Solutions of Selected Problems from Probability
Essentials, Second Edition

SOLUTIONS TO SELECTED PROBLEMS OF CHAPTER 2

2.1 Let’s first prove by induction that #(2%) = 2" if Q = {zy,...,2,}. Forn =1
it is clear that #(2%) = #({0,{z1}}) = 2. Suppose #(2%-1) = 2,;. Observe that
2 = {{x,} UA A € 21} U291} hence #(2%) = 24(2%-1) = 2", This proves
finiteness. To show that 29 is a o-algebra we check:

1. 0 € Q hence () € 2.

2. If A€ 2% then A C Q and A° C Q hence A° € 2.

3. Let (A,,)n>1 be a sequence of subsets of 2. Then Uzo:l A,, 1s also a subset of ) hence
in 2.
Therefore 29 is a o-algebra.

2.2 We check if H = NyeaG, has the three properties of a g-algebra:

1. 0 € G, Va € A hence 0 € NueaGa.

2. If B € NpeaGy then B € G, Va € A. This implies that B¢ € G, Va € A since each
G, is a g-algebra. So B¢ € NyeaGa.

3. Let (A,)n>1 be a sequence in H. Since each A, € G, |,—, A, is in G, since G, is a
o-algebra for each o € A. Hence | J)~ | A, € NaeaGa.
Therefore H = NaecaG, is a o-algebra.

2.3 a. Let 2 € (U2, A,)° Then x € A¢ for all n, hence z € NS, AS. So (U, A,)¢ C
N> AS. Similarly if x € NS, AS then x € AS for any n hence z € (U2 ,A4,)°. So
(U1 4n)® = Mo, A7

b. By part-a N2, A, = (U2, A%) hence (N2, A,)° = U AS.

2.4 liminf, o A, = U2, B, where B, = Ny,>, A, € A Vn since A is closed under taking
countable intersections. Therefore liminf, .., A, € A since A is closed under taking
countable unions.

By De Morgan’s Law it is easy to see that limsup A4,, = (lim inf,,_,. A%)¢, hence limsup,,_,., A, €
A since liminf,, . AS € A and A is closed under taking complements.

Note that = € liminf, . A, = In" stz € N>l = = € Np>ndnVn = z €
limsup,,_, ., An. Therefore liminf,, .. A, C limsup,,_,. Ax.

28 Let L ={B C R: f7Y(B) € B}. It is easy to check that L is a o-algebra. Since f
is continuous f~!(B) is open (hence Borel) if B is open. Therefore £ contains the open
sets which implies £ D B since B is generated by the open sets of R. This proves that

fY(B)eBif BeBandthat A={ACR:3B e Bwith A= f(B)e B} CB.
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3.7 a. Since P(B) > 0 P(.|B) defines a probability measure on A, therefore by Theorem
2.4 lim,,_, P(A,|B) = P(A|B).

b. We have that AN B, — AN B since 1anp, (w) = 1a(w)lp, (w) — 1a(w)lp(w).
Hence P(AN B,) — P(AN B). Also P(B,) — P(B). Hence

P(AnB, P(ANnB)
P(B.) P(B)

P(A|B,) = — P(A|B).

P(A,NB,) P(ANB)
H
P(B,) P(B)
since A, N B, - AN B and B, — B.

P(A,|B,) = = P(A|B)

3.11 Let B = {z1,29,...,2p} and R = {y1,¥2,...,y-} be the sets of b blue balls and r
red balls respectively. Let B' = {xp11, Tpi2, ..., Tpra} and R = {y,41,Yri2, - - -, Yrra} be
the sets of d-new blue balls and d-new red balls respectively. Then we can write down the
sample space () as

Q={(a,b): (a€e Bandbe BUB'UR) or (a € Rand b€ RUR' UB)}.

