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Course Coverage:

I. Some Real Variable Methods

II. Fourier Integrals and Series, Convolution

III. Singular Integrals

IV. BMO (Bounded Mean Oscillations), Hardy Space (H1)

V. Representation Theory, Stationary Phase
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1. E. Stein, Singular Integrals and Differentiable Properties of Functions

2. E. Stein, (G. Weiss) Fourier Analysis on Rn

3. E. Stein, Harmonic Analysis

4. Dym, McKean, Fourier Series and Integrals

Week 1 (9/9/2009)

Hardy-Littlewood Maximal Functions

Notation:

1. |E | denotes the measure of the set. Which measure depends on context. For instance, |V |
could be Lebesgue measure, and |∂V | could be the Hn−1-measure of ∂V . (related to
trace, probably)

Let f ∈L1(Rn), and define

Mf(x)= sup
Br(x),r>0

∫

Br(x)
|f(y)|dy

|Br(x)|
and

λf(α)= |{x∈Rn: |f(x)|>α}|

Two tools:

1. (Fubini type result) If f ∈Lp(Rn), note that

∫

Rn

|f(x)|p dx=−
∫

αp dλ(α)= p

∫

0

∞
αp−1λ(α)dα

Proof. Fubini’s Theorem gives

∫

Rn

|f(x)|p dx =

∫

Rn

∫

0

|f(x)|
pαp−1 dαdx

= p

∫

0

∞
αp−1

∫

{|f(x)|>α}
dxdα

= p

∫

0

∞
αp−1λf(α)dα

�
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2. (Chebyshev) If f ∈L1(Rn), then

λf(α)≤
∫

Rn |f(x)|dx
α

Proof.
∫

Rn

|f(x)|dx≥
∫

{|f |>α}
|f(x)|dx≥α |{|f |>α}|=αλf(α)

�

The main goal is to prove the following properties of the Hardy Maximal function Mf:

Theorem 1.

a) If f ∈Lp(Rn), 1≤ p≤∞, then Mf is finite a.e.

b) (Weak (1,1) estimate) If f ∈L1(Rn), then

|{x:Mf(x)>α}|≤ A

α

∫

Rn

|f(x)|dx

for some constant A depending on the dimension n.

c) If f ∈Lp(Rn), 1< p≤∞, then Mf ∈Lp(Rn), and

‖Mf‖Lp ≤C‖f ‖Lp

with a constant C depending on the dimension n and p.

Remarks.

1. If f ∈L1(Rn) and f is not identically zero, then Mf∈L1(Rn). In fact,

Mf(x)≥ C0

|x|n

in Rn for |x| ≥ 1.

For example, consider δ0(x), which is approximated by C0
∞ (smooth compactly sup-

ported) functions.

Note

Mδ0(x)=
1

ωn|x|n
∈L1(Rn)

where |B|x|(0)|=ωn|x|n.

Proof. First we show this for compactly supported f , with ‖f ‖L1> 0 (i.e. not identically
zero), and supp(f)⊂BR for some R> 0. Note that for |x|>R,

Mf(x)≥ 1
∣

∣B|x|
∣

∣

∫

B|x|

|f(y)|dy=
C‖f ‖L1

(|x|+R)n
∈L1(Rn)
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In general, we can approximate f by f1{|x|>R} and there exists R such that

‖f − f1{|x|>R}‖L1≤ ε

Then

Mf(x)≥ 1
∣

∣B|x|
∣

∣

∫

B|x|

|f(y)|dy≥ C‖f1{|x|>R}‖L1− ε

(|x|+R)n
∈ L1(Rn)

�

2. If supp(f)⊆B1, then Mf ∈L1(B1) if |f | log(1+ |f |)∈L1(B1). (The Shannon Entropy)

Proof. We consider the integral of Mf(x):

0 ≤
∫

B1

Mf(x)dx

=

∫

B1∩{Mf≤1}
Mf(x)dx+

∫

B1∩{Mf≥1}
Mf(x)dx

≤ |B1|+λMf
(1)+

∫

1

∞
λMf

(α)dα

where we have used the Fubini result earlier (slightly modified to account for integration
over the smaller set {Mf ≥ 1}.
Now we apply a trick, which we justify later:

λMf
(α)≤ 2A

α

∫

{|f |>α/2}
|f |dx ( ⋆ )

Given this, we apply Fubini:

∫

1

∞
λMf

(α)dα ≤
∫

1

∞ 2A

α

∫

|f |>α/2

|f |dxdα

= 2A

∫

B1∩{|f |>1/2}
|f(x)|

∫

1

2|f(x)| 1

α
dαdx

= 2A

∫

B1∩{|f |>1/2}
|f(x)| log|f(x)|dx

which is finite since we the integral avoids possible singularities and |f(x)|log|f(x)|
behaves asymptotically like |f(x)| log(1 + |f(x)|). �

The second remark in particular will be helpful in proving the theorem; a similar trick will be
used. The main ingredient of the proof, however, lies in covering lemmas.

Covering Lemmas

Lemma 2. (Vitali Covering Lemma) Let E be a measurable set in Rn covered by a family
of balls F = {Bα} of bounded diameter. Then there is a countable disjoint subfamily F ′ of balls
in F, i.e. F ′= {Bi}i=1

∞ with Bi∈F, such that

E ⊂
⋃

i=1

∞
Bi

where Bi = 5Bi.
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Lemma 3. (Besicovitch Covering Lemma) Let E be a set in Rn and let F be a family of
balls with centers at x ∈ E, F = {Brx

(x): x ∈ E}. Then there is some integer N > 0, depending
only on the dimension, and N subfamilies of F, F1,	FN, such that

E ⊂
⋃

i=1

N(n)
⋃

B∈Fi

B

where balls in each Fi are disjoint.

Remarks.

1. The Vitali covering lemma only requires metric space structure, independent of dimen-
sion, etc. However, the lemma is useless unless the measure has some structure, i.e. “dou-
bling”:

µ(2B)≤C0µ(B)

for some constant C0. In Euclidean space Rn this constant is 2n. Note that the subcollec-
tion is disjoint, and to cover we then need to enlarge the sets.

2. The Besicovitch covering lemma depends on Euclidean structure, but is useful for arbi-
trary measures. The difference between the two covering lemmas is that this lemma
allows for a bounded number of overlaps when covering E, and that the sets in the cover
do not need to be enlarged.

Proof. (Vitali Covering) Let

F j=

{

B ∈F :
R

2j+1
≤ diam(B)≤ R

2j

}

for j = 0, 1, 2,	 and R= supB∈F diam(B). Note if the diameter is arbitrarily large (i.e. R=∞),
then we can just cover the whole space easily, taking a sequence of Bn whose diameters go to
∞. Thus we assume R<∞. We then construct a sequence as follows.

First let β0 be the maximal (countable) subcollection of disjoint balls from F0 (existence is guar-
anteed by Hausdorff Maximal Principle). Then let βj be the maximal subcollection of disjoint
balls from F j such that they are also disjoint from the previously chosen sets. Then letting F ′ =
⋃

j=0
∞

βj gives the desired collection.

To prove this, suppose B ∈ F . Then B ∈ Fk for some k, and B ∩
[

⋃

j=0
k

βj

]� ∅, otherwise this

contradicts the maximality of βk (can fit in one more set). Thus there exists S ∈ ⋃
j=0
k

βj such

that B ∩ S � ∅. Note diam(B) ≤ 2 diam(S) by construction. (Worst case S ∈ βk, where

2 diam(S)≥ R

2j
≥ diam(B)). Thus B ⊂ Ŝ = 5S (draw a picture). This implies that for any B ∈F ,

B⊂ Ŝ for some S ∈F ′, and so E ⊂⋃
B∈F B⊂⋃

B∈F ′ B. �

The proof of the other covering lemma is to be looked up somewhere else... It may be useful
someday.

Now we return to the proof of the theorem.

Proof. (Theorem 1) Let Eα= {x:Mf >α}, α≥ 0. Then for all x∈Eα, by definition of Mf we
have that there exists some rx> 0 such that

1

|Brx
(x)|

∫

Brx(x)

|f(y)|dy >α
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Then {Brx
(x): x ∈ Eα} covers Eα, and we can apply the Vitali covering lemma to find a count-

able subcover. There exists {xi}i=1
∞ and corresponding rxi

such that Eα ⊂ ⋃
i=1
∞

Bi, where Bi =
Brxi

(xi), mutually disjoint. Then

|Eα| ≤
∣

∣

∣

∣

∣

⋃

i=1

∞
Bi

∣

∣

∣

∣

∣

≤
∑

i=1

∞
∣

∣

∣
Bi

∣

∣

∣
=5n

∑

i=1

∞
|Bi|

From the above we have |Bi|< 1

α

∫

Bi
|f(y)|dy, so that

|Eα| ≤ 5n

α

∑

i=1

∞ ∫

Bi

|f(y)|dy=
5n

α

∫

⋃

Bi

|f(y)|dy ≤ 5n

α

∫

Rn

|f(y)|dy

where the equality follows from Bi being disjoint. This proves part (b) and taking α→∞ proves
part (a) in the case p= 1. For p> 1, we now prove the trick ( ⋆ ) above:

Lemma.

λMf
(α)≤ 2A

α

∫

{|f |>α/2}
|f |dx

Proof. Note that |f(x)| ≤ α

2
+ 1{|f |>α/2}|f | Calling f1 = |f |1{|f |>α/2}, we have

Mf(x)≤ α

2
+Mf1(x)

and note that if Mf >α, then Mf1>α/2, so that

λMf
(α) = |Eα|

= |{x:Mf >α}|
≤ |{x:Mf1>α/2}|

Now using the result we just proved,

|{x:Mf1>α/2}|≤ 2A

α
‖f1‖L1 =

2A

α

∫

|f |>α/2

|f |dx

�

Now we can prove (b) of the theorem for 1< p<∞. Let g=Mf.

∫

Rn

gp dx = p

∫

0

∞
αp−1λg(α)dα

= p

∫

0

∞
αp−12A

α

∫

|f |>α/2

|f(x)|dxdα

= 2Ap

∫

Rn

|f(x)|
∫

0

2|f |
αp−2dαdx

= 2Ap

∫

Rn

|f(x)|p−1 2p−1

p− 1
dx

Taking p-th roots, we conclude

‖Mf(x)‖Lp ≤ 2A1/p

(

p

p− 1

)1/p

‖f ‖Lp
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where the constant A from Vitali, affected by the doubling constant. This proves part (c) for
1< p <∞, and taking For p= ∞, the theorem (parts (a) and (c)) follows from the trivial inte-
gral estimate

Mf(x)≤‖f ‖L∞

Finally, for 1< p<∞, (c)� (a) follows from the first tool above,

‖Mf‖Lp
p = p

∫

0

∞
αp−1λMf

(α)dα

where the finiteness of ‖Mf‖Lp implies the integrability of αp−1λMf
(α). This implies that

lim
α→∞

αp−1λMf
(α)= 0

from which we conclude λMf
(α)= |{|Mf |>α}|→ 0, i.e. Mf is finite almost everywhere. �

As a Corollary to the Theorem, we can show that

|f | ≤ |Mf |

for almost every x∈Rn.

Corollary 4. If f ∈Lp(Rn), 1≤ p≤∞ (or Lloc
1 , say). Then

lim
rց0

1

|Br(x)|

∫

Br(x)

|f(y)|dy= f(x)

for almost every x∈Rn. (i.e. almost every point is a Lebesgue point of f)

Proof. (Idea) First, we note that for continuous functions, the statement follows by continuity.
The idea is to approximate by continuous functions. For any η > 0, we note that there exists g ∈
L1(Rn)∩C0(R

n) such that ‖f − g‖L1< η. Then

|{M(f − g)>ε}|≤ A

ε
‖f − g‖L1 =

Aη

ε

Since
1

|Br(x)|
∫

Br(x)
f(x)dy= f(x), it suffices to prove that

limsup
rց0

1

|Br(x)|

∫

Br(x)

|f(y)− f(x)|dy= 0

Now examining the decomposition f(y)= g(y)+ (f − g)(y), we study the set

{

x: limsup
rց0

1

|Br(x)|

∫

Br(x)

|f(y)− f(x)|dy > ε
}

in the hopes of bounding the measure by something that vanishes as ε→ 0.

By the triangle inequality, the above set is contained in the set where

{

limsup
rց0

1

|Br(x)|

∫

Br(x)

|g(y)− g(x)|dy+Mf−g(x)+ |f(x)− g(x)|>ε
}
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by the triangle inequality. Note that limsuprց0
1

|Br(x)|
∫

Br(x)
|g(y) − g(x)|dy = 0 by continuity.

Moreover, this set is contained in

{

Mf−g(x)>
ε

2

}

⋃

{

|f(x)− g(x)|> ε

2

}

noting that if A+B>ε, then either A or B must be larger than
ε

2
(or else A+B <ε).

Now, since ‖f − g‖L1< η, by Chebyshev inequality
∣

∣

{

f(x)− g(x)>
ε

2

}
∣

∣≤ 2η

ε
. Thus we have that

by monotonicity of measure (A⊂B� |A| ≤ |B |),
∣

∣

∣

∣

{

x: limsup
rց0

1

|Br(x)|

∫

|f(y)− f(x)|dy > ε
}∣

∣

∣

∣

≤
∣

∣

∣

{

Mf−g(x)>
ε

2

}

⋃

{

|f(x)− g(x)|> ε

2

}∣

∣

∣

≤
∣

∣

∣

{

Mf−g(x)>
ε

2

}∣

∣

∣
+
∣

∣

∣

{

|f(x)− g(x)|> ε

2

}∣

∣

∣

≤ 2Aη

ε
+

2η

ε

= (2A+ 2)
η

ε

Now for any ε > 0 given, we can choose η = ε2 to bound the set by (2A + 2)ε, and taking ε→ 0
gives the result. �

Remark 5. Note that denoting Mrf(x) =
1

|Br(x)|
∫

Br(x)
|f(y)|dy, the result tells us that

limr→0Mrf(x) exists a.e. and equals f(x) a.e. The general tool that gives us convergence a.e. is
the weak Lp estimate on Mf , the maximal function. This will be a common theme when
proving that limits exist a.e.

Remark. Above, the results of the theorem hold if we replace balls by other shapes. Replacing
balls by squares works (squares can be bounded between two circles). Replacing balls by rectan-
gles also works, if the sides are parallel to the axes. Even weaker, replacing balls by the dila-
tion/translation family {λO, λ> 0} where O is a fixed convex set containing the origin.

Why do we care about different shapes? Depends on the structure of the problem, some shapes
appear more naturally. A story about Fritz-John, who proved that the affine transform of a
convex set is bounded between two balls.

Week 2 (9/16/2009)

Decomposition of Sets and Functions

Theorem 6. (Whitney’s Decomposition) Let F be a closed subset of Rn and let Ω =Rn\F.
Then we can find a sequence of cubes Qj with sides parallel to the axis and whose interior are

mutually disjoint, such that Ω =
⋃

j=1
∞

Qj and whose side lengths l(Qj) are comparable with
d(Qj , F ), i.e.

c1 diamQj ≤ d(Qj , F )≤ c2 diam(Qj)

for all j. Here d(Qj , F )= infx∈Qj,y∈F d(x, y). In Stein’s proof, c1 = 1 and c2 =4.

Remark. This allows us to obtain a partition of unity for arbitrary open sets in Rn. This will
be useful in extending functions defined on closed subsets F to the entire space. The proof is
quite difficult. See Stein’s book.
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Theorem 7. (Calderon-Zygmund Decomposition) Given 0≤ f(x)∈L1(Rn), α> 0, we can
decompose Rn in the following way:

a) Rn=F ∪Ω where F and Ω are disjoint (or overlap on a set of measure zero)

b) f(x)≤α almost everywhere on F

c) Ω =
⋃

i=1
∞

Qj where Qj are cubes with mutually disjoint interiors with the additional

constraint that

α≤ 1

|Qj |

∫

Qj

f(x)dx≤ 2nα

This decomposes the space into a region F where f is small, and another region where f may
be large, but with some control on the L1 norm of f .

Later, we will see other decompositions. A refinement of this decomposition is the atomic
decomposition of Hardy Spaces , proved by Fefferman and Stein, involving the replacement of L1

and L∞ by H1 and BMO... and L. Carleson’s decomposition of N-space, involving the dual to
Carleson measures... and as an aside, Carleson proved a.e. convergence of Fourier series of L2

functions. We will also see this later.

Proof. (of C-Z Decomposition) Given 0 ≤ f ≤ L1(Rn) and α > 0, there exists a decomposi-
tion of Rn into large cubes of size ≫ 1 such that for each cube Q0 we have that

1

|Q0|

∫

Q0

f(x)dx<α

This follows simply because

1

|Q0|

∫

Q0

f(x)dx≤ ‖f ‖L1

|Q0|

so that taking |Q0| arbitrarily large allows us to make the average arbitrarily small, and in par-
ticular, less than α. Then we perform a simple iterative process. Decompose each Q0 into 2n

smaller cubes of equal sizes. There are then two possibilities for each Q1 of smaller size:

a)
1

|Q1|
∫

Q1
f(x)dx<α

b)
1

|Q1|
∫

Q1
f(x)dx≥α

In case (b), we take Q1 to be one of the cubes in the C-Z decomposition. Otherwise, so long as
there is any cube Q in case (a), we decompose Q the same way as Q0, which is a process that
produces at most countably many cubes for the C-Z decomposition.

Let Qj be a list of all the cubes produced by the above process. Then we use Ω =
⋃

j
Qj and

F =Rn\Ω. For each Qj, note that

α≤ 1

|Qj |

∫

Qj

f(x)dx

and that Qj has a precessor Q̂j in the process above such that
1

∣

∣

∣
Q̂j

∣

∣

∣

∫

Q̂j

f(x)dx < α. This

implies that

1

|Qj |

∫

Qj

f(x)dx≤ 2n
∣

∣

∣
Q̂j

∣

∣

∣

∫

Q̂j

f(x)dx≤ 2nα
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This gives the third condition of C-Z. Now for any x0 ∈ F , we note that there is a sequence of
cubes {Qj

′ } such that x0 ∈ Qj and that
1

|Qj |
∫

Qj
f(x)dx < α. Then by the Lebesgue differentia-

tion theorem, f(x0)≤α for almost all x0∈F . This is because for almost every x0∈F ,

f(x0)= lim
r→0

1

|Br(x0)|

∫

Br(x0)

f(x)dx= lim
j→∞

1

|Qj |

∫

Qj

f(x)dx≤α

Replacing balls with cubes is a technical point, but intuitively we can find a sequence of balls
which nest nicely with the cubes, and in the limit the difference of the average integrals tends to
zero. This proves the second condition.

This second condition can also be proved in a different manner. Assume the measure of the set
{x ∈ F : f(x) > α} has positive measure... Then something about Lebesgue points and then can
find a cube for which the integral is larger than α, a contradiction... (to figure out later) �

Note. I do not know if the Qj in the above construction satisfy the comparable length condi-
tion in Whitney’s decomposition. Most likely not...

Corollary 8. Suppose f ≥ 0, f ∈ L1(Rn), α > 0 and F , Ω, Qj has in the C-Z Decomposition.

Then there are two constants A,B > 0 (dependent on dimension) such that

a) |Ω| ≤ A

α
‖f ‖L1 (A= 1 in proof)

b)
1

|Qj|
∫

Qj
f(x)dx≤Bα (B= 2n in proof)

Sometimes it is required that Ω be open, and then we need a stronger decomposition than C-Z
and a different approach using Whitney’s Decomposition and the maximal function.

Proof. (of C-Z with closed F ) For 0≤ f ∈L1(Rn) and α> 0 given, define

F = {x∈Rn:Mf ≤α}

note that F is closed by definition. This implies Ω = {x ∈Rn:Mf > α} = F c is open. Recall the
weak (1,1) estimate from before:

|Ω| ≤ A

α
‖f ‖L1

(which followed from Vitali, with A= 5n). If we use Whitney’s decomposition of Ω =
⋃

j
Qj with

Qj cubes with mutually disjoint interior and

c1 diamQj ≤ d(Qj , F )≤ c2 diamQj

Now let pj ∈F such that d(pj , Qj)= d(Qj , F ).

We can then find a ball Bj centered at pj such that diam Bj ≈ l(Qj) (comparable lengths) and
Qj⊂Bj. Also since pj ∈F , Mf(pj)≤α, which implies that

α≥ 1

|Bj |

∫

Bj

f(x)dx≥ c

|Qj |

∫

Qj

f(x)dx

(
∫

Qj
f ≤

∫

Bj
f and |Bj | ≤ c |Qj |) so that α ≤ 1

|Qj |
∫

Qj
f(x)dx ≤ Cα (the first inequality fol-

lows from Qj⊂Ω = {x:Mf >α}). �
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Note. A tiny note on convention, wherever possible capital constants C will usually denote
large quantities and lower case constants c will denote small quantities.

To draw complete connections between the different results of the past two lectures, we will
show that the weak (1,1) estimate

|{Mf >α}|≤ A

α
‖f ‖L1

can be derived from the C-Z decomposition. Note that the C-Z decomposition itself did not
need the maximal function to prove, although using the maximal function with Whitney’s
decomposition gave a C-Z decomposition with F closed.

