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Chapter 5

Measurability woes

Section 5.1 introduces three ways to overcome measurabilty difficulties that
beset stochastic processes with uncountable index sets.

Section 5.2 explains how to replace supremum and infimum of uncountable
families of random variables by weaker concepts—the essential supremum
and infimum—that restore measurabilty at the cost of a few almost sure
qualifiers.

Section 5.3 describes how to make negligible modifications to each member
of an uncountable set of random variables, with each random variable
being changed on its own negligible set, to produce a version with better
sample path properties.

Section 5.4 describes ways of modifying the classical concept of conver-
gence in distribution to accommodate the measurability difficulties caused by
uncountable index sets.

5.1 The difficulty
Versions::S:intro

Suppose X = {Xt : t ∈ T} is a stochastic process, an indexed set of random
variables all defined on the same probability space (Ω,F,P). If T is count-
able, the typical operations—sums, limits, products, suprema—do not take
us outside the set of all (F-measurable) random variables. If T is uncount-
able, questions of measurability become serious. For example, supt∈T Xt(ω)
need not be F-measurable.

Probabilists have developed several strategies for dealing with the diffi-
culties raised by uncountable T .

(i) Work with outer integrals and measurable cover functions. See Sec-
tions 5.2 and 5.4.
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§5.2 Essential supremum and infimum 2

(ii) Replace each Xt by a new random variable X̃t, also defined on Ω,
for which P{ω : Xt(ω) 6= X̃t(ω)} = 0 for each t ∈ T . Choose the new
variables so that each sample path X̃(ω, ·) is controlled (in some sense)
by its behavior on a fixed, countable subset S of T . See Section 5.3.

(iii) Use the properties of analytic sets to establish measurability for quan-
tities like supt∈T Xt(ω) if (ω, t) 7→ X(ω, t) is product measurable and T
can be identified with an analytic subset of a compact metric space.
For the meaning of “analytic” see Dellacherie and Meyer (1978, Chap-
ter III, no. 1 through 14). See also Dudley (1999, Chapter 5) and
Pollard (1984, Appendix C).

In practice, for specific applications, I have found measurability problems
easily handled by ad hoc approximation arguments using countable subsets
of the index set. I have nothing to say in this book about method (iii),
except that it lies mathematically deeper than the other two methods and
that it becomes essential for a real understanding of stochastic calculus at
the level of rigor of the Métivier (1982) book.

5.2 Essential supremum and infimum
Versions::S:essential

For a fixed probability space (Ω,F,P) write M for the set of all F\B(R)-
measurable maps from Ω into R.

Versions::ess.sup.inf <1> Theorem. For each F ⊆ M there exists a countable subset F0 of F such
that F := supF0 belongs to M and

(i) P{F ≥ f} = 1 for each f ∈ F

(ii) if G is another element of M for which P{G ≥ f} = 1 for each f ∈ F
then P{G ≥ F} = 1.

Proof The defining properties (i) and (ii) are unaffected by a monotone,
one-to-one transformation such as arctan. Thus there is no loss of generality
in assuming existence of a finite constant c for which supf∈F |f | ≤ c.

Write S for the collection of all countable subsets of F. For each S in S

define fS(ω) := supf∈S f(ω). The boundedness assumption ensures that the
constant τ := max{PfS : S ∈ S} is also finite. Choose a sequence {Sn}
in S for which PfSn > τ − n−1. The set F0 := ∪nSn is countable. Define
F := fF0 := supf∈F0

f . Then PF = τ .
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§5.2 Essential supremum and infimum 3

For each g in F the set F1 := F0 ∪ {g} is countable and

PF = τ ≥ PfF1 = Pmax (g, F ) ,

implying F = max(g, F ) almost surely and g ≤ F almost surely.
For assertion (ii), note that G ≥ supf∈F0

f = F almost surely, because F0

is countable.
�

The set F0 is not unique, but property (ii) ensures that the function F is
unique up to almost sure equivalence. It is called the essential supremum
of F and is denoted by ess supF. The function − ess sup{−f : f ∈ F} is called
the essential infimum of F and is denoted by ess inf F.

