
Solutions of Selected Problems from Probability
Essentials, Second Edition

Solutions to selected problems of Chapter 2

2.1 Let’s first prove by induction that #(2Ωn) = 2n if Ω = {x1, . . . , xn}. For n = 1
it is clear that #(2Ω1) = #({∅, {x1}}) = 2. Suppose #(2Ωn−1) = 2n−1. Observe that
2Ωn = {{xn} ∪ A, A ∈ 2Ωn−1} ∪ 2Ωn−1} hence #(2Ωn) = 2#(2Ωn−1) = 2n. This proves
finiteness. To show that 2Ω is a σ-algebra we check:

1. ∅ ⊂ Ω hence ∅ ∈ 2Ω.
2. If A ∈ 2Ω then A ⊂ Ω and Ac ⊂ Ω hence Ac ∈ 2Ω.
3. Let (An)n≥1 be a sequence of subsets of Ω. Then

⋃∞
n=1 An is also a subset of Ω hence

in 2Ω.
Therefore 2Ω is a σ-algebra.

2.2 We check if H = ∩α∈AGα has the three properties of a σ-algebra:
1. ∅ ∈ Gα ∀α ∈ A hence ∅ ∈ ∩α∈AGα.
2. If B ∈ ∩α∈AGα then B ∈ Gα ∀α ∈ A. This implies that Bc ∈ Gα ∀α ∈ A since each

Gα is a σ-algebra. So Bc ∈ ∩α∈AGα.
3. Let (An)n≥1 be a sequence in H. Since each An ∈ Gα,

⋃∞
n=1 An is in Gα since Gα is a

σ-algebra for each α ∈ A. Hence
⋃∞

n=1 An ∈ ∩α∈AGα.
Therefore H = ∩α∈AGα is a σ-algebra.

2.3 a. Let x ∈ (∪∞n=1An)c. Then x ∈ Ac
n for all n, hence x ∈ ∩∞n=1A

c
n. So (∪∞n=1An)c ⊂

∩∞n=1A
c
n. Similarly if x ∈ ∩∞n=1A

c
n then x ∈ Ac

n for any n hence x ∈ (∪∞n=1An)c. So
(∪∞n=1An)c = ∩∞n=1A

c
n.

b. By part-a ∩∞n=1An = (∪∞n=1A
c
n)c, hence (∩∞n=1An)c = ∪∞n=1A

c
n.

2.4 lim infn→∞ An = ∪∞n=1Bn where Bn = ∩m≥nAm ∈ A ∀n since A is closed under taking
countable intersections. Therefore lim infn→∞ An ∈ A since A is closed under taking
countable unions.

By De Morgan’s Law it is easy to see that lim sup An = (lim infn→∞ Ac
n)c, hence lim supn→∞ An ∈

A since lim infn→∞ Ac
n ∈ A and A is closed under taking complements.

Note that x ∈ lim infn→∞ An ⇒ ∃n∗ s.t x ∈ ∩m≥n∗Am ⇒ x ∈ ∩m≥nAm∀n ⇒ x ∈
lim supn→∞ An. Therefore lim infn→∞ An ⊂ lim supn→∞ An.

2.8 Let L = {B ⊂ R : f−1(B) ∈ B}. It is easy to check that L is a σ-algebra. Since f
is continuous f−1(B) is open (hence Borel) if B is open. Therefore L contains the open
sets which implies L ⊃ B since B is generated by the open sets of R. This proves that
f−1(B) ∈ B if B ∈ B and that A = {A ⊂ R : ∃B ∈ B with A = f−1(B) ∈ B} ⊂ B.
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Solutions to selected problems of Chapter 3

3.7 a. Since P (B) > 0 P (.|B) defines a probability measure on A, therefore by Theorem
2.4 limn→∞ P (An|B) = P (A|B).

b. We have that A ∩ Bn → A ∩ B since 1A∩Bn(w) = 1A(w)1Bn(w) → 1A(w)1B(w).
Hence P (A ∩Bn) → P (A ∩B). Also P (Bn) → P (B). Hence

P (A|Bn) =
P (A ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B).

c.

P (An|Bn) =
P (An ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B)

since An ∩Bn → A ∩B and Bn → B.

