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SUMMARY

Sequentially-administered diagnostic tests used to determine the occurrence of a silent
event are sometimes subject to error, leading to false positive and false negative test results.
In such cases, standard methods for interval censored data do not give valid estimates of
the distribution of the time to the event. We present methods for estimating the distribution
of the time to the event that account for multiple types of imperfect diagnostic test, as
well as differing periods at risk. We illustrate the methods with simulated data and results
from a clinical trial for the prevention of mother-to-infant transmission of HIV in Tanzania.
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1. INTRODUCTION

The onset of some chronic conditions or diseases are asymptomatic and can only be
detected by diagnostic tests which indicate whether or not the event has occurred.
Observations of this type are sometimes referred to as panel data. When the diagnostic
test is perfect and given once, the time to the event is either right- or left-censored,
depending on whether the test is negative or positive. When a perfect diagnostic test is
given sequentially at different time points in the same individual, the time until the event
is interval censored, and statistical methods have been developed to estimate this
distribution or to assess factors that may be associated with it (Turnbull, 1976).
In some settings, the diagnostic tests used to assess the occurrence of the event are

subject to error, yielding either false positive or false negative results. Examples include
liver function tests and biopsies to detect liver disorders (Martin & Friedman, 1998) and
DNA PCR tests to detect HIV infection. For the latter, infection is the unobserved biological
event of the HIV integrating into the host’s RNA/DNA, and test sensitivity is a function of
how soon the test is administered after infection (Dunn et al., 2000). Here standard
methods for interval censored data are not in general valid. An added complication in
some applications is that an individual may only be at risk for the event at certain times;
an example is an infant’s risk for HIV infection while being breast-fed by an infected
mother.
Previous work related to this setting includes accounting for imperfect diagnostic tests

in the estimation of the probability that an event has occurred (Dunn & Ades, 1996; Tsai
et al., 1994), as opposed to estimation of the distribution of time until the event, or has
not allowed imperfect diagnostic tests. Hughes & Richardson (2000) estimate the distri-
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bution of time of vertical transmission of HIV and allow the diagnostic test given at the
time of birth to have imperfect specificity. Balasubramanian & Lagakos (2001) allow
imperfect test specificity but consider a specific type of test sensitivity and consider only
settings where the diagnostic test can be given following the event of interest. Neither
method allows differing exposure periods.
In this paper, we present statistical methods for estimating the distribution of the time

until an event whose occurrence is assessed by sequentially-administered and imperfect
diagnostic tests, in settings where individuals can also have differing periods of exposure
to the forces that place them at risk for the event. In § 2, we present notation used in the
paper and discuss certain assumptions that are made in order to develop the likelihood.
In § 3, we develop the likelihood for special forms of the sensitivity function of the diagnos-
tic tests and discuss identifiability and parameter estimation. In § 4, we illustrate the
methods using data from a study of vitamin supplements for preventing mother-to-infant
HIV-1 transmission in Tanzania (Fawzi et al., 1998).

2. NOTATION AND ASSUMPTIONS

Let T refer to a random variable denoting the time until an event of interest for an
individual and suppose that the distribution of T depends upon some binary exposure
process, E(t)=1[t∏t

E
], where E(t)=1 or E(t)=0, indicates that the individual is, or is

not, exposed at time t. For example, in the setting of transmission of HIV from a mother
to her foetus or newborn, t

E
might denote the age at which an infant is weaned, in which

case E(t) would equal one during pregnancy and while the infant is breast-fed. We assume
that the joint distribution of (T , t

E
), as specified by their cause-specific hazard functions,

is

l
T
{t |E(u), 0∏u∏t}= lim

h!0
1

h
pr{T<t+h |T"t, E(u), 0≤u∏t}

=l(t)E(t)

and

l
E
(t)= lim

h!0
1

h
pr (t
E
<t+h |t

E
"t, 1[T∏u], 0∏u∏t),

for some functions l( . ) and l
E
( . ); that is, the risk of the event occurring at time t equals

zero when E(t)=0 and is l(t) when E(t)=1. Note that T does not influence the exposure
process in the sense that the hazard function for t