Proof. (Weak (1,1) Estimate from C-Z decomposition)

Let f ∈ L1(Rn), f ≥ 0 and α > 0. The C-Z Decomposition gives us F , Ω, Qj with Ω =
⋃

j=1
∞

Qj
and F = Ωc, with

|Ω| ≤ 1

α
‖f ‖L1

since
1

|Qj|
∫

Qj
f(x)dx≥α. Let Q̂j= 3Qj and Ω̂ =

⋃

j=1
∞

Q̂j. Then

|Ω̂| ≤ 3n|Ω| ≤ 3n

α
‖f ‖L1

The claim is that if x ∈ Ω̂, then Mf(x) ≤ Cα for some constant C not dependent on α. First
note that there is a sequence of dyadic cubes Rj with |Rj+1|= 1

2n |Rj | converging to x, with

1

|Rj |

∫

Rj

f(x)dx≤α

The above condition guarantees that all the adjacent cubes of the same size as Rj are also con-

tained in F , or in other words, R̂j= 3Rj satisfies R̂j⊂F . Note that this implies

1
∣

∣

∣
R̂j

∣

∣

∣

∫

R̂j

f(x)dx≤α

as well. Therefore Mf(x)≤Cα follows from

1

|Br(x)|

∫

Br(x)

f(x)dx≤ C

|R̂j |

∫

R̂j

f(x)dx≤Cα

where given any ball Br(x), we can find R̂j such that |R̂j | ≤ C |Br(x)| (if we use L∞ metric on
Rn, where the balls become cubes, then this constant is C = 2n). Note that without R̂j, i.e. if
we used just Rj, we may not be able to embed the balls in this fashion, since x may be on the
corner of all the Rj’s. Finally, this implies that

|{x:Mf >Cα}|≤ |Ω̂| ≤ 3n|Ω| ≤ 3n

α
‖f ‖L1

which proves the weak (1,1) estimate. �
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Now recall an observation from last lecture:

|{x:Mf >α}|≤ 2A

α

∫

{|f |>α/2}
|f(x)|dx

which was used to prove a sufficient condition for Mf ∈ L1(B) for bounded set B. On the other
hand, we can now show that

|{x:Mf >α}|≥ c′

α

∫

{|f |>α/2}
|f(x)|dx

for some constant c′> 0, so that |{x:Mf >α}| is comparable to
1

α

∫

{|f |>α/2} |f(x)|dx.

Proposition 9. For f ∈L1(Rn),

|{x:Mf >α}|≥ c′

α

∫

{|f |>α/2}
|f(x)|dx

for some constant c′> 0.

Proof. Note that from the third property of the C-Z decomposition,

2nα≥ 1

|Qj |

∫

Qj

|f(x)|dx≥α

Then if x ∈ Qj, Mf(x) ≥ cα. We can see this by noting that if x lies in the center of the cube,
then we already have that

Mf(x)≥ 1

|Qj |

∫

Qj

|f(x)|dx≥α

using the definition of Mf with cubes instead of balls (L∞ metric). Otherwise, a worst case sce-
nario is that if x lies in the corner, and the adjacent cubes that share x as a corner are all con-
tained in F (where 0 ≤ |f | ≤ α). Let the union of all the cubes sharing x as a corner be Q. We
can bound Mf below by

1

|Q|

∫

Q

|f(x)|dx≥ 1

2n|Qj |

∫

Qj

|f(x)|dx≥ 2−nα

The other cases lie in between, and so c= 2−n. Note that

|{|f | ≥α}|≤ |Ω| ≤ |{Mf >cα}|

since |f | ≤ α a.e. on F = Ωc and for every x ∈ Ω, x ∈ Qj and so Mf(x)> cα. Finally, using the

fact that 2nα≥ 1

|Qj |
∫

Qj
|f(x)|dx (C-Z property), |Qj | ≥ 2−n

α

∫

Qj
|f(x)|dx and

|{Mf >cα}|≥ |Ω| ≥ 2−n

α

∫

Ω

|f(x)|dx≥ 2−n

α

∫

|f |≥α
|f(x)|dx

Now replacing cα with α, we have

|{Mf >α}|≥ c2−n

α

∫

|f |≥α/c

|f(x)|dx≥ c′

α

∫

|f |≥α/2

|f(x)|dx

12



noting that c is small (c=2−n). �

Remark. For the next proof, we will use the form of the inequality

|{Mf >α}|≥ c′

α

∫

|f |≥α
|f(x)|dx

(in the proof above the α/2 is arbitrary, and can be replaced by anything larger than α/c).

Corollary 10. For a function f supported in B where f ∈L1(B), we have that

f log(1+ |f |)∈L1(B)�Mf ∈L1(B)

Proof. The forward direction (� ) was proved last time with the trick discussed above. The
converse direction is proved similarly with the inequality we just proved.

‖Mf ‖L1 ≥
∫

1

∞
|{x:Mf(x)≥α}| dα

≥ c′
∫

1

∞ 1

α

∫

{|f |>α}
|f(x)|dxdα

= c′
∫

|f |>1

|f(x)|
∫

1

|f | dα
α

= c′
∫

|f |>1

|f(x)| log(|f(x)|) dx

≈
∫

B

|f(x)| log(1 + |f(x)|dx

since log(|f(x)|) behaves asymptotically like log(1 + |f(x)|) for large |f(x)|. This proves the
result. �

Remark. This result gives us a way to characterize the Hardy space, defined to be the space of
functions f such that Mf ∈L1(B).

An Aside About Theorems in Analysis

First, define Hausdorff metric HD(A,B) for sets A,B contained in a metric space (X, d).

HD(A,B)=max

(

sup
a∈A

inf
b∈B

d(x, y), sup
b∈B

inf
a∈A

d(x, y)

)

or equivalently,

HD(A,B)≤ ε� A⊂Bε andB⊂Aε

Intuitively, consider the following game: your friend picks an arbitrary point from either A or B,
and you must travel to the other set. HD(A, B) is then the longest distance you are forced to
travel, where your friend picks the worst possible point, and you take the shortest path from
this point to the other set.

Also, let ρA(x)= ρ(x,A). Then

‖ρA− ρB‖L∞ =HD(A,B)

13



In particular, the notion of convergence in HD metric can be translated to convergence of ρA in
L∞ norm.

Remark. Let X = {C:C is a nonempty closed subset ofRn}. Then (X ,HD) is a complete metric
space. This can be justified by using the identification A� ρA (metric preserving isomor-
phism).

Proof. Letting E = {ρA, A∈X }, we note that (E, L∞) is a metric space, and it suffices to show
that it is complete. It then suffices to show that E is closed, since (C(Rn), L∞) is a complete
metric space. Suppose ρAi

→ f in L∞ (i.e. uniformly). We want to show the existence of A ∈ X
such that ρA= f . We note that for a given ε > 0 and n sufficiently large, |f(x) − ρAn

(x)| ≤ ε for
all x. Note that

An= {x: ρAn
(x)= 0}⊂{x: f(x)≤ ε}⊂ {x: d(x,An)≤ 2ε}=(An)2ε

This implies that

d(x,An)≤ d(x, {f ≥ ε})≤ d(x, (An)2ε)

(by an argument involving triangle inequality). Furthermore, since

|d(x,An)− d(x, (An)2ε| ≤ 2ε

we have that

f(x)− ε≤ d(x,An)≤ d(x, {f ≥ ε})≤ d(x,An)+ 2ε≤ f(x)+ 3ε

and letting ε → 0 we have that f(x) = d(x, {f = 0}). Letting A = {x: f(x) = 0} gives the
result. �

Many theorems in analysis come in three forms: one that is set-theoretic, function-theoretic, and
measure-theoretic. One form of a theorem can usually be transferred to and from other settings
by setting up correspondences. Here we have transferred a set-theoretic property of HD to func-
tion spaces.

Another example, for instance, are forms of Bolzano Weierstrass (extracting a convergent subse-
quence from a bounded sequence). Arzela-Ascoli’s Theorem, which is function theoretic. Helly’s
Selection Theorem is an analogue for measures, and for HD there is a corresponding theorem
Blaschke Selection Theorem.

Coming next...

1. For sublinear operators T , where ‖T (x + y)‖ ≤ ‖Tx‖ + ‖Ty‖, for example the maximal
operator f � Mf , we will derive some interpolating theorems that allow us to determine
if it is a bounded operator on Lp spaces. The Marcinkiewicz interpolation theorem is the
relevant result, and it will tell us that the Hardy Littlewood Maximal Operator M is
bounded from Lp→Lp for 1< p≤∞

2. The Riesz-Thorin Interpolation Theorem for linear operators tells us that if T is a
bounded linear operator from Lp→ Lp and from Lq → Lq, then it is a bounded operator
from Lr → Lr for p ≤ r ≤ q. The proof involves Hadamard’s 3-circle theorem, with

Cr=Cp
tCq

1−t and 1

r
=

t

p
+

1− t

q
.
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Week 3 (9/23/2009)

Interpolation Theorems

We will finish developing analysis tools. The following interpolation theorems allow us to con-
clude the boundedness of operators T from Lp → Lp given bounds on the operator taken as a
mapping from Lpi→Lpi.

Theorem 11. (Marcinkiewicz Interpolation) Let T be a sublinear map, e.g.

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|

and let T be defined on Lp1∩Lp2 with 1≤ p1< p2≤∞ satisfying

|{x: |Tf(x)| ≥α}|≤ ci
‖f ‖pi

pi

αpi
, i=1, 2

(i.e. “T is weak-type (p1, p1) and weak-type (p2, p2)”)

Then T is a bounded operator from Lp→Lp for p1< p< p2, (strong-type (p, p)), i.e.

‖Tf ‖p≤ cp‖f ‖p

where the constant cp depends only on c1, c2.

As a quick remark, in the special case where Tf =Mf , the maximal operator, we already proved
this result. We showed that M is weak-type (1, 1) and strong-type (∞,∞) (which implies weak-
type (∞,∞)), and if we use the above result then we are done. The proof of the Marcinkiewics
Interpolation is very similar to the steps of the proof of the maximal inequality from the first
lecture.

Proof. The idea of the proof is to exploit the bounds for Lpi. Given any f ∈Lp, we can decom-
pose f as a sum of a function in Lp1 and a function in Lp2. The intuition is that near ∞, where
decay determines integrability, higher powers Lp cause faster decay, so for functions bounded
above (in absolute value), f ∈ Lp ⇒ f ∈ Lp2. Locally, lower powers of Lp behave nicer (higher
powers cause large values to blow up faster), and so for functions bounded below (in absolute
value), f ∈ Lp � f ∈ Lp1. Thus for any α, we can decompose f = f1 + f2, where f1 =
f1{|f |≥α}∈Lp1 and f2 = f1{|f |<α}∈Lp2. To show this quickly,

∫

|f |≥α
|f(x)|p1 dx =

∫

α≤|f |≤1

|f(x)|p1 dx+

∫

|f |≥max(α,1)

|f(x)|p1 dx

≤ |{α≤ |f | ≤ 1}|+
∫

|f |≥max(α,1)

|f(x)|p dx

≤ |{α≤ |f | ≤ 1}|+ ‖f ‖pp

< ∞

where we note that |f(x)|p1≤ |f(x)|p for |f(x)| ≥ 1, and |{α≤ |f | ≤ 1}|<∞ since

∞>

∫

|f(x)|p dx≥
∫

α≤|f |≤1

|f(x)|p dx≥αp |{α≤ |f | ≤ 1}|

15



Thus f1∈Lp1. An analogous proof holds to show f2∈Lp2. For sanity, we do it anyway:

∫

|f |≤α
|f(x)|p2 dx =

∫

1≤|f |≤α
|f(x)|p2 dx+

∫

|f |≤min(α,1)

|f(x)|p2 dx

≤ αp2|{1≤ |f | ≤α}|+ ‖f ‖pp
< ∞

Now that we have this decomposition, note that

|{x: |Tf |> 2α}| ≤ |{x: |Tf1|>α}|+ |{x: |Tf2|>α}|

≤ c1‖f1‖p1
p1

αp1
+
c2‖f2‖p2

p2

αp2

=
c1
αp1

∫

|f |≥α
|f(x)|p1 dx+

c2
αp2

∫

|f |<α
|f(x)|p2 dx

since if 2α< |Tf |= |Tf1 + Tf2| ≤ |Tf1|+ |Tf2|, either |Tf1|>α or |Tf2|>α (otherwise the sum is
≤ 2α, a contradiction). Now we use the Fubini type result to compute ‖Tf ‖pp:

‖Tf ‖pp ≃
∫

0

∞
αp−1 |{|Tf |> 2a}|dα

≤
∫

0

∞
c1α

p−p1−1

∫

|f |≥α
|f(x)|p1 dxdα

+

∫

0

∞
c2α

p−p2−1

∫

|f |<α
|f(x)|p2 dxdα

=

∫

|f(x)|p1
∫

0

|f(x)|
c1α

p−p1−1 dαdx (p> p1)

+

∫

|f(x)|p2
∫

|f(x)|

∞
c2α

p−p2−1 dαdx (p< p2)

=
c1

p− p1

∫

|f(x)|p dx+
c2

p2− p

∫

|f(x)|p

= c̃ ‖f ‖pp
< ∞

where c̃ =
c1

p− p1
+

c2

p2− p
. This proves that T is a bounded operator from Lp → Lp with norm

bounded by
c1

p− p1
+

c2

p2− p
. �

Remark. Note that we do not have good control over the operator norm of T as a bounded
operator from Lp → Lp, since as p → p1, our bound on the norm tends to ∞. With a slightly
stronger assumption, we can get good control over the norm:

Theorem 12. (Riesz-Thorin) If T is a bounded linear operator from Lpi → Lpi for i = 1, 2
with norms ci, i.e. |Tf |Lpi ≤ ci|f |Lpi, then T is a bounded linear operator from Lp → Lp with

p1≤ p≤ p2 with operator norm bounded by c1
tc2

1−t where 1

p
=

t

p1
+

1− t

p2
.

Remark. Before the proof, note that by Marcinkiewicz interpolation, since bounded Lpi → Lpi

implies weak-type (pi, pi), we already know that T is a bounded operator from Lp → Lp. This
theorem gives good control on the operator norm (as claimed in the previous remark).

First we will need a lemma from complex analysis:

Lemma 13. (Hadamard 3-lines Theorem) Let f(z) be holomorphic in a strip a <Re(z)< b

and let M(x)=maxRe z=x |f(x)|. Then logM(x) is convex in x.
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Proof. Consider fε(z) = f(z)eεz
2
, noting that

∣

∣

∣
eεz

2
∣

∣

∣
= eε(x

2−y2) where a < x < b and so as |y | →
∞, so long as log |f(z)| = o

(

y2
)

, fε(z) → 0. Thus by the maximum modulus principle, |fε(z)|
achieves its maximum along Re z = a or Re z = b. Denoting Mε(x) = maxRe z=x |fε(z)|, this
implies that Mε(x)≤max (Mε(a),Mε(b)). Taking ε→ 0 shows that M(x)≤max (M(a),M(b)).

So let’s try.... f(z)e

To show convexity in x, now consider ft(z) = f(z)etz, noting that |etz | = etx which is bounded.
The above result applied to f(z)etz, so long as log |f(z)|= o(y2) as y→∞, implies that

Mt(x) ≤ max (Mt(a),Mt(b))

etxM(x) ≤ max (etaM(a), etbM(b))

M(x) ≤ max (et(a−x)M(a), et(b−x)M(b))

In particular, for any t we have that

logM(x)≤ t(a− x)+ logM(a) and logM(x)≤ t(b−x)+ logM(b)

We then pick the values of t such that

logM(x)≤ b− x

b− a
logM(a) and logM(x)≤ x− a

b− a
logM(b)

For the first one, t =
1

b− a
log M(a) and for the second one, take t =

− 1

b− a
log M(b). Combining

the two gives the convex inequality

logM(x)≤ b− x

b− a
logM(a) +

x− a

b− a
logM(b)

which is valid so long as M(a), M(b) > 1. Note that with λ =
x− a

b− a
and x = (1 − λ)a + λb, this

becomes

logM((1−λ)a+λb)≤ (1−λ) logM(a)+λ logM(b)

Now without loss of generality we can assume M(a), M(b) > 1, since we can always scale f(z),
which affects log M(x) by a constant term (does not affect convexity). Note that M(a) � 0, or
else f(z) = 0 on Re z = a, from which we conclude that f must be identically zero, in which case
the theorem is trivial. Likewise for M(b). �

Remark. The conclusion of the lemma above can be written

logM(x)= t logM(a) + (1− t) logM(b)

or

M(x)=M(a)tM(b)1−t

with x= ta+ (1− t)b.

Using this tool we can then prove the Riesz-Thorin interpolation theorem:

Proof. (of Riesz-Thorin) The operator norm of T in Lp, ‖T ‖p,p can be written by duality
theory

‖T ‖p,p= sup
‖f‖p≤1
‖g‖q≤1

∣

∣

∣

∣

∫

gTfdµ

∣

∣

∣

∣
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For starters, we assume that T is a complex operator, otherwise we can extend T (f + ig)= Tf +
iTg. Thus f , g are assumed to be complex functions. We can make a reduction by factoring f

as f = ϕ|f | with |ϕ|= 1, and likewise for g= ψ |g |, so

‖T ‖p,p= sup
‖f‖p,‖g‖q≤1

f ,g≥0
|ϕ|,|ψ |=1

∣

∣

∣

∣

∫

gψT (fϕ)dµ

∣

∣

∣

∣

We can make a further reduction by noting that f ∈Lp� f p∈L1, and thus

‖T ‖p,p= sup
‖f ‖1,‖g‖1≤1

f ,g≥0
|ϕ|,|ψ |=1

∣

∣

∣

∣

∫

gxψT (f 1−xϕ)dµ

∣

∣

∣

∣

with x = 1/q. Denote F (f , g, ϕ, ψ, x) 6 ∫

gxψT (f1−x ϕ)dµ, and now we extend to complex,

replacing f1−x, gx with f1−z, gz. Thus F (f , g, ϕ, ψ, z) makes sense, and the claim is that (for a

fixed f , g, ϕ, ψ) it is holomorphic in the strip
1

q1
≤ Re z ≤ 1

q2
. For one, p1 ≤ p ≤ p2 implies that

1

p1
≥ 1

p
≥ 1

p2
� 1

q1
≤ 1

q
≤ 1

q2
so that in this region T is a bounded operator from L1−1/Re z →

L1−1/Re z. Note that

gz= gRe zei Im z log g

where the second term has modulus 1, and hence can be absorbed in the ψ term. The same
holds for f1−z. Now gz(x) and f1−z(x) are analytic functions of z for every x such that g(x),

f(x) are nonzero (defined by ez log g(x)). Therefore T (f1−z ϕ) is a complex function in L1−1/Re z

and by linearity it is analytic as well, noting that if φ(z) is analytic then (Tφ)(z) is analytic too:

(Tφ)′(z)= lim
h→0

Tφ(z+ h)−Tφ(z)

h
= lim
h→0

T

(

φ(z+h)− φ(z)

h

)

=T (φ′(z))

To handle the potential problems where f , g vanish, we can approximating f , g by functions fε,

gε that never vanish (add εe−εx
2
for instance). This will cause the integrand to be holomorphic

for all x, and then taking the integral F (fε, gε, ϕ, ψ, z) is holomorphic. Taking a limit as ε→ 0
gives F (f , g, ϕ, ψ, z) which we have now expressed as a limit of holomorphic functions. So long

as the limit is uniform on every compact subset of the region
1

q1
≤ Re z ≤ 1

q2
, this limit becomes

holomorphic. In fact, the convergence is uniform for all z in the region since the real part is
bounded.

Then now that we have that F (f , g, ϕ, ψ, z) is holomorphic, we can apply the three lines lemma
to get that

|F (f , g, ϕ, ψ, x)| ≤
∣

∣

∣

∣

F

(

f , g, ϕ, ψ,
1

q1

)
∣

∣

∣

∣

t∣
∣

∣

∣

F

(

f , g, ϕ, ψ,
1

q2

)
∣

∣

∣

∣

1−t

with
1

q
=

t

q!
+

1− t

q2
and taking the supremum in f , g, ϕ, ψ gives the result

‖T ‖p,p≤‖T ‖p1,p1t ‖T ‖p2,p21−t

where 1− 1

q
= t− t

q1
+(1− t)− 1− t

q2
or

1

p
=

t

p1
+

1− t

p2
.

�
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Note that this technique extends to the case where T : Lpi → Lqi i = 0, 1 to conclude that T is a

bounded map from Lpt→Lqt where
1

pt
=

1− t

p0
+

t

p1
and

1

qt
=

1− t

q0
+

t

q1
with norm M0

1−tM1
t. What

needs adjustment in the proof above is

‖T ‖p,q= sup
‖f ‖1,‖g‖1≤1

f ,g≥0
|ϕ|,|ψ |=1

∣

∣

∣

∣

∫

g1/qz
′

ψT (f 1/pzϕ)dµ

∣

∣

∣

∣

and establish that this is a holomorphic from 0<Re z < 1.

Fourier Transforms

The starting point for discussion about Fourier Transforms are integrable functions f ∈ L1(Rn).
Our definition of the Fourier Transform that we will be working with (other definitions differ in
how the constants are distributed between the transform and its inverse) is

f̂ (ξ) =

∫

Rn

f(x)e−2πi 〈x,ξ〉dx

with inverse

f̌ (x)=

∫

Rn

f(ξ)e2πi 〈x,ξ〉 dξ

Note: This is a departure from class, inserting the 2π in the definition here saves a
lot of headaches!

Consider two simple operations:

• Translation by h∈Rn:

τhf(x)6 f(x+h)

with Fourier transform

τhf (ξ) = ei〈h,ξ〉 f̂ (ξ)

• Dilation by a> 0:

δaf(x)6 f(ax)

with Fourier transform

δaf (ξ) = a−nf̂

(

ξ

a

)

The proofs are quite direct, involving change of variables. Here are a few more useful properties:

1. With the naive integral estimate,

‖f̂ ‖L∞(Rn)≤‖f ‖L1(Rn)

2. If f ≥ 0, then

‖f̂ ‖L∞(Rn) = f̂ (0) =

∫

Rn

f(x)dx
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just by noting that if ξ � 0 then the oscillation from the exponential will cause the value

of |f̂ (ξ)| to be smaller.