3.11 Let B = {x1, x2, . . . , xb} and R = {y1, y2, . . . , yr} be the sets of b blue balls and r
red balls respectively. Let B′ = {xb+1, xb+2, . . . , xb+d} and R′ = {yr+1, yr+2, . . . , yr+d} be
the sets of d-new blue balls and d-new red balls respectively. Then we can write down the
sample space Ω as

Ω = {(a, b) : (a ∈ B and b ∈ B ∪B′ ∪R) or (a ∈ R and b ∈ R ∪R′ ∪B)}.

Clearly card(Ω) = b(b + d + r) + r(b + d + r) = (b + r)(b + d + r). Now we can define a
probability measure P on 2Ω by

P (A) =
card(A)

card(Ω)
.

a. Let

A = { second ball drawn is blue}
= {(a, b) : a ∈ B, b ∈ B ∪B′} ∪ {(a, b) : a ∈ R, b ∈ B}

card(A) = b(b + d) + rb = b(b + d + r), hence P (A) = b
b+r

.
b. Let

B = { first ball drawn is blue}
= {(a, b) ∈ Ω : a ∈ B}

Observe A ∩B = {(a, b) : a ∈ B, b ∈ B ∪B′} and card(A ∩B) = b(b + d). Hence

P (B|A) =
P (A ∩B)

P (A)
=

card(A ∩B)

card(A)
=

b + d

b + d + r
.
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3.17 We will use the inequality 1−x > e−x for x > 0, which is obtained by taking Taylor’s
expansion of e−x around 0.

P ((A1 ∪ . . . ∪ An)c) = P (Ac
1 ∩ . . . ∩ Ac

n)

= (1− P (A1)) . . . (1− P (An))

≤ exp(−P (A1)) . . . exp(−P (An)) = exp(−
n∑

i=1

P (Ai))
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Solutions to selected problems of Chapter 4

4.1 Observe that

P (k successes) =

(
n
2

)
λ

n

k (
1− λ

n

)n−k

= Canb1,n . . . bk,ndn

where

C =
λk

k!
an = (1− λ

n
)n bj,n =

n− j + 1

n
dn = (1− λ

n
)−k

It is clear that bj,n → 1 ∀j and dn → 1 as n →∞. Observe that

log((1− λ

n
)n) = n(

λ

n
− λ2

n2

1

ξ2
) for some ξ ∈ (1− λ

n
, 1)

by Taylor series expansion of log(x) around 1. It follows that an → e−λ as n → ∞ and
that

|Error| = |en log(1−λ
n

) − e−λ| ≥ |n log(1− λ

n
)− λ| = n

λ2

n2

1

ξ2
≥ λp

Hence in order to have a good approximation we need n large and p small as well as λ to
be of moderate size.
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Solutions to selected problems of Chapter 5

5.7 We put xn = P (X is even) for X ∼ B(p, n). Let us prove by induction that xn =
1
2
(1 + (1− 2p)n). For n = 1, x1 = 1− p = 1

2
(1 + (1− 2p)1). Assume the formula is true for

n− 1. If we condition on the outcome of the first trial we can write

xn = p(1− xn−1) + (1− p)xn

= p(1− 1

2
(1 + (1− 2p)n−1)) + (1− p)(

1

2
(1 + (1− 2p)n−1))

=
1

2
(1 + (1− 2p)n)

hence we have the result.

5.11 Observe that E(|X − λ|) =
∑

i<λ(λ − i)pi +
∑

i≥λ(i − λ)pi. Since
∑

i≥λ(i − λ)pi =∑∞
i=0(i− λ)pi −

∑
i<λ(i− λ)pi we have that E(|X − λ|) = 2

∑
i<λ(λ− i)pi. So

E(|X − λ|) = 2
∑
i<λ

(λ− i)pi

= 2
λ−1∑
i=1

(λ− i)
e−λλk

k!

= 2e−λ

λ−1∑
i=0

(
λk+1

k!
− λk

(k − 1)!
)

= 2e−λ λλ

(k − 1)!
.
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Solutions to selected problems of Chapter 7

7.1 Suppose limn→∞ P (An) 6= 0. Then there exists ε > 0 such that there are dis-
tinct An1 , An2 , . . . with P (Ank

) > 0 for every k ≤ 1. This gives
∑∞

k=1 P (Ank
) = ∞

which is a contradiction since by the hypothesis that the An are disjoint we have that∑∞
k=1 P (Ank

) = P (∪∞n=1Ank
) ≤ 1 .