Remark. Here I am indulging in the usual abuse of referring to an
equivalence class of functions as a function. Whenever I write ess supF
(or ess inf F) I mean you to understand it is any function from the
equivalence class, defined by some countable subset F0 of F, as above.

The outer measure of a subset A of Ω is defined as

P∗A := inf{PB : A ⊆ B ∈ F}.

You should convince yourself that

P∗A = PA∗ where A∗ = ess inf{B ∈ F : A ⊆ B}.

The set A∗ is called the measurable cover for A. It is unique up to almost
sure equivalence: if A ⊆ B ∈ F then A∗ ≤ B almost surely.

Similarly, if h is a (non measurable) function from Ω into R, its measur-
able cover is defined as

h∗ := ess inf{f ∈M : f(ω) ≥ h(ω) for all ω ∈ Ω}.

Again the measurable cover is unique only up to almost sure equivalence. It
is (almost surely) characterized by:

(i) h∗(ω) ≥ h(ω) for all ω ∈ Ω;

(ii) if g is a measurable function for which g(ω) ≥ h(ω) for all ω then
g ≥ h∗ almost surely.
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§5.3 Separable versions 4

Compare the definition of h∗ with the definition of the outer integral:

P∗h := inf{Pf : h ≤ f ∈M and min
(
Pf+,Pf−) <∞

)
.

The last constraint on f ensures that Pf is well defined, possibly taking the
value +∞ or −∞. In general, P∗h need not equal Ph∗ (van der Vaart and
Wellner, 1996, Problem 2 in Section 1.2). However if h is bounded—the only
case needed in what follows—then there is equality. Proof?

The story is similar for lower integrals, P∗h = −P∗(−h), and the lower
analog of measurable covers, h∗ = −(−h)∗.

I find that arguments involving measurable cover functions tend to be
straightforward (but perhaps a little tedious) once I reduce the desired prop-
erties to assertions about measurable sets and measurable functions.

Versions::indic.mc <2> Example. For each real t show that {h∗ > t} is in the equivalence class
of {h > t}∗. (Compare with Dudley, 1999, Lemma 3.2.6.)

By construction h∗ ≥ h so {h∗ > t} ≥ {h > t}. The task reduces to
showing: if {h > t} ≤ B ∈ F then {h∗ > t} ≤ B almost surely. Define a
new measurable function

g(ω) := h∗(ω){ω ∈ B}+ (t ∧ h∗(ω)){ω ∈ Bc}.

Clearly g(ω) ≥ h(ω) if ω ∈ B. If ω ∈ Bc then h(ω) ≤ t, so that t ∧ h∗(ω) ≥
h(ω). In short, g(ω) ≥ h(ω) for all ω, implying g ≥ h∗ almost surely. That
is, there exists a P-negligible set N such that g(ω) ≥ h∗(ω) for all ω in Nc.

If ω ∈ Bc\N then t ∧ h∗(ω) = g(ω) ≥ h∗(ω). That is, Bc\N ≤ {h∗ ≤ t},
which implies {h∗ > t} ≤ (Bc\N)c = B ∪N.

�

5.3 Separable versions
Versions::S:separable

The difficulties with an uncountable T can usually be handled by taking
limits along a countable dense subset of T if the X process is separable, in
the following sense.

Versions::sep <3> Definition. Let S be a countable, dense subset S of a semimetric space T .
Say that a process X = {Xt : t ∈ T} is S-separable if for each ω in Ω and
each t in T there exists a sequence {sn : n ∈ N} (which might depend on ω)
in S for which sn → t and X(ω, sn)→ X(ω, t).