3. For one dimension, for indicators 1(a,b) we have

1(a,b)(t)=
e−ibt− e−iat

it

which is by direct computation.

4. (Riemann Lebesgue Lemma) Again for one dimension, for f ∈L1(R), as t→∞,

f̂ (t)� 0

To prove this we can approximate by C0
∞ functions, (which we then approximate by

simple functions, then indicators).

Denote the Fourier transform operator by F(f)6 f̂ . We would like to classify the image of the
Fourier trasnform on the space of integrable functions, F(L1). We can show that

F (L1)⊆C0(R
n)

where C0(R
n) are the continuous functions that vanish at ∞. This result can be proved from

building up from indicators also (or using the modulus of continuity of e−ix, can prove that the
fourier transform of an integrable function is uniformly continuous).

However, there exist functions in C0(Rn) for which there does not exist a corresponding L1 func-
tion in the preimage. Consider for simplicity n= 1. We show this by considering an estimate for
odd functions f(−x)=− f(x). In this case, we know that

f̂ (x)=− i

∫

−∞

∞
sin (tx)f(t)dt

since the integral of cos (tx)f(t) vanishes since it is odd. Then we note that

∣

∣

∣

∣

∣

∫

1

∞ f̂ (x)

x
dx

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

1

∞ 1

x

∫

−∞

∞
sin(tx)f(t)dtdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

−∞

∞
f(t)

∫

1

∞ sin (tx)

x
dxdt

∣

∣

∣

∣

≤ b‖f ‖L1

noting that
∫

1

∞ sin(tx)

x
dx is bounded for all t. Using this estimate, we can make the LHS ∞ for

some choice of f̂ (x) ∈ C0(R) by considering g(x) =
1

log x
. Then supposing there existed f such

that F f = g, by the above estimate the left hand side is
∫

1

∞ 1

x log x
dx=∞, and thus ‖f ‖L1≥∞

and f is not integrable. Thus F(L1(R))� C0(R).

As an aside, having F(L1)⊂C0(R), we can make sense of the following interesting proposition:

Proposition 14. If f , g ∈L1(Rn), then

∫

Rn

f̂ g dξ=

∫

Rn

f ĝ dx

Note that both sides are well defined, since f̂ , ĝ ∈C0(R
n).
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Proof. This is just Fubini:

∫

Rn

f̂ g dξ =

∫

Rn

g(ξ)

∫

Rn

f(x)e−2πi 〈x,ξ〉 dxdξ

=

∫

Rn

f(x)

∫

Rn

g(ξ)e−2πi 〈x,ξ〉 dξdx

=

∫

Rn

f ĝ dx

�

Schwarz Class

On the positive side, there exists a special class of functions for which we can classify the image
of the Fourier transform, the Schwarz class S:

S =
{

ϕ∈C∞(Rn): lim
x→∞

|Dkϕ|(1+ |x|2)m→ 0 ∀k, ϕ
}

i.e. smooth functions where all derivatives decay faster than any polynomial.

First note the following additional properties concerning the differentiation operator Dϕ 6
1

2πi
ϕ′. (the addition of the 1/2πi term simplifies notation). With integration by parts, and the

fact that ϕ decays at ∞,

Dϕ(ξ) =

∫

1

2πi
ϕ′(x)e−2πixξ dx= ξ

∫

ϕ(x) e−2πixξ dx= ξ ϕ̂(ξ)

and since (−x)ϕ(x)e−2πixξ is integrable,

(−x)ϕ (ξ)=

∫

(− x)ϕ(x) e−2πixξ dx=
1

2πi
· d
dξ

∫

ϕ(x)e−2πixξ dx=Dϕ̂(ξ)

Generalizing to higher dimensions (which involves just taking products of these identities, we
have that

Dα(− x)γϕ (ξ) = ξαDγ ϕ̂(ξ)

where α, γ are multi-indices Dα=Dα1
Dαn
, xγ = x1

γ1
xnγn. Therefore, the Fourier transform of
any ϕ∈S is also in S, so F :S→S. In fact,

Theorem 15. F is an isomorphism from S → S with inverse F−1 (given by the inversion for-
mula).

Proof. We showed that F maps from S → S, so all that remains is to verify the inversion for-
mula, i.e. F−1 ◦ F = Id on S. This is by a computation involving Fubini’s Theorem to swap the
double integral. However, the complex exponential poses problems since it is not integrable. The

idea is then to multiply by a Gaussian e−ε|x|
2/2 and let ε→ 0. So first we prove a useful identity

concerning the Fourier transform of the Gaussian e−ε|x|
2/2, first in one dimension:

exp
(

− επx2
)

=

∫

−∞

∞
e−2πixξe−επx

2
dx

= e−πξ
2/ε

∫

−∞

∞
e−επ(x−iξ/ε)2 dx

= e−πξ
2/ε

∫

−∞

∞
e−επx

2
dx (Contour integration)

=
1

ε

√

e−πξ
2/ε
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where the contour integration is of e−εz
2/2 on the boundary of the region { − ξ/ε < Im z < 0}.

Generalizing to products, we get

exp
(

− επ |x|2
)

= ε−n/2e
−π|ξ|2

ε

Now if ϕ∈S,

F−1(ϕ̂)(x) =

∫

Rn

e2πi 〈x,ξ〉ϕ̂(ξ)dξ

= lim
ε→0+

∫

Rn

e2πi 〈x,ξ〉e−
επ|ξ|2

2

∫

Rn

ϕ(y)e−2πi〈y,ξ〉 dy dξ

(Fubini)

=
lim
ε→0+

∫

Rn

ϕ(y)

∫

Rn

e2πi〈x−y,ξ〉 e−
επ|ξ|2

2 dξdy

= lim
ε→0+

∫

Rn

ϕ(y)ε−n/2e
−π|y−x|2

ε dy

= ϕ(x)

where we note that ψε(x)=
1

εn/2
e
−π

∣

∣x/ ε
√ ∣

∣

2

is an approximate identity, so that

ϕ ∗ ψε→ ϕ

as ε→ 0. Thus the inversion formula is valid and F is an isomorphism. �

Proof. (Second Proof of Inversion Formula) This proof (from D. Javier, Fourier Analysis)
uses the weak Parseval equality

∫

f̂g =
∫

gf̂ which in this case follows again by Fubini. Note
that

∫

Rn

λ−nf(λ−1x)ĝ(x)dx=

∫

Rn

f(x) ĝ(λx)dx=

∫

Rn

f̂ (x)λ−ng(λ−1x)dx

and so
∫

Rn

f(λ−1x)ĝ(x)dx=

∫

Rn

f̂ (x)g(λ−1x)dx

taking λ→∞ gives

f(0)

∫

ĝ(x)dx= g(0)

∫

f̂ (x)dx

and setting g(x)= e−π |x|2 (noting ĝ(x) = e−π |ξ|2) we get

f(0)=

∫

f̂ (x)dx

and replacing f by τy f gives

f(y)=

∫

f̂ (x)e2πiy·x dx

as desired. �

Week 4 (10/7/2009)

(This week’s notes are a little scattered...)

Continuing the discussion about the Fourier transform on the Schwarz’ space, we establish fur-
ther properties of the Fourier transform:
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Proposition 16. For all ϕ, ψ ∈S we have the following properties:

1.
∫

Rn ϕψ̄ =
∫

Rn ϕ̂ψ̂

2. ϕ ∗ ψ = ϕ̂ψ̂

3. ϕψ = ϕ̂ ∗ ψ̂

All of these are proved by Fubini. For instance,

ϕ ∗ ψ =

∫

e−2πix·ξ
∫

ϕ(y)ψ(x− y)dydx

=

∫

ϕ(y)

∫

ψ(x− y)e−2πix·ξ dxdy

=

∫

ϕ(y)

∫

ψ(x)e−2πi(x+y)·ξ dxdy

=

∫

ϕ(y)e−2πiy·ξ dy
∫

ψ(x)e−2πix·ξ dx

= ϕ̂ψ̂

By duality we can extend the Fourier transform to the space of tempered distributions, S ′, i.e.
the space of linear functionals on S. For u∈S ′, we define û ∈S ′ by

û(ϕ)= u(ϕ̂)

noting ϕ̂ ∈ S. We can easily check that this coincides with the usual definition if u ∈ L1 (recall
functions can be identified with a distribution by

u(ϕ)=

∫

uϕ

and note using the definition for distributions,

û(ϕ)=

∫

uϕ=

∫

ûϕ

noting û in the integrand is a C0 function which can be identified with the above functional. So
û in this case is a distribution corresponding to an actual function, and moreover the definitions
agree.

Thus,

F :S→S , S ′→S ′

is an isomorphism. The inverse is defined similarly: F−1u(ϕ) = u(F−1ϕ) and thus F ◦
F−1u(ϕ)= ϕ.

Now returning to Lp spaces, we know that F : L1 → C0. We can extend F to L2 functions by
density, approximating by functions in L1∩L2. We show that for u∈L2, û ∈L2 as well:

In fact, we will prove that for u, v ∈L2,
∫

uv∗=

∫

ûv̂∗
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(Parseval’s equality) from which û ∈L2 follows (Plancherel).

∫

û(ξ)v̂∗(ξ)dξ = lim
ε→0+

∫

û(ξ)v̂∗(ξ)e−επ |ξ|
2

dξ

= lim
ε→0+

∫

e−επ |ξ|
2

∫

u(x)e−2πix·ξdx
∫

v∗(y)e2πiy·ξ dydξ

= lim
ε→0+

∫

u(x)

∫

v∗(y)
∫

e−2πi(x−y)·ξe−επ|ξ|
2

dξdydx

= lim
ε→0+

∫

u(x)

∫

v∗(y)ε−n/2e
−π

ε
|y−x|2

dydx

=

∫

u(x)v∗(x)dx

using the same technique used in the first proof of the inversion formula above. Thus, we have
proved that F :L2→L2, with ‖û‖L2 = ‖u‖L2. In summary, we have:

• F :L1→L∞ with norm 1.

• F :L2→L2 with norm 1.

• By Riesz-Thorin, this implies that F :Lp→Lp
′
with norm 1, and this is for 1≤ p≤ 2.

Now we turn to another property concerning homogeneity of the Fourier trasnform:

Proposition 17. If u∈S ′ is homogeneous of degree σ, then û is homogeneous of degree −n− σ

i.e. for functions, if we use δtu6 u(tx), then u is homogeneous of degree σ if δtu(x) = u(tx) =

tσu(x), and under this condition, û(tξ)= t−n−σû(ξ).

For distributions, we define δt
∗u(ϕ) 6 u(δtϕ), so u is homogeneous of degree σ if δt

∗u(ϕ) =
tσu(ϕ).

Proof. Using the property of the Fourier transform, we note that for functions,

tσû = δtu = t−nδ1/tû(ξ)= t−nû(ξ/t)

û(ξ/t) = tσ+nû(ξ)

û(tξ) = t−σ−nû(ξ)

For distributions, we use the result above to get

δt
∗u(ϕ) = δt

∗u(ϕ̂)

= u(δtϕ̂)

= u(t−n−σϕ̂)

= t−n−σu(ϕ̂)

= t−n−σû(ϕ)

�

And now for some convolution properties:

Properties about Convolution:

1. (Hausdorff-Young inequality) ‖f ∗ g‖r≤‖f ‖p‖g‖q for 1 +
1

r
=

1

p
+

1

q
.
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2. ρε ∗ f→ f in Lp with ρε an approximate identity (converging to the dirac measure δ)

3. A special case of (1) is ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1, and using convolution as a product on L1,
this turns L1 into a Banach Algebra.

4. f ∗ g inherits the nicer property between f , g. This manifests itself in the Hausdorff-
Young inequality above, the convolution between L1 and Lp is Lp.

‖f ∗ g‖p≤‖f ‖p‖g‖1

Also, Ck convolved with something not even continuous is Ck. Note

(f ∗ g)′= f ′ ∗ g= f ∗ g ′

if f , g are differentiable.

Translation Invariant Operators

Now for some reason we are talking about translation invariant operators (will use in Week 5).

A translation invariant operator A∈B(Lp, Lq) is a bounded operator satisfying τhA=Aτh.

Theorem 18. If A∈B(Lp, Lq) is translation invariant, then

1. If q < p<∞, then A≡ 0

2. If q < p=∞, then A|L0
∞≡ 0.

Proof. Note that ‖Au‖q ≤‖A‖‖u‖p for all u∈Lp. Then

‖Au+ τhAu‖q= ‖A(u+ τhu)‖q≤‖A‖‖u+ τhu‖p

Now let h→ ∞. For sufficiently large h, Au and τhAu become “essentially” disjoint, since func-
tions in Lp decay at infinity, so that outside a ball of radius R the Lp norm can be bounded by

ε. Thus ‖Au+ τhAu‖q≈ 21/q‖Au‖q, noting that

‖Au+ τhAu‖qq≈ 2‖Au‖qq

Likewise, ‖u+ τhu‖p≈ 21/p‖u‖p, and

21/q‖Au‖q. ‖A‖21/p ‖u‖p

‖Au‖q. ‖A‖21/p−1/q ‖u‖p< ‖A‖‖u‖p

for p > q and ‖A‖ � 0. Note that the inequality ‖Au‖q < ‖A‖‖u‖p can be made strict above

since 21/p−1/q ≤ r < 1. This contradicts the definition of ‖A‖, so it must be the case that A≡ 0.

The second case is similar, since we restrict A to the space of L∞ functions that decay at ∞. �

Therefore when classifying translation invariant operators, the interesting case is when p ≤ q. In
this case we have the following theorem:

Theorem 19. Let A ∈B(Lp, Lq) be translation invariant, with p≤ q. Then there exists a T ∈S ′

such that Au=T ∗ u.
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Remark 20. Note that convolution of a tempered distribution with a function is a tempered
distribution, and can be defined by extending the behavior of regular convolutions as distribu-
tions. Note if f ∗ g are functions, then as a distribution,

(f ∗ g)(ϕ) =

∫

(f ∗ g)(x)ϕ(x)dx

=

∫ ∫

ϕ(x)f(y)g(x− y)dxdy

=

∫

(ϕ ∗ g̃)(y)f(y)dy

= f(g̃ ∗ ϕ)

=

∫

(ϕ ∗ f̃ )(y)g(y)dy

= g(f̃ ∗ ϕ)

where f̃ (x) = f(− x).

Thus,

(T ∗ u)(ϕ)6 T (ũ ∗ ϕ)

and since ũ ∗ ϕ∈S, T ∗ u is also in S ′.

The theorem is proved with the following lemma:

Lemma 21. If f ∈W n+1,p(Rn), for 1≤ p≤∞, then f ∈C0.

Remark. Recall W k,p(Rn) is the Sobolev space with norm defined by

∑

|α|≤k
‖Dαf ‖p

(there are other equivalent norms, using for instance an Lp like sum...

Proof. Let us consider the case p = 1 first. The idea is to prove that ‖f̂ ‖L1 ≤ C ‖f ‖Wn+1,1, in
which case f(− x) =Ff̂ is in C0, since F :L1→C0. This relies on the inversion formula, which is

valid for f ∈L1. Note that

(1+ |x|2)
n+1

2 ≤ cn
∑

|α|≤n+1

|xα|

(just expand the LHS, use triangle inequality and bound by the largest constant) Then

|f̂ (x)| ≤ cn(1+ |x|2)−
n+1

2

∑

|α|≤n+1

|xα| |f̂ (x)|

≤ cn(1+ |x|2)−
n+1

2

∑

|α|≤n+1

|Dαf(x)|

≤ cn(1+ |x|2)−
n+1

2

∑

|α|≤n+1

‖Dαf ‖1

The key is that (1+ |x|2)−
n+1

2 is integrable in Rn (behaves like |x|−(n+1)), so that

‖f̂ ‖1≤Cn‖f ‖Wn+1,1

26



as desired. Also, we have the bound

‖f ‖∞≤Cn
′ ‖f ‖Wn+1,1

For higher powers of p a different proof seems to be needed... �

Proof. (of Theorem) First we claim that DαAu = ADαu for u ∈ S. This is a straightforward
computation. For h= hjej, note

DhAu= lim
hj→0

ThAu−Au

hj
= lim
hj→0

A

(

Thu−u

hj

)

=A(Dhu)

where we have used translation invaraince of A in the second equality above.

Now we show that Au∈W n+1, q, in which case Au∈C0 by the lemma. But this follows from

DαAu=ADαu∈Lq

for any α since Dαu ∈ Lp (u ∈ S), and in particular, for |α| ≤ n + 1. This shows that Au ∈
Wn+1,q, and

‖Au‖∞≤Cn ‖A‖‖u‖Wn+1,p

This implies that the mapping u� Au(0) is a linear, continuous functional (linear and bounded)
on Wn+1,p, and thus there exists (by a Riesz representation like theorem) a

T (x) =
∑

|α|≤n+1

DαTα(− x)

with Tα∈Lp, such that

Au(0)=
∑

|α|≤n+1

∫

DαTα(− y)u(y)=T ∗ u(0)

noting that the integration is defined as

∑

|α|≤n+1

∫

DαTα(− y)u(y)=
∑

|α|≤n+1

(− 1)α
∫

Tα(− y)Dαu(y)

(since DαTα in general is a distribution).

From this we show that Au(x)=T ∗ u(x):

T ∗u(x) =
∑

|α|≤n+1

(− 1)α
∫

Tα(x− y)Dαu(y)dy

=
∑

|α|≤n+1

(− 1)α
∫

Tα(− y)Dαu(x+ y)dy

=
∑

|α|≤n+1

(− 1)α
∫

Tα(− y)Dα τxu(y)dy

= T ∗ τxu(0)
= Aτxu(0)

= Au(x)

using the translation invariance of A in the last equality. �
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Remark 22. The characterization of linear functionals on W k,p as a sum of weak derivatives of
classical functions is obtained by... First we identify W k,pB Lp×
 ×Lp�

k times

= (Lp)k by

f� (f ,Df ,D2f ,	 , Dkf)∈Lp×
 ×Lp

and then the linear functional T ∈ (W k,p)′ can be transferred by

T (f ,Df ,D2f ,	 , Dkf)=Tf

(apply T to the first coordinate). This can further be extended to (Lp)k by Hahn Banach. Now
by linearity we can write T =T0 +	 +Tk+1, where

T (f0,	 , fk)=T0(f0, 0,	 )+	 +Tk(	 , 0, fk)
which we will denote by T (f0,	 , fk) = T0f0 +	 + Tkfk. Then we can apply Riesz representation
to each Ti, to get a gi∈Lq such that

Ti fi=

∫

figi

and then

T (f0,	 , fk)=
∑

i

∫

figi

and in particular,

T (f ,Df ,	 , Dk f)=
∑

i=0

k ∫

Difgi=
∑

i=0

k ∫

f · (− 1)iDigi

and this gives the characterization,

T (f)=
∑

i=0

k ∫

(− 1)iDigi f

Fourier Series

A good reference for this section: Katznelson. Introduction to Harmonic Analysis .

Now we turn our attention to trigonometric series:

∑

n=−∞

∞
cne

2πinθ

1

2
a0 +

∑

n=1

∞
ancos 2πnθ+ bnsin 2πnθ

A trigonometric series is called a Fourier series if it comes from an integrable function f via the
relation

cn=

∫

0

1

f(x)e−2πinx dx

or

an= 2

∫

0

1

f(x) cos (2πnx)dx, bn= 2

∫

0

1

f(x) sin(2πnx)dx

Notation: If this is the case, we use the notation f ∼ cn.
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Goal: We are building towards the relation between Fourier Series and singular integrals...

Remark 23. Not all convergent trigonometric series are Fourier series. Actually, given the
Fourier series of f ∈ L1,

∑

n
cne

2πinθ, the series can be integrated term by term, and the
resulting series converges uniformly and is the Fourier series of

∫

f . This follows from the fact

that F (x) =
∫

0

x
f(t)dt is an absolutely continuous function and the Fourier series of a abso-

lutely continuous function converges uniformly (need reference here)

Then consider

∑

n=2

∞
sin(2πnθ)

log n

which by the Dirichlet test converges everywhere (though not absolutely convergent). Suppose

the series is a Fourier series corresponding to f ∈L1. Then integrating term by term gives

∑

n=2

∞ − cos(2πnθ)

2πn log n

which does not converge uniformly, which contradicts the previously stated fact.

See also Katznelson, Corollary to 4.2.

Remark 24. There exists a Fourier series which diverges everywhere (pointwise). (There is a
proof using Uniform Boundedness Principle and examining the Dirichlet kernel)

Properties for L2 Functions:

1. (Besov)

∑

n

|cn|2 =

∫

0

1

e−2πinθ f(θ)dθ

2. (Riesz-Fisher) If
∑

n
|cn|2<∞, there exists f ∈L2[0, 1] such that f ∼ cn.

3. (Parseval)

‖f ‖2
2 =
∑

n

|cn|2

More General Properties:

1. If f ≥ 0, then |an| ≤ a0, |bn| ≤ a0, and a0 = 2
∫

0

1
f(x) dx

2. If f ≥ 0 on
[

0,
1

2

]

and f is odd, then |bn| ≤ 2πnb1. This uses |sin 2πnθ | ≤ 2πn |sin θ |.

3. If f is monotone decreasing on [0, 1], then bn≥ 0.

4. If f is convex on (0, 1), then an≥ 0 for n> 0.

There is a result from complex analysis that bounds the growth rate of Fourier coefficients:

Proposition 25. Let F (z) =
∑

n=1
∞

cnz
n be a holomorphic, one-to-one function on |z | < 1 with

ck ∈R. Then

|cn|γn≤nr

and in particular, |cn| ≤n.
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Riemann-Lebesgue and Decay Rates

We know from the Riemann-Lebesgue that cn→ 0 as n→∞. There are no rates of convergence,
even for (uniformly) continuous functions. Given any εn → 0, we can construct a continuous
function whose Fourier coefficients decay slower than εn. Take a sequence n1, n2, 	 with k−2 ≥
εnk

, and construct

∑

k=1

∞
1

k2
cosnkθ

The series converges uniformly, and thus converges to a continuous function f whose Fourier

coefficients are f̂ (nk)=
1

k2 ≥ εnk
.