7.2 Let An = {Aβ : P (Aβ) > 1/n}. An is a finite set otherwise we can pick disjoint
Aβ1 , Aβ2 , . . . in An. This would give us P ∪∞m=1 Aβm =

∑∞
m=1 P (Aβm) = ∞ which is a

contradiction. Now {Aβ : β ∈ B} = ∪∞n=1An hence (Aβ)β∈B is countable since it is a
countable union of finite sets.

7.11 Note that {x0} = ∩∞n=1[x0 − 1/n, x0] therefore {x0} is a Borel set. P ({x0}) =
limn→∞ P ([x0 − 1/n, x0]). Assuming that f is continuous we have that f is bounded
by some M on the interval [x0 − 1/n, x0] hence P ({x0}) = limn→∞ M(1/n) = 0.
Remark: In order this result to be true we don’t need f to be continuous. When we define
the Lebesgue integral (or more generally integral with respect to a measure) and study its
properties we will see that this result is true for all Borel measurable non-negative f .

7.16 First observe that F (x) − F (x−) > 0 iff P ({x}) > 0. The family of events {{x} :
P ({x}) > 0} can be at most countable as we have proven in problem 7.2 since these events

are disjoint and have positive probability. Hence F can have at most countable discon-
tinuities. For an example with infinitely many jump discontinuities consider the Poisson
distribution.

7.18 Let F be as given. It is clear that F is a nondecreasing function. For x < 0 and x ≥ 1
right continuity of F is clear. For any 0 < x < 1 let i∗ be such that 1

i∗+1
≤ x < 1

i∗ . If

xn ↓ x then there exists N such that 1
i∗+1

≤ xn < 1
i∗ for every n ≥ N . Hence F (xn) = F (x)

for every n ≥ N which implies that F is right continuous at x. For x = 0 we have that
F (0) = 0. Note that for any ε there exists N such that

∑∞
i=N

1
2i < ε. So for all x s.t.

|x| ≤ 1
N

we have that F (x) ≤ ε. Hence F (0+) = 0. This proves the right continuity of F

for all x. We also have that F (∞) =
∑∞

i=1
1
2i = 1 and F (−∞) = 0 so F is a distribution

function of a probability on R.
a. P ([1,∞)) = F (∞)− F (1−) = 1−

∑∞
n=2 = 1− 1

2
= 1

2
.

b. P ([ 1
10

,∞)) = F (∞)− F ( 1
10
−) = 1−

∑∞
n=11

1
2i = 1− 2−10.

c P ({0}) = F (0)− F (0−) = 0.
d. P ([0, 1

2
)) = F (1

2
−)− F (0−) =

∑∞
n=3

1
2i − 0 = 1

4
.

e. P ((−∞, 0)) = F (0−) = 0.
f. P ((0,∞)) = 1− F (0) = 1.
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Solutions to selected problems of Chapter 9

9.1 It is clear by the definition of F that X−1(B) ∈ F for every B ∈ B. So X is measurable
from (Ω,F) to (R,B).

9.2 Since X is both F and G measurable for any B ∈ B, P (X ∈ B) = P (X ∈ B)P (X ∈
B) = 0 or 1. Without loss of generality we can assume that there exists a closed interval
I such that P (I) = 1. Let Λn = {tn0 , . . . tnln} be a partition of I such that Λn ⊂ Λn+1 and
supk tnk − tnk−1 → 0. For each n there exists k∗(n) such that P (X ∈ [tnk∗ , t

n
k∗+1]) = 1 and

[tnk∗(n+1, t
n
k∗(n+1)+1] ⊂ [tnk∗(n), t

n
k∗(n)+1]. Now an = tnk∗(n) and bn = tnk∗(n) + 1 are both Cauchy

sequences with a common limit c. So 1 = limn→∞ P (X ∈ (tnk∗ , t
n
k∗+1]) = P (X = c).

