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Abstract

Background: Mobility limitation in older adults is common and associated with poor health outcomes and loss of independence. Identification 
of at-risk individuals remains challenging because of time-consuming clinical assessments and limitations of statistical models for dynamic 
outcomes over time. Therefore, we aimed to develop machine learning models for predicting future mobility limitation in older adults using 
repeated measures data.
Methods: We used annual assessments over 9 years of follow-up from the Health, Aging, and Body Composition study to model mobility 
limitation, defined as self-report of any difficulty walking a quarter mile or climbing 10 steps. We considered 46 predictors, including 
demographics, lifestyle, chronic conditions, and physical function. With a split sample approach, we developed mixed models (generalized 
linear and Binary Mixed Model forest) using (a) all 46 predictors, (b) a variable selection algorithm, and (c) the top 5 most important 
predictors. Age was included in all models. Performance was evaluated using area under the receiver operating curve in 2 internal validation 
data sets.
Results: Area under the receiver operating curve ranged from 0.80 to 0.84 for the models. The most important predictors of mobility limitation 
were ease of getting up from a chair, gait speed, self-reported health status, body mass index, and depression.
Conclusions: Machine learning models using repeated measures had good performance for identifying older adults at risk of developing 
mobility limitation. Future studies should evaluate the utility and efficiency of the prediction models as a tool in clinical settings for identifying 
at-risk older adults who may benefit from interventions aimed to prevent or delay mobility limitation.

Keywords:  Mobility limitation, Prediction modeling, Random forest, Repeated measures analysis

Age-related mobility limitation carries a large burden for older 
adults, caregivers, hospitals, and communities (1,2). Limitations in 
mobility in older adults result in loss of independence, greater health 
care costs and health care utilization, poor health outcomes, and 
mortality (3). Several studies have evaluated risk factors for mobility 
limitation, including older age, race, low physical activity, obesity, 
muscle weakness or poor balance, and chronic diseases such as dia-
betes or arthritis (4–6). Mobility limitation is dynamic and older 
adults can transition to mobility-limited and back over time (7). 

Gill et al. (8) quantified the dynamic nature of mobility limitation in 
older persons over time, concluding that older age, female sex, and 
physical frailty were associated with a higher likelihood of transi-
tioning into a mobility-limited state.

Despite the significance and prevalence of mobility limitation 
as the population ages, identification of at-risk individuals re-
mains challenging. Some studies have proposed prediction models 
for determining the risk of mobility limitation in older adults, but 
most published models can only predict the first instance of mobility 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/article/77/5/1072/6371263 by Access provided by H
EAL-Link (U

niversity of Athens) user on 12 D
ecem

ber 2023

https://orcid.org/0000-0003-0679-8730
https://orcid.org/0000-0002-4811-4205
https://orcid.org/0000-0003-3336-6781
mailto:jspeiser@wakehealth.edu?subject=


limitation when compared with recurrent episodes (9–11). Given 
the dynamic nature of mobility limitation in older adults, published 
models predicting mobility limitation at a single time point may not 
accurately reflect this transitional process. There are limitations to 
traditional statistical methods (ie, regression), which require a priori 
knowledge about potential interactions among predictors and speci-
fication of nonlinear associations between predictors and outcome. 
Another challenge in predicting mobility limitation is that extant 
clinical assessments add time to already compressed clinical visits 
and may require expert knowledge. There is value in determining 
the fewest clinical factors needed to accurately identify those at risk 
for mobility limitation. To overcome these limitations, we employ a 
machine learning methodology that is robust to different types of 
data (eg, interactions among predictors and nonlinear associations 
between predictors and outcome) and offers built-in algorithms to 
determine optimal predictors (12).

The aim of this study is to develop prediction models to estimate 
the likelihood of future mobility limitation in older adults using re-
peated measures over time, where disability status may change from 
year to year. To accomplish this goal, we used data from a longi-
tudinal study that includes annual assessments of mobility limita-
tion, as well as annual and fixed risk factors, in a large cohort of 
community-dwelling older adults without mobility limitation at en-
rollment. The eventual goal of this research is to be able to incorp-
orate a prediction model into electronic health record (EHR) systems 
as a decision support tool for identification of older adults who may 
be at risk for mobility limitation and who may benefit from add-
itional mobility assessment and preventative interventions.