Remark. Many authors allow a single P-negligible set N such that the
approximation property need only hold for ω in Nc.
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§5.3 Separable versions 5

Not every process is separable. The classic example is the stochastic
process X(ω, t) = 1 if t = ω, and zero otherwise, when T = Ω = [0, 1].

For many probabilistic purposes, two random variables Y and Z for
which P{ω : Y (ω) 6= Z(ω)} = 0 are essentially the same. Indeed, many
random variables are only defined up to some sort of almost sure equiva-
lence. In isolation there is usually no good reason to prefer one choice from
the almost sure equivalence class over another. However, for stochastic pro-
cesses, whenever we need good behavior for the sample paths, t 7→ X(ω, t)
for each fixed ω, the selection from an equivalence class becomes much more
important.

Versions::version <4> Definition. Say that a stochastic process X̃ = {X̃t : t ∈ T} is a version of
X = {Xt : t ∈ T} if they are both defined on the same probability space and
P{ω : Xt(ω) 6= X̃t(ω)} = 0 for each t in T .

Remark. For each t there exists a P-negligible set Nt for which
Xt(ω) = X̃t(ω) if ω /∈ Nt. If T is countable, the set N := ∪tNt is also

P-negligible; all differences between X and X̃ appear only within a
single negligible set N. If T is uncountable, N need not be negligible.

For the traditional case where each Xt is an F-measurable map into the
real line it is usually necessary to allow X̃t to take values in R := [−∞,+∞].
For X processes taking values in Rk the X̃ process should be allowed to take

values in Rk. Both cases are covered just by assuming that X takes values in
some compact metric space, whose metric I denote by d to avoid confusion
with the semimetric d on T .

Remember that a probability space (Ω,F,P) is said to be complete if,
for each A ⊆ Ω, if A ⊆ F ∈ F and PF = 0 then A ∈ F.

Versions::sep.version <5> Theorem. Suppose T is a separable semimetric space and each Xt takes
values in a compact metric space (E, d). If the underlying probability space
is complete then there exists a version of X that is separable. That is, there
exists a version X̃ of X and a countable dense subset S of T such that every
sample path X̃(ω, ·) is S-separable in the sense of Definition <3>.

Proof There exists a countable collection U of open subsets of T such
that G =

⋃
{U ∈ U : U ⊆ G} for every open set G. In particular, for

each t in T there exists a decreasing sequence of sets Un(t) from U for
which t ∈ ∩nUn(t) and diam(Un(t))→ 0 as n→∞.

Let A be any countable dense subset of E. For each t in T and α ∈ A
write ft,α(ω) for d (Xt(ω), α). For each U ∈ U and α ∈ A, define

YU,α(ω) = ess inf
t∈U

ft,α(ω) = inf
s∈S(U,α)

fs,α(ω),
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§5.3 Separable versions 6

where S(U,α) is a countable subset of U . Remember that for each t ∈ U
there exists a P-negligible set Nt,U,α for which

ft,α(ω) ≥ YU,α(ω) for all ω /∈ Nt,U,α

Define S :=
⋃
{S(U,α) : U ∈ U, α ∈ A} and X̃(ω, s) = X(ω, s) for all ω and

all s ∈ S.
For each fixed t in T\S, the set

Nt :=
⋃
{Nt,U,α : t ∈ U ∈ U, α ∈ A}.

is P-negligible. Completeness of the probability space ensures that we can
change X(ω, t) for ω ∈ Nt anyway we like without upsetting the measura-
bility.

More precisely, for ω /∈ Nt define X̃(ω, t) = X(ω, t) and for ω ∈ Nt

define X̃(ω, t) to equal some arbitrarily chosen point in the compact set⋂
n∈N
{X(ω, s) : s ∈ S ∩ Un(t)}

Remark. If E were not compact the intersection of a decreasing
sequence of closed sets might be empty.