9.3 X−1(A) = (Y −1(A) ∩ (Y −1(A) ∩X−1(A)c)c)∪(X−1(A) ∩ Y −1(A)c). Observe that both
Y −1(A)∩ (X−1(A))c and X−1(A)∩Y −1(A)c are null sets and therefore measurable. Hence
if Y −1(A) ∈ A′ then X−1(A) ∈ A′. In other words if Y is A′ measurable so is X.

9.4 Since X is integrable, for any ε > 0 there exists M such that
∫
|X|1{X>M}dP < ε by

the dominated convergence theorem. Note that

E[X1An ] = E[X1An1{X>M}] + E[X1An1{X≤M}]

≤ E[|X|1{X≤M}] + MP (An)

Since P (An) → 0, there exists N such that P (An) ≤ ε
M

for every n ≥ N . Therefore
E[X1An ] ≤ ε + ε ∀n ≥ N , i.e. limn→∞ E[X1An ] = 0.

9.5 It is clear that 0 ≤ Q(A) ≤ 1 and Q(Ω) = 1 since X is nonnegative and E[X] = 1. Let
A1, A2, . . . be disjoint. Then

Q(∪∞n=1An) = E[X1∪∞n=1An ] = E[
∑
n=1

X1An ] =
∞∑

n=1

E[X1An ]

where the last equality follows from the monotone convergence theorem. Hence Q(∪∞n=1An) =∑∞
n=1 Q(An). Therefore Q is a probability measure.

9.6 If P (A) = 0 then X1A = 0 a.s. Hence Q(A) = E[X1A] = 0. Now assume P is the
uniform distribution on [0, 1]. Let X(x) = 21[0,1/2](x). Corresponding measure Q assigns
zero measure to (1/2, 1], however P ((1/2, 1]) = 1/2 6= 0.

9.7 Let’s prove this first for simple functions, i.e. let Y be of the form

Y =
n∑

i=1

ci1Ai
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for disjoint A1, . . . , An. Then

EQ[Y ] =
n∑

i=1

ciQ(Ai) =
n∑

i=1

ciE[X1Ai
] = EP [XY ]

For non-negative Y we take a sequence of simple functions Yn ↑ Y . Then

EQ[Y ] = lim
n→∞

EQ[Yn] = lim
n→∞

EP [XYn] = EP [XY ]

where the last equality follows from the monotone convergence theorem. For general Y ∈
 L1(Q) we have that EQ[Y ] = EQ[Y +]− EQ[Y −] = EP [(XY )+]− EQ[(XY )−] = EP [XY ].

9.8 a. Note that 1
X

X = 1 a.s. since P (X > 0) = 1. By problem 9.7 EQ[ 1
X

] = EP [ 1
X

X] = 1.

So 1
X

is Q-integrable.

b. R : A → R, R(A) = EQ[ 1
X
1A] is a probability measure since 1

X
is non-negative and

EQ[ 1
X

] = 1. Also R(A) = EQ[ 1
X
1A] = EP [ 1

X
X1A] = P (A). So R = P .

9.9 Since P (A) = EQ[ 1
X
1A] we have that Q(A) = 0 ⇒ P (A) = 0. Now combining the

results of the previous problems we can easily observe that Q(A) = 0 ⇔ P (A) = 0 iff
P (X > 0) = 1.

9.17. Let

g(x) =
((x− µ)b + σ)2

σ2(1 + b2)2
.

Observe that {X ≥ µ + bσ} ∈ {g(X) ≥ 1}. So

P ({X ≥ µ + bσ}) ≤ P ({g(X) ≥ 1}) ≤ E[g(X)]

1

where the last inequality follows from Markov’s inequality. Since E[g(X)] = σ2(1+b2)
σ2(1+b2)2

we

get that

P ({X ≥ µ + bσ}) ≤ 1

1 + b2
.

9.19

xP ({X > x}) ≤ E[X1{X > x}]

=

∫ ∞

x

z√
2π

e−
z2

2 dz

=
e−

x2

2

√
2π

Hence

P ({X > x}) ≤ e−
x2

2

x
√

2π
9



.