Method

Study Population
Data from 3 075 community-dwelling older adults (aged 70–79 years 
at baseline) enrolled in the Health, Aging, and Body Composition 
(Health ABC) study from April 1997 to June 1998 were used in this 
longitudinal analysis. Participants were recruited from a random 
sample of White and Black Medicare-eligible residents in the 
Pittsburgh, PA and Memphis, TN metropolitan areas. Participants 
were eligible if they reported no difficulty walking a quarter mile 
or climbing 10 steps (ie, had no self-reported mobility limitation at 
baseline/Year 1), no difficulty performing basic activities of daily 
living, were free of life-threatening illness, planned to remain in the 
geographic area for at least 3 years, and were not enrolled in lifestyle 
intervention trials. In the Health ABC study, baseline was defined as 
Year 1 and annual follow-up visits began at Year 2. Data were col-
lected yearly via questionnaires and in-person clinic visits. For this 
study, all participants with at least 2 years of mobility limitation data 
following baseline (Year 1) were included in order to develop models 
for mobility limitation over time (n = 2 825).

Mobility Limitation
Mobility limitation was the primary outcome of this study. Mobility 
limitation was defined as any self-reported difficulty (little/some dif-
ficulty or lot of difficulty/cannot do) walking a quarter mile and/
or climbing 10 steps. We use yearly measures of mobility limitation 
(yes/no) in this study that aligned with annual participant visits, such 
that participants can change between these states for each given 
year. Although many analyses of Health ABC data use a definition 
of mobility limitation that includes difficulty walking or climbing 
steps for 2 consecutive visits (called persistent mobility limitation), 

in this study, we use yearly measures of mobility limitation so that 
we can model the associations between predictors and outcome 
in a given year. Follow-up includes mobility limitation ascertained 
through 9 years of follow-up with a mean (standard deviation [SD]) 
follow-up of 6.85 (1.75) years.

Predictor Variables
Candidate predictors considered for modeling mobility limitation 
were based on previous literature (4,6,8). Fixed predictors col-
lected at baseline/Year 1 included demographics (age, race, sex, site, 
marital status, education, family income), self-reported lifestyle fac-
tors (number of people living in a household, walking/exercise kcal 
per week, pack-years exposure to cigarettes, drinking history, cur-
rent drinking), previous comorbidities/conditions (coronary heart 
disease, coronary heart failure, cerebral/vascular disease, diabetes, 
knee osteoarthritis, knee pain, hypertension, depressive symptoms 
[yes/no based on Center for Epidemiological Studies—Depression 
scale {CES-D} cutoff of 16 and continuous CES-D score with higher 
levels indicating greater depressive symptoms (13)], pulmonary 
disease, cancer), and measures of health and function (self-reported 
health status [how is your health], gait speed over 6 m, pace of chair 
stands). Longitudinal predictors collected at multiple time points 
during the 9-year follow-up (Years 2, 3, 4, 5, 6, 8, and 10, when 
available) included age, physical/clinical measures (body mass index 
[BMI] from measured weight and height, self-reported ease of rising 
from a chair as a measure of leg strength [measured in 0–6 scale with 
0 representing least easy and 6 representing easiest], blood pressure, 
fall within the past year), comorbidities/conditions at the time of the 
visit (knee pain, diabetes, depression, cancer, coronary heart disease, 
myocardial infarction, stroke, cardiovascular disease), cognition 
(Modified Mini-Mental State Examination [3MS] (14)), and self-
reported health status. Additional longitudinal physical performance 
measures were considered (namely, standing balance time and pace 
of chair stands); however, these were omitted from modeling because 
these were not collected at regular yearly intervals over follow-up.