To see that the X̃ process is S-separable, once again consider a t in T\S.
If ω ∈ Nt, by definition of the closure there exist points sn ∈ S ∩ Un(t) for
which

d(X̃(ω, t), X(ω, sn) < n−1 for n ∈ N,

so that sn → t and X̃(ω, sn) = X(ω, sn) → X̃(ω, t) as n → ∞. For ω /∈ Nt

there exists a sequence {αn} in E for which αn → X(ω, t). For each n there
exists an sn in S(Un(t), αn) for which

n−1 + d(X(ω, t), αn) ≥ n−1 + YUn(t),αn(ω) ≥ d(X(ω, sn), αn),

ensuring that sn → t and X̃(ω, sn) = X(ω, sn)→ X(ω, t) = X̃(ω, t).
�

Recall that the oscillation on a subset S of T for a function f from T to
the real line is defined by

osc(δ, f, S) = sup{|f(t)− f(t′)| : t, t′ ∈ S, d(t, t′) < δ}.
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§5.4 Convergence in distribution 7

If f takes values in a metric space (E, d), the quantity |f(t)−f(t′)| should be
replaced by d(f(t), f(t′)). If osc(δ, f, T ) → 0 as δ → 0 then f is uniformly
continuous on T .

For a stochastic process {Xt : t ∈ T} the oscillation is defined for each
sample path Xω := X(ω, ·). Unfortunately, the map ω 7→ osc(δ,Xω, t)
might not be measurable if T is uncountable. The difficulty disappears if X
is S-separable for some countable S, because

osc(δ,Xω, T ) = osc(δ,Xω, S) for each ω.

Indeed, if d(t, t′) < δ then there exist sequences {sn} and {s′n} in S for which
d(sn, t) → 0 and d(s′n, t

′) → 0 and Xω(sn) → Xω(t) and Xω(s′n) → Xω(t′).
For large enough n, we have d(sn, s

′
n) < δ and

d(Xω(sn), Xω(s′n))→ d(Xω(t), Xω(t′)).

Versions::cts.paths <6> Example. Suppose {Xt : t ∈ T} is an S-separable takes values in a metric
space (E, d). Suppose also that for each η > 0 and ε > 0 there exists a δ > 0
for which

\E@ X.osc\E@ X.osc <7> P{ω ∈ Ω : osc(δ,Xω, S) > η} < ε.

By separability the same inequality holds with S replaced by T .
Let δk denote the value of δ corresponding to η = k−1 and ε = 2−k

in <7>. Then
∑

k∈N P{osc(δk, X̃ω, T ) > k−1} < ∞. By Borel-Cantelli

there exists a single P-negligible set N such that osc(δk, X̃ω, T ) → 0 as
n → ∞ if ω /∈ N. Amost all sample paths are uniformly continuous as
functions on T .

�

If the X process in Example <6> were not separable, but if it it had
an S-separable version X̃ then almost all sample paths of X̃ would be uni-
formly continuous as functions on T . Of course to guarantee existence of
the separable version we might need the range metric space E to be com-
pact. For example, if X took values in R the X̃ process might take values
in R. However, a proof of a condition like <7> typically requires T to be
totally bounded, that is, for each δ > 0 the set T can be covered by a
finite union of δ-balls. In that case X̃ will take values in R, because total
boundedness and osc(δ,Xω, S) < ∞ implies sups∈S |X(ω, s)| < ∞. Total
boundedness also implies that the completion T of T is compact (Dudley,
2003, Theorem 2.5.1). Every sample path X̃ω then has a unique extension
to a uniformly continuous, real-valued function on T .
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§5.4 Convergence in distribution 8

5.4 Convergence in distribution
Versions::S:cid

For this section suppose T is a totally bounded, (uncountable) semimetric
space. Write uc(T, d) for the set of all uniformly continuous real functions
on T . Total boundedness of T ensures that each function in uc(T, d) also
belongs to the vector space `∞(T ) of all bounded, real-valued functions on T .
Equip `∞(T ) (and uc(T, d)) with the uniform norm ‖·‖T and the cylinder
sigma-field CT , the smallest sigma-field that makes each coordinate map
measurable.