9.21 h(t+s) = P ({X > t+s}) = P ({X > t+s, X > s}) = P ({X > t+s|X > s})P ({X >

s}) = h(t)h(s) for all t, s > 0. Note that this gives h( 1
n
) = h(1)

1
n and h(m

n
) = h(1)

m
n . So

for all rational r we have that h(r) = exp (log(h(1))r). Since h is right continuous this
gives h(x) = exp(log(h(1))x) for all x > 0. Hence X has exponential distribution with
parameter − log h(1).
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Solutions to selected problems of Chapter 10

10.5 Let P be the uniform distribution on [−1/2, 1/2]. Let X(x) = 1[−1/4,1/4] and Y (x) =
1[−1/4,1/4]c . It is clear that XY = 0 hence E[XY ] = 0. It is also true that E[X] = 0. So
E[XY ] = E[X]E[Y ] however it is clear that X and Y are not independent.

10.6 a. P (min(X, Y ) > i) = P (X > i)P (Y > i) = 1
2i

1
2i = 1

4i . So P (min(X, Y ) ≤ i) =

1− P (min(X,Y ) > i) = 1− 1
4i .

b. P (X = Y ) =
∑∞

i=1 P (X = i)P (Y = i) =
∑∞

i=1
1
2i

1
2i = 1

1− 1

4i
− 1 = 1

3
.

c. P (Y > X) =
∑∞

i=1 P (Y > i)P (X = i) =
∑∞

i=1
1
2i

1
2i = 1

3
.

d. P (X divides Y ) =
∑∞

i=1

∑∞
k=1

1
2i

1
2ki =

∑∞
i=1

1
2i

1
2i−1

.

e. P (X ≥ kY ) =
∑∞

i=1 P (X ≥ ki)P (Y = i) =
∑∞

i=1
1
2i

1
2ki−1

= 2
2k+1−1

.
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Solutions to selected problems of Chapter 11

11.11. Since P{X > 0} = 1 we have that P{Y < 1} = 1. So FY (y) = 1 for y ≥ 1. Also
P{Y ≤ 0} = 0 hence FY (y) = 0 for y ≤ 0. For 0 < y < 1 P{Y > y} = P{X < 1−y

y
} =

FX(1−y
y

). So

FY (y) = 1−
∫ 1−y

y

0

fX(x)dx = 1−
∫ y

0

−1

z2
fX(

1− z

z
)dz

by change of variables. Hence

fY (y) =


0 −∞ < y ≤ 0
1
y2 fX(1−y

y
) 0 < y ≤ 1

0 1 ≤ y < ∞

11.15 Let G(u) = inf{x : F (x) ≥ u}. We would like to show {u : G(u) > y} = {u :
F (Y ) < u}. Let u be such that G(u) > y. Then F (y) < u by definition of G. Hence
{u : G(u) > y} ⊂ {u : F (Y ) < u}. Now let u be such that F (y) < u. Then y < x for any x
such that F (x) ≥ u by monotonicity of F . Now by right continuity and the monotonicity of
F we have that F (G(u)) = infF (x)≥u F (x) ≥ u. Then by the previous statement y < G(u).
So {u : G(u) > y} = {u : F (Y ) < u}. Now P{G(U) > y} = P{U > F (y)} = 1− F (y) so
G(U) has the desired distribution. Remark:We only assumed the right continuity
of F .

12



Solutions to selected problems of Chapter 12

12.6 Let Z = ( 1
σY

)Y − (ρXY

σX
)X. Then σ2

Z = ( 1
σ2

Y
)σ2

Y − (
ρ2

XY

σ2
X

)σ2
X − 2( ρXY

σXσY
)Cov(X, Y ) =

1− ρ2
XY . Note that ρXY = ∓1 implies σ2

Z = 0 which implies Z = c a.s. for some constant
c. In this case X = σX

σY ρXY
(Y − c) hence X is an affine function of Y .

12.11 Consider the mapping g(x, y) = (
√

x2 + y2, arctan(x
y
)). Let S0 = {(x, y) : y = 0},

S1 = {(x, y) : y > 0}, S2 = {(x, y) : y < 0}. Note that ∪2
i=0Si = R2 and m2(S0) = 0.

