A

Appendix

This appendix consists of nine parts. In the first eight, Sections A.1-A.8, we present results from linear algebra used throughout this book. In the last part, Section A.9, we address some numerical considerations. In all cases, our aim is to present a concise summary of pertinent results and not a full development of the subject on hand. For a more extensive exposition of the materials presented herein, refer to Antsaklis and Michel [1, Section 2.2] and to the other sources cited at the end of this appendix.

A. 1 Vector Spaces

In defining vector space, we require the notion of a field.

A.1.1 Fields

Definition A.1. Let F be a set containing more than one element, and let there be two operations " + " and "" defined on F (i.e., "+" and "" are mappings of $F \times F$ into F), called addition and multiplication, respectively. Then for each $\alpha, \beta \in F$ there is a unique element $\alpha+\beta \in F$, called the sum of α and β, and a unique element $\alpha \beta \triangleq \alpha \cdot \beta \in F$, called the product of α and β. We say that $\{F ;+, \cdot\}$ is a field provided that the following axioms are satisfied:
(i) $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$ and $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$ for all $\alpha, \beta, \gamma \in F$ (i.e., "+" and "." are associative operations);
(ii) $\alpha+\beta=\beta+\alpha$ and $\alpha \cdot \beta=\beta \cdot \alpha$ for all $\alpha, \beta \in F$ (i.e., "+" and"" are commutative operations);
(iii) $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$ for all all $\alpha, \beta, \gamma \in F$ (i.e., "." is distributive over " + ");
(iv) There exists an element $0_{F} \in F$ such that $0_{F}+\alpha=\alpha$ for all $\alpha \in F$ (i.e., 0_{F} is the identity element of F with respect to "+");
(v) There exists an element $1_{F} \in F, 1_{F} \neq 0_{F}$, such that $1_{F} \cdot \alpha=\alpha$ for all $\alpha \in F$ (i.e., 1_{F} is the identity element of F with respect to ".");
(vi) For every $\alpha \in F$, there exists an element $-\alpha \in F$ such that $\alpha+(-\alpha)=0_{F}$ (i.e., $-\alpha$ is the additive inverse of F);
(vii) For any $\alpha \neq 0_{F}$, there exists an $\alpha^{-1} \in F$ such that $\alpha \cdot\left(\alpha^{-1}\right)=1_{F}$ (i.e., α^{-1} is the multiplicative inverse of $\left.F\right)$.

In the sequel, we will usually speak of a field F rather than of "a field $\{F ;+, \cdot\}$."

Perhaps the most widely known fields are the field of real numbers R and the field of complex numbers C. Another field that we will encounter (see Example A.11) is the field of rational functions (i.e., rational fractions over polynomials).

As a third example, we let $F=\{0,1\}$ and we define on F (binary) addition as $0+0=0=1+1,1+0=1=0+1$ and (binary) multiplication as $1 \cdot 0=0 \cdot 1=0 \cdot 0=0,1 \cdot 1=1$. It is easily verified that $\{F ;+, \cdot\}$ is a field.

As a fourth example, let P denote the set of polynomials with real coefficients and define addition " + " and multiplication "." on P in the usual manner. Then $\{F ;+, \cdot\}$ is not a field since, e.g., axiom (vii) in Definition A. 1 is violated (i.e., the multiplicative inverse of a polynomial $p \in P$ is not necessarily a polynomial).

A.1.2 Vector Spaces

Definition A.2. Let V be a nonempty set, F a field, " + " a mapping of $V \times V$ into V, and "." a mapping of $F \times V$ into V. Let the members $x \in V$ be called vectors, let the elements $\alpha \in F$ be called scalars, let the operation "+" defined on V be called vector addition, and let the mapping "." be called scalar multiplication or multiplication of vectors by scalars. Then for each $x, y \in V$, there is a unique element, $x+y \in V$, called the sum of x and y, and for each $x \in V$ and $\alpha \in F$, there is a unique element, $\alpha x \triangleq \alpha \cdot x \in V$, called the multiple of x by α. We say that the nonempty set V and the field F, along with the two mappings of vector addition and scalar multiplication, constitute a vector space or a linear space if the following axioms are satisfied:
(i) $x+y=y+x$ for every $x, y \in V$;
(ii) $x+(y+z)=(x+y)+z$ for every $x, y, z \in V$;
(iii) There is a unique vector in V, called the zero vector or the null vector or the origin, that is denoted by 0_{V} and has the property that $0_{V}+x=x$ for all $x \in V$;
(iv) $\alpha(x+y)=\alpha x+\alpha y$ for all $\alpha \in F$ and for all $x, y \in V$;
(v) $(\alpha+\beta) x=\alpha x+\beta x$ for all $\alpha, \beta \in F$ and for all $x \in V$;
(vi) $(\alpha \beta) x=\alpha(\beta x)$ for all $\alpha, \beta \in F$ and for all $x \in V$;
(vii) $0_{F} x=0_{V}$ for all $x \in V$;
(viii) $1_{F} x=x$ for all $x \in V$.

When the meaning is clear from context, we will write 0 in place of $0_{F}, 1$ in place of 1_{F}, and 0 in place of 0_{V}. To indicate the relationship between the set of vectors V and the underlying field F, we sometimes refer to a vector space V over the field F, and we signify this by writing (V, F). However, usually, when the field in question is clear from context, we simply speak of a vector space V. If F is the field of real numbers R, we call the space a real vector space. Similarly, if F is the field of complex numbers C, we speak of a complex vector space.

Examples of Vector Spaces

Example A.3. Let $V=F^{n}$ denote the set of all ordered n-tuples of elements from a field F. Thus, if $x \in F^{n}$, then $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$, where $x_{i} \in F$, $i=1, \ldots, n$. With $x, y \in F^{n}$ and $\alpha \in F$, let vector addition and scalar multiplication be defined as

$$
\begin{align*}
x+y & =\left(x_{1}, \ldots, x_{n}\right)^{T}+\left(y_{1}, \ldots, y_{n}\right)^{T} \\
& \triangleq\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)^{T} \tag{A.1}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha x=\alpha\left(x_{1}, \ldots, x_{n}\right)^{T} \triangleq\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)^{T} . \tag{A.2}
\end{equation*}
$$

In this case the null vector is defined as $0=(0, \ldots, 0)^{T}$ and the vector $-x$ is defined as $-x=-\left(x_{1}, \ldots, x_{n}\right)^{T}=\left(-x_{1}, \ldots,-x_{n}\right)^{T}$. Utilizing the properties of the field F, all axioms of Definition A. 2 are readily verified, and therefore, F^{n} is a vector space. We call this space the space F^{n} of n-tuples of elements of F. If in particular we let $F=R$, we have R^{n}, the n-dimensional real coordinate space. Similarly, if we let $F=C$, we have C^{n}, the n-dimensional complex coordinate space.

We note that the set of points in $R^{2},\left(x_{1}, x_{2}\right)$, that satisfy the linear equation

$$
x_{1}+x_{2}+c=0, \quad c \neq 0
$$

with addition and multiplication defined as in (A.1) and (A.2), is not a vector space.

Example A.4. Let $V=R^{\infty}$ denote the set of all infinite sequences of real numbers,

$$
x=\left\{x_{1}, x_{2}, \ldots, x_{k}, \ldots\right\} \triangleq\left\{x_{i}\right\},
$$

let vector addition be defined similarly as in (A.1), and let scalar multiplication be defined similarly as in (A.2). It is again an easy matter to show that this space is a vector space.

On some occasions we will find it convenient to modify $V=R^{\infty}$ to consist of the set of all real infinite sequences $\left\{x_{i}\right\}, i \in Z$.

Example A.5. Let $1 \leq p \leq \infty$, and define $V=l_{p}$ by

$$
\begin{align*}
l_{p} & =\left\{x \in R^{\infty}: \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\}, \quad 1 \leq p<\infty \\
l_{\infty} & =\left\{x \in R^{\infty}: \sup _{i}\left\{\left|x_{i}\right|\right\}<\infty\right\} \tag{A.3}
\end{align*}
$$

Define vector addition and scalar multiplication on l_{p} as in (A.1) and (A.2), respectively. It can be verified that this space, called the l_{p}-space, is a vector space.

In proving that $l_{p}, 1 \leq p \leq \infty$, is indeed a vector space, in establishing some properties of norms defined on the l_{p}-spaces, in defining linear transformations on l_{p}-spaces, and in many other applications, we make use of the Hölder and Minkowski Inequalities for infinite sums, given below. (These inequalities are of course also valid for finite sums.) For proofs of these results, refer, e.g., to Michel and Herget [9, pp. 268-270].

Hölder's Inequality states that if $p, q \in R$ are such that $1<p<\infty$ and $1 / p+1 / q=1$, if $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ are sequences in either R or C, and if $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty$ and $\sum_{i=1}^{\infty}\left|y_{i}\right|^{q}<\infty$, then

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{\infty}\left|y_{i}\right|^{q}\right)^{1 / q} \tag{A.4}
\end{equation*}
$$

Minkowski's Inequality states that if $p \in R$, where $1 \leq p<\infty$, if $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ are sequences in either R or C, and if $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty$ and $\sum_{i=1}^{\infty}\left|y_{i}\right|^{p}<$ ∞, then

$$
\begin{equation*}
\left(\sum_{i=1}^{\infty}\left|x_{i} \pm y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|y_{i}\right|^{p}\right)^{1 / p} \tag{A.5}
\end{equation*}
$$

If in particular $p=q=2$, then (A.4) reduces to the Schwarz Inequality for sums.

Example A.6. Let $V=C([a, b], R)$. We note that $x=y$ if and only if $x(t)=$ $y(t)$ for all $t \in[a, b]$, and that the null vector is the function that is zero for all $t \in[a, b]$. Let F denote the field of real numbers, let $\alpha \in F$, and let vector addition and scalar multiplication be defined pointwise by

$$
\begin{equation*}
(x+y)(t)=x(t)+y(t) \quad \text { for all } t \in[a, b] \tag{A.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(\alpha x)(t)=\alpha x(t) \quad \text { for all } t \in[a, b] \tag{A.7}
\end{equation*}
$$

Then clearly $x+y \in V$ whenever $x, y \in V, \alpha x \in V$, whenever $\alpha \in F$ and $x \in V$, and all the axioms of a vector space are satisfied. We call this space the space of real-valued continuous functions on $[a, b]$, and we frequently denote it simply by $C[a, b]$.

Example A.7. Let $1 \leq p<\infty$, and let V denote the set of all real-valued functions x on the interval $[a, b]$ such that

$$
\begin{equation*}
\int_{a}^{b}|x(t)|^{p} d t<\infty \tag{A.8}
\end{equation*}
$$

Let $F=R$, and let vector addition and scalar multiplication be defined as in (A.6) and (A.7), respectively. It can be verified that this space is a vector space.

In this book we will usually assume that in (A.8), integration is in the Riemann sense. When integration in (A.8) is in the Lebesgue sense, then the vector space under discussion is called an L_{p}-space (or the space $L_{p}[a, b]$).

In proving that the L_{p}-spaces are indeed vector spaces, in establishing properties of norms defined on L_{p}-spaces, in defining linear transformations on L_{p}-spaces, and in many other applications, we make use of the Hölder and Minkowski Inequalities for integrals, given below. (These inequalities are valid when integration is in the Riemann and the Lebesgue senses.) For proofs of these results, refer, e.g., to Michel and Herget [9, pp. 268-270].

Hölder's Inequality states that if $p, q \in R$ are such that $1<p<\infty$ and $1 / p+1 / q=1$, if $[a, b]$ is an interval on the real line, if $f, g:[a, b] \rightarrow R$, and if $\int_{a}^{b}|f(t)|^{p} d t<\infty$ and $\int_{a}^{b}|g(t)|^{q} d t<\infty$, then

$$
\begin{equation*}
\int_{a}^{b}|f(t) g(t)| d t \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}|g(t)|^{q} d t\right)^{1 / q} \tag{A.9}
\end{equation*}
$$

Minkowski's Inequality states that if $p \in R$, where $1 \leq p<\infty$, if f, g : $[a, b] \rightarrow R$, and if $\int_{a}^{b}|f(t)|^{p} d t<\infty$ and $\int_{a}^{b}|g(t)|^{p} d t<\infty$, then

$$
\begin{equation*}
\left(\int_{a}^{b}|f(t) \pm g(t)|^{p} d t\right)^{1 / p} \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}+\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{1 / p} \tag{A.10}
\end{equation*}
$$

If in particular $p=q=2$, then (A.9) reduces to the Schwarz Inequality for integrals.

Example A.8. Let V denote the set of all continuous real-valued functions on the interval $[a, b]$ such that

$$
\begin{equation*}
\max _{a \leq t \leq b}|x(t)|<\infty \tag{A.11}
\end{equation*}
$$

Let $F=R$, and let vector addition and scalar multiplication be defined as in (A.6) and (A.7), respectively. It can readily be verified that this space is a vector space.

In some applications it is necessary to expand the above space to the set of measurable real-valued functions on $[a, b]$ and to replace (A.11) by

$$
\begin{equation*}
\text { ess } \sup _{a \leq t \leq b}|x(t)|<\infty, \tag{A.12}
\end{equation*}
$$

where ess sup denotes the essential supremum; i.e.,

$$
\text { ess } \sup _{a \leq t \leq b}|x(t)|=\inf \{M: \mu\{t:|x(t)|>M\}=0,\},
$$

where μ denotes the Lebesgue measure. In this case, the vector space under discussion is called the L_{∞}-space.

A. 2 Linear Independence and Bases

We now address the important concepts of linear independence of a set of vectors in general and bases in particular. We first require the notion of linear subspace.

A.2.1 Linear Subspaces

A nonempty subset W of a vector space V is called a linear subspace (or a linear manifold) in V if (i) $w_{1}+w_{2}$ is in W whenever w_{1} and w_{2} are in W, and (ii) αw is in W whenever $\alpha \in F$ and $w \in W$. It is an easy matter to verify that a linear subspace W satisfies all the axioms of a vector space and may as such be regarded as a linear space itself.

Two trivial examples of linear subspaces include the null vector (i.e., the set $W=\{0\}$ is a linear subspace of $V)$ and the vector space V itself. Another example of a linear subspace is the set of all real-valued polynomials defined on the interval $[a, b]$ that is a linear subspace of the vector space consisting of all real-valued continuous functions defined on the interval $[a, b]$ (refer to Example A.6).

As another example of a linear subspace (of R^{2}), we cite the set of all points on a straight line passing through the origin. On the other hand, a straight line that does not pass through the origin is not a linear subspace of R^{2}.

It is an easy matter to show that if W_{1} and W_{2} are linear subspaces of a vector space V, then $W_{1} \cap W_{2}$, the intersection of W_{1} and W_{2}, is also a linear subspace of V. A similar statement cannot be made, however, for the union of W_{1} and W_{2} (prove this). Note that to show that a set V is a vector space, it suffices to show that it is a linear subspace of some vector space.

A.2.2 Linear Independence

Throughout this section, we let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \alpha_{i} \in F$, denote an indexed set of scalars and we let $\left\{v^{1}, \ldots, v^{n}\right\}, v^{i} \in V$, denote an indexed set of vectors.

Now let W be a set in a linear space V (W may be a finite set or an infinite set). We say that a vector $v \in V$ is a finite linear combination of vectors in W if there is a finite set of elements $\left\{w^{1}, \ldots, w^{n}\right\}$ in W and a finite set of scalars $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ in F such that

$$
v=\alpha_{1} w^{1}+\cdots+\alpha_{n} w^{n} .
$$

Now let W be a nonempty subset of a linear space V and let $S(W)$ be the set of all finite linear combinations of the vectors from W; i.e., $w \in S(W)$ if and only if there is some set of scalars $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and some finite subset $\left\{w^{1}, \ldots, w^{m}\right\}$ of W such that $w=\alpha_{1} w^{1}+\cdots+\alpha_{m} w^{m}$, where m may be any positive integer. Then it is easily shown that $S(W)$ is a linear subspace of V, called the linear subspace generated by the set W.

Now if U is a linear subspace of a vector space V and if there exists a set of vectors $W \subset V$ such that the linear space $S(W)$ generated by W is U, then we say that W spans U. It is easily shown that $S(W)$ is the smallest linear subspace of a vector space V containing the subset W of V. Specifically, if U is a linear subspace of V and if U contains W, then U also contains $S(W)$.

As an example, in the space $\left(R^{2}, R\right)$, the set $S_{1}=\left\{e^{1}\right\}=\left\{(1,0)^{T}\right\}$ spans the set consisting of all vectors of the form $(a, 0)^{T}, a \in R$, whereas the set $S_{2}=\left\{e^{1}, e^{2}\right\}, e^{2}=(0,1)^{T}$ spans all of R^{2}.

We are now in a position to introduce the notion of linear dependence.
Definition A.9. Let $S=\left\{v^{1}, \ldots, v^{m}\right\}$ be a finite nonempty set in a linear space V. If there exist scalars $\alpha_{1}, \ldots, \alpha_{m}$, not all zero, such that

$$
\begin{equation*}
\alpha_{1} v^{1}+\cdots+\alpha_{m} v^{m}=0, \tag{A.13}
\end{equation*}
$$

then the set S is said to be linearly dependent (over F). If a set is not linearly dependent, then it is said to be linearly independent. In this case relation (A.13) implies that $\alpha_{1}=\cdots=\alpha_{m}=0$. An infinite set of vectors W in V is said to be linearly independent if every finite subset of W is linearly independent.

Example A.10. Consider the linear space $\left(R^{n}, R\right)$ (see Example A.3), and let $e^{1}=(1,0, \ldots, 0)^{T}, e^{2}=(0,1,0, \ldots, 0)^{T}, \ldots, e^{n}=(0, \ldots, 0,1)^{T}$. Clearly, $\sum_{i=1}^{n} \alpha_{i} e^{i}=0$ implies that $\alpha_{i}=0, i=1, \ldots, n$. Therefore, the set $S=$ $\left\{e^{1}, \ldots, e^{n}\right\}$ is a linearly independent set of vectors in R^{n} over the field of real numbers R.

Example A.11. Let V be the set of 2-tuples whose entries are complexvalued rational functions over the field of complex-valued rational functions. Let

$$
v^{1}=\left[\begin{array}{l}
1 /(s+1) \\
1 /(s+2)
\end{array}\right], \quad v^{2}=\left[\begin{array}{c}
(s+2) /[(s+1)(s+3)] \\
1 /(s+3)
\end{array}\right]
$$

and let $\alpha_{1}=-1, \alpha_{2}=(s+3) /(s+2)$. Then $\alpha_{1} v^{1}+\alpha_{2} v^{2}=0$, and therefore, the set $S=\left\{v^{1}, v^{2}\right\}$ is linearly dependent over the field of rational functions. On the other hand, since $\alpha_{1} v^{1}+\alpha_{2} v^{2}=0$ when $\alpha_{1}, \alpha_{2} \in R$ is true if and only if $\alpha_{1}=\alpha_{2}=0$, it follows that S is linearly independent over the field of real numbers (which is a subset of the field of rational functions). This shows that linear dependence of a set of vectors in V depends on the field F.