The metric space `∞(T ) is complete under the uniform norm, but it is
not separable if T is uncountable. The Borel sigma-field on `∞(T ) is larger
than CT . The space uc(T, d) is a closed subset of `∞(T ). As a metric space
in its own right, uc(T, d) is complete and separable and its Borel sigma-
field Buc coincides with its cylinder sigma-field, CT (Problem [5] and [6]).

Write X(∞) for the S-separable process described in Example <6>. Each
sample path of X(∞) belongs to uc(T, d) and for each ε > 0 and η > 0 there
exists a δ > 0 for which

\E@ Xinfty.osc\E@ Xinfty.osc <8> P{osc(δ,X(∞), T ) > η} < ε.

Measurabilty of each X(∞)
t ensures that X(∞) is F\CT -measurable as a ran-

dom element of `∞(T ) or of uc(T, d). As a random element of uc(T, d) it is
also F\Buc-measurable.

Now suppose X(n) = {X(n)
t : t ∈ T} is a sequence of stochastic processes,

all living on the same probability space (Ω,F,P) and sharing the same index
set. Assume that supt∈T |X(n)(ω, t)| <∞ for each ω and n, so that each X(n)

is also an F\CT -measurable random element of `∞(T ).
Suppose also that X(n)  fidi X

(∞), meaning that the finite dimensional
distributions of the X(n)’s converge to the corresponding finite dimensional
distributions of X(∞): for each finite subset {t1, . . . , tk} of T ,

(X(n)(t1), . . . , X(n)(tk)) (X(∞)(t1), . . . , X(∞)(tk)) ,

where  denotes “convergence in distribution” (Pollard, 2001, Chapter 7).
What more than finite dimensional convergence is needed to establish

something like Pf(X(n)) → Pf(X(∞)) for a broad collection of (bounded)
functionals f , which assign a real number to each sample path?

The main difficulty in what follows is: osc(δ, x, T ) is a uniformly contin-
uous function of x on `∞(T ), and hence it is measurable with respect to the
Borel sigma-field B(`∞(T )), which can be much larger than CT when T is
uncountable. If X(n) were not F\B(`∞(T ))-measurable then osc(δ,X(n), T )
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§5.4 Convergence in distribution 9

might not be an F-measurable random variable, which would complicate the
theory for convergence in distribution.

To explain the consequences of this measurabilty obstacle, I separate
the discussion into three related possibilities. If you get bored by the repe-
tition you might skip straight to the last case, even though that might leave
you wondering why such a strange definition has become established in the
literature.

5.4.1 Processes with uniformly continuous paths
Versions::cid.ucts

Suppose each X(n) has sample paths in uc(T, d). That is, each X(n) (and
X(∞)) defines an F\CT -measurable random element of uc(T, d). In this case
there is no measurability difficulty with the oscillation functions: it falls into
the classical case where the convergence in distribution X(n)  X(∞) means
Pf(X(n))→ Pf(X(∞)) for each bounded Lipschitz real function on uc(T, d).
The convergence extends to other bounded functionals by means of the
usual semi-continuity and almost sure continuity arguments (Pollard, 2001,
Section 7.1).

The necessary and sufficient condition for the convergence X(n)  X(∞)

is X(n)  fidi X
(∞) plus an equicontinuity condition: for each ε > 0 and

η > 0 there exists a δ > 0 for which

\E@ ucts.equicty\E@ ucts.equicty <9> lim sup
n→∞

P{osc(δ,X(n), T ) > η} < ε

Let me remind you of one way to establish sufficiency.
For each δ > 0 Problem [4] shows there exists a finite subset Tδ of T and

a map Aδ : `∞(T )→ uc(T, d) for which

(i) Aδ(x) is a Lipschitz function of x(Tδ) := (x(t) : t ∈ Tδ)

(ii) ‖x− Aδx‖T ≤ osc(2δ, x, T ).

