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Appendix

This appendix consists of nine parts. In the first eight, Sections A.1–A.8, we
present results from linear algebra used throughout this book. In the last
part, Section A.9, we address some numerical considerations. In all cases,
our aim is to present a concise summary of pertinent results and not a full
development of the subject on hand. For a more extensive exposition of the
materials presented herein, refer to Antsaklis and Michel [1, Section 2.2] and
to the other sources cited at the end of this appendix.

A.1 Vector Spaces

In defining vector space, we require the notion of a field.

A.1.1 Fields

Definition A.1. Let F be a set containing more than one element, and let
there be two operations “+” and “·” defined on F (i.e., “+” and “·” are
mappings of F × F into F ), called addition and multiplication, respectively.
Then for each α, β ∈ F there is a unique element α + β ∈ F , called the sum
of α and β, and a unique element αβ � α · β ∈ F , called the product of α
and β. We say that {F ; +, ·} is a field provided that the following axioms are
satisfied:

(i) α+ (β + γ) = (α+ β) + γ and α · (β · γ) = (α · β) · γ for all α, β, γ ∈ F
(i.e., “+” and “·” are associative operations);

(ii) α + β = β + α and α · β = β · α for all α, β ∈ F (i.e., “+” and “·” are
commutative operations);

(iii) α · (β + γ) = α · β + α · γ for all all α, β, γ ∈ F (i.e., “·” is distributive
over “+”);

(iv) There exists an element 0F ∈ F such that 0F +α = α for all α ∈ F (i.e.,
0F is the identity element of F with respect to “+”);
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(v) There exists an element 1F ∈ F, 1F �= 0F , such that 1F · α = α for all
α ∈ F (i.e., 1F is the identity element of F with respect to “·”);

(vi) For every α ∈ F , there exists an element −α ∈ F such that α+(−α) = 0F
(i.e., −α is the additive inverse of F );

(vii) For any α �= 0F , there exists an α−1 ∈ F such that α · (α−1) = 1F (i.e.,
α−1 is the multiplicative inverse of F ). �

In the sequel, we will usually speak of a field F rather than of “a field
{F ; +, ·}.”

Perhaps the most widely known fields are the field of real numbers R and
the field of complex numbers C. Another field that we will encounter (see
Example A.11) is the field of rational functions (i.e., rational fractions over
polynomials).

As a third example, we let F = {0, 1} and we define on F (binary) addition
as 0 + 0 = 0 = 1 + 1, 1 + 0 = 1 = 0 + 1 and (binary) multiplication as
1 · 0 = 0 · 1 = 0 · 0 = 0, 1 · 1 = 1. It is easily verified that {F ; +, ·} is a field.

As a fourth example, let P denote the set of polynomials with real co-
efficients and define addition “+” and multiplication “·” on P in the usual
manner. Then {F ; +, ·} is not a field since, e.g., axiom (vii) in Definition A.1
is violated (i.e., the multiplicative inverse of a polynomial p ∈ P is not neces-
sarily a polynomial).

A.1.2 Vector Spaces

Definition A.2. Let V be a nonempty set, F a field, “+” a mapping of V ×V
into V , and “·” a mapping of F × V into V . Let the members x ∈ V be
called vectors, let the elements α ∈ F be called scalars, let the operation “+”
defined on V be called vector addition, and let the mapping “·” be called scalar
multiplication or multiplication of vectors by scalars. Then for each x, y ∈ V ,
there is a unique element, x+ y ∈ V , called the sum of x and y, and for each
x ∈ V and α ∈ F , there is a unique element, αx � α · x ∈ V , called the
multiple of x by α. We say that the nonempty set V and the field F , along
with the two mappings of vector addition and scalar multiplication, constitute
a vector space or a linear space if the following axioms are satisfied:

(i) x+ y = y + x for every x, y ∈ V ;
(ii) x+ (y + z) = (x+ y) + z for every x, y, z ∈ V ;
(iii) There is a unique vector in V , called the zero vector or the null vector

or the origin, that is denoted by 0V and has the property that 0V +x = x
for all x ∈ V ;

(iv) α(x + y) = αx+ αy for all α ∈ F and for all x, y ∈ V ;
(v) (α + β)x = αx + βx for all α, β ∈ F and for all x ∈ V ;
(vi) (αβ)x = α(βx) for all α, β ∈ F and for all x ∈ V ;
(vii) 0Fx = 0V for all x ∈ V ;
(viii) 1Fx = x for all x ∈ V . �
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When the meaning is clear from context, we will write 0 in place of 0F , 1 in
place of 1F , and 0 in place of 0V . To indicate the relationship between the set
of vectors V and the underlying field F , we sometimes refer to a vector space
V over the field F , and we signify this by writing (V, F ). However, usually,
when the field in question is clear from context, we simply speak of a vector
space V . If F is the field of real numbers R, we call the space a real vector
space. Similarly, if F is the field of complex numbers C, we speak of a complex
vector space.

Examples of Vector Spaces

Example A.3. Let V = Fn denote the set of all ordered n-tuples of elements
from a field F . Thus, if x ∈ Fn, then x = (x1, . . . , xn)T , where xi ∈ F ,
i = 1, . . . , n. With x, y ∈ Fn and α ∈ F , let vector addition and scalar
multiplication be defined as

x+ y = (x1, . . . , xn)T + (y1, . . . , yn)T

� (x1 + y1, . . . , xn + yn)T (A.1)

and
αx = α(x1, . . . , xn)T � (αx1, . . . , αxn)T . (A.2)

In this case the null vector is defined as 0 = (0, . . . , 0)T and the vector −x is
defined as −x = −(x1, . . . , xn)T = (−x1, . . . ,−xn)T . Utilizing the properties
of the field F , all axioms of Definition A.2 are readily verified, and therefore,
Fn is a vector space. We call this space the space Fn of n-tuples of elements
of F . If in particular we let F = R, we have Rn, the n-dimensional real
coordinate space. Similarly, if we let F = C, we have Cn, the n-dimensional
complex coordinate space.

We note that the set of points in R2, (x1, x2), that satisfy the linear equa-
tion

x1 + x2 + c = 0, c �= 0,

with addition and multiplication defined as in (A.1) and (A.2), is not a vector
space.

Example A.4. Let V = R∞ denote the set of all infinite sequences of real
numbers,

x = {x1, x2, . . . , xk, . . . } � {xi},
let vector addition be defined similarly as in (A.1), and let scalar multiplication
be defined similarly as in (A.2). It is again an easy matter to show that this
space is a vector space.

On some occasions we will find it convenient to modify V = R∞ to consist
of the set of all real infinite sequences {xi}, i ∈ Z.
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Example A.5. Let 1 ≤ p ≤ ∞, and define V = lp by

lp = {x ∈ R∞ :
∞∑
i=1

|xi|p <∞}, 1 ≤ p <∞,

l∞ = {x ∈ R∞ : sup
i
{|xi|} <∞}. (A.3)

Define vector addition and scalar multiplication on lp as in (A.1) and (A.2),
respectively. It can be verified that this space, called the lp-space, is a vector
space.

In proving that lp, 1 ≤ p ≤ ∞, is indeed a vector space, in establishing
some properties of norms defined on the lp-spaces, in defining linear trans-
formations on lp-spaces, and in many other applications, we make use of the
Hölder and Minkowski Inequalities for infinite sums, given below. (These in-
equalities are of course also valid for finite sums.) For proofs of these results,
refer, e.g., to Michel and Herget [9, pp. 268–270].

Hölder’s Inequality states that if p, q ∈ R are such that 1 < p < ∞
and 1/p + 1/q = 1, if {xi} and {yi} are sequences in either R or C, and if∑∞

i=1 |xi|p <∞ and
∑∞
i=1 |yi|q <∞, then

∞∑
i=1

|xiyi| ≤ (
∞∑
i=1

|xi|p)1/p(
∞∑
i=1

|yi|q)1/q. (A.4)

Minkowski’s Inequality states that if p ∈ R, where 1 ≤ p <∞, if {xi} and
{yi} are sequences in either R or C, and if

∑∞
i=1 |xi|p <∞ and

∑∞
i=1 |yi|p <

∞, then

(
∞∑
i=1

|xi ± yi|p)1/p ≤ (
∞∑
i=1

|xi|p)1/p + (
∞∑
i=1

|yi|p)1/p. (A.5)

If in particular p = q = 2, then (A.4) reduces to the Schwarz Inequality for
sums .

Example A.6. Let V = C([a, b], R). We note that x = y if and only if x(t) =
y(t) for all t ∈ [a, b], and that the null vector is the function that is zero for
all t ∈ [a, b]. Let F denote the field of real numbers, let α ∈ F , and let vector
addition and scalar multiplication be defined pointwise by

(x+ y)(t) = x(t) + y(t) for all t ∈ [a, b] (A.6)

and
(αx)(t) = αx(t) for all t ∈ [a, b]. (A.7)
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Then clearly x + y ∈ V whenever x, y ∈ V, αx ∈ V , whenever α ∈ F and
x ∈ V , and all the axioms of a vector space are satisfied. We call this space the
space of real-valued continuous functions on [a, b], and we frequently denote
it simply by C[a, b].

Example A.7. Let 1 ≤ p < ∞, and let V denote the set of all real-valued
functions x on the interval [a, b] such that

∫ b

a

|x(t)|pdt <∞. (A.8)

Let F = R, and let vector addition and scalar multiplication be defined as
in (A.6) and (A.7), respectively. It can be verified that this space is a vector
space.

In this book we will usually assume that in (A.8), integration is in the
Riemann sense. When integration in (A.8) is in the Lebesgue sense, then the
vector space under discussion is called an Lp-space (or the space Lp[a, b]).

In proving that the Lp-spaces are indeed vector spaces, in establishing
properties of norms defined on Lp-spaces, in defining linear transformations
on Lp-spaces, and in many other applications, we make use of the Hölder and
Minkowski Inequalities for integrals, given below. (These inequalities are valid
when integration is in the Riemann and the Lebesgue senses.) For proofs of
these results, refer, e.g., to Michel and Herget [9, pp. 268–270].

Hölder’s Inequality states that if p, q ∈ R are such that 1 < p < ∞ and
1/p+ 1/q = 1, if [a, b] is an interval on the real line, if f, g : [a, b] → R, and if∫ b
a
|f(t)|pdt <∞ and

∫ b
a
|g(t)|qdt <∞, then

∫ b

a

|f(t)g(t)|dt ≤ (
∫ b

a

|f(t)|pdt)1/p(
∫ b

a

|g(t)|qdt)1/q. (A.9)

Minkowski’s Inequality states that if p ∈ R, where 1 ≤ p < ∞, if f, g :
[a, b] → R, and if

∫ b
a |f(t)|pdt <∞ and

∫ b
a |g(t)|pdt <∞, then

(
∫ b

a

|f(t) ± g(t)|pdt)1/p ≤ (
∫ b

a

|f(t)|pdt)1/p + (
∫ b

a

|g(t)|pdt)1/p. (A.10)

If in particular p = q = 2, then (A.9) reduces to the Schwarz Inequality
for integrals.

Example A.8. Let V denote the set of all continuous real-valued functions
on the interval [a, b] such that

max
a≤t≤b

|x(t)| <∞. (A.11)
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Let F = R, and let vector addition and scalar multiplication be defined as
in (A.6) and (A.7), respectively. It can readily be verified that this space is a
vector space.

In some applications it is necessary to expand the above space to the set
of measurable real-valued functions on [a, b] and to replace (A.11) by

ess sup
a≤t≤b

|x(t)| <∞, (A.12)

where ess sup denotes the essential supremum; i.e.,

ess sup
a≤t≤b

|x(t)| = inf{M : μ{t : |x(t)| > M} = 0, },

where μ denotes the Lebesgue measure. In this case, the vector space under
discussion is called the L∞-space.

A.2 Linear Independence and Bases

We now address the important concepts of linear independence of a set of
vectors in general and bases in particular. We first require the notion of linear
subspace.

A.2.1 Linear Subspaces

A nonempty subset W of a vector space V is called a linear subspace (or a
linear manifold ) in V if (i) w1 + w2 is in W whenever w1 and w2 are in W ,
and (ii) αw is in W whenever α ∈ F and w ∈ W . It is an easy matter to
verify that a linear subspace W satisfies all the axioms of a vector space and
may as such be regarded as a linear space itself.

Two trivial examples of linear subspaces include the null vector (i.e., the
set W = {0} is a linear subspace of V ) and the vector space V itself. Another
example of a linear subspace is the set of all real-valued polynomials defined
on the interval [a, b] that is a linear subspace of the vector space consisting
of all real-valued continuous functions defined on the interval [a, b] (refer to
Example A.6).

As another example of a linear subspace (of R2), we cite the set of all
points on a straight line passing through the origin. On the other hand, a
straight line that does not pass through the origin is not a linear subspace of
R2.

It is an easy matter to show that if W1 and W2 are linear subspaces of a
vector space V , then W1 ∩W2, the intersection of W1 and W2, is also a linear
subspace of V . A similar statement cannot be made, however, for the union
of W1 and W2 (prove this). Note that to show that a set V is a vector space,
it suffices to show that it is a linear subspace of some vector space.
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A.2.2 Linear Independence

Throughout this section, we let {α1, . . . , αn}, αi ∈ F , denote an indexed set
of scalars and we let {v1, . . . , vn}, vi ∈ V , denote an indexed set of vectors.

Now let W be a set in a linear space V (W may be a finite set or an infinite
set). We say that a vector v ∈ V is a finite linear combination of vectors in
W if there is a finite set of elements {w1, . . . , wn} in W and a finite set of
scalars {α1, . . . , αn} in F such that

v = α1w
1 + · · · + αnw

n.

Now let W be a nonempty subset of a linear space V and let S(W ) be the
set of all finite linear combinations of the vectors from W ; i.e., w ∈ S(W ) if
and only if there is some set of scalars {α1, . . . , αm} and some finite subset
{w1, . . . , wm} of W such that w = α1w

1 + · · ·+αmw
m, where m may be any

positive integer. Then it is easily shown that S(W ) is a linear subspace of V ,
called the linear subspace generated by the set W .

Now if U is a linear subspace of a vector space V and if there exists a set
of vectors W ⊂ V such that the linear space S(W ) generated by W is U , then
we say that W spans U . It is easily shown that S(W ) is the smallest linear
subspace of a vector space V containing the subset W of V . Specifically, if U
is a linear subspace of V and if U contains W , then U also contains S(W ).

As an example, in the space (R2, R), the set S1 = {e1} = {(1, 0)T} spans
the set consisting of all vectors of the form (a, 0)T , a ∈ R, whereas the set
S2 = {e1, e2}, e2 = (0, 1)T spans all of R2.

We are now in a position to introduce the notion of linear dependence.

Definition A.9. Let S = {v1, . . . , vm} be a finite nonempty set in a linear
space V . If there exist scalars α1, . . . , αm, not all zero, such that

α1v
1 + · · · + αmv

m = 0, (A.13)

then the set S is said to be linearly dependent (over F ). If a set is not linearly
dependent, then it is said to be linearly independent. In this case relation
(A.13) implies that α1 = · · · = αm = 0. An infinite set of vectors W in
V is said to be linearly independent if every finite subset of W is linearly
independent. �

Example A.10. Consider the linear space (Rn, R) (see Example A.3), and
let e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T . Clearly,∑n

i=1 αie
i = 0 implies that αi = 0, i = 1, . . . , n. Therefore, the set S =

{e1, . . . , en} is a linearly independent set of vectors in Rn over the field of real
numbers R.
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Example A.11. Let V be the set of 2-tuples whose entries are complex-
valued rational functions over the field of complex-valued rational functions.
Let

v1 =
[

1/(s+ 1)
1/(s+ 2)

]
, v2 =

[
(s+ 2)/[(s+ 1)(s+ 3)]

1/(s+ 3)

]
,

and let α1 = −1, α2 = (s+ 3)/(s+ 2). Then α1v
1 + α2v

2 = 0, and therefore,
the set S = {v1, v2} is linearly dependent over the field of rational functions.
On the other hand, since α1v

1 +α2v
2 = 0 when α1, α2 ∈ R is true if and only

if α1 = α2 = 0, it follows that S is linearly independent over the field of real
numbers (which is a subset of the field of rational functions). This shows that
linear dependence of a set of vectors in V depends on the field F .