Clearly card(Q2) =b(b+d+7r)+r(b+d+7r)=(b+7)(b+d+r). Now we can define a
probability measure P on 2% by
card(A)

P4) = card(Q)’

a. Let

A = {second ball drawn is blue}
{(a,b) :a € B,be BUB'} U{(a,b):a € R,be B}
b

card(A) = b(b+d) + b = b(b+ d + ), hence P(A) = ;.
b. Let

B = { first ball drawn is blue}
= {(a,b) €eN:a€ B}
Observe AN B ={(a,b) :a € B,b € BUB'} and card(AN B) = b(b+ d). Hence
P(ANB) card(ANB) b+d

P(Bl4) = P(A) card(4)  b+d+r




3.17 We will use the inequality 1 —x > e~ for x > 0, which is obtained by taking Taylor’s
expansion of e~ around 0.

P((A U...UA)Y) = P(ASN...NA%)
— (1-P(A)...(1 - P(A,))

n

< exp(—P(A1)...exp(—P(A,)) = exp(— Y P(A;))

=1
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)\k A n—k
P(k successes) = ( g ) - (1 - ﬁ)
= Capbyy ... bgnd,

4.1 Observe that

where N \ - .
n—j)+ K
o= =) b - (1-2)
It is clear that b;,, — 1 Vj and d,, — 1 as n — 0o. Observe that
A1
log((1 — %)n) = n(ﬁ — ﬁ?) for some ¢ € (1 — %, 1)

A

by Taylor series expansion of log(z) around 1. It follows that a, — e™* as n — oo and

that )
nlog(l—%) A A1

— e_’\| > nlog(l— =)= A =n——= > p
n

|Error| = |e ke

Hence in order to have a good approximation we need n large and p small as well as A to
be of moderate size.
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5.7 We put z,, = P(X is even) for X ~ B(p,n). Let us prove by induction that x, =
$(14+(1=2p)"). Forn=1,z; =1—p=3(1+ (1 —2p)*). Assume the formula is true for
n — 1. If we condition on the outcome of the first trial we can write

z, = p(l—x,-1)+ (1 —p)x,
= (- S+ (1= 2+ (1= p) (G0 + (1 =20

= S+ (-2

hence we have the result.

5.11 Observe that E(|X — A[) = >, \(A = i)pi + 3,0 — A)pi. Since Yo, (i — N)pi =
Yool = N)pi — >, (. — A)p; we have that E(|X —A|) =23, (A —1)p;. So

E(X ) = 23 (00—
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7.1 Suppose lim, .., P(A,) # 0. Then there exists ¢ > 0 such that there are dis-
tinct Ay, Apy, ... with P(A,,) > 0 for every k < 1. This gives > -, P(4,,) = o
which is a contradiction since by the hypothesis that the A, are disjoint we have that

220:1 P(Ank) = P(U?:1Ank) <1.

7.2 Let A, = {As : P(A3) > 1/n}. A, is a finite set otherwise we can pick disjoint
Ap,, Ag,, ... in A,. This would give us P U_, Ag, = >~ P(Ag,) = oo which is a
contradiction. Now {Az : [ € B} = U2 A, hence (Ag)sep is countable since it is a
countable union of finite sets.

7.11 Note that {zo} = N2 ,[zo — 1/n,x0| therefore {z(} is a Borel set. P({zo}) =
lim,, oo P([zg — 1/n, x0)). Assummg that f is continuous we have that f is bounded
by some M on the interval [xg — 1/n,x0] hence P({zo}) = lim, ., M(1/n) = 0.
Remark: In order this result to be true we don’t need f to be continuous. When we define
the Lebesgue integral (or more generally integral with respect to a measure) and study its
properties we will see that this result is true for all Borel measurable non-negative f.

7.16 First observe that F(x) — F(x—) > 0 iff P({z}) > 0. The family of events {{z} :
P({z}) > 0} can be at most countable as we have proven in problem 7.2 since these events
are disjoint and have positive probability. Hence F' can have at most countable discon-
tinuities. For an example with infinitely many jump discontinuities consider the Poisson
distribution.