E
at time t does not depend on the

history of the failure time process prior to t. The exposure process thus acts to ‘turn off ’
the underlying hazard function l( . ) governing the risk of the event, but otherwise does
not modify this risk nor is it affected by the occurrence of the event. For convenience, we
set T=2 when the event of interest does not occur.
With this model, l

E
( . ) also represents the marginal hazard function of t

E
, and the

conditional distribution of T , given t
E
, has density function

f (t |t
E
)=l(t)e−L(t)1[t∏t

E
]

for 0∏t<2 and mass e−L(t
E
) at infinity, where L(t)=∆t

0
l(u) du. The marginal distribution

of T has density l(t)e−L(t)e−L
E
(t) for 0∏t<2 and mass ∆2

0
e−L(t)l

E
(t)e−L

E
(t) dt at infinity,

where L
E
(t)=∆t

0
l
E
(u) du. The usual failure time setting in which exposure is not explicitly
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considered corresponds to the limiting case where t
E
=2, in which case l( . ) represents

the marginal hazard function of T , and the marginal density and cumulative distribution
function of T are given by

f ( . )=l( . )e−L(.), F(.)=1−exp{−L( . )}.
The goal is to estimate the hazard function l( . ), or equivalently the corresponding density
function f ( . ) or distribution function F(.).
We assume throughout that T cannot be directly observed but that information about
T is available from possibly imperfect diagnostic tests of the occurrence of the event that
determines T . For example, a DNA PCR test might be administered to an individual to
assess whether or not the event of HIV infection may have occurred. The observed data
for the individual are denoted by (J, t, v, r, E(.)), where t= (t1 , . . . , tJ ) is a J×1 vector
denoting the times at which diagnostic tests are given, v= (v1 , . . . , vJ ), where vj is an
indicator denoting the type of diagnostic test given at time t

j
, and r= (r1 , . . . , rJ ) is the

vector of binary test results, where r
j
=1 indicates that the test given at time t

j
was positive

and r
j
=0 indicates that the test was negative, for j=1, . . . , J. We note that a ‘test’

can actually represent a battery of several different diagnostic tests given in a predeter-
mined way. We allow the number, times and types of tests to be determined adaptively,
with J and (t

j
, v
j
) being some known deterministic or probabilistic function of

{(t
i
, v
i
, r
i
), i=1, . . . , j−1} and of {E(u), 0∏u∏t

j−1}.
If g{r |t, v, E(.), t} denotes the conditional probability mass function of r, given t, v, E(.)
and T=t, we assume that the individual’s J test results are conditionally independent
given T ; that is,

g{r |t, v, E(.), t}=a
j
g(r
j
|t
j
, v
j
, t). (2·1)

This assumption is analogous to the common assumption in measurement error regression
models that the conditional distribution of the response variable, given the covariate and
its proxy, is the same as the conditional distribution given only the covariate. In our
setting, it means that the observed values of other diagnostic tests do not provide
additional information about the distribution of a particular diagnostic test from that
provided by the actual time of the event. Then, for an admissible set of values for J, t and
v, it is shown in the Appendix that

g{J, t, v, r | t, E(.)}=k
0
aJ

j=1
g(r
j
|t
j
, v
j
, t),

where the proportionality constant, k0 , is a consequence of the decision rule used to
schedule visits. Thus, for an admissible set of values for J, t and v, we can write

g{J, t, v, r |E(.)}=k
0 P2
0
aJ

j=1
w(t, t

j
, v
j
)r
j
{1−w(t, t

j
, v
j
)}1−r
j
dF{t |E(.)}, (2·2)

where w(t, t
j
, v
j
)=pr (r

j
=1 |T=t, t

j
, v
j
) and where 00 is taken to be zero. Note that, for

t∏t, w(t, t, v) denotes the sensitivity of test v, whereas, for t>t, w(t, t, v) denotes the
complement of the test specificity. When t

