.51)

Note that if {p(n)} denotes the unit step sequence, i.e.,

p(n) =

{
1, n ≥ 0, n ∈ Z,

0, n < 0, n ∈ Z,
(2.52)

then
δ(n) = p(n) − p(n− 1)

and

p(n) =

{∑∞
k=0 δ(n− k), n ≥ 0,

0, n < 0.
(2.53)

Furthermore, note that an arbitrary sequence {x(n)} can be expressed as

x(n) =
∞∑

k=−∞
x(k)δ(n− k). (2.54)

We can easily show that a transformation T : U → Y determined by the
equation

y(n) =
∞∑

k=−∞
h(n, k)u(k), (2.55)

where y � {y(k)} ∈ Y , u � {u(k)} ∈ U , and h : Z × Z → R, is a linear
transformation. Also, we note that for (2.55) to make any sense, we need to
impose restrictions on {h(n, k)} and {u(k)}. For example, if for every fixed
n, {h(n, k)} ∈ l2 and {u(k)} ∈ l2 = U , then it follows from the Hölder Inequal-
ity (resp., Schwarz Inequality), see Section A.7, that (2.55) is well defined.
There are of course other conditions that one might want to impose on (2.55).



2.4 Input–Output Description of Systems 61

For example, if for every fixed n,
∑∞
k=−∞ |h(n, k)| < ∞ (i.e., for every fixed

n, {h(n, k)} ∈ l1) and if supk∈Z |u(k)| < ∞ (i.e., {u(k)} ∈ l∞), then (2.55) is
also well defined.

We shall now elaborate on the suitability of (2.55) to represent linear
discrete-time systems. To this end, we will agree once and for all that, in the
ensuing discussion, all assumptions on {h(n, k)} and {u(k)} are satisfied that
ensure that (2.55) is well defined.

We will view y ∈ Y and u ∈ U as system outputs and system inputs,
respectively, and we will let T : U → Y denote a linear transformation
that relates u to y. We first consider the case when u(k) = 0 for k < k0,
k, k0 ∈ Z. Also, we assume that for k > n ≥ k0, the inputs u(k) do not
contribute to the system output at time n (i.e., the system is causal). Un-
der these assumptions, and in view of the linearity of T , and by invoking
the representation of signals by (2.54), we obtain for y = {y(n)}, n ∈ Z,
the expression y(n) = T (

∑∞
k=−∞ u(k)δ(n − k)) = T (

∑n
k=k0

u(k)δ(n − k)) =∑n
k=k0

u(k)T (δ(n− k)) =
∑n

k=k0
h(n, k)u(k), n ≥ k0, and y(n) = 0, n < k0,

where T (δ(n− k)) � (Tδ)(n− k) � h(n, k) represents the response of T to a
unit pulse (resp., discrete-time impulse or unit sample) occurring at n = k.

When the assumptions in the preceding discussion are no longer valid,
then a different argument than the one given above needs to be used to arrive
at the system representation. Indeed, for infinite sums, the interchanging of
the order of the summation operation

∑
with the linear transformation T

is no longer valid. We refer the reader to a paper by I. W. Sandberg (“A
Representation Theorem for Linear Systems,” IEEE Transactions on Circuits
and Systems—I, Vol. 45, No. 5, pp. 578–580, May 1998) for a derivation of the
representation of general linear discrete-time systems. In that paper it is shown
that an extra term needs to be added to the right-hand side of equation (2.55),
even in the representation of general, linear, time-invariant, causal, discrete-
time systems. [In the proof, the Hahn–Banach Theorem (which is concerned
with the extension of bounded linear functionals) is employed and the extra
required term is given by liml→∞ T (

∑−cl−1
k=−∞ u(k)δ(n−k)+

∑∞
k=cl+1 u(k)δ(n−

k)] with cl → ∞ as l → ∞. For a statement and proof of the Hahn–Banach
Theorem, refer, e.g., to A. N. Michel and C. J. Herget, Applied Algebra and
Functional Analysis, Dover, New York, 1993, pp. 367–370.) In that paper it is
also pointed out, however, that cases with such extra nonzero terms are not
necessarily of importance in applications. In particular, if inputs and outputs
are defined (to be nonzero) on just the non-negative integers, then for causal
systems no additional term is needed (or more specifically, the extra term is
zero), as seen in our earlier argument. In any event, throughout this book we
will concern ourselves with linear discrete-time systems that can be represented
by equation (2.55) for the single-input/single-output case (and appropriate
generalizations for multi-input/multi-output cases).