7.18 Let F' be as given. It is clear that F is a nondecreasing function. For x <Oandx >1
right continuity of F' is clear. For any 0<zx< 1 let ¢* be such that <gzo< LoOf

*+1 — 1%
x, | = then there exists N such that —— *+1 <z, < + for every n > N. Hence F(z,) = F()

for every n > N which implies that F' is right continuous at z. For x = 0 we have that
F(0) = 0. Note that for any e there exists N such that Y 3 < €. So for all z s.t.
|z] < & we have that F(z) < e. Hence F(0+) = 0. This proves the right continuity of F’

for all z. We also have that F(co) = > >°, & = 1 and F(—o0) = 0 so F is a distribution
function of a probability on R.
[1,00)) = F(oo) = F(1-) =1-37%,=1-5=73.

P
P([45,00)) = P(00) = F(=) =1 =3 3 =1 -2,
PO PO R0 b )

P(0,5) = F3-) = F(0-) = ¥, b —0= 4
P((~00,0)) = F(0-) =0.

d.
? P((0,00)) = 1 — F(0) = 1.
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9.1 Tt is clear by the definition of F that X~!(B) € F for every B € B. So X is measurable
from (Q2, F) to (R, B).

9.2 Since X is both F and G measurable for any B € B, P(X € B) = P(X € B)P(X €
B) =0 or 1. Without loss of generality we can assume that there exists a closed interval
I such that P(I) = 1. Let A, = {t,... t] } be a partition of I such that A, C An4; and
supy tj —tj_; — 0. For each n there exists k*(n) such that P(X € [t}.,t}..,]) = 1 and
[t nrs e gy i) © (B nys T yaa)- Now an = 8.,y and b, = £}, + 1 are both Cauchy
sequences with a common limit ¢. So 1 = lim, .. P(X € (t}.,t},]) = P(X =¢).

9.3 X HA) =¥ AN Y HANXA))UXHA) NY1(A)°). Observe that both
Y HA) N (X H(A)) and X H(A)NY 1 (A)¢ are null sets and therefore measurable. Hence
if Y71(A) € A’ then X~!'(A) € A'. In other words if Y is A’ measurable so is X.

9.4 Since X is integrable, for any € > 0 there exists M such that [ |X|1iy>p3dP < € by
the dominated convergence theorem. Note that

E[X14,] = E[X1a,1xsmy] + E[X14, 1x<nn]
< EBlX[1x<n]+ MP(A)

Since P(A,) — 0, there exists IV such that P(A,) < 47 for every n > N. Therefore
E[X14,) <e+eVn> N, ie lim, . F[X14,] =0.

9.5 It is clear that 0 < Q(A) < 1 and Q(2) = 1 since X is nonnegative and E[X] = 1. Let
Ay, Ay, ... be disjoint. Then

QUL Ay) = E[X1x 4] = B X14]=> E[X14,]
n=1 n=1

where the last equality follows from the monotone convergence theorem. Hence Q(US2 | A,,) =
Y Q(A,). Therefore @ is a probability measure.

9.6 If P(A) = 0 then X14 = 0 a.s. Hence Q(A) = E[X14] = 0. Now assume P is the
uniform distribution on [0,1]. Let X(x) = 21j91/9 (). Corresponding measure () assigns
zero measure to (1/2, 1], however P((1/2,1]) =1/2 # 0.

9.7 Let’s prove this first for simple functions, i.e. let Y be of the form

Y = i Ci]-Ai
i=1

8



for disjoint Aq,..., A,. Then

n n

EqlY] =) ¢Q(A) =) aE[X14] = Ep[XY]

i=1 i=1
For non-negative Y we take a sequence of simple functions Y,, T Y. Then
EolY] = lim Eq[Y,] = lim Ep[XY,] = Ep[XY]

where the last equality follows from the monotone convergence theorem. For general Y €
L'(Q) we have that Eg[Y] = Eq[Y "] — EglY ] = Ep[(XY)T] — Eg[(XY)~] = Ep[XY].