Statistical Methods
Analyses were conducted using R software (15). Participant charac-
teristics were presented as mean (SD) or N (%) using the R package 
tableone (16). Sankey plots were developed to show the distribution 
of mobility limitation over time using the R package ggalluvial (17). 
All nonmissing observations of mobility limitation for participants 
over time were included in the analysis data set. Missing predictor 
values were imputed (filled in) using the R package missForest (18) 
under a Missing at Random assumption. This imputation method 
uses a random forest developed with observed values of the data 
set to predict missing values and is widely used for random forest 
applications. To develop the prediction models, we used an in-
novative machine learning approach called Binary Mixed Model 
(BiMM) forest (19,20). This is a mixed model random forest ap-
proach that allows for modeling of dynamic changes in mobility 
limitation in older adults over time. Justification for using the BiMM 
forest approach is included in Supplementary Methods. We used the 
one-iteration version of BiMM forest because of computational ef-
ficiency and accuracy for prediction compared to multiple iteration 
versions of BiMM forest (20). BiMM forest uses an unstructured 
correlation matrix and therefore does not make any simplifying as-
sumptions about the correlation structure for the longitudinal out-
comes. Relative variable importance of predictors included in the 
models was determined using the minimum depth criterion, which 
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reflects on average how close the variables are to the top position 
within the trees (21). Minimum depth was calculated using the R 
package randomForestExplainer (21). For comparison, we also de-
veloped a model using a standard generalized linear mixed model 
approach with the R package lme4 (22). Random forest models were 
developed with the R package randomForest (23).

Models developed
Four models were developed for mobility limitation, 1 with all pre-
dictors and 3 using variable selection. Variable selection was em-
ployed to reduce the number of predictors needed within models 
while maintaining similar predictive performance to a model with all 
predictors. This allows for analysis of which predictors are useful for 
predicting outcomes versus which predictors are superfluous. BiMM 
forest was used in the following: Model 1 used all predictors avail-
able, Model 2 used an automated variable selection procedure (back-
ward elimination, implemented in the BiMM forest method using 
the approach proposed by Díaz-Uriarte and Alvarez de Andrés (24)) 
to optimize predictors included, and Model 3 used the top 5 vari-
ables according to the random forest variable importance criteria of 
minimum depth from Model 1. We chose to use the top 5 variables 
because this emulates the case where a clinician only has time to 
collect 5 measures, which may be reasonable in real-world practice. 
Regardless of variable selection for Models 2 and 3, we included 
age in the models to allow for age-varying covariates through inter-
actions among age and other predictors that naturally occur in the 
decision tree framework. Essentially, each decision tree represents an 
interaction among all predictors included in the tree. Thus, including 
age as a predictor in the models allows for changes in the predictors 
that vary by age. In addition to the 3 BiMM forest models, Model 
4 used a generalized linear mixed model approach with the same 
predictors as Model 3, included as main effects without interaction 
terms. Finally, to assess the impact of using longitudinal, repeated 
measures data versus cross-sectional data, we developed standard 
random forest models for each time point separately.

Training and testing data set split
A split sampling approach was used to develop and internally val-
idate the models for mobility limitation (Figure 1). Models were de-
veloped using training data, which consisted of all observations up 

until the last year for an individual, and models were evaluated using 
testing data, which consisted of the outcome for the last year avail-
able and the predictors from the previous year for an individual. 
For example, for a participant with data for Years 2, 3, 4, 5, and 6, 
the Years 2, 3, 4, and 5 data would be included in the training data 
set. The outcome for Year 6 and the predictors from Year 5 would 
be included in the testing data set. Therefore, the performance char-
acteristics of the models can be interpreted as the models’ ability to 
predict next year’s outcome using present data. As a sensitivity ana-
lysis, we randomly split the data into training data (all observations 
for 2/3 of participants) and testing data (all observations for 1/3 of 
participants). This analysis can be interpreted as the models’ ability 
to predict outcomes for independent participants not included in the 
training data set.

Evaluation metrics
Performance of the models for the testing data set was evaluated 
using area under the receiver operating curve (AUC), accuracy (per-
cent of correct predictions), sensitivity (percent of correct predictions 
for the mobility limitation outcome group), specificity (percent of 
correct predictions for the mobility limitation-free outcome group), 
positive predicted value (PPV, the percent of correct predictions 
considering all predictions of mobility limitation) and negative pre-
dicted value (NPV, the percent of correct predictions considering all 
predictions of no mobility limitation), and their associated 95% bi-
nomial confidence intervals. AUC and its corresponding confidence 
interval were calculated using a cross-validation approach in the R 
package cvAUC (25). Receiver operating curve (ROC) plots and pre-
cision–recall plots were used to compare model performance and 
were developed using the R package ROCR (26). Precision–recall 
plots are useful for analyzing predictions when the outcome variable 
is imbalanced, meaning that the percent of outcomes in each group 
is not close to 50%.