E
=2 and the diagnostic test is perfect, that is

w(t, t, v)=1[t∏t], the setting reduces to the special case of interval censored data.
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3. LIKELIHOOD, IDENTIFIABILITY AND ESTIMATION

3·1. T ime-independent sensitivity and specificity

Suppose that w(t, t, v)=w
d,v
, where d=1[t∏t]; that is, the probability of a positive

test of type v given after the event has occurred, or test sensitivity, is given by w
1v
, and

the probability of a positive test given prior to the event, or the complement of the test
specificity, is given by w

0v
. Then equation (2·2) reduces to

g{J, t, v, r |E(.)}=k
0 P2
0
a
j:tj<t

wrj0vj
(1−w

0vj
)1−r
j
a
j:tj#t

wrj1vj
(1−w

1vj
)1−r
j
dF{t |E(.)},

where we use T=2 to denote the fact that the event does not occur prior to t
E
.

Let 0<t*
1
< . . .<t*

K
denote the distinct values of {t

1
, . . . , t

J
, t
E
} that do not exceed

t
E
and assume that no more than one diagnostic test is given at each test time, although

situations in which more than one test is given to an individual at a single time point are
easily accommodated. Note that K=J+1 when t

E
>t
J
and that K∏J when t

E
∏t
J
.

Since the terms in the products do not vary for tµ(t*
k−1 , t*k ), for k=1, . . . , K,

f{t |E(.)}=0, for t>t
E
, and dF{2 |E(.)}=1−F(t

E
), this becomes

g{J, t, v, r |E(.)}=k
0
∑
K+1
k=1
c
k P t*k
t*k−1

f (t) dt= ∑
K+1
k=1
c
k
{F(t*
k
)−F(t*

k−1 )}, (3·1)

where t*
0
=0, t*

K+1=2, cK+1=XJj=1 wrj0vj (1−w0vj )1−rj and
c
k
= a
j:tj∏t*k−1

wrj0vj
(1−w

0vj
)1−r
j
a
j:tj#t*k

wrj1vj
(1−w

1vj
)1−r
j
(k∏K).

The likelihood function for a random sample of N individuals is a product of terms,
each having the general form in equation (3·1). Let 0<v1< . . .<vM denote the dis-
tinct values of t*

k
for the N individuals. Then, if we use (3·1), the likelihood function is

proportional to

L (h )=aN

i=1
∑
M+1
m=1
c
im
h
m
, (3·2)

where v0=0, vM+1=2, hm=F(vm )−F(vm−1 ) and cim is the value of
c
m
= a
j:tj∏vm−1

wrj0vj
(1−w

0vj
)1−r
j
a
j:tj#vm

wrj1vj
(1−w

1vj
)1−r
j

or XJ
j=1 wrj0vj (1−w0vj )1−rj for the ith individual, depending on whether vm∏tE or vm>tE ,respectively.

It follows directly from the form of (3·2) that, without further assumptions, l( . ) is
estimable at most up to the interval probabilities {h

m
, m=1, . . . , M}.When v

M
=2, the

sum of the h
m
equals one, but otherwise is less than one. In the former case, this expression

can be rewritten as a linear combination of h1 , . . . , hM−1 . In the degenerate case where
w
0v
=w
1v
, r is independent of T , so that the likelihood function is noninformative about

l( . ). When w
0v
Nw
1v
, it follows from Gentleman & Geyer (1994) that the logarithm of

L (h ) is a strictly concave function of h with a unique maximum provided that rank(C)=
M, where C denotes the N×M matrix with elements c

im
. Thus, when the sensitivity and

specificity are known, the maximum likelihood estimator of h can be obtained from (3·2)
by joint maximisation of the loglikelihood using numerical techniques, as is illustrated in
§ 4. When the number of parameters is small, approximate confidence intervals and stan-
dard errors for components of h, or functions of these components, can be obtained from
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the Hessian of the loglikelihood function. More generally, bootstrap estimates, based on
bootstrap samples yielding the same v as in the original dataset, are more stable.
When either w