9.8 a. Note that +X =1 a.s. since P(X > 0) = 1. By problem 9.7 Eg[+| = Ep[+ X] = 1.
So % is Q-integrable.

b. R: A— R, R(A) = Eg[+1
Eolx] =1. Also R(A) = Eg[+

4] 18 a probability measure since % is non-negative and

14
Qlx
14] = Ep[+X14] = P(A). So R=P.

9.9 Since P(A) = Eq[+14] we have that Q(A) = 0 = P(A) = 0. Now combining the
results of the previous problems we can easily observe that Q(A) = 0 < P(A) = 0 iff
P(X >0)=1.

9.17. Let ( ot o)?

r—pn)jo+o

g(x) = 2 N2 -

o%(1+0?)

Observe that {X > u+bo} € {g(X) > 1}. So
Elg(X
P(LX > ot b)) < P({g(X) > 1)) < ZOX)

where the last inequality follows from Markov’s inequality. Since E[g(X)] = % we

get that
PH{X >pu+bo}) < T
9.19
P{X >z}) < E[X1(X >z}

Hence




921 h(t+s) = P({X > t+s}) = PH{X > t+s5,X > s}) = P{X > t+s|X > s})P({X >
s}) = h(t)h(s) for all t,s > 0. Note that this gives h(<) = h(1)w and h(Z) = h(1)=. So
for all rational r we have that h(r) = exp (log(h(1))r). Since h is right continuous this
gives h(z) = exp(log(h(1))x) for all x > 0. Hence X has exponential distribution with
parameter —log h(1).

10



SOLUTIONS TO SELECTED PROBLEMS OF CHAPTER 10

10.5 Let P be the uniform distribution on [—1/2,1/2]. Let X(x) = 1[_1/4,1/4 and Y (x) =
1(_1/4,1/4c. It is clear that XY = 0 hence E[XY] = 0. It is also true that EF[X] = 0. So
E[XY] = E[X]|E[Y] however it is clear that X and Y are not independent.

10.6 a. P(min(X,Y) > i) = P(X > {)P(Y > i) = 5. = 4. So P(min(X,Y) < i) =
1—Pmin(X,Y) >1i) =

b P(X =Y) =32 P(X =i)P(Y =i) = S% dd = - —1= 1.

¢ P(Y > X)= X%, P(V > )P(X =i) = X2, 44 = 1.

d. P(X divides V) = 3777, 5,7, zig}c =2 2i2_1—1

2 P(X2kY):Zilp(XkaP(Y:i):Z?il%leq:2’v+2—1—1'

11
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11.11. Since P{X > 0} = 1 we have that P{Y < 1} = 1. So Fy(y) =1 for y > 1. Also
P{Y < 0} = 0 hence Fy(y) =0 for y < 0. ForO<y<1P{Y>y}:P{X<1;—y}:

FX(kTy) So

Fy<y>=1—/olyyfx<x>dx —1- /Oy_—lfx(l_z)dz

by change of variables. Hence

11.15 Let G(u) = inf{x : F(z) > u}. We would like to show {u : G(u) > y} = {u :
F(Y) < u}. Let u be such that G(u) > y. Then F(y) < u by definition of G. Hence
{u:G(u) >y} C{u: F(Y) < u}. Now let u be such that F'(y) < u. Then y < z for any =
such that F'(z) > u by monotonicity of F'. Now by right continuity and the monotonicity of
F we have that F(G(u)) = infp)>, F(x) > u. Then by the previous statement y < G(u).
So{u:Gu) >y} ={u: F(Y) <u}. Now P{G(U) >y} = P{U > F(y)} =1 — F(y) so
G(U) has the desired distribution. Remark:We only assumed the right continuity
of F.