A.2.3 Linear Independence of Functions of Time

Example A.12. Let $V=C\left((a, b), R^{n}\right)$, let $F=R$, and for $x, y \in V$ and $\alpha \in F$, define addition of elements in V and multiplication of elements in V by elements in F by $(x+y)(t)=x(t)+y(t)$ for all $t \in(a, b)$ and $(\alpha x)(t)=\alpha x(t)$ for all $t \in(a, b)$. Then, as in Example A.6, we can easily show that (V, F) is a vector space. An interesting question that arises is whether for this space, linear dependence (and linear independence) of a set of vectors can be phrased in some testable form. The answer is affirmative. Indeed, it can readily be verified that for the present vector space (V, F), linear dependence of a set of vectors $S=\left\{\phi_{1}, \ldots, \phi_{k}\right\}$ in $V=C\left((a, b), R^{n}\right)$ over $F=R$ is equivalent to the requirement that there exist scalars $\alpha_{i} \in F, i=1, \ldots, k$, not all zero, such that

$$
\alpha_{1} \phi_{1}(t)+\cdots+\alpha_{k} \phi_{k}(t)=0 \quad \text { for all } t \in(a, b) .
$$

Otherwise, S is linearly independent.
To see how the above example applies to specific cases, let $V=C((-\infty, \infty)$, R^{2}), and consider the vectors $\phi_{1}(t)=[1, t]^{T}, \phi_{2}(t)=\left[1, t^{2}\right]^{T}$. To show that the set $S=\left\{\phi_{1}, \phi_{2}\right\}$ is linearly independent (over $F=R$), assume for purposes of contradiction that S is linearly dependent. Then there must exist scalars α_{1} and α_{2}, not both zero, such that $\alpha_{1}[1, t]^{T}+\alpha_{2}\left[1, t^{2}\right]^{T}=[0,0]^{T}$ for all $t \in(-\infty, \infty)$. But in particular, for $t=2$, the above equation is satisfied if and only if $\alpha_{1}=\alpha_{2}=0$, which contradicts the assumption. Therefore, $S=\left\{\phi_{1}, \phi_{2}\right\}$ is linearly independent.

As another specific case of the above example, let $V=C\left((-\infty, \infty), R^{2}\right)$ and consider the set $S=\left\{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right\}$, where $\phi_{1}(t)=[1, t]^{T}, \phi_{2}(t)=$ $\left[1, t^{2}\right], \phi_{3}(t)=[0,1]^{T}$, and $\phi_{4}(t)=\left[e^{-t}, 0\right]$. The set S is clearly independent over R since $\alpha_{1} \phi_{1}(t)+\alpha_{2} \phi_{2}(t)+\alpha_{3} \phi_{3}(t)+\alpha_{4} \phi_{4}(t)=0$ for all $t \in(-\infty, \infty)$ if and only if $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$.

A.2.4 Bases

We are now in a position to introduce another important concept.
Definition A.13. A set W in a linear space V is called a basis for V if
(i) W is linearly independent, and
(ii) the span of W is the linear space V itself; i.e., $S(W)=V$.

An immediate consequence of the above definition is that if W is a linearly independent set in a vector space V, then W is a basis for $S(W)$.

To introduce the notion of dimension of a vector space, it is shown that if a linear space V is generated by a finite number of linearly independent elements, then this number of elements must be unique. The following results lead up to this.

Let $\left\{v^{1}, \ldots, v^{n}\right\}$ be a basis for a linear space V. Then it is easily shown that for each vector $v \in V$, there exist unique scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
v=\alpha_{1} v^{1}+\cdots+\alpha_{n} v^{n}
$$

Furthermore, if u^{1}, \ldots, u^{m} is any linearly independent set of vectors in V, then $m \leq n$. Moreover, any other basis of V consists of exactly n elements. These facts allow the following definitions.

If a linear space V has a basis consisting of a finite number of vectors, say, $\left\{v^{1}, \ldots, v^{n}\right\}$, then V is said to be a finite-dimensional vector space and the dimension of V is n, abbreviated $\operatorname{dim} V=n$. In this case we speak of an n-dimensional vector space. If V is not a finite-dimensional vector space, it is said to be an infinite-dimensional vector space.

By convention, the linear space consisting of the null vector is finitedimensional with dimension equal to zero.

An alternative to the above definition of dimension of a (finite-dimensional) vector space is given by the following result, which is easily verified: Let V be a vector space that contains n linearly independent vectors. If every set of $n+1$ vectors in V is linearly dependent, then V is finite-dimensional and $\operatorname{dim} V=n$.

The preceding results enable us now to introduce the concept of coordinates of a vector. We let $\left\{v^{1}, \ldots, v^{n}\right\}$ be a basis of a vector space V, and we let $v \in V$ be represented by

$$
v=\xi_{1} v^{1}+\cdots+\xi_{n} v^{n}
$$

The unique scalars ξ_{1}, \ldots, ξ_{n} are called the coordinates of v with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$.

Example A.14. For the linear space $\left(R^{n}, R\right)$, let $S=\left\{e^{1}, \ldots, e^{n}\right\}$, where the $e^{i} \in R^{n}, i=1, \ldots, n$, were defined earlier (in Example A.10). Then
S is clearly a basis for $\left(R^{n}, R\right)$ since it is linearly independent and since given any $v \in R^{n}$, there exist unique real scalars $\alpha_{i}, i=1, \ldots, n$, such that $v=\sum_{i=1}^{n} \alpha_{i} e^{i}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$; i.e., S spans R^{n}. It follows that with every vector $v \in R^{n}$, we can associate a unique n-tuple of scalars

$$
\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \quad \text { or } \quad\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

relative to the basis $\left\{e^{1}, \ldots, e^{n}\right\}$, the coordinate representation of the vector $v \in R^{n}$ with respect to the basis $S=\left\{e^{1}, \ldots, e^{n}\right\}$. Henceforth, we will refer to the basis S of this example as the natural basis for R^{n}.

Example A.15. We note that the vector space of all (complex-valued) polynomials with real coefficients of degree less than n is an n-dimensional vector space over the field of real numbers. A basis for this space is given by $S=\left\{1, s, \ldots, s^{n-1}\right\}$ where s is a complex variable. Associated with a given element of this vector space, say $p(s)=\alpha_{0}+\alpha_{1} s+\cdots+\alpha_{n-1} s^{n-1}$, we have the unique n-tuple given by $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)^{T}$, which constitutes the coordinate representation of $p(s)$ with respect to the basis S given above.

Example A.16. We note that the space (V, R), where $V=C([a, b], R)$, given in Example A. 6 is an infinite-dimensional vector space.

A. 3 Linear Transformations

Definition A.17. A mapping \mathcal{T} of a linear space V into a linear space W, where V and W are vector spaces over the same field F, is called a linear transformation or a linear operator provided that

$$
\begin{array}{lcl}
(L-i) & \mathcal{T}(x+y)=\mathcal{T}(x)+\mathcal{T}(y) & \tag{L-i}\\
\text { for all } x, y \in V, \text { and } \\
(L-i i) & \mathcal{T}(\alpha x)=\alpha \mathcal{T}(x) & \\
\text { for all } x \in V \text { and } \alpha \in F .
\end{array}
$$

In the following discussion, we consider three specific examples of linear transformations.

Example A.18. Let $(V, R)=\left(R^{n}, R\right)$ and $(W, R)=\left(R^{m}, R\right)$ be vector spaces defined as in Example A.3, let $A=\left[a_{i j}\right] \in R^{m \times n}$, and let $\mathcal{T}: V \rightarrow W$ be defined by the equation

$$
y=A x, \quad y \in R^{m}, \quad x \in R^{n}
$$

where $A x$ denotes multiplication of the matrix A and the vector y. It is easily verified using the properties of matrices that \mathcal{T} is a linear transformation.

Example A.19. Let $(V, R)=\left(l_{p}, R\right)$ be the vector space defined in Example A. 5 (modified to consist of sequences $\left\{x_{i}\right\}, i \in Z$, in place of $\left\{x_{i}\right\}$, $i=1,2, \ldots)$. Let $h: Z \times Z \rightarrow R$ be a function having the property that for each $x \in V$, the infinite sum

$$
\sum_{k=-\infty}^{\infty} h(n, k) x(k)
$$

exists and defines a function of n on Z. Let $\mathcal{T}: V \rightarrow V$ be defined by

$$
y(n)=\sum_{k=-\infty}^{\infty} h(n, k) x(k)
$$

It is easily verified that \mathcal{T} is a linear transformation.
The existence of the above sum is ensured under appropriate assumptions. For example, by using the Hölder Inequality, it is readily shown that if, e.g., for fixed $n,\{h(n, k)\} \in l_{2}$ and $\{x(k)\} \in l_{2}$, then the above sum is well defined. The above sum exists also if, e.g., $\{x(k)\} \in l_{\infty}$ and $\{h(n, k)\} \in l_{1}$ for fixed n.

Example A.20. Let (V, R) denote the vector space given in Example A.7, and let $k \in C([a, b] \times[a, b], R)$ have the property that for each $x \in V$, the Riemann integral

$$
\int_{a}^{b} k(s, t) x(t) d t
$$

exists and defines a continuous function of s on $[a, b]$. Let $\mathcal{T}: V \rightarrow V$ be defined by

$$
(\mathcal{T} x)(s)=y(s)=\int_{a}^{b} k(s, t) x(t) d t
$$

It is readily verified that \mathcal{T} is a linear transformation of V into V.

Henceforth, if \mathcal{T} is a linear transformation from a vector space V (over a field F) into a vector space W (over the same field F) we will write $\mathcal{T} \in$ $L(V, W)$ to express this. In the following discussion, we will identify some of the important properties of linear transformations.

A.3.1 Linear Equations

With $\mathcal{T} \in L(V, W)$ we define the null space of \mathcal{T} as the set

$$
\mathcal{N}(\mathcal{T})=\{v \in V: \mathcal{T} v=w=0\}
$$

and the range space of \mathcal{T} as the set

$$
\mathcal{R}(\mathcal{T})=\{w \in W: w=\mathcal{T} v, v \in V\}
$$

Note that since $\mathcal{T} 0=0, \mathcal{N}(\mathcal{T})$ and $\mathcal{R}(\mathcal{T})$ are never empty. It is easily verified that $\mathcal{N}(\mathcal{T})$ is a linear subspace of V and that $\mathcal{R}(\mathcal{T})$ is a linear subspace of W. If V is finite-dimensional (of dimension n), then it is easily shown that $\operatorname{dim} \mathcal{R}(\mathcal{T}) \leq n$. Also, if V is finite-dimensional and if $\left\{w^{1}, \ldots, w^{n}\right\}$ is a basis for $\mathcal{R}(\mathcal{T})$ and v^{i} is defined by $\mathcal{T} v^{i}=w^{i}, i=1, \ldots, n$, then it is readily proved that the vectors v^{1}, \ldots, v^{n} are linearly independent.

One of the important results of linear algebra, called the fundamental theorem of linear equations, states that for $\mathcal{T} \in L(V, W)$ with V finite-dimensional, we have

$$
\operatorname{dim} \mathcal{N}(\mathcal{T})+\operatorname{dim} \mathcal{R}(\mathcal{T})=\operatorname{dim} V
$$

For the proof of this result, refer to any of the references on linear algebra cited at the end of Chapters $4,6,8$, and 9 .

The above result gives rise to the notions of the rank, $\rho(\mathcal{T})$, of a linear transformation \mathcal{T} of a finite-dimensional vector space V into a vector space W, which we define as the dimension of the range space $\mathcal{R}(\mathcal{T})$, and the nullity, $\nu(\mathcal{T})$, of \mathcal{T}, which we define as the dimension of the null space $\mathcal{N}(\mathcal{T})$.

With the above machinery in place, it is now easy to establish the following important results concerning linear equations.

Let $\mathcal{T} \in L(V, W)$, where V is finite-dimensional, let $s=\operatorname{dim} \mathcal{N}(\mathcal{T})$, and let $\left\{v^{1}, \ldots, v^{s}\right\}$ be a basis for $\mathcal{N}(\mathcal{T})$. Then it is easily verified that
(i) a vector $v \in V$ satisfies the equation $\mathcal{T} v=0$ if and only if $v=\sum_{i=1}^{s} \alpha_{i} v^{i}$ for some set of scalars $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$, and furthermore, for each $v \in V$ such that $\mathcal{T} v=0$ is true, the set of scalars $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ is unique;
(ii) if $w^{0} \in W$ is a fixed vector, then $\mathcal{T} v=w^{0}$ holds for at least one vector $v \in V$ (called the solution of the equation $\left.\mathcal{T} v=w^{0}\right)$ if and only if $w^{0} \in \mathcal{R}(\mathcal{T}) ;$ and
(iii) if w^{0} is any fixed vector in W and if v^{0} is some vector in V such that $\mathcal{T} v^{0}=w^{0}$ (i.e., v^{0} is a solution of the equation $\mathcal{T} v^{0}=w^{0}$), then a vector $v \in V$ satisfies $\mathcal{T} v=w^{0}$ if and only if $v=v^{0}+\sum_{i=1}^{s} \beta_{i} v^{i}$ for some set of scalars $\left\{\beta_{1}, \ldots, \beta_{s}\right\}$, and furthermore, for each $v \in V$ such that $\mathcal{T} v=w_{0}$, the set of scalars $\left\{\beta_{1}, \ldots, \beta_{s}\right\}$ is unique.

A.3.2 Representation of Linear Transformations by Matrices

In the following discussion, we let (V, F) and (W, F) be vector spaces over the same field and we let $\mathcal{A}: V \rightarrow W$ denote a linear mapping. We let $\left\{v^{1}, \ldots, v^{n}\right\}$ be a basis for V, and we set $\bar{v}^{1}=\mathcal{A} v^{1}, \ldots, \bar{v}^{n}=\mathcal{A} v^{n}$. Then it is an easy matter to show that if v is any vector in V and if $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ are the coordinates of v with respect to $\left\{v^{1}, \ldots, v^{n}\right\}$, then $\mathcal{A} v=\alpha_{1} \bar{v}^{1}+\cdots+\alpha_{n} \bar{v}^{n}$. Indeed, we have $\mathcal{A} v=\mathcal{A}\left(\alpha_{1} v^{1}+\cdots+\alpha_{n} v^{n}\right)=\alpha_{1} \mathcal{A} v^{1}+\cdots+\alpha_{n} \mathcal{A} v^{n}=\alpha_{1} \bar{v}^{1}+\cdots+\alpha_{n} \bar{v}^{n}$.

Next, we let $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ be any set of vectors in W. Then it can be shown that there exists a unique linear transformation \mathcal{A} from V into W such that $\mathcal{A} v^{1}=\bar{v}^{1}, \ldots, \mathcal{A} v^{n}=\bar{v}^{n}$. To show this, we first observe that for each $v \in V$ we have unique scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
v=\alpha_{1} v^{1}+\cdots+\alpha_{n} v^{n} .
$$

Now define a mapping $\mathcal{A}: V \rightarrow W$ as

$$
\mathcal{A}(v)=\alpha_{1} \bar{v}^{1}+\cdots+\alpha_{n} \bar{v}^{n}
$$

Clearly, $\mathcal{A}\left(v^{i}\right)=\bar{v}^{i}, i=1, \ldots, n$. We first must show that \mathcal{A} is linear and, then, that \mathcal{A} is unique. Given $v=\alpha_{1} v^{1}+\cdots+\alpha_{n} v^{n}$ and $w=\beta_{1} v^{1}+\cdots+\beta_{n} v^{n}$, we have $\mathcal{A}(v+w)=\mathcal{A}\left[\left(\alpha_{1}+\beta_{1}\right) v^{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) v^{n}\right]=\left(\alpha_{1}+\beta_{1}\right) \bar{v}^{1}+\cdots+\left(\alpha_{n}+\right.$ $\left.\beta_{n}\right) \bar{v}^{n}$. On the other hand, $\mathcal{A}(v)=\alpha_{1} \bar{v}^{1}+\cdots+\alpha_{n} \bar{v}^{n}, \mathcal{A}(w)=\beta_{1} \bar{v}^{1}+\cdots+\beta_{n} \bar{v}^{n}$. Thus, $\mathcal{A}(v)+\mathcal{A}(w)=\left(\alpha_{1} \bar{v}^{1}+\cdots+\alpha_{n} \bar{v}^{n}\right)+\left(\beta_{1} \bar{v}^{1}+\cdots+\beta_{n} \bar{v}^{n}\right)=\left(\alpha_{1}+\beta_{1}\right) \bar{v}^{1}+$ $\cdots+\left(\alpha_{n}+\beta_{n}\right) \bar{v}^{n}=\mathcal{A}(v+w)$. In a similar manner, it is easily established that $\alpha \mathcal{A}(v)=\mathcal{A}(\alpha v)$ for all $\alpha \in F$ and $v \in V$. Therefore, \mathcal{A} is linear. Finally, to show that \mathcal{A} is unique, suppose there exists a linear transformation $\mathcal{B}: V \rightarrow W$ such that $\mathcal{B} v^{i}=\bar{v}^{i}, i=1, \ldots, n$. It follows that $(\mathcal{A}-\mathcal{B}) v^{i}=0, i=1, \ldots, n$, and, therefore, that $\mathcal{A}=\mathcal{B}$.

These results show that a linear transformation is completely determined by knowing how it transforms the basis vectors in its domain, and that this linear transformation is uniquely determined in this way. These results enable us to represent linear transformations defined on finite-dimensional spaces in an unambiguous way by means of matrices. We will use this fact in the following development.

Let (V, F) and (W, F) denote n-dimensional and m-dimensional vector spaces, respectively, and let $\left\{v^{1}, \ldots, v^{n}\right\}$ and $\left\{w^{1}, \ldots, w^{m}\right\}$ be bases for V and W, respectively. Let $\mathcal{A}: V \rightarrow W$ be a linear transformation, and let $\bar{v}^{i}=\mathcal{A} v^{i}, i=1, \ldots, n$. Since $\left\{w^{1}, \ldots, w^{m}\right\}$ is a basis for W, there are unique scalars $\left\{a_{i j}\right\}, i=1, \ldots, m, j=1, \ldots, n$, such that

$$
\begin{align*}
& \mathcal{A} v^{1}=\bar{v}^{1}=a_{11} w^{1}+a_{21} w^{2}+\cdots+a_{m 1} w^{m}, \\
& \mathcal{A} v^{2}=\bar{v}^{2}=a_{12} w^{1}+a_{22} w^{2}+\cdots+a_{m 2} w^{m}, \tag{A.14}\\
& \mathcal{A} v^{n}=\bar{v}^{n}=a_{1 n} w^{1}+a_{2 n} w^{2}+\cdots+a_{m n} w^{m} .
\end{align*}
$$

Next, let $v \in V$. Then v has the unique representation $v=\alpha_{1} v^{1}+\alpha_{2} v^{2}+$ $\cdots+\alpha_{n} v^{n}$ with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$. In view of the result given at the beginning of this subsection, we now have

$$
\begin{equation*}
\mathcal{A} v=\alpha_{1} \bar{v}^{1}+\cdots+\alpha_{n} \bar{v}^{n} \tag{A.15}
\end{equation*}
$$

Since $\mathcal{A} v \in W, \mathcal{A} v$ has a unique representation with respect to the basis $\left\{w^{1}, \ldots, w^{m}\right\}$, say,

$$
\begin{equation*}
\mathcal{A} v=\gamma_{1} w^{1}+\gamma_{2} w^{2}+\cdots+\gamma_{m} w^{m} . \tag{A.16}
\end{equation*}
$$

Combining (A.14) and (A.16), and rearranging, in view of the uniqueness of the representation in (A.16), we have

$$
\begin{align*}
& \gamma_{1}=a_{11} \alpha_{1}+a_{12} \alpha_{2}+\cdots+a_{1 n} \alpha_{n} \\
& \gamma_{2}=a_{21} \alpha_{1}+a_{22} \alpha_{2}+\cdots+a_{2 n} \alpha_{n} \tag{A.17}\\
& \cdots \cdots+a_{m n} \alpha_{n} \\
& \gamma_{m}=a_{m 1} \alpha_{1}+a_{m 2} \alpha_{2}+\cdots+\cdots
\end{align*}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)^{T}$ are coordinate representations of $v \in V$ and $\mathcal{A} v \in W$ with respect to the bases $\left\{v^{1}, \ldots, v^{n}\right\}$ of V and $\left\{w^{1}, \ldots, w^{m}\right\}$ of W, respectively. This set of equations enables us to represent the linear transformation \mathcal{A} from the linear space V into the linear space W by the unique scalars $\left\{a_{i j}\right\}, i=1, \ldots, m, j=1, \ldots, n$. For convenience we let

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{A.18}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

We see that once the bases $\left\{v^{1}, \ldots, v^{n}\right\},\left\{w^{1}, \ldots, w^{m}\right\}$ are fixed, we can represent the linear transformation \mathcal{A} by the array of scalars in (A.18) that are uniquely determined by (A.14). Note that the j th column of A is the coordinate representation of the vector $A v^{j} \in W$ with respect to the basis $\left\{w^{1}, \ldots, w^{m}\right\}$.