Also for i = 1, 2 g : Si → R2 is injective and continuously differentiable. Corresponding
inverses are given by g−1

1 (z, w) = (z sin w, z cos w) and g−1
2 (z, w) = (z sin w,−z cos w). In

both cases we have that |Jg−1
i

(z, w)| = z hence by Corollary 12.1 the density of (Z,W ) is

given by

fZ,W (z, w) = (
1

2πσ2
e
−z2

2σ z +
1

2πσ2
e
−z2

2σ z)1(−π
2
, π
2
)(w)1(0,∞)(z)

=
1

π
1(−π

2
, π
2
)(w) ∗ z

σ2
e
−z2

2σ 1(0,∞)(z)

as desired.

12.12 Let P be the set of all permutations of {1, . . . , n}. For any π ∈ P let Xπ be the
corresponding permutation of X, i.e. Xπ

k = Xπk
. Observe that

P (Xπ
1 ≤ x1, . . . , X

π
n ≤ xn) = F (x1) . . . F (Xn)

hence the law of Xπ and X coincide on a πsystem generating Bn therefore they are equal.
Now let Ω0 = {(x1, . . . , xn) ∈ Rn : x1 < x2 < . . . < xn}. Since Xi are i.i.d and have
continuous distribution PX(Ω0) = 1. Observe that

P{Y1 ≤ y1, . . . , Yn ≤ yn} = P (∪π∈P{Xπ
1 ≤ y1, . . . , X

π
n ≤ yn} ∩ Ω0)

Note that {Xπ
1 ≤ y1, . . . , X

π
n ≤ yn} ∩ Ω0, π ∈ P are disjoint and P (Ω0 = 1) hence

P{Y1 ≤ y1, . . . , Yn ≤ yn} =
∑
π∈P

P{Xπ
1 ≤ y1, . . . , X

π
n ≤ yn}

= n!F (y1) . . . F (yn)

for y1 ≤ . . . ≤ yn. Hence

fY (y1, . . . , yn) =

{
n!f(y1) . . . f(yn) y1 ≤ . . . ≤ yn

0 otherwise
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Solutions to selected problems of Chapter 14

14.7 ϕX(u) is real valued iff ϕX(u) = ϕX(u) = ϕ−X(u). By uniqueness theorem ϕX(u) =
ϕ−X(u) iff FX = F−X . Hence ϕX(u) is real valued iff FX = F−X .

14.9 We use induction. It is clear that the statement is true for n = 1. Put Yn =∑n
i=1 Xi and assume that E[(Yn)3] =

∑n
i=1 E[(Xi)

3]. Note that this implies d3

dx3 ϕYn(0) =

−i
∑n

i=1 E[(Xi)
3]. Now E[(Yn+1)

3] = E[(Xn+1 + Yn)3] = −i d3

dx3 (ϕXn+1ϕYn)(0) by indepen-
dence of Xn+1 and Yn. Note that

d3

dx3
ϕXn+1ϕYn(0) =

d3

dx3
ϕXn+1(0)ϕYn(0)

+ 3
d2

dx2
ϕXn+1(0)

d

dx
ϕYn(0) + 3

d

dx
ϕXn+1(0)

d2

dx2
ϕYn(0)

+ ϕXn+1(0)
d3

dx3
ϕYn(0)

=
d3

dx3
ϕXn+1(0) +

d3

dx3
ϕYn(0)

= −i

(
E[(Xn+1)

3] +
n∑

i=1

E[(Xi)
3]

)
where we used the fact that d

dx
ϕXn+1(0) = iE(Xn+1) = 0 and d

dx
ϕYn(0) = iE(Yn) = 0. So

E[(Yn+1)
3] =

∑n+1
i=1 E[(Xi)

3] hence the induction is complete.

14.10 It is clear that 0 ≤ ν(A) ≤ 1 since

0 ≤
n∑

j=1

λjµj(A) ≤
n∑

j=1

λj = 1.

Also for Ai disjoint

ν(∪∞i=1Ai) =
n∑

j=1

λjµj(∪∞i=1Ai)

=
n∑

j=1

λj

∞∑
i=1

µj(Ai)

=
∞∑
i=1

n∑
j=1

λjµj(Ai)

=
∞∑
i=1

ν(Ai)

14



Hence ν is countably additive therefore it is a probability mesure. Note that
∫

1Adν(dx) =∑n
j=1 λj

∫
1A(x)dµj(dx) by definition of ν. Now by linearity and monotone convergence

theorem for a non-negative Borel function f we have that
∫

f(x)ν(dx) =
∑n

j=1 λj

∫
f(x)dµj(dx).