Next, suppose that T represents a time-invariant system. This means that
if {h(n, 0)} is the response to {δ(n)}, then by time invariance, the response
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to {δ(n − k)} is simply {h(n − k, 0)}. By a slight abuse of notation, we let
h(n− k, 0) � h(n− k). Then (2.55) assumes the form

y(n) =
∞∑

k=−∞
u(k)h(n− k). (2.56)

Expression (2.56) is called a convolution sum and is written more compactly
as

y(n) = u(n) ∗ h(n).

Now by a substitution of variables, we obtain for (2.56) the alternative ex-
pression

y(n) =
∞∑

k=−∞
h(k)u(n− k),

and therefore, we have

y(n) = u(n) ∗ h(n) = h(n) ∗ u(n);

i.e., the convolution operation ∗ commutes.
As a specific example, consider a linear, time-invariant, discrete-time sys-

tem with unit impulse response given by

h(n) =
{
an, n ≥ 0
0, n < 0

}
= anp(n), 0 < a < 1,

where p(n) is the unit step sequence given in (2.52). It is an easy matter to
show that the response of this system to an input given by

u(n) = p(n) − p(n−N)

is

y(n) = 0, n < 0,

y(n) =
n∑
k=0

an−k = an
1 − 1−(n+1)

1 − a−1
=

1 − an+1

1 − a
, 0 ≤ n < N,

and

y(n) =
N−1∑
k=0

an−k = an
1 − a−N

1 − a−1
=
an−N+1 − an+1

1 − a
, N ≤ n.

Proceeding, with reference to (2.55) we note that h(n, k) represents the
system output at time n due to a δ-function input applied at time k. Now if
system (2.55) is causal, then its output will be identically zero before an input
is applied. Hence, a linear system (2.55) is causal if and only if
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h(n, k) = 0 for all n < k.

Therefore, when the system (2.55) is causal, we have in fact

y(n) =
n∑

k=−∞
h(n, k)u(k). (2.57a)

We can rewrite (2.57a) as

y(n) =
k0−1∑
k=−∞

h(n, k)u(k) +
n∑

k=k0

h(n, k)u(k)

� y(k0 − 1) +
n∑

k=k0

h(n, k)u(k). (2.57b)

We say that the discrete-time system described by (2.55) is at rest at
k = k0 ∈ Z if u(k) = 0 for k ≥ k0 implies that y(k) = 0 for k ≥ k0.
Accordingly, if system (2.55) is known to be at rest at k = k0, we have

y(n) =
∞∑

k=k0

h(n, k)u(k).

Furthermore, if system (2.55) is known to be causal and at rest at k = k0, its
input–output description assumes the form [in view of (2.57b)]

y(n) =
n∑

k=k0

h(n, k)u(k). (2.58)

If now, in addition, system (2.55) is also time-invariant, (2.58) becomes

y(n) =
n∑

k=k0

h(n− k)u(k) =
n∑

k=k0

h(k)u(n− k), (2.59)

which is a convolution sum. [Note that in (2.59) we have slightly abused the
notation for h(·), namely that h(n− k) = h(n− k, 0)(= h(n, k).]

Next, turning to linear, discrete-time, MIMO systems, we can generalize
(2.55) to

y(n) =
∞∑

k=−∞
H(n, k)u(k), (2.60)

where y : Z → Rp, u : Z → Rm, and

H(n, k) =

⎡
⎢⎢⎣
h11(n, k) h12(n, k) · · · h1m(n, k)
h21(n, k) h22(n, k) · · · h2m(n, k)

· · · · · · · · · · · ·
hp1(n, k) hp2(n, k) · · · hpm(n, k)

⎤
⎥⎥⎦ , (2.61)
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where hij(n, k) represents the system response at time n of the ith component
of y due to a discrete-time impulse δ applied at time k at the jth component
of u, whereas the inputs at all other components of u are being held zero.
The matrix H is called the discrete-time unit impulse response matrix of the
system.