The converse to the preceding statement also holds. Specifically, with the bases for V and W still fixed, the array given in (A.18) is uniquely associated with the linear transformation \mathcal{A} of V into W. The above discussion gives rise to the following important definition.

Definition A.21. The array given in (A.18) is called the matrix A of the linear transformation \mathcal{A} from a linear space V into a linear space W (over F) with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$ of V and the basis $\left\{w^{1}, \ldots, w^{m}\right\}$ of W.

If in Definition A.21, $V=W$, and if for both V and W the same basis $\left\{v^{1}, \ldots, v^{n}\right\}$ is used, then we simply speak of the matrix A of the linear transformation \mathcal{A} with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$.

In (A.18) the scalars $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ form the i th row of A and the scalars $\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right)^{T}$ form the j th column of A. The scalar $a_{i j}$ refers to that element of matrix A that can be found in the i th row and j th column of A. The array in (A.18) is said to be an $m \times n$ matrix. If $m=n$, we speak of a square matrix. Consistent with the above discussion, an $n \times 1$ matrix is called a column vector, column matrix, or n-vector, and a $1 \times n$ matrix is called a row vector. Finally, if $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are two $m \times n$ matrices, then
$A=B$; i.e., A and B are equal if and only if $a_{i j}=b_{i j}$ for all $i=1, \ldots, m$, and for all $j=1, \ldots, n$. Furthermore, we call $A^{T}=\left[a_{i j}\right]^{T}=\left[a_{j i}\right]$ the transpose of A.

The preceding discussion shows in particular that if \mathcal{A} is a linear transformation of an n-dimensional vector space V into an m-dimensional vector space W,

$$
\begin{equation*}
w=\mathcal{A} v \tag{A.19}
\end{equation*}
$$

if $\gamma=\left(\gamma_{1}, \ldots, \gamma_{m}\right)^{T}$ denotes the coordinate representation of w with respect to the basis $\left\{w^{1}, \ldots, w^{m}\right\}$, if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ denotes the coordinate representation of v with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$, and if A denotes the matrix of \mathcal{A} with respect to the bases $\left\{v^{1}, \ldots, v^{n}\right\},\left\{w^{1}, \ldots, w^{m}\right\}$, then

$$
\begin{equation*}
\gamma=A \alpha \tag{A.20}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\gamma_{i}=\sum_{j=1}^{n} a_{i j} \alpha_{j}, \quad i=1, \ldots, m \tag{A.21}
\end{equation*}
$$

which are alternative ways to write (A.17).

The Rank of a Matrix

Let A denote the matrix representation of a linear transformation \mathcal{A}. The rank of $A, \rho(A)$, is defined as the rank of $\mathcal{A}, \rho(\mathcal{A})$. It can be shown that the rank $\rho(A)$ of an $m \times n$ matrix A is the largest number of linearly independent columns of A. The rank is also equal to the largest numbers of linearly independent rows of A. It also equals the dimension of the largest nonzero minor of A.

A.3.3 Solving Linear Algebraic Equations

Now consider the linear system of equations given by

$$
\begin{equation*}
A \alpha=\gamma \tag{A.22}
\end{equation*}
$$

where $A \in R^{m \times n}$ and $\gamma \in R^{m}$ are given and $\alpha \in R^{n}$ is to be determined.

1. For a given γ, a solution α of (A.22) exists (not necessarily unique) if and only if $\gamma \in \mathcal{R}(A)$, or equivalently, if and only if

$$
\begin{equation*}
\rho([A, \gamma])=\rho(A) \tag{A.23}
\end{equation*}
$$

2. Every solution α of (A.22) can be expressed as a sum

$$
\begin{equation*}
\alpha=\alpha_{p}+\alpha_{h} \tag{A.24}
\end{equation*}
$$

where α_{p} is a specific solution of (A.22) and α_{h} satisfies $A \alpha_{h}=0$. This result allows us to span the space of all solutions of (A.22). Note that there are

$$
\begin{equation*}
\operatorname{dim} \mathcal{N}(A)=n-\rho(A) \tag{A.25}
\end{equation*}
$$

linearly independent solutions of the system of equations $A \beta=0$.
3. $A \alpha=\gamma$ has a unique solution if and only if (A.23) is satisfied and

$$
\begin{equation*}
\rho(A)=n \leq m . \tag{A.26}
\end{equation*}
$$

4. A solution α of (A.22) exists for any γ if and only if

$$
\begin{equation*}
\rho(A)=m . \tag{A.27}
\end{equation*}
$$

If (A.27) is satisfied, a solution of (A.22) can be found by using the relation

$$
\begin{equation*}
\alpha=A^{T}\left(A A^{T}\right)^{-1} \gamma . \tag{A.28}
\end{equation*}
$$

When in (A.22), $\rho(A)=m=n$, then $A \in R^{n \times n}$ and is nonsingular and the unique solution of (A.28) is given by

$$
\begin{equation*}
\alpha=A^{-1} \gamma \tag{A.29}
\end{equation*}
$$

Example A.22. Consider

$$
A \alpha=\left[\begin{array}{lll}
0 & 0 & 0 \tag{A.30}\\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \alpha=\gamma .
$$

It is easily verified that $\left\{(0,1,0)^{T}\right\}$ is a basis for $\mathcal{R}(A)$. Since a solution of (A.30) exists if and only if $\gamma \in \mathcal{R}(A), \gamma$ must be of the form $\gamma=(0, k, 0)^{T}$, $k \in R$. Note that

$$
\rho(A)=1=\rho([A, \gamma])=\operatorname{rank}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right],
$$

as expected. To determine all solutions of (A.30), we need to determine an α_{p} and an α_{h} [see (A.24)]. In particular, $\alpha_{p}=(00 k)^{T}$ will do. To determine α_{h}, we consider $A \beta=0$. There are $\operatorname{dim} \mathcal{N}(A)=2$ linearly independent solutions of $A \beta=0$. In particular, $\left\{(1,0,0)^{T},(0,1,0)^{T}\right\}$ is a basis for $\mathcal{N}(A)$. Therefore, any solution of (A.30) can be expressed as

$$
\alpha=\alpha_{p}+\alpha_{h}=\left[\begin{array}{l}
0 \\
0 \\
k
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right],
$$

where c_{1}, c_{2} are appropriately chosen real numbers.

A. 4 Equivalence and Similarity

From our previous discussion it is clear that a linear transformation \mathcal{A} of a finite-dimensional vector space V into a finite-dimensional vector space W can be represented by means of different matrices, depending on the particular choice of bases in V and W. The choice of bases may in different cases result in matrices that are easy or hard to utilize. Many of the resulting "standard" forms of matrices, called canonical forms, arise because of practical considerations. Such canonical forms often exhibit inherent characteristics of the underlying transformation \mathcal{A}.

Throughout this section, V and W are finite-dimensional vector spaces over the same field $F, \operatorname{dim} V=n$, and $\operatorname{dim} W=m$.

A.4.1 Change of Bases: Vector Case

Our first aim will be to consider the change of bases in the coordinate representation of vectors. Let $\left\{v^{1}, \ldots, v^{n}\right\}$ be a basis for V, and let $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ be a set of vectors in V given by

$$
\begin{equation*}
\bar{v}^{i}=\sum_{j=1}^{n} p_{j i} v^{j}, \quad i=1, \ldots, n \tag{A.31}
\end{equation*}
$$

where $p_{i j} \in F$ for all $i, j=1, \ldots, n$. It is easily verified that the set $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ forms a basis for V if and only if the $n \times n$ matrix $P=\left[p_{i j}\right]$ is nonsingular (i.e., $\operatorname{det} P \neq 0$). We call P the matrix of the basis $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$. Note that the i th column of P is the coordinate representation of \bar{v}^{i} with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$.

Continuing the above discussion, let $\left\{v^{1}, \ldots, v^{n}\right\}$ and $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ be two bases for V and let P be the matrix of the basis $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$. Then it is easily shown that P^{-1} is the matrix of the basis $\left\{v^{1}, \ldots, v^{n}\right\}$ with respect to the basis $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$.

Next, let the sets of vectors $\left\{v^{1}, \ldots, v^{n}\right\},\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$, and $\left\{\tilde{v}^{1}, \ldots, \tilde{v}^{n}\right\}$ be bases for V. If P is the matrix of the basis $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$ and if Q is the matrix of the basis $\left\{\tilde{v}^{1}, \ldots, \tilde{v}^{n}\right\}$ with respect to the basis $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$, then it is easily verified that $P Q$ is the matrix of the basis $\left\{\tilde{v}^{1}, \ldots, \tilde{v}^{n}\right\}$ with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$.

Continuing further, let $\left\{v^{1}, \ldots, v^{n}\right\}$ and $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ be two bases for V and let P be the matrix of the basis $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$. Let $a \in V$, and let $\alpha^{T}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ denote the coordinate representation of a with respect to the basis $\left\{v^{1}, \ldots, v^{n}\right\}$ (i.e., $a=\sum_{i=1}^{n} \alpha_{i} v^{i}$). Let $\bar{\alpha}^{T}=\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n}\right)$ denote the coordinate representation of a with respect to the basis $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$. Then it is readily verified that

$$
P \bar{\alpha}=\alpha .
$$

Example A.23. Let $V=R^{3}, F=R$, and let $a=(1,2,3)^{T} \in R^{3}$ be given. Let $\left\{v^{1}, v^{2}, v^{3}\right\}=\left\{e^{1}, e^{2}, e^{3}\right\}$ denote the natural basis for R^{3}; i.e., $e^{1}=(1,0,0)^{T}, e^{2}=(0,1,0)^{T}, e^{3}=(0,0,1)^{T}$. Clearly, the coordinate representation α of a with respect to the natural basis is $(1,2,3)^{T}$.

Now let $\left\{\bar{v}^{1}, \bar{v}^{2}, \bar{v}^{3}\right\}$ be another basis for R^{3}, given by $\bar{v}^{1}=(1,0,1)^{T}, \bar{v}^{2}=$ $(0,1,0)^{T}, \bar{v}^{3}=(0,1,1)^{T}$. From the relation

$$
(1,0,1)^{T}=\bar{v}^{1}=p_{11} v^{1}+p_{21} v^{2}+p_{31} v^{3}=p_{11}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+p_{21}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+p_{31}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],
$$

we conclude that $p_{11}=1, p_{21}=0$, and $p_{31}=1$. Similarly, from

$$
(0,1,0)^{T}=\bar{v}^{2}=p_{12} v^{1}+p_{22} v^{2}+p_{32} v^{3}=p_{12}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+p_{22}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+p_{32}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

we conclude that $p_{12}=0, p_{22}=1$, and $p_{32}=0$. Finally, from the relation

$$
(0,1,1)^{T}=\bar{v}^{3}=p_{13}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+p_{23}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+p_{33}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

we obtain that $p_{13}=0, p_{23}=1$, and $p_{33}=1$.
The matrix $P=\left[p_{i j}\right]$ of the basis $\left\{\bar{v}^{1}, \bar{v}^{2}, \bar{v}^{3}\right\}$ with respect to the basis $\left\{v^{1}, v^{2}, v^{3}\right\}$ is therefore determined to be

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right],
$$

and the coordinate representation of a with respect to the basis $\left\{\bar{v}^{1}, \bar{v}^{2}, \bar{v}^{3}\right\}$ is given by $\bar{\alpha}=P^{-1} \alpha$, or

$$
\bar{\alpha}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & -1 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] .
$$

A.4.2 Change of Bases: Matrix Case

Having addressed the relationship between the coordinate representations of a given vector with respect to different bases, we next consider the relationship between the matrix representations of a given linear transformation relative to different bases. To this end, let $\mathcal{A} \in L(V, W)$ and let $\left\{v^{1}, \ldots, v^{n}\right\}$ and
$\left\{w^{1}, \ldots, w^{m}\right\}$ be bases for V and W, respectively. Let A be the matrix of \mathcal{A} with respect to the bases $\left\{v^{1}, \ldots, v^{n}\right\}$ and $\left\{w^{1}, \ldots, w^{m}\right\}$. Let $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ be another basis for V, and let the matrix of $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ with respect to $\left\{v^{1}, \ldots, v^{n}\right\}$ be P. Let $\left\{\bar{w}^{1}, \ldots, \bar{w}^{m}\right\}$ be another basis for W, and let Q be the matrix of $\left\{w^{1}, \ldots, w^{m}\right\}$ with respect to $\left\{\bar{w}^{1}, \ldots, \bar{w}^{m}\right\}$. Let \bar{A} be the matrix of \mathcal{A} with respect to the bases $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ and $\left\{\bar{w}^{1}, \ldots, \bar{w}^{m}\right\}$. Then it is readily verified that

$$
\begin{equation*}
\bar{A}=Q A P \tag{A.32}
\end{equation*}
$$

This result is depicted schematically in Figure A.1.

Figure A.1. Schematic diagram of the equivalence of two matrices

A.4.3 Equivalence and Similarity of Matrices

The preceding discussion motivates the following definition.
Definition A.24. An $m \times n$ matrix \bar{A} is said to be equivalent to an $m \times$ n matrix A if there exists an $m \times m$ nonsingular matrix Q and an $n \times n$ nonsingular matrix P such that (A.32) is true. If \bar{A} is equivalent to A, we write $\bar{A} \sim A$.

Next, let $V=W$, let $\mathcal{A} \in L(V, V)$, let $\left\{v^{1}, \ldots, v^{n}\right\}$ be a basis for V, and let A be the matrix of \mathcal{A} with respect to $\left\{v^{1}, \ldots, v^{n}\right\}$. Let $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$ be another basis for V whose matrix with respect to $\left\{v^{1}, \ldots, v^{n}\right\}$ is P. Let \bar{A} be the matrix of \mathcal{A} with respect to $\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}$. Then it follows immediately from (A.32) that

$$
\begin{equation*}
\bar{A}=P^{-1} A P . \tag{А.33}
\end{equation*}
$$

The meaning of this result is depicted schematically in Figure A.2. The above discussion motivates the following definition.

Definition A.25. An $n \times n$ matrix \bar{A} is said to be similar to an $n \times n$ matrix A if there exists an $(n \times n)$ nonsingular matrix P such that

$$
\begin{aligned}
& \begin{array}{c}
V \\
\left\{v^{1}, \ldots, v^{n}\right\} \\
\uparrow P
\end{array} \xrightarrow{\xrightarrow{\mathcal{A}}} \underset{\substack{\mathcal{A}}}{\substack{ \\
v^{1}, \ldots, v^{n} \\
\downarrow P^{-1}}} \\
& \left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\} \xrightarrow{\bar{A}}\left\{\bar{v}^{1}, \ldots, \bar{v}^{n}\right\}
\end{aligned}
$$

Figure A.2. Schematic diagram of the similarity of two matrices

$$
\bar{A}=P^{-1} A P
$$

If \bar{A} is similar to A, we write $\bar{A} \sim A$. We call $P a$ similarity transformation.

It is easily verified that if \bar{A} is similar to A [i.e., (A.33) is true], then A is similar to \bar{A}; i.e.,

$$
\begin{equation*}
A=P \bar{A} P^{-1} \tag{A.34}
\end{equation*}
$$

In view of this, there is no ambiguity in saying "two matrices are similar," and we could just as well have used (A.34) [in place of (A.33)] to define similarity of matrices. To sum up, if two matrices A and \bar{A} represent the same linear transformation $\mathcal{A} \in L(V, V)$, possibly with respect to two different bases for V, then A and \bar{A} are similar matrices.

A. 5 Eigenvalues and Eigenvectors

Definition A.26. Let A be an $n \times n$ matrix whose elements belong to the field F. If there exist $\lambda \in F$ and a nonzero vector $\alpha \in F^{n}$ such that

$$
\begin{equation*}
A \alpha=\lambda \alpha \tag{A.35}
\end{equation*}
$$

then λ is called an eigenvalue of A and α is called an eigenvector of A corresponding to the eigenvalue λ.

We note that if α is an eigenvector of A, then any nonzero multiple of α is also an eigenvector of A.

A.5.1 Characteristic Polynomial

Let $A \in C^{n \times n}$. Then

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}+\cdots+\alpha_{n} \lambda^{n} \tag{A.36}
\end{equation*}
$$

[note that $\alpha_{0}=\operatorname{det}(A)$ and $\alpha_{n}=(-1)^{n}$]. The eigenvalues of A are precisely the roots of the equation

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}+\cdots+\alpha_{n} \lambda^{n}=0 \tag{А.37}
\end{equation*}
$$

and A has at most n distinct eigenvalues.
We call (A.36) the characteristic polynomial of A, and we call (A.37) the characteristic equation of A.

Remarks

The above definition of characteristic polynomial is the one usually used in texts on linear algebra and matrix theory (refer, e.g., to some of the books on this subject cited at the end of this chapter). An alternative to the above definition is given by the expression

$$
\alpha(\lambda) \triangleq \operatorname{det}(\lambda I-A)=(-1)^{n} \operatorname{det}(A-\lambda I)
$$

Now consider

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)^{m_{1}}\left(\lambda_{2}-\lambda\right)^{m_{2}} \cdots\left(\lambda_{p}-\lambda\right)^{m_{p}} \tag{A.38}
\end{equation*}
$$

where $\lambda_{i}, i=1, \ldots, p$, are the distinct roots of (A.37) (i.e., $\lambda_{i} \neq \lambda_{j}$, if $i \neq j$). In (A.38), m_{i} is called the algebraic multiplicity of the root λ_{i}. The m_{i} are positive integers, and $\sum_{i=1}^{p} m_{i}=n$.

The reader should make note of the distinction between the concept of algebraic multiplicity m_{i} of λ_{i}, given above, and the (geometric) multiplicity l_{i} of an eigenvalue λ_{i}, given by $l_{i}=n-\rho\left(\lambda_{i} I-A\right)$. In general these need not be the same.

A.5.2 The Cayley-Hamilton Theorem and Applications

We now state and prove a result that is very important in linear systems theory.

Theorem A.27. (Cayley-Hamilton Theorem) Every square matrix satisfies its characteristic equation. More specifically, if A is an $n \times n$ matrix and $p(\lambda)=\operatorname{det}(A-\lambda I)$ is the characteristic polynomial of A, then $p(A)=O$.