Extending this to integrable f we have that ν̂(u) =
∫

eiuxν(dx) =
∑n

j=1 λj

∫
eiuxdµj(dx) =∑n

j=1 λjµ̂j(u).

14.11 Let ν be the double exponential distribution, µ1 be the distribution of Y and µ2 be
the distribution of −Y where Y is an exponential r.v. with parameter λ = 1. Then we
have that ν(A) = 1

2

∫
A∩(0,∞)

e−xdx + 1
2

∫
A∩(−∞,0)

exdx = 1
2
µ1(A) + 1

2
µ2(A). By the previous

exercise we have that ν̂(u) = 1
2
µ̂1(u) + 1

2
µ̂2(u) = 1

2
( 1

1−iu
+ 1

1+iu
) = 1

1+u2 .

14.15. Note that E{Xn} = (−i)n dn

dxn ϕX(0). Since X ∼ N(0, 1) ϕX(s) = e−s2/2. Note that

we can get the derivatives of any order of e−s2/2 at 0 simply by taking Taylor’s expansion
of ex:

e−s2/2 =
∞∑
i=0

(−s2/2)n

n!

=
∞∑
i=0

1

2n!

(−i)2n(2n)!

2nn!
s2n

hence E{Xn} = (−i)n dn

dxn ϕX(0) = 0 for n odd. For n = 2k E{X2k} = (−i)2k d2k

dx2k ϕX(0) =

(−i)2k (−i)2k(2k)!
2kk!

= (2k)!
2kk!

as desired.

15



Solutions to selected problems of Chapter 15

15.1 a. E{x} = 1
n

∑n
i=1 E{Xi} = µ.

b. Since X1, . . . , Xn are independent Var(x) = 1
n2

∑n
i=1 Var{Xi} = σ2

n
.

c. Note that S2 = 1
n

∑n
i=1(Xi)

2 − x2. Hence E(S2) = 1
n

∑n
i=1(σ

2 + µ2)− (σ2

n
+ µ2) =

n−1
n

σ2.

15.17 Note that ϕY (u) =
∏α

i=1 ϕXi
(u) = ( β

β−iu
)α which is the characteristic function

of Gamma(α,β) random variable. Hence by uniqueness of characteristic function Y is
Gamma(α,β).

16



Solutions to selected problems of Chapter 16

16.3 P ({Y ≤ y}) = P ({X ≤ y} ∩ {Z = 1}) + P ({−X ≤ y} ∩ {Z = −1}) = 1
2
Φ(y) +

1
2
Φ(−y) = Φ(y) since Z and X are independent and Φ(y) is symmetric. So Y is normal.

Note that P (X + Y = 0) = 1
2

hence X + Y can not be normal. So (X, Y ) is not Gaussian
even though both X and Y are normal.

16.4 Observe that

Q = σXσY

[ σX

σY
ρ

ρ σY

σX

]
So det(Q) = σXσY (1− ρ2). So det(Q) = 0 iff ρ = ∓1. By Corollary 16.2 the joint density
of (X,Y ) exists iff −1 < ρ < 1. (By Cauchy-Schwartz we know that −1 ≤ ρ ≤ 1). Note
that

Q−1 =
1

σXσY (1− ρ2)

σY

σX
−ρ

−ρ σX

σY

Substituting this in formula 16.5 we get that

f(X,Y )(x, y) =
1

2πσXσY (1− ρ2)
exp

{
−1

2(1− ρ2)

((
x− µX

σX

)2

− 2ρ(x− µX)(y − µY )

σXσY

+

(
y − µY

σY

)2
)}

.

16.6 By Theorem 16.2 there exists a multivariate normal r.v. Y with E(Y ) = 0 and a
diagonal covariance matrix Λ s.t. X − µ = AY where A is an orthogonal matrix. Since
Q = AΛA∗ and det(Q) > 0 the diagonal entries of Λ are strictly positive hence we can
define B = Λ−1/2A∗. Now the covariance matrix Q̃ of B(X − µ) is given by

Q̃ = Λ−1/2A∗AΛA∗AΛ−1/2

= I

So B(X − µ) is standard normal.