0v
or w
1v
is unknown, the likelihood viewed as a function of the unknown

values of h and w
0v
or w
1v
does not have the structural form assumed by Gentleman &

Geyer (1994), and thus their result does not apply. In this case, identifiability arguments
can be established by other means that may require further assumptions that reduce the
dimensionality of the vector of unknown parameters. To see one way of proceeding in
this situation, suppose there is a single type of test and let p

j
=pr (r

j
=1) for j=1, . . . , J

N
,

where J
N
is the number of unique test times among the N observations. Then, when

t
E
=2 for every individual, it follows that M=J

N
+1, where WJN+1j=1 hj=1, and

p
j
=w
1
F(t
j
)+w
0
{1−F(t

j
)} ( j=1, . . . , J

N
). (3·3)

Since the p
j
are directly estimable from the observed test results, h becomes estimable if

its dimensionality is reduced by one or two, depending on whether one or both of w0 and
w1 are unknown. In § 3·2 we achieve this by setting some of the components of h1 , . . . , hM
to be equal. Alternatively, as we illustrate below, a parametric form for l( . ) can be assumed
to reduce the dimensionality of h.
When E(.) is not identically one, M>J

N
+1, so that more about l( . ) is estimable than

when t
E
=2 for all individuals. For example, suppose that each individual is exposed

either in the first half or the second half of the visit interval (t1 , t2]. Then the likelihood
contribution for those exposed in the first half of the interval involves F(t12 )−F(t1 ),
where t12 is the midpoint, while, for those exposed only in the second half, the likelihood
contribution involves F(t2 )−F(t12 ). Hence, F(.) becomes identified at t12 in addition to
t1 and t2 .
Asymptotically, standard methods can be used to demonstrate that the maximum likeli-
hood estimator of h is identifiable, consistent and asymptotically normal provided that
the number of distinct visit times is finite.
To illustrate these points, suppose that T has an exponential distribution, t

E
=2 for

all individuals, and a diagnostic test is given at times {5, 15, 25, 35, 45}, with each test
time having a 0·4 probability of being missing, so that different subjects will have tests
done at different subsets of {5, 15, 25, 35, 45}. This yields J

N
=5 and M=6, with

h1=F(5), hj=F(10j−5)−F(10j−15) ( j=2, . . . , 5), h6=1−h1− . . .−h5 .

Consider first the case where w0 and w1 are known. Figure 1 gives F(t) and the average
values of maximum likelihood estimate of F(t) for t=5, 15, 25, 35 and 45 obtained from
(3·2) based on 25 simulations, where N=100, l is selected to yield pr (T>45) equal to
0·3 and 0·7, and the sensitivity, w1 , and specificity, 1−w0 , equal to various combinations
of 0·33, 0·70 and 0·99. Also shown is the average of the maximum likelihood estimates
based on the incorrect assumption that T is interval censored between the first positive
diagnostic test and the preceding negative diagnostic test. To facilitate viewing the results,
the values of the estimated distribution functions, which are only estimable at the test
times, are connected with lines. When test sensitivity or specificity is low, i.e. 0·33, the
interval censored estimator can be severely biased. The bias is somewhat less when the
sensitivity and specificity are higher, i.e. 0·7. In both cases the direction of the bias depends
on the expected value of T . The proposed method, as would be expected, performs well.
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Fig. 1. Estimated cumulative distribution functions, with titles referring to (sensitivity, specificity, pr (T>45)).
Dash-dotted lines with circles correspond to interval censoring, dashed lines with stars correspond to the

proposed method and solid lines correspond to F(t).

For this same example, suppose now that both w0 and w1 are unknown, but that T is
assumed to have the Weibull distribution; that is, l(t)=lctc−1, where l>0 and c>0 are
unknown parameters. Evaluation of (3·3) gives

w
1
−p
j
= (w
1
−w
0
)e−ltc

j
( j=1, . . . , 5).