Similarly, it follows that the system (2.60) is causal if and only if

H(n, k) = 0 for all n < k,

and that the input–output description of linear, discrete-time, causal systems
is given by

y(n) =
n∑

k=−∞
H(n, k)u(k). (2.62)

A discrete-time system described by (2.60) is said to be at rest at k =
k0 ∈ Z if u(k) = 0 for k ≥ k0 implies that y(k) = 0 for k ≥ k0. Accordingly,
if system (2.60) is known to be at rest at k = k0, we have

y(n) =
∞∑

k=k0

H(n, k)u(k). (2.63)

Moreover, if a linear discrete-time system that is at rest at k0 is known to be
causal, then its input–output description reduces to

y(n) =
n∑

k=k0

H(n, k)u(k). (2.64)

Finally, as in (2.56), it is easily shown that the unit impulse response
H(n, k) of a linear, time-invariant, discrete-time MIMO system depends only
on the difference of n and k; i.e., by a slight abuse of notation we can write

H(n, k) = H(n− k, 0) � H(n− k) (2.65)

for all n and k. Accordingly, linear, time-invariant, causal, discrete-time
MIMO systems that are at rest at k = k0 are described by equations of
the form

y(n) =
n∑

k=k0

H(n− k)u(k). (2.66)

We conclude by supposing that the system on hand is described by (2.14)
under the assumption that x(k0) = 0; i.e., the system is at rest at k = k0.
Then, according to (2.42) and (2.43), we obtain

H(n, k) =

⎧
⎪⎨
⎪⎩

C(n)Φ(n, k + 1)B(k), n > k,

D(n), n = k,

0, n < k.

(2.67)
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Furthermore, for the time-invariant case, we obtain

H(n− k) =

⎧
⎪⎨
⎪⎩

CAn−(k+1)B, n > k,

D, n = k,

0, n < k.

(2.68)

2.4.3 The Dirac Delta Distribution

For any linear time-invariant operator P from C(R,R) to itself, we say that
P admits an integral representation if there exists an integrable function (in
the Riemann or Lebesgue sense), gp : R → R, such that for any f ∈ C(R,R),

(Pf)(x) = (f ∗ gp)(x) �
∫ ∞

−∞
f(τ)gp(x− τ)dτ.

We call gp a kernel of the integral representation of P .
For the identity operator I [defined by If = f for any f ∈ C(R,R)]

an integral representation for which gp is a function in the usual sense does
not exist (see, e.g., Z. Szmydt, Fourier Transformation and Linear Differen-
tial Equations, D. Reidel Publishing Company, Boston, 1977). However, there
exists a sequence of functions {φn} such that for any f ∈ C(R,R),

(If)(x) = f(x) = lim
n→∞(f ∗ φn)(x). (2.69)

To establish (2.69) we make use of functions {φn} given by

φn(x) =

{
n(1 − n|x|), if |x| ≤ 1

n ,

0, if |x| > 1
n ,

n = 1, 2, 3, . . . . A plot of φn is depicted in Figure 2.4. In Antsaklis and Michel
[1], the following useful property of φn is proved.

n

y

x
–1/n 1/n

y = φn (x)

Figure 2.4. Generation of n delta distribution



66 2 Introduction to State-Space and Input–Output Descriptions of Systems

Lemma 2.1. Let f be a continuous real-valued function defined on R, and let
φn be defined as above (Figure 2.4). Then for any a ∈ R,

lim
n→∞

∫ ∞

−∞
f(τ)φn(a− τ)dτ = f(a). (2.70)

�

The above result, when applied to (2.69), now allows us to define a gen-
eralized function δ (also called a distribution) as the kernel of a formal or
symbolic integral representation of the identity operator I; i.e.,

f(x) = lim
n→∞

∫ ∞

−∞
f(τ)φn(x− τ)dτ (2.71)

�
∫ ∞

−∞
f(τ)δ(x − τ)dτ (2.72)

= f ∗ δ(x). (2.73)

It is emphasized that the expression (2.72) is not an integral at all (in the Rie-
mann or Lebesgue sense) but only a symbolic representation. The generalized
function δ is called the unit impulse or the Dirac delta distribution.