Some results in this direction...

Proposition 26. If f is absolutely continuous, and f ∼ cn, then cn= o
(

1

n

)

.

Proof. This is an integration by parts:

cn =

∫

0

1

f(x)e−2πinxdx

=
1

2πin

∫

0

1

f ′(x)e−2πinx dx

and since
∫

0

1
f ′(x)e−2πinx dx→ 0 by the Riemann Lebesgue Lemma, cn= o

(

1

n

)

. �

Proposition 27. (F. Riesz) There exists a C0∩BV function f such that cn� o( 1

n

)

.

(Note that BV� cn=O
(

1

n

)

...)

Theorem 28. (Wiener) If f ∈BV, then f ∈C0 if and only if
∑

|m|<n |mcm|= o(n).

Theorem 29. (Fefferman) If f(x)=
∑

ake
2πikx and |ak| ≤ 1

k
, then f ∈BMO

Theorem 30. (Jouné) If
∑

ake
2πikx ∈ BMO with ak ≥ 0, then

∑

bke
2πikx ∈ BMO if |bk| <

ak (A comparison test-like result)

Week 5 (10/14/2009)

Continuing the discussion about Fourier Series, recall that associated to f ∈Lp(0, 1) we have the
Fourier coefficients

cn=

∫

0

1

e−2πinxf(x)dx

and we write

f ∼
∑

n

cne
2πinx

Note |cn| ≤
∫

0

1 |f(x)|dx, and an→ 0 as |n|→∞ for f ∈L1 by Riemann Lebesgue.

If f ∈ Ck, k ≥ 1 then cn = o
(

1

nk

)

. This is from integrating by parts and applying Riemann

Lebesgue.
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If f ∈Ck for k≥ 2, then
∣

∣

∣

∣

∑

n

cne
2πinx

∣

∣

∣

∣

≤
∑

n

|cn|<∞

and so the Fourier series converges uniformly to some g (which may or may not be f , though
later we will show that it converges to f).

Studying the partial sums,

SNf(x) =
∑

|n|≤N
cne

2πinx

=

∫

0

1

f(y)
∑

|n|≤N
e2πin(x−y) dy

=

∫

0

1

f(y)DN(x− y)dy

= DN ∗ f(x)

where

DN(y) =
sin
[

2π
(

N +
1

2

)

y
]

sinπy

(the Dirichlet kernel). Note

1

2i

[

eπiy− e−πiy
]

∑

|n|≤N
e2πiny=

1

2i

[

e2πi(N+1/2)y− e−2πi(N+1/2)y
]

by cancellations. This kernel is signular near y= 0, where it behaves roughly like

DN(y)≈
sin
[

2π
(

N +
1

2

)

y
]

πy

The partial sums of the Fourier series therefore behaves (very) roughly like the Hilbert Trans-
form:

Hf(x)=
1

π
PV

∫

R

f(y)

x− y
dy

The convergence of SNf is a very delicate issue since the Dirichlet kernel is highly oscillatory.
These can be smoothed out if we consider a different kind of sum (Cesaro sum)

FNf(x) =
1

N + 1

∑

n=0

N

Snf(x)

=

∫

0

1

f(y)
1

N +1

∑

n=0

N
∑

m=−n

n

e2πin(x−y)dy

=

∫

0

1

f(y)FN(x− y)dy

= FN ∗ f(x)

for some kernel FN (Fejer kernel). Note

FN(y)=
1

N + 1

∑

n=0

N
∑

m=−n

n

e2πimy=
∑

n=−N

N (

1− |n|
N +1

)

e2πiny
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and

(sinπy)2 =− 1

4
e2πiy− 1

4
e−2πiy+

1

2

multiplying (sinπy)2FN(y) and performing cancellations gives
1

N +1
[sin (N +1)πy]

2 so that

FN(y)=
1

N + 1

[

sin(N + 1)πy

sinπy

]2

The Fejer kernel satisfies three nice properties (of approximate identities)

1. FN ≥ 0

2.
∫

0

1
FN(y)dy= 1

3.
∫

δ<y<1−δ FN(y)dy→ 0 as N→∞ uniformly

Positivity is obvious. The second property holds from examining the partial Fourier series of 1
(which is just constant = 1). The third property is a consequence of the simple bound

|FN(y)| ≤ 1

N + 1
· 1

(sinπδ)2

for δ < y < 1− δ.

Remark 31. If f ∈ C[0, 1] then FN ∗ f → f uniformly as N →∞. (FN is an approximate iden-
tity)

Thus, above if f ∈C2, we have that SNf and FNf both converge uniformly to f .

Proof. If f ∈ C2, then SNf(x) → g(x) and since FNf are averages of SNf , FNf → g(x), and by
the remark FNf→ f(x). Thus f = g. �

Even more, we have that

Proposition 32. If f ∈Cα, α > 0, then SNf(x)→ f(x).

Proof. Note that

f(0)−SNf(0)=

∫

0

1 sin
[

2π
(

N +
1

2

)

y
]

sin πy
(f(0)− f(y))dy

using the fact that
∫

DN(y)dy= 1. Now note that for small y,

∣

∣

∣

∣

f(0)− f(y)

sinπy

∣

∣

∣

∣

≤ C

|y |1−α

by Hölder continuity, and thus
f(0)− f(y)

sinπy
is integrable. Then by the Riemann-Lebesgue lemma,

f(0)−SNf(0)� 0

Translating by x shows that f(x)−SNf(x)→ 0 as well. �
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In any case, the study of convergence of the partial sums in general requires study of the sin-
gular kernel DN(y). Consider the following operator approach:

Tλf(x) =

∫

0

1

f(x− y)
sinλy

sinπy
dy

noting that T2π(N+1/2)f = SNf . Thus we are interested in the behavior as λ → ∞. Again for
small y we note that

Tλf(x)≈
∫

0

1

f(x− y)
sinλy

πy
dy

which is a singular kernel. Note

•
∫

0

1
∣

∣

∣

sinλy

πy

∣

∣

∣
dy=

∫

0

λ
∣

∣

∣

sinu

πu

∣

∣

∣
du∼ log λ, so that as an operator from C0→C0, Tλ is not uni-

formly bounded in λ. This implies that Tλf(x)→f(x) for some continuous f and some
point x by the uniform boundedness principle. (This says that if a family of operators is
ptwise bounded, then it is uniformly bounded. Thus, if we do not have uniform bound,
then there is a function where ‖Tλf ‖∞→∞)

•
∣

∣

∣

sinλy

πy

∣

∣

∣

L∞
is not uniformly bounded in λ (in fact not even finite for any λ), so that as an

operator from L1→L1, Tλ is not bounded for any λ.

Nevertheless, we have that

• ‖Tλf ‖Lp ≤Cp‖f ‖Lp for all λ, 1< p<∞

• |{x: |Tλf |>α}|≤ C1

α
‖f ‖L1 for all λ.

This motivates the study of singular integrals. The Dirichlet kernel is a little more difficult to
deal with because of the addition of the highly oscillatory term sin(N +

1

2
)y.

Singular Integrals

First we consider the Hilbert Transform,

Hf(x)6 1

π
PV

∫

−∞

∞ f(x− y)

y
dy6 lim

ε→0

1

π

∫

|y |≥ε

f(x− y)

y
dy

Following Stein’s Singular Integrals..., beginning of Chapter II, and a few comments from class,
we describe a few aspects of the theory of the Hilbert Transform.

1. First, we note H is translation invariant, and naturally we will be dealing with convolu-
tions. In the L2 theory, the tools of Fourier transforms and Plancherel, etc will play a sig-
nificant role.

2. Classically the Lp theory for proving boundedness of the operator was proved by M.
Riesz with complex function theory of Hp spaces (even with 0 < p < 1). At least for 1 <
p <∞, the approach is to first look at 1 < p < 2 first, and then by duality 2 < p <∞ is
obtained automatically, since the dual of a convolution operator is also a convolution
operator. The relation to complex analysis is through the Cauchy integral formula.

3. The Hilbert Transform is not bounded in L1, but a weak (1,1) estimate for the Hilbert
Transform was proved by Besicovitch, Titchmarsh, Calderón-Zygmund. This approach is
more difficult than (2), but through this approach (2) the Lp boundedness is obtained
automatically via Marcinkiewicz interpolation.

The general situation will be that an operator will not be bounded in L1, and so we gen-
erally look for a weak (1,1) estimate.
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First, a few remarks about translation invariant operators on L1 and L2.

Remark 33. Let T be a bounded linear operator from L1 → L1. Then T commutes with trans-
lation if and only if Tf = µ ∗ f where µ is a measure with ‖µ‖<∞ (i.e. a convolution operator).

From last time we already proved that Tf must be a convolution operator T ∗ f with a distribu-
tion T ∈ S ′. Why must T be a measure? To obtain this we can use smoothing and take the
limit. Let Tε= ρε ∗ T where ρε is a smooth, compactly supported (symmetric) approximate iden-
tity, so that Tε is now smooth. The key is that Tε converges to T in distribution S ′, since

Tε(ϕ)=T (ρε ∗ ϕ)→T (ϕ)

and also that as a convolution operator from L1→L1,

‖Tε‖1,1 = ‖ρε ∗T ‖1,1≤‖T ‖1,1

since

‖Tε ∗ f ‖1 = ‖ρε ∗ (T ∗ f)‖1≤‖T ∗ f ‖1≤‖T ‖1,1‖f ‖1

Also, since Tε ∈ L1, as a convolution operator ‖Tε‖1,1 = ‖Tε‖1. This follows from the fact that
equality can be achieved in the Hausdorff-Young inequality

‖f ∗ g‖1≤‖f ‖1‖g‖1

∫
∣

∣

∣

∣

∫

f(y)g(y− x)dy

∣

∣

∣

∣

dx ≤
∫ ∫

|f(y)| |g(y−x)|dydx

=

∫

|f(y)|‖g‖L1 dy

= ‖f ‖L1‖g‖L1

with equality when g has the same sign as f , so that the integral is positive. This implies that
‖Tε‖1,1 = ‖Tε‖1.

These facts together should allow us to bring Tε to C0
′, the space of complex Borel measures.

Thus we have that ‖Tε‖C0
′ = ‖Tε‖L1 ≤ ‖T ‖1,1 so that Tε ∈ C0

′ for all ε, and since a bounded ball
in C0

′ is weak* compact, we can extract a subsequence converging to a complex Borel measure.
But this implies that this same subsequence converges to a complex Borel measure in S ′, and
thus T must be a complex Borel measure (the limit in S ′ is unique).

Remark 34. Let T be a bounded linear operator from L2 → L2. Then T commutes with trans-
lation if and only if Tf = g ∗ f with ĝ ∈L∞.

Again we already know that Tf = T ∗ f for some distribution T ∈ S ′. Applying smoothing, we
have that Tε6 ρε ∗T ∈S ⊂L2. Note that Tε also maps L2→L2:

Tεf = ρε ∗ (T ∗ f)∈L2

In this case we can take the Fourier transform so that for f ∈L2,

Tε ∗ f =Tε̂f̂ ∈L2

Thus in the Fourier domain Tε is a multiplication operator, it is sufficient for T̂ε ∈ L∞ by

Hölder’s inequality. It is also necessary (if T̂ε were not bounded, can find f̂ ∈ L2 such that T̂εf̂

is not in L2). Like before, |T̂ε|∞ ≤ |T |2,2, and since L∞ is the dual of L1, and the bounded ball
in L∞ (as the dual) is weak* compact, as argued above T̂ε converges to an L∞ function.
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This characterizes translation-invariant bounded linear operators from Lp → Lp (we already
studied the general Lp case earlier) as convolution operators, which we now study in more
detail.

Theorem 35. Let K ∈L2(Rn) satisfying the following properties

a) |K̂ (ξ)| ≤B

b) |∇K | ≤ B

|x|n+1

For f ∈Lp∩L1, define Tf6 ∫

Rn f(y)K(x− y)dy. Then for 1< p<∞, we have that

‖Tf ‖p≤Ap,B,n‖f ‖p

i.e. T is a bounded operator from Lp→Lp.

Remark. A quick technical detail is that we define T as an operator on Lp by density of the
subspace Lp∩L1.

Proof. We will obtain a strong (2,2) estimate and a weak (1,1) estimate, from which the result

follows by Marcinkiewicz interpolation. First, note that since K̂ is bounded,

‖Tf ‖2 = ‖Tf ‖2 = ‖K̂f̂ ‖2≤‖K̂ ‖∞‖f̂ ‖2≤B ‖f ‖2

using Plancherel’s identity. This establishes a strong (2,2) estimate.

Now we establish the more technical estimate, relying on the Calderón-Zygmund decomposition.
We want to show that

|{|Tf |>α}|≤ C

α
‖f ‖1 for all f

For f ∈ L1(Rn), α > 0, we have the Calderón-Zygmund decomposition Rn = Ω ∪ F disjoint,
where Ω =

⋃

j
Qj with Qj dyadic cubes with disjoint interiors with side lengths comparable to

the distance from Qj to F , where

1. |Ω| ≤ A

α
‖f ‖1 where A comes from Vitali covering lemma.

2. On F , we have that |f(x)| ≤α almost everywhere.

3. α≤ 1

|Qj|
∫

Qj
f(x)dx≤ 2nα

Now we write f(x)= g(x)+ b(x) (“good” and “bad” functions) where

g(x)6 {

f(x) x∈F
1

|Qj|
∫

Qj
f(y)dy x∈Qj

and so

b(x)6 {

0 x∈F
f(x)− 1

|Qj|
∫

Qj
f(y)dy x∈Qj

In particular, note that |g(x)| ≤ 2nα. Now note that

|{|Tf |>α}|≤ |{|Tg |>α/2}| + |{|Tb|>α/2}|
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(If |Tf |>α, then either |Tg |>α/2 or |Tb|>α/2). Also, since g ∈L1 and g ∈L∞, g ∈L2 with

‖g‖2
2 =

∫

|g |2≤ 2nα

∫

|g | ≤ 2nα‖g‖1

so that ‖Tg‖2
2≤B‖g‖2

2≤B(2nα)‖g‖1. Thus,

|{|Tg |>α/2}| ≤ 4

α2
‖Tg‖2

2

≤ C

α
‖f ‖1

This bounds the first part. For the second part, we can write

b(x)=
∑

j

bj(x)

with bj = b on Qj and 0 elsewhere, and by linearity Tb=
∑

j
Tbj. Notice that by definition of b,

1

|Qj|
∫

Qj
bj=0. Thus

Tbj(x) =

∫

Qj

b(y)K(x− y)dy

=

∫

Qj

b(y) [K(x− y)−K(x− yj)] dy (1)

where yj is the center of Qj. Now using the second condition in the theorem,

|K(x− y)−K(x− yj)| ≤ |∇K(x− ỹj)| |y− yj |
≤ B |y− yj |

|x− ỹj |n+1

≤ B
diam(Qj)

|x− ỹj |n+1

where the first line follows from a mean value type result (yj̃ is on a line segment between y and
yj). Now let x ∈ F . Note |x − ỹj | ≃ |x − y | since diam(Qj) ≃ d(Qj , F ). Likewise, diam(Qj) ≃
d(y, F ). Then

|Tbj(x)|.B
d(yj , F )

|x− yj |n+1

∫

Qj

|b(y)|dy , x∈F

Now note that
∫

Qj

|b(y)|dy ≤
∫

Qj

f(y)+ 2nα dy≤ 2n+1αm(Qj)

so that

|Tbj(x)|. 2n+1αB
d(yj , F )

|x− yj |n+1m(Qj)≤ 2n+1αB

∫

Qj

d(y, F )

|x− y |n+1 dy

for x∈F , and summing in j, we have

|Tb(x)|. 2n+1αB

∫

Rn

d(y, F )

|x− y |n+1 dy

So,

∫

F

|Tb(x)|dx . 2n+1αB

∫

F

∫

Rn

d(y, F )

|x− y |n+1 dydx
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The right hand side is the Marcinkiewicz integral, which we can show is bounded by cm(F c).
This follows Stein’s Singular Integrals... section 2.4:

∫

F

∫

Rn

d(y, F )

|x− y |n+1 dydx =

∫

F

∫

F c

d(y, F )

|x− y |n+1 dydx

=

∫

F c

d(y, F )

∫

F

1

|x− y |n+1 dxdy

≤
∫

F c

d(y, F )

∫

F

1

|x− y |n+1 dxdy

≤
∫

F c

d(y, F )

∫

|x|>d(y,F )

1

|x|n+1 dxdy

≤
∫

F c

d(y, F )

∫

r>d(y,F )

cn r
n−1

rn+1 drdy

≤
∫

F c

d(y, F )
cn

d(y, F )
dy

= cnm(F c)

Note F c= Ω. This shows that
∫

F
|Tb(x)|dx. 2n+1αBcnm(Ω)≤Cn,B‖f ‖1. Thus,

|{x∈F : |Tb(x)|>α/2}|≤ 2Cn,B
α

‖f ‖1

and since |Ω| ≤ C

α
‖f ‖1, we have

|{ |Tb(x)|>α/2}|≤ Cn,B
α

‖f ‖1

which controls the second part. Thus

|{|Tf |>α}|≤ Cn,B
α

‖f ‖1

which is the weak (1,1) estimate. By Marcinkiewicz interpolation, we have boundedness of Lp

for 1< p< 2, i.e.

‖Tf ‖p≤An,B,p‖f ‖p

To extend to p> 2, we can use duality. Taking f ∈Lp, we note that

‖f ‖p= sup
‖g‖q=1

∫

fgdx

Now take any ‖g‖q=1, and consider

∫

Tfgdx =

∫ ∫

K(x− y)f(y)g(x)dxdy

=

∫

f(y)

(
∫

K̃ (y− x)g(x)dx

)

dy

=

∫

f(y) K̃ ∗ g(y)dy

where K̃ (x)=K(−x). Then since g ∈Lq and q < 2, K̃ ∗ g ∈Lq, so

‖Tg‖q= sup
‖g‖q=1

∫

Tfgdx≤‖f ‖Lp‖K̃ ∗ g‖q ≤‖f ‖LpAn,B,q
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as desired. �

Week 6 (10/21/2009)

We will now weaken the conditions of Theorem 35. We start by replacing the gradient condition
|∇K | ≤ B

|x|n+1 with

∫

|x|≥2|y |
|K(x− y)−K(x)|dx≤B∗

Note that the gradient condition implies this weaker condition:

∫

|x|≥2|y |
|K(x− y)−K(x)|dx =

∫

|x|≥2|y |
|∇K(x− ỹ)| |y | dx

≤
∫

|x|≥2|y |

B |y |
|x− ỹ |n+1 dx

≤
∫

|x|≥2|y |

B |y |
(|x| − |y |)n+1 dx

= B |y |
∫

|y |

∞ crn−1

rn+1
dr

= Bc

Using this new condition, we can prove the weak (1,1) estimate again in a different manner. As
in the proof we use Whitney’s decomposition, and then split f = g + b as before. This time,

however, we consider Q̂j= 3Qj, Ω̂ =
⋃

Q̂j and F̂ =Rn\Ω̂. We still have a favorable bound

|Ω̂| ≤ Â

α
‖f ‖1

and F̂ ⊂ F . The difference now is that we estimate
∫

|Tb| on F̂ , where we can now use the

new condition with |x|> 2 |y | since F̂ is separated from Ω̂:

∫

F̂

|Tb(x)|dx ≤
∫

F̂

∑

j=1

∞
|Tbj(x)|dx

=
∑

j=1

∞ ∫

F̂

|Tbj(x)|dx

=
∑

j=1

∞ ∫

F̂

∣

∣

∣

∣

∣

∫

Qj

[K(x− y)−K(x− yj)] b(y)dy

∣

∣

∣

∣

∣

dx

using (1) (near the definition of Tbj in the previous section). Continuing, we have

≤
∑

j=1

∞ ∫

(Q̂j)c

∫

Qj

|K(x− y)−K(x− yj)| |b(y)|dydx

=
∑

j=1

∞ ∫

Qj

|b(y)|
∫

(Q̂j)c

|K(x− y)−K(x− yj)| dxdy

≤
∑

j=1

∞ ∫

Qj

|b(y)|
∫

|x′|≥2|y ′|
|K(x′− y ′)−K(x′)| dxdy

≤
∑

j=1

∞ ∫

Qj

|b(y)|B∗ dy

≤ B∗‖f ‖L1
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noting that the third inequality follows from the fact that looking at y ′ = y − yj and x
′ = x− yj,

for any x ∈ F̂ , |x − yj | is by construction larger than 2 diam(Qj) ≥ 2 y ′, and this is how we can
incorporate the new condition. The rest of the proof is then the same after obtaining the esti-
mate on Tb. Thus we have proved

Theorem 36. Suppose K ∈L2 satisfies

a) |K̂ (ξ)| ≤B

b)
∫

|x|≥2|y| |K(x− y)−K(x)|dx≤B

Then with Tf 6 ∫

Rn f(y)K(x − y)dy as before, T is a bounded operator from Lp→ Lp, with
1< p<∞.

We can weaken the conditions even further. As in Stein’s Singular Integrals , p35, assuming
that K ∈ L2 is too strong and rules out principal-value singular integrals (integrals relying on
cancellations between positive and negative values).

Theorem 37. Suppose K satisfies

1. |K(x)| ≤ B

|x|n , x� 0

2.
∫

|x|≥2|y| |K(x− y)−K(x)|dx≤B

3.
∫

R1<|x|<R2
K(x)dx= 0 for all 0<R1<R2<∞

Consider Tεf =
∫

|y|≥ε f(x − y)K(y)dy, ε > 0, avoiding the possible singularity at the origin.