Since this system of equations is over-specified, it follows that the unknown parameters
(l, c, w0 , w1 ) are estimable from (3·2) with hm expressed in terms of l and c.

3·2. T ime-dependent sensitivity

As seen in § 2, g{J, t, v, r |E(.)} can be expressed as

g{J, t, v, r |E(.)}=k
0 P c(t) dF{t |E(.)}, (3·4)

where c(t) is a function of the sensitivity and specificity of the diagnostic tests and the
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individual’s test results. In general, for sensitivity functions that depend on t and t, this
integral equation does not simplify easily. In this section, we consider a special class of
diagnostic tests in which specificity is time-independent, denoted by 1−w

0v
, and sensitivity

depends on t and t through their difference, t−t, and at some stage reaches a constant
level. This model is motivated by the behaviour of diagnostic tests administered to detect
the presence of HIV in infants, such as DNA PCR and HIV culture tests, in which the
sensitivity can be low for approximately 2 weeks following infection and is thereafter high
and constant (Dunn et al., 1995, 2000). This is based on rates of test positivity in non-
breast-fed infants known to have been HIV infected in utero or at birth, where these rates
are observed to rise steadily until 2 weeks of age and thereafter remain constant. Suppose
that pr (r=1 | t, t, v, t∏t)=w

1v
(t−t), where w

1v
(u) is nondecreasing in u for 0∏u∏ l

v
and

is constant in u, w
1v
(u)=w

2v
say, for u> l

v
and v=1, . . . , V. Let T

v
represent the times of

diagnostic test v and let T represent the distinct times of all diagnostic tests. Define
(t*
1
, . . . , t*

K
) to be the unique elements of {T

1
− l
1
^ . . .^T

V
− l
V
^T^t

E
} that satisfy

0<t*
1
< . . .<t*

K
=t
E
. Equation (3·4) can then be expressed as

g{J, t, v, r |E(.)}=k
0
∑
K+1
k=1
c
k P t*k
t*k−1

G
k
(t) f (t) dt, (3·5)

where t*
0
=0, t*

K+1=2, GK+1 (t)=1, cK+1=XJj=1 wrj0vj (1−w0vj )1−rj,
G
k
(t)= a

j:t*k−1<tj<t*k+lvj
{w
1vj
(t
j
−t)}r

j
{1−w

1vj
(t
j
−t)}1−r

j
(k=1, . . . , K ),

c
k
= a
j:tj∏t*k−1

wrj0vj
(1−w

0vj
)1−r
j
a

j:tj#t*k+lvj
wrj2vj
(1−w

2vj
)1−r
j
(k=1, . . . , K ).

Further simplification of equation (3·5) in general requires additional assumptions about
the form of w

1v
(t−t). For the special case when

w
1v
(t−t)=qw1v , for 0∏t−t< lv ,w

2v
, for l

v
∏t−t,

where w
1v
<w
2v
for all v, we have

g{J, t, v, r |E(.)}=k
0
∑
K+1
k=1
c
k
{F(t*
k
)−F(t*

k−1 )}, (3·6)

where

c
k
= a
j:tj∏t*k−1

wrj0vj
(1−w

0vj
)1−r
j
a

j:tj#t*k+lvj
wrj2vj
(1−w

2vj
)1−r
j

× a
j:t*k−1<tj<t*k+lvj

wrj1vj
(1−w

1vj
)1−r
j

for k=1, . . . , K and c
K+1=XJj=1 wrj0vj (1−w0vj )1−rj.The likelihood function for a random sample of N individuals is a product of

terms, each having the general form in (3·6). Let 0<v1< . . .<vM denote the distinct
times t*

k
for the N individuals. Then, from (3·6), the likelihood function is proportional

to

L (h )= aN

i=1
∑
M+1
m=1
c
im
h
m
, (3·7)
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where v0=0, vM+1=2, hm=F(vm )−F(vm−1 ), and cim is the value of
c
m
= a
j:tj∏vm−1

wrj0vj
(1−w

0vj
)1−r
j

a
j:tj#vm+lvj

wrj2vj
(1−w

2vj
)1−r
j

× a
j:vm−1<tj<vm+lvj

wrj1vj
(1−w

1vj
)1−r
j

or XJ
j=1 wrj0vj (1−w0vj )1−rj for the ith individual, depending on whether vm is no greaterthan or greater than t

E
, respectively.