A.2.3 Linear Independence of Functions of Time

Example A.12. Let V = C((a, b), Rn), let F = R, and for x, y ∈ V and
α ∈ F , define addition of elements in V and multiplication of elements in V
by elements in F by (x+y)(t) = x(t)+y(t) for all t ∈ (a, b) and (αx)(t) = αx(t)
for all t ∈ (a, b). Then, as in Example A.6, we can easily show that (V, F ) is
a vector space. An interesting question that arises is whether for this space,
linear dependence (and linear independence) of a set of vectors can be phrased
in some testable form. The answer is affirmative. Indeed, it can readily be
verified that for the present vector space (V, F ), linear dependence of a set of
vectors S = {φ1, . . . , φk} in V = C((a, b), Rn) over F = R is equivalent to
the requirement that there exist scalars αi ∈ F , i = 1, . . . , k, not all zero, such
that

α1φ1(t) + · · · + αkφk(t) = 0 for all t ∈ (a, b).

Otherwise, S is linearly independent.
To see how the above example applies to specific cases, let V = C((−∞,∞),

R2), and consider the vectors φ1(t) = [1, t]T , φ2(t) = [1, t2]T . To show that
the set S = {φ1, φ2} is linearly independent (over F = R), assume for pur-
poses of contradiction that S is linearly dependent. Then there must exist
scalars α1 and α2, not both zero, such that α1[1, t]T + α2[1, t2]T = [0, 0]T for
all t ∈ (−∞,∞). But in particular, for t = 2, the above equation is satisfied
if and only if α1 = α2 = 0, which contradicts the assumption. Therefore,
S = {φ1, φ2} is linearly independent.

As another specific case of the above example, let V = C((−∞,∞), R2)
and consider the set S = {φ1, φ2, φ3, φ4}, where φ1(t) = [1, t]T , φ2(t) =
[1, t2], φ3(t) = [0, 1]T , and φ4(t) = [e−t, 0]. The set S is clearly independent
over R since α1φ1(t) +α2φ2(t) +α3φ3(t) +α4φ4(t) = 0 for all t ∈ (−∞,∞) if
and only if α1 = α2 = α3 = α4 = 0.
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A.2.4 Bases

We are now in a position to introduce another important concept.

Definition A.13. A set W in a linear space V is called a basis for V if

(i) W is linearly independent, and
(ii) the span of W is the linear space V itself; i.e., S(W ) = V . �

An immediate consequence of the above definition is that if W is a linearly
independent set in a vector space V , then W is a basis for S(W ).

To introduce the notion of dimension of a vector space, it is shown that
if a linear space V is generated by a finite number of linearly independent
elements, then this number of elements must be unique. The following results
lead up to this.

Let {v1, . . . , vn} be a basis for a linear space V . Then it is easily shown
that for each vector v ∈ V , there exist unique scalars α1, . . . , αn such that

v = α1v
1 + · · · + αnv

n.

Furthermore, if u1, . . . , um is any linearly independent set of vectors in V ,
then m ≤ n. Moreover, any other basis of V consists of exactly n elements.
These facts allow the following definitions.

If a linear space V has a basis consisting of a finite number of vectors,
say, {v1, . . . , vn}, then V is said to be a finite-dimensional vector space and
the dimension of V is n, abbreviated dimV = n. In this case we speak of an
n-dimensional vector space. If V is not a finite-dimensional vector space, it is
said to be an infinite-dimensional vector space.

By convention, the linear space consisting of the null vector is finite-
dimensional with dimension equal to zero.

An alternative to the above definition of dimension of a (finite-dimensional)
vector space is given by the following result, which is easily verified: Let V
be a vector space that contains n linearly independent vectors. If every set
of n+ 1 vectors in V is linearly dependent, then V is finite-dimensional and
dimV = n.

The preceding results enable us now to introduce the concept of coordi-
nates of a vector. We let {v1, . . . , vn} be a basis of a vector space V , and we
let v ∈ V be represented by

v = ξ1v
1 + · · · + ξnv

n.

The unique scalars ξ1, . . . , ξn are called the coordinates of v with respect to
the basis {v1, . . . , vn}.

Example A.14. For the linear space (Rn, R), let S = {e1, . . . , en}, where
the ei ∈ Rn, i = 1, . . . , n, were defined earlier (in Example A.10). Then
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S is clearly a basis for (Rn, R) since it is linearly independent and since
given any v ∈ Rn, there exist unique real scalars αi, i = 1, . . . , n, such that
v =

∑n
i=1 αie

i = (α1, . . . , αn)T ; i.e., S spans Rn. It follows that with every
vector v ∈ Rn, we can associate a unique n-tuple of scalars

⎡
⎢⎣
α1

...
αn

⎤
⎥⎦ or (α1, . . . , αn)

relative to the basis {e1, . . . , en}, the coordinate representation of the vector
v ∈ Rn with respect to the basis S = {e1, . . . , en}. Henceforth, we will refer
to the basis S of this example as the natural basis for Rn.

Example A.15. We note that the vector space of all (complex-valued) poly-
nomials with real coefficients of degree less than n is an n-dimensional vec-
tor space over the field of real numbers. A basis for this space is given by
S = {1, s, . . . , sn−1} where s is a complex variable. Associated with a given
element of this vector space, say p(s) = α0+α1s+ · · ·+αn−1s

n−1, we have the
unique n-tuple given by (α0, α1, . . . , αn−1)T , which constitutes the coordinate
representation of p(s) with respect to the basis S given above.

Example A.16. We note that the space (V,R), where V = C([a, b], R), given
in Example A.6 is an infinite-dimensional vector space.

A.3 Linear Transformations

Definition A.17. A mapping T of a linear space V into a linear space W ,
where V and W are vector spaces over the same field F , is called a linear
transformation or a linear operator provided that

(L-i) T (x+ y) = T (x) + T (y) for all x, y ∈ V , and
(L-ii) T (αx) = αT (x) for all x ∈ V and α ∈ F . �

In the following discussion, we consider three specific examples of linear
transformations.

Example A.18. Let (V,R) = (Rn, R) and (W,R) = (Rm, R) be vector spaces
defined as in Example A.3, let A = [aij ] ∈ Rm×n, and let T : V → W be
defined by the equation

y = Ax, y ∈ Rm, x ∈ Rn,

where Ax denotes multiplication of the matrix A and the vector y. It is easily
verified using the properties of matrices that T is a linear transformation.
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Example A.19. Let (V,R) = (lp, R) be the vector space defined in Ex-
ample A.5 (modified to consist of sequences {xi}, i ∈ Z, in place of {xi},
i = 1, 2, . . . ). Let h : Z × Z → R be a function having the property that for
each x ∈ V , the infinite sum

∞∑
k=−∞

h(n, k)x(k)

exists and defines a function of n on Z. Let T : V → V be defined by

y(n) =
∞∑

k=−∞
h(n, k)x(k).

It is easily verified that T is a linear transformation.
The existence of the above sum is ensured under appropriate assumptions.

For example, by using the Hölder Inequality, it is readily shown that if, e.g.,
for fixed n, {h(n, k)} ∈ l2 and {x(k)} ∈ l2, then the above sum is well defined.
The above sum exists also if, e.g., {x(k)} ∈ l∞ and {h(n, k)} ∈ l1 for fixed n.

Example A.20. Let (V,R) denote the vector space given in Example A.7,
and let k ∈ C([a, b] × [a, b], R) have the property that for each x ∈ V , the
Riemann integral ∫ b

a

k(s, t)x(t)dt

exists and defines a continuous function of s on [a, b]. Let T : V → V be
defined by

(T x)(s) = y(s) =
∫ b

a

k(s, t)x(t)dt.

It is readily verified that T is a linear transformation of V into V .

Henceforth, if T is a linear transformation from a vector space V (over
a field F ) into a vector space W (over the same field F ) we will write T ∈
L(V,W ) to express this. In the following discussion, we will identify some of
the important properties of linear transformations.

A.3.1 Linear Equations

With T ∈ L(V,W ) we define the null space of T as the set

N (T ) = {v ∈ V : T v = w = 0}
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and the range space of T as the set

R(T ) = {w ∈W : w = T v, v ∈ V }.

Note that since T 0 = 0,N (T ) and R(T ) are never empty. It is easily verified
that N (T ) is a linear subspace of V and that R(T ) is a linear subspace of
W . If V is finite-dimensional (of dimension n), then it is easily shown that
dimR(T ) ≤ n. Also, if V is finite-dimensional and if {w1, . . . , wn} is a basis
for R(T ) and vi is defined by T vi = wi, i = 1, . . . , n, then it is readily proved
that the vectors v1, . . . , vn are linearly independent.

One of the important results of linear algebra, called the fundamental theo-
rem of linear equations , states that for T ∈ L(V,W ) with V finite-dimensional,
we have

dimN (T ) + dimR(T ) = dimV.

For the proof of this result, refer to any of the references on linear algebra
cited at the end of Chapters 4, 6, 8, and 9.

The above result gives rise to the notions of the rank, ρ(T ), of a linear
transformation T of a finite-dimensional vector space V into a vector space
W , which we define as the dimension of the range space R(T ), and the nullity,
ν(T ), of T , which we define as the dimension of the null space N (T ).

With the above machinery in place, it is now easy to establish the following
important results concerning linear equations.

Let T ∈ L(V,W ), where V is finite-dimensional, let s = dimN (T ), and
let {v1, . . . , vs} be a basis for N (T ). Then it is easily verified that

(i) a vector v ∈ V satisfies the equation T v = 0 if and only if v =
∑s
i=1 αiv

i

for some set of scalars {α1, . . . , αs}, and furthermore, for each v ∈ V such
that T v = 0 is true, the set of scalars {α1, . . . , αs} is unique;

(ii) if w0 ∈ W is a fixed vector, then T v = w0 holds for at least one vector
v ∈ V (called the solution of the equation T v = w0) if and only if
w0 ∈ R(T ); and

(iii) if w0 is any fixed vector in W and if v0 is some vector in V such that
T v0 = w0 (i.e., v0 is a solution of the equation T v0 = w0), then a vector
v ∈ V satisfies T v = w0 if and only if v = v0 +

∑s
i=1 βiv

i for some set of
scalars {β1, . . . , βs}, and furthermore, for each v ∈ V such that T v = w0,
the set of scalars {β1, . . . , βs} is unique.

A.3.2 Representation of Linear Transformations by Matrices

In the following discussion, we let (V, F ) and (W,F ) be vector spaces over the
same field and we let A : V →W denote a linear mapping. We let {v1, . . . , vn}
be a basis for V , and we set v̄1 = Av1, . . . , v̄n = Avn. Then it is an easy matter
to show that if v is any vector in V and if (α1, . . . , αn) are the coordinates of
v with respect to {v1, . . . , vn}, then Av = α1v̄

1 + · · ·+αnv̄
n. Indeed, we have

Av = A(α1v
1 + · · · + αnv

n) = α1Av1 + · · · + αnAvn = α1v̄
1 + · · · + αnv̄

n.
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Next, we let {v̄1, . . . , v̄n} be any set of vectors in W . Then it can be shown
that there exists a unique linear transformation A from V into W such that
Av1 = v̄1, . . . ,Avn = v̄n. To show this, we first observe that for each v ∈ V
we have unique scalars α1, . . . , αn such that

v = α1v
1 + · · · + αnv

n.

Now define a mapping A : V →W as

A(v) = α1v̄
1 + · · · + αnv̄

n.

Clearly, A(vi) = v̄i, i = 1, . . . , n. We first must show that A is linear and, then,
that A is unique. Given v = α1v

1 + · · ·+αnv
n and w = β1v

1 + · · ·+βnv
n, we

have A(v+w) = A[(α1 +β1)v1 + · · ·+(αn+βn)vn] = (α1 +β1)v̄1 + · · ·+(αn+
βn)v̄n. On the other hand, A(v) = α1v̄

1+· · ·+αnv̄n,A(w) = β1v̄
1+· · ·+βnv̄n.

Thus, A(v)+A(w) = (α1v̄
1+ · · ·+αnv̄n)+(β1v̄

1+ · · ·+βnv̄n) = (α1+β1)v̄1+
· · ·+(αn+βn)v̄n = A(v+w). In a similar manner, it is easily established that
αA(v) = A(αv) for all α ∈ F and v ∈ V . Therefore, A is linear. Finally, to
show that A is unique, suppose there exists a linear transformation B : V →W
such that Bvi = v̄i, i = 1, . . . , n. It follows that (A − B)vi = 0, i = 1, . . . , n,
and, therefore, that A = B.

These results show that a linear transformation is completely determined
by knowing how it transforms the basis vectors in its domain, and that this
linear transformation is uniquely determined in this way. These results enable
us to represent linear transformations defined on finite-dimensional spaces
in an unambiguous way by means of matrices. We will use this fact in the
following development.

Let (V, F ) and (W,F ) denote n-dimensional and m-dimensional vector
spaces, respectively, and let {v1, . . . , vn} and {w1, . . . , wm} be bases for V
and W , respectively. Let A : V → W be a linear transformation, and let
v̄i = Avi, i = 1, . . . , n. Since {w1, . . . , wm} is a basis for W , there are unique
scalars {aij}, i = 1, . . . ,m, j = 1, . . . , n, such that

Av1 = v̄1 = a11w
1 + a21w

2 + · · · + am1w
m,

Av2 = v̄2 = a12w
1 + a22w

2 + · · · + am2w
m,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Avn = v̄n = a1nw

1 + a2nw
2 + · · · + amnw

m.

(A.14)

Next, let v ∈ V . Then v has the unique representation v = α1v
1 + α2v

2 +
· · · + αnv

n with respect to the basis {v1, . . . , vn}. In view of the result given
at the beginning of this subsection, we now have

Av = α1v̄
1 + · · · + αnv̄

n. (A.15)

Since Av ∈ W,Av has a unique representation with respect to the basis
{w1, . . . , wm}, say,
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Av = γ1w
1 + γ2w

2 + · · · + γmw
m. (A.16)

Combining (A.14) and (A.16), and rearranging, in view of the uniqueness of
the representation in (A.16), we have

γ1 = a11α1 + a12α2 + · · · + a1nαn,

γ2 = a21α1 + a22α2 + · · · + a2nαn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
γm = am1α1 + am2α2 + · · · + amnαn,

(A.17)

where (α1, . . . , αn)T and (γ1, . . . , γm)T are coordinate representations of v ∈ V
and Av ∈ W with respect to the bases {v1, . . . , vn} of V and {w1, . . . , wm}
of W , respectively. This set of equations enables us to represent the linear
transformation A from the linear space V into the linear space W by the
unique scalars {aij}, i = 1, . . . ,m, j = 1, . . . , n. For convenience we let

A = [aij ] =

⎡
⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

⎤
⎥⎥⎦ . (A.18)

We see that once the bases {v1, . . . , vn}, {w1, . . . , wm} are fixed, we can rep-
resent the linear transformation A by the array of scalars in (A.18) that are
uniquely determined by (A.14). Note that the jth column of A is the co-
ordinate representation of the vector Avj ∈ W with respect to the basis
{w1, . . . , wm}.