16.17 We know that as in Exercise 16.6 if B = Λ−1/2A∗ where A is the orthogonal matrix s.t.
Q = AΛA∗ then B(X−µ) is standard normal. Note that this gives (X−µ)∗Q−1(X−µ) =
(X − µ)∗B∗B(X − µ) which has chi-square distribution with n degrees of freedom.

17



Solutions to selected problems of Chapter 17

17.1 Let n(m) and j(m) be such that Ym = n(m)1/pZn(m),j(m). This gives that P (|Ym| >
0) = 1

n(m)
→ 0 as m → ∞. So Ym converges to 0 in probability. However E[|Ym|p] =

E[n(m)Zn(m),j(m)] = 1 for all m. So Ym does not converge to 0 in Lp.

17.2 Let Xn = 1/n. It is clear that Xn converge to 0 in probability. If f(x) = 1{0}(x) then
we have that P (|f(Xn) − f(0)| > ε) = 1 for every ε ≥ 1, so f(Xn) does not converge to
f(0) in probability.

17.3 First observe that E(Sn) =
∑n

i=1 E(Xn) = 0 and that Var(Sn) =
∑n

i=1 Var(Xn) = n
since E(Xn) = 0 and Var(Xn) = E(X2

n) = 1. By Chebyshev’s inequality P (|Sn

n
| ≥ ε) =

P (|Sn| ≥ nε) ≤ Var(Sn)
n2ε2

= n
n2ε2

→ 0 as n →∞. Hence Sn

n
converges to 0 in probability.

17.4 Note that Chebyshev’s inequality gives P (|Sn2

n2 | ≥ ε) ≤ 1
n2ε2

. Since
∑∞

i=1
1

n2ε2
< ∞ by

Borel Cantelli Theorem P (lim supn{|
Sn2

n2 | ≥ ε}) = 0. Let Ω0 =
(
∪∞m=1 lim supn{|

Sn2

n2 | ≥ 1
m
}
)c

.

Then P (Ω0) = 1. Now let’s pick w ∈ Ω0. For any ε there exists m s.t. 1
m
≤ ε and

w ∈ (lim supn{|
Sn2

n2 | ≥ 1
m
})c. Hence there are finitely many n s.t. |Sn2

n2 | ≥ 1
m

which implies

that there exists N(w) s.t. |Sn2

n2 | ≤ 1
m

for every n ≥ N(w). Hence
Sn2 (w)

n2 → 0. Since
P (Ω0) = 1 we have almost sure convergence.

17.12 Y < ∞ a.s. which follows by Exercise 17.11 since Xn < ∞ and X < ∞ a.s. Let
Z = 1

c
1

1+Y
. Observe that Z > 0 a.s. and EP (Z) = 1. Therefore as in Exercise 9.8

Q(A) = EP (Z1A) defines a probability measure and EQ(|Xn − X|) = EP (Z|Xn − X|).
Note that Z|Xn − X| ≤ 1 a.s. and Xn → X a.s. by hypothesis, hence by dominated
convergence theorem EQ(|Xn−X|) = EP (Z|Xn−X|) → 0, i.e. Xn tends to X in L1 with
respect to Q.

17.14 First observe that |E(X2
n)−E(X2)| ≤ E(|X2

n−X2|). Since |X2
n−X2| ≤ (Xn−X)2 +

2|X||Xn − X| we get that |E(X2
n) − E(X2)| ≤ E((Xn − X)2) + 2E(|X||Xn − X|). Note

that first term goes to 0 since Xn tends to X in L2. Applying Cauchy Schwarz inequality
to the second term we get E(|X||Xn − X|) ≤

√
E(X2)E(|Xn −X|2), hence the second

term also goes to 0 as n →∞. Now we can conclude E(X2
n) → E(X2).

17.15 For any ε > 0 P ({|X| ≤ c+ε}) ≥ P ({|Xn| ≤ c, |Xn−X| ≤ ε}) → 1 as n →∞. Hence
P ({|X| ≤ c + ε}) = 1. Since {X ≤ c} = ∩