Results

Summary Data
Baseline participant characteristics and prevalent chronic condi-
tions are presented in Table 1. Of the 2 825 participants with at 
least 2 years of data, 52.6% were women and 40.5% identified as 
Black. The mean age at baseline was 73.6 years. The proportion of 
participants reporting mobility limitation over 9 years of follow-up 
ranged from 31% to 49% (Figure 2). Mobility limitation dynamic-
ally changed over time, with participants transitioning in and out of 
this state during the course of the study. In general, the proportion of 
participants reporting mobility limitation increased over time.

Models for mobility limitation were developed using the training 
data set and evaluated using the testing data set (Figure 1). The 
training data set included 2 825 participants with a total of 14 557 
observations collected from annual visits from year to year, and 
33.7% of observations for participants represented follow-up years 
where mobility limitation was reported. The testing data set in-
cluded mobility limitation from the last year of observed data and 
predictors from the second to the last year of observed data for the 2 
825 participants, and 53.7% of participants had mobility limitation.

Variables Included in Models
Four models were developed using repeated measures of mobility 
limitation as the outcome variable. Model 1 contained all 46 pre-
dictor variables, whereas Models 2, 3, and 4 used variable selection 

Figure 1. Diagram showing split of Health ABC data into training and testing 
data sets. This diagram displays how the Health ABC data were split into 
training and testing data. The training data consisted of all observations 
for participants’ longitudinal measures from year to year, except for the 
last observation. The testing data consisted of the outcome for the last year 
observed and the predictor data from the previous observation. Health 
ABC = the Health, Aging, and Body Composition.
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to identify predictors from these. Model 2 included 37 predictors, 
including age, identified using an automated backward elimination 
approach. The 5 most important predictors in both Models 1 and 2 
included ease of getting up from a chair, self-reported health status, 

baseline 6 m gait speed, BMI, and depressive symptoms measured by 
CES-D score, in that order (Supplementary Figure 1). Models 3 and 
4 contained only these 5 variables, as well as age. The order of most 
important variables as determined by minimum depth was similar 
for the 3 BiMM forest models (Supplementary Figure 1).

Performance of Models
Models for mobility limitation over time were evaluated in terms 
of AUC, accuracy, sensitivity, specificity, PPV, and NPV (Table 2). 
Overall, model performance exhibited AUCs of 0.84, 0.84, 0.81, 
and 0.83 for Models 1, 2, 3, and 4, respectively. Accuracy for the 
3 BiMM forest models was close to 75% and was 73% for Model 
4. Sensitivity for predicting mobility limitation was lower (ranged 
from 60% to 68%); however, this was coupled with higher specifi-
city and moderate PPV and NPV values for the models. ROC plots 
visualized the balance of false positive rates and true positive rates 
for the models (Figure 3). Models 1 and 2 had slightly better ROC 
curves compared to Models 3 and 4.  Precision–recall curves are 
useful for evaluating the sensitivity and specificity of the models sim-
ultaneously for data sets that have an imbalanced outcome, which 
is the case for mobility limitation as depicted in Figure 2. Similar to 
the ROC plots, Models 1 and 2 had slightly better precision–recall 
curves compared to Models 3 and 4 (Figure 3). Models developed 
using cross-sectional data from each year separately had AUCs ran-
ging from 0.78 to 0.80, with model sensitivities ranging from 0.47 
to 0.64 (Supplementary Table 1).

In the sensitivity analysis that had independent participants in 
the training and testing data sets, the 4 models had AUCs ranging 
from 0.80 to 0.82 (Supplementary Table 2). ROC and precision–re-
call plots showed that Models 1 and 2 had slightly better perform-
ance compared to Models 3 and 4 (Supplementary Figure 2).

Figure 2. A plot of mobility limitation over 9 years of follow-up: the Health 
ABC study. This plot shows the percent of participants in the Health ABC data 
set with mobility limitation (yellow) and without mobility limitation (green) 
over follow-up Years 1–9. Each bar represents 1 year of the study. The lines 
between the bars show transitions of participants from year to year. The lines 
that cross in between the bars indicate transitions between the states. For 
example, the line going from the green bar on the top connecting to the 
yellow bar on the bottom of the next year indicates the participants who 
transitioned from no mobility limitation to having mobility limitation. The 
thickness of these connecting lines between the bars indicates the percent 
of participants going from one state to the other one in the subsequent year. 
Health ABC = the Health, Aging, and Body Composition.