The converse to the preceding statement also holds. Specifically, with the
bases for V and W still fixed, the array given in (A.18) is uniquely associated
with the linear transformation A of V into W . The above discussion gives rise
to the following important definition.

Definition A.21. The array given in (A.18) is called the matrix A of the
linear transformation A from a linear space V into a linear space W (over
F ) with respect to the basis {v1, . . . , vn} of V and the basis {w1, . . . , wm}
of W . �

If in Definition A.21, V = W , and if for both V and W the same ba-
sis {v1, . . . , vn} is used, then we simply speak of the matrix A of the linear
transformation A with respect to the basis {v1, . . . , vn}.

In (A.18) the scalars (ai1, ai2, . . . , ain) form the ith row of A and the
scalars (a1j , a2j , . . . , amj)T form the jth column of A. The scalar aij refers to
that element of matrix A that can be found in the ith row and jth column of
A. The array in (A.18) is said to be an m×n matrix. If m = n, we speak of a
square matrix. Consistent with the above discussion, an n× 1 matrix is called
a column vector, column matrix, or n-vector, and a 1 × n matrix is called a
row vector. Finally, if A = [aij ] and B = [bij ] are two m × n matrices, then
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A = B; i.e., A and B are equal if and only if aij = bij for all i = 1, . . . ,m, and
for all j = 1, . . . , n. Furthermore, we call AT = [aij ]T = [aji] the transpose of
A.

The preceding discussion shows in particular that if A is a linear trans-
formation of an n-dimensional vector space V into an m-dimensional vector
space W ,

w = Av, (A.19)

if γ = (γ1, . . . , γm)T denotes the coordinate representation of w with respect
to the basis {w1, . . . , wm}, if α = (α1, . . . , αn)T denotes the coordinate rep-
resentation of v with respect to the basis {v1, . . . , vn}, and if A denotes the
matrix of A with respect to the bases {v1, . . . , vn}, {w1, . . . , wm}, then

γ = Aα, (A.20)

or equivalently,

γi =
n∑
j=1

aijαj , i = 1, . . . ,m (A.21)

which are alternative ways to write (A.17).

The Rank of a Matrix

Let A denote the matrix representation of a linear transformation A. The
rank of A, ρ(A), is defined as the rank of A, ρ(A). It can be shown that the
rank ρ(A) of an m×n matrix A is the largest number of linearly independent
columns of A. The rank is also equal to the largest numbers of linearly inde-
pendent rows of A. It also equals the dimension of the largest nonzero minor
of A.

A.3.3 Solving Linear Algebraic Equations

Now consider the linear system of equations given by

Aα = γ, (A.22)

where A ∈ Rm×n and γ ∈ Rm are given and α ∈ Rn is to be determined.

1. For a given γ, a solution α of (A.22) exists (not necessarily unique) if and
only if γ ∈ R(A), or equivalently, if and only if

ρ([A, γ]) = ρ(A). (A.23)

2. Every solution α of (A.22) can be expressed as a sum

α = αp + αh, (A.24)
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where αp is a specific solution of (A.22) and αh satisfies Aαh = 0. This
result allows us to span the space of all solutions of (A.22). Note that
there are

dimN (A) = n− ρ(A) (A.25)

linearly independent solutions of the system of equations Aβ = 0.
3. Aα = γ has a unique solution if and only if (A.23) is satisfied and

ρ(A) = n ≤ m. (A.26)

4. A solution α of (A.22) exists for any γ if and only if

ρ(A) = m. (A.27)

If (A.27) is satisfied, a solution of (A.22) can be found by using the relation

α = AT (AAT )−1γ. (A.28)

When in (A.22), ρ(A) = m = n, then A ∈ Rn×n and is nonsingular and
the unique solution of (A.28) is given by

α = A−1γ. (A.29)

Example A.22. Consider

Aα =

⎡
⎣

0 0 0
0 0 1
0 0 0

⎤
⎦α = γ. (A.30)

It is easily verified that {(0, 1, 0)T} is a basis for R(A). Since a solution of
(A.30) exists if and only if γ ∈ R(A), γ must be of the form γ = (0, k, 0)T ,
k ∈ R. Note that

ρ(A) = 1 = ρ([A, γ]) = rank

⎡
⎣

0 0 0 0
0 0 1 k
0 0 0 0

⎤
⎦ ,

as expected. To determine all solutions of (A.30), we need to determine an αp
and an αh [see (A.24)]. In particular, αp = (0 0 k)T will do. To determine αh,
we consider Aβ = 0. There are dimN (A) = 2 linearly independent solutions
of Aβ = 0. In particular, {(1, 0, 0)T , (0, 1, 0)T} is a basis for N (A). Therefore,
any solution of (A.30) can be expressed as

α = αp + αh =

⎡
⎣

0
0
k

⎤
⎦+

⎡
⎣

1 0
0 1
0 0

⎤
⎦
[
c1
c2

]
,

where c1, c2 are appropriately chosen real numbers.
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A.4 Equivalence and Similarity

From our previous discussion it is clear that a linear transformation A of
a finite-dimensional vector space V into a finite-dimensional vector space W
can be represented by means of different matrices, depending on the particular
choice of bases in V and W . The choice of bases may in different cases result
in matrices that are easy or hard to utilize. Many of the resulting “standard”
forms of matrices, called canonical forms , arise because of practical consid-
erations. Such canonical forms often exhibit inherent characteristics of the
underlying transformation A.

Throughout this section, V and W are finite-dimensional vector spaces
over the same field F, dim V = n, and dimW = m.

A.4.1 Change of Bases: Vector Case

Our first aim will be to consider the change of bases in the coordinate repre-
sentation of vectors. Let {v1, . . . , vn} be a basis for V , and let {v̄1, . . . , v̄n} be
a set of vectors in V given by

v̄i =
n∑
j=1

pjiv
j , i = 1, . . . , n, (A.31)

where pij ∈ F for all i, j = 1, . . . , n. It is easily verified that the set
{v̄1, . . . , v̄n} forms a basis for V if and only if the n × n matrix P = [pij ]
is nonsingular (i.e., detP �= 0). We call P the matrix of the basis {v̄1, . . . , v̄n}
with respect to the basis {v1, . . . , vn}. Note that the ith column of P is the
coordinate representation of v̄i with respect to the basis {v1, . . . , vn}.

Continuing the above discussion, let {v1, . . . , vn} and {v̄1, . . . , v̄n} be two
bases for V and let P be the matrix of the basis {v̄1, . . . , v̄n} with respect to
the basis {v1, . . . , vn}. Then it is easily shown that P−1 is the matrix of the
basis {v1, . . . , vn} with respect to the basis {v̄1, . . . , v̄n}.

Next, let the sets of vectors {v1, . . . , vn}, {v̄1, . . . , v̄n}, and {ṽ1, . . . , ṽn} be
bases for V . If P is the matrix of the basis {v̄1, . . . , v̄n} with respect to the
basis {v1, . . . , vn} and if Q is the matrix of the basis {ṽ1, . . . , ṽn} with respect
to the basis {v̄1, . . . , v̄n}, then it is easily verified that PQ is the matrix of
the basis {ṽ1, . . . , ṽn} with respect to the basis {v1, . . . , vn}.

Continuing further, let {v1, . . . , vn} and {v̄1, . . . , v̄n} be two bases for V
and let P be the matrix of the basis {v̄1, . . . , v̄n} with respect to the basis
{v1, . . . , vn}. Let a ∈ V , and let αT = (α1, . . . , αn) denote the coordinate
representation of a with respect to the basis {v1, . . . , vn} (i.e., a =

∑n
i=1 αiv

i).
Let ᾱT = (ᾱ1, . . . , ᾱn) denote the coordinate representation of a with respect
to the basis {v̄1, . . . , v̄n}. Then it is readily verified that

Pᾱ = α.
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Example A.23. Let V = R3, F = R, and let a = (1, 2, 3)T ∈ R3 be
given. Let {v1, v2, v3} = {e1, e2, e3} denote the natural basis for R3; i.e.,
e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . Clearly, the coordinate repre-
sentation α of a with respect to the natural basis is (1, 2, 3)T .

Now let {v̄1, v̄2, v̄3} be another basis for R3, given by v̄1 = (1, 0, 1)T , v̄2 =
(0, 1, 0)T , v̄3 = (0, 1, 1)T . From the relation

(1, 0, 1)T = v̄1 = p11v
1 + p21v

2 + p31v
3 = p11

⎡
⎣

1
0
0

⎤
⎦+ p21

⎡
⎣

0
1
0

⎤
⎦+ p31

⎡
⎣

0
0
1

⎤
⎦ ,

we conclude that p11 = 1, p21 = 0, and p31 = 1. Similarly, from

(0, 1, 0)T = v̄2 = p12v
1 + p22v

2 + p32v
3 = p12

⎡
⎣

1
0
0

⎤
⎦+ p22

⎡
⎣

0
1
0

⎤
⎦+ p32

⎡
⎣

0
0
1

⎤
⎦ ,

we conclude that p12 = 0, p22 = 1, and p32 = 0. Finally, from the relation

(0, 1, 1)T = v̄3 = p13

⎡
⎣

1
0
0

⎤
⎦+ p23

⎡
⎣

0
1
0

⎤
⎦+ p33

⎡
⎣

0
0
1

⎤
⎦ ,

we obtain that p13 = 0, p23 = 1, and p33 = 1.
The matrix P = [pij ] of the basis {v̄1, v̄2, v̄3} with respect to the basis

{v1, v2, v3} is therefore determined to be

P =

⎡
⎣

1 0 0
0 1 1
1 0 1

⎤
⎦ ,

and the coordinate representation of a with respect to the basis {v̄1, v̄2, v̄3} is
given by ᾱ = P−1α, or

ᾱ =

⎡
⎣

1 0 0
0 1 1
1 0 1

⎤
⎦
−1 ⎡
⎣

1
2
3

⎤
⎦ =

⎡
⎣

1 0 0
1 1 −1

−1 0 0

⎤
⎦
⎡
⎣

1
2
3

⎤
⎦ =

⎡
⎣

1
0
2

⎤
⎦ .

A.4.2 Change of Bases: Matrix Case

Having addressed the relationship between the coordinate representations of a
given vector with respect to different bases, we next consider the relationship
between the matrix representations of a given linear transformation relative
to different bases. To this end, let A ∈ L(V,W ) and let {v1, . . . , vn} and
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{w1, . . . , wm} be bases for V and W , respectively. Let A be the matrix of
A with respect to the bases {v1, . . . , vn} and {w1, . . . , wm}. Let {v̄1, . . . , v̄n}
be another basis for V , and let the matrix of {v̄1, . . . , v̄n} with respect to
{v1, . . . , vn} be P . Let {w̄1, . . . , w̄m} be another basis for W , and let Q be the
matrix of {w1, . . . , wm} with respect to {w̄1, . . . , w̄m}. Let Ā be the matrix of
A with respect to the bases {v̄1, . . . , v̄n} and {w̄1, . . . , w̄m}. Then it is readily
verified that

Ā = QAP. (A.32)

This result is depicted schematically in Figure A.1.

V
A−→W

{v1, . . . , vn}
ν = P ν̄

A−→ {w1, · · · , wm}
ω = Aν

P ↑ ↓ Q

{v̄1, . . . , v̄n}
ν̄

Ā−→ {w̄1, . . . , w̄m}
ω̄ = Qω

Figure A.1. Schematic diagram of the equivalence of two matrices

A.4.3 Equivalence and Similarity of Matrices

The preceding discussion motivates the following definition.

Definition A.24. An m × n matrix Ā is said to be equivalent to an m ×
n matrix A if there exists an m × m nonsingular matrix Q and an n × n
nonsingular matrix P such that (A.32) is true. If Ā is equivalent to A, we
write Ā ∼ A. �

Next, let V = W , let A ∈ L(V, V ), let {v1, . . . , vn} be a basis for V , and
let A be the matrix of A with respect to {v1, . . . , vn}. Let {v̄1, . . . , v̄n} be
another basis for V whose matrix with respect to {v1, . . . , vn} is P . Let Ā
be the matrix of A with respect to {v̄1, . . . , v̄n}. Then it follows immediately
from (A.32) that

Ā = P−1AP. (A.33)

The meaning of this result is depicted schematically in Figure A.2. The
above discussion motivates the following definition.

Definition A.25. An n×n matrix Ā is said to be similar to an n×n matrix
A if there exists an (n× n) nonsingular matrix P such that
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V
A−→ V

{v1, . . . , vn} A−→ {v1, . . . , vn}
↑ P ↓ P−1

{v̄1, . . . , v̄n} Ā−→ {v̄1, . . . , v̄n}

Figure A.2. Schematic diagram of the similarity of two matrices

Ā = P−1AP.

If Ā is similar to A, we write Ā ∼ A. We call P a similarity transformation.
�

It is easily verified that if Ā is similar to A [i.e., (A.33) is true], then A is
similar to Ā; i.e.,

A = PĀP−1. (A.34)

In view of this, there is no ambiguity in saying “two matrices are similar,” and
we could just as well have used (A.34) [in place of (A.33)] to define similarity
of matrices. To sum up, if two matrices A and Ā represent the same linear
transformation A ∈ L(V, V ), possibly with respect to two different bases for
V , then A and Ā are similar matrices.

A.5 Eigenvalues and Eigenvectors

Definition A.26. Let A be an n×n matrix whose elements belong to the field
F . If there exist λ ∈ F and a nonzero vector α ∈ Fn such that

Aα = λα, (A.35)

then λ is called an eigenvalue of A and α is called an eigenvector of A corre-
sponding to the eigenvalue λ. �

We note that if α is an eigenvector of A, then any nonzero multiple of α
is also an eigenvector of A.

A.5.1 Characteristic Polynomial

Let A ∈ Cn×n. Then

det(A− λI) = α0 + α1λ+ α2λ
2 + · · · + αnλ

n (A.36)

[note that α0 = det(A) and αn = (−1)n]. The eigenvalues of A are precisely
the roots of the equation

det(A− λI) = α0 + α1λ+ α2λ
2 + · · · + αnλ

n = 0 (A.37)

and A has at most n distinct eigenvalues.
We call (A.36) the characteristic polynomial of A, and we call (A.37) the

characteristic equation of A.



A.5 Eigenvalues and Eigenvectors 475

Remarks

The above definition of characteristic polynomial is the one usually used in
texts on linear algebra and matrix theory (refer, e.g., to some of the books
on this subject cited at the end of this chapter). An alternative to the above
definition is given by the expression

α(λ) � det(λI −A) = (−1)n det(A− λI).

Now consider

det(A− λI) = (λ1 − λ)m1(λ2 − λ)m2 · · · (λp − λ)mp , (A.38)

where λi, i = 1, . . . , p, are the distinct roots of (A.37) (i.e., λi �= λj , if i �= j).
In (A.38), mi is called the algebraic multiplicity of the root λi. The mi are
positive integers, and

∑p
i=1 mi = n.

The reader should make note of the distinction between the concept of
algebraic multiplicity mi of λi, given above, and the (geometric) multiplicity
li of an eigenvalue λi, given by li = n− ρ(λiI −A). In general these need not
be the same.

A.5.2 The Cayley–Hamilton Theorem and Applications

We now state and prove a result that is very important in linear systems
theory.