In applications we frequently encounter functions f ∈ C(R+, R). If we
extend f to be defined on all of R by letting f(x) = 0 for x < 0, then (2.70)
becomes

lim
n→∞

∫ ∞

0

f(τ)φn(a− τ)dτ = f(a) (2.74)

for any a > 0, where we have used the fact that in the proof of Lemma 2.1, we
need f to be continuous only in a neighborhood of a (refer to [1]). Therefore,
for f ∈ C(R+, R), (2.71) to (2.74) yield

lim
n→∞

∫ ∞

0

f(τ)φn(t− τ)dτ �
∫ ∞

0

f(τ)δ(t− τ)dτ = f(t) (2.75)

for any t > 0. Since the φn are even functions, we have φn(t− τ) = φn(τ − t),
which allows for the representation δ(t− τ) = δ(τ − t). We obtain from (2.75)
that

lim
n→∞

∫ ∞

0

f(τ)φn(τ − t)dτ �
∫ ∞

0

f(τ)δ(τ − t)dτ = f(t)

for any t > 0. Changing the variable τ ′ = τ − t, we obtain

lim
n→∞

∫ ∞

−t
f(τ ′ + t)φn(τ ′)dτ ′ �

∫ ∞

−t
f(τ ′ + t)δ(τ ′)dτ ′ = f(t)

for any t > 0. Taking the limit t→ 0+, we obtain

lim
n→∞

∫ ∞

0−
f(τ ′ + t)φn(τ ′)dτ ′ �

∫ ∞

0−
f(τ ′)δ(τ ′)dτ ′ = f(0), (2.76)
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where
∫∞
0− f(τ ′)δ(τ ′)dτ ′ is not an integral but a symbolic representation of

limn→∞
∫∞
0− f(τ ′ + t)φn(τ ′)dτ ′.

Now let s denote a complex variable. If in (2.75) and (2.76) we let f(τ) =
e−sτ , τ > 0, then we obtain the Laplace transform

lim
n→∞

∫ ∞

0−
e−sτφn(τ)dτ �

∫ ∞

0−
e−sτδ(τ)dτ = 1. (2.77)

Symbolically we denote (2.77) by

L(δ) = 1, (2.78)

and we say that the Laplace transform of the unit impulse function or the
Dirac delta distribution is equal to one.

Next, we point out another important property of δ. Consider a (time-
invariant) operator P and assume that P admits an integral representation
with kernel gP . If in (2.75) we let f = gP , we have

lim
n→∞(Pφn)(t) = gP (t), (2.79)

and we write this (symbolically) as

Pδ = gP . (2.80)

This shows that the impulse response of a linear, time-invariant, continuous-
time system with integral representation is equal to the kernel of the integral
representation of the system.

Next, for any linear time-varying operator P from C(R,R) to itself, we say
that P admits an integral representation if there exists an integrable function
(in the Riemann or Lebesgue sense), gP : R × R → R, such that for any
f ∈ C(R,R),

(Pf)(η) =
∫ ∞

−∞
f(τ)gP (η, τ)dτ. (2.81)

Again, we call gP a kernel of the integral representation of P . It turns out that
the impulse response of a linear, time-varying, continuous-time system with
integral representation is again equal to the kernel of the integral representa-
tion of the system. To see this, we first observe that if h ∈ C(R×R,R), and if
in Lemma 2.1 we replace f ∈ C(R,R) by h, then all the ensuing relationships
still hold, with obvious modifications. In particular, as in (2.71), we have for
all t ∈ R,

lim
n→∞

∫ ∞

−∞
h(t, τ)φn(η − τ)dτ �

∫ ∞

−∞
h(t, τ)δ(η − τ)dτ = h(t, η). (2.82)

Also, as in (2.75), we have

lim
n→∞

∫ ∞

0

h(t, τ)φn(η − τ)dτ �
∫ ∞

0

h(t, τ)δ(η − τ)dτ = h(t, η) (2.83)
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for η > 0.
Now let h(t, τ) = gP (t, τ). Then (2.82) yields

lim
n→∞

∫ ∞

−∞
gP (t, τ)φn(η − τ)dτ �

∫ ∞

−∞
gP (t, τ)δ(η − τ)dτ = gP (t, η), (2.84)

which establishes our assertion. The common interpretation of (2.84) is that
gP (t, η) represents the response of the system at time t due to an impulse
applied at time η.