Table 1. Baseline Characteristics of Participants: The Health ABC Study (n = 2 825)

Characteristics Number of Missing N (%) or Mean (SD)

Black race 0 1 142 (40.4)
Female sex 0 1 484 (52.5)
Age 0 73.59 (2.87)
Lives alone 10 839 (29.8)
Less than high school education 7 690 (24.5)
Pack-years cigarettes exposure 39 18.3 (27.7)
Current drinker 12 1 405 (49.9)
Exercise kcal/week 0 1 065 (1 931)
BMI, kg/m2 0 27.4 (4.8)
Health status, % excellent or very good 3 1 281 (45.4)
3MS score 12 90.2 (8.4)
Ease standing from a chair, % very easy 213 1 347 (23.5)
CES-D score 23 4.6 (5.3)
Chair stands pace, stand/s 38 0.37 (0.12)
Gait speed, m/s 0 1.18 (0.23)
Prevalent chronic conditions   
 CHD 51 458 (16.5)
 CVD 27 196 (7.0)
 Diabetes 0 417 (14.8)
 Knee osteoarthritis 41 160 (5.7)
 Hypertension 23 1 236 (44.1)
 Depression (CES-D ≥16) 14 59 (2.1)
 Cancer 12 533 (18.9)

Notes: Health ABC = Health, Aging, and Body Composition; BMI = body mass index; 3MS = Modified Mini-Mental State Examination; CES-D = Center 
for Epidemiologic Studies—Depression scale; CHD = coronary heart disease; CVD = cardiovascular disease; SD = standard deviation. Variables considered for 
modeling but not shown in the table include site, marital status, family income, drinking history, coronary heart failure, pulmonary disease, blood pressure, and 
fall within the past year.
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Discussion

In this study, we developed prediction models for mobility limitation 
in older adults using an innovative machine learning approach called 
BiMM forest and repeated measures of mobility limitation collected 
over 9 years of follow-up from the Health ABC study. This allows 
for accurate prediction of future mobility limitation in older adults 
by using past annual visit data, a unique aspect of this study because 

most analyses of Health ABC data use the first occurrence of per-
sistent mobility limitation. We developed 3 BiMM forest models: one 
with all predictors considered (Model 1), one with automated vari-
able selection based on backward elimination (Model 2), and one 
with variable selection by an ad hoc method of analyzing random 
forest variable importance using the minimum depth criteria (Model 
3). For comparison, we also developed Model 4 using a generalized 
linear mixed model with the same predictors as Model 3. Models 
had good overall performance for predicting next year’s mobility 
limitation status using the previous year’s predictor data. Specificity 
was higher than sensitivity for the 3 models, meaning that models 
had better accuracy predicting participants without mobility limita-
tion compared to those with mobility limitation; however, the values 
of sensitivity and specificity can be altered using different threshold 
cutoff values if it was of interest to maximize one measure over the 
other. Use of a mixed modeling approach and repeated measures 
data resulted in better predictive performance (AUC and accuracy) 
compared to models developed using standard random forest and 
cross-sectional data from 1 year at a time. With 2 types of test data 
sets, one for the last observation of participants in the training data 
and one for independent participants, all models had AUCs higher 
than 0.80.

The most important predictors of mobility limitation were con-
sistent across the 3 BiMM forest models and included a surrogate 
for muscle strength (self-reported ease of getting up from a chair), 
baseline gait speed, self-reported health status, BMI, and depres-
sive symptoms (measured by CES-D). Of these predictors, one was 
considered a fixed variable (baseline gait speed) whereas the others 
were collected on an annual basis. This highlights the importance of 
having multiple years of data for making accurate predictions for 
future mobility limitation. A total of 37 predictors were selected for 
Model 2 from the 46 considered. Model 2 predictors included phys-
ical factors (eg, BMI, ease getting up from a chair), medical condi-
tions (eg, depression, knee pain, diabetes), demographics (eg, age, 
income), cognition (eg, 3MS score), and lifestyle factors (eg, exercise, 
drinking, smoking). Inclusion of many predictors from a variety of 
aspects of health demonstrates the complexity of predicting mobility 
limitation in older adults over time. In an effort to simplify the pre-
diction model, we used an ad hoc variable selection approach in 
Models 3 and 4, which included only 5 predictors identified as most 
important, as well as age. While this greatly reduces the burden of 
data collection, these models had slightly worse performance com-
pared to Models 1 and 2. However, the simplicity of Models 3 and 4 
make it appealing because collecting data for all variables in Models 
1 and 2 may be clinically laborious and having fewer predictors may 
result in fewer issues with missing data. It was interesting that age 
was not identified as the top most important variable in Models 1 
and 2, and it was the least important variable included in Model 