Proof. Let the characteristic polynomial for A be $p(\lambda)=\alpha_{0}+\alpha_{1} \lambda+\cdots+\alpha_{n} \lambda^{n}$, and let $B(\lambda)=\left[b_{i j}(\lambda)\right]$ be the classical adjoint of $(A-\lambda I)$. (For a nonsingular matrix C with inverse $C^{-1}=\frac{1}{\operatorname{det}(C)} \operatorname{adj}(C), \operatorname{adj}(C)$ is called the classical adjoint of C.) Since the $b_{i j}(\lambda)$ are cofactors of the matrix $A-\lambda I$, they are polynomials in λ of degree not more than $n-1$. Thus, $b_{i j}(\lambda)=\beta_{i j 0}+$ $\beta_{i j 1} \lambda+\cdots+\beta_{i j(n-1)} \lambda^{n-1}$. Letting $B_{k}=\left[\beta_{i j k}\right]$ for $k=0,1, \ldots, n-1$, we have $B(\lambda)=B_{0}+\lambda B_{1}+\cdots+\lambda^{n-1} B_{n-1}$ and $(A-\lambda I) B(\lambda)=[\operatorname{det}(A-\lambda I)] I$. Thus, $(A-\lambda I)\left[B_{0}+\lambda B_{1}+\cdots+\lambda^{n-1} B_{n-1}\right]=\left(\alpha_{0}+\alpha_{1} \lambda+\cdots+\alpha_{n} \lambda^{n}\right) I$. Expanding the left-hand side of this equation and equating like powers of λ, we have $-B_{n-1}=$ $\alpha_{n} I, A B_{n-1}-B_{n-2}=\alpha_{n-1} I, \ldots, A B_{1}-B_{0}=\alpha_{1} I, A B_{0}=\alpha_{0} I$. Premultiplying the above matrix equations by $A^{n}, A^{n-1}, \ldots, A, I$, respectively, we have $-A^{n} B_{n-1}=\alpha_{n} A^{n}, A^{n} B_{n-1}-A^{n-1} B_{n-2}=\alpha_{n-1} A^{n-1}, \ldots, A^{2} B_{1}-A B_{0}=$ $\alpha_{1} A, A B_{0}=\alpha_{0} I$. Adding these matrix equations, we obtain $O=\alpha_{0} I+\alpha_{1} A+$ $\cdots+\alpha_{n} A^{n}=p(A)$, which was to be shown.

As an immediate consequence of the Cayley-Hamilton Theorem, we have the following results: Let A be an $n \times n$ matrix with characteristic polynomial given by (A.37). Then (i) $A^{n}=(-1)^{n+1}\left[\alpha_{0} I+\alpha_{1} A+\cdots+\alpha_{n-1} A^{n-1}\right]$; and (ii) if $f(\lambda)$ is any polynomial in λ, then there exist $\beta_{0}, \beta_{1}, \ldots, \beta_{n-1} \in F$ such that

$$
\begin{equation*}
f(A)=\beta_{0} I+\beta_{1} A+\cdots+\beta_{n-1} A^{n-1} \tag{A.39}
\end{equation*}
$$

Part (i) follows from the Cayley-Hamilton Theorem and from the fact that $\alpha_{n}=(-1)^{n}$. To prove part (ii), let $f(\lambda)$ be any polynomial in λ and let $p(\lambda)$ denote the characteristic polynomial of A. From a result for polynomials (called the division algorithm), we know that there exist two unique polynomials $g(\lambda)$ and $r(\lambda)$ such that

$$
\begin{equation*}
f(\lambda)=p(\lambda) g(\lambda)+r(\lambda) \tag{A.40}
\end{equation*}
$$

where the degree of $r(\lambda) \leq n-1$. Now since $p(A)=0$, we have that $f(A)=$ $r(A)$ and the result follows.

The Cayley-Hamilton Theorem can also be used to express $n \times n$ matrixvalued power series (as well as other kinds of functions) as matrix polynomials of degree $n-1$. Consider in particular the matrix exponential $e^{A t}$ defined by

$$
\begin{equation*}
e^{A t}=\sum_{k=0}^{\infty}\left(t^{k} / k!\right) A^{k}, t \in(-a, a) \tag{A.41}
\end{equation*}
$$

In view of the Cayley-Hamilton Theorem, we can write

$$
\begin{equation*}
f(A)=e^{A t}=\sum_{i=0}^{n-1} \alpha_{i}(t) A^{i} \tag{A.42}
\end{equation*}
$$

In the following discussion, we present a method to determine the coefficients $\alpha_{i}(t)$ in (A.42) [or β_{i} in (A.39)].

In accordance with (A.38), let $p(\lambda)=\operatorname{det}(A-\lambda I)=\prod_{i=1}^{p}\left(\lambda_{i}-\lambda\right)^{m_{i}}$ be the characteristic polynomial of A. Also, let $f(\lambda)$ and $g(\lambda)$ be two analytic functions. Now if

$$
\begin{equation*}
f^{(l)}\left(\lambda_{i}\right)=g^{(l)}\left(\lambda_{i}\right), \quad l=0, \ldots, m_{i}-1, \quad i=1, \ldots, p \tag{A.43}
\end{equation*}
$$

where $f^{(l)}\left(\lambda_{i}\right)=\left.\frac{d^{l} f}{d \lambda^{l}}(\lambda)\right|_{\lambda=\lambda_{i}}, \sum_{i=1}^{p} m_{i}=n$, then $f(A)=g(A)$. To see this, we note that condition (A.43) written as $(f-g)^{l}\left(\lambda_{i}\right)=0$ implies that $f(\lambda)-$ $g(\lambda)$ has $p(\lambda)$ as a factor; i.e., $f(\lambda)-g(\lambda)=w(\lambda) p(\lambda)$ for some analytic function $w(\lambda)$. From the Cayley-Hamilton Theorem we have that $p(A)=O$ and therefore $f(A)-g(A)=O$.

Example A.28. As a specific application of the Cayley-Hamilton Theorem, we evaluate the matrix A^{37}, where $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$. Since $n=2$, we assume, in
view of (A.39), that A^{37} is of the form $A^{37}=\beta_{0} I+\beta_{1} A$. The characteristic polynomial of A is $p(\lambda)=(1-\lambda)(2-\lambda)$, and the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=2$. In this case, $f(\lambda)=\lambda^{37}$ and $r(\lambda)$ in (A.40) is $r(\lambda)=\beta_{0}+\beta_{1} \lambda$. To determine β_{0} and β_{1} we use the fact that $p\left(\lambda_{1}\right)=p\left(\lambda_{2}\right)=0$ to conclude that $f\left(\lambda_{1}\right)=r\left(\lambda_{1}\right)$ and $f\left(\lambda_{2}\right)=r\left(\lambda_{2}\right)$. Therefore, we have that $\beta_{0}+\beta_{1}=1^{37}=1$ and $\beta_{0}+2 \beta_{1}=2^{37}$. Hence, $\beta_{1}=2^{37}-1$ and $\beta_{0}=2-2^{37}$. Therefore, $A^{37}=\left(2-2^{37}\right) I+\left(2^{37}-1\right) A$ or $A^{37}=\left[\begin{array}{cc}1 & 0 \\ 2^{37}-1 & 2^{37}\end{array}\right]$.

Example A.29. Let $A=\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right]$, and let $f(A)=e^{A t}, f(\lambda)=e^{\lambda t}$, and $g(\lambda)=\alpha_{1} \lambda+\alpha_{0}$. The matrix A has an eigenvalue $\lambda=\lambda_{1}=\lambda_{2}=0$ with multiplicity $m_{1}=2$. Conditions (A.43) are given by $f\left(\lambda_{1}\right)=g\left(\lambda_{1}\right)=1$ and $f^{(1)}\left(\lambda_{1}\right)=g^{(1)}\left(\lambda_{1}\right)$, which imply that $\alpha_{0}=1$ and $\alpha_{1}=t$. Therefore,

$$
e^{A t}=f(A)=g(A)=\alpha_{1} A+\alpha_{0} I=\left[\begin{array}{cc}
-\alpha_{1}+\alpha_{0} & \alpha_{1} \\
-\alpha_{1} & \alpha_{1}+\alpha_{0}
\end{array}\right]=\left[\begin{array}{cc}
1-t & t \\
-t & 1+t
\end{array}\right]
$$

A.5.3 Minimal Polynomials

For purposes of motivation, consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & -2 \\
0 & 4 & -2 \\
0 & 3 & -1
\end{array}\right]
$$

The characteristic polynomial of A is $p(\lambda)=(1-\lambda)^{2}(2-\lambda)$, and we know from the Cayley-Hamilton Theorem that

$$
\begin{equation*}
p(A)=O \tag{A.44}
\end{equation*}
$$

Now let us consider the polynomial $m(\lambda)=(1-\lambda)(2-\lambda)=2-3 \lambda+\lambda^{2}$. Then

$$
\begin{equation*}
m(A)=2 I-3 A+A^{2}=O \tag{A.45}
\end{equation*}
$$

Thus, matrix A satisfies (A.45), which is of lower degree than (A.44), the characteristic equation of A.

More generally, it can be shown that for an $n \times n$ matrix A, there exists a unique polynomial $m(\lambda)$ such that (i) $m(A)=O$, (ii) $m(\lambda)$ is monic (i.e., if m is an n th-order polynomial in λ, then the coefficient of λ^{n} is unity), and (iii) if $m^{\prime}(\lambda)$ is any other polynomial such that $m^{\prime}(A)=O$, then the degree of $m(\lambda)$ is less or equal to the degree of $m^{\prime}(\lambda)$ [i.e., $m(\lambda)$ is of the lowest degree such that $m(A)=O$. The polynomial $m(\lambda)$ is called the minimal polynomial of A.

Let $f(\lambda)$ be any polynomial such that $f(A)=O$ (e.g., the characteristic polynomial). Then it is easily shown that $m(\lambda)$ divides $f(\lambda)$ [i.e., there is a polynomial $q(\lambda)$ such that $f(\lambda)=q(\lambda) m(\lambda)]$. In particular, the minimal polynomial of $A, m(\lambda)$, divides the characteristic polynomial of $A, p(\lambda)$. Also, it can be shown that $p(\lambda)$ divides $[m(\lambda)]^{n}$.

Next, let $p(\lambda)$ be given by

$$
\begin{equation*}
p(\lambda)=\left(\lambda_{1}-\lambda\right)^{m_{1}}\left(\lambda_{2}-\lambda\right)^{m_{2}} \cdots\left(\lambda_{p}-\lambda\right)^{m_{p}} \tag{A.46}
\end{equation*}
$$

where m_{1}, \ldots, m_{p} are the algebraic multiplicities of the distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ of A, respectively. It can be shown that

$$
\begin{equation*}
m(\lambda)=\left(\lambda-\lambda_{1}\right)^{\mu_{1}}\left(\lambda-\lambda_{2}\right)^{\mu_{2}} \cdots\left(\lambda-\lambda_{p}\right)^{\mu_{p}} \tag{А.47}
\end{equation*}
$$

where $1 \leq \mu_{i} \leq m_{i}, i=1, \ldots, p$.
It can also be shown that $\left(\lambda-\lambda_{i}\right)^{\mu_{i}}$ is the minimal polynomial of the A_{i} diagonal block in the Jordan canonical form of A, which we discuss in the next section. When A has all n distinct eigenvalues, the Jordan canonical form has n diagonal blocks and, therefore, $\mu_{i}=1$ and $p(\lambda)=m(\lambda)$. The Jordan canonical form is described in Section A. 6 and in [1, Section 2.2].

A. 6 Diagonal and Jordan Canonical Form of Matrices

Let A be an $n \times n$ matrix $A \in C^{n \times n}$. The following developement follows [10]. To begin with, let us assume that A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let v_{i} be an eigenvector of A corresponding to $\lambda_{i}, i=1, \ldots, n$. Then it can be easily shown that the set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent over C, and as such, it can be used as a basis for C^{n}. Now let \widetilde{A} be the representation of A with respect to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Since the i th column of \widetilde{A} is the representation of $A v_{i}=\lambda_{i} v_{i}$ with respect to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$, it follows that

$$
\widetilde{A}=\left[\begin{array}{llll}
\lambda_{1} & & & 0 \tag{A.48}\\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right] \triangleq \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Since A and \widetilde{A} are matrix representations of the same linear transformation, it follows that A and \widetilde{A} are similar matrices. Indeed, this can be checked by computing

$$
\begin{equation*}
\widetilde{A}=P^{-1} A P \tag{A.49}
\end{equation*}
$$

where $P=\left[v_{1}, \ldots, v_{n}\right]$ and where the v_{i} are eigenvectors corresponding to λ_{i}, $i=1, \ldots, n$. Note that $A P=\widetilde{A} P$ is true because the i th column of $A P$ is $A v_{i}$, which equals $\lambda_{i} v_{i}$, the i th column of $\widetilde{A} P$.

When a matrix \widetilde{A} is obtained from a matrix A via a similarity transformation P, we say that matrix A has been diagonalized. Now if the matrix A has repeated eigenvalues, then it is not always possible to diagonalize it. In generating a "convenient" basis for C^{n} in this case, we introduce the concept of generalized eigenvector. Specifically, a vector v is called a generalized eigenvector of rank k of A, associated with an eigenvalue λ if and only if

$$
\begin{equation*}
\left(A-\lambda I_{n}\right)^{k} v=0 \quad \text { and } \quad\left(A-\lambda I_{n}\right)^{k-1} v \neq 0 \tag{A.50}
\end{equation*}
$$

where I_{n} denotes the $n \times n$ identity matrix. Note that when $k=1$, this definition reduces to the preceding defintion of eigenvector.

Now let v be a generalized eigenvector of rank k associated with the eigenvalue λ. Define

$$
\begin{align*}
v_{k} & =v, \\
v_{k-1} & =\left(A-\lambda I_{n}\right) v=\left(A-\lambda I_{n}\right) v_{k}, \\
v_{k-2} & =\left(A-\lambda I_{n}\right)^{2} v=\left(A-\lambda I_{n}\right) v_{k-1}, \tag{A.51}\\
& \vdots \\
v_{1} & =\left(A-\lambda I_{n}\right)^{k-1} v=\left(A-\lambda I_{n}\right) v_{2} .
\end{align*}
$$

Then for each $i, 1 \leq i \leq k, v_{i}$ is a generalized eigenvector of rank i. We call the set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ a chain of generalized eigenvectors.

For generalized eigenvectors, we have the following results:
(i) The generalized eigenvectors $\left\{v_{1}, \ldots, v_{k}\right\}$ defined in (A.51) are linearly independent.
(ii) The generalized eigenvectors of A associated with different eigenvalues are linearly independent.
(iii) If u and v are generalized eigenvectors of rank k and l, respectively, associated with the same eigenvalue λ, and if u_{i} and v_{j} are defined by

$$
\begin{array}{ll}
u_{i}=\left(A-\lambda I_{n}\right)^{k-i} u, & i=1, \ldots, k \\
v_{j}=\left(A-\lambda I_{n}\right)^{l-j} v, & j=1, \ldots, l
\end{array}
$$

and if u_{1} and v_{1} are linearly independent, then the generalized eigenvectors $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{l}$ are linearly independent.

These results can be used to construct a new basis for C^{n} such that the matrix representation of A with respect to this new basis is in the Jordan canonical form J. We characterize J in the following result: For every complex $n \times n$ matrix A, there exists a nonsingular matrix P such that the matrix

$$
J=P^{-1} A P
$$

is in the canonical form

$$
J=\left[\begin{array}{llll}
J_{0} & & & 0 \tag{A.52}\\
& J_{1} & & \\
& & \ddots & \\
& & & J_{s}
\end{array}\right]
$$

where J_{0} is a diagonal matrix with diagonal elements $\lambda_{1}, \ldots, \lambda_{k}$ (not necessarily distinct), i.e.,

$$
J_{0}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

and each J_{p} is an $n_{p} \times n_{p}$ matrix of the form

$$
J_{p}=\left[\begin{array}{ccccc}
\lambda_{k+p} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{k+p} & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & 1 & \\
0 & 0 & \cdots & \lambda_{k+p}
\end{array}\right], \quad p=1, \ldots, s
$$

where λ_{k+p} need not be different from λ_{k+q} if $p \neq q$ and $k+n_{1}+\cdots+n_{s}=n$. The numbers $\lambda_{i}, i=1, \ldots, k+s$, are the eigenvalues of A. If λ_{i} is a simple eigenvalue of A, it appears in the block J_{0}. The blocks $J_{0}, J_{1}, \ldots, J_{s}$ are called Jordan blocks, and J is called the Jordan canonical form.

Note that a matrix may be similar to a diagonal matrix without having distinct eigenvalues. The identity matrix I is such an example. Also, it can be shown that any real symmetric matrix A has only real eigenvalues (which may be repeated) and is similar to a diagonal matrix.

We now give a procedure for computing a set of basis vectors that yield the Jordan canonical form J of an $n \times n$ matrix A and the required nonsingular transformation P that relates A to J :

1. Compute the eigenvalues of A. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of A with multiplicities n_{1}, \ldots, n_{m}, respectively.
2. Compute n_{1} linearly independent generalized eigenvectors of A associated with λ_{1} as follows: Compute $\left(A-\lambda_{1} I_{n}\right)^{i}$ for $i=1,2, \ldots$ until the rank of $\left(A-\lambda_{1} I_{n}\right)^{k}$ is equal to the rank of $\left(A-\lambda_{1} I_{n}\right)^{k+1}$. Find a generalized eigenvector of rank k, say u. Define $u_{i}=\left(A-\lambda_{1} I_{n}\right)^{k-i} u, i=1, \ldots, k$. If $k=n_{1}$, proceed to step 3 . If $k<n_{1}$, find another linearly independent generalized eigenvector with the largest possible rank; i.e., try to find another generalized eigenvector with rank k. If this is not possible, try $k-1$, and so forth, until n_{1} linearly independent generalized eigenvectors are determined. Note that if $\rho\left(A-\lambda_{1} I_{n}\right)=r$, then there are totally $(n-r)$ chains of generalized eigenvectors associated with λ_{1}.
3. Repeat step 2 for $\lambda_{2}, \ldots, \lambda_{m}$.
4. Let $u_{1}, \ldots, u_{k}, \ldots$ be the new basis. Observe, from (A.51), that

$$
\begin{aligned}
A u_{1} & =\lambda_{1} u_{1}=\left[u_{1} u_{2} \cdots u_{k} \cdots\right]\left[\lambda_{1}, 0, \ldots, 0\right]^{T} \\
A u_{2} & =u_{1}+\lambda_{1} u_{2}=\left[u_{1} u_{2} \cdots u_{k} \cdots\right]\left[1, \lambda_{1}, 0, \ldots, 0\right]^{T} \\
& \vdots \\
A u_{k} & =u_{k-1}+\lambda_{1} u_{k}=\left[u_{1} u_{2} \cdots u_{k} \cdots\right]\left[0, \ldots, 0,1, \lambda_{1}, 0, \ldots, 0\right]^{T}
\end{aligned}
$$

with λ_{1} in the k th position, which yields the representation J in (A.52) of A with respect to the new basis, where the $k \times k$ matrix J_{1} is given by

$$
J_{1}=\left[\begin{array}{cccc}
\lambda_{1} & 1 & \cdots & 0 \\
0 & \lambda_{1} & & \vdots \\
& & \ddots & 1 \\
0 & & \cdots & \lambda_{1}
\end{array}\right]
$$

Note that each chain of generalized eigenvectors generates a Jordan block whose order equals the length of the chain.
5. The similarity transformation that yields $J=Q^{-1} A Q$ is given by $Q=$ $\left[u_{1}, \ldots, u_{k}, \ldots\right]$.
6. Rearrange the Jordan blocks in the desired order to yield (A.52) and the corresponding similarity transformation P.

Example A.30. The characteristic equation of the matrix

$$
A=\left[\begin{array}{rrrrrr}
3 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 2 & 0 & 1 & 1 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

is given by

$$
\operatorname{det}(A-\lambda I)=(\lambda-2)^{5} \lambda=0
$$

Thus, A has eigenvalue $\lambda_{2}=2$ with multiplicity 5 and eigenvalue $\lambda_{1}=0$ with multiplicity 1.