2.4.4 Linear Continuous-Time Systems

We let P denote a linear time-varying operator from C(R,Rm) � U to
C(R,Rp) = Y , and we assume that P admits an integral representation given
by

y(t) = (Pu)(t) =
∫ ∞

−∞
HP (t, τ)u(τ)dτ, (2.85)

where HP : R × R → Rp×m, u ∈ U , and y ∈ Y and where HP is assumed
to be integrable. This means that each element of HP , hPij : R × R → R is
integrable (in the Riemann or Lebesgue sense).

Now let y1 and y2 denote the response of system (2.85) corresponding to
the input u1 and u2, respectively, let α1 and α2 be real scalars, and let y denote
the response of system (2.85) corresponding to the input α1u1 + α2u2 = u.
Then

y = P (u) = P (α1u1 + α2u2) =
∫ ∞

−∞
HP (t, τ)[α1u1(τ) + α2u2(τ)]dτ

= α1

∫ ∞

−∞
HP (t, τ)u1(τ)dτ + α2

∫ ∞

−∞
HP (t, τ)u2(τ)dτ

= α1P (u1) + α2P (u2) = α1y1 + α2y2, (2.86)

which shows that system (2.85) is indeed a linear system in the sense defined
in (2.50).

Next, we let all components of u(τ) in (2.85) be zero, except for the jth
component. Then the ith component of y(t) in (2.85) assumes the form

yi(t) =
∫ ∞

−∞
hPij (t, τ)uj(τ)dτ. (2.87)

According to the results of the previous subsection [see (2.84)], hPij (t, τ) de-
notes the response of the ith component of the output of system (2.85), mea-
sured at time t, due to an impulse applied to the jth component of the input
of system (2.85), applied at time τ , whereas all of the remaining components
of the input are zero. Therefore, we call HP (t, τ) = [hPij (t, τ)] the impulse
response matrix of system (2.85).
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Now suppose that it is known that system (2.85) is causal. Then its output
will be identically zero before an input is applied. It follows that system (2.85)
is causal if and only if

HP (t, τ) = 0 for all t < τ.

Therefore, when system (2.85) is causal, we have in fact that

y(t) =
∫ t

−∞
HP (t, τ)u(τ)dτ. (2.88)

We can rewrite (2.88) as

y(t) =
∫ t0

−∞
HP (t, τ)u(τ)dτ +

∫ t

t0

HP (t, τ)u(τ)dτ

� y(t0) +
∫ t

t0

HP (t, τ)u(τ)dτ. (2.89)

We say that the continuous-time system (2.85) is at rest at t = t0 if
u(t) = 0 for t ≥ t0 implies that y(t) = 0 for t ≥ t0. Note that our problem
formulation mandates that the system be at rest at t0 = −∞. Also, note that
if a system (2.85) is known to be causal and to be at rest at t = t0, then
according to (2.89) we have

y(t) =
∫ t

t0

HP (t, τ)u(τ)dτ. (2.90)

Next, suppose that it is known that the system (2.85) is time-invariant.
This means that if in (2.87) hPij (t, τ) is the response yi at time t due to an
impulse applied at time τ at the jth component of the input [i.e., uj(τ) = δ(t)],
with all other input components set to zero, then a −τ time shift in the input
[i.e., uj(t − τ) = δ(t − τ)] will result in a corresponding −τ time shift in the
response, which results in hPij (t−τ, 0). Since this argument holds for all t, τ ∈
R and for all i = 1, . . . , p, and j = 1, . . . ,m, we have HP (t, τ) = HP (t− τ, 0).
If we define (using a slight abuse of notation) HP (t− τ, 0) = HP (t− τ), then
(2.85) assumes the form

y(t) =
∫ ∞

−∞
HP (t− τ)u(τ)dτ. (2.91)

Note that (2.91) is consistent with the definition of the integral representation
of a linear time-invariant operator introduced in the previous subsection.

The right-hand side of (2.91) is the familiar convolution integral of HP

and u and is written more compactly as

y(t) = (HP ∗ u)(t). (2.92)
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We note that since HP (t−τ) represents responses at time t due to impulse
inputs applied at time τ , then HP (t) represents responses at time t due to
impulse function inputs applied at τ = 0. Therefore, a linear time-invariant
system (2.91) is causal if and only if HP (t) = 0 for all t < 0.