Without further assumptions, l( . ) is at most identifiable up to the vector of parameters
h. As in the preceding section, L (h ) is a strictly concave function of h with unique maximum
if rank (C)=M, where C denotes theN×Mmatrix with elements c

im
. When the sensitivity

function and specificity are known, the maximum likelihood estimate of h can thus be
obtained from (3·7) using standard numerical techniques. When the sensitivity and speci-
ficity functions are not fully known, further assumptions are needed to ensure the estim-
ability of h. As with time-independent sensitivities and specificities, these can be guided
by the set of J

N
equations relating the probabilities p

j
to l( . ) and the unknown sensitivity

and specificity parameters. We illustrate this in § 4 by constraining some of the components
of h in adjacent time intervals to be equal.
As with the likelihood function for time independent sensitivity and specificity, the

dimension of h is greater for a non-constant exposure process than when t
E
=2 for all

individuals. In addition, the non-constant form of w
1v
(t−t) allows more aspects of l( . )

to be estimated than when the sensitivity is time-independent. When there is a single type
of test in these settings, it can be shown that the number of components of h is equal to
2J
N
−M

J
+1, where M

J
denotes the number of inter-visit intervals equal in length to l.

This varies from J
N
+2, when the consecutive visit times are spaced by l, to 2J

N
+1, when

no inter-visit time equals l. This is illustrated in the example to follow where, for example,
information about the risk of HIV during pregnancy is estimable in settings where
diagnostic tests are given only following birth.

4. EXAMPLE

We illustrate the proposed methods with data from a Tanzanian trial of the prevention
of mother-to-child transmission of HIV during pregnancy or while breast-feeding; see Fawzi
et al. (1998) for details of the trial design and results. Here T denotes the time to HIV
infection of the infant, and the exposure process E(t) equals 1 during pregnancy and while
the infant is breast-fed, and zero thereafter. Two types of diagnostic test were used,
DNA PCR and the definitive ELISA antibody test. The former were scheduled at birth,
6 weeks of age and every three months thereafter up to 2 years of age, with the ELISA
antibody test being given at or after 18 months of age. In practice, most infants had
multiple missed visits and actual visit times were not always as scheduled.
We analyse the subset of DNA PCR tests done prior to 2 years of age and ELISA tests

done between 18 months and 2 years. A total of 786 infants had at least one DNA PCR
test during the first 2 years, with a median of 2 tests, the range being from 1 to 7 and
with most being done prior to 3 months. A total of 144 infants were also given an ELISA
antibody test between 18 months and 2 years. Of the 144 infants, 17 were found to be
HIV-infected and 127 were found to be uninfected at the time of the ELISA test. The median
duration of breast-feeding was 18 months, with a range of 1 to 45 months. Thus, the
dataset includes two types of diagnostic test and differential exposure patterns among the
infants. In order to reduce the number of parameters estimated, test times after 2 weeks
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of age were grouped to the nearest month, as were the times at which breast-feeding was
stopped. This results in 67 disjoint time intervals between −14 days and 2 years of age,
where 0 is taken to be the time of birth. To incorporate the overwhelming clinical evidence
that a majority of transmissions occur at the time of birth, we imposed the constraint that
the probability of HIV transmission in the interval including the time of birth is the largest
among all intervals in the time period between −14 days and birth.
We fitted the step function sensitivity model described in § 3·2 for the DNA PCR tests
with l=14 days, w