Theorem A.27. (Cayley–Hamilton Theorem) Every square matrix satisfies
its characteristic equation. More specifically, if A is an n × n matrix and
p(λ) = det(A− λI) is the characteristic polynomial of A, then p(A) = O.

Proof. Let the characteristic polynomial for A be p(λ) = α0+α1λ+· · ·+αnλn,
and let B(λ) = [bij(λ)] be the classical adjoint of (A − λI). (For a nonsin-
gular matrix C with inverse C−1 = 1

det(C) adj(C), adj(C) is called the classi-
cal adjoint of C.) Since the bij(λ) are cofactors of the matrix A − λI, they
are polynomials in λ of degree not more than n − 1. Thus, bij(λ) = βij0 +
βij1λ+ · · ·+βij(n−1)λ

n−1. Letting Bk = [βijk] for k = 0, 1, . . . , n− 1, we have
B(λ) = B0 +λB1 + · · ·+λn−1Bn−1 and (A−λI)B(λ) = [det(A−λI)]I. Thus,
(A−λI)[B0+λB1+· · ·+λn−1Bn−1] = (α0+α1λ+· · ·+αnλn)I. Expanding the
left-hand side of this equation and equating like powers of λ, we have −Bn−1 =
αnI, ABn−1 −Bn−2 = αn−1I, . . . , AB1 −B0 = α1I, AB0 = α0I. Premultiply-
ing the above matrix equations by An, An−1, . . . , A, I, respectively, we have
−AnBn−1 = αnA

n, AnBn−1 − An−1Bn−2 = αn−1A
n−1, . . . , A2B1 − AB0 =

α1A,AB0 = α0I. Adding these matrix equations, we obtain O = α0I+α1A+
· · · + αnA

n = p(A), which was to be shown. �
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As an immediate consequence of the Cayley–Hamilton Theorem, we have
the following results: Let A be an n×n matrix with characteristic polynomial
given by (A.37). Then (i) An = (−1)n+1[α0I + α1A + · · · + αn−1A

n−1]; and
(ii) if f(λ) is any polynomial in λ, then there exist β0, β1, . . . , βn−1 ∈ F such
that

f(A) = β0I + β1A+ · · · + βn−1A
n−1. (A.39)

Part (i) follows from the Cayley–Hamilton Theorem and from the fact
that αn = (−1)n. To prove part (ii), let f(λ) be any polynomial in λ and
let p(λ) denote the characteristic polynomial of A. From a result for poly-
nomials (called the division algorithm), we know that there exist two unique
polynomials g(λ) and r(λ) such that

f(λ) = p(λ)g(λ) + r(λ), (A.40)

where the degree of r(λ) ≤ n − 1. Now since p(A) = 0, we have that f(A) =
r(A) and the result follows.

The Cayley–Hamilton Theorem can also be used to express n× n matrix-
valued power series (as well as other kinds of functions) as matrix polynomials
of degree n− 1. Consider in particular the matrix exponential eAt defined by

eAt =
∞∑
k=0

(tk/k!)Ak, t ∈ (−a, a). (A.41)

In view of the Cayley–Hamilton Theorem, we can write

f(A) = eAt =
n−1∑
i=0

αi(t)Ai. (A.42)

In the following discussion, we present a method to determine the coefficients
αi(t) in (A.42) [or βi in (A.39)].

In accordance with (A.38), let p(λ) = det(A − λI) =
∏p
i=1(λi − λ)mi be

the characteristic polynomial of A. Also, let f(λ) and g(λ) be two analytic
functions. Now if

f (l)(λi) = g(l)(λi), l = 0, . . . ,mi − 1, i = 1, . . . , p, (A.43)

where f (l)(λi) = dlf
dλl (λ)|λ=λi ,

∑p
i=1mi = n, then f(A) = g(A). To see this,

we note that condition (A.43) written as (f − g)l(λi) = 0 implies that f(λ)−
g(λ) has p(λ) as a factor; i.e., f(λ) − g(λ) = w(λ)p(λ) for some analytic
function w(λ). From the Cayley–Hamilton Theorem we have that p(A) = O
and therefore f(A) − g(A) = O.

Example A.28. As a specific application of the Cayley–Hamilton Theorem,

we evaluate the matrix A37, where A =
[

1 0
1 2

]
. Since n = 2, we assume, in
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view of (A.39), that A37 is of the form A37 = β0I + β1A. The characteristic
polynomial of A is p(λ) = (1− λ)(2− λ), and the eigenvalues of A are λ1 = 1
and λ2 = 2. In this case, f(λ) = λ37 and r(λ) in (A.40) is r(λ) = β0 +β1λ. To
determine β0 and β1 we use the fact that p(λ1) = p(λ2) = 0 to conclude that
f(λ1) = r(λ1) and f(λ2) = r(λ2). Therefore, we have that β0 + β1 = 137 = 1
and β0 + 2β1 = 237. Hence, β1 = 237 − 1 and β0 = 2 − 237. Therefore,

A37 = (2 − 237)I + (237 − 1)A or A37 =
[

1 0
237 − 1 237

]
.

Example A.29. Let A =
[
−1 1
−1 1

]
, and let f(A) = eAt, f(λ) = eλt, and

g(λ) = α1λ + α0. The matrix A has an eigenvalue λ = λ1 = λ2 = 0 with
multiplicity m1 = 2. Conditions (A.43) are given by f(λ1) = g(λ1) = 1 and
f (1)(λ1) = g(1)(λ1), which imply that α0 = 1 and α1 = t. Therefore,

eAt = f(A) = g(A) = α1A+ α0I =
[
−α1 + α0 α1

−α1 α1 + α0

]
=
[

1 − t t
−t 1 + t

]
.

A.5.3 Minimal Polynomials

For purposes of motivation, consider the matrix

A =

⎡
⎣

1 3 −2
0 4 −2
0 3 −1

⎤
⎦ .

The characteristic polynomial of A is p(λ) = (1 − λ)2(2 − λ), and we know
from the Cayley–Hamilton Theorem that

p(A) = O. (A.44)

Now let us consider the polynomial m(λ) = (1−λ)(2−λ) = 2−3λ+λ2. Then

m(A) = 2I − 3A+A2 = O. (A.45)

Thus, matrix A satisfies (A.45), which is of lower degree than (A.44), the
characteristic equation of A.

More generally, it can be shown that for an n× n matrix A, there exists
a unique polynomial m(λ) such that (i) m(A) = O, (ii) m(λ) is monic (i.e.,
if m is an nth-order polynomial in λ, then the coefficient of λn is unity), and
(iii) if m′(λ) is any other polynomial such that m′(A) = O, then the degree of
m(λ) is less or equal to the degree of m′(λ) [i.e., m(λ) is of the lowest degree
such that m(A) = O]. The polynomial m(λ) is called the minimal polynomial
of A.
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Let f(λ) be any polynomial such that f(A) = O (e.g., the characteristic
polynomial). Then it is easily shown that m(λ) divides f(λ) [i.e., there is
a polynomial q(λ) such that f(λ) = q(λ)m(λ)]. In particular, the minimal
polynomial of A, m(λ), divides the characteristic polynomial of A, p(λ). Also,
it can be shown that p(λ) divides [m(λ)]n.

Next, let p(λ) be given by

p(λ) = (λ1 − λ)m1(λ2 − λ)m2 · · · (λp − λ)mp , (A.46)

where m1, . . . ,mp are the algebraic multiplicities of the distinct eigenvalues
λ1, . . . , λp of A, respectively. It can be shown that

m(λ) = (λ− λ1)μ1(λ− λ2)μ2 · · · (λ− λp)μp , (A.47)

where 1 ≤ μi ≤ mi, i = 1, . . . , p.
It can also be shown that (λ − λi)μi is the minimal polynomial of the

Ai diagonal block in the Jordan canonical form of A, which we discuss in the
next section. When A has all n distinct eigenvalues, the Jordan canonical form
has n diagonal blocks and, therefore, μi = 1 and p(λ) = m(λ). The Jordan
canonical form is described in Section A.6 and in [1, Section 2.2].

A.6 Diagonal and Jordan Canonical Form of Matrices

Let A be an n×n matrix A ∈ Cn×n. The following developement follows [10].
To begin with, let us assume that A has distinct eigenvalues λ1, . . . , λn. Let vi
be an eigenvector of A corresponding to λi, i = 1, . . . , n. Then it can be easily
shown that the set of vectors {v1, . . . , vn} is linearly independent over C, and
as such, it can be used as a basis for Cn. Now let Ã be the representation
of A with respect to the basis {v1, . . . , vn}. Since the ith column of Ã is the
representation of Avi = λivi with respect to the basis {v1, . . . , vn}, it follows
that

Ã =

⎡
⎢⎢⎢⎣

λ1 0
λ2

. . .
0 λn

⎤
⎥⎥⎥⎦ � diag(λ1, . . . , λn). (A.48)

Since A and Ã are matrix representations of the same linear transformation,
it follows that A and Ã are similar matrices. Indeed, this can be checked by
computing

Ã = P−1AP, (A.49)

where P = [v1, . . . , vn] and where the vi are eigenvectors corresponding to λi,
i = 1, . . . , n. Note that AP = ÃP is true because the ith column of AP is
Avi, which equals λivi, the ith column of ÃP .
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When a matrix Ã is obtained from a matrix A via a similarity transfor-
mation P , we say that matrix A has been diagonalized. Now if the matrix A
has repeated eigenvalues, then it is not always possible to diagonalize it. In
generating a “convenient” basis for Cn in this case, we introduce the con-
cept of generalized eigenvector. Specifically, a vector v is called a generalized
eigenvector of rank k of A, associated with an eigenvalue λ if and only if

(A− λIn)kv = 0 and (A− λIn)k−1v �= 0, (A.50)

where In denotes the n × n identity matrix. Note that when k = 1, this
definition reduces to the preceding defintion of eigenvector.

Now let v be a generalized eigenvector of rank k associated with the eigen-
value λ. Define

vk = v,

vk−1 = (A− λIn)v = (A− λIn)vk,

vk−2 = (A− λIn)2v = (A− λIn)vk−1,

...

v1 = (A− λIn)k−1v = (A− λIn)v2.

(A.51)

Then for each i, 1 ≤ i ≤ k, vi is a generalized eigenvector of rank i. We call
the set of vectors {v1, . . . , vk} a chain of generalized eigenvectors.

For generalized eigenvectors, we have the following results:

(i) The generalized eigenvectors {v1, . . . , vk} defined in (A.51) are linearly
independent.

(ii) The generalized eigenvectors of A associated with different eigenvalues
are linearly independent.

(iii) If u and v are generalized eigenvectors of rank k and l, respectively,
associated with the same eigenvalue λ, and if ui and vj are defined by

ui = (A− λIn)k−iu, i = 1, . . . , k,

vj = (A− λIn)l−jv, j = 1, . . . , l,

and if u1 and v1 are linearly independent, then the generalized eigenvec-
tors u1, . . . , uk, v1, . . . , vl are linearly independent.

These results can be used to construct a new basis for Cn such that the
matrix representation of A with respect to this new basis is in the Jordan
canonical form J . We characterize J in the following result: For every complex
n× n matrix A, there exists a nonsingular matrix P such that the matrix

J = P−1AP

is in the canonical form
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J =

⎡
⎢⎢⎢⎣

J0 0
J1

. . .
0 Js

⎤
⎥⎥⎥⎦ , (A.52)

where J0 is a diagonal matrix with diagonal elements λ1, . . . , λk (not neces-
sarily distinct), i.e.,

J0 = diag(λ1, . . . , λk),

and each Jp is an np × np matrix of the form

Jp =

⎡
⎢⎢⎢⎢⎣

λk+p 1 0 · · · 0

0 λk+p 1
. . .

...
...

...
. . . 1

0 0 · · · λk+p

⎤
⎥⎥⎥⎥⎦
, p = 1, . . . , s,

where λk+p need not be different from λk+q if p �= q and k+n1 + · · ·+ns = n.
The numbers λi, i = 1, . . . , k + s, are the eigenvalues of A. If λi is a simple
eigenvalue of A, it appears in the block J0. The blocks J0, J1, . . . , Js are called
Jordan blocks, and J is called the Jordan canonical form.

Note that a matrix may be similar to a diagonal matrix without having
distinct eigenvalues. The identity matrix I is such an example. Also, it can
be shown that any real symmetric matrix A has only real eigenvalues (which
may be repeated) and is similar to a diagonal matrix.

We now give a procedure for computing a set of basis vectors that yield the
Jordan canonical form J of an n × n matrix A and the required nonsingular
transformation P that relates A to J :

1. Compute the eigenvalues of A. Let λ1, . . . , λm be the distinct eigenvalues
of A with multiplicities n1, . . . , nm, respectively.

2. Compute n1 linearly independent generalized eigenvectors of A associated
with λ1 as follows: Compute (A − λ1In)i for i = 1, 2, . . . until the rank
of (A − λ1In)k is equal to the rank of (A − λ1In)k+1. Find a generalized
eigenvector of rank k, say u. Define ui = (A− λ1In)k−iu, i = 1, . . . , k. If
k = n1, proceed to step 3. If k < n1, find another linearly independent
generalized eigenvector with the largest possible rank; i.e., try to find
another generalized eigenvector with rank k. If this is not possible, try
k− 1, and so forth, until n1 linearly independent generalized eigenvectors
are determined. Note that if ρ(A−λ1In) = r, then there are totally (n−r)
chains of generalized eigenvectors associated with λ1.

3. Repeat step 2 for λ2, . . . , λm.
4. Let u1, . . . , uk, . . . be the new basis. Observe, from (A.51), that
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Au1 = λ1u1 = [u1u2 · · ·uk · · · ][λ1, 0, . . . , 0]T ,

Au2 = u1 + λ1u2 = [u1u2 · · ·uk · · · ][1, λ1, 0, . . . , 0]T ,
...

Auk = uk−1 + λ1uk = [u1u2 · · ·uk · · · ][0, . . . , 0, 1, λ1, 0, . . . , 0]T ,

with λ1 in the kth position, which yields the representation J in (A.52)
of A with respect to the new basis, where the k× k matrix J1 is given by

J1 =

⎡
⎢⎢⎢⎢⎣

λ1 1 · · · 0

0 λ1

...
. . . 1

0 · · · λ1

⎤
⎥⎥⎥⎥⎦
.

Note that each chain of generalized eigenvectors generates a Jordan block
whose order equals the length of the chain.

5. The similarity transformation that yields J = Q−1AQ is given by Q =
[u1, . . . , uk, . . . ].

6. Rearrange the Jordan blocks in the desired order to yield (A.52) and the
corresponding similarity transformation P .

Example A.30. The characteristic equation of the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −1 1 1 0 0
1 1 −1 −1 0 0
0 0 2 0 1 1
0 0 0 2 −1 −1
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

is given by
det(A− λI) = (λ− 2)5λ = 0.

Thus, A has eigenvalue λ2 = 2 with multiplicity 5 and eigenvalue λ1 = 0 with
multiplicity 1.

Now compute (A− λ2I)i, i = 1, 2, . . . , as follows:

(A− 2I) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 0 0
1 −1 −1 −1 0 0
0 0 0 0 1 1
0 0 0 0 −1 −1
0 0 0 0 −1 1
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I) = 4,
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(A− 2I)2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 2 2 0 0
0 0 2 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 −2
0 0 0 0 −2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I)2 = 2,

(A− 2I)3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −4 4
0 0 0 0 4 −4

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I)3 = 1,

(A− 2I)4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 8 −8
0 0 0 0 −8 8

⎤
⎥⎥⎥⎥⎥⎥⎦

and ρ(A− 2I)4 = 1.