If it is known that the linear time-invariant system (2.91) is causal and is
at rest at t0, then we have

y(t) =
∫ t

t0

HP (t− τ)u(τ)dτ =
∫ t

t0

HP (τ)u(t− τ)dτ. (2.93)

In this case it is customary to choose, without loss of generality, t0 = 0. We
thus have

y(t) =
∫ t

0

HP (t− τ)u(τ)dτ, t ≥ 0. (2.94)

If we take the Laplace transform of both sides of (2.94), provided it exists,
we obtain

ŷ(s) = ĤP (s)û(s), (2.95)

where ŷ(s) = [ŷ1(s), . . . , ŷp(s)]T , ĤP (s) = [ĥPij (s)], û(s) = [û1(s), . . . , ûm(s)]T

where the ŷi(s), ûj(s), and ĥPij (s) denote the Laplace transforms of yi(t),
uj(t), and hPij(t), respectively [see Chapter 3 for more details concerning
Laplace transforms]. Consistent with (2.78), we note that ĤP (s) represents
the Laplace transform of the impulse response matrix HP (t). We call ĤP (s)
a transfer function matrix.

Now suppose that the input–output relation of a system is specified by the
state and output equations (2.3), repeated here as

ẋ = A(t)x +B(t)u, (2.96a)
y = C(t)x +D(t)u. (2.96b)

If we assume that x(t0) = 0 so that the system is at rest at t0 = 0, we obtain
for the response of this system,

y(t) =
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t) (2.97)

=
∫ t

t0

[C(t)Φ(t, τ)B(τ) +D(t)δ(t− τ)]u(τ)dτ, (2.98)

where in (2.98) we have made use of the interpretation of δ given in Sub-
section 2.4.3. Comparing (2.98) with (2.90), we conclude that the impulse
response matrix for system (2.96) is given by

HP (t, τ) =

{
C(t)Φ(t, τ)B(τ) +D(t)δ(t− τ), t ≥ τ,

0, t < τ.
(2.99)
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Finally, for time-invariant systems described by the state and output equa-
tions (2.7), repeated here as

ẋ = Ax+Bu, (2.100a)
y = Cx+Du, (2.100b)

we obtain for the impulse response matrix the expression

HP (t− τ) =

{
CeA(t−τ)B +Dδ(t− τ), t ≥ τ,

0, t < τ,
(2.101)

or, as is more commonly written,

HP (t) =

{
CeAtB +Dδ(t), t ≥ 0,
0, t < 0.

(2.102)

We will pursue the topics of this section further in Chapter 3.

2.5 Summary and Highlights

Internal Descriptions

• The response of the time-varying continuous-time system

ẋ = A(t)x +B(t)u, y = C(t)x +D(t)u, (2.3)

with x(t0) = x0 is given by

y(t) = C(t)Φ(t, t0)x0 + C(t)
∫ t

t0

Φ(t, s)B(s)u(s)ds +D(t)u(t). (2.6)

• The response of the time-invariant continuous-time system

ẋ = Ax+Bu, y = Cx +Du, (2.7)

is given by

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t). (2.9)

• The response of the discrete-time system

x(k + 1) = A(k)x(k) +B(k)u(k), y(k) = C(k)x(k) +D(k)u(k), (2.14)

with x(k0) = xk0 is given by
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y(k) = C(k)Φ(k, k0)xk0 + C(k)
k−1∑
j=k0

Φ(k, j + 1)B(j)u(j)

+D(k)u(k), k > k0 (2.42)

and
y(k0) = C(k0)xk0 +D(k0)u(k0), (2.43)

where the state transition matrix

Φ(k, k0) =
k−1∏
j=k0

A(j), k > k0, (2.31)

Φ(k0, k0) = I. (2.32)

In the time-invariant case

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (2.15)

with x(k) = xk0 , the system response is given by

y(k) = CAk−k0xk0 + C

k−1∑
j=k0

Ak−(j+1)B(j)u(j) +Du(k), k > k0, (2.44)

and
y(k0) = Cxk0 +Du(k0). (2.45)

External Descriptions

• Properties: Linearity (2.50); with memory; causality; time-invariance
• The input–output description of a linear, discrete-time, causal, time-

invariant system that is at rest at k = k0 is given by

y(n) =
n∑

k=k0

h(n− k)u(k) =
n∑

k=k0

h(k)u(n− k). (2.59)

h(n − k)(= h(n − k, 0)) is the discrete-time unit impulse response of the
system.