0
=0·01 and w

2
=0·93. The values for l, w0 and w1 were based on a

review of the literature on diagnostic tests; see Dunn et al. (1995, 2000), Kalish et al.
(1997) and Owens et al. (1996). We estimate the parameter w1 as this is not well character-
ised in the literature. The ELISA antibody test is taken to have perfect sensitivity and
specificity. This leads to estimable parameters provided the dimensionality of h is reduced
to equal the number of unique test times in the dataset, namely 34. We achieve this by
assuming that the daily probability of HIV transmission is the same from−14 to−7 days
of age, from −7 to −3 days of age, during week 1, during week 2, during weeks 2–4,
monthly thereafter until month 6 and then once every 2 months until 2 years of age, where
we have relabelled the time axis so that time 0 corresponds to birth. This results in 20
independent components of h, corresponding to the values of F(t) at −14, −7, −3, 0, 7,
14, 30, 61, 91, 122, 152, 183, 243, 304, 381, 442, 503, 564, 655 and 730 days.
Figure 2(a) displays the resulting estimate of F(.) when E(t)=1 for all t, that is when
breast-feeding continues until 2 years of age. The estimates are obtained by numerical

Fig. 2. Example. Estimated cumulative distribution functions of the timing of vertical
transmission of HIV and approximate 95% pointwise confidence intervals.
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maximisation of the loglikelihood using Matlab, which uses sequential quadratic program-
ming methods based on obtaining solutions to the Kuhn–Tucker equations. Also shown
are approximate 95% pointwise confidence intervals based on a normal approximation
using a bootstrap variance estimator. The corresponding estimate of w1 is 0·70. For ease
of viewing, the estimable values of F at distinct visit times are connected by straight lines.
Figure 2(b) gives an enlarged view of the estimate of F(t) until one month after birth. The
estimated probability of vertical transmission by 2 years is 0·379, with 95% confidence
interval (0·311, 0·446), and the estimated probability of transmission prior to and during
birth is 0·093, with 95% confidence interval (0·057, 0·128). The estimated cumulative
distribution function for T corresponding to a finite value of t

E
, 360 days, say, is the same

as the estimate in Fig. 2 up to this value, and is thereafter horizontal. Overall, the cumula-
tive risk of transmission from breast-feeding increases quickly during the first month of
life and then more gradually.
To assess the dependency of the estimated parameter values on the assumed values of

l, w2 and w0 , we reanalysed the data using different plausible values of these quantities.
For values of l=12, 14 and 16 days respectively, the estimated probability of infection
prior to−l and the cumulative distribution function during the period between one month
and 2 years of age were generally similar. For times between −10 and 30 days, the
estimated cumulative distribution function based on l=12 days placed a somewhat higher
probability of HIV transmission at the time of birth when compared to the corresponding
estimates for l=14 and 16 days. For values of w2 equal to 0·89, 0·91, 0·93 and 0·95
respectively, and for values of 1−w0 equal to 0·95, 0·97 and 0·99 respectively, the estimated
cumulative distribution functions were relatively stable, especially beyond 1 month of age.
Further details regarding these analyses as well as the data are available from the authors
upon request.

5. DISCUSSION

It was seen in § 3 that standard methods for interval censored data can be biased when
the diagnostic tests used to screen for the event of interest are imperfect. The bias will be
small when the test sensitivities and specificities are high but otherwise depends in a
complicated way on the distribution of T , the test times and the sensitivity and specificity
functions, and can be substantial. The proposed approach is flexible in terms of allowing
different types of imperfect diagnostic test and different exposure histories among
individuals.
The methods developed in this paper can be extended in several ways. Covariates can