12
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12.6 Let Z = (%)Y — (ZX)X. Then 02 = (&)o% — (”§<Y)a§( — 2(L£X)Cov(X,Y) =

E og( oxOoy
1 — p%y. Note that pxy = F1 implies 6% = 0 which implies Z = ¢ a.s. for some constant
c. In this case X = —2X—(Y — ¢) hence X is an affine function of Y.

oY PXY

12.11 Consider the mapping g(z,y) = (\/2* + y? arctan(3)). Let So = {(z,y) : y = 0},
Sy = {(z,y) : y > 0}, So = {(z,y) : y < 0}. Note that UL,S; = R? and my(Sy) = 0.
Also for i = 1,2 g : S; — R? is injective and continuously differentiable. Corresponding
inverses are given by g;'(z,w) = (zsinw, zcosw) and g, *(z,w) = (zsinw, —zcosw). In
both cases we have that |Jg;1(z, w)| = z hence by Corollary 12.1 the density of (Z, W) is
given by

1 .2 1 .2
fzw(z,w) ::(%mfﬂaZ+2mﬂ€%2ﬂ+ggKWﬂmmK@
= “legn() x e 1oe)(2)

as desired.

12.12 Let P be the set of all permutations of {1,...,n}. For any 7 € P let X™ be the
corresponding permutation of X, i.e. X/ = X . Observe that

PXT <zy,....X] <wx,) = F(z1)...F(X,)

hence the law of X™ and X coincide on a wsystem generating B™ therefore they are equal.
Now let Qo = {(z1,...,2,) € R" 1 21 < 29 < ... < x,}. Since X; are i.i.d and have
continuous distribution Px(£29) = 1. Observe that

P{Yi Syla"'ayn Syn} = P(UWEP{X{T SybanSyn}mQU)
Note that {XT < yy,..., X7 < y,} N Qy, m € P are disjoint and P(2y = 1) hence
PV <y Ya <yl = > P{XT <y, X] <y}

TeP
= nlF(y1)...F(yn)
for y < ... <wy,. Hence

h@ww%)_{nWW~f%)m§mg%

o 0 otherwise

13
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14.7 px (u) is real valued iff px(u) = Py (u) = p_x(u). By uniqueness theorem @y (u) =
o_x(u)iff Fx = F_x. Hence @x(u) is real valued iff Fiy = F_x.

14.9 We use induction. It is clear that the statement is true for n = 1. Put Y,
S X; and assume that E[(Y,)*] = 31| E[(X;)?]. Note that this implies 250y, (0) =

—i 30 E[(X0)%]. Now E[(Yai1)?] = E[(Xns1 + Ya)?] = =i (ox,.,¢v,)(0) by indepen-
dence of X, and Y,,. Note that

d? a3
d? d d &
d3

d3 d3
= s P X (0) + ﬁSOYn (0)

:_( Xpi1) +ZE )

where we used the fact that Loy, . (0) = iE(X,41) = 0 and Loy, (0) = iE(Y,) = 0. So
E[(Yni1)? = S EI(X,)?) hence the induction is complete.

14.10 It is clear that 0 < v(A) <1 since

3
3

Also for A; disjoint

V(U2 A) = ) A (U2 A))

j=1  i=1



Hence vis countably additive therefore it is a probability mesure. Note that [ 14dv(dz) =

J A [ 1a(z)dpj(dz) by definition of v. Now by hnearlty and monotone convergence
theorem for a non-negative Borel function f we have that [ f(z)v(de) =320 N [ f(x)dp;(dz).
Extending this to integrable f we have that o(u) = [ e™*v(dx) =37 | A; [ e’“xduj(dx)

Ej:l Ajtij(w).