Since ρ(A− 2I)3 = ρ(A− 2I)4, we stop at (A− 2I)3. It can be easily verified
that if u = [0 0 1 0 0 0]T , then (A−2I)3u = 0 and (A−2I)2u = [2 2 0 0 0 0]T �=
0. Therefore, u is a generalized eigenvector of rank 3. So we define

u1 � (A− 2I)2u =
[
2 2 0 0 0 0

]T
,

u2 � (A− 2I)u =
[
1 −1 0 0 0 0

]T
,

u3 � u =
[
0 0 1 0 0 0

]T
.

Since we have only three generalized eigenvectors for λ2 = 2 and since the
multiplicity of λ2 = 2 is five, we have to find two more linearly independent
eigenvectors for λ2 = 2. So let us try to find a generalized eigenvector of rank
2. Let v = [0 0 1 − 1 1 1]T . Then (A − 2I)v = [0 0 2 − 2 0 0]T �= 0 and
(A− 2I)2v = 0. Moreover, (A− 2I)v is linearly independent of u1, and hence,
we have another linearly independent generalized eigenvector of rank 2. Define

v2 � v =
[
0 0 1 −1 1 1

]T

and

v1 = (A− 2I)v =
[
0 0 2 −2 0 0

]T
.

Next, we compute an eigenvector associated with λ1 = 0. Since w =
[0 0 0 0 1 − 1]T is a solution of (A− λ1I)w = 0, the vector w will do.

Finally, with respect to the basis w1, u1, u2, u3, v1, v2, the Jordan canonical
form of A is given by
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J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 2 1 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 1
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 0 0
0 λ2 1 0 0 0
0 0 λ2 1 0 0
0 0 0 λ2 0 0
0 0 0 0 λ2 1
0 0 0 0 0 λ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.53)

and

P =
[
w1 u1 u2 u3 v1 v2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0 0
0 2 −1 0 0 0
0 0 0 1 2 1
0 0 0 0 −2 −1
1 0 0 0 0 1

−1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (A.54)

The correctness of P is easily checked by computing PJ = AP .

A.7 Normed Linear Spaces

In the following discussion, we require for (V, F ) that F be either the field of
real numbers R or the field of complex numbers C. For such linear spaces we
say that a function ‖ · ‖: V → R+ is a norm if

(N-i) ‖ x ‖≥ 0 for every vector x ∈ V and ‖ x ‖= 0 if and only if x is the
null vector (i.e., x = 0);

(N-ii) for every scalar α ∈ F and for every vector x ∈ V , ‖ αx ‖= |α| ‖ x ‖,
where |α| denotes the absolute value of α when F = R and the modulus
when F = C; and

(N-iii) for every x and y in V , ‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖. (This inequality is
called the triangle inequality.)

We call a vector space on which a norm has been defined a normed vector
space or a normed linear space.

Example A.31. On the linear space (Rn, R), we define for every x =
(x1, . . . , xn)T ,

‖ x ‖p= (
n∑
i=1

|xi|p)1/p, 1 ≤ p <∞ (A.55)

and
‖ x ‖∞= max{|xi| : 1 ≤ i ≤ n}. (A.56)

Using Minkowski’s Inequality for finite sums, see (A.5), it is an easy matter
to show that for every p, 1 ≤ p ≤ ∞, ‖ · ‖p is a norm on Rn. In addition to
‖ · ‖∞, of particular interest to us will be the cases p = 1 and p = 2; i.e.,
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‖ x ‖1=
n∑
i=1

|xi| (A.57)

and

‖ x ‖2=

(
n∑
i=1

|xi|2
)1/2

. (A.58)

The norm ‖ · ‖1 is sometimes referred to as the taxicab norm or Manhattan
norm, whereas, ‖ · ‖2 is called the Euclidean norm. The linear space (Rn, R)
with norm ‖ · ‖2 is called a Euclidean vector space.

The foregoing norms are related by the inequalities

‖ x ‖∞ ≤‖ x ‖1 ≤ n ‖ x ‖∞, (A.59)

‖ x ‖∞ ≤‖ x ‖2 ≤
√
n ‖ x ‖∞, (A.60)

‖ x ‖2 ≤‖ x ‖1 ≤
√
n ‖ x ‖2 . (A.61)

Also, for p = 2, we obtain from the Hölder Inequality for finite sums, (A.4),
the Schwarz Inequality

|xT y| = |
n∑
i=1

xiyi| ≤
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

(A.62)

for all x, y ∈ Rn.

The assertions made in the above example turn out to be also true for the
space (Cn, C). We ask the reader to verify these relations.

Example A.32. On the space lp given in Example A.5, let

‖ x ‖p=
( ∞∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞,

and
‖ x ‖∞= sup

i
|xi|.

Using Minkowski’s Inequality for infinite sums, (A.5), it is an easy matter to
show that ‖ · ‖p is a norm for every p, 1 ≤ p ≤ ∞.

Example A.33. On the space given in Example A.7, let

‖ x ‖p=
(∫ b

a

|x(t)|pdt
)1/p

, 1 ≤ p <∞.
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Using Minkowski’s Inequality for integrals, (A.10), see Example A.7, it can
readily be verified that ‖ · ‖p is a norm for every p, 1 ≤ p < ∞. Also, on
the space of continuous functions given in Example A.8, assume that (A.11)
holds. Then

‖ x ‖∞= max
a≤t≤b

|x(t)|

is easily shown to determine a norm. Furthermore, expression (A.12) can also
be used to determine a norm.

Example A.34. We can also define the norm of a matrix. To this end, con-
sider the set of real m × n matrices, Rm×n = V and F = R. It is easily
verified that (V, F ) = (Rm×n, R) is a vector space, where vector addition is
defined as matrix addition and multiplication of vectors by scalars is defined
as multiplication of matrices by scalars.

For a given norm ‖ · ‖u on Rn and a given norm ‖ · ‖v on Rm, we define
‖ · ‖vu: Rm×n → R+ by

‖ A ‖vu= sup{‖ Ax ‖v: x ∈ Rn with ‖ x ‖u= 1}. (A.63)

It is easily verified that

(M-i) ‖ Ax ‖v≤‖ A ‖vu ‖ x ‖u for any x ∈ Rn,
(M-ii) ‖ A+B ‖vu≤‖ A ‖vu + ‖ B ‖vu,
(M-iii) ‖ αA ‖vu= |α| ‖ A ‖vu for all α ∈ R,
(M-iv) ‖ A ‖vu≥ 0 and ‖ A ‖vu= 0 if and only if A is the zero matrix (i.e.,

A = 0),
(M-v) ‖ A ‖vu≤

∑m
i=1

∑n
j=1 |aij | for any p-vector norms defined on Rn and

Rm.

Properties (M-ii) to (M-iv) clearly show that ‖ · ‖vu defines a norm on
Rm×n and justifies the use of the term matrix norm. Since the matrix norm
‖ · ‖vu depends on the choice of the vector norms, ‖ · ‖u, and ‖ · ‖v, defined
on U � Rn and V � Rm, respectively, we say that the matrix norm ‖ · ‖uv is
induced by the vector norms ‖ · ‖u and ‖ · ‖v. In particular, if ‖ · ‖u=‖ · ‖p
and ‖ · ‖v=‖ · ‖p, then the notation ‖ A ‖p is frequently used to denote the
norm of A.

As a specific case, let A = [aij ] ∈ Rm×n. Then it is easily verified that

‖ A ‖1 = max
j

(
m∑
i=1

|aij |
)
,

‖ A ‖2 = [maxλ(ATA)]1/2,

where maxλ(ATA) denotes the largest eigenvalue of ATA and
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‖ A ‖∞= max
i

⎛
⎝

n∑
j=1

|aij |

⎞
⎠ .

When it is clear from context which vector spaces and vector norms are
being used, the indicated subscripts on the matrix norms are usually not used.
For example, if A ∈ Rm×n and B ∈ Rn×k, it can be shown that

(M-vi) ‖ AB ‖≤‖ A ‖ ‖ B ‖.
In (M-vi) we have omitted subscripts on the matrix norms to indicate inducing
vector norms.

We conclude by noting that it is possible to define norms on (Rm×n, R)
that need not be induced by vector norms. Furthermore, the entire discussion
given in Example A.34 holds also for norms defined on complex spaces, e.g.,
(Cm×n, C).

A.8 Some Facts from Matrix Algebra

Determinants

We recall that the determinant of a matrix A = [aij ] ∈ Rn×n, detA, can be
evaluated by the relation

detA =
∑
j

aijdij for any i = 1, 2, . . . , n,

where dij = (−1)i+j detAij and Aij is the (n− 1) × (n− 1) matrix obtained
by deleting the ith row and jth column of A. The term dij is the cofactor
of A corresponding to aij and detAij is the ijth minor of the matrix . The
principal minors of A are obtained by letting i = j, i, j = 1, . . . n.

If any column (or row) of A is multiplied by a scalar k, then the determi-
nant of the new matrix is k detA. If every entry is multiplied by k, then the
determinant of the new matrix is kn detA. Also,

detAT = detA where AT is the transpose of A.

Determinants of Products

detAB = detAdetB when A and B are square matrices, and
det[Im − AB] = det[In −BA] where A ∈ Rm×n and B ∈ Rn×m.

Determinants of Block Matrices

det
[m×m
A

m×n
B

C
n×m D

n×n

]
= detAdet[D − CA−1B], detA �= 0

= detD det[A−BD−1C], detD �= 0.
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Inverse A−1 of A

If A ∈ Rn×n and if A is nonsingular (i.e., detA �= 0), then AA−1 = A−1A = I.

A−1 =
1

detA
adj(A),

where adj(A) = [dij ]T is the adjoint of A, where dij is the cofactor of A
corresponding to aij . When

A =
[
a b
c d

]

is a 2 × 2 matrix, then

A−1 =
1

ad− cb

[
d −b

−c a

]
.

If A ∈ Rm×m and C ∈ Rn×n, if A and C are nonsingular, and if B ∈ Rm×n

and D ∈ Rn×m, then

(A+BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1.

For example

[
I + C(sI −A)−1B

]−1
= I − C(sI −A+BC)−1B.

When A ∈ Rm×n and B ∈ Rn×m, then

(Im +AB)−1 = Im −A(In +BA)−1B.

Sylvester Rank Inequality

If X ∈ Rp×n and Y ∈ Rn×m, then

rankX + rankY − n ≤ rank(xy) ≤ min{rankX, rankY }.

A.9 Numerical Considerations

Computing the rank of the controllability matrix [B,AB, . . . , An−1B], the
eigenvalues of A, or the zeros of the system {A,B,C,D} typically requires
the use of a digital computer. When this is the case, one must deal with
the selection of an algorithm and interpret numerical results. In doing so,
two issues arise that play important roles in numerical computations using a
computer, namely, the numerical stability or instability of the computational
method used, and how well or ill conditioned the problem is numerically.

An example of a problem that can be ill conditioned is the problem of
calculating the roots of a polynomial, given its coefficients. This is so because
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for certain polynomials, small variations in the values of the coefficients, in-
troduced say via round-off errors, can lead to great changes in the roots of
the polynomial. That is to say, the roots of a polynomial can be very sensitive
to changes in its coefficients. Note that ill conditioning is a property of the
problem to be solved and does not depend on the floating-point system used
in the computer, nor on the particular algorithm being implemented.

A computational method is numerically stable if it yields a solution that
is near the true solution of a problem with slightly changed data. An example
of a numerically unstable method to compute the roots of ax2 + 2bx+ c = 0
is the formula (−b ±

√
(b2 − ac))/a, which for certain parameters a, b, c may

give erroneous results in finite arithmetic. This instability is caused by the
subtraction of two approximately equal large numbers in the numerator when
b2 >> ac. Note that the roots may be calculated in a numerically stable way,
using the mathematically equivalent, but numerically very different, expres-
sion c/(−b∓

√
(b2 − ac)).

We would like of course, to always use numerically stable methods, and we
would prefer to have well-conditioned problems. In what follows, we discuss
briefly the problem of solving a set of algebraic equations given by Ax = b.
We will show that a measure of how ill conditioned a given problem is, is
the size of the condition number (to be defined) of the matrix A. There are
many algorithms to numerically solve Ax = b, and we will briefly discuss
numerically stable ones. Singular values, singular value decomposition, and
the least-squares problem are also discussed.

A.9.1 Solving Linear Algebraic Equations

Consider the set of linear algebraic equations given by

Ax = b, (A.64)

where A ∈ Rm×n, b ∈ Rm and x ∈ Rn is to be determined.

Existence and Uniqueness of Solutions

See also Sec. A.3, (A.22)–(A.29). Given (A.64), for a given b, a solution x
exists if and only if b ∈ R(A), or equivalently, if and only if

ρ ([A, b]) = ρ(A). (A.65)

Every solution of (A.64) can be expressed as a sum

x = xp + xh, (A.66)

where xp is a specific solution and xh satisfies Axh = 0. There are

dimN (A) = n− ρ(A) (A.67)
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linearly independent solutions of the systems of equations Ax = 0.
Ax = b has a unique solution if and only if (A.65) is satisfied and

ρ(A) = n ≤ m. (A.68)

A solution exists for any b if and only if ρ(A) = m. In this case, a solution
may be found using

x = AT (AAT )−1b.

When ρ(A) = m = n, then A is nonsingular and the unique solution is

x = A−1b. (A.69)

It is of interest to know the effects of small variations of A and b to the
solution x of this system of equations. Note that such variations may be
introduced, for example, by rounding errors when calculating a solution or by
noisy data.

Condition Number

Let A ∈ Rn×n be nonsingular. If A is known exactly and b has some uncer-
tainty Δb associated with it, then A(x+Δx) = b+Δb. It can then be shown
that the variation in the solution x is bounded by

‖ Δx ‖
‖ x ‖ ≤ cond(A)

‖ Δb ‖
‖ b ‖ , (A.70)

where ‖ · ‖ denotes any vector norm (and consistent matrix norm) and
cond(A) denotes the condition number of A, where cond(A) �‖ A ‖ ‖ A−1 ‖.
Note that

cond(A) = σmax(A)/σmin(A), (A.71)

where σmax(A) and σmin(A) are the maximum and minimum singular values
of A, respectively (see the next section). From the property of matrix norms,
‖ AA−1 ‖≤‖ A ‖ ‖ A−1 ‖, it follows that cond(A) ≥ 1. This also follows
from the expression involving singular values. If cond(A) is small, then A is
said to be well conditioned with respect to the problem of solving linear
equations. If cond(A) is large, then A is ill conditioned with respect to the
problem of solving linear equations. In this case the relative uncertainty in
the solution (‖ Δx ‖ / ‖ x ‖) can be many times the relative uncertainty in
b (‖ Δb ‖ / ‖ b ‖). This is of course undesirable. Similar results can be derived
when variations in both b and A are considered, i.e., when b and A become
b+Δb and A+ΔA. Note that the conditioning of A, and of the given problem,
is independent of the algorithm used to determine a solution.

The condition number of A provides a measure of the distance of A to the
set of singular (reduced rank) matrices. In particular, if ‖ ΔA ‖ is the norm of
the smallest perturbation ΔA such that A+ΔA is singular, and is denoted by
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d(A), then dA/ ‖ A ‖= 1/ cond(A). Thus, a large condition number indicates
a short distance to a singularity and it is not surprising that this implies great
sensitivity of the numerical solution x of Ax = b to variations in the problem
data.

The condition number of A plays a similar role in the case when A is not
square. It can be determined in terms of the singular values of A defined in
the next subsection.