be incorporated by assuming a parametric or semiparametric regression model for l( . ),
such as a proportional hazards or accelerated failure time model. Another extension is to
generalise the exposure process. The simple binary process considered here could be
extended to an alternating process, allowing several periods of exposure for the same
individual. This might occur, for example, for assessing pregnancy risk in women who use
contraceptives on an intermittent basis, and leads to a likelihood contribution similar to
(3·1), but with F(.) replaced by the conditional distribution of T given the individual’s
exposure history. Another extension would allow several types of exposure. For example,
in a study of vertical transmission of HIV, suppose that all mothers receive the same
treatment during pregnancy but that at 2 weeks of age infants are randomly assigned to
breast-feeding in combination with anti-HIV therapy or formula feeding. In such settings,
one would like to use data from all mother-infant pairs to estimate the risk of transmis-
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sion during pregnancy and up to 2 weeks of age. This can be accommodated by taking
E(t) to be a categorical variable with values in {0, . . . , M}, and assuming that
l{t |E(.)}=l

m
(t) when E(t)=m and zero otherwise. When each individual is subject to

only one type of risk, this reduces to just M one-sample problems. However, when an
individual can be exposed to different risks, methods analogous to those developed in § 3
apply directly.
For applications such as vertical transmission of HIV, it would also be useful to extend

the methods to allow for competing risks. For example, in the Tanzania data, 18·7% of
the infants died by 2 years of age. To illustrate how ignoring information on infant
mortality can affect results, we reanalysed the data assuming that all infants who died,
and whose last visit date was before 2 years of age, became HIV positive by the time of
their last visit. We accommodated this additional information in our model by assuming
that the test on this last visit was perfect and positive for HIV infection. Under the model
assumptions made in the example, we obtained a cumulative probability of infection of
0·45 for an infant breast-fed up to 2 years of age. Note that one could assume numerous
such ‘worst case’ scenarios to obtain a plausible bound on the cumulative distribution
function of time to HIV infection. In this setting, it would be worth exploring extensions
based on the models considered by Hughes & Richardson (2000).
Finally, methods for time-dependent sensitivity or specificity functions of other forms
could be explored. The methods developed in § 3·2 are easily extended to more general
step-functions, but extensions for complicated functions are more challenging because the
integral in (3·4) may not be solvable for f ( . ) without additional assumptions.
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APPENDIX

Derivation of (2·2)

Let g
j
= (t
j
, v
j
, r
j
) and g= (g1 , . . . , gJ ). The conditional probability mass function of (J, t, v, r),

given T=t and E(.), can be written

g{J, t, v, r, |E(.), t}=CaJ
j=1
g{g
j
|g
1
, . . . , g

j−1 , t, E(. )}D×g{J |g, t, E(. )}
= aJ

j=1
g{t
j
, v
j
|g
1
, . . . , g

j−1 , t, E(. )}

×g{J |g, t, E(. )} aJ

j=1
g{r
j
|g
1
, . . . , g

j−1 , tj , vj , t, E(. )}. (A·1)

where g{t
j
, v
j
|g1 , . . . , gj−1 , t, E(. )} denotes the rule for determining the time and type of the jth test

and g{J |g, t, E(. )} denotes the probability that the adaptive procedure terminates after the Jth test.
Applying the conditional independence assumption in (2·1) gives

g{J, t, v, r, |E(.), t}=Cg{J |g, t, E(. )} aJ
j=1
g{t
j
, v
j
|g
1
, . . . , g

j−1 , t, E(. )}D aJ
j=1
g(r
j
|t
j
, v
j
, t). (A·2)
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We assume that the rules for determining (J, t
j
, v
j
) are known probabilistic or deterministic

functions of only g1 , . . . , gj−1 and E(u) for 0∏u∏tj−1 , that place all the mass for tj at values
larger than t

j−1 . The special case of a prespecified visit/test schedule, (J*, t*, v*), say, is obtained
by taking g{t

j
, v
j
|g1 , . . . , gj−1 , t, E(. )} and g{J |g, t, E(. )} to be 1 for (tj , vj , J )= (t*j , v*j , J*) and zero

otherwise. For a deterministic adaptive procedure, each of the probability mass functions is also
degenerate, and in both cases the term in square brackets in (A·2) equals 1. For probabilistic rules,
for example, when a subset of individuals are tested more intensively, the term in square brackets
in (A·2) is a known constant, k

0
=k
0
{g, E(. )}, say.
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