14.11 Let v be the double exponential distribution, p; be the distribution of Y and puy be
the distribution of —Y where Y is an exponential r.v. with parameter A = 1. Then we
have that v(A) = %fAﬂ(O,oo) e dr + 1 fm o) €T = su1(A) + 2p2(A). By the previous

exercise we have that 0(u) = £/ (u) + 2u2( u) = 3(5 + l—ﬁ}zu) = 1+1u2.

14.15. Note that E{X"} = (—i)"L-(0). Since X ~ N(0,1) px(s) = e~%*/2. Note that

s2/2

we can get the derivatives of any order of e~ at 0 simply by taking Taylor’s expansion

of e*:
o0 2 n
_2 (=5%/2)
€ o Z n!

=0
i L (=)*(2n)! ,,

= — 5
—~2n! 2"

hence B{X"} = (—i)"L-px(0) = 0 for n odd. For n = 2k B{X?%*} = (—i)* L0 0 (0) =

dax2k
(—i >2k( 0)°F(2K)! _ (2k)!

stn - — oipy as desired.

15
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151 a. E{z} =23""  B{X;} = p.
b. Since X, ..., X, are independent Var(z) = & 7"
c. Note that 5% = L 3" (X;)? — 7%, Hence E(S?) =

2

 Var{X;} = "72
LY (0?4 ?) = (5 + 1) =

n—1
n

15.17 Note that ¢y (u) = [[i; ¢x,(u) = (ﬁfm)o‘ which is the characteristic function
of Gamma(«,) random variable. Hence by uniqueness of characteristic function Y is

Gamma(a,f3).

o

16
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163 P{Y < y}) = P{X < y}n{Z =1}) + P{-X <y} n{Z = —1}) = 30(y) +
1®(—y) = ®(y) since Z and X are independent and ®(y) is symmetric. So Y is normal.
Note that P(X +Y = 0) = % hence X +Y can not be normal. So (X,Y) is not Gaussian
even though both X and Y are normal.

16.4 Observe that

P
Q = oxoy [ pY or
So det(Q) = oxoy(1 — p?). So det(Q) = 0 iff p = F1. By Corollary 16.2 the joint density
of (X,Y) exists iff —1 < p < 1. (By Cauchy-Schwartz we know that —1 < p < 1). Note
that
R R
oxoy(1—p?) —p o

Substituting this in formula 16.5 we get that
fox(a.9) : ()
x = ex
I Y 2roxoy (1 — p?) P 2(1 — p?) ox
_ QP(UU—MX)(Z/—/«LY)_I_ Y — By ?
Ox0Oy Oy ‘

16.6 By Theorem 16.2 there exists a multivariate normal r.v. Y with E(Y) = 0 and a
diagonal covariance matrix A s.t. X —pu = AY where A is an orthogonal matrix. Since
Q) = AAA* and det(Q) > 0 the diagonal entries of A are strictly positive hence we can
define B = A~'/2A*. Now the covariance matrix @ of B(X — p) is given by
Q = A VPA*ANA*ANTY?
= 1
So B(X — p) is standard normal.
16.17 We know that as in Exercise 16.6 if B = A~'/2A* where A is the orthogonal matrix s.t.

Q = AANA* then B(X — p) is standard normal. Note that this gives (X — pu)*Q (X —u) =
(X — p)*B*B(X — p) which has chi-square distribution with n degrees of freedom.

17
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17.1 Let n(m) and j(m) be such that Y,, = n(m)"?Z, ) jom). This gives that P(|Y,,| >

0) = nén) — 0 as m — oo. So Y, converges to 0 in probability. However E[|Y,,|P] =

E[n(m)Znmy,jm)) = 1 for all m. So Y, does not converge to 0 in L”.

17.2 Let X,, = 1/n. It is clear that X, converge to 0 in probability. If f(z) = 10} () then
we have that P(|f(X,) — f(0)] > €) = 1 for every € > 1, so f(X,) does not converge to
f(0) in probability.