Table 2. Performance Statistics (95% confidence intervals) for the Mobility Limitation Prediction Models: The Health ABC Study

Statistic (95% confidence interval) Model 1 (46 predictors) Model 2 (37 predictors) Model 3 (6 predictors) Model 4 (6 predictors)

AUC 0.84 (0.82–0.85) 0.84 (0.82–0.85) 0.81 (0.80–0.83) 0.83 (0.81–0.84)
Accuracy 0.76 (0.74–0.77) 0.76 (0.74–0.77) 0.75 (0.74–0.77) 0.73 (0.71–0.75)
Sensitivity 0.68 (0.66–0.71) 0.68 (0.66–0.71) 0.67 (0.65–0.70) 0.60 (0.58–0.63)
Specificity 0.84 (0.82–0.86) 0.84 (0.82–0.86) 0.85 (0.83–0.87) 0.88 (0.86–0.90)
PPV 0.70 (0.67–0.72) 0.70 (0.67–0.72) 0.69 (0.67–0.71) 0.66 (0.63–0.68)
NPV 0.83 (0.81–0.85) 0.83 (0.81–0.85) 0.84 (0.81–0.86) 0.85 (0.83–0.87)

Note: Health ABC = Health, Aging, and Body Composition; AUC = area under the receiver operating curve; PPV = positive predictive value; NPV = negative 
predictive value.

Figure 3. ROC and precision–recall curve plots of mobility limitation: the 
Health, Aging, and Body Composition study. These plots display ROC curves 
and precision–recall curves for the 3 models for the testing data. ROC 
curves extending into the upper left quadrant of the plot indicate superior 
performance. Precision–recall curves extending into the upper right quadrant 
of the plot indicate superior performance. ROC = receiver operating curve.
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3. This may indicate that other predictors contain more predictive 
value compared to age alone, especially considering that the age 
range of participants for the data included is somewhat narrow (10-
year spread from baseline/Year 1 to Year 10).

Using these models for predicting mobility limitation in older 
adults has enormous potential utility for helping clinicians determine 
at-risk older adults who may benefit from additional assessment and/
or intervention (eg, physical therapy). Models 3 and 4 may be par-
ticularly useful for obtaining these predictions because fewer meas-
ures are needed compared to Models 1 or 2. The BiMM forest model 
(Model 3) had slightly worse AUC compared to the generalized linear 
mixed model (Model 4) with the same predictors, although these dif-
ferences were not statistically significant. Validation with external 
data is needed to determine which of these models is preferable.

Many of the variables included in the models are typically present 
in EHR data from annual Medicare wellness visits, so there is po-
tential for leveraging readily available data in order to predict future 
mobility limitation in older adults. Although some variables may 
not be available, most EHR data contain similar information that 
could be matched to the Health ABC predictors included in models 
so that predictions of outcome can be made. For instance, CES-D 
may not be available in EHR data, but there are other questions or 
analogous measures of depression that could be used for modeling 
instead. On the other hand, some variables, such as gait speed over 
6 m, will likely not appear in EHR data in any form. The outcome 
variable used in this study, mobility limitation, may not appear in 
the EHR exactly as measured (ie, with ability to climb 10 steps and 
walk a quarter mile), so this may present a challenge for validating 
these models with EHR data. However, other similar measures may 
be available, such as self-reported difficulty walking a block. Future 
work is needed to evaluate the potential for using prediction models 
for mobility limitation with EHR data.