Then ‖Tεf ‖p≤A ‖f ‖p for A independent of ε, and the limit of Tεf in Lp as ε→ 0 exists and

‖Tf ‖p≤Ap‖f ‖p

for 0< p<∞.

Remark 38. A few examples of kernels satisfying the conditions above:

1. K(x)= |x|−nK(θ), where
∫

Sn−1 K(θ)dθ= 0, |K(θ)| ≤B.

2. n= 1, K(x)=
1

πx
.

(We will check the conditions later)

Remark 39. If K(x) given is such that |K(x)| ≤ B

|x|n , and we let

Kε(x) =

{

K(x) |x| ≥ ε

0 |x|<ε

Then Kε ∈ L2. (This removes the possible singularity near x = 0, and the decay rate is enough
for K to be square integrable near ∞).

Lemma 40. For any ε> 0 we have
∣

∣

∣
K̂ε(ξ)

∣

∣

∣
≤CB
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where C depends only on dimension.

Proof. First we prove the result for ε = 1 and then use dilations to prove the general case. If
ε= 1, then

K̂1(ξ) = lim
R→∞

∫

|x|≤R
e2πix·ξK1(x)dx

=

∫

|x|≤ 1

|ξ|

e2πix·ξK1(x)dx�
I

+ lim
R→∞

∫

1

|ε|
<|x|≤R

e2πix·ξK1(x)dx�
II

(The limit is necessary since K1 is not necessarily in L1). The first part we bound by

|I| =

∣

∣

∣

∣

∣

∫

|x|≤ 1

|ξ|

(

e2πix·ξ− 1
)

K1(x)dx

∣

∣

∣

∣

∣

(condition 3)

≤ 2π

∫

|x|≤ 1

|ξ|

|x · ξ | |K1(x)|dx

≤ 2π |B | |ξ |
∫

|x|≤ 1

|ξ|

|x|−n+1 dx

≤ 2π |B | |ξ |
∫

0

1

|ξ|

cdr

≤ C0B

For the second part, let z =
ξ

2|ξ|2 , so e
2πiz·ξ = eiπ = − 1 and |z | = 1

2|ξ| . Then by a change of vari-
able,

∫

Rn

e2πix·ξK1(x)dx=
1

2

∫

Rn

[K1(x)−K1(x− z)]e2πix·ξ dx

and similarly,

II =
1

2
lim
R→∞

(

∫

1

|ξ|
≤|x|≤R

[K1(x)−K1(x− z)]e2πix·ξ dx

)

− 1

2

∫

|x+z |≥1/|ξ|
|x|≤1/|ξ|

K1(x− z)e2πix·ξ dx

+
1

2

∫

|x|≥1/|ξ|
|x+z |≤1/|ξ|

K1(x− z)e2πix·ξdx

=
1

2
lim
R→∞

(

∫

1

|ξ|
≤|x|≤R

[K1(x)−K1(x− z)]e2πix·ξ dx

)

+
1

2

∫

|x|≥1/|ξ|
|x−z |≤1/|ξ|

K1(x)e
2πix·ξ dx

− 1

2

∫

|x−z |≥1/|ξ|
|x|≤1/|ξ|

K1(x)e
2πix·ξdx

noting that the two remainder terms comes from the change of variable

∫

1

|ξ|
≤|x|≤R

K1(x)e
2πix·ξ dx=−

∫

1

|ξ|
≤|x+z |≤R

K1(x− z)e2πix·ξ dx

and replacing the domain. See picture, where − , + indicate the regions that were added and
subtracted in the formula above.
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−z

0

−

+

Summarizing, and taking absolute values and limits, we have

|II| ≤ 1

2

∫

1

|ξ|
≤|x|

|K1(x)−K1(x− z)|dx

+
1

2

∫

1

2|ξ|
≤|x|≤ 3

2|ξ|

|K1(x)|dx

where we note that in each of the two exceptional regions, |x − z | ≥ 1

|ξ| implies that |x| ≥ 1

2|ξ|
since |x − z | ≤ |x| + |z | = |x| + 1

2|ξ| and |x − z | ≤ 1

|ξ| implies that |x| ≤ 3

2|ξ| since |x − z | ≥ |x| −
|z |= |x| − 1

2|ξ| . The second term above is bounded by

1

2

∫

1

2|ξ|
≤|x|≤ 3

2|ξ|

|K1(x)|dx≤ 1

2

∫

1

2|ξ|

3

2|ξ| cBrn−1

rn
dx≤ 1

2
log(3)cB=C2B

Noting that 2|z |= 1

|ξ| , the first term above is bounded by

∫

|x|≥ 1

|ξ|

[K1(x)−K1(x− z)]e2πix·ξ dx ≤
∫

|x|≥2|z|
|K1(x)−K1(x− z)|dx

≤ B

Adding all the estimates together gives the result that |K̂ (ξ)| ≤CB.

General Case ε> 0. Replace the kernel Kε by K = εnKε(εx). Then K(x)= 0 if |x| ≤ 1, and

|K(x)|= εn|Kε(εx)| ≤ Bεn

|εx|n =
B

|x|n

Thus K satisfies the the Lemma with ε = 1 and from above we know that |K̂ | ≤ CB and thus
|K̂ε| ≤CB by the dilation property of the Fourier transform:

|K̂ (ξ)|= |εn(ε−nK̂ε(ξ/ε))|

and thus |K̂ε(ξ)| ≤ |K̂ (εξ)| ≤CB. This dilation trick is very useful and we will be using it again
(probably...) �

Now we finish the proof of the theorem.
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Proof. (of Theorem 37) As remarked in the main idea, we consider Tεf =Kε ∗ f . By theorem
36

‖Tεf ‖p≤Ap‖f ‖p

for 1< p<∞, and Lemma 40 shows that the bound is uniform in ε (Marcinkiewicz interpolation
bound depends on the bounds of the weak (1,1), weak (2,2) estimates. The weak (1,1) bound
relies only on p and B, the (2,2) estimate relies on the bound in Lemma 40). Now (following
Singular Integrals , p37), let g be a continuously differentiable function with compact support

g ∈C0
1. Then

Tεg(x) =

∫

|y|≥ε
K(y)g(x− y)dy

=

∫

|y|≥1

K(y)g(x− y)dy+

∫

ε≤|y|≤1

K(y)[g(x− y)− g(x)]dy

where we have used the cancellation condition (condition 3). The first term is an Lp function
(convolution of L1 and the Lp function K1). For the second term, by the continuous differentia-
bility of g, |g(x− y)− g(x)| ≤A |y |, where A is the uniform bound on the derivative of g (note g
is continuously differentiable and compactly supported). Then

∣

∣

∣

∣

∣

(

∫

|y|≤1

−
∫

ε≤|y |≤1

)

K(y)[g(x− y)− g(x)]dy

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

|y|≤ε
K(y)[g(x− y)− g(x)]dy

∣

∣

∣

∣

∣

≤
∫

|y|≤ε

AB

|y |n |y |dy

= AB

∫

0

ε crn−1

rn−1 dr

= ABcε

→ 0

so that the second term converges uniformly as ε→ 0 to the integral on |y | ≤ 1. As a function of
x, this limit is in Lp, since it is compactly supported and the limit is uniform. Thus Tεg con-
verges in Lp to some Tg and ‖Tg‖p ≤ Ap‖g‖p. Thus T is a bounded operator on C0

1 ∩ Lp with
Lp norm, and we extend to Lp by continuity. For any f ∈ Lp, we can take a sequence gn→ f in
Lp with g ∈C0

1 and define Tf = limn→∞ Tgn (Tgn is Cauchy in Lp since gn is Cauchy in Lp, and
Lp is a complete Banach space). In this case the inequality ‖Tf ‖p≤Ap‖f ‖p is trivially satisfied.
This completes the proof. �

Hilbert Transform

The Hilbert Transform Hf is defined by

Hf(x)= lim
εց0

1

π

∫

|y |≥ε

f(x− y)

y
dy

(working with 1 dimension), and the (convolution) kernel is K(x) =
1

πx
. Then via the usual con-

tour integration methods (semicircular contour in the upper half plane with a small detour
around z= 0) we have

K̂ (ξ) = lim
εց0

∫

|x|≥ε

e−2πiξx

πx
dx

= − i sgn(ξ)
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noting that for negative ξ < 0,

lim
εց0

∫

|Re z |≥ε

e−2πiξz

πz
dz − πiResz=0

e−2πiξz

πz
=0

(the little detour around the pole at 0 picks up half a residue, and for the upper half plane we
need − 2πξ > 0 for Rouché’s Theorem) and for negative ξ < 0, the sign reverses (change of vari-
able in integration). Thus

Hf (ξ)= K̂ (ξ)=− i sgn(ξ) f̂ (ξ)

This implies that

H2 =− I

in L2. A few properties involving dilations and translations:

1. Hδh= δhH , h> 0

2. Hδh=− δhH , h< 0

3. Hτh= τhH (already known for convolution operators)

These properties characterize the Hilbert transform.

Proposition 41. Suppose T bounded operator from L2→L2 satisfies

1. T commutes with translations (i.e. convolution operator)

2. T commutes with positive dilations.

3. T anti-commutes with negative dilations.

Then T = c ·H.

Proof. The first property shows that Tf (ξ) = f̂ (ξ)m(ξ) for some m(ξ) ∈ L∞ (a multiplication

operator from L2 → L2). As for the second property, since Fδh =
1

|h|δ1/hF , we have that δhF =
1

|h|Fδ1/h, δ1/hF−1 = |h|F−1δh and

δh(m · f̂ ) = δh(FTF−1f̂ )

=
1

|h|F δ1/hTF−1f̂

=
1

h
FTδ1/hF−1f̂ (Properties 2, 3)

= sgn(h)FT F−1δ1/hf̂

= sgn(h)m · (δhf̂ )

Thus m(hξ)f̂ (hξ) = sgn(h)m(ξ) f̂ (hξ) and m(hξ) = sgn(h)m(ξ), and if h � 0 this proves that
m(ξ) =C sgn(ξ), which proves the result since the Hilbert Transform in the Fourier domain cor-
responds to multiplication by − i sgn(ξ). �

Week 7 (10/28/2009)

Quick note: Stein proves general results about Calderon-Zygmund type operators and then shows
that Riesz Transforms are a special case. We will treat Riesz Transforms first and then move to
C-Z type operators next.

43



Riesz Transform

Note that for the Hilbert transform,

Hf (ξ) =− i sgn(ξ) f̂ (ξ)=− iξ

|ξ | f̂ (ξ)

Now we look into the higher dimensional analogue. For j= 1, 2,	 , n in Rn, we define Rjf(x) by

Rjf (ξ) =− iξj
|ξ | f̂ (ξ) j=1, 2,	 , n

Then Rj:L
2→L2, ‖Rj‖2,2≤ 1, and

Rjf =Kj ∗ f

for some Kj. We will also use the notation Rjk=RjRk with corresponding kernel Kjk.

Note that K̂j = − i
ξj

|ξ| is homogeneous of degree 0, and by Proposition 17 (from week 4), this

implies that Kj is homogeneous of degree − n, so that Kj(x) =
Ωj(x)

|x|n where Ωj(x) is homoge-

neous of degree 0, i.e. Ωj

(

x

|x|

)

= Ωj(x), constant along rays from the origin. The same holds for

Kjk. We will show shortly that Kj, Kjk, etc. satisfy the conditions of Theorem 37 so that Rj ,
Rjk map from Lp to Lp for 1< p<∞.

Relation to Laplace’s Equation

We relate this to the solution of Laplace’s equation in Rn

−∆u = f ∈Lp(Rn)

u|∞ = 0

Taking the Fourier transform, we have that

−∆u = f̂ (ξ)

4π2|ξ |2û(ξ) = f̂ (ξ)

û(ξ) =
f̂ (ξ)

4π2|ξ |2

Note that

uxjxk
= − 4π2ξjξkû(ξ)

=
− ξjξk
|ξ |2 f̂ (ξ)

= Rjkf

so that uxjxk
=Rjkf , or Rjkf =Dxj

Dxk
(−∆)−1f .

(As an aside, recall that the kernel of ( − ∆)−1 is the fundamental solution, the Green’s func-
tion:

(−∆)−1f = cn

∫

f(y)

|x− y |n−2 dy
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for n> 2)

At any rate, the Lp boundedness of Rjk will imply that for u∈C2 and ∆u∈Lp,

‖uxjxk
‖p= ‖Rjk∆u‖p≤C‖∆u‖p

Riesz Kernel Formula

Before continuing, we compute the kernel explicitly.

Lemma 42.

Kj(x) =
Ωj(x)

|x|n =
cnxj
|x|n+1

i.e. Ωj(x) =
cnxj

|x| , and the conditions of Theorem 37 are satisfied, so that Rj is a bounded oper-

ator from Lp→Lp for 0< p<∞.

Also, Kjk(x)= c̃n
xjxk

|x|n+2 and has the same properties.

Proof. As discussed above, since the Fourier transform is homogeneous of degree 0, the kernel
is homogeneous of degree − n and hence has the form above. We can perform an explicit com-
putation to determine Ωj (Follows Fourier Analysis by Javier D, Corollary to Proposition 4.3
and below Corollary 4.9).

First, we note by Proposition 17 that since
1

|x|n−1 (as a tempered distribution) is homogeneous

of degree 1 − n, its Fourier transform ϕ̂(ξ) is homogeneous of degree − 1. Furthermore, we note
that the Fourier transform is rotationally invariant, since

ϕ̂(Rξ) =

∫

1

|x|n−1e
−2πix·Rξ dx

=

∫

1

|x|n−1e
−2πiR−1 x·ξ dx

=

∫

1

|Rx|n−1e
−2πi x·ξ dx

=

∫

1

|x|n−1
e−2πi x·ξ dx

= ϕ̂(ξ)

and thus ϕ̂(ξ) =
c

|ξ| . Now we use the fact that

Dxj

1

|x|n−1 = (1−n)
xj

|x|n+1

in the sense of distributions (since it is not integrable near ∞), and thus taking Fourier trans-
forms of both sides yields

K̂j(ξ)=
− iξj
|ξ | =Cn

(

xj
|x|n+1

)∧

and thus Kj=
Cnxj

|x|n+1 as desired. Taking an additional Dxk
derivative proves the result for Kjk.

Now note that Ωj(x) restricted to Sn−1 is smooth, and in particular bounded, and that
∫

Sn−1 Ωj(x)dS
n−1 = 0, so that Kj satisfies the first and third properties of Theorem 37.
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We check the second property directly:

∫

|x|≥2|y |
|Kj(x− y)−Kj(x)|dx = cn

∫

|x|≥2 |y |

∣

∣

∣

∣

xj− yj
|x− y |n+1

− xj
|x|n+1

∣

∣

∣

∣

dx

= cn

∫

|x|≥2 |y |

∣

∣

∣

∣

xj(|x|n+1− |x− y |n+1)− yj |x|n+1

|x− y |n+1|x|n+1

∣

∣

∣

∣

dx

≤ cn

∫

|x|≥2 |y |

C |y ||x|n+1 + |y ||x|n+1

|x− y |n+1|x|n+1 dx

≤ B

∫

|x|≥2 |y |

|y |
|x|n+1 dx

≤ B ′
∫

2|y|

∞ |y |
r2

dr

≤ B ′′

where we have used the mean value theorem on ||x|n+1− |x− y |n+1| along an arbitrary line seg-
ment from x to x− y, so that it is bounded by |y ||x− y ′|n≤C |y | |x|n (|y | ≤ 2|x|). The proof for
Kjk is identical. �

A Short Application

Consider the problem

−∆u = divF

u|∞ = 0

for F a vector field in Rk. Taking the Fourier transform gives

û(ξ) =
ξ · F̂(ξ)

|ξ |2

where the Fourier transform of F is just a component-wise Fourier transform. Note û is homoge-
neous of degree − 1, which allows us to “gain” a derivative in estimating ∇u. Note

Dxj
u =

ξj ξ · F̂(ξ)

|ξ |2 =
∑

k=1

n
ξj ξkF̂k(ξ)

|ξ |2 =
∑

k=1

n

RjkFk (ξ)

and since Rjk is a bounded operator from Lp to Lp, this gives us the apriori estimate

‖∇u‖p≤C(u, p)‖F‖p

Calderon-Zygmund Operators

Now we turn to general convolution operators with kernels that are homogeneous of degree − n,

i.e. K(x) =
Ω(x)

|x|n with Ω(ω) = Ω
(

x

|x|

)

homogeneous of degree 0, and consider conditions on Ω(ω)

under which the conditions of Theorem 37 are satisfied. Note that Riesz Transforms are a spe-
cial case.

To satisfy the first and third conditions, we should have that |Ω(ω)| ≤ B and that
∫

Sn−1 Ω(ω)dω = 0. For the second condition, we perform a computation that leads us to a suit-

able condition on Ω. First we define the modulus of continuity of Ω by

ηΩ(δ)= sup
|ω |=|ω ′|=1
|ω−ω ′|<δ

|Ω(ω)−Ω(ω ′)|
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Then note that

K(x− y)−K(x) =
Ω(x− y)

|x− y |n − Ω(x)

|x|n

=
Ω(x− y)−Ω(x)

|x− y |n + Ω(x)

(

1

|x− y |n − 1

|x|n
)

and thus

∫

|x|≥2|y|
|K(x− y)−K(x)|dx ≤

∫

|x|≥2|y|
B

∣

∣

∣

∣

1

|x− y |n − 1

|x|n
∣

∣

∣

∣

dx

+

∫

|x|≥2|y |

|Ω(x− y)−Ω(x)|
|x− y |n dx

The first integral is bounded exactly like the computation in Lemma 42:

∫

|x|≥2|y|
B

∣

∣

∣

∣

1

|x− y |n − 1

|x|n
∣

∣

∣

∣

dx ≤ B

∫

|x|≥2|y |

||x|n− |x− y |n|
|x|n|x− y |n dx

≤ B

∫

|x|≥2|y |

c |y |
|x|n+1

dx

≤ B ′

For the second integral, we use the fact that for |x| ≥ 2|y |,
∣

∣

∣

∣

x− y

|x− y | −
x

|x|

∣

∣

∣

∣

≤C
|y |
|x|

(this is the same trick as above). Then we have

∫

|x|≥2|y |

|Ω(x− y)−Ω(x)|
|x− y |n dx ≤

∫

|x|≥2|y |

ηΩ

(

C
|y |
|x|

)

|x− y |n dx

=

∫

|x|≥2|y |

ηΩ

(

C
|y |
|x|

)

∣

∣

∣

x

|x| −
y

|x|

∣

∣

∣

n
dx

|x|n

≤ cn

∫

2|y |

∞
ηΩ

(

C
|y |
r

)

dr

r

≤ cn
′
∫

0

C/2

ηΩ(δ)
dδ

δ

The third line follows from bounding the denominator below with triangle inequality and |x| ≥
2|y | and then converting to polar. The last line follows from the change of variable δ = C

|y|
r
.

Thus, if this last quantity is bounded, we say that Ω is Dini-continuous on Sn−1. In particular
this is true if Ω is Hölder continuous, since in this case

∫

0

C/2

ηΩ(δ)
dδ

δ
≤
∫

0

C/2 dδ

δ1−α
≤BCα<∞

Thus, with these conditions we have the following theorem.

Theorem 43. Suppose K(x)=
Ω(x)

|x|n where Ω is homogeneous of degree 0, satisfying

1. |Ω(x)| ≤B

2.
∫

Sn−1 Ω(ω)dω= 0
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3. Ω(ω) is Dini-continuous, i.e.
∫

0

1

ηΩ(δ)
dδ

δ
<∞

Then for 1< p<∞ and f ∈Lp, define

Tε(f)=

∫

|y|≥ε

Ω(y)

|y |n f(x− y)dy

as before. Then

a) ‖Tεf ‖p≤Ap ‖f ‖p where Ap does not depend on ε.

b) limε→0Tε(f)=T (f) exists in Lp (this implies ‖T ‖p,p≤Ap)

c) If f ∈ L2, then Tf =m(ξ) f̂ (ξ) where m(ξ) is homogeneous of degree 0, and can be com-
puted by

m(ξ) =

∫

Sn−1

[

π

2
i sgn(ξ · y)+ log

(

1

|ξ · y |

)]

Ω(y)dSy

for |ξ |= 1.

Proof. Since the conditions imply that K(x) satisfy the hypotheses of Theorem 37, (a) and (b)
are immediate. (c) is a long computation. See Stein, Chapter 2 Section 4.3. �

Remark 44. For K(x)=
Ω(x)

|x|n , Ω(x)= Ω
(

x

|x|

)� 0,

1. If f ≥ 0, and f ∈L1, then Tf ∈L1.

To verify this we check that Tf (ξ) = m(ξ) f̂ (ξ) is not continuous. Since m is homoge-
neous of degree 0, it cannot be continuous at 0 (unless m is constant, which cannot
happen unless K is a dirac mass). Also, f̂ (0) = ‖f ‖L1 > 0 since f ≥ 0 (assuming f is not

identically zero), and thus we conclude that Tf cannot be continuous at 0, and Tf∈L1.

2. There exists f ∈C0(B) such that Tf is unbounded near every point of B.

This follows from Baire category theorem and the uniform boundedness principle
somehow (?)

Now we pass from Lp convergence of Tε to almost everywhere convergence by use of the max-
imal function.

Theorem 45. Let Ω be as above, f ∈Lp, for 1≤ p<∞ and K(x)=
Ω(x)

|x|n

a) limε→0Tεf(x) exists a.e. x.

b) Let T ∗f = supε>0 |Tεf(x)|, then T ∗ is weak (1,1)

c) If 1< p<∞, then ‖T ∗f ‖p≤Ap‖f ‖p

For this Theorem it will be useful to use the following Lemma which we prove later.