If f is a bounded Lipschitz real function on `∞(T ) (or even just on uc(T, d))
then there exists a finite constant L for which

|f(x)− f(y)| ≤ L (1 ∧ ‖x− y‖T ) .

From (i), the real number f(Adx) is a bounded Lipschitz function of x(Tδ),
so that Pf(AδX(n))− Pf(AδX(∞)) tends to zero as n→∞. Also

|f(x)− f(Aδx)| ≤ L (1 ∧ osc(2δ, x, T )) ≤ L (η + {osc(2δ, x, T ) > η}) .
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A simple triangle inequality argument gives

|Pf(X(n))− Pf(X(∞))| ≤ P|f(X(n))− f(AδX(n))|
+ |Pf(AδX(n))− Pf(AδX(∞))|
+ P|f(AδX(∞)))− f(X(∞))|.

By <9> (with δ replaced by 2δ) and its analog for X(∞), the first and third
terms on the right-hand side are each eventually less than L(η + ε) and the
middle term tends to zero. In short, Pf(X(n))→ Pf(X(∞)) as n→∞.

5.4.2 Separable versions
Versions::cid.separable

Write S for the collection of all countable subsets of T . If X(n) is not Borel
measurable there is still hope of proving that for each ε > 0 and η > 0 there
exists a δ > 0 for which

\E@ ucts.equicty2\E@ ucts.equicty2 <10> lim sup
n→∞

P{osc(δ,X(n), S) > η} < ε for each S ∈ S.

This inequality also fits with the philosophy that, without extra sample path
properties, we do not really understand much about a stochastic process
except for almost sure facts about behavior on finite or countable subsets
of its index set. However, if we do know that each X(n) is S-separable for
a fixed S in S then much of the argument from the previous section can be
rescued. For example,

osc(δ,X(n)
ω , T ) = osc(δ,X(n)

ω , S) for all ω, all n, all δ > 0.

Thus each osc(δ,X(n), T ) is F-measurable. However, the random vari-
able f(X(n)), for a bounded Lipschitz f , need not be F-measurable.

We do still have an upper bound for the measurable cover of f(X(n)):

f(X(n))∗ ≤ f(AδX(n)) + L (η + {osc(2δ,X(n), T ) > η}) .

so that

lim sup
n→∞

P∗f(X(n)) = lim sup
n→∞

Pf(X(n))∗

≤ Pf(AδX(∞)) + L (η + ε)

≤ Pf(X(∞)) + 2L (η + ε)

Thus lim supn→∞ P∗f(X(n)) ≤ Pf(X(∞)) for all bounded, Lipschitz f . Re-
place f by −f to deduce that the last inequality is equivalent to the assertion
lim infn→∞ P∗f(X(n)) ≥ Pf(X(∞)). At least in the sense of the following
Definition, we can still deduce convergence in distribution (for separable
process) from finite dimensional convergence plus <10>.
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Versions::cid.outer <11> Definition. If X is a Borel measurable random element of `∞(T ) and
{X(n)} is a sequence of CT -measurable random elements of `∞(T ), define the
convergence in distribution X(n)  X(∞) to mean lim supn→∞ P∗f(X(n)) ≤
Pf(X) for all bounded, Lipschitz functions f from `∞(T ) to R.

5.4.3 Outer expectations
Versions::cid.outer.sub

For some stochastic processes, such as the classical empirical processes,
many authors have objected to the implicit modification that replaces a pro-
cess X(n) by a separable version, on the grounds that it radically changes
some of the properties of the process. For example, if Xn(t) =

√
n(Pn−P )ft

then a separable version need not retain the interpretation of an integral with
respect to a random signed measure.