Now compute $\left(A-\lambda_{2} I\right)^{i}, i=1,2, \ldots$, as follows:

$$
(A-2 I)=\left[\begin{array}{rrrrrr}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right] \quad \text { and } \quad \rho(A-2 I)=4
$$

$$
\begin{aligned}
& (A-2 I)^{2}=\left[\begin{array}{lllllr}
0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -2 \\
0 & 0 & 0 & 0 & -2 & 2
\end{array}\right] \quad \text { and } \quad \rho(A-2 I)^{2}=2, \\
& (A-2 I)^{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -4 & 4 \\
0 & 0 & 0 & 0 & 4 & -4
\end{array}\right] \quad \text { and } \rho(A-2 I)^{3}=1, \\
& (A-2 I)^{4}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 8 & -8 \\
0 & 0 & 0 & 0 & -8 & 8
\end{array}\right] \quad \text { and } \rho(A-2 I)^{4}=1 .
\end{aligned}
$$

Since $\rho(A-2 I)^{3}=\rho(A-2 I)^{4}$, we stop at $(A-2 I)^{3}$. It can be easily verified that if $u=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]^{T}$, then $(A-2 I)^{3} u=0$ and $(A-2 I)^{2} u=\left[\begin{array}{lllll}2 & 2 & 0 & 0 & 0\end{array}\right]^{T} \neq$ 0 . Therefore, u is a generalized eigenvector of rank 3 . So we define

$$
\begin{aligned}
& u_{1} \triangleq(A-2 I)^{2} u=\left[\begin{array}{llllll}
2 & 2 & 0 & 0 & 0 & 0
\end{array}\right]^{T} \\
& u_{2} \triangleq(A-2 I) u=\left(\begin{array}{llllll}
1 & -1 & 0 & 0 & 0 & 0
\end{array}\right]^{T} \\
& u_{3} \triangleq \\
&
\end{aligned}
$$

Since we have only three generalized eigenvectors for $\lambda_{2}=2$ and since the multiplicity of $\lambda_{2}=2$ is five, we have to find two more linearly independent eigenvectors for $\lambda_{2}=2$. So let us try to find a generalized eigenvector of rank 2. Let $v=\left[\begin{array}{llllll}0 & 0 & 1 & -1 & 1 & 1\end{array}\right]^{T}$. Then $(A-2 I) v=\left[\begin{array}{llllll}0 & 0 & 2 & -2 & 0 & 0\end{array}\right]^{T} \neq 0$ and $(A-2 I)^{2} v=0$. Moreover, $(A-2 I) v$ is linearly independent of u_{1}, and hence, we have another linearly independent generalized eigenvector of rank 2. Define

$$
v_{2} \triangleq v=\left[\begin{array}{llllll}
0 & 0 & 1 & -1 & 1 & 1
\end{array}\right]^{T}
$$

and

$$
v_{1}=(A-2 I) v=\left[\begin{array}{lllll}
0 & 0 & 2 & -2 & 0
\end{array}\right]^{T} .
$$

Next, we compute an eigenvector associated with $\lambda_{1}=0$. Since $w=$ $[00001-1]^{T}$ is a solution of $\left(A-\lambda_{1} I\right) w=0$, the vector w will do.

Finally, with respect to the basis $w_{1}, u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$, the Jordan canonical form of A is given by

$$
J=\left[\begin{array}{ccccc}
01 & 0 & 0 & 0 & 0 \tag{A.53}\\
\hdashline 12 & 1 & 0, & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{c:ccccc}
\lambda_{1} & 0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & \lambda_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 & 0 \\
0 & 0 & 0 & \lambda_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

and

$$
P=\left[\begin{array}{llllll}
w_{1} & u_{1} & u_{2} & u_{3} & v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{rrrrrr}
0 & 2 & 1 & 0 & 0 & 0 \tag{A.54}\\
0 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & -2 & -1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The correctness of P is easily checked by computing $P J=A P$.

A. 7 Normed Linear Spaces

In the following discussion, we require for (V, F) that F be either the field of real numbers R or the field of complex numbers C. For such linear spaces we say that a function $\|\cdot\|: V \rightarrow R^{+}$is a norm if
(N-i) $\quad\|x\| \geq 0$ for every vector $x \in V$ and $\|x\|=0$ if and only if x is the null vector (i.e., $x=0$);
(N-ii) for every scalar $\alpha \in F$ and for every vector $x \in V,\|\alpha x\|=|\alpha|\|x\|$, where $|\alpha|$ denotes the absolute value of α when $F=R$ and the modulus when $F=C$; and
(N-iii) for every x and y in $V,\|x+y\| \leq\|x\|+\|y\|$. (This inequality is called the triangle inequality.)

We call a vector space on which a norm has been defined a normed vector space or a normed linear space.

Example A.31. On the linear space $\left(R^{n}, R\right)$, we define for every $x=$ $\left(x_{1}, \ldots, x_{n}\right)^{T}$,

$$
\begin{equation*}
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty \tag{A.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{\infty}=\max \left\{\left|x_{i}\right|: 1 \leq i \leq n\right\} \tag{A.56}
\end{equation*}
$$

Using Minkowski's Inequality for finite sums, see (A.5), it is an easy matter to show that for every $p, 1 \leq p \leq \infty,\|\cdot\|_{p}$ is a norm on R^{n}. In addition to $\|\cdot\|_{\infty}$, of particular interest to us will be the cases $p=1$ and $p=2$; i.e.,

$$
\begin{equation*}
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \tag{А.57}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2} \tag{A.58}
\end{equation*}
$$

The norm $\|\cdot\|_{1}$ is sometimes referred to as the taxicab norm or Manhattan norm, whereas, $\|\cdot\|_{2}$ is called the Euclidean norm. The linear space $\left(R^{n}, R\right)$ with norm $\|\cdot\|_{2}$ is called a Euclidean vector space.

The foregoing norms are related by the inequalities

$$
\begin{array}{r}
\|x\|_{\infty} \leq\|x\|_{1} \leq n\|x\|_{\infty} \\
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} \\
\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2} . \tag{A.61}
\end{array}
$$

Also, for $p=2$, we obtain from the Hölder Inequality for finite sums, (A.4), the Schwarz Inequality

$$
\begin{equation*}
\left|x^{T} y\right|=\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{1 / 2} \tag{A.62}
\end{equation*}
$$

for all $x, y \in R^{n}$.

The assertions made in the above example turn out to be also true for the space $\left(C^{n}, C\right)$. We ask the reader to verify these relations.

Example A.32. On the space l_{p} given in Example A.5, let

$$
\|x\|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty
$$

and

$$
\|x\|_{\infty}=\sup _{i}\left|x_{i}\right| .
$$

Using Minkowski's Inequality for infinite sums, (A.5), it is an easy matter to show that $\|\cdot\|_{p}$ is a norm for every $p, 1 \leq p \leq \infty$.

Example A.33. On the space given in Example A.7, let

$$
\|x\|_{p}=\left(\int_{a}^{b}|x(t)|^{p} d t\right)^{1 / p}, \quad 1 \leq p<\infty
$$

Using Minkowski's Inequality for integrals, (A.10), see Example A.7, it can readily be verified that $\|\cdot\|_{p}$ is a norm for every $p, 1 \leq p<\infty$. Also, on the space of continuous functions given in Example A.8, assume that (A.11) holds. Then

$$
\|x\|_{\infty}=\max _{a \leq t \leq b}|x(t)|
$$

is easily shown to determine a norm. Furthermore, expression (A.12) can also be used to determine a norm.

Example A.34. We can also define the norm of a matrix. To this end, consider the set of real $m \times n$ matrices, $R^{m \times n}=V$ and $F=R$. It is easily verified that $(V, F)=\left(R^{m \times n}, R\right)$ is a vector space, where vector addition is defined as matrix addition and multiplication of vectors by scalars is defined as multiplication of matrices by scalars.

For a given norm $\|\cdot\|_{u}$ on R^{n} and a given norm $\|\cdot\|_{v}$ on R^{m}, we define $\|\cdot\|_{v u}: R^{m \times n} \rightarrow R^{+}$by

$$
\begin{equation*}
\|A\|_{v u}=\sup \left\{\|A x\|_{v}: x \in R^{n} \text { with }\|x\|_{u}=1\right\} \tag{A.63}
\end{equation*}
$$

It is easily verified that
(M-i) $\|A x\|_{v} \leq\|A\|_{v u}\|x\|_{u}$ for any $x \in R^{n}$,
(M-ii) $\|A+B\|_{v u} \leq\|A\|_{v u}+\|B\|_{v u}$,
(M-iii) $\|\alpha A\|_{v u}=|\alpha|\|A\|_{v u}$ for all $\alpha \in R$,
(M-iv) $\|A\|_{v u} \geq 0$ and $\|A\|_{v u}=0$ if and only if A is the zero matrix (i.e., $A=0)$,
(M-v) $\|A\|_{v u} \leq \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|$ for any p-vector norms defined on R^{n} and R^{m}.

Properties (M-ii) to (M-iv) clearly show that $\|\cdot\|_{v u}$ defines a norm on $R^{m \times n}$ and justifies the use of the term matrix norm. Since the matrix norm $\|\cdot\|_{v u}$ depends on the choice of the vector norms, $\|\cdot\|_{u}$, and $\|\cdot\|_{v}$, defined on $U \triangleq R^{n}$ and $V \triangleq R^{m}$, respectively, we say that the matrix norm $\|\cdot\|_{u v}$ is induced by the vector norms $\|\cdot\|_{u}$ and $\|\cdot\|_{v}$. In particular, if $\|\cdot\|_{u}=\|\cdot\|_{p}$ and $\|\cdot\|_{v}=\|\cdot\|_{p}$, then the notation $\|A\|_{p}$ is frequently used to denote the norm of A.

As a specific case, let $A=\left[a_{i j}\right] \in R^{m \times n}$. Then it is easily verified that

$$
\begin{aligned}
& \|A\|_{1}=\max _{j}\left(\sum_{i=1}^{m}\left|a_{i j}\right|\right) \\
& \|A\|_{2}=\left[\max \lambda\left(A^{T} A\right)\right]^{1 / 2}
\end{aligned}
$$

where $\max \lambda\left(A^{T} A\right)$ denotes the largest eigenvalue of $A^{T} A$ and

$$
\|A\|_{\infty}=\max _{i}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right)
$$

When it is clear from context which vector spaces and vector norms are being used, the indicated subscripts on the matrix norms are usually not used. For example, if $A \in R^{m \times n}$ and $B \in R^{n \times k}$, it can be shown that
(M-vi) $\|A B\| \leq\|A\|\|B\|$.
In (M-vi) we have omitted subscripts on the matrix norms to indicate inducing vector norms.

We conclude by noting that it is possible to define norms on $\left(R^{m \times n}, R\right)$ that need not be induced by vector norms. Furthermore, the entire discussion given in Example A. 34 holds also for norms defined on complex spaces, e.g., $\left(C^{m \times n}, C\right)$.

A. 8 Some Facts from Matrix Algebra

Determinants

We recall that the determinant of a matrix $A=\left[a_{i j}\right] \in R^{n \times n}$, $\operatorname{det} A$, can be evaluated by the relation

$$
\operatorname{det} A=\sum_{j} a_{i j} d_{i j} \quad \text { for any } \quad i=1,2, \ldots, n
$$

where $d_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$ and $A_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the i th row and j th column of A. The term $d_{i j}$ is the cofactor of A corresponding to $a_{i j}$ and $\operatorname{det} A_{i j}$ is the $i j t h$ minor of the matrix. The principal minors of A are obtained by letting $i=j, i, j=1, \ldots n$.

If any column (or row) of A is multiplied by a scalar k, then the determinant of the new matrix is $k \operatorname{det} A$. If every entry is multiplied by k, then the determinant of the new matrix is $k^{n} \operatorname{det} A$. Also,

$$
\operatorname{det} A^{T}=\operatorname{det} A \quad \text { where } A^{T} \text { is the transpose of } A \text {. }
$$

Determinants of Products

$\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$ when A and B are square matrices, and $\operatorname{det}\left[I_{m}-A B\right]=\operatorname{det}\left[I_{n}-B A\right]$ where $A \in R^{m \times n}$ and $B \in R^{n \times m}$.
Determinants of Block Matrices

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
m \times m & m \times n \\
A & B \\
C \times m & D
\end{array}\right] & =\operatorname{det} A \operatorname{det}\left[D-C A^{-1} B\right], & \operatorname{det} A \neq 0 \\
& =\operatorname{det} D \operatorname{det}\left[A-B D^{-1} C\right], & \operatorname{det} D \neq 0 .
\end{aligned}
$$

Inverse A^{-1} of A

If $A \in R^{n \times n}$ and if A is nonsingular (i.e., $\operatorname{det} A \neq 0$), then $A A^{-1}=A^{-1} A=I$.

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj}(A)
$$

where $\operatorname{adj}(A)=\left[d_{i j}\right]^{T}$ is the adjoint of A, where $d_{i j}$ is the cofactor of A corresponding to $a_{i j}$. When

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is a 2×2 matrix, then

$$
A^{-1}=\frac{1}{a d-c b}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

If $A \in R^{m \times m}$ and $C \in R^{n \times n}$, if A and C are nonsingular, and if $B \in R^{m \times n}$ and $D \in R^{n \times m}$, then

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(D A^{-1} B+C^{-1}\right)^{-1} D A^{-1}
$$

For example

$$
\left[I+C(s I-A)^{-1} B\right]^{-1}=I-C(s I-A+B C)^{-1} B
$$

When $A \in R^{m \times n}$ and $B \in R^{n \times m}$, then

$$
\left(I_{m}+A B\right)^{-1}=I_{m}-A\left(I_{n}+B A\right)^{-1} B
$$

Sylvester Rank Inequality
If $X \in R^{p \times n}$ and $Y \in R^{n \times m}$, then

$$
\operatorname{rank} X+\operatorname{rank} Y-n \leq \operatorname{rank}(x y) \leq \min \{\operatorname{rank} X, \operatorname{rank} Y\}
$$

A. 9 Numerical Considerations

Computing the rank of the controllability matrix $\left[B, A B, \ldots, A^{n-1} B\right]$, the eigenvalues of A, or the zeros of the system $\{A, B, C, D\}$ typically requires the use of a digital computer. When this is the case, one must deal with the selection of an algorithm and interpret numerical results. In doing so, two issues arise that play important roles in numerical computations using a computer, namely, the numerical stability or instability of the computational method used, and how well or ill conditioned the problem is numerically.

An example of a problem that can be ill conditioned is the problem of calculating the roots of a polynomial, given its coefficients. This is so because
for certain polynomials, small variations in the values of the coefficients, introduced say via round-off errors, can lead to great changes in the roots of the polynomial. That is to say, the roots of a polynomial can be very sensitive to changes in its coefficients. Note that ill conditioning is a property of the problem to be solved and does not depend on the floating-point system used in the computer, nor on the particular algorithm being implemented.

A computational method is numerically stable if it yields a solution that is near the true solution of a problem with slightly changed data. An example of a numerically unstable method to compute the roots of $a x^{2}+2 b x+c=0$ is the formula $\left.\left(-b \pm \sqrt{\left(b^{2}-a c\right.}\right)\right) / a$, which for certain parameters a, b, c may give erroneous results in finite arithmetic. This instability is caused by the subtraction of two approximately equal large numbers in the numerator when $b^{2} \gg a c$. Note that the roots may be calculated in a numerically stable way, using the mathematically equivalent, but numerically very different, expression $c /\left(-b \mp \sqrt{\left(b^{2}-a c\right)}\right)$.

We would like of course, to always use numerically stable methods, and we would prefer to have well-conditioned problems. In what follows, we discuss briefly the problem of solving a set of algebraic equations given by $A x=b$. We will show that a measure of how ill conditioned a given problem is, is the size of the condition number (to be defined) of the matrix A. There are many algorithms to numerically solve $A x=b$, and we will briefly discuss numerically stable ones. Singular values, singular value decomposition, and the least-squares problem are also discussed.

A.9.1 Solving Linear Algebraic Equations

Consider the set of linear algebraic equations given by

$$
\begin{equation*}
A x=b, \tag{A.64}
\end{equation*}
$$

where $A \in R^{m \times n}, b \in R^{m}$ and $x \in R^{n}$ is to be determined.

Existence and Uniqueness of Solutions

See also Sec. A.3, (A.22)-(A.29). Given (A.64), for a given b, a solution x exists if and only if $b \in \mathcal{R}(A)$, or equivalently, if and only if

$$
\begin{equation*}
\rho([A, b])=\rho(A) . \tag{A.65}
\end{equation*}
$$

Every solution of (A.64) can be expressed as a sum

$$
\begin{equation*}
x=x_{p}+x_{h}, \tag{A.66}
\end{equation*}
$$

where x_{p} is a specific solution and x_{h} satisfies $A x_{h}=0$. There are

$$
\begin{equation*}
\operatorname{dim} \mathcal{N}(A)=n-\rho(A) \tag{A.67}
\end{equation*}
$$

linearly independent solutions of the systems of equations $A x=0$.
$A x=b$ has a unique solution if and only if (A.65) is satisfied and

$$
\begin{equation*}
\rho(A)=n \leq m \tag{A.68}
\end{equation*}
$$

A solution exists for any b if and only if $\rho(A)=m$. In this case, a solution may be found using

$$
x=A^{T}\left(A A^{T}\right)^{-1} b
$$

When $\rho(A)=m=n$, then A is nonsingular and the unique solution is

$$
\begin{equation*}
x=A^{-1} b \tag{A.69}
\end{equation*}
$$

It is of interest to know the effects of small variations of A and b to the solution x of this system of equations. Note that such variations may be introduced, for example, by rounding errors when calculating a solution or by noisy data.

Condition Number

Let $A \in R^{n \times n}$ be nonsingular. If A is known exactly and b has some uncertainty Δb associated with it, then $A(x+\Delta x)=b+\Delta b$. It can then be shown that the variation in the solution x is bounded by

$$
\begin{equation*}
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|} \tag{A.70}
\end{equation*}
$$

where $\|\cdot\|$ denotes any vector norm (and consistent matrix norm) and cond (A) denotes the condition number of A, where $\operatorname{cond}(A) \triangleq\|A\|\left\|A^{-1}\right\|$. Note that

$$
\begin{equation*}
\operatorname{cond}(A)=\sigma_{\max }(A) / \sigma_{\min }(A) \tag{A.71}
\end{equation*}
$$

where $\sigma_{\max }(A)$ and $\sigma_{\min }(A)$ are the maximum and minimum singular values of A, respectively (see the next section). From the property of matrix norms, $\left\|A A^{-1}\right\| \leq\|A\|\left\|A^{-1}\right\|$, it follows that $\operatorname{cond}(A) \geq 1$. This also follows from the expression involving singular values. If $\operatorname{cond}(A)$ is small, then A is said to be well conditioned with respect to the problem of solving linear equations. If cond (A) is large, then A is ill conditioned with respect to the problem of solving linear equations. In this case the relative uncertainty in the solution ($\|\Delta x\| /\|x\|$) can be many times the relative uncertainty in $b(\|\Delta b\| /\|b\|)$. This is of course undesirable. Similar results can be derived when variations in both b and A are considered, i.e., when b and A become $b+\Delta b$ and $A+\Delta A$. Note that the conditioning of A, and of the given problem, is independent of the algorithm used to determine a solution.

The condition number of A provides a measure of the distance of A to the set of singular (reduced rank) matrices. In particular, if $\|\Delta A\|$ is the norm of the smallest perturbation ΔA such that $A+\Delta A$ is singular, and is denoted by
$d(A)$, then $d A /\|A\|=1 / \operatorname{cond}(A)$. Thus, a large condition number indicates a short distance to a singularity and it is not surprising that this implies great sensitivity of the numerical solution x of $A x=b$ to variations in the problem data.

The condition number of A plays a similar role in the case when A is not square. It can be determined in terms of the singular values of A defined in the next subsection.

Computational Methods

The system of equations $A x=b$ is easily solved if A has some special form (e.g., if it is diagonal or triangular). Using the method of Gaussian elimination, any nonsingular matrix A can be reduced to an upper triangular matrix U. These operations can be represented by premultiplication of A by a sequence of lower triangular matrices. It can then be shown that A can be represented as

$$
\begin{equation*}
A=L U, \tag{А.72}
\end{equation*}
$$

where L is a lower triangular matrix with all diagonal elements equal to 1 and U is an upper triangular matrix. The solution of $A x=b$ is then reduced to the solution of two systems of equations with triangular matrices, $L y=b$ and $U x=y$. This method of solving $A x=b$ is based on the decomposition (A.72) of A, which is called the $L U$ decomposition of A.