17.3 First observe that E(S,) = > 1, E(X,) = 0 and that Var(S,) = > 1" 1\/'ar(X )=mn
since E(X,) = 0 and Var(X,) = E(X2) = 1. By Chebyshev’s inequality P(|22| > ¢) =

P(]S,] > ne) < % = 7> — 0 as n — oco. Hence 5= converges to 0 in probability.

17.4 Note that Chebyshev’s 1nequahty gives P(| |l >e) < 212 Since Zfﬁl — < 00 by
Borel Cantelli Theorem P(lim supn{\ 2| >€})=0. Let Qg = ( _, lim supn{| Ll > 7711})
Then P()) = 1. Now let’s pick w € €. For any e there exists m s.t. - < e and
w € (lim supn{\iLﬂ > 1L }) Hence there are finitely many n s.t. |i¢22| > L which implies

that there exists N(w) s. | 7| < - for every n > N(w). Hence S%gw) — 0. Since
P(€y) = 1 we have almost sure convergence.

17.12 Y < oo a.s. which follows by Exercise 17.11 since X,, < co and X < oo a.s. Let
Z = %HLY Observe that Z > 0 a.s. and Ep(Z) = 1. Therefore as in Exercise 9.8
Q(A) = Ep(Z1,) defines a probability measure and Eg(| X, — X|) = Ep(Z| X, — X|).
Note that Z|X,, — X| < 1 a.s. and X,, — X a.s. by hypothesis, hence by dominated
convergence theorem Eq(|X,, — X|) = Ep(Z|X, — X|) — 0, i.e. X,, tends to X in L' with

respect to Q).

17.14 First observe that |E(X?2) — E(X?)| < E(]X?— X?|). Since | X?—X?| < (X, — X)?+
2|X||X,, — X| we get that |E(X?) — EB(X?)| < BE((X, — X)?) + 2E(|X]||X,, — X|). Note
that first term goes to 0 since X,, tends to X in L?. Applying Cauchy Schwarz inequality
to the second term we get E(|X||X, — X|) < /E(X?)E(|X,, — X|?), hence the second
term also goes to 0 as n — oo. Now we can conclude F(X?) — F(X?).

17.15 For any € > 0 P({|X| < c+¢€}) > P({|X,| < ¢,|X,,—X| < €}) — 1 asn — oo. Hence
P{|X]| < c+e}) =1. Since {X < ¢} = NZ_{X < c+ +} we get that P{X < ¢} = 1.
Now we have that E’(|‘Xn — X|) = E(LXn — X|1{|Xn—X|§e}) + E(|Xn — X|1{\XH—X\>5}> <
€ + 2¢(P{| X, — X| > €}), hence choosing n large we can make F(|X,, — X|) arbitrarily
small, so X,, tends to X in L!.

18



SOLUTIONS TO SELECTED PROBLEMS OF CHAPTER 18

[u]

18.8 Note that ¢y, (u) = III_ px, (%) = II'_je”» = e, hence Y, is also Cauchy with
a = 0 and # = 1 which is independent of n, hence trivially Y,, converges in distribution
to a Cauchy distributed r.v. with a = 0 and 3 = 1. However Y,, does not converge to
any r.v. in probability. To see this, suppose there exists Y s.t. P(|Y, — Y| > ¢) — 0.
Note that P(|Y,, — Y| > e) SP(Y, Y] >35)+P(|Y, Y| > 5). If welet m = 2n,
Y, =Y, =330 Xi— ZZ 1 Xi| which is equal in distribution to 3|U — W| where
U and W are independent Cauchy r.v.’s with o = 0 and 3 = 1. Hence P(|Y, —Y,,| > 5)
does not depend on n and does not converge to 0 if we let m = 2n and n — oo which is a
contradiction since we assumed the right hand side converges to 0.