For that situation it seems inevitable that assumption <10> be replaced
by its outer measure analog: for each ε > 0 and η > 0 there exists a δ > 0
for which

\E@ ucts.equicty.outer\E@ ucts.equicty.outer <12> lim sup
n→∞

P∗{osc(δ,X(n), T ) > η} < ε.

Such an assumption opposes the philosophy of knowing only about finite
or countable subsets of T . Nevertheless, it still leads to full convergence in
distribution. I leave the details of the argument to you—it involves only an
addition of a few ∗’s to the argument in the previous subsection. More-
over, as you will see in later chapters, it is not so outrageous to work
with osc(2δ, x, T )∗ because we usually have to control the oscillation by
means of an upper bound that involves only measurable functions and fairly
routine passages from bounds for countable index subsets to uncountable
index sets.

5.5 Problems
Versions::S:problems

[1] (from Chapter 4) Suppose ‖Xs −Xt‖Ψα ≤ d(s, t) for all s, t ∈ T . Suppose
Versions::P:pack.cty

also that∫ D

0
Ψ−1
α (pack(r, T, d)) dr <∞.

Prove that X has a version with uniformly continuous sample paths.

[2] Suppose h is a bounded real function on Ω and (Ω,F,P) is complete. ShowVersions::P:bdd.mble

that h is F-measurable if and only if P (h∗ + (−h)∗) = 0.
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[3] Suppose T is a semimetric space and T is its completion. Show that everyVersions::P:complete.T

function x in uc(T, d) has a unique extension to a function in uc(T , d).
(Here d denotes both the semimetric on T and its unique extension to a
semimetric on T .)

[4] Suppose T is a totally bounded semimetric space. Given δ > 0, let Tδ =Versions::P:ucts.approx

{t1, . . . , tN} be a maximal δ-separated subset of T , so that d(s, Tδ) :=
min{d(s, ti) : 1 ≤ i ≤ N} ≤ δ for every s in T .

(i) Define fi(t) := (1− d(t, ti)/(2δ))
+ and F (t) :=

∑
i≤N fi(t). Show that

F (t) ≥ 1/2 for all t and gi(t) := fi(t)/F (t) is uniformly continuous.

(ii) Define a map Aδ : RN → uc(T, d) by Aδ(α) :=
∑

i≤N αigi(s). Also de-
fine Aδ : uc(T, d)→ uc(T, d) by Aδ(x) := Aδ(x(Tδ)), the function that takes
the value

∑
i≤N x(ti)gi(t) at t. Show that ‖x− Aδ(x)‖T ≤ osc(2δ, x, T ).

Hint: If gi(t) > 0 then d(t, ti) < 2δ.

(iii) For all x, y in uc(T, d), show that

‖Aδ(x)− Aδ(y)‖T ≤ maxi≤N |x(ti)− y(ti)| ≤ ‖x− y‖T .

[5] Suppose T is a totally bounded semimetric space. Show that uc(T ) is sep-Versions::P:sep.ucts

arable under its uniform metric. Hint: For a sequence {δk} tending to zero,
consider the countable set of functions of the form Aδk(α) (as in [4]) with
all coordinates of α rational.

[6] Show that the Borel sigma-field B(T ) generated by the norm ‖·‖T on uc(T, d)Versions::P:ucts.sigma.fields
is the same as the cylinder sigma-field CT . Hint: First show that ‖x‖T equals
a supremum taken over a fixed countable dense subset of T . Then show that
each coordinate projection, x 7→ x(t) for fixed t ∈ T , is continuous.

[7] Suppose <10> holds and X(n)  fidi X
(∞), where X(∞) has sample pathsVersions::P:f.cylinder

in uc(T, d), as in Section 5.4. Suppose also that f is a CT -measurable real-
valued function on `∞(T ) for which |f(x)− f(y)| ≤ L (1 ∧ ‖x− y‖T ) for all
x, y ∈ `∞(T ). For each subset A of T define ‖x‖A := supt∈A |x(t)| and write
CA for the smallest sigma-field that makes all the coordinate maps x 7→ x(t),
for t ∈ A, measurable.