Lemma 46. (Cotlar) For x∈Rn,

T ∗f(x)≤MTf(x) +CMf(x)
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Proof. (of Theorem 45) Accepting Lemma 46 for now, we see that the proof of (c) is imme-
diate:

‖T ∗f ‖p ≤ ‖MTf‖p+C‖Mf‖p
. ‖Tf ‖p+C‖f ‖p
. ‖f ‖p

To prove (b), we again use the Calderon-Zygmund decomposition, and much of the details from
the proofs of Theorems 35, 36 are the same. We again write f = g+ b, and consider the enlarged

cubes Qj =3Qj and the decomposition Rn=Ω̂∪ F̂ , where we have the usual estimate on Ω̂,

|Ω̂| ≤ 3nA

α
‖f ‖1

so that we only need to focus on F̂ . Following the same proof we estimate

|{|T ∗f |>α}|≤ |{|T ∗g |>α/2}|+ |{|T ∗b|>α/2}|

and as in the proof of Theorem 35 and (c), the first is estimated by

|{|T ∗g |>α/2}|≤ 4

α2
‖T ∗g‖2

2≤ C

α2
‖g‖2

2≤ C ′

α2
‖g‖1

using g ∈ L∞ and g ∈ L1 to get the final estimate in L1. For the bad part, we again focus on F̂ .
We claim that for x∈ F̂ ,

T ∗b(x)= sup
ε>0

Tεb(x)≤
∑

j=1

∞ ∫

Qj

|K(x− y)−K(x)| |b(y)|dy+CMb(x)

so that we can use the usual estimate for the first term and the maximal function estimate for
the second term. To prove this claim, we fix ε and separate each Qj into three cases:

• Case 1: For all y ∈Qj, |x− y |>ε

• Case 2: For all y ∈Qj, |x− y |<ε

• Case 3: There exists y ∈Qj such that |x− y |= ε.

With the reminder that Tεb(x) =
∑

j

∫

Qj
Kε(x − y)b(y)dy, we note that for the Qj in case 2,

since |x − y | < ε, we have that Kε(x − y) = 0 for y ∈ Qj, and thus there is no contribution to
Tεb(x) from Qj in case 2.

On the other hand, for the Qj in case 1, since |x− y |> ε, Kε(x− y) =K(x− y) and so the con-
tribution of the integral over Qj is bounded above by

∫

Qj
|K(x− y)| |b(y)|dy.

For the Qj in case 3, there exists some y ∈ Qj such that |x− y |= ε. Then by construction since
x ∈ (3Qj)

c, Qj is contained in B2ε . Then the contribution to Tεb for this Qj is bounded above
by

∫

Qj

|Kε(x− y)| |b(y)|dy ≤
∫

Qj∩B2ε(x)

|Kε(x− y)| |b(y)|dy

≤
∫

Qj∩B2ε(x)

B

|x− y |n |b(y)|dy

≤ B ′

|B2ε(x)|

∫

Qj∩B2ε(x)

|b(y)|dy

≤ B ′′ |Mb(x)|
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Combining all three cases, and noting the bound is indepenent of ε proves the claim. Now we
use

|{x∈ F̂ : |T ∗b(x)|>α/2}| ≤ |{x∈ F̂ :CMb(x)>α/4}|

+

∣

∣

∣

∣

∣

{

x∈ F̂ :
∑

j=1

∞ ∫

Qj

|K(x− y)−K(x)| |b(y)|dy >α/4

}∣

∣

∣

∣

∣

where the first term is bounded by
C

α
‖b‖L1 ≤ C

α
‖f ‖L1 using the maximal operator bound, and

the second term is bounded in the same way as in the proof of Theorem 36, by bounding the L1

norm of the sum and using Markov. This proves (b).

Now (a) follows from (b),(c), similar in spirit to the proof of Corollary 4 (Week 1). From the
proof of Theorem 37, we showed that Tεg converges uniformly if g ∈ C1. Now decompose f as
f = g + (f − g) so that ‖f − g‖p≤ δ and Tεf = Tεg + Tε(f − g). Thus we only need to study the
convergence of Tε(f − g), and we will only use the weak (p, p) estimate on T ∗ for 1 ≤ p < ∞.
Consider (following Stein, Chapter 2, section 4.6.3)

Λf−g(x) =

∣

∣

∣

∣

limsup
ε→0

Tε(f − g)(x)− liminf
ε→0

Tε(f − g)(x)

∣

∣

∣

∣

and note that Λf−g(x)≤ 2T ∗(f − g)(x). Now using the weak estimate on T ∗ (note that we have
a weak Lp estimate for 1≤ p<∞), we have that for any α,

|{Λf−g(x)>α}|≤ Ap
α

‖T ∗(f − g)‖p≤
Ap

′

α
‖f − g‖p≤

Ap
′ δ
α

and thus Λf−g(x)= 0 a.e., and Tε(f − g) converges almost everywhere. �

We will prove Cotlar’s Lemma (46) next time.

Week 8 (11/4/2009)

Proof. (of Lemma 46, Cotlar’s Lemma) By translation invariance, it suffices to show this
result for x = 0. More precisely, if T ∗f(0) ≤ CMTf(0) + C ′ Mf(0) for any f (with a constant
independent of f), we can apply this result to the translate τxf to show the same result for
arbitrary x. So for ε> 0 and x= 0, we want to show that

|Tε f(0)| ≤C (Mf(0)+MTf(0))

with constant C independent of f and ε. Decompose f = f1 + f2 where f1 = 1|x|<εf . In partic-
ular, Tεf(0)=Tf2(0). Now we make the following claim.

Claim: For |x|<ε/2, |Tf2(x)−Tf2(0)| ≤CMf(0)

Accepting the claim for now, which implies that for |x|<ε/2,

|Tf2(0)| − |Tf2(x)| ≤ |Tf2(x)−Tf2(0)| ≤CMf(0)

and so

|Tεf(0)| = |Tf2(0)|
≤ |Tf2(x)|+CMf(0)

≤ |Tf(x)|+ |Tf1(x)|+CMf(0) ( ∗ )
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for |x|<ε/2. Now we consider two cases:

• 1

3
|Tεf(0)| ≤CMf(0)

In this case, we already have the result, since

|Tεf(0)| ≤ 3CMf(0)≤ 3C(Mf(0)+MTf(0))

• 1

3
|Tεf(0)| ≥CMf(0)

In this case, let λ = |Tεf(0)|, and B = Bε/2(0) = {x: |x| < ε/2}. Note for any x ∈ B, from

the previous calculation we have that by ( ∗ ) above and the assumption,

λ≤ |Tf(x)|+ |Tf1(x)|+λ/3

and so either |Tf(x)| ≥ λ/3 or |Tf1(x)| ≥ λ/3 must be true or else λ < λ, a contradiction.
Therefore,

|B | ≤ |{x∈B: |Tf(x)| ≥λ/3}|+ |{x∈B: |Tf1(x)| ≥λ/3}|

For the first term we use Chebyshev’s inequality and the definition of the maximal func-
tion:

|{x∈B: |Tf(x)| ≥λ/3}|≤ 3
∫

B
|Tf(x)|dx
λ

≤ 3|B |
λ

MTf(0)

For the second term, we use the weak (1,1) estimate for T and the fact that f1 is sup-
ported on and equal to f on {|x|<ε}= 2B to get

|{x∈B: |Tf1(x)| ≥λ/3}| ≤ C ′

λ
‖f1‖L1(2B)

≤ 2C ′ |B |
λ

Mf(0)

Combining the results, we have that

|B | ≤ 3|B |
λ

MTf(0) +
2C ′|B |
λ

Mf(0)

and so

|Tεf(0)|=λ≤ 3MTf(0)+ 2C ′Mf(0)

Now combining the two cases together, letting C̃ =max (3C, 3, 2C ′) we have that

|Tεf(0)| ≤ C̃ (MTf(0)+Mf(0))

as desired. What remains is the proof of the claim:

Proof of Claim: We want to show that for |x|<ε/2, |Tf2(x)−Tf2(0)| ≤CMf(0).

|Tf2(x)−Tf2(0)| =

∣

∣

∣

∣

∣

∫

|y |≥ε
(K(x− y)−K(− y))f(y)dy

∣

∣

∣

∣

∣

≤
∫

|y |≥ε
|K(x− y)−K(− y)| |f(y)|dy

≤ Cε

∫

|y|≥ε

1

|y |n+1 |f(y)|dy

≤ CMf(0)
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The third line uses |K(x − y) −K( − y)| ≤ C |x|
|y|n+1 with the gradient condition. Using Dini conti-

nuity needs a bit more justification and is quite technical. The fourth line uses integration by
parts in the following way. First we convert to polar:

Cε

∫

|y |≥ε

1

|y |n+1 |f(y)|dy = Cε

∫

ε

∞ 1

rn+1

(
∫

Sn−1

|f(r, ω)|dSn−1

)

rn−1 dr

Note that

∫

BR

|f(x)|dx=

∫

0

R
(
∫

Sn−1

|f(r, ω)|dSn−1

)

rn−1 dr

Therefore we will apply integration by parts with u(r) =
1

rn+1 and v(r) =
∫

Br
|f(x)|dx. We will

also use the inequality v(r) ≤ cnr
nMf(0) (definition of maximal function). Then continuing

above, we have that

= Cε

[

cn r
nMf(0)

rn+1

]

ε

∞
−Cε

∫

ε

∞ − (n+1)

rn+2 rnMf(0)dr

= −CcnMf(0)+C(n+1)Mf(0)

≤ CnMf(0)

as desired. �

(Other proofs in Stein, Javier D....)

Fourier Series Convergence

We now know enough to understand the convergence of Fourier series, as far as singular opera-
tors are concerned. There are a few more technical points. Recall that we want to study the
convergence of

∫

−π

π sinλy

y
f(x− y)dy

as λ→ ∞. Note that the Dirichlet kernel for the Fourier series has λ = N +
1

2
and the denomi-

nator is sin πy instead of y, which is a small difference. Can get Lp→ Lp uniformly in λ using a
slick trick by representing the operator by something like

M−N(I +H)MN −MN+1(I +H)MN+1

where MN is multiplication by e2πiNx (modulation). This gives boundedness in Lp (uniformly in
λ, using uniform boundedness principle).

Then to get a.e. convergence, we need the weak (1,1) estimate on supλ Tλ, and this is much
harder. (Need more references now)

H
1 and BMO Spaces

We note that in singular integral estimates, we have boundedness of operators in Lp for 1 < p <

∞, and which fail to be bounded for p= 1 or p=∞. This motivates a search for perhaps a sub-
space of L1 for which we do have boundedness, whose dual space then corresponds to a slightly
larger space than L∞. The Hardy space will serve as the replacement, and the dual is BMO, the
space of functions with bounded mean oscillations.

52



We denote the Hardy spaces by Hp, for 0 < p ≤ ∞, which we will define in various ways and
show that all the definitions are equivalent. Also we will see that Hp=Lp for p> 1.

The following is a survey of results, omitting all proofs. We will return in detail later.

First we start with the following known result. Let Py be the Poisson kernel in the upper half
plane.

Theorem 47. If 1< p≤∞, and if supy>0 ‖u( · , y)‖Lp(Rn)<∞ (i.e. each slice is bounded) and

∆u= 0 in R+
n+1 (harmonic in the upper half plane), then

u(x, y)=Py ∗ f

for some f. For p= 1, we have the same result except we have a Radon measure µ in place of f.

In general, we can consider the supremum over a cone-like region (simplifies discussion of limits
among other issues). Let Γx0 = {(x, y): ‖x− x0‖≤ y, y > 0} (cone with origin x0 in the upper half
plane), and consider

u∗(x) = sup
(z,y)∈Γx

|u(z, y)|

Then we can show that u∗ ∈ Lp� u= Py ∗ f for f ∈ Lp, 1< p ≤∞. For p= 1, the same result
holds with f replaced by a Radon measure µ.

Possible First Definition of Hp(Rn)

If f ∈ Lp(Rn), then f ∈ Hp(Rn) iff Py ∗ f ∈ Lp(Rn). We can then consider this definition for
when 0 < p ≤ ∞. By the above result, we have that Hp = Lp for p > 1 for this definition. Also,
by the definition of u∗, f ≤ u∗ (since the cone includes the y = 0 hyperplane), and thus Hp⊂ Lp

for all p. The interesting case is when 0< p≤ 1. For instance, for f ∈L1, it is not necessarily the
case that f ∈H1. This definition works nicely, but it is highly dependent on dimension and hard
to characterize in the range of p in (0, 1).

Theory of M. Riesz

For f defined on R, define F (z) to be the Cauchy integral of f ,

F (z)=
1

2πi

∫

R

f(ξ)

ξ − z
dξ

We are then interested in the value of F towards the boundary. For what follows, there is an
analogous theory for the Cauchy integral over the unit disk.

Then define f ∈Hp if and only if

sup
y>0

∫

R

|F (x+ iy)|p dx<∞

and this definition makes sense for p> 0. This says that F restricted to lines z= iy is in Lp with
uniformly bounded norm. Under this definition, it turns out that

Hp(R) = {f ∈Lp: Hf ∈Lp}

where H is the Hilbert transform. In the smooth case, if we write F (z) = u+ iv, fix y0> 0, and
consider f =u|y=y0

, then

v |y=y0
=Hf
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and so

F |y=y0
= f + iHf

and F |y=y0
∈ Lp if both f and Hf are in Lp. Then for p > 1, by the boundedness of the Hilbert

transform in Lp, we have that Hf ∈ Lp. Furthermore, we have a uniform bound for all y since
for harmonic functions, the p-norm of each strip z = x + iy is bounded by the p-norm at the
boundary y= 0 (by the Fatou Theorems, which we prove later). Thus Hp=Lp for p> 1.

For higher dimensions, we use Riesz Transforms to define Hp(Rn).

Given f ∈ Lp(Rn), the Poisson integral u0 = Py ∗ f gives a harmonic function in the upper half
plane with boundary value f , i.e.

∆u0 = 0 on R+
n+1

u0

∣

∣

y=0
= f

Note that Py(ξ) = e−2π|ξ|y. Then define Qj
y such that Qj

y(ξ) = i
ξj

|ξ|e
−2π|ξ|y. It turns out that

inverting gives

Qj
y(x)= y−n

cnxj/yj

(1+ |x/y |2)(n+1)/2

Then as y→ 0, we have that Py ∗ f→ f and Qy
j ∗ f→Rjf . Then the study of the conjugate har-

monic functions Rjf leads to the second possible definition of Hp:

Second Possible Definition of Hp(Rn)

Hp(Rn)= {f ∈Lp(Rn):Rjf ∈Lp(Rn), j= 1,	 , n}
for p> 1− 1

n
.

We will be focusing on H1 and its dual BMO. As an aside, it turns out that for 0 < p < 1, the
dual of Hp is Lipαp for some αp.

The definitions above are all equivalent, and we have the following equivalent characterizations
of H1.

1. f ∈H1 if and only if u∗∈L1, and ‖f ‖H1≈‖u∗‖L1

2. f ∈H1 if and only if MΦf ∈L1, and ‖f ‖H1≈‖MΦf ‖L1

where Φt(x) = t−nΦ(x/t) and Φ is an approximate identity, and

MΦf(x)= sup
t>0

|Φt ∗ f |(x)

(the Grand Maximal Function) which is not quite the Hardy Littlewood maximal func-
tion, since we use f instead of |f |, so that it measures cancellations as well. This defini-
tion is motivated from noting that we should not have to restrict ourselves to the Poisson
kernel, and it turns out that the resulting definition is equivalent.

3. H1 = {f ∈L1(Rn):Rjf ∈L1(Rn), j= 1,	 , n}
4. (H1)∗=BMO
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5. f ∈ H1 if and only if f ∈ L1 and f =
∑

k=1
∞

λkak where λk ∈R s.t.
∑

k=1
∞ |λk| <∞ and

the ak satisfy

a. supp(ak)⊂B

b. |ak|(x)≤ 1

|B |

c.
∫

B
ak=0

In this case ‖f ‖H1≈∑
k=1
∞ |λk|. The ak are called the H1 atoms of f and this decomposi-

tion is called the atomic decomposition of f .

Week 9 (11/11/2009)

(Again) For a typical singular operator T , we see that ‖Tf ‖p ≤ Ap‖f ‖p for 1 < p <∞, and also
we have weak (1,1) estimate. For p = 1, we want ‖Tf ‖1 ≤ A1 ‖f ‖1, but this is not true in gen-
eral. But perhaps we will have ‖Tf ‖L1 ≤ A1 ‖f ‖H1. In fact, maybe we can define H1 as the f ∈
L1 such that Tf ∈L1 for “typical” singular operators T . Such definitions do not give much infor-
mation about H1.

For example,
{ −∆u= f inRn

u|∞ = 0

If f ∈ Lp, then u ∈W 2,p for 1< p <∞. If f ∈ L1, then it is not true that u ∈W 2,1. By Sobolev
embedding, we note that W 2,1 ⊂ C0, but it is not hard to find an f ∈ L1 where the corre-
sponding u is not continuous. In 1 dimension, for instance, take u(x) = log |x|, then uxx(x) = −
1

x2 , which is integrable (too simple...). As for p= ∞, even if f is continuous (uniformly even), u
may not be C2. Then we can ask what space gives us ‖Tf ‖? ≤A∞ ‖f ‖L∞. This will turn out to
be the dual of H1, BMO.

Now we will work towards showing the equivalences of all the definitions.

Fatou Theorems

Theorem 48. Suppose f ∈ L1(Rn), 1 ≤ p ≤ ∞, and let u(x, y) = Py ∗ f(x). Let α > 0 fixed.
Then

1. sup(x,y)∈Γα(x0) |u(x, y)| ≤AαMf(x0)

2. lim(x,y)→(x,0)
(x,y)∈Γα

u(x, y)= f(x0) for a.e. x0∈Rn.

where Γα(x0) = {(x, y)∈R+
n+1: |x− x0| ≤αy}.

Pictorally, Γα(x0) looks like a cone:

y
Γx0

x0∈Rn
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Proof. (of (a)) First we note that Py(x) =
cny

(|x|2 + y2)(n+1)/2
and so Py(x− t) ≤AαPy(x) for |t| ≤

αy, since

Py(x− t) =
cny

(|x− t|2 + y2)(n+1)/2

≤ cny

(|x|2− 2|t‖x|+ |t|2 + y2)(n+1)/2

=
cny

(|x|2 +(y− |t|)2)(n+1)/2

≤ cny

((1−α)2|x|2 +(1−α)2y2)(n+1)/2

= AαPy(x)

with Aα=
1

(1−α)n+1 when |t| ≤αy. By definition we have

u(x0− t, y)=

∫

Rn

Py(x0− t− ξ)f(ξ)dξ

and thus we have that

sup
(x,y)∈Γα(x0)

|u(x, y)| = sup
|t|≤αy

|u(x0− t, y)|

≤ Aαsup
y>0

∫

Rn

Py(x0− ξ)|f(ξ)|dξ

we want to show that this is less than AαMf(x0). Without loss of generality, consider x0 = 0.
(Otherwise just translate to origin). We will do a dyadic decomposition:

= sup
y>0

∫

Rn

cny

(|ξ |2 + y2)
n+1

2

|f(ξ)|dξ

≤ sup
y>0

(

∫

|ξ|≤y
+

∫

y≤|ξ|≤2y

+	 ) cny

(|ξ |2 + y2)
n+1

2

|f(ξ)|dξ

≤ sup
y>0

Cn
yn

∫

|ξ|≤y
|f(ξ)|dξ+

∑

k=0

∞
Cn2n−k

(2k+1y)n

∫

2ky≤|ξ|≤2k+1y

|f(ξ)|dξ

≤ Cn
′Mf(0) +Cn

′′∑

k=0

∞
1

2k
Mf(0)

≤ CMf(0)

The other way to show this estimate is to convert to polar and integrate by parts, as in the
proof of Cotlar’s Lemma 46. So if f ∈Lp for 1< p≤∞, we have that u∗(x)∈Lp. �

Proof. (of (b)) Consider u(x0− t, y)− f(x0) for |t| ≤αy, which is

∫

Rn

Py(x0− t− ξ)(f(ξ)− f(x0))dξ

since
∫

Py = 1. Then for a fixed y, and using the same observation as in the proof of (a), that

Py(x− t)≤AαPy(x) for |t| ≤αy, we have

sup
|t|≤αy

|u(x0− t, y)− f(x0)| ≤ Aα

∫

Rn

Py(x0− ξ)|f(ξ)− f(x0)|dξ

≤ Aα

(

∫

|ξ|≤δ
+

∫

|ξ|≥δ

)

Py(ξ) |f(x0− ξ)− f(x0)|
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In the second term, the integrand tends to 0 uniformly, and the first term tends to 0 for contin-
uous f . Approximating gives the result in general (This is just the usual approximation of iden-
tity estimate), which gives the result. �

Combining the two statements, we have that |f(x)| ≤ u∗(x) a.e. x since u(x, y) → f(x) as y→ 0
for a.e. x.

Theorem 49. (Fatou) Suppose u is given on R+
n+1. Then u is the Poisson integral of some

f ∈L∞(Rn) if and only if u is a bounded harmonic function on R+
n+1

Proof. We already proved the forward direction in the previous theorem. Conversely, suppose

that u is a bounded harmonic function on R+
n+1. Let fk(x) = u

(

x,
1

k

)

∈ L∞(Rn) ∩C∞ (smooth-

ness follows from u being harmonic). Then let uk(x, y) = Py ∗ fk, which is harmonic in R+
n+1,

with uk

∣

∣

∣

y=0
= fk. Study u(x, y + 1/k), uk(x, y), which are both bounded harmonic and agree at

y= 0. This implies by the maximum principle that u(x, y+ 1/k)= uk(x, y).