Computational Methods

The system of equations Ax = b is easily solved if A has some special form
(e.g., if it is diagonal or triangular). Using the method of Gaussian elimina-
tion, any nonsingular matrix A can be reduced to an upper triangular matrix
U . These operations can be represented by premultiplication of A by a se-
quence of lower triangular matrices. It can then be shown that A can be
represented as

A = LU, (A.72)

where L is a lower triangular matrix with all diagonal elements equal to 1 and
U is an upper triangular matrix. The solution of Ax = b is then reduced to
the solution of two systems of equations with triangular matrices, Ly = b and
Ux = y. This method of solving Ax = b is based on the decomposition (A.72)
of A, which is called the LU decomposition of A.

If A is a symmetric positive definite matrix, then it may be represented as

A = UTU, (A.73)

where U is an upper triangular matrix. This is known as the Cholesky de-
composition of a positive definite matrix. It can be obtained using a variant
of Gaussian elimination. Note that this method requires half of the opera-
tions necessary for Gaussian elimination on an arbitrary nonsingular matrix
A, since A is symmetric.

Now consider the system of equations Ax = b, where A ∈ Rm×n, and let
rankA = n(≤ m). Then

A = Q

[
R
O

]
= [Q1, Q2]

[
R
O

]
= Q1R, (A.74)

where Q is an orthogonal matrix (QT = Q−1) and R ∈ Rn×n is an upper
triangular matrix of full rank n. Expression (A.74) is called the QR decom-
position of A. When rankA = r, the QR decomposition of A is expressed
as

AP = Q

[
R1 R2

0 0

]
, (A.75)

where Q is orthogonal, R1 ∈ Rr×r is nonsingular and upper triangular, and
P is a permutation matrix that represents the moving of the columns during
the reduction (in QTAP ).
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The QR decomposition can be used to determine solutions of Ax = b. In
particular, consider A ∈ Rm×n with rankA = n(≤ m) and assume that a
solution exists. First, determine the QR decomposition of A given in (A.74).

Then QTAx = QT b or
[
R
0

]
x = QT b (since QT = Q−1) or Rx = c. Solve this

system of equations, where R is triangular and c = [In, 0]QT b. In the general
case when rank(A) = r ≤ min(n,m), determine the QR decomposition of
A (2.7) and assume that a solution exists. The solutions are given by x =

P

[
R−1

1 (c−R2y)
y

]
, c = [Ir , 0]QT b, where y ∈ Rm−r is arbitrary.

A related problem is the linear least-squares problem where a solution x
of the system of equations Ax = b is to be found that minimizes ‖ b−Ax ‖2.
This is a more general problem than simply solving Ax = b, since solving it
provides the “best” solution in the above sense, even when an exact solution
does not exist. The least-squares problem is discussed further in a subsequent
subsection.

A.9.2 Singular Values and Singular Value Decomposition

The singular values of a matrix and the Singular Value Decomposition The-
orem play a significant role in a number of problems of interest in the area
of systems and control, from the computation of solutions of linear systems
of equations, to computations of the norm of transfer matrices at specified
frequencies, to model reduction, and so forth. In what follows, we provide a
brief description of some basic results and we introduce some terminology.

Consider A ∈ Cn×n, and let A∗ = ĀT ; i.e., the complex conjugate trans-
pose of A. A ∈ Cn×n is said to be Hermitian if A∗ = A. If A ∈ Rn×n,
then A∗ = AT and if A = AT , then A is symmetric. A ∈ Cn×n is unitary if
A∗ = A−1. In this case A∗A = AA∗ = In. If A ∈ Rn×n, then A∗ = AT and if
AT = A−1, i.e., if ATA = AAT = In, then A is orthogonal .

Singular Values

Let A ∈ Cm×n, and consider AA∗ ∈ Cm×m. Let λi, i = 1, . . . ,m denote the
eigenvalues of AA∗, and note that these are all real and nonnegative numbers.
Assume that λ1 ≥ λ2 ≥ · · ·λr ≥ · · · ≥ λm. Note that if r = rankA =
rank(AA∗), then λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and λr+1 = · · · = λm = 0. The
singular values σi of A are the positive square roots of λi, i = 1, . . . ,min(m,n).
In fact, the nonzero singular values of A are

σi = (λi)1/2, i = 1, . . . , r, (A.76)

where r = rankA, whereas the remaining (min(m,n) − r) of the singular
values are zero. Note that σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and σr+1 = σr+2 = · · · =
σmin(m,n) = 0. The singular values could also have been found as the square
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roots of the eigenvalues of A∗A ∈ Cn×n (instead of AA∗ ∈ Cm×m). To see
this, consider the following result.

Lemma A.35. Let m ≥ n. Then

|λIm −AA∗| = λm−n|λIn −A∗A|; (A.77)

i.e., all eigenvalues of A∗A are eigenvalues of AA∗ that also has m− n addi-
tional eigenvalues at zero. Thus AA∗ ∈ Cm×m and A∗A ∈ Cn×n have precisely
the same r nonzero eigenvalues (r = rankA); their remaining eigenvalues,
(m− r) for AA∗ and (n− r) for A∗A, are all at zero. Therefore, either AA∗

or A∗A can be used to determine the r nonzero singular values of A. All
remaining singular values are zero.

Proof. The proof is based on Schur’s formula for determinants. In particular,
we have

D(λ) =
∣∣∣∣
λ1/2Im A

A∗ λ1/2In

∣∣∣∣ = |λ1/2Im| |λ1/2In −A∗λ−1/2ImA|

= |λ1/2Im| |λ−1/2In| |λIn −A∗A|

= λ
m−n

2 · |λIn −A∗A|,

(A.78)

where Schur’s formula was applied to the (1, 1) block of the matrix. If it is
applied to the (2, 2) block, then

D(λ) = λ
n−m

2 · |λIm −AA∗|. (A.79)

Equating (A.78) and (A.79) we obtain |λIm−AA∗| = λm−n|λIn−A∗A|, which
is (A.78). �

Example A.36. A =
[

2 1 0
0 0 0

]
∈ R2×3. Here rankA = r = 1, λi(AA∗) =

λi

⎛
⎝
[

2 1 0
0 0 0

]⎡
⎣

2 0
1 0
0 0

⎤
⎦
⎞
⎠ = λi

([
5 0
0 0

])
= {5, 0} and λ1 = 5, λ2 = 0. Also,

λi(A∗A) = λi

⎛
⎝
⎡
⎣

2 0
1 0
0 0

⎤
⎦
[

2 1 0
0 0 0

]⎞
⎠ = λi

⎛
⎝
⎡
⎣

4 2 0
2 1 0
0 0 0

⎤
⎦
⎞
⎠, and λ1 = 5, λ2 = 0, and

λ3 = 0. The only nonzero singular value is σ1 =
√
λ1 = +

√
5. The remaining

singular values are zero.

There is an important relation between the singular values of A and its
induced Hilbert or 2-norm, also called the spectral norm ‖ A ‖2=‖ A ‖s. In
particular,
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‖ A ‖2 (=‖ A ‖s) = sup
‖x‖2=1

‖ Ax ‖2= max
i

{(λi(A∗A))1/2} = σ̄(A), (A.80)

where σ̄(A) denotes the largest singular value of A. Using the inequalities
that are axiomatically true for induced norms, it is possible to establish re-
lations between singular values of various matrices that are useful in MIMO
control design. The significance of the singular values of a gain matrix A(jw)
is discussed later in this section.

There is an interesting relation between the eigenvalues and the singular
values of a (square) matrix. Let λi, i = 1, . . . , n denote the eigenvalues of
A ∈ Rn×n, let λ(A) = mini |λi|, and let λ(A) = maxi |λi|. Then

σ(A) ≤ λ(A) ≤ λ(A) ≤ σ(A). (A.81)

Note that the ratio σ̄(A)/σ(A), i.e., the ratio of the largest and smallest
singular values of A, is called the condition number of A, and is denoted by
cond(A). This is a very useful measure of how well conditioned a system of
linear algebraic equations Ax = b is (refer to the discussion of the previous
section). The singular values provide a reliable way of determining how far
a square matrix is from being singular, or a nonsquare matrix is from losing
rank. This is accomplished by examining how close to zero σ(A) is. In con-
trast, the eigenvalues of a square matrix are not a good indicator of how far
the matrix is from being singular, and a typical example in the literature to
illustrate this point is an n × n lower triangular matrix A with −1’s on the
diagonal and +1’s everywhere else. In this case, σ(A) behaves as 1/2n and
the matrix is nearly singular for large n, whereas all of its eigenvalues are at
−1. In fact, it can be shown that by adding 1/2n−1 to every element in the
first column of A results in an exactly singular matrix (try it for n = 2).

Singular Value Decomposition

Let A ∈ Cm×n with rankA = r ≤ min(m,n). Let A∗ = ĀT , the complex
conjugate transpose of A.

Theorem A.37. There exist unitary matrices U ∈ Cm×n and V ∈ Cn×n

such that
A = UΣV ∗, (A.82)

where Σ =
[

Σr 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
with Σr = diag(σ1, σ2, . . . , σr) ∈ Rr×r

selected so that σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Proof. For the proof, see for example, Golub and Van Loan [7], and Patel et
al. [11]. �

Let U = [U1, U2] with U1 ∈ Cm×r, U2 ∈ Cm×(m−r) and V = [V1, V2] with
V1 ∈ Cn×r, V2 ∈ Cn×(n−r). Then
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A = UΣV ∗ = U1ΣrV
∗
1 . (A.83)

Since U and V are unitary, we have

U∗U =
[
U∗

1

U∗
2

]
[U1, U2] = Im, U

∗
1U1 = Ir (A.84)

and

V ∗V =
[
V ∗

1

V ∗
2

]
[V1, V2] = In, V

∗
1 V1 = Ir. (A.85)

Note that the columns of U1 and V1 determine orthonormal bases for R(A)
and R(A∗), respectively. Now

AA∗ = (U1ΣrV
∗
1 )(V1ΣrU

∗
1 ) = U1Σ

2
rU

∗
1 , (A.86)

from which we have

AA∗U1 = U1Σ
2
rU

∗
1U1 = U1Σ

2
r . (A.87)

If ui, i = 1, . . . , r, is the ith column of U1, i.e., U1 = [u1, u2, . . . , ur], then

AA∗ui = σ2
i ui, i = 1, . . . , r. (A.88)

This shows that the σ2
i are the r nonzero eigenvalues of AA∗; i.e., σi, i =

1, . . . , r, are the nonzero singular values of A. Furthermore, ui, i = 1, . . . , r,
are the eigenvectors of AA∗ corresponding to σ2

i . They are the left singular
vectors of A. Note that the ui are orthonormal vectors (in view of U∗

1U1 = Ir).
Similarly,

A∗A = (V1ΣrU
∗
1 )(U1ΣrV

∗
1 ) = V1Σ

2
rV

∗
1 , (A.89)

from which we obtain

A∗AV1 = V1Σ
2
rV

∗
1 V1 = V1Σ

2
r . (A.90)

If vi, i = 1, . . . , r, is the ith column of V1, i.e., V1 = [v1, v2, . . . , vr], then

A∗Avi = σ2
i vi, i = 1, 2, . . . , r. (A.91)

The vectors vi are the eigenvectors of A∗A corresponding to the eigenvalues
σ2
i . They are the right singular vectors of A. Note that the vi are orthonormal

vectors (in view of V ∗
1 V1 = Ir).

The singular values are unique, whereas the singular vectors are not. To
see this, consider

V̂1 = V1 diag(ejθi) and Û1 = U1 diag(e−jθi).

Their columns are also singular vectors of A.
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Note also that A = U1ΣrV
∗
1 implies that

A =
r∑
i=1

σiuiv
∗
i . (A.92)

The significance of the singular values of a gain matrix A(jw) is now briefly
discussed. This is useful in the control theory of MIMO systems. Consider the
relation between signals y and v, given by y = Av. Then

max
‖v‖2 �=0

‖ y ‖2

‖ v ‖2
= max

‖v‖2 �=0

‖ Av ‖2

‖ v ‖2
= σ̄(A)

or

max
‖v‖2=1

‖ y ‖2 = max
‖v‖2=1

‖ Av ‖2= σ̄(A). (A.93)

Thus, σ̄(A) yields the maximum amplification, in energy terms (2-norm), when
the transformation A operates on a signal v. Similarly,

min
‖v‖2=1

‖ y ‖2= min
‖v‖2=1

‖ Av ‖2= σ(A). (A.94)

Therefore,

σ(A) ≤ ‖ Av ‖2

‖ v ‖2
≤ σ̄(A), (A.95)

where ‖ v ‖2 �= 0. Thus the gain (energy amplification) is bounded from above
and below by σ̄(A) and σ(A), respectively. The exact value depends on the
direction of v.

To determine the particular directions of vectors v for which these (max
and min) gains are achieved, consider (A.92) and write

y = Av =
r∑
i=1

σiuiv
∗
i v. (A.96)

Notice that |v∗i v| ≤ ||vi||||v|| = ||v||, since ||vi|| = 1, with equality holding only
when v = αvi, α ∈ C. Therefore, to maximize, consider v along the singular
value directions vi and let v = αvi with |α| = 1 so that ||v|| = 1. Then in view
of v∗i vj = 0, i �= j and v∗i vj = 1, i = j, we have that y = Av = αAvi = ασiui
and ||y||2 = ||Av||2 = σi, since ||ui||2 = 1. Thus, the maximum possible gain
is σ1; i.e., max

‖v‖2=1
||y||2 = max

‖v‖2=1
||Av||2 = σ1(= σ̄(A)), as was shown above.

This maximum gain occurs when v is along the right singular vector v1. Then
Av = Av1 = σ1u1 = y in view of (A.92); i.e., the projection is along the
left singular vector u1, also of the same singular value σ1. Similarly, for the
minimum gain, we have σr = σ(A) = min

‖v‖2=1
||y||2 = min

‖v‖2=1
||Av||2; in which

case, Av = Avr = σrur = y.
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Additional interesting properties include

R(A) = R(U1) = span{u1, . . . , ur}, (A.97)
N (A) = R(V2) = span{vr+1, . . . , vn}, (A.98)

where U = [u1, . . . , ur, ur+1, . . . , um] = [U1, U2], V = [v1, . . . , vr, vr+1, . . . , vn]
= [V1, V2].

A.9.3 Least-Squares Problem

Consider now the least-squares problem where a solution x to the system of
linear equations Ax = b is to be determined that minimizes ‖ b−Ax ‖2. Write
min
x

‖ b − Ax ‖2
2= min

x
(b − Ax)T (b − Ax) = min

x
(xTATAx − 2bTAx + bT b).

Then ∇x(xTATAx− 2bTAx+ bT b) = 2ATAx− 2AT b = 0 implies that the x,
which minimizes ‖ b−Ax ‖2, is a solution of

ATAx = AT b. (A.99)

Rewrite this as V1Σ
2
rV

T
1 x = (U1ΣrV

T
1 )T b = V1ΣrU

T
1 b in view of (A.89) and

(A.83). Now x = V1Σ
−1
r UT1 b is a solution. To see this, substitute and note

that V T1 V1 = Ir . In view of the fact that N (ATA) = N (A) = R(V2) =
span{vr+1, . . . , vn}, the complete solution is given by

xw = V1Σ
−1
r UT1 b+ V2w (A.100)

for some w ∈ Rm−r. Since V1Σ
−1
r UT1 b is orthogonal to V2w for all w,

x0 = V1Σ
−1
r UT1 b (A.101)

is the optimal solution that minimizes ‖ b −Ax ‖2.
The Moore–Penrose pseudo-inverse of A ∈ Rm×n can be shown to be

A+ = V1Σ
−1
r UT1 . (A.102)

We have seen that x = A+b is the solution to the least-squares problem.
It can be shown that this pseudo-inverse minimizes ‖ AA+ − Im ‖F , where
‖ A ‖F denotes the Frobenius norm of A, which is equal to the square root
of trace[AAT ] =

∑m
i=1 λi(AA

T ) =
∑m
i=1 σ

2
i (A). It is of interest to note that

the Moore–Penrose pseudo-inverse of A is defined as the unique matrix that
satisfies the conditions (i) AA+A = A, (ii) A+AA+ = A+, (iii) (AA+)T =
AA+, and (iv) (A+A)T = A+A.