A few studies have investigated repeated measures of mobility over 
the aging process. Here, we provide summaries of previous models 
and their performance characteristics, although we note that AUCs for 
models developed with different data sets are not directly comparable. 
Gill et al. (8) used time to event Cox regression for repeated events 
to analyze a cohort of 754 community-living older people who were 
nondisabled over the course of 5 years and concluded that mobility 
disability in older adults is a dynamic process in which frequent tran-
sitions between independence and disability occur over time. Similar 
to some of the variables selected in our models, Gill et al. found that 
older age and physical frailty were associated with a greater likeli-
hood of disability. Female sex was also determined as a risk factor for 
disability, whereas in our study, sex was considered but not identified 
as one of the most important variables in any of the BiMM forest 
models. Two recent studies used latent class growth modeling to pre-
dict trajectories of functional decline in older adults. Jonkman et al. 
(27,28) used age, living alone, economic satisfaction, tandem balance 
stands, gait speed, physical activity, BMI, and cardiovascular disease 
as predictors of functional decline and achieved AUCs of 0.63 and 
0.74 for females and males, respectively. A study by Hoekstra et al. 
(29) used a similar latent class analysis framework and concluded that 
trajectories of functional decline are heterogeneous across different 
physical performance measures (gait speed, chair stands, and hand-
grip strength). A benefit of the models we proposed in our study is 
that they include subject-specific effects, meaning that they can handle 
heterogeneity across varying characteristics.

Several studies provided prediction models for incident or future 
mobility disability or limitation using standard regression method-
ology, although these use cross-sectional prediction data collected at 

one time point rather than annual prediction data across multiple 
years as in this study. Models proposed by Nüesch et al. (10) had 
AUCs of 0.73 and 0.74 and models proposed by Taş et al. (11) had 
AUCs of 0.67 and 0.69. A model developed with activities of daily 
living variables proposed by den Ouden et al. (9) had an AUC of 
0.83. Similar to predictor variables used in our study, Nüesch et al. 
(10) included self-rated health and BMI. Taş et al. (11) found that 
blood markers did not increase predictive performance of models 
that already included age, history of arthritis, and physical activity. 
Aside from depression and knee pain, the models in our study did 
not identify comorbidity measures as most important for predicting 
mobility limitation in older adults.

BiMM forest prediction models in this study had good pre-
dictive performance for the validation data set, with AUCs ranging 
from 0.81 to 0.84. A  major strength of the study was the use of 
Health ABC data, a large prospective cohort with validated meas-
ures of predictors. We used self-reported mobility limitation as the 
outcome for our study, which is a validated measure and clinically 
significant (30). Positive aspects of modeling in this study included 
consideration of a variety of predictors simultaneously and use of 
annually collected data which allowed for changes in mobility limi-
tation over time. The repeated measures analysis in our study also 
allowed for capturing health events related to mobility that change 
over time (eg, if a participant had a fall that resulted in mobility 
limitation in 1 year, but subsequently the participant was without 
mobility limitation). Analysis of incidence of first mobility limitation 
or mobility limitation at a single time point cannot capture these dy-
namic changes, whereas our models can handle changes from year to 
year. Models account for all previous years of data for participants 
through the random intercepts in the BiMM forest framework, so 
specific transition paths in and out of mobility limited states are not 
captured (eg, a participant has no mobility limitation in Years 2 and 
3, becomes mobility-limited in Years 4 and 5 and then back to no 
mobility limitation for Year 6). A future study could analyze specific 
transition paths across multiple visits using a multistate modeling 
approach. A novel aspect of the study was that innovative machine 
learning methodology was used to develop prediction models. Three 
models were developed, with and without variable selection, to as-
certain important predictors of mobility limitation.

There are some limitations of the study. Participants were re-
cruited to be well functioning and free of mobility limitation at base-
line; thus, these results may not be generalizable to the general older 
population. Although the models had good performance (AUCs of 
0.81 and 0.84), it would be desirable to improve performance fur-
ther. Future studies could investigate if inclusion of additional pre-
dictors, such as accelerometer data, blood-based biomarkers like 
inflammation or kidney function, and medications, can increase 
predictive performance. Findings from our study should also be val-
idated with external data sets to determine the generalizability of 
prediction models. Overall, despite these limitations, our study was 
conducted in a rigorous manner using a large data set, performing in-
ternal validation, and employing machine learning methodology that 
allowed for comparison of prediction models for mobility limitation.

We developed models for mobility limitation in older adults over 
time using fixed and repeated measurements of predictors with an 
innovative machine learning approach. Only 5 measures and age are 
needed for making predictions to achieve an AUC of 0.81 (Model 
3). Future studies should evaluate the utility and efficiency of the 
prediction models as a tool for identifying at-risk older adults who 
may benefit from interventions aimed to prevent or delay mobility 
limitation.
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