If A is a symmetric positive definite matrix, then it may be represented as

$$
\begin{equation*}
A=U^{T} U \tag{А.73}
\end{equation*}
$$

where U is an upper triangular matrix. This is known as the Cholesky decomposition of a positive definite matrix. It can be obtained using a variant of Gaussian elimination. Note that this method requires half of the operations necessary for Gaussian elimination on an arbitrary nonsingular matrix A, since A is symmetric.

Now consider the system of equations $A x=b$, where $A \in R^{m \times n}$, and let $\operatorname{rank} A=n(\leq m)$. Then

$$
A=Q\left[\begin{array}{l}
R \tag{А.74}\\
O
\end{array}\right]=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{l}
R \\
O
\end{array}\right]=Q_{1} R
$$

where Q is an orthogonal matrix $\left(Q^{T}=Q^{-1}\right)$ and $R \in R^{n \times n}$ is an upper triangular matrix of full rank n. Expression (A.74) is called the $Q R$ decomposition of A. When rank $A=r$, the $Q R$ decomposition of A is expressed as

$$
A P=Q\left[\begin{array}{cc}
R_{1} & R_{2} \tag{A.75}\\
0 & 0
\end{array}\right]
$$

where Q is orthogonal, $R_{1} \in R^{r \times r}$ is nonsingular and upper triangular, and P is a permutation matrix that represents the moving of the columns during the reduction (in $Q^{T} A P$).

The $Q R$ decomposition can be used to determine solutions of $A x=b$. In particular, consider $A \in R^{m \times n}$ with $\operatorname{rank} A=n(\leq m)$ and assume that a solution exists. First, determine the $Q R$ decomposition of A given in (A.74). Then $Q^{T} A x=Q^{T} b$ or $\left[\begin{array}{c}R \\ 0\end{array}\right] x=Q^{T} b$ (since $Q^{T}=Q^{-1}$) or $R x=c$. Solve this system of equations, where R is triangular and $c=\left[I_{n}, 0\right] Q^{T} b$. In the general case when $\operatorname{rank}(A)=r \leq \min (n, m)$, determine the $Q R$ decomposition of $A(2.7)$ and assume that a solution exists. The solutions are given by $x=$ $P\left[\begin{array}{c}R_{1}^{-1}\left(c-R_{2} y\right) \\ y\end{array}\right], c=\left[I_{r}, 0\right] Q^{T} b$, where $y \in R^{m-r}$ is arbitrary.

A related problem is the linear least-squares problem where a solution x of the system of equations $A x=b$ is to be found that minimizes $\|b-A x\|_{2}$. This is a more general problem than simply solving $A x=b$, since solving it provides the "best" solution in the above sense, even when an exact solution does not exist. The least-squares problem is discussed further in a subsequent subsection.

A.9.2 Singular Values and Singular Value Decomposition

The singular values of a matrix and the Singular Value Decomposition Theorem play a significant role in a number of problems of interest in the area of systems and control, from the computation of solutions of linear systems of equations, to computations of the norm of transfer matrices at specified frequencies, to model reduction, and so forth. In what follows, we provide a brief description of some basic results and we introduce some terminology.

Consider $A \in \mathcal{C}^{n \times n}$, and let $A^{*}=\bar{A}^{T}$; i.e., the complex conjugate transpose of $A . A \in \mathcal{C}^{n \times n}$ is said to be Hermitian if $A^{*}=A$. If $A \in R^{n \times n}$, then $A^{*}=A^{T}$ and if $A=A^{T}$, then A is symmetric. $A \in \mathcal{C}^{n \times n}$ is unitary if $A^{*}=A^{-1}$. In this case $A^{*} A=A A^{*}=I_{n}$. If $A \in R^{n \times n}$, then $A^{*}=A^{T}$ and if $A^{T}=A^{-1}$, i.e., if $A^{T} A=A A^{T}=I_{n}$, then A is orthogonal.

Singular Values

Let $A \in \mathcal{C}^{m \times n}$, and consider $A A^{*} \in \mathcal{C}^{m \times m}$. Let $\lambda_{i}, i=1, \ldots, m$ denote the eigenvalues of $A A^{*}$, and note that these are all real and nonnegative numbers. Assume that $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{r} \geq \cdots \geq \lambda_{m}$. Note that if $r=\operatorname{rank} A=$ $\operatorname{rank}\left(A A^{*}\right)$, then $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$ and $\lambda_{r+1}=\cdots=\lambda_{m}=0$. The singular values σ_{i} of A are the positive square roots of $\lambda_{i}, i=1, \ldots, \min (m, n)$. In fact, the nonzero singular values of A are

$$
\begin{equation*}
\sigma_{i}=\left(\lambda_{i}\right)^{1 / 2}, \quad i=1, \ldots, r \tag{A.76}
\end{equation*}
$$

where $r=\operatorname{rank} A$, whereas the remaining $(\min (m, n)-r)$ of the singular values are zero. Note that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$, and $\sigma_{r+1}=\sigma_{r+2}=\cdots=$ $\sigma_{\min (m, n)}=0$. The singular values could also have been found as the square
roots of the eigenvalues of $A^{*} A \in \mathcal{C}^{n \times n}$ (instead of $\left.A A^{*} \in \mathcal{C}^{m \times m}\right)$. To see this, consider the following result.

Lemma A.35. Let $m \geq n$. Then

$$
\begin{equation*}
\left|\lambda I_{m}-A A^{*}\right|=\lambda^{m-n}\left|\lambda I_{n}-A^{*} A\right| ; \tag{A.77}
\end{equation*}
$$

i.e., all eigenvalues of $A^{*} A$ are eigenvalues of $A A^{*}$ that also has $m-n$ additional eigenvalues at zero. Thus $A A^{*} \in \mathcal{C}^{m \times m}$ and $A^{*} A \in \mathcal{C}^{n \times n}$ have precisely the same r nonzero eigenvalues $(r=\operatorname{rank} A)$; their remaining eigenvalues, $(m-r)$ for $A A^{*}$ and $(n-r)$ for $A^{*} A$, are all at zero. Therefore, either $A A^{*}$ or $A^{*} A$ can be used to determine the r nonzero singular values of A. All remaining singular values are zero.

Proof. The proof is based on Schur's formula for determinants. In particular, we have

$$
\begin{align*}
D(\lambda) & =\left|\begin{array}{cc}
\lambda^{1 / 2} I_{m} & A \\
A^{*} & \lambda^{1 / 2} I_{n}
\end{array}\right|=\left|\lambda^{1 / 2} I_{m}\right|\left|\lambda^{1 / 2} I_{n}-A^{*} \lambda^{-1 / 2} I_{m} A\right| \\
& =\left|\lambda^{1 / 2} I_{m}\right|\left|\lambda^{-1 / 2} I_{n}\right|\left|\lambda I_{n}-A^{*} A\right| \tag{A.78}\\
& =\lambda^{\frac{m-n}{2}} \cdot\left|\lambda I_{n}-A^{*} A\right|,
\end{align*}
$$

where Schur's formula was applied to the $(1,1)$ block of the matrix. If it is applied to the $(2,2)$ block, then

$$
\begin{equation*}
D(\lambda)=\lambda^{\frac{n-m}{2}} \cdot\left|\lambda I_{m}-A A^{*}\right| \tag{А.79}
\end{equation*}
$$

Equating (A.78) and (A.79) we obtain $\left|\lambda I_{m}-A A^{*}\right|=\lambda^{m-n}\left|\lambda I_{n}-A^{*} A\right|$, which is (A.78).

Example A.36. $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \in R^{2 \times 3}$. Here $\operatorname{rank} A=r=1, \lambda_{i}\left(A A^{*}\right)=$ $\lambda_{i}\left(\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right]\right)=\lambda_{i}\left(\left[\begin{array}{ll}5 & 0 \\ 0 & 0\end{array}\right]\right)=\{5,0\}$ and $\lambda_{1}=5, \lambda_{2}=0$. Also, $\lambda_{i}\left(A^{*} A\right)=\lambda_{i}\left(\left[\begin{array}{ll}2 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\right)=\lambda_{i}\left(\left[\begin{array}{lll}4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\right)$, and $\lambda_{1}=5, \lambda_{2}=0$, and $\lambda_{3}=0$. The only nonzero singular value is $\sigma_{1}=\sqrt{\lambda_{1}}=+\sqrt{5}$. The remaining singular values are zero.

There is an important relation between the singular values of A and its induced Hilbert or 2-norm, also called the spectral norm $\|A\|_{2}=\|A\|_{s}$. In particular,

$$
\begin{equation*}
\|A\|_{2}\left(=\|A\|_{s}\right)=\sup _{\|x\|_{2}=1}\|A x\|_{2}=\max _{i}\left\{\left(\lambda_{i}\left(A^{*} A\right)\right)^{1 / 2}\right\}=\bar{\sigma}(A) \tag{A.80}
\end{equation*}
$$

where $\bar{\sigma}(A)$ denotes the largest singular value of A. Using the inequalities that are axiomatically true for induced norms, it is possible to establish relations between singular values of various matrices that are useful in MIMO control design. The significance of the singular values of a gain matrix $A(j w)$ is discussed later in this section.

There is an interesting relation between the eigenvalues and the singular values of a (square) matrix. Let $\lambda_{i}, i=1, \ldots, n$ denote the eigenvalues of $A \in R^{n \times n}$, let $\underline{\lambda}(A)=\min _{i}\left|\lambda_{i}\right|$, and let $\bar{\lambda}(A)=\max _{i}\left|\lambda_{i}\right|$. Then

$$
\begin{equation*}
\underline{\sigma}(A) \leq \underline{\lambda}(A) \leq \bar{\lambda}(A) \leq \bar{\sigma}(A) \tag{A.81}
\end{equation*}
$$

Note that the ratio $\bar{\sigma}(A) / \underline{\sigma}(A)$, i.e., the ratio of the largest and smallest singular values of A, is called the condition number of A, and is denoted by $\operatorname{cond}(A)$. This is a very useful measure of how well conditioned a system of linear algebraic equations $A x=b$ is (refer to the discussion of the previous section). The singular values provide a reliable way of determining how far a square matrix is from being singular, or a nonsquare matrix is from losing rank. This is accomplished by examining how close to zero $\underline{\sigma}(A)$ is. In contrast, the eigenvalues of a square matrix are not a good indicator of how far the matrix is from being singular, and a typical example in the literature to illustrate this point is an $n \times n$ lower triangular matrix A with -1 's on the diagonal and +1 's everywhere else. In this case, $\underline{\sigma}(A)$ behaves as $1 / 2^{n}$ and the matrix is nearly singular for large n, whereas all of its eigenvalues are at -1 . In fact, it can be shown that by adding $1 / 2^{n-1}$ to every element in the first column of A results in an exactly singular matrix (try it for $n=2$).

Singular Value Decomposition

Let $A \in C^{m \times n}$ with $\operatorname{rank} A=r \leq \min (m, n)$. Let $A^{*}=\bar{A}^{T}$, the complex conjugate transpose of A.

Theorem A.37. There exist unitary matrices $U \in C^{m \times n}$ and $V \in C^{n \times n}$ such that

$$
\begin{equation*}
A=U \Sigma V^{*} \tag{A.82}
\end{equation*}
$$

 selected so that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$.

Proof. For the proof, see for example, Golub and Van Loan [7], and Patel et al. [11].

Let $U=\left[U_{1}, U_{2}\right]$ with $U_{1} \in C^{m \times r}, U_{2} \in C^{m \times(m-r)}$ and $V=\left[V_{1}, V_{2}\right]$ with $V_{1} \in C^{n \times r}, V_{2} \in C^{n \times(n-r)}$. Then

$$
\begin{equation*}
A=U \Sigma V^{*}=U_{1} \Sigma_{r} V_{1}^{*} . \tag{A.83}
\end{equation*}
$$

Since U and V are unitary, we have

$$
U^{*} U=\left[\begin{array}{c}
U_{1}^{*} \tag{A.84}\\
U_{2}^{*}
\end{array}\right]\left[U_{1}, U_{2}\right]=I_{m}, U_{1}^{*} U_{1}=I_{r}
$$

and

$$
V^{*} V=\left[\begin{array}{c}
V_{1}^{*} \tag{A.85}\\
V_{2}^{*}
\end{array}\right]\left[V_{1}, V_{2}\right]=I_{n}, V_{1}^{*} V_{1}=I_{r}
$$

Note that the columns of U_{1} and V_{1} determine orthonormal bases for $\mathcal{R}(A)$ and $\mathcal{R}\left(A^{*}\right)$, respectively. Now

$$
\begin{equation*}
A A^{*}=\left(U_{1} \Sigma_{r} V_{1}^{*}\right)\left(V_{1} \Sigma_{r} U_{1}^{*}\right)=U_{1} \Sigma_{r}^{2} U_{1}^{*} \tag{A.86}
\end{equation*}
$$

from which we have

$$
\begin{equation*}
A A^{*} U_{1}=U_{1} \Sigma_{r}^{2} U_{1}^{*} U_{1}=U_{1} \Sigma_{r}^{2} \tag{A.87}
\end{equation*}
$$

If $u_{i}, i=1, \ldots, r$, is the i th column of U_{1}, i.e., $U_{1}=\left[u_{1}, u_{2}, \ldots, u_{r}\right]$, then

$$
\begin{equation*}
A A^{*} u_{i}=\sigma_{i}^{2} u_{i}, \quad i=1, \ldots, r \tag{A.88}
\end{equation*}
$$

This shows that the σ_{i}^{2} are the r nonzero eigenvalues of $A A^{*}$; i.e., $\sigma_{i}, i=$ $1, \ldots, r$, are the nonzero singular values of A. Furthermore, $u_{i}, i=1, \ldots, r$, are the eigenvectors of $A A^{*}$ corresponding to σ_{i}^{2}. They are the left singular vectors of A. Note that the u_{i} are orthonormal vectors (in view of $U_{1}^{*} U_{1}=I_{r}$). Similarly,

$$
\begin{equation*}
A^{*} A=\left(V_{1} \Sigma_{r} U_{1}^{*}\right)\left(U_{1} \Sigma_{r} V_{1}^{*}\right)=V_{1} \Sigma_{r}^{2} V_{1}^{*} \tag{A.89}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
A^{*} A V_{1}=V_{1} \Sigma_{r}^{2} V_{1}^{*} V_{1}=V_{1} \Sigma_{r}^{2} \tag{А.90}
\end{equation*}
$$

If $v_{i}, i=1, \ldots, r$, is the i th column of V_{1}, i.e., $V_{1}=\left[v_{1}, v_{2}, \ldots, v_{r}\right]$, then

$$
\begin{equation*}
A^{*} A v_{i}=\sigma_{i}^{2} v_{i}, \quad i=1,2, \ldots, r . \tag{A.91}
\end{equation*}
$$

The vectors v_{i} are the eigenvectors of $A^{*} A$ corresponding to the eigenvalues σ_{i}^{2}. They are the right singular vectors of A. Note that the v_{i} are orthonormal vectors (in view of $V_{1}^{*} V_{1}=I_{r}$).

The singular values are unique, whereas the singular vectors are not. To see this, consider

$$
\widehat{V}_{1}=V_{1} \operatorname{diag}\left(e^{j \theta_{i}}\right) \quad \text { and } \quad \widehat{U}_{1}=U_{1} \operatorname{diag}\left(e^{-j \theta_{i}}\right) .
$$

Their columns are also singular vectors of A.

Note also that $A=U_{1} \Sigma_{r} V_{1}^{*}$ implies that

$$
\begin{equation*}
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{*} \tag{A.92}
\end{equation*}
$$

The significance of the singular values of a gain matrix $A(j w)$ is now briefly discussed. This is useful in the control theory of MIMO systems. Consider the relation between signals y and v, given by $y=A v$. Then

$$
\max _{\|v\|_{2} \neq 0} \frac{\|y\|_{2}}{\|v\|_{2}}=\max _{\|v\|_{2} \neq 0} \frac{\|A v\|_{2}}{\|v\|_{2}}=\bar{\sigma}(A)
$$

or

$$
\begin{equation*}
\max _{\|v\|_{2}=1}\|y\|_{2}=\max _{\|v\|_{2}=1}\|A v\|_{2}=\bar{\sigma}(A) \tag{A.93}
\end{equation*}
$$

Thus, $\bar{\sigma}(A)$ yields the maximum amplification, in energy terms (2-norm), when the transformation A operates on a signal v. Similarly,

$$
\begin{equation*}
\min _{\|v\|_{2}=1}\|y\|_{2}=\min _{\|v\|_{2}=1}\|A v\|_{2}=\underline{\sigma}(A) . \tag{A.94}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\underline{\sigma}(A) \leq \frac{\|A v\|_{2}}{\|v\|_{2}} \leq \bar{\sigma}(A) \tag{A.95}
\end{equation*}
$$

where $\|v\|_{2} \neq 0$. Thus the gain (energy amplification) is bounded from above and below by $\bar{\sigma}(A)$ and $\underline{\sigma}(A)$, respectively. The exact value depends on the direction of v.

To determine the particular directions of vectors v for which these (max and min) gains are achieved, consider (A.92) and write

$$
\begin{equation*}
y=A v=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{*} v \tag{A.96}
\end{equation*}
$$

Notice that $\left|v_{i}^{*} v\right| \leq\left\|v_{i}\right\|\|v\|=\|v\|$, since $\left\|v_{i}\right\|=1$, with equality holding only when $v=\alpha v_{i}, \alpha \in C$. Therefore, to maximize, consider v along the singular value directions v_{i} and let $v=\alpha v_{i}$ with $|\alpha|=1$ so that $\|v\|=1$. Then in view of $v_{i}^{*} v_{j}=0, i \neq j$ and $v_{i}^{*} v_{j}=1, i=j$, we have that $y=A v=\alpha A v_{i}=\alpha \sigma_{i} u_{i}$ and $\|y\|_{2}=\|A v\|_{2}=\sigma_{i}$, since $\left\|u_{i}\right\|_{2}=1$. Thus, the maximum possible gain is σ_{1}; i.e., $\max _{\|v\|_{2}=1}\|y\|_{2}=\max _{\|v\|_{2}=1}\|A v\|_{2}=\sigma_{1}(=\bar{\sigma}(A))$, as was shown above. This maximum gain occurs when v is along the right singular vector v_{1}. Then $A v=A v_{1}=\sigma_{1} u_{1}=y$ in view of (A.92); i.e., the projection is along the left singular vector u_{1}, also of the same singular value σ_{1}. Similarly, for the minimum gain, we have $\sigma_{r}=\underline{\sigma}(A)=\min _{\|v\|_{2}=1}\|y\|_{2}=\min _{\|v\|_{2}=1}\|A v\|_{2}$; in which case, $A v=A v_{r}=\sigma_{r} u_{r}=y$.

Additional interesting properties include

$$
\begin{align*}
& \mathcal{R}(A)=\mathcal{R}\left(U_{1}\right)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\} \tag{А.97}\\
& \mathcal{N}(A)=\mathcal{R}\left(V_{2}\right)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\} \tag{A.98}
\end{align*}
$$

where $U=\left[u_{1}, \ldots, u_{r}, u_{r+1}, \ldots, u_{m}\right]=\left[U_{1}, U_{2}\right], V=\left[v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}\right]$ $=\left[V_{1}, V_{2}\right]$.