Note that if rankA = m ≤ n then it can be shown that A+ = AT (AAT )−1;
this is, in fact, the right inverse of A, since A(AT (AAT )−1) = Im. Similarly,
if rankA = n ≤ m, then A+ = (ATA)−1AT , the left inverse of A, since
((ATA)−1AT )A = In.

Singular values and singular value decomposition are discussed in a number
of references. See for example, Golub and Van Loan [7], Patel et al. [11], Petkov
et al. [12], and DeCarlo [5].



References 497

A.10 Notes

Standard references on linear algebra and matrix theory include Birkhoff and
MacLane [4], Halmos [8], and Gantmacher [6]. Our presentation in this ap-
pendix follows Michel and Herget [9]. Conditioning and numerical stability of
a problem are key issues in the area of numerical analysis. Our aim in Sec-
tion A.9 was to make the reader aware that depending on the problem, the
numerical considerations in the calculation of a solution may be nontrivial.
These issues are discussed at length in many textbooks on numerical analysis.
Examples of good books in this area include Golub and Van Loan [7] and
Stewart [13] where matrix computations are emphasized. Also, see Petkov et
al. [12] and Patel et al. [11] for computational methods with emphasis on
system and control problems. For background on the theory of algorithms,
optimization algorithms, and their numerical properties, see Bazaraa et al. [2]
and Bertsekas and Tsitsiklis [3].
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Solutions to Selected Exercises

Exercises of Chapter 1

1.10 Δẋ = (k1k2/L)Δx+ k2Δu, Δy = (k1/L)Δx where L = 2
√
k − k1k2t.

1.12 (a)
[
Δẋ1

Δẋ2

]
=
[

0 1
1 1

] [
Δx1

Δx2

]
.

(b) x1 = x, x2 = ẋ[
Δẋ1

Δẋ2

]
=
[

0 1
0 −3

] [
Δx1

Δx2

]
+
[

0
−1

]
Δu.

1.13 x1 = φ, x2 = φ̇, x3 = s, x4 = ṡ⎡
⎢⎢⎣
Δẋ1

Δẋ2

Δẋ3

Δẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
g
L′ 0 0 F

L′M
0 0 0 1
0 0 0 − F

M

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Δx1

Δx2

Δx3

Δx4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
− 1
L′M
0
1
M

⎤
⎥⎥⎦Δμ.

Exercises of Chapter 2

2.4 (b) Not linear; time-invariant; causal.

2.5 Causal; linear; not time-invariant.

2.6 Noncausal; linear; time-invariant.

2.7 Not linear.

2.8 Noncausal; time-invariant.

2.9 Noncausal; nonlinear (affine).

2.10 y(n) =
∑∞
k=−∞ u(l)[s(n, l)− s(n, l−1)], where s(n, l) =

∑∞
l=−∞ h(n, k)

p(k − l) is the unit step response of the system.
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Exercises of Chapter 3

3.1 (a) (α1, α2, α3) = (1, 0, 5). (b) (ᾱ1, ᾱ2, ᾱ3) = (s, 2, s+ 1/s).

3.2 a = [1, 0,−2]T , ā = [0, 1/2, 1/2].

3.3 A basis is {(1, α)T }, α ∈ R.

3.4 It is a vector space of dimension n2. The set of nonsingular matrices is
not a vector space since closure of matrix addition is violated.

3.5 Dependent over the field of rational functions; independent over the field
of reals.

3.6 (a) Rank is 1 over complex numbers. (b) 2 over reals. (c) 2 over rational
functions. (d) 1 over rational functions.

3.8 Directly, from the series definition of eAt or using system concepts.

3.9 See also Subsection 6.4.1.

3.11 (λki , v
i) is an (eigenvalue, eigenvector) pair of Ak. Then f(A)vi =

f(λi)vi.

3.13 Substitute x(t) = Φ(t, t0)z(t) into ẋ = A(t)x+B(t)u.

3.14 Take derivatives of both sides of Φ(t, τ)Φ(τ, t) = I with respect to τ .

3.19 Verify that Φ(t, 0) = eAt is the solution of Φ(t, 0) = AΦ(t, 0), Φ(0, 0) = I.

3.21 Use Exercise 3.19. x2
1 + x2

2 = 2 = (
√

2)2, so trajectory is a circle.

3.22 x(0) = [1, 1]T is colinear to the eigenvector of eigenvalue 1, and so et is
the only mode that appears in the solution.

3.23 (a) Take t = 0 in the expression for eAt.

3.25 (a) x(0) = [−1, 1, 0]T .

3.30 (I −A)x(0) = Bu(0); u(0) = 2.

Exercises of Chapter 4

4.1 Set of equilibria is {(−4v, v, 5v)T : v ∈ R}.

4.2 Set of equilibria is {( 1
kπ , 0)T : k ∈ N\{0}} ∪ {(0, 0)T }.

4.3 x = 0 is uniformly asymptotically stable; x = 1 is unstable.

4.5 A > 0.

4.7 x = 0 is exponentially stable; x = 1 is unstable.

4.9 Uniformly BIBO stable.
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4.10 (a) Set of equilibria {(α,−α)T ∈ R2 : α ≥ 0}. (b) No equilibrium.

4.12 x = 0 is stable.

4.13 x = 0 is stable.

4.14 x = 0 is not stable.

4.15 x = 0 is not stable.

4.18 (a) x = 0 is stable. (b) x = 0 is stable.

4.21 x = 0 is unstable.

4.22 Not BIBO stable. Theorem cannot be applied.

Exercises of Chapter 5

5.2 (a) Controllable from u, observable from y. (b) when u1 = 0, controllable
from u2; when u2 = 0, not controllable from u1. (c) not observable from y1;
observable from y2.

5.3 (a) Use u(t) = BT eA
T (T−t)W−1

r (0, T )(x1 − eATx0).

5.4 (a) It can be reached in two steps, with u(0) = 3, u(1) = −1.
(b) Any x = (b, a, a)T will be reachable. a, b ∈ R.
(c) x = (0, 0, a)T unobservable. a ∈ R.

5.10 (a) u(0) = −1, u(1) = 2; (b) y(1) = (1, 2)Tu(0).

5.11 x0 = [1 0 α]T , α ∈ R.

Exercises of Chapter 6

6.2 (b) λ = 3 uncontrollable (first pair); λ = −1 uncontrollable (second pair).

6.3 Controllability indices are 1, 3.

6.7 Use controller form or Sylvester’s Rank Inequality.

6.13 (a) It is controllable. (b) It is controllable from f1 only. (c) It is observ-
able.

Exercises of Chapter 7

7.1 Use the standard form for uncontrollable systems.

7.5 λ1 = 1 is both controllable and observable, λ2 = − 1
2 is uncontrollable

but observable, and λ3 = − 1
2 is controllable but unobservable.
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7.6 (a) λ = 2 is uncontrollable and unobservable. (b) H(s) = 1
s+1

[
1 1
1 0

]
.

(c) It is not asymptotically stable, but it is BIBO stable.

7.7 (a) pH(s) = s2(s+ 2), mH(s) = s(s+ 2). (b) zH(s) = 1.

7.8 (a) pH(s) = s3 = mH(s). (b) zH(s) = 1.

7.10 (a) They are rc. (b) They are not lc; a glcd is
[
s 0
0 1

]
.

7.13 (a) It is uncontrollable and unobservable.

(b) H(s) = 2
s+1

[
−1 2

0 0

]
.

Exercises of Chapter 8

8.4 pH = s2 − 1; McMillan degree is 2.

8.6 (a) pH(s) = s(s+ 1)(s+ 3); McMillan degree is 3.

(b) A =

⎡
⎣

0 0 0
0 −1 0
0 0 −3

⎤
⎦, B =

⎡
⎣

1 0
0 1
1 0

⎤
⎦, C =

[
1 2 0
0 −1 1

]
, D =

[
0 1
0 1

]
.

8.10 (a) pH(s) = s2(s+ 1)2 so the order of any minimal realization is 4.
(b) Take u1 = 0, and find the McMillan degree, which is 2. So in a fourth
order realization, system will not be controllable from u2 only. System will be
observable from y1.

8.12 pH(s) = s3, and so 3 is the order of any minimal realization. A minimal

realization is A =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦, B =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦, C =

[
0 1 −1
1 1 0

]
, D =

[
1 0 1
0 0 0

]
.

Exercises of Chapter 9

9.4 F = gf , g = (0, 1)T , f = (−11 − 19 − 12;−10) (after reducing the
system to single-input controllable).

9.6 (a) G = 1
2 , F = [−2,− 7

2 ,−
5
2 ]. (b) controllable but unobservable.

9.9 (a) Let x1 = θ, x2 = θ̇. Then A =
[

0 1
0 −1

]
, B =

[
0
1

]
, C =

[
1 0
]
.

(b) F = [−1,−1].

9.11 F = [−3.7321,−6, 4641] minimizes J1.

9.12 (a) F =
[
3
2 , 1
]
. (b) K = [2α, α2 + 2]T .
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9.13 (a) OE = 0. (b) E = α(1,−1)T .

9.14 F = −
[
1 0
1 2

]
.

9.15 (a) x0 = −(λI −A)−1B; If λ is a zero of H(s), a pole-zero cancellation
will occur. (b) x0 = αv, where v is the eigenvector corresponding to λ.

Exercises of Chapter 10

10.1 (a) For X1 = X̃1 = 0, Y1 = Ỹ1 = 1, H2 = (1 + s2K)/K, where K is any
stable rational function. Alternatively, for X ′

1 = X̃ ′
1 = (s2 +8s+24)/(s+2)2,

Y ′
1 = Ỹ ′

1 = (32s+16)/(s+2)2, N ′
1 = Ñ ′

1 = 1/(s+2)2, D′
1 = D̃′

1 = s2/(s+2)2,
and H2 = (32s+ 16− s2K ′)/(s2 + 8s+ 24−K ′), where K ′ is any proper and
stable rational function.
(b) In general, it is not easy (or may be impossible) to restrict appropriately
K or K ′, so H2 is of specific order. Here let H2 = (b1s + b0)/(s + a0) and
establish conditions on the parameters so that the closed-loop system is stable.

10.4 (b) N ′−1T = X ′, a proper and stable function, implies conditions on
ni, di of T .

10.5 (a) In view of the hint, N−1T = 1/(s + 2)2 = 1/G−1DF , from which
G = 2, F (s) = FS(s) = [−6,−11][1, s]T .
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A/D, analog-to-digital converter, 117
Abel’s formula, 80
Ackermann’s formula, 361, 382, 401
Adjoint equation, 132, 133
Adjoint of a matrix, 487
Algebraic multiplicity, 475,

see also Eigenvalue
Asymptotic behavior, 94, 121,

see also Mode of system
Asymptotic state estimator, see State

observer
Automobile suspension system, 140
Autonomous, 10,

see also Linear ordinary differential
equation; System

Axioms
of a field, 455
of a norm, 483
of a vector space, 456

Basis, see Vector space
BIBO stable, 170, 174, 187, 189,

see also Stability
Biproper, 427,

see also Rational function

Canonical form, 471
Jordan, 88, 478–481

Canonical Structure Theorem, 245, 269,
see also Kalman’s Decomposition

Theorem
Cauchy–Peano existence theorem, 18
Cayley–Hamilton Theorem, 91, 127, 475
Characteristic

equation, 474

polynomial, 474,

see also Matrix; Transfer function

value, see Eigenvalue

vector, see Eigenvector

Cholesky decomposition, 490

Circuit, 14, 279, 286, 291

Closed-loop control, 353, 400

Cofactor, 486,

see also Matrix

Command input, see Reference input

Companion form matrix, 137

Condition number, 489,

see also Matrix

Constructibility, 222, 230,

see also Observability

continuous-time system, 222–224

discrete-time system, 202, 228

Gramian, 223

Continuous function

at a point, 7

over an interval, 7

uniformly, 7

Control problems, 445

Controllability (-to-the-origin), 209,
210, 230, 303, 307

continuous-time system, 209, 230

discrete-time system, 216

eigenvalue/eigenvector (PBH) test,
248

from the origin, see Reachability

Gramian, 210

indices, 256
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Controllability (Cont’d)
matrix, 197, 206, 230
output, 234

Controllable (-to-the-origin), 199, 209,
230

companion form, see Controller form
eigenvalues, 240
mode, 240
single-input, 405
subspace, 209

Controller
digital, 116
feedback, 352, 411
implementations, 439
with two degrees of freedom, 431, 448

Controller form, 251, 270
multi-input, 256, 270
single-input, 252, 270

Converter(A/D, D/A), 117
Convolution

integral, 69
sum, 62

Coprime, 299, 301, 307, 423, 448,
see also Polynomial matrices

D/A, digital-to-analog converter, 117
Deadbeat

control, 136
observer, 388

Decoupling
diagonal, 446, 449
static, 447, 449

Degree, McMillan, 321, 345
Detectable, 380
Determinant, 486,

see also Matrix
Determinantal divisor, 283
Diagonal decoupling, 446, 449
Difference equations, 51,

see also Solutions of difference
equations

Differential equations, ordinary,
see also Solutions of differential

equations
classification, 10
first-order, 9
linear, 20, 21
linear homogeneous, 11, 12, 28
linear homogeneous with constant

coefficients, 11, 12, 78

linear nonhomogeneous, 11, 12, 30, 78
nth-order, 11
systems of first-order, 10

Digital signal, 117
Diophantine equation, 424, 427, 447

all solutions, 424, 429
Bezout identity, 427

Dirac delta distribution, 65, 66, 73, 92
Direct link matrix, 105
Discrete-time impulse, 60
Discrete-time Kalman filter, 391,

see also Kalman filter
Divisor, common, 298
Domain of attraction, 166,

see also Equilibrium
Double integrator, 120, 139
Doubly coprime, 423, 448, 450,

see also Coprime
Dual system, 203, 232

Eigenvalue, 474
algebraic multiplicity, 475
controllable, 240
critical, 152
geometric multiplicity, 475
multiple, 475
observable, 243

Eigenvalue or pole assignment, 357, 401
direct method, 358, 400
eigenvector assignment, 364, 401
using controller form, 359, 401

Eigenvector, 474
generalized, 479

Equilibrium, 124, 129, 142, 174, 188,
see also Stability
attractive, 145
domain of attraction, 145
qualitative characterization, 144
trivial solution, 143

Equivalence
of internal representations, 105, 115,

303
of matrices, 473
zero-input, 107
zero-state, 107

Estimator, see State observer
Euclidean

norm, 484
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Euler
method, 38

External input, 352

Feedback
configuration, 413
control, 411
gain matrix, 352
output, 351, 392, 411
state, 351, 400