(i) Show that CT = ∪S∈SCS , where S is the collection of all countable subsets
of T . Deduce that f is CS-measurable for some S in S. The following parts
all refer to that particular S.

(ii) Show that the Borel sigma-field on `∞(S) is equal to sigma-field CS generated
by all the coordinate maps. (If you feel that the use of CS as the name for a
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sigma-field on `∞(S) and a different, but related, sigma-field on `∞(T ), you
should invent some more precise notation.)

(iii) Write xS for the restriction of a function x in `∞(T ) to the subset S. Note
that xS ∈ `∞(S). Show that f(x) = f(y) iff xS = yS .

(iv) Show that there exists a CS-measurable map f0 from `∞(S) into R for
which f(x) = f0(xS) for all x ∈ `∞(T ) and

|f0(x0)− f0(y0)| ≤ L (1 ∧ ‖x0 − y0‖S)

for all x0, y0 ∈ `∞(S).

(v) Show that Pf(X(n)) = Pf0(X(n)
S )→ Pf0(X(∞)

S ) = Pf(X(∞)).

(vi) Write a long essay discussing whether the CT -measurability of functionals
on `∞(T ) provides a worthwhile solution to the problems caused by un-
countable index sets.

5.6 Notes
Versions::S:Notes

For Section 5.2 I am mostly following Dudley (1999, Section 3.2).
Doob (1953, Section 1.2) described the virtues of working with separable

versions. I do not know whether that was the original source for the idea,
which is invariably attributed to Doob. I learned about the extension to
processes taking values in compact metric spaces from Meyer (1966, Chap-
ter IV.2). For clear accounts of the construction of separable versions see
Neveu (1965, Section III.4) and Gihman and Skorohod (1974, Section III.2).

Separable versions can also be constructed in great generality by means
of liftings, maps from the set of equivalance classes L∞(Ω,F,P) into the set
of bounded measurable functions that preserve the interesting operations
(linearity, products, maximima). See Jacobs (1978, Chapter XV) for the
construction and application of liftings, including existence of separable ver-
sions of stochastic processes taking values in completely regular Hausdorff
spaces. I found the treatment by Jacobs more accessible than the traditional
refernce for lifting, the book by Ionescu Tulcea and Ionescu Tulcea (1969).

In the setting of the classical Donsker theorem, Talagrand (1987) also
used liftings to break the empirical process into a sum of two parts: one
a separable version of the process and the other a process that is mostly
zero. The second process captures all the measurabilty subtleties caused
by an uncountable index set. Talagrand (1988) explained why some care is
needed in the choice of lifting to avoid some undesirable empirical process
properties.
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The approach to convergence in distribution in function spaces is almost
part of the probability folklore: the conditions for convergence in distribu-
tion are just the conditions for existence (of versions with sample paths in
that function space) somehow made uniform over the sequence of processes.
I learned to appreciate this point of view by reading some unpublished lec-
ture notes by Peter Gänssler. A revised version of the notes appeared in
Chapter 7 of the book by Gänssler and Stute (1977). Compare with Gihman
and Skorohod (1974, Chapter III).

Definition <11> represents the subtle conclusion of a long line of at-
tempts to handle the measurability problem gracefully. According to Dud-
ley (1999, Notes to section 3.1) and van der Vaart and Wellner (1996,
page 96), this particular combination of ideas is due to Hoffmann-Jørgensen,
from some time in the mid 1980’s. I believe the manuscript by Hoffmann-
Jørgensen (1984) is the source. The success of Dudley’s almost uniform
representation theorem (Dudley, 1999, Section 3.5) convinced me that the
Hoffmann-Jørgensen approach was the right one. See also (Pollard, 1990,
Chapter 9) and Kim and Pollard (1990, Section 2).
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