18.16 Define f,, as the following sequence of functions:

fol@) = (N m) — (N %)N 1fx>N——
" ~(N S Ra (NS DN e < N4k
0 otherwise

Note that each f,, is continuous and bounded. Also f,(z) T 1(_n,n)(z)2? for every z € R.
Hence

/_ 2F(dz) = lim [ fo(e)F(dz)

N m—oo [
by monotone convergence theorem. Now

/00 fm(2)F(dzx) = lim h fm(2)Fy(de)

n—oo

by weak convergence. Since [ fu(x)F,(dz) < f ~ T°F,(dz) it follows that

N N N
/ 22 F(dz) < lim hrnsup/ 2 F,(dx) zlimsup/ 22 F, (dx)

_N m—0o0 n oo _N n—o00 _N

as desired.
18.17 Following the hint, suppose there exists a continuity point y of F' such that
Tim F,(y) # F(y)

Then there exist € > 0 and a subsequence (ng)r>1 s.t. Fy,, (y) — F(y) < —e for all k, or

F,.(y) — F(y) > € for all k. Suppose F,,, (y) — F(y) < —e for all k, observe that for z <y,

Fou(z) ~ F(z) < Fy,(y) ~ Flz) = By, (5) ~ F) + (F(y) ~ F@)) < ¢ + (F(y) - F(2))

Since f is continuous at y there exists an interval [y1,y) s.t. |(F(y) — F(z))| < %, hence

Fo.(z) — F(x) < —5 for all x € [y1,y). Now suppose F,, (y) — F(y) > ¢, then for x>,

For(2) = F(2) > Fa(y) — F(z) = Fo(y) — F(y) + (F(y) - F(@)) > e+ (F(y) — F(z)).
19



Now we can find an interval (y,y1] s.t. |(F(y) — F(x))| < § which gives F},, (z) —

for all x € (y,y1]. Note that both cases would yield

o €
| W@ - Fards > - ol

infty
which is a contradiction to the assumption

lim |F(x) — F(x)|"dx = 0.

N0 J _infty

Therefore X,, converges to X in distribution.

20
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SOLUTIONS TO SELECTED PROBLEMS OF CHAPTER 19

. n . u202 , . . .
19.1 Note that ¢x, (u) = e~ 72" — "~ "=2 . By Lévy’s continuity theorem it follows
that X,, = X where X is N(u,o?).

19.3 Note that ¢y, 1y, (u) = ¢x, (u)ey, (u) — ox(u)py(u) = pxiy(u). Therefore X, +
Y,=X+Y

21



SOLUTIONS TO SELECTED PROBLEMS OF CHAPTER 20

20.1 a. First observe that E(S?) = 2?212227:1 BE(X;X;) = > X? since E(X;X;) =0
for i # j. Now P(‘i—”| >e€) < E(S.) _ nEX]) < —5 as desired.

€ ’I'L2 627L2 —
b. From part (a) it is clear that +.5, converges to 0 in probability. Also E((1S,)?%) =
E(X?

==+ — 0 since E(X}) < o0, so =5, converges to 0 in L? as well.

20.5 Note that Z,, = Z implies that ¢z, (u) — @z(u) uniformly on compact subset of R.
(See Remark 19.1). For any u, we can pick n > N s.t. 75 < M, sup,ci_pu |0z, (x) —

wz(x)| < € and |varphiz(\/iﬁ) —¢z(0)| < e. This gives us
u u u u
) 02(0)] = [z (—m) — pp(—= Uy o (0)] <2
|<Pzn(\/ﬁ) 2(0)] |@zn(\/ﬁ) @Z(\/ﬁﬂ + |¢Z(\/ﬁ) pz(0)] < 2e
So Pz (u) = cpzn(\/iﬁ) converges to ¢z(0) = 1 for every u. Therefore \Z/—% = 0 by continuity

theorem. We also have by the strong law of large numbers that i—% — E(X,) —v. This

implies F(X;) — v = 0, hence the assertion follows by strong law of large numbers.

22
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