• For the discrete-time, time-invariant system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k),

the discrete-time unit impulse response (for the MIMO case) is

H(n− k) =

⎧⎪⎨
⎪⎩

CAn−(k+1)B, n > k,

D, n = k,

0, n < k.

(2.68)
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• The unit impulse (Dirac delta distribution) δ(t) satisfies

∫ b

a

f(τ)δ(t − τ)dτ = f(t),

where a < t < b [see (2.75)].
• The input–output description of a linear, continuous-time, causal, time-

invariant system that is at rest at t = t0 is given by

y(t) =
∫ t

t0

HP (t− τ)u(τ)dτ =
∫ t

t0

HP (τ)u(t − τ)dτ. (2.93)

HP (t− τ)(= HP (t− τ, 0)) is the continuous-time unit impulse response of
the system.

• For the time-invariant system

ẋ = Ax+Bu y = Cx+Du, (2.100)

the continuous-time unit impulse response is

HP (t− τ) =

{
CeA(t−τ)B +Dδ(t− τ), t ≥ τ,

0, t < τ.
(2.101)

2.6 Notes

An original standard reference on linear systems is by Zadeh and Desoer [7].
Of the many excellent texts on this subject, the reader may want to refer to
Brockett [2], Kailath [5], and Chen [3]. For more recent texts on linear systems,
consult, e.g., Rugh [6] and DeCarlo [4]. The presentation in this book relies
mostly on the recent text by Antsaklis and Michel [1].
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Exercises

2.1. (a) For the mechanical system given in Exercise 1.2a, we view f1 and f2
as making up the system input vector, and y1 and y2 the system output
vector. Determine a state-space description for this system.

(b) For the same mechanical system, we view f1 + 5f2 as the (scalar-valued)
system input and we view 8y1+10y2 as the (scalar-valued) system output.
Determine a state-space description for this system.

(c) For part (a), determine the input–output description of the system.
(d) For part (b), determine the input–output description of the system.

2.2. In Example 1.3, we view ea and θ as the system input and output, re-
spectively.

(a) Detemine a state-space representation for this system.
(b) Determine the input–output description of this system.

2.3. For the second-order section digital filter in direct form, given in Fig-
ure 2.1, determine the input–output description, where x1(k) and u(k) denote
the output and input, respectively.

2.4. In the circuit of Figure 2.5, vi(t) and v0(t) are voltages (at time t) and R1

and R2 are resistors. There is also an ideal diode that acts as a short circuit
when vi is positive and as an open circuit when vi is negative. We view vi and
v0 as the system input and output, respectively.

(a) Determine an input–output description of this system.
(b) Is this system linear? Is it time-varying or time-invariant? Is it causal?

Explain your answers.

R1

R2
v

+

–

v

Diode +

–

+ –

i (t) 0 (t)

i(t)

Figure 2.5. Diode circuit

2.5. We consider the truncation operator given by

y(t) = Tτ (u(t))

as a system, where τ ∈ R is fixed, u and y denote system input and output,
respectively, t denotes time, and Tτ (·) is specified by
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Tτ (u(t)) =

{
u(t) t ≤ τ,

0 t > τ.

Is this system causal? Is it linear? Is it time-invariant? What is its impulse
response?

2.6. We consider the shift operator given by

y(t) = Qτ (u(t)) = u(t− τ)

as a system, where τ ∈ R is fixed, u and y denote system input and system
output, respectively, and t denotes time. Is this system causal? Is it linear? Is
it time-invariant? What is its impulse response?

2.7. Consider the system whose input–output description is given by

y(t) = min{u1(t), u2(t)},

where u(t) = [u1(t), u2(t)]T denotes the system input and y(t) is the system
output. Is this system linear?

2.8. Suppose it is known that a linear system has impulse response given by
h(t, τ) = exp(−|t− τ |). Is this system causal? Is it time-invariant?

2.9. Consider a system with input–output description given by

y(k) = 3u(k + 1) + 1, k ∈ Z,

where y and u denote the output and input, respectively (recall that Z denotes
the integers). Is this system causal? Is it linear?

2.10. Use expression (2.54),

x(n) =
∞∑

k=−∞
x(k)δ(n− k),

and δ(n) = p(n) − p(n − 1) to express the system response y(n) due to any
input u(k), as a function of the unit step response of the system [i.e., due to
u(k) = p(k)].