(Aside: To handle the unbounded domain, can use an extension and Liouville type argument, or
use a scaling argument, pulling points near infinity back towards the origin and establish a con-
tradiction)

Now fix y > 0. Then as k→∞ we have that uk(x, y) = u(x, y+ 1/k)→ u(x, y) pointwise. On the
other hand, we have that since fk is uniformly bounded, we can take a subsequence if needed so
that fk→ f weakly (in weak* topology). In this case then Py ∗ f→Py ∗ f , by weak* convergence
〈fk, Py(x− ξ)〉→ 〈f , Py(x− ξ)〉. �

By the previous theorem, we also have that

u bdd harmonic� u is Poisson integral� uhas nontangential limit as y→ 0 a.e.

This generalizes to Lp as well:

Theorem 50. (Generalization of Fatou) Let u be harmonic in R+
n+1, 1 ≤ p ≤ ∞. If

supy>0‖u(·,y)‖Lp<∞ then u(x, y) = Py ∗ f for some f ∈Lp for p > 1, and u(x, y) = Py ∗ µ for p=
1, where µ is a Radon measure.

Proof. This is accomplished in two steps:

1. First we show |u(x, y)| ≤ Cy−n/p for y > 0. Taking a ball of radius y/2 around (x, y), we
have that

∫

By/2(x,y)

|u|p≤Cy

where the bound follows from integrating along strips where y is constant. This implies
that

1
∣

∣By/2(x, y)
∣

∣

∫

By/2(x,y)

|u|p≤Cy−n

noting that |By/2(x, y)| = cn+1y
n+1. Now using the mean value property for harmonic

functions, we have that

|u(x, y)| ≤
(

1
∣

∣By/2(x, y)
∣

∣

∫

By/2(x,y)

|u|p
)1/p

≤Cy−n/p
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2. Now we use the same technique as before, and look at the same fk, uk defined above.
Part 1 shows that u(x, y + 1/k) and Py ∗ fk are bounded for y > 0, and thus u(x, y + 1/
k) = Py ∗ fk, since both are bounded harmonic and have the same boundary values. Now
we have that fk → f weakly (weak* topology) in Lp (uniform boundedness follows from
the assumption), which gives the result, where the limit is an Lp function if p > 1 and a
Radon measure if p = 1 (the closure of L1 in weak* topology is the space of Radon mea-
sures).

�

Summarizing:

• For 1< p≤∞, u∗∈Lp(Rn). if f ∈Lp(Rn). Thus if we define Hp(Rn) = {f ∈Lp: u∗∈Lp},
then Hp=Lp.

• For p= 1, H1(Rn) = {f ∈L1: u∗∈L1}� L1. Recall that Mf ∈L1 for some f ∈L1. If Mf ∈
L1, then f ∈H1(Rn) by Theorem 48. In particular, we saw in the first week that if f ≥ 0,

then f log+f ∈L1� f ∈H1. In particular, Lp (p> 1) functions satisfy this property.

Now we turn towards the Grand Maximal function MΦf , where Φt(x) = t−nΦ(x/t) and Φ is an
approximate identity, and

MΦf(x)= sup
t>0

|Φt ∗ f |(x)

Recall that if f is a distribution, then for Φ ∈ S, f ∗ Φ ∈ C∞. The same holds for f ∗ Φt. Note
that the Poisson kernel is not in S, but we still want to make sense of Pt ∗ f for f in some class
of distributions.

Definition 51. We say that f is a bounded distribution if f ∗Φ∈L∞ for all Φ∈S.

There are easy examples for which f ∗ Φ is not bounded at ∞ for some Φ, for instance polyno-
mials will work (a polynomial convolved with a bump will still be unbounded near ∞).

Fact: If f is a bounded distribution and h ∈ L1(Rn), then f ∗ h is also a bounded distribution.
This is straightforward to check: For all Φ∈S ,

〈f ∗h,Φ〉=
〈

f ∗ Φ̃, h̃
〉

the ~ denotes the reflection f̃ (x) = f( − x). Since f ∗ Φ̃ ∈ L∞ and h̃ ∈ L1, thus f ∗ h is well
defined. Also, for any Ψ∈S, we have that

f ∗h ∗Ψ = f ∗ (h ∗Ψ)∈L∞

since h ∗Ψ∈S.
Now if f is a bounded distribution, then Pt ∗ f is well defined as a bounded distribution.

Week 10 (11/18/2009)

Theorem 52. Let f be a bounded distribution, 0< p≤∞. Then the following are equivalent:

1. There exists Φ∈S such that
∫

Rn Φdx=1 and MΦf ∈Lp(Rn).
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2. For any Φ∈S such that
∫

Rn Φdx=1, we have that MΦf ∈Lp(Rn).

3. u∗∈Lp(Rn), where u∗(x)= sup(z,y)∈Γ(x0) |Py ∗ f(x)|.

Proof. (Idea) This is a very technical proof, so we sketch the necessary tools here.

• First, to show (1)⇒ (2), we use a Littlewood-Paley decomposition. For any two functions
Φ,Ψ∈S, we can find a decomposition of the form

Ψ=
∑

k=1

∞
η(k) ∗Φ2−k(x)

more easily described in the Fourier domain:

Ψ̂ =
∑

k=1

∞
η̂ (k)Φ̂

where η̂ (k) is a smooth cutoff function which is 1 at dyadic intervals [2k, 2k+1]. We can

also choose η(k) so that ‖η(k)‖m,α ≤M(m, α) where ‖ · ‖m,α are the family of seminorms
that come from the Frechet space S.

• To show (2)⇒ (3), the idea is to decompose the Poisson kernel in terms of functions in S.
We can write

P1(x)=
∑

k=0

∞
2−kΦ2k

(k)
(x)

taking Py for y= 1, and Φ(k)∈S and satisfies ‖Φ(k)‖m,α≤M(m,α) where ‖ · ‖m,α are the
family of seminorms that come from the Frechet space S.

• To show (3)⇒ (1), we can get a Schwarz function in terms of Py by use of a smooth func-

tion with rapid decay. First we construct η ∈ C∞(1, ∞) such that
∫

1

∞
η(s)ds = 1 and

∫

1

∞
skη(s)ds= 0 for k=1, 2,	 Given such a function, we then examine

Φ(x)=

∫

1

∞
η(s)Ps(x)ds

and then take the Taylor expansion (to show smoothness). The η that satisfies the
desired properties exists and is of the form

η(s) =
1

πs
Im exp(1−α(1− s)−1/4), α= e−iπ/4

�

This gives the equivalence of the Hardy space definition using the Grand maximal function.
Now we turn to Hp atomic decomposition.

(Fefferman’s paper) Hp atoms 0 < p ≤ 1. We say a is an Hp atom if the following three condi-
tions hold:

1. a(x) is supported in a ball B

2. |a|(x)≤ 1

|B |1/p
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3. (Moment condition)
∫

B
xβ a(x)dx= 0 for all β such that |β | ≤n(p−1− 1)

Note that under these conditions, we have that
∫

Rn |MΦa|p dx≤Cn:

Proof. Using the second condition,

MΦa(x)= sup
t>0

|Φt ∗ a(x)| ≤ C

|B |1/p

Now for x∈ 2B, we have an easy estimate:

∫

2B

|MΦ a(x)|p dx≤Cn

For x∈ 2B, we have that

a ∗Φt(x) =

∫

B

a(y)Φt(x− y)dy

=

∫

B

a(y)[Φt(x− y)− qt(x− y)]dy

where qt is the Taylor polynomial of Φt with center 0 and degree d = ⌊n(p−1 − 1)⌋, using the
third condition to insert into the integral. Now we estimate

|Φt(x− y)− qt(x− y)| ≤Cd
|y− x|d+1

td+1+n

noting that Φt(ξ) = t−nΦ(ξ/t). If y ∈ B and x ∈ 2B, this becomes like a singular operator esti-
mate:

|a ∗Φt(x)| ≤
∫

B

|a(y)| |Φt(x− y)− qt(x− y)|dy

≤
∫

B

C ′

|B |1/p
|y− x|d+1

td+1+n

≤ C ′

|B |1/ptd+1+n

∫

0

R

rd+n dr

≤ C ′

|B |1/p
(

R

t

)d+1+n

Above R is the radius of B. Let y0 be the center of B for what follows. Now we choose a par-
ticular Φ to be supported in B1, and with this choice we note that for t < |x− y0|, Φt(x− y0) =

qt(x− y0)= 0, since
x− y0

t
> 1. Thus, we consider the case t≥ |x− y0|, so that

MΦa(x)≤ C ′

|B |1/p
(

R

|x− y0|

)d+1+n

Now combining the two estimates, we have that

∫

Rn

|MΦ a|p ≤
∫

2B

|MΦa|p+

∫

(2B)c

|MΦa|p

≤ Cn+
C ′′

|B |R
d+1+n+p

∫

2R

∞ rn−1

rd+1+n+p
dr

≤ Cn
′′

�
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This shows that if a is an Hp-atom, then a ∈ Hp using the definition with the Grand maximal
function. As a direct Corollary, we have that if f(x) =

∑

k=1
∞

λkak where ak are Hp-atoms and
∑

k=1
∞ |λk|<∞. Then f ∈Hp. This is because using Φ as above, we have

MΦf(x)≤
∑

k=1

∞
|λk|MΦak(x)

so that

∫

Rn

|MΦf(x)|p dx≤C ′
∑

k=1

∞
|λk|Cn<∞

using Jensen’s to show that
(

∑

k=1
∞ |λk|

C
MΦak

)p

≤∑
k=1
∞ |λk|

C
|MΦf(x)|p.

Thus we have shown that functions of the form
∑

k=1
∞

λkak are in Hp. We have a result that
shows that every function in Hp has such a decomposition. Here we focus on the case p= 1.

Theorem 53. H1 decomposition. For any f ∈ H1, we can find ak H1-atoms and λk for which
∑

k=1
∞ |λk| ≤C0 ‖MΦf ‖L1 so that

f(x) =
∑

k=1

∞
λk ak(x)

Furthermore, we can define ‖f ‖H1 to be
∑

k=1
∞ |λk|. Then ‖MΦf ‖L1 is comparable to ‖f ‖H1.

The proof is long and technical, involving the Calderón-Zygmund type decomposition on a
dyadic choice of αk (in fact, we examine the sets {MΦf > α} and {MΦf ≤ α}), and patching
everything together.

Remark 54. The third moment property for Hp atoms is necessary. For p= 1, this condition is

just
∫

a(x)dx = 0. If a = 1B for instance, we can show that Φta(x) ≈ C

|x|n , which is not inte-
grable. The cancellation gives us an additional |x|−1.

This gives a rough sketch of all the equivalent definitions of H1. Now we turn back to estimates
on singular operators in the case p= 1, filling in the gap.

Theorem 55. If T is a singular integral operator of Calderon-Zygmund type, then T is bounded
from H1→L1.

Remark 56. Another quick remark for why the cancellation condition is good. Earlier we dis-
cussed that in order for Tf ∈ L1 it must be the case that T̂f̂ is continuous. Since T̂ is homoge-

neous of degree 0, we have a problem near the origin unless f̂ (0) =
∫

f = 0. This gives a neces-
sary condition for when Tf ∈L1.

We now have all the equivalent definitions for the Hardy space, and we will make use of the
atomic decomposition.

Proof. For all f ∈H1 we can write f =
∑

k=1
∞

λkak as in the atomic decomposition. It then suf-
fices to check this estimate for each atom ak, and the result follows by subadditivity. Thus we
show that ‖Ta‖L1 for an H1 atom a. Recall a is supported in some ball B, bounded by 1/|B |,
and

∫

B
a=0. As before we estimate |Ta| on 2B and (2B)c:
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On 2B we can use just the L2 bound:

∫

2B

|Ta|2 dx≤A2‖a‖L2
2 ≤A2

∫

B

|a|2 =A2 |B |
|B |2 =

A2

|B |
Then

∫

2B

|Ta|dx≤ |2B |1/2‖Ta‖L2
1/2

= |2B |1/2 A

|B |1/2
=C0A

Now for (2B)c, we use the usual singular operator trick:

Ta(x) =

∫

B

K(x− y)a(y)dy

=

∫

B

[K(x− y)−K(x− y0)]a(y)dy

Then

∫

(2B)c

|Ta(x)|dx ≤
∫

B

|a(y)|dy
∫

(2B)c

|K(x− y)−K(x− y0)|dx

≤ C0A

∫

|x|≥2 |y|
|K(x− y)−K(x)|dx

≤ C0A
′

Combining the two estimates gives the result. �

Week 11 (11/25/2009)

The Space BMO

First we define the space BMO.

Definition: A function f ∈Lloc
1 (Rn) is said to be in BMO(Rn) if

sup
Q

1

|Q|

∫

Q

|f − fQ|dx≤A<∞

Here Q are cubes in Rn, and fQ =
1

|Q|
∫

Q
f(x)dx. The optimal upper bound is taken to be the

norm ‖f ‖BMO. If desired we can also use balls instead of cubes. Note that constants have 0
norm, and thus BMO functions are defined up to an additive constant (BMO functions that
differ by an additive constant are equivalent). This means that we may replace fQ by arbitrary
constants cQ in the definition.

Remark 57. We have the following facts about BMO:

1. L∞⊂BMO, ‖f ‖BMO≤ 2‖f ‖∞

2. W 1,n(Rn)⊂BMO, by Poincaré inequality.

3. log |x| ∈BMO, log|x|∈L∞:

1

Rn

∫

BR(0)

|ln x− lnR|dx=

∫

B1(0)

|lnx| dx
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Now we return to the Calderón-Zygmund singular operators to fill in the gap concerning L∞:

Theorem 58. If T is a Calderón-Zygmund type operator, then T maps L∞ to BMO.

Proof. Let f ∈ L∞(Rn), and let g = Tf = K ∗ f with K =
Ω(y)

|y|n . We want to show that g is in

BMO. Note that the BMO norm is scaling and translation invariant by definition, so if ga,λ 6
g(a+λx), then

‖ga,λ‖BMO= ‖g‖BMO

The same is true for L∞. Therefore it suffices to check

∫

Q

|g − gQ|dx≤CA‖f ‖∞

for the unit cube Q centered at the origin (note that |Q|= 1). Now write

f = f 12Q+ f 1(2Q)c = f1 + f2

Then g= g1 + g2, with gi=K ∗ fi, and

‖g1‖L1(Q)≤‖g1‖L2(Q)≤‖K̂ ‖∞‖f1‖L2≤Cn‖f ‖∞

with Cn= ‖K̂ ‖∞2n/2 (Hölder).

Thus
∫

Q
|g1− g1,Q| ≤Cn‖f ‖∞. As for g2, we compute

∫

Q

|g2−CQ|dx

where CQ =
∫

Rn K( − y) f2(y)dy = g2(0) (recall that we can replace g2,Q with any constant

CQ). Note g2(x)=
∫

Rn K(x− y)f2(y)dy

Now

∫

Q

|g2(x)−CQ|dx ≤
∫

Q

∫

Rn

|K(x− y)−K(− y)| |f2(y)|dydx

≤ ‖f ‖∞
∫

Q

∫

(2Q)c

|K(x− y)−K(− y)|dydx

≤ B ‖f ‖∞

recalling that
∫

(2Q)c |K(x− y)−K(− y)|dy ≤
∫

|y |≥|2x| |K(x− y)−K(y)|dy ≤B, since K is a

Calderón-Zygmund type kernel.

Thus g ∈BMO. �

In particular, the Riesz Transforms map L∞ to BMO.

Now note that 〈Rif , g〉 = 〈f , Ri∗g〉 = −〈f , Rig〉 (can check that Ri
∗ = − Ri on a common

domain). Then if f ∈ H1, then Rif ∈ L1 and suppose that g ∈ L∞. Then Ri
∗g ∈ BMO by what

we just proved. In particular, Ri
∗g defines a linear functional on H1.
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We want to show that H1 = {f ∈ L1: Rif ∈ L1, i = 1, 	 , n}. By our previous results, we know

that H1 ⊂ {f ∈ L1: Rif ∈ L1, i = 1, 	 , n}. We want to show that it is enough to check just the
Riesz transforms. (What we know is that if MΦf ∈L1 for some Φ∈S, then f ∈H1).

We also know that BMO⊃{Ri g: i=1,	 , n, g ∈L∞}=
⋃

i=1
n

Ri(L
∞).

Remark 59. Establishing that (H1)∗=BMO implies equality of both definitions. ??

Theorem 60. (H1)∗⊂BMO

Proof. Let f ∈ H1. Consider G(f) = (f , R1f , 	 , Rnf) ∈ (L1)n+1. Note that g(H1) is a closed

subspace. Now let l ∈ (H1)∗. Then define l̃ (G(f)) = l(f), a functional on g(H1). By Hahn-

Banach, we can extend to (L1)n+1, so that l̃ ∈ ((L1)n+1)∗ = (L∞)n+1. So there exists g0,	 , gn ∈
L∞ such that

l̃ (f0,	 , fn)=

∫

∑

i=0

n

fi gi

(reminder, make use Riesz Representation on l̃ ◦ πi where πi is projection to i-th component)
Thus

l(f) =

∫

(

fg0 +
∑

i=1

n

Rifgi

)

=

∫

Rn

f

(

g0−
∑

i=1

n

Rigi

)

from integration by parts. Then g0−
∑

i=1
n

Rigi∈BMO. This shows that (H1)∗⊂BMO. �

It remains to show that BMO functions define a continuous linear functional on H1. Towards
this result we have the following Lemma:

Lemma 61. If f ∈BMO(Rn) then
f(x)

(1 + |x|)n+1 ∈L1(Rn).

Proof. We want to show that

∫

Rn

|f − fB1|
(1+ |x|)n+1 dx≤Cn ‖f ‖BMO

which implies the result. Now note that

1

2nk

∫

B2k

|f − fB2k
| ≤Cn‖f ‖BMO

by definition of BMO. This shows that

|fB
2k+1− fB2k

| ≤ cn

2nk

∫

B2k

∣

∣f − fB
2k+1

∣

∣

≤ cn
2nk

∫

B
2k+1

∣

∣f − fB
2k+1

∣

∣

≤ Cn‖f ‖BMO

Now we have that |fB2k
− fB1| ≤ cnk ‖f ‖BMO by triangle inequality, for k=1, 2,	 and so

∫

B2k

|f − fB1|dx≤Cn k2kn ‖f ‖BMO
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so that

∫

Rn

|f − fB1|
(1 + |x|)n+1 dx ≤

∑

k

∫

B
2k+1−B2k

|f − fB1|
(1 + |x|)n+1 dx

≤
∑

k

Cn k2kn‖f ‖BMO

(2k)n+1
dx

≤ Cn
′ ‖f ‖BMO

�

(Notes say that this result implies that Py ∗ f ∈L1 also...??)

Remark 62. Note that ln |P (x)| ∈BMO and ln |x| ∈BMO. Then f = ln u∈BMO where u satis-
fies u≥ 0,

∑

ij
∂xi

(aij(x)uxj
)=Lu= 0∈B (Moser estimate)

Proof. We will show that for f ∈BMO, eβ |f |∈L1. Combining these gives

∫

B

e−β lnu dx

∫

B

eβ ln u dx≤C

Thus Lu= 0, u≥ 0 in B1 implies

∫

B1/2

u−β dx
∫

B1/2

uβ dx≤C0

(Moser’s inequality), (essentially Harnack?) ?? �

Note f ∈BMO implies eβ |f |∈ L1. This shows that f log f ∈L1 for f ≥ 0 implies that f ∈H1, so
we should expect such an estimate. ??

(What’s missing... Stein’s Harmonic Analysis, the large one has most of these)

• John-Nirenberg inequality

• Reverse (?) Holder inequality (F. Gehrig), if
(

1

|Q|
∫

Q
|f |p

)1/p
≤ m

1

|Q|
∫

Q
|f |, p > 1,

then f ∈Lp+δ, δ > 0, depending on p, n. Useful for Q.C. (?) Mapping

• General rule: If you have translation/dilation, then use C-Z.

• Bourgain theorem on harmonic measure...

• Finishing Duality, BMO⊂ (H1)∗, using atomic decomposition.

Week 12 (12/2/2009)

Summary

If H1 = {∑
k=1
∞

λkfk, fk∈LBk

2 }L1closure, where
∑ |λk| |Bk|1/2 ‖fk‖L2<∞, then

1. f ∈H1�MΦf ∈L1� u∗∈L1

2. f ∈H1� Rjf ∈L1, j= 1, ,	 , n, andTf ∈L1, T of C-Z type.

3. f ∈L∞� Rjf ∈BMO, j= 1,	 , n andTf ∈BMO (John Nirenberg, L logL↔ exp( · ))
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4. l ∈ (H1)∗� ∃g ∈ BMO s.t. l(f) = 〈f , g〉 for all f ∈ H1 (Prove on L2(B) first with Riesz
representation and patch up by continuity)

5. If g ∈BMO, then g ∈ (H1)∗� (H1)∗ =BMO (Here we noted that

〈Rif , h〉=−〈f ,Ri h〉

with f ∈H1, h∈L∞, and the closed graph theorem shows
⋃

i=0
n

RiL
∞ =BMO.

We are only missing the full proof of the H1-atomic decomposition, which gives the reverse
implication in (1).

Square Functions (Lusin Area-Integrals)

Now we continue investigating properties of H1 and BMO.

Lemma 63. If g ∈BMO, then u(x, t)=Pt ∗ g(x) satisfies

sup
x

∫

|y−x|<h
0<t<h

t |∇u|2(y, t)dydt≤Cn ‖g‖BMO
2 hn

for all h> 0.