Feedback stabilizing controller, 422, 448
parameterizations, polynomial MFD,

423, 448
parameterizations, proper and stable

MFD, 426, 448
two degrees of freedom, 434, 449

Field, 455
Frequency response, 138
Function, 7

continuous, 7
Hamiltonian, 34
indefinite, 155
piecewise continuous, 8, 31
positive definite, semidefinite, 155

Fundamental matrix, 78–81, 127
Fundamental theorem of linear

equations, 466

Gaussian elimination, 490
Generalized distance function, 154,

see also Lyapunov function
Generalized eigenvector, 479
Generalized energy function, 154,

see also Lyapunov function
Generalized function, 66,

see also Dirac delta distribution
Geometric multiplicity, 475,

see also Eigenvalue
Gram

matrix, 211
Gramian

constructibility, 223
controllability, 210
observability, 220, 231
reachability, 206, 230

Hamiltonian
dynamical systems, 34
function, 34
matrix, 372

Hamiltonian matrix, 377
Hankel matrix, 322, 345
Harmonic oscillator, 134
Hermite form, 299, 301
Hölder’s Inequality, 458
Hurwitz matrix, 165
Hybrid system, 118

Ill conditioned, 489
Impulse response

continuous-time, 70, 71, 73
discrete-time, 64, 72

Impulse response matrix, 64, 68, 70, 71
Indices

controllability, 256
observability, 265

Infinite series method, 87, 127,
see also Matrix, exponential

Initial conditions, 5, 6
Initial time, 5, 6
Initial-value problem, 8, 11, 32, 51

examples, 13
solutions, 17

Input
command or reference, 352
comparison sensitivity matrix, 436
decoupling zeros, 287, 305
external, 352
function observability, 235
output decoupling zeros, 288, 305
vector, 5

Input-output description, see System
representations, descriptions

Instability, 160
Integral equation, 10
Integral representation, 65
Integration, forward rectangular rule,

38
Internal description, see System

representations, descriptions
Internal stability, 144–169, 173–186, 188
Invariant factors, polynomials, 283
Invariant property of (A, B), 260
Invariant subspace, 209, 227
Inverted pendulum, 43,

see also Pendulum

Jacobian matrix, 21, 32
Jordan canonical form, 88, 478–481
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Kalman filter
continuous-time, 385
discrete-time, 391

Kalman–Bucy filter, 385
Kalman’s Decomposition Theorem, 245,

269

Lagrange’s equation, 35
Lagrangian, 36
Laplace transform, 92, 127
Least-order realization, 318
Least-squares, 491
Leonhard–Mikhailov stability criterion,

190
Level curve, 157,

see also Lyapunov function
Lienard equation, 15, 167
Limit cycle, 42
Linear algebraic equation

fundamental theorem, 466
solutions, 469, 488

Linear operator, see Linear transforma-
tion

Linear ordinary difference equations,
52, 53

Linear ordinary differential equation,
see also Solutions of differential

equations
autonomous, 10
homogeneous, 11, 12, 28
matrix, 80
nonhomogeneous, 11, 12, 30
periodic, 10, 12

Linear space, see Vector space
Linear system, 57
Linear transformation, 464

fundamental theorem, 466
null space, 465
nullity, 466
orthogonal, 491
principle of superposition, 50
range space, 466
representation by a matrix, 466

Linearization, 6, 21, 32, 164, 185, 189
examples, 24

Linearized equation, 22, 23, 32
Linearly dependent, 461, 462,

see also Vector
Linearly independent, 210, 461, 462,

see also Vector
Lipschitz condition, 18, 20
LQG (linear quadratic Gaussian)

problem, 385, 402, 403
LQR (linear quadratic regulator)

problem
continuous-time, 369
discrete-time, 377, 401

LU decomposition, 490
Luenberger observer, 379, 402
Lyapunov function, 154, 183

construction of, 160
level curve, 157

Lyapunov matrix equation, 153, 179,
189

Lyapunov stability, 144, 148, 188, 189,
see also Stability

Lyapunov’s Direct or Second Method,
153

Markov parameter, 137, 315, 322, 345
Matrix

characteristic polynomial, 474
Cholesky decomposition, 490
cofactor, 486
companion form, 137
condition number, 489
controllability, 197, 230
determinant, 486
diagonal, 478
equivalent, 473
exponential, 85, 127
fundamental, 80
Gram, 211
Hamiltonian, 372, 377
Hankel, 322, 345
Hermite form, 299, 301
Hermitian, 491
Hurwitz, 165
ill conditioned, 489
impulse response, 64, 68, 70, 71
indefinite, 154
inverse, 487
Jacobian, 21, 32
Jordan, 478–481
LU decomposition, 490
minimal polynomial, 477
minor, 155, 284, 307, 486
Moore–Penrose inverse, 496
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Matrix (Cont’d)
negative definite, semidefinite, 154
nonsingular, 487
norm, 485
observability, 220, 231
orthogonal, 491
positive definite, semidefinite, 154
proper rational, 105
QR decomposition, 490
rank, 469
Rosenbrock system, 286, 305
Schur stable, 178
similar, 473
Smith form, 283
Smith–McMillan form, 284, 307
state transition, 82, 109, 127
symmetric, 154, 491
system, 286, 305
Toeplitz, 227
unimodular, 283
unitary, 491
well conditioned, 489

Matrix fractional description, 293, 297,
308,

see also System representations,
descriptions

McMillan degree, 321, 345
MIMO system multi-input/multi-

output, 56
Minimal polynomial, 284, 477
Minkowski’s Inequality, 458
Mode of system, 95, 122, 127,

see also System
Model matching problem, 446, 449, 452
Modeling, 2
Moore–Penrose pseudo-inverse, 496

Natural basis, 464,
see also Basis; Vector space

Negative,
see also Function; Matrix
definite, semidefinite, 154

Nonlinear systems, 4, 147, 164, 185, 189
Norm

Euclidean, 484
induced, 485
Manhattan, 484
matrix, 485
taxicab, 484

Observability, 219, 223, 230, 304, 307
continuous-time system, 219, 221, 230

discrete-time system, 226
eigenvalue/eigenvector (PBH) test,

248

Gramian, 220, 231
indices, 265
matrix, 220, 231
subspace, see Unobservable

Observable
eigenvalue mode, 243

Observer, Luenberger, 379, 402,
see also State observer

Observer form, 263, 271
multi-output, 265, 271
single-input, 263, 271

Open-loop control, 353, 400
Operator, linear, see Linear transforma-

tion
Optimal

control problem, LQR, 369, 377, 401
estimation problem, LQG, 385, 391,

402, 404

Optimality principle, 403
Orthogonal, 491

matrix, 491
Output

comparison sensitivity matrix, 436
decoupling zeros, 287, 305
equation, 5
function controllability, 235

reachability, controllability, 234
vector, 5

Peano–Baker series, 29, 33, 82
Pendulum

inverted, 43

simple, 17, 24, 45
Phase

plane, 134
portrait, 42

variable, 134
Picard iterations, 20

with successive approximations, 28
Pole assignment problem, 357,

see also Eigenvalue or pole assignment
Pole polynomial, 284, 307
Pole, zero relations, 290, 306
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Poles at infinity, 283
Poles of a transfer function, 284
Poles of the system, 283, 306,

see also Eigenvalue
Polynomial

monic, 477
Polynomial matrices

coprime, left, right, 299, 301, 307
division algorithm, 476
doubly coprime, 423, 448, 450
greatest common divisors, 298, 300
Hermite form, 299, 301
Smith form, 283
unimodular, 283

Polynomial matrix description, 292,
see also System representations,

descriptions
Positive,

see also Function; Matrix
definite, indefinite, semidefinite, 155

Prediction estimator, 389
Predictor–corrector method, 40
Proper transfer function, 105

QR decomposition, 490
Quadratic form, 154
Quantization, 117

Rank, 469
test, 249

Rational function
biproper, 427
proper and stable, 308

Rayleigh’s dissipation function, 36
Reachability, 205, 214, 216,

see also Controllability, from the
origin

continuous-time system, 205, 230
discrete-time system, 198, 214, 230
Gramian, 206, 230
matrix, see Controllability
output, 234
subspace, 206

Reachable, 198, 205, 214, 230,
see also Controllable; Controllability,

from the origin
state, 205
subspace, 206

Realization algorithms, 324, 345

controller/observer form, 326, 345
matrix A diagonal, 339, 345
singular-value decomposition, 341,

345
using duality, 324, 345

Realization of systems, 314, 343, 345
existence and minimality, 316, 345
least order, irreducible, minimal

order, 318, 321, 345
Reconstructible, see Constructibility
Reference input, 352
Response, 49, 55, 71

maps, 435
total, 100, 111, 128
zero-input, 100, 111
zero-state, 100, 111

Return difference matrix, 421, 422
Riccati equation

continuous-time case, 370, 401
discrete-time case, 386, 402

Rosenbrock system matrix, 286, 305
Routh–Hurwitz stability criterion, 190
Runge–Kutta method, 39

Sampled data system, 116, 129
Sampling period, rate, 119, 129
Scalar, 456
Schur–Cohn stability criterion, 190
Schwarz Inequality, 458
Semigroup property, 109
Sensitivity matrix, 436
Separation principle, property, 395, 403
Shift operator, 75
Signal, digital, 117
Similarity transformation, 105, 474
Singular

value, 491
value decomposition, 493
vector, left, right, 494

SISO system
single-input/single-output, 56

Smith form, 283
Smith–McMillan form, 284, 307
Solutions of algebraic equations, 469,

488
Solutions of difference equations

particular, 55
total, 55

Solutions of differential equations, 9,
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see also Variation of constants
formula

bounded, 148
continuable, 19
continuation, 18
continuous dependence on initial

conditions, 20
continuous dependence on parame-

ters, 19, 20
existence, 18, 27, 33
homogeneous, 28–30, 53
noncontinuable, 18, 19
particular, 31
Peano–Baker series, 29
predictor–corrector method, 40
Runge–Kutta, 39
successive approximations, Picard

iterations, 20, 28
total, 31

Space
of n-tuples, 457
of real-valued continuous functions,

459
span, 461

Spring, 16
Spring mass system, 139
Stability, 124, 129, 141, 148, 304, 307,

419, 427
asymptotic, 124, 145, 149, 150, 177,

178, 185
asymptotic in the large, 146, 149,

152, 177, 180
attractive equilibrium, 145, 175
bounded-input/bounded-output

(BIBO), 170, 174, 187, 189
causal, 58, 61, 62, 64, 70, 72, 73
domain of attraction, 145, 175
exponential, 145, 150, 177
exponential in the large, 150, 152
external, 170
global asymptotic, 150
input–output, 170, 186, 189, 281, 306
linear systems, continuous, 148
linear systems, discrete, 173
Lyapunov, 144, 148, 188, 189, 281,

306
Routh–Hurwitz criterion, 190
Schur–Cohn, 190

Stabilizable, 356

Stable, see Stability
Standard form

Kalman’s canonical, 244, 269
uncontrollable system, 238, 269
unobservable system, 241

State
partial, 295
phase variable, 134
variables, 5
vector, 5

State equation, 5
State estimator, see State observer
State feedback, 352, 400,

see also Feedback
eigenvalue assignment, 355, 400
input–output relations, 372
optimal, 369, 377, 401

State observer, 378, 402
current, 389, 402
deadbeat, 388
full-order, 378, 387
identity, 379, 387
optimal, 385, 391, 402
partial state, 383, 391
prediction, 389
reduced-order, 383, 391

State transition matrix, 82, 109
State unconstructible, 222, 223
State unobservable, 220, 223
Structure theorem

controllable version, 261, 270
observable version, 267, 271

Successive approximations, Picard
iterations, 20, 28, 32,

see also Solutions of differential
equations

Superposition principle, 50, 57
Sylvester Rank Inequality, 319, 487
System

at rest, 63, 69
autonomous, 10
causal, 58, 72, 73
conservative, 34
continuous-time, 5
discrete-time, 4, 6, 50, 60, 72
distributed parameter, 4
dual, 203, 232
finite-dimensional, 4, 6
Hamiltonian, 35
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System (Cont’d)
hybrid, 118
infinite-dimensional, 4
linear, 57
lumped parameter, 4
matrix, 286, 305
memoryless, 57
mode, 95, 122, 127
nonanticipative, 58
nonlinear, 4
realization, 314, 343, 345
sampled data, 116, 129
single input/single output, 56
time-invariant, 59, 72
time-varying, 59
with memory, 57, 72

System interconnections
feedback, 413, 447
parallel, 411, 447
series, or tandem, 412, 447

System representations, descriptions
balanced, 342, 345
continuous-time, 48
controller form, 251, 257, 270
differential/difference operator, 292,

307
discrete-time, 50
equivalence, of, 105, 115, 128
external, 6, 56, 72, 293
input–output, 56, 72, 73
internal, 6, 293
matrix fractional, 293, 297, 308
observer form, 263, 266, 271
polynomial matrix, 292, 295, 307,

308, 416
standard form, uncontrollable,

unobservable, 238, 239, 241, 242,
269

state-space, 5

Time reversibility, 109
Toeplitz matrix, 227
Trajectory, 42, 134
Transfer function

McMillan degree, 321, 345
minimal polynomial, 284
pole polynomial, 284
strictly proper, 105

Triangle inequality, 483

Truncation operator, 74
Two degrees of freedom controller, 431,

448

Unconstructible, 227,
see also Constructibility
subspace, 227

Uncontrollable,
see also Controllability
eigenvalues, modes, 240, 269

Unimodular matrix, 283
Unit

pulse, or unit impulse, response, 61
pulse, or unit sample, 60
step function, 92
step sequence, 60

Unit impulse, 66, 73
Unity feedback, 441, 443, 449
Unobservable, 219,

see also Observability
eigenvalues, modes, 243
subspace, 219

van der Pol equation, 15, 42
Variation of constants formula, 31, 33,

132
Vector, 456

coordinate representation, 464
linearly dependent, 461, 462
linearly independent, 461, 462

Vector space, 456
basis, 463, 472
dimension, 463
examples, 457
finite-dimensional, 463
normed, 483
null, 465

Youla parameter, 425, 429, 449

z-Transform, 112
Zero, 286, 287, 304, 307

at infinity, 310
decoupling input/output, 288, 305
direction, 292
invariant, 287, 305, 307
of transfer functions, 288, 305, 306
polynomial, 287, 305, 307
system, 287
transmission, 288, 305
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Zero-input response, 100, 111,
see also Response

Zero-order hold, 117

Zero-state response, 100, 111,
see also Response



About the Authors

Panos J. Antsaklis is the H. Clifford and Evelyn A. Brosey Professor of
Electrical Engineering and Concurrent Professor of Computer Science and
Engineering at the University of Notre Dame. He served as the Director of
the Center for Applied Mathematics of the University of Notre Dame from
1999 to 2005. He is a graduate of the National Technical University of Athens
(NTUA), Greece and holds MS and Ph.D. degrees from Brown University.

His research addresses problems of control and automation and examines
ways to design engineering systems that will exhibit a high degree of au-
tonomy in performing useful tasks. His recent research focuses on networked
embedded systems and addresses problems in the interdisciplinary research
area of control, computing and communication networks, and on hybrid and
discrete-event dynamical systems.

Dr. Antsaklis has authored a number of publications in journals, con-
ference proceedings, and books, and he has edited six books on intelligent
autonomous control, hybrid systems, and networked embedded control sys-
tems. In addition, he has co-authored the research monographs Supervisory
Control of Discrete-Event Systems Using Petri Nets (Kluwer Academic Pub-
lishers, 1998, with J. Moody) and Supervisory Control of Concurrent Systems:
A Petri Net Structural Approach (Birkhäuser, 2006, with M.V. Iordache) as
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