A.9.3 Least-Squares Problem

Consider now the least-squares problem where a solution x to the system of linear equations $A x=b$ is to be determined that minimizes $\|b-A x\|_{2}$. Write $\min _{x}\|b-A x\|_{2}^{2}=\min _{x}(b-A x)^{T}(b-A x)=\min _{x}\left(x^{T} A^{T} A x-2 b^{T} A x+b^{T} b\right)$. Then $\nabla_{x}\left(x^{T} A^{T} A x-2 b^{T} A x+b^{T} b\right)=2 A^{T} A x-2 A^{T} b=0$ implies that the x, which minimizes $\|b-A x\|_{2}$, is a solution of

$$
\begin{equation*}
A^{T} A x=A^{T} b \tag{A.99}
\end{equation*}
$$

Rewrite this as $V_{1} \Sigma_{r}^{2} V_{1}^{T} x=\left(U_{1} \Sigma_{r} V_{1}^{T}\right)^{T} b=V_{1} \Sigma_{r} U_{1}^{T} b$ in view of (A.89) and (A.83). Now $x=V_{1} \Sigma_{r}^{-1} U_{1}^{T} b$ is a solution. To see this, substitute and note that $V_{1}^{T} V_{1}=I_{r}$. In view of the fact that $\mathcal{N}\left(A^{T} A\right)=\mathcal{N}(A)=\mathcal{R}\left(V_{2}\right)=$ $\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}$, the complete solution is given by

$$
\begin{equation*}
x_{w}=V_{1} \Sigma_{r}^{-1} U_{1}^{T} b+V_{2} w \tag{A.100}
\end{equation*}
$$

for some $w \in R^{m-r}$. Since $V_{1} \Sigma_{r}^{-1} U_{1}^{T} b$ is orthogonal to $V_{2} w$ for all w,

$$
\begin{equation*}
x_{0}=V_{1} \Sigma_{r}^{-1} U_{1}^{T} b \tag{A.101}
\end{equation*}
$$

is the optimal solution that minimizes $\|b-A x\|_{2}$.
The Moore-Penrose pseudo-inverse of $A \in R^{m \times n}$ can be shown to be

$$
\begin{equation*}
A^{+}=V_{1} \Sigma_{r}^{-1} U_{1}^{T} . \tag{A.102}
\end{equation*}
$$

We have seen that $x=A^{+} b$ is the solution to the least-squares problem. It can be shown that this pseudo-inverse minimizes $\left\|A A^{+}-I_{m}\right\|_{F}$, where $\|A\|_{F}$ denotes the Frobenius norm of A, which is equal to the square root of trace $\left[A A^{T}\right]=\sum_{i=1}^{m} \lambda_{i}\left(A A^{T}\right)=\sum_{i=1}^{m} \sigma_{i}^{2}(A)$. It is of interest to note that the Moore-Penrose pseudo-inverse of A is defined as the unique matrix that satisfies the conditions (i) $A A^{+} A=A$, (ii) $A^{+} A A^{+}=A^{+}$, (iii) $\left(A A^{+}\right)^{T}=$ $A A^{+}$, and (iv) $\left(A^{+} A\right)^{T}=A^{+} A$.

Note that if $\operatorname{rank} A=m \leq n$ then it can be shown that $A^{+}=A^{T}\left(A A^{T}\right)^{-1}$; this is, in fact, the right inverse of A, since $A\left(A^{T}\left(A A^{T}\right)^{-1}\right)=I_{m}$. Similarly, if $\operatorname{rank} A=n \leq m$, then $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$, the left inverse of A, since $\left(\left(A^{T} A\right)^{-1} A^{T}\right) A=I_{n}$.

Singular values and singular value decomposition are discussed in a number of references. See for example, Golub and Van Loan [7], Patel et al. [11], Petkov et al. [12], and DeCarlo [5].

A. 10 Notes

Standard references on linear algebra and matrix theory include Birkhoff and MacLane [4], Halmos [8], and Gantmacher [6]. Our presentation in this appendix follows Michel and Herget [9]. Conditioning and numerical stability of a problem are key issues in the area of numerical analysis. Our aim in Section A. 9 was to make the reader aware that depending on the problem, the numerical considerations in the calculation of a solution may be nontrivial. These issues are discussed at length in many textbooks on numerical analysis. Examples of good books in this area include Golub and Van Loan [7] and Stewart [13] where matrix computations are emphasized. Also, see Petkov et al. [12] and Patel et al. [11] for computational methods with emphasis on system and control problems. For background on the theory of algorithms, optimization algorithms, and their numerical properties, see Bazaraa et al. [2] and Bertsekas and Tsitsiklis [3].

References

1. P.J. Antsaklis and A.N. Michel, Linear Systems, Birkhäuser, Boston, MA, 2006.
2. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming Theory and Algorithms, 2nd edition, Wiley, New York, NY, 1993.
3. D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed ComputationNumerical Methods, Prentice Hall, Englewood Cliffs, NJ, 1989.
4. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan, New York, NY, 1965.
5. R.A. DeCarlo, Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1989.
6. F.R. Gantmacher, Theory of Matrices, Vols. I and II, Chelsea Publications, New York, NY, 1959.
7. G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, MD, 1983.
8. P.R. Halmos, Finite Dimensional Vector Spaces, D. Van Nostrand, Princeton, NJ, 1958.
9. A.N. Michel and C.J. Herget, Applied Algebra and Functional Analysis, Dover, New York, NY, 1993.
10. R.K. Miller and A.N. Michel, Ordinary Differential Equations, Academic Press, New York, NY, 1982.
11. R.V. Patel, A.J. Laub, and P.M. VanDooren, Eds., Numerical Linear Algebra Techniques for Systems and Control, IEEE Press, Piscataway, NJ, 1993.
12. P.Hr. Petkov, N.D. Christov, and M.M. Konstantinov, Computational Methods for Linear Control Systems, Prentice Hall-International Series, Englewood Cliffs, NJ, 1991.
13. G.W. Stewart, Introduction to Matrix Computations, Academic Press, New York, NY, 1973.

Solutions to Selected Exercises

Exercises of Chapter 1

$1.10 \Delta \dot{x}=\left(k_{1} k_{2} / L\right) \Delta x+k_{2} \Delta u, \Delta y=\left(k_{1} / L\right) \Delta x$ where $L=2 \sqrt{k}-k_{1} k_{2} t$.
1.12 (a) $\left[\begin{array}{l}\Delta \dot{x}_{1} \\ \Delta \dot{x}_{2}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}\Delta x_{1} \\ \Delta x_{2}\end{array}\right]$.
(b) $x_{1}=x, x_{2}=\dot{x}$
$\left[\begin{array}{l}\Delta \dot{x}_{1} \\ \Delta \dot{x}_{2}\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ 0 & -3\end{array}\right]\left[\begin{array}{l}\Delta x_{1} \\ \Delta x_{2}\end{array}\right]+\left[\begin{array}{r}0 \\ -1\end{array}\right] \Delta u$.
$1.13 x_{1}=\phi, x_{2}=\dot{\phi}, x_{3}=s, x_{4}=\dot{s}$

$$
\left[\begin{array}{c}
\Delta \dot{x}_{1} \\
\Delta \dot{x}_{2} \\
\Delta \dot{x}_{3} \\
\Delta \dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{g}{L^{\prime}} & 0 & 0 & \frac{F}{L^{\prime} M} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -\frac{F}{M}
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta x_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\frac{1}{L^{L^{\prime} M}} \\
0 \\
\frac{1}{M}
\end{array}\right] \Delta \mu .
$$

Exercises of Chapter 2

2.4 (b) Not linear; time-invariant; causal.
2.5 Causal; linear; not time-invariant.
2.6 Noncausal; linear; time-invariant.
2.7 Not linear.
2.8 Noncausal; time-invariant.
2.9 Noncausal; nonlinear (affine).
$2.10 y(n)=\sum_{k=-\infty}^{\infty} u(l)[s(n, l)-s(n, l-1)]$, where $s(n, l)=\sum_{l=-\infty}^{\infty} h(n, k)$ $p(k-l)$ is the unit step response of the system.

Exercises of Chapter 3

3.1 (a) $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(1,0,5)$. (b) $\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}\right)=(s, 2, s+1 / s)$.
$3.2 a=[1,0,-2]^{T}, \bar{a}=[0,1 / 2,1 / 2]$.
3.3 A basis is $\left\{(1, \alpha)^{T}\right\}, \alpha \in R$.
3.4 It is a vector space of dimension n^{2}. The set of nonsingular matrices is not a vector space since closure of matrix addition is violated.
3.5 Dependent over the field of rational functions; independent over the field of reals.
3.6 (a) Rank is 1 over complex numbers. (b) 2 over reals. (c) 2 over rational functions. (d) 1 over rational functions.
3.8 Directly, from the series definition of $e^{A t}$ or using system concepts.
3.9 See also Subsection 6.4.1.
$3.11\left(\lambda_{i}^{k}, v^{i}\right)$ is an (eigenvalue, eigenvector) pair of A^{k}. Then $f(A) v^{i}=$ $f\left(\lambda_{i}\right) v^{i}$.
3.13 Substitute $x(t)=\Phi\left(t, t_{0}\right) z(t)$ into $\dot{x}=A(t) x+B(t) u$.
3.14 Take derivatives of both sides of $\Phi(t, \tau) \Phi(\tau, t)=I$ with respect to τ.
3.19 Verify that $\Phi(t, 0)=e^{A t}$ is the solution of $\Phi(t, 0)=A \Phi(t, 0), \Phi(0,0)=I$.
3.21 Use Exercise 3.19. $x_{1}^{2}+x_{2}^{2}=2=(\sqrt{2})^{2}$, so trajectory is a circle.
$3.22 x(0)=[1,1]^{T}$ is colinear to the eigenvector of eigenvalue 1 , and so e^{t} is the only mode that appears in the solution.
3.23 (a) Take $t=0$ in the expression for $e^{A t}$.
3.25 (a) $x(0)=[-1,1,0]^{T}$.
$3.30(I-A) x(0)=B u(0) ; u(0)=2$.

Exercises of Chapter 4

4.1 Set of equilibria is $\left\{(-4 v, v, 5 v)^{T}: v \in R\right\}$.
4.2 Set of equilibria is $\left\{\left(\frac{1}{k \pi}, 0\right)^{T}: k \in \mathcal{N} \backslash\{0\}\right\} \cup\left\{(0,0)^{T}\right\}$.
$4.3 x=0$ is uniformly asymptotically stable; $x=1$ is unstable.
$4.5 \quad A>0$.
4.7 $x=0$ is exponentially stable; $x=1$ is unstable.
4.9 Uniformly BIBO stable.
4.10 (a) Set of equilibria $\left\{(\alpha,-\alpha)^{T} \in \mathcal{R}^{2}: \alpha \geq 0\right\}$. (b) No equilibrium.
$4.12 x=0$ is stable.
$4.13 x=0$ is stable.
$4.14 x=0$ is not stable.
$4.15 x=0$ is not stable.
4.18 (a) $x=0$ is stable. (b) $x=0$ is stable.
$4.21 x=0$ is unstable.
4.22 Not BIBO stable. Theorem cannot be applied.

Exercises of Chapter 5

5.2 (a) Controllable from u, observable from y. (b) when $u_{1}=0$, controllable from u_{2}; when $u_{2}=0$, not controllable from u_{1}. (c) not observable from y_{1}; observable from y_{2}.
5.3 (a) Use $u(t)=B^{T} e^{A^{T}(T-t)} W_{r}^{-1}(0, T)\left(x_{1}-e^{A T} x_{0}\right)$.
5.4 (a) It can be reached in two steps, with $u(0)=3, u(1)=-1$.
(b) Any $x=(b, a, a)^{T}$ will be reachable. $a, b \in R$.
(c) $x=(0,0, a)^{T}$ unobservable. $a \in R$.
5.10 (a) $u(0)=-1, u(1)=2$; (b) $y(1)=(1,2)^{T} u(0)$.
$5.11 x_{0}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, \alpha \in R$.

Exercises of Chapter 6

6.2 (b) $\lambda=3$ uncontrollable (first pair); $\lambda=-1$ uncontrollable (second pair).
6.3 Controllability indices are 1,3 .
6.7 Use controller form or Sylvester's Rank Inequality.
6.13 (a) It is controllable. (b) It is controllable from f_{1} only. (c) It is observable.

Exercises of Chapter 7

7.1 Use the standard form for uncontrollable systems.
$7.5 \lambda_{1}=1$ is both controllable and observable, $\lambda_{2}=-\frac{1}{2}$ is uncontrollable but observable, and $\lambda_{3}=-\frac{1}{2}$ is controllable but unobservable.
7.6 (a) $\lambda=2$ is uncontrollable and unobservable. (b) $H(s)=\frac{1}{s+1}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
(c) It is not asymptotically stable, but it is BIBO stable.
7.7 (a) $p_{H}(s)=s^{2}(s+2), m_{H}(s)=s(s+2)$. (b) $z_{H}(s)=1$.
7.8 (a) $p_{H}(s)=s^{3}=m_{H}(s)$. (b) $z_{H}(s)=1$.
7.10 (a) They are rc. (b) They are not lc; a glcd is $\left[\begin{array}{ll}s & 0 \\ 0 & 1\end{array}\right]$.
7.13 (a) It is uncontrollable and unobservable.
(b) $H(s)=\frac{2}{s+1}\left[\begin{array}{rr}-1 & 2 \\ 0 & 0\end{array}\right]$.

Exercises of Chapter 8

$8.4 p_{H}=s^{2}-1$; McMillan degree is 2 .
8.6 (a) $p_{H}(s)=s(s+1)(s+3)$; McMillan degree is 3 .
(b) $A=\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right], C=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -1 & 1\end{array}\right], D=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$.
8.10 (a) $p_{H}(s)=s^{2}(s+1)^{2}$ so the order of any minimal realization is 4 .
(b) Take $u_{1}=0$, and find the McMillan degree, which is 2 . So in a fourth order realization, system will not be controllable from u_{2} only. System will be observable from y_{1}.
$8.12 p_{H}(s)=s^{3}$, and so 3 is the order of any minimal realization. A minimal realization is $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C=\left[\begin{array}{llr}0 & 1 & -1 \\ 1 & 1 & 0\end{array}\right], D=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.

Exercises of Chapter 9

9.4 $F=g f, g=(0,1)^{T}, f=\left(\begin{array}{lll}-11 & -19 & -12 ;-10)\end{array}\right.$ (after reducing the system to single-input controllable).
9.6 (a) $G=\frac{1}{2}, F=\left[-2,-\frac{7}{2},-\frac{5}{2}\right]$. (b) controllable but unobservable.
9.9 (a) Let $x_{1}=\theta, x_{2}=\dot{\theta}$. Then $A=\left[\begin{array}{rr}0 & 1 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right], C=\left[\begin{array}{ll}1 & 0\end{array}\right]$.
(b) $F=[-1,-1]$.
9.11 $F=[-3.7321,-6,4641]$ minimizes J_{1}.
9.12 (a) $F=\left[\frac{3}{2}, 1\right]$. (b) $K=\left[2 \alpha, \alpha^{2}+2\right]^{T}$.
9.13 (a) $\mathcal{O} E=0$. (b) $E=\alpha(1,-1)^{T}$.
$9.14 F=-\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$.
9.15 (a) $x_{0}=-(\lambda I-A)^{-1} B$; If λ is a zero of $H(s)$, a pole-zero cancellation will occur. (b) $x_{0}=\alpha v$, where v is the eigenvector corresponding to λ.

Exercises of Chapter 10

10.1 (a) For $X_{1}=\widetilde{X}_{1}=0, Y_{1}=\widetilde{Y}_{1}=1, H_{2}=\left(1+s^{2} K\right) / K$, where K is any stable rational function. Alternatively, for $X_{1}^{\prime}=\widetilde{X}_{1}^{\prime}=\left(s^{2}+8 s+24\right) /(s+2)^{2}$, $Y_{1}^{\prime}=\widetilde{Y}_{1}^{\prime}=(32 s+16) /(s+2)^{2}, N_{1}^{\prime}=\widetilde{N}_{1}^{\prime}=1 /(s+2)^{2}, D_{1}^{\prime}=\widetilde{D}_{1}^{\prime}=s^{2} /(s+2)^{2}$, and $H_{2}=\left(32 s+16-s^{2} K^{\prime}\right) /\left(s^{2}+8 s+24-K^{\prime}\right)$, where K^{\prime} is any proper and stable rational function.
(b) In general, it is not easy (or may be impossible) to restrict appropriately K or K^{\prime}, so H_{2} is of specific order. Here let $H_{2}=\left(b_{1} s+b_{0}\right) /\left(s+a_{0}\right)$ and establish conditions on the parameters so that the closed-loop system is stable.
10.4 (b) $N^{\prime-1} T=X^{\prime}$, a proper and stable function, implies conditions on n_{i}, d_{i} of T.
10.5 (a) In view of the hint, $N^{-1} T=1 /(s+2)^{2}=1 / G^{-1} D_{F}$, from which $G=2, F(s)=F S(s)=[-6,-11][1, s]^{T}$.

Index

A/D, analog-to-digital converter, 117
Abel's formula, 80
Ackermann's formula, 361, 382, 401
Adjoint equation, 132, 133
Adjoint of a matrix, 487
Algebraic multiplicity, 475, see also Eigenvalue
Asymptotic behavior, 94, 121, see also Mode of system
Asymptotic state estimator, see State observer
Automobile suspension system, 140
Autonomous, 10, see also Linear ordinary differential equation; System
Axioms
of a field, 455
of a norm, 483
of a vector space, 456
Basis, see Vector space
BIBO stable, 170, 174, 187, 189, see also Stability
Biproper, 427, see also Rational function

Canonical form, 471
Jordan, 88, 478-481
Canonical Structure Theorem, 245, 269, see also Kalman's Decomposition Theorem
Cauchy-Peano existence theorem, 18
Cayley-Hamilton Theorem, 91, 127, 475
Characteristic
equation, 474
polynomial, 474,
see also Matrix; Transfer function
value, see Eigenvalue
vector, see Eigenvector
Cholesky decomposition, 490
Circuit, 14, 279, 286, 291
Closed-loop control, 353, 400
Cofactor, 486, see also Matrix
Command input, see Reference input
Companion form matrix, 137
Condition number, 489, see also Matrix
Constructibility, 222, 230, see also Observability continuous-time system, 222-224
discrete-time system, 202, 228
Gramian, 223
Continuous function
at a point, 7
over an interval, 7
uniformly, 7
Control problems, 445
Controllability (-to-the-origin), 209, 210, 230, 303, 307
continuous-time system, 209, 230
discrete-time system, 216
eigenvalue/eigenvector (PBH) test, 248
from the origin, see Reachability
Gramian, 210
indices, 256

Controllability (Cont'd)
matrix, 197, 206, 230
output, 234
Controllable (-to-the-origin), 199, 209, 230
companion form, see Controller form
eigenvalues, 240
mode, 240
single-input, 405
subspace, 209
Controller
digital, 116
feedback, 352, 411
implementations, 439
with two degrees of freedom, 431, 448
Controller form, 251, 270
multi-input, 256, 270
single-input, 252, 270
Converter(A/D, D/A), 117
Convolution
integral, 69
sum, 62
Coprime, 299, 301, 307, 423, 448,
see also Polynomial matrices
D/A, digital-to-analog converter, 117
Deadbeat
control, 136
observer, 388
Decoupling
diagonal, 446, 449
static, 447, 449
Degree, McMillan, 321, 345
Detectable, 380
Determinant, 486,
see also Matrix
Determinantal divisor, 283
Diagonal decoupling, 446, 449
Difference equations, 51 ,
see also Solutions of difference equations
Differential equations, ordinary,
see also Solutions of differential equations
classification, 10
first-order, 9
linear, 20, 21
linear homogeneous, 11, 12, 28
linear homogeneous with constant coefficients, 11, 12, 78
linear nonhomogeneous, 11, 12, 30, 78
n th-order, 11
systems of first-order, 10
Digital signal, 117
Diophantine equation, 424, 427, 447
all solutions, 424, 429
Bezout identity, 427
Dirac delta distribution, 65, 66, 73, 92
Direct link matrix, 105
Discrete-time impulse, 60
Discrete-time Kalman filter, 391, see also Kalman filter
Divisor, common, 298
Domain of attraction, 166, see also Equilibrium
Double integrator, 120, 139
Doubly coprime, 423, 448, 450, see also Coprime
Dual system, 203, 232

Eigenvalue, 474
algebraic multiplicity, 475
controllable, 240
critical, 152
geometric multiplicity, 475
multiple, 475
observable, 243
Eigenvalue or pole assignment, 357, 401
direct method, 358, 400
eigenvector assignment, 364, 401
using controller form, 359, 401
Eigenvector, 474
generalized, 479
Equilibrium, 124, 129, 142, 174, 188,
see also Stability
attractive, 145
domain of attraction, 145
qualitative characterization, 144
trivial solution, 143
Equivalence
of internal representations, 105, 115, 303
of matrices, 473
zero-input, 107
zero-state, 107
Estimator, see State observer
Euclidean
norm, 484

Euler
method, 38
External input, 352
Feedback
configuration, 413
control, 411
gain matrix, 352
output, 351, 392, 411
state, 351, 400
Feedback stabilizing controller, 422, 448
parameterizations, polynomial MFD, 423, 448
parameterizations, proper and stable MFD, 426, 448
two degrees of freedom, 434, 449
Field, 455
Frequency response, 138
Function, 7
continuous, 7
Hamiltonian, 34
indefinite, 155
piecewise continuous, 8,31
positive definite, semidefinite, 155
Fundamental matrix, 78-81, 127
Fundamental theorem of linear equations, 466

Gaussian elimination, 490
Generalized distance function, 154, see also Lyapunov function
Generalized eigenvector, 479
Generalized energy function, 154, see also Lyapunov function
Generalized function, 66, see also Dirac delta distribution
Geometric multiplicity, 475, see also Eigenvalue
Gram
matrix, 211
Gramian
constructibility, 223
controllability, 210
observability, 220, 231
reachability, 206, 230
Hamiltonian
dynamical systems, 34
function, 34
matrix, 372

Hamiltonian matrix, 377
Hankel matrix, 322, 345
Harmonic oscillator, 134
Hermite form, 299, 301
Hölder's Inequality, 458
Hurwitz matrix, 165
Hybrid system, 118
Ill conditioned, 489
Impulse response
continuous-time, 70, 71, 73
discrete-time, 64, 72
Impulse response matrix, 64, 68, 70, 71
Indices
controllability, 256
observability, 265
Infinite series method, 87, 127,
see also Matrix, exponential
Initial conditions, 5, 6
Initial time, 5, 6
Initial-value problem, 8, 11, 32, 51
examples, 13
solutions, 17
Input
command or reference, 352
comparison sensitivity matrix, 436
decoupling zeros, 287, 305
external, 352
function observability, 235
output decoupling zeros, 288, 305
vector, 5
Input-output description, see System representations, descriptions
Instability, 160
Integral equation, 10
Integral representation, 65
Integration, forward rectangular rule, 38
Internal description, see System representations, descriptions
Internal stability, 144-169, 173-186, 188
Invariant factors, polynomials, 283
Invariant property of $(A, B), 260$
Invariant subspace, 209, 227
Inverted pendulum, 43, see also Pendulum

Jacobian matrix, 21, 32
Jordan canonical form, 88, 478-481

Kalman filter
continuous-time, 385
discrete-time, 391
Kalman-Bucy filter, 385
Kalman's Decomposition Theorem, 245, 269

Lagrange's equation, 35
Lagrangian, 36
Laplace transform, 92, 127
Least-order realization, 318
Least-squares, 491
Leonhard-Mikhailov stability criterion, 190
Level curve, 157, see also Lyapunov function
Lienard equation, 15, 167
Limit cycle, 42
Linear algebraic equation
fundamental theorem, 466
solutions, 469, 488
Linear operator, see Linear transformation
Linear ordinary difference equations, 52, 53
Linear ordinary differential equation, see also Solutions of differential equations
autonomous, 10
homogeneous, 11, 12, 28
matrix, 80
nonhomogeneous, $11,12,30$
periodic, 10, 12
Linear space, see Vector space
Linear system, 57
Linear transformation, 464
fundamental theorem, 466
null space, 465
nullity, 466
orthogonal, 491
principle of superposition, 50
range space, 466
representation by a matrix, 466
Linearization, 6, 21, 32, 164, 185, 189
examples, 24
Linearized equation, 22, 23, 32
Linearly dependent, 461, 462,
see also Vector
Linearly independent, 210, 461, 462,
see also Vector
Lipschitz condition, 18, 20
LQG (linear quadratic Gaussian) problem, 385, 402, 403
LQR (linear quadratic regulator) problem
continuous-time, 369
discrete-time, 377, 401
LU decomposition, 490
Luenberger observer, 379, 402
Lyapunov function, 154, 183
construction of, 160
level curve, 157
Lyapunov matrix equation, 153, 179, 189
Lyapunov stability, 144, 148, 188, 189, see also Stability
Lyapunov's Direct or Second Method, 153

Markov parameter, 137, 315, 322, 345
Matrix
characteristic polynomial, 474
Cholesky decomposition, 490
cofactor, 486
companion form, 137
condition number, 489
controllability, 197, 230
determinant, 486
diagonal, 478
equivalent, 473
exponential, 85, 127
fundamental, 80
Gram, 211
Hamiltonian, 372, 377
Hankel, 322, 345
Hermite form, 299, 301
Hermitian, 491
Hurwitz, 165
ill conditioned, 489
impulse response, 64, 68, 70, 71
indefinite, 154
inverse, 487
Jacobian, 21, 32
Jordan, 478-481
LU decomposition, 490
minimal polynomial, 477
minor, 155, 284, 307, 486
Moore-Penrose inverse, 496

Matrix (Cont'd)
negative definite, semidefinite, 154
nonsingular, 487
norm, 485
observability, 220, 231
orthogonal, 491
positive definite, semidefinite, 154
proper rational, 105
QR decomposition, 490
rank, 469
Rosenbrock system, 286, 305
Schur stable, 178
similar, 473
Smith form, 283
Smith-McMillan form, 284, 307
state transition, 82, 109, 127
symmetric, 154, 491
system, 286, 305
Toeplitz, 227
unimodular, 283
unitary, 491
well conditioned, 489
Matrix fractional description, 293, 297, 308,
see also System representations, descriptions
McMillan degree, 321, 345
MIMO system multi-input/multioutput, 56
Minimal polynomial, 284, 477
Minkowski's Inequality, 458
Mode of system, 95, 122, 127, see also System
Model matching problem, 446, 449, 452
Modeling, 2
Moore-Penrose pseudo-inverse, 496
Natural basis, 464,
see also Basis; Vector space
Negative,
see also Function; Matrix
definite, semidefinite, 154
Nonlinear systems, 4, 147, 164, 185, 189
Norm
Euclidean, 484
induced, 485
Manhattan, 484
matrix, 485
taxicab, 484

Observability, 219, 223, 230, 304, 307
continuous-time system, 219, 221, 230
discrete-time system, 226
eigenvalue/eigenvector (PBH) test, 248
Gramian, 220, 231
indices, 265
matrix, 220, 231
subspace, see Unobservable
Observable
eigenvalue mode, 243
Observer, Luenberger, 379, 402,
see also State observer
Observer form, 263, 271
multi-output, 265, 271
single-input, 263, 271
Open-loop control, 353, 400
Operator, linear, see Linear transformation
Optimal
control problem, LQR, 369, 377, 401
estimation problem, LQG, 385, 391, 402, 404
Optimality principle, 403
Orthogonal, 491
matrix, 491
Output
comparison sensitivity matrix, 436
decoupling zeros, 287, 305
equation, 5
function controllability, 235
reachability, controllability, 234
vector, 5

Peano-Baker series, 29, 33, 82
Pendulum
inverted, 43
simple, 17, 24, 45
Phase
plane, 134
portrait, 42
variable, 134
Picard iterations, 20
with successive approximations, 28
Pole assignment problem, 357,
see also Eigenvalue or pole assignment
Pole polynomial, 284, 307
Pole, zero relations, 290, 306

Poles at infinity, 283
Poles of a transfer function, 284
Poles of the system, 283, 306, see also Eigenvalue
Polynomial
monic, 477
Polynomial matrices
coprime, left, right, 299, 301, 307
division algorithm, 476
doubly coprime, 423, 448, 450
greatest common divisors, 298, 300
Hermite form, 299, 301
Smith form, 283
unimodular, 283
Polynomial matrix description, 292,
see also System representations, descriptions
Positive,
see also Function; Matrix
definite, indefinite, semidefinite, 155
Prediction estimator, 389
Predictor-corrector method, 40
Proper transfer function, 105
QR decomposition, 490
Quadratic form, 154
Quantization, 117
Rank, 469
test, 249
Rational function
biproper, 427
proper and stable, 308
Rayleigh's dissipation function, 36
Reachability, 205, 214, 216,
see also Controllability, from the origin
continuous-time system, 205, 230
discrete-time system, 198, 214, 230
Gramian, 206, 230
matrix, see Controllability
output, 234
subspace, 206
Reachable, 198, 205, 214, 230,
see also Controllable; Controllability, from the origin
state, 205
subspace, 206
Realization algorithms, 324, 345
controller/observer form, 326, 345
matrix A diagonal, 339, 345
singular-value decomposition, 341, 345
using duality, 324, 345
Realization of systems, 314, 343, 345
existence and minimality, 316, 345
least order, irreducible, minimal order, 318, 321, 345
Reconstructible, see Constructibility
Reference input, 352
Response, 49, 55, 71
maps, 435
total, 100, 111, 128
zero-input, 100, 111
zero-state, 100, 111
Return difference matrix, 421, 422
Riccati equation
continuous-time case, 370, 401
discrete-time case, 386, 402
Rosenbrock system matrix, 286, 305
Routh-Hurwitz stability criterion, 190
Runge-Kutta method, 39
Sampled data system, 116, 129
Sampling period, rate, 119, 129
Scalar, 456
Schur-Cohn stability criterion, 190
Schwarz Inequality, 458
Semigroup property, 109
Sensitivity matrix, 436
Separation principle, property, 395, 403
Shift operator, 75
Signal, digital, 117
Similarity transformation, 105, 474
Singular
value, 491
value decomposition, 493
vector, left, right, 494
SISO system
single-input/single-output, 56
Smith form, 283
Smith-McMillan form, 284, 307
Solutions of algebraic equations, 469, 488
Solutions of difference equations
particular, 55
total, 55
Solutions of differential equations, 9,
see also Variation of constants formula
bounded, 148
continuable, 19
continuation, 18
continuous dependence on initial conditions, 20
continuous dependence on parameters, 19,20
existence, $18,27,33$
homogeneous, 28-30, 53
noncontinuable, 18, 19
particular, 31
Peano-Baker series, 29
predictor-corrector method, 40
Runge-Kutta, 39
successive approximations, Picard iterations, 20, 28
total, 31
Space
of n-tuples, 457
of real-valued continuous functions, 459
span, 461
Spring, 16
Spring mass system, 139
Stability, 124, 129, 141, 148, 304, 307, 419, 427
asymptotic, $124,145,149,150,177$, 178,185
asymptotic in the large, 146, 149, $152,177,180$
attractive equilibrium, 145,175
bounded-input/bounded-output (BIBO), 170, 174, 187, 189
causal, 58, 61, 62, 64, 70, 72, 73
domain of attraction, 145, 175
exponential, $145,150,177$
exponential in the large, 150,152
external, 170
global asymptotic, 150
input-output, 170, 186, 189, 281, 306
linear systems, continuous, 148
linear systems, discrete, 173
Lyapunov, 144, 148, 188, 189, 281, 306
Routh-Hurwitz criterion, 190
Schur-Cohn, 190
Stabilizable, 356

Stable, see Stability
Standard form
Kalman's canonical, 244, 269
uncontrollable system, 238, 269
unobservable system, 241
State
partial, 295
phase variable, 134
variables, 5
vector, 5
State equation, 5
State estimator, see State observer
State feedback, 352, 400,
see also Feedback
eigenvalue assignment, 355, 400
input-output relations, 372
optimal, 369, 377, 401
State observer, 378, 402
current, 389, 402
deadbeat, 388
full-order, 378,387
identity, 379, 387
optimal, 385, 391, 402
partial state, 383,391
prediction, 389
reduced-order, 383,391
State transition matrix, 82, 109
State unconstructible, 222, 223
State unobservable, 220, 223
Structure theorem
controllable version, 261, 270
observable version, 267,271
Successive approximations, Picard iterations, 20, 28, 32,
see also Solutions of differential equations
Superposition principle, 50, 57
Sylvester Rank Inequality, 319, 487
System
at rest, 63,69
autonomous, 10
causal, 58, 72, 73
conservative, 34
continuous-time, 5
discrete-time, 4, 6, 50, 60, 72
distributed parameter, 4
dual, 203, 232
finite-dimensional, 4, 6
Hamiltonian, 35

System (Cont'd)
hybrid, 118
infinite-dimensional, 4
linear, 57
lumped parameter, 4
matrix, 286, 305
memoryless, 57
mode, $95,122,127$
nonanticipative, 58
nonlinear, 4
realization, $314,343,345$
sampled data, 116, 129
single input/single output, 56
time-invariant, 59, 72
time-varying, 59
with memory, 57, 72
System interconnections
feedback, 413, 447
parallel, 411, 447
series, or tandem, 412, 447
System representations, descriptions
balanced, 342, 345
continuous-time, 48
controller form, 251, 257, 270
differential/difference operator, 292, 307
discrete-time, 50
equivalence, of, $105,115,128$
external, 6, 56, 72, 293
input-output, 56, 72, 73
internal, 6, 293
matrix fractional, 293, 297, 308
observer form, 263, 266, 271
polynomial matrix, 292, 295, 307, 308, 416
standard form, uncontrollable, unobservable, 238, 239, 241, 242, 269
state-space, 5
Time reversibility, 109
Toeplitz matrix, 227
Trajectory, 42, 134
Transfer function
McMillan degree, 321, 345
minimal polynomial, 284
pole polynomial, 284
strictly proper, 105
Triangle inequality, 483

Truncation operator, 74
Two degrees of freedom controller, 431, 448

Unconstructible, 227, see also Constructibility subspace, 227
Uncontrollable, see also Controllability eigenvalues, modes, 240, 269
Unimodular matrix, 283
Unit
pulse, or unit impulse, response, 61
pulse, or unit sample, 60
step function, 92
step sequence, 60
Unit impulse, 66, 73
Unity feedback, 441, 443, 449
Unobservable, 219,
see also Observability
eigenvalues, modes, 243
subspace, 219
van der Pol equation, 15, 42
Variation of constants formula, 31, 33, 132
Vector, 456
coordinate representation, 464
linearly dependent, 461, 462
linearly independent, 461, 462
Vector space, 456
basis, 463, 472
dimension, 463
examples, 457
finite-dimensional, 463
normed, 483
null, 465
Youla parameter, 425, 429, 449
z-Transform, 112
Zero, 286, 287, 304, 307
at infinity, 310
decoupling input/output, 288, 305
direction, 292
invariant, 287, 305, 307
of transfer functions, 288, 305, 306
polynomial, 287, 305, 307
system, 287
transmission, 288, 305

Zero-input response, 100, 111, see also Response

Zero-state response, 100, 111, see also Response

Zero-order hold, 117

About the Authors

Panos J. Antsaklis is the H. Clifford and Evelyn A. Brosey Professor of Electrical Engineering and Concurrent Professor of Computer Science and Engineering at the University of Notre Dame. He served as the Director of the Center for Applied Mathematics of the University of Notre Dame from 1999 to 2005. He is a graduate of the National Technical University of Athens (NTUA), Greece and holds MS and Ph.D. degrees from Brown University.

His research addresses problems of control and automation and examines ways to design engineering systems that will exhibit a high degree of autonomy in performing useful tasks. His recent research focuses on networked embedded systems and addresses problems in the interdisciplinary research area of control, computing and communication networks, and on hybrid and discrete-event dynamical systems.

Dr. Antsaklis has authored a number of publications in journals, conference proceedings, and books, and he has edited six books on intelligent autonomous control, hybrid systems, and networked embedded control systems. In addition, he has co-authored the research monographs Supervisory Control of Discrete-Event Systems Using Petri Nets (Kluwer Academic Publishers, 1998, with J. Moody) and Supervisory Control of Concurrent Systems: A Petri Net Structural Approach (Birkhäuser, 2006, with M.V. Iordache) as well as the graduate textbook Linear Systems (McGraw-Hill, 1997, first printing and Birkhäuser, 2005, second printing, with A.N. Michel).

Dr. Antsaklis has been guest editor of special issues of the IEEE Transactions of Automatic Control and the Proceedings of the IEEE on Hybrid and on Networked Control Systems. He serves on the editorial boards of several journals, and he currently serves as Associate-Editor-at-Large of the IEEE Transactions of Automatic Control.

Dr. Antsaklis has served as program chair and general chair of major systems and control conferences including the Conference on Decision and Control, and he was the 1997 President of the IEEE Control Systems Society (CSS). He has been a plenary and keynote speaker at a number of confer-
ences and research workshops and currently serves as the president of the Mediterranean Control Association.

Dr. Antsaklis serves on the Scientific Advisory Board for the Max-PlanckInstitut für Dynamik komplexer technischer Systeme, Magdeburg, Germany. He is currently a member of the subcommittee on Networking and Information Technology of the President's Council of Advisors for Science and Technology (PCAST), which advises the President of the United States on science and technology federal policy issues regarding technology, scientific research priorities, and math and science education.

Dr. Antsaklis is an IEEE Fellow for his contributions to the theory of feedback stabilization and control of linear multivariable systems, a Distinguished Lecturer of the IEEE Control Systems Society, a recipient of the IEEE Distinguished Member Award of the Control Systems Society, and an IEEE Third Millennium Medal recipient. He is the 2006 recipient of the Brown Engineering Alumni Medal from Brown University, Providence, Rhode Island.

Anthony N. Michel received the Ph.D. degree in electrical engineering from Marquette University and the D.Sc. in applied mathematics from the Technical University of Graz, Austria. He has extensive industrial and academic experience with interests in control systems, circuit theory, neural networks, and applied mathematics. His most recent work is concerned with stability analysis of finite- and infinite-dimensional discontinuous dynamical systems. He has held faculty positions at Iowa State University and the University of Notre Dame and visiting faculty positions at the Technical University in Vienna, Austria, the Johannes Kepler University in Linz, Austria, and the Ruhr University in Bochum, Germany. He is currently the Frank M. Freimann Professor of Engineering Emeritus and the Matthew H. McCloskey Dean of Engineering Emeritus at the University of Notre Dame.

Dr. Michel has co-authored ten books and a number of publications in journals, conference proceedings, and books. He is a past Editor-in-Chief of the IEEE Transactions on Circuits and Systems and has held a variety of positions on the editorial boards of the IEEE Transactions on Automatic Control; IEEE Transactions on Neural Networks; Circuits, Systems and Signal Processing; International Journal of Hybrid Systems; Nonlinear Analysis; and other journals. He is a past president of the IEEE Circuits and Systems Society and has been a member of the executive committees of several professional organizations.

Dr. Michel is a Life Fellow of the IEEE. He received three prize paper awards from the IEEE Control Systems Society and the IEEE Circuits and Systems Society. He was awarded the IEEE Centennial Medal (1984), the Golden Jubilee Medal of the IEEE Circuits and Systems Society (1999), and the IEEE Third Millennium Medal (2000). He was a Fulbright Scholar at the Technical University of Vienna (1992), and he received the 1995 Technical Achievement Award of the IEEE Circuits and Systems Society, the Alexander von Humboldt Research Award for Senior U.S. Scientists (1997), the Distin-
guished Member Award of the IEEE Control Systems Society (1998), and the 2005 Distinguished Alumnus Award of the College of Engineering, Marquette University.