The integration is over the truncated cone of height h, with origin x and slope 1. Denoting K(t,

x) = Pt(x) (easier notation), recall that K(t, x) =
cn t

(t2 + |x|2)(n+1)/2
, and if we dilate the integral y,

x, t by h, we may assume that h= 1:

u(hy ′, ht′)= hn
∫

K(ht′, hy ′−hz ′)g(hz ′)dz ′=
∫

K(t′, y ′− z ′)g(hz ′)dz ′

∇u(hy ′, ht′) =hn
∫

∇K(ht′, hy ′−hz ′)g(hz ′)dz ′=
1

h

∫

∇K(t′, y ′− z ′)g(hz ′)dz ′

where we note that δhK =
1

hn
K and δh∇K =

1

hn+1∇K using direct computation:

K(ht, hx)=
1

hnK(t, x), ∂xi
K(t, x)=

cn
′ t(2xi)

(t2 + |x|2)(n+1)/2+1
, and

∂tK(t, x) =
cn(t2 + |x|2)(n+1)/2− cn

′ t(t2 + |x|2)(n+1)/2−1(2t)

(t2 + |x|2)n+1

=
cn− cn

′ t2(t2 + |x|2)−1

(t2 + |x|2)
n+1

2

so that (∂tK)(ht, hx)=
1

hn+1∂tK(t, x). Thus (∇K)(ht, hx) =
1

hn+1(∇K)(t, x),

(in notes: “counting dimensions (dilation factor), each yi gives 1, t gives 1,
∂

∂yi
gives −1,

∂

∂y
gives

− 1, u→ 0 and ∇u→− 1, so 1− 2 + (n+1)=n”)

Therefore, we have that

∫

|y−x|<h
0<t<h

t |∇u|2(y, t)dydt=hn
∫

|y−x|<1
0<t<1

t |∇K ∗ δhg |2(y, t)dydt

and since ‖δhg‖BMO= ‖g‖BMO, we have reduced the problem to the case where h= 1.
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Proof. From discussion above, we may assume h = 1. Now decompose g = g1 + g2, g1 = g12Q.

We may assume without loss of generality that g1,2Q =
1

|2Q|
∫

2Q
g1 dx = 0, since the area inte-

gral and the BMO norm are both invariant up to constants. Now let u= u1 + u2 where ui= Pt ∗
gi. Have

∫

|y|<1
0<t<1

t |∇u|2(y, t)dydt

Note that u2 is the easy part, since it solves the boundary problem on 2Q with boundary value
0. This gives (PDE estimate)

|∇u2|L∞(Q1)≤C sup
Q3/2

|u2(y, t)| ≤C

∫

(2Q)c

|g(x)|
(1 + |x|2)

n+1

2

dx≤C ‖g‖BMO

Then
∫

|y|<1
0<t<1

t |∇u2|2(y, t)dydt≤C ‖g‖BMO
2

As for u1, we have

∫

|y|<1
0<t<1

t |∇u1|2(y, t)dydt ≤
∫

0

∞
dt

∫

Rn

t |∇u1(y, t)|2 dy

(In notes: Since g1 is supported in a ball, ∇u1 decays fast ??)

Using Plancherel, we have

=

∫

0

∞ ∫

Rn

t |ξ |2 e−2t|ξ||ĝ1(ξ)|2 dξdt

=

∫

Rn

|ĝ1(ξ)|2
|ξ |
2

∫

0

∞
2t|ξ |e−2t |ξ|dtdξ

= c

∫

Rn

|ĝ1(ξ)|2 dξ

= c ‖g1‖L2(2Q)
2

noting
∫

0

∞
2t |ξ |e−2t |ξ| = 1

2|ξ| (expectation of exponential distribution). This apparently proves

the desired result (not sure how to bound this last term in terms of ‖g1‖BMO
2 though...) �

Remark 64. Let G be the Green’s function on BR with pole at q= (0, 3/2). Then

∫ ∫

Q̃1

t |∇u1(y, t)|2 dtdy ≤ c0

∫ ∫

BR

G(y, t)|∇u1(y, t)|2 dydt

(not sure why...)

Using Green’s identity, we then have

c0

∫ ∫

BR

G |∇u1|2 + u1
2(0) =

∫ ∫

BR

G∆(u1
2)− u1

2∆G

=

∫

∂BR

G
∂u1

2

∂ν
−
∫

∂BR

∂G

∂ν
u1

2

note that −∆G= δ and ∆(u1
2)= 2u1∆u1 + |∇u1|2 = |∇u1|2 (u1 is harmonic). Thus

∫ ∫

Q̃1

t |∇u1(y, t)|2 dtdy ≤ C0‖g1‖L2(2Q1)
2 − u1

2(0)+C

∫

∂BR

u1
2

≤ C ‖g1‖L2(2Q1)
2
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much like the L2 boundary →H1/2 estimate in PDE.

Lemma 65. Any function g ∈ L1(Rn) ∩ L2(Rn) where the Poisson integral Pt ∗ g satisfies
Lusin’s Area integral estimate

∫ ∫

Q̃h

t |∇(Pt ∗ g)|2 dydt≤B2hn

is an element in (H1)∗=BMO.

Proof. (Sketch) Let U(y, t)=Pt ∗ g(y) and V (y, t)=Pt ∗ f(y) and consider

2

∫

0

∞ ∫

〈t∇u,∇v〉 dξdt = 4

∫

0

∞ ∫

t |ξ |2e−2t |ξ|f̂ (ξ)ĝ (ξ)dξdt

=
〈

f̂ (ξ), ĝ(ξ)
〉

= 〈f(x), g(x)〉

Take f ∈H1. Using a decay estimate for t∇v, we show that
∫ ∫

〈t∇u,∇v〉<∞, from which it
follows by the above computation that

∫

f ∗g <∞, and since this holds for all f ∈H1, we have
that g ∈BMO. The assumption on g allows us to use the maximal function.

Again, we will show that l(f) = 2
∫

0

∞ ∫

〈t∇u,∇v〉 dξdt for f ∈H1 is well defined and bounded,

then l is a linear functional implies that g ∈ BMO by the above computation. The proof makes
use of the characterization of H1 as the L1 closure of {∑ λkgk, gk∈L2(Bk)}. �

Scattered notes... to decipher later...

• Let Φ∈C0
∞(B1) with

∫

Φ = 0, and define

SΦf(x) 6 (
∫

0

∞
|f ∗Φt|2dt

t

)1/2

ΣΦf(x) 6 (
∫ ∫

Γx

|f ∗Φt|2dtdy
tn+1

)1/2

with Γx= {(y, t): |y−x|< t}. By a tedious computation involving Fubini, we have

‖ΣΦf ‖L2
2 = c0‖SΦf ‖L2

2 ≤A ‖f ‖L2
2

where the last inequality is a computation involving Fourier transform:

‖SΦf ‖L2
2 =

∫

Rn

∫

0

∞
|f̂ (ξ)|2 |Φ̂(t, ξ)|2dt

t
dξ

≤
(

sup
ξ

∫

0

∞
|Φ̂(t, ξ)|2 dt

t

)
∫

Rn

|f̂ (ξ)|2 dξ

≤ C ‖f ‖L2
2

Note that
∫

Φ = 0 holds if and only if |Φ̂(u)| ≤C |u| and for u large, |Φ̂(u)| ≤ C

|u| .

• (Hardy Sobolev estimate, side remark)

∫

Ω

u2

d2(x, ∂Ω)
≤ CΩ

∫

Ω

|∇u|2
∫

Ω

u2

d(x, ∂Ω)
≤ Cd

∫

Ω

d(x, ∂Ω)|∇u|2
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Carleson measures

Carleson addresses the following question: Which positive measures µ on Rn+1 have the prop-
erty that

∫

R+
n+1

|Pt ∗ f |2(x)dµ(x, t)<Cµ‖f ‖L2
2

If f = 1Q, then Pt ∗ f(x) ≥ c0 for all (x, t) ∈ Q̃1/2, where Q̃1/2 = {|xi| ≤ 1, i= 1, 	 , n+ 1, xn+1 ≥
0} (cube in the upper halfspace). This implies that

|Q1/2| ≃Cµ‖f ‖L2
2 ≥

∫

R+
n+1

|Pt ∗ f |2dµ(x, t) ≥ C0
2

∫

Q̃1/2

dµ(x, t)

= C0
2µ(Q̃1/2)

Thus, µ(Q̃) ≤ C0|Q|, called the Carleson condition. We then define a Carleson measure to be a

measure on Rn+1 such that µ(Q̃) ≤ C0|Q|. The computation above shows that any positive
measure satisfying the property

∫

R+
n+1

|Pt ∗ f |2(x)dµ(x, t)<Cµ‖f ‖L2
2

is a Carleson measure.

It turns out that the converse is also true:

Lemma 66. (Carleson) If µ is a Carleson measure on R+
n+1, then

∫

R+
n+1

|Pt ∗ f |p(x)dµ(x, t)<Cµ‖f ‖Lp
p

for 1< p≤∞. Also,
∫

R+
n+1

|Pt ∗ f |2(x)dµ(x, t)≤C

∫

Rn

|Mf |p dµ∗

for 1≤ p≤∞. (µ∗ is probably the restriction of µ on Rn, or something...)

Observation. Let ϕ, ψ ∈S, with
∫

ϕ= 1,
∫

ψ= 0. Define

(Ptf )(ξ) = ϕ̂(tξ) f̂ (ξ)

(Qtf )(ξ) = ψ̂(tξ) f̂ (ξ)

(similar to square functions). If f ∈L2(Rn), then

∫

0

∞
‖Qtf ‖L2(ξ)

2 dt

t
≤Cψ‖f ‖L2

2

Since ‖Qtf ‖L2
2 = ‖Qtf ‖L2

2 = ‖ψ̂(tξ) f̂ (ξ)‖L2
2 , Cψ=

∫

0

∞ |ψ̂(ξ)|2dt
t
.

Theorem 67. If f ∈BMO, then

dµ(x, t)6 |Qtf |2dxdt
t

is a Carleson measure.
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Proof.

1. Show that Qtf is well defined for x∈Rn:

• Qt 1 =0 (can take out constant for BMO)

•
∫

Rn

|f − fQ1|
(1+ |x|)n+1dx < ∞ since f ∈ BMO (thus product with Schwarz function also

<∞)

These two imply that Qtf is well defined. (in notes: take off average, gain
1

t
...)

2. It suffices to verify the Carleson condition for Q̃ = Q̃1, noting that BMO is invariant

under translation and dilation, and the same is true for
dt

t
. Furthermore, we may assume

without loss of generality that f2Q1 = 0 since Qt1= 0 (doesn’t see constants)

Finally, check that
∫ ∫

Q̃1

|Qtf |2(x) dxdt
t

≤ cψ‖f ‖BMO|Q|

Let f = f1 + f2 with f1 = f 12Q1
. Then Qtf = Qtf1 + Qtf2. As before, Qtf2 is not a problem.

Otherwise,

∫ ∫

Q1

|Qtf1|2dxdt
t

≤
∫ ∫

R+
n+1

|Qtf1|2dxdt
t

=

(

sup
ξ

∫

0

∞ |ψ̂(tξ)|2
t

dt

)

∫

|f̂1(ξ)|2

= Cψ‖f ‖L2
2

the same estimate as before. Now for (x, t) ∈ Q̃1, and letting K be the kernel for the operator
Qt,

|Qtf2(x)| ≤
∫

(2Q1)c

1

tn

∣

∣

∣

∣

K(x− z)

t

∣

∣

∣

∣

|f(z)|dz

≤ Cψ

∫

Rn

t |f(z)|dz
(t2 +(x− ξ)2)

n+1

2

≤ Cψ t‖f ‖BMO

so that
∫ ∫

Q1

|Qtf2|2(x)dxdt
t

≤Cψ ‖f ‖BMO
2 |Q|

�

This theorem shows that the space BMO can be embedded into the space of Carleson measures.

A similar theorem for singular operators T of C-Z type. T bounded in L2 ↔ T 1∈BMO (? Levy
Theorem ?)

Week 13 (12/9/2009)

We return to the Carleson lemma.

70



Theorem 68. Suppose dµ(x, t) is a Carleson measure on (x, t)∈R+
n+1. Then

∫

R+
n+1

|Pt ∗ f |2 dµ(x, t)≤Cµ‖f ‖L2
2

Ideas. (BMO� Square function� Carlesonmeasures)

Suppose Qt is an operator such that Qtf (ξ) = ψ̂(tξ)f̂ (ξ), where ψ ∈ S or has sufficient decay

(ψ̂(0) =0 works).

• If g ∈BMO, then
|Qt g |2

t
dxdt is a Carleson measure (proved last time)

• If g ∈BMO, then
∫

Q̃h

t |∇Qt g |2(x, t)dxdt≤B2hn

This is the square function (which in 2D is the area of the image u(Qh))

• Also, if g ∈L1, and
∫

Q̃h

t |∇Qtg |2dxdt≤B2hn

then g ∈BMO. (converse type result)

Proof. (Sketch) Consider
∫ ∫

〈t∇Pt ∗ g, ∇Pt ∗ f 〉 dξdt

with f ∈H1. Taking the Fourier transform (“polarization or whatever”) we get

∫

0

∞ ∫

te−2t |ξ||ξ |2ĝ(ξ)f̂ (ξ)dtdξ=
〈

ĝ , f̂
〉

= 〈g, f 〉

where we integrate in t first.

Need 〈t∇Pt ∗ g,∇Pt ∗ f 〉 to make sense (i.e. each part should be in L2).

If we consider Qtg = tξe−t|ξ|ĝ , then we can use the previous lemmas to show that t∇Pt ∗ g ∈ L2

also. We will show the second term is also L2 in what follows. �

Consider F (x, t) ∈L1(Rn+ R+), and F ∗(x) = sup(y,t)∈Γx
|F (y, t)| where Γx is the usual cone for

the nontangential maximal function. Note that if F (x, t) =Pt ∗ f , then we already have the esti-
mate F ∗(x)≤CMf(x).

Define the space

N =
{

F ∈L1(R+
n+1):F ∗∈L1

}

noting that if F =Pt ∗ f , then we have the Hardy space, i.e. H1⊂N . Define ‖F ‖N6 ‖F ∗‖L1.

Given a ball Br(x0) =B, we examine tents T (B) = {(x, t): |x− x0| ≤ r − t}. Having defined T (B)
for balls, we can extend the definition to open sets O⊂Rn as well:

T (O)=
⋃

x∈O
T (Bdx

(x))
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with dx= d(x,Oc). Let µ be a Radon measure, and define

C(dµ)(x)= sup
x∈B

1

|B |

∫

T (B)

dµ(x, t)

Note that if µ is a Carleson measure, then C(dµ)(x)≤C, uniform in x. Then define

C = {dµ> 0,measures onR+
n+1 such thatC(dµ(x))∈L∞(Rn)}

This will behave like the dual to the N space.

Theorem 69. For all F ∈N and µ∈C, we have that

∫ ∫

R+
n+1

F (x, t)dµ(x, t)≤
∫

Rn

F ∗(x)C(dµ(x))dx≤Cµ

∫

Rn

F ∗(x)dx

Corollary 70. If F (x, t) = |Pt ∗ f(x)|2, then F ∗(x) ≤ C(Mf(x))2, and since f ∈ L2 implies that
Mf ∈L2, we have that F (x, t)∈N, and this implies the theorem concerning

∫

R+
n+1

|Pt ∗ f |2dµ≤Cµ‖f ‖L2(Rn)
2

Proof. If F ≥ 0, and µ ≥ 0, let O = {x ∈Rn: F ∗(x) > α}, which is an open set (maximal func-
tion properties). Then

∫

R+
n+1

F (x, t)dµ(x, t)=

∫

0

∞
µ{(x, t):F (x, t)>α}dα

and
∫

F ∗(x)dx=

∫

0

∞
|{x:F ∗(x)>α}| dα

We have two observations:

• {(x, t):F (x, t)>α}⊂T (O)

• If C(dµ(x))≤ 1 , i.e. µ(T (B))≤ |B | for all B⊂Rn, then µ(T (O))≤C |O |

Given these two observations, we are done, since

µ{(x, t):F (x, t)>α}≤ µ(T (O))≤C |O |=C |{x:F ∗(x)>α}|

For the first observation, we note that if y ∈Bt(x), then F ∗(y)>α, since (x, t)∈Γy:

y

Γy

(x, t)

Bt(x)

t

Rn

Thus {(x, t):F (x, t)>α}⊂T (O) by taking union of all balls.
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For the second observation, the 1 dimensional case is easy, since we can write any open set as a
disjoint union of intervals O=∪k Ik, and thus µ(T (O))=

∑

k
µ(T (Ik))≤

∑ |Ik|= |O |.
In multiple dimensions, we write an open set as a union of cubes with disjoint interior, O =
∪kQk, where diam(Qk) ≈ d(Qk, O

c) (Whitney’s decomposition). Let Bk ⊃ Qk, where diam Bk =
n

√
diam(Qk). Then T (O)⊂∪kT (Bk) so that

µ(T (O)) ≤
∑

k

µ(T (Bk))

≤
∑

k

|Bk|

≤ C
∑

k

|Qk|

= C |O |

(i.e. even though the union is not disjoint, we can set it up so that there is bounded overlap,
and we therefore get the same result). This proves both observations, from which the theorem
follows. �

Now we return to
|Qtf |2
t

with Qtf = ψ̂(tξ) f̂ (ξ). We are interested in

∫

0

∞ ∫

Rn

|Qtf |2(x)
t

dxdt=C0

∫

0

∞ ∫

Rn

∫

Γx

|Qtf |2(x− y)

tn+1 dydxdt

where the equality above holds from a computation involving Fubini. Then

∫

0

∞ ∫

Rn

〈t∇Pt ∗ g(x),∇Pt ∗ f(x)〉 dxdt

≤
∫

0

∞ ∫

Rn

∫

Γx

|t∇Pt ∗ g(x− y)| |∇Pt ∗ f(x− y)|
tn

dydx
dt

t

=

∫

0

∞ ∫

Rn

∑

k

∫

Q̃k

|t∇Pt ∗ g(x− y)| |∇Pt ∗ f(x− y)|
tn

dydx
dt

t

=

∫

0

∞ ∫

Rn

∑

k

(

1

hk
n

∫

Q̃k

t |∇Pt ∗ g |2
)1/2(

1

hk
n

∫

Q̃k

|∇Pt ∗ f |2
)1/2

dydx
dt

t

The third line is a decomposition of the physical space, decomposing the cone Γx into cubes Q̃k
of length hk:

Q̃k

Γx

The fourth line above applies Cauchy Schwarz. The first term involving Pt ∗ g is bounded since
by assumption the integral is bounded by B2hk

n. The second can be estimated by a harmonic
function on a slightly larger domain (introducing bounded overlap). We have the standard PDE
estimate

(

∫

B1/2

|∇u|2
)1/2

≤ c

(
∫

B1

|u|
)
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This means that we can further bound the above by

≤
∫

0

∞ ∫

Rn

C

∫

Γx

|F (t, x− y)|dydx dt
t

≤ C

∫

Rn

F ∗(x)dx

where F (t, x) =Pt ∗ f . This finshes the proof of Theorem 68.

We conclude with the atomic decomposition for N . Note that we did not prove the atomic
decomposition for H1. It turns out the decomposition for N is a lot simpler, and using this we
can complete the equivalences of H1 definitions... (recall that the idea for H1 atomic decomposi-
tion requires Calderon-Zygmund decomposition on a dyadic family of αk, with further adjust-
ments...)

Let B ⊂Rn. An atom associated with B is a measurable function a supported in T (B) ⊂R+
n+1

such that ‖a‖L∞ ≤ 1

|B | . Note a∗(x) ≤ 1

|B | when x ∈ B and a∗(x) = 0 for x∈ B. This implies that

a∈N and ‖a‖N = ‖a∗‖L1≤ 1.

Observation. If ak ∈ N are atoms and λk ≥ 0 such that
∑

λk < ∞, then
∑

k
λkak ∈ N ,

(
∑

k
λkak

)∗≤∑ |λk|ak∗ ∈L1 and ‖∑
k
λkak‖N ≤∑

k
λk.

Theorem 71. If F ∈ N then F can be written as F =
∑

k
λkak where ak are atoms and λk ≥ 0,

∑

k
λk≤C‖F ‖N .

Proof. Let Oj = {x: F ∗(x) > 2j}, j ∈ Z. Note that Oj ⊃ Oj+1 so that T (Oj) ⊃ T (Oj+1), and

∪j∈Z T (Oj) ⊃ supp(F ). Apply Whitney’s decomposition to each Oj = ∪kQjk, where diam(Qj
k) ≈

d(Qj
k, Oj

c). Let Bj
k be balls containing Qj

k (while introducing bounded overlap. Then

T (Oj)⊂
⋃

k

T (Bj
k)∩ (Qj

k× [0,∞))

Set ∆j
k = T (Bj

k) ∩ Qj
k × [0,∞) ∩ T (Oj) − T (Oj+1). Then supp F ⊂ ∪j,k ∆j

k (on ∆j
k F has values

between 2j and 2j+1) which are mutually disjoint. Now let Fj,k(x, t) = F (x, t)1∆j
k. Then we

have that F =
∑

j,k
Fj,k(x, t). Write Fj,k = λj,kaj,k where λj,k = 2j+1|Bjk| and aj,k =

2−j−1|Bjk|−1Fj,k. Note that |Fj,k | ≤ 2j+1 and supp aj,k ⊂ T (Bj
k), and |aj,k|(x) ≤ 1

|Bj
k| . Then it

remains to verify that

∑

λj,k=
∑

j,k

2j+1|Bjk| ≈C0

∑

j,k

2j+1|Qjk |

(bounded overlap). Then for k = 1, 2, 	 , |Qjk| is a Whitney decomposition of Oj = {x: F ∗(x) >
2j}. This implies that summing over j gives

= c0
∑

k

2j+1|Oj |=C0

∫

F ∗(x)=C0‖F ‖N

where we may need to use Oj = {2j−1 < F ∗ < 2j} instead to make the middle equality work
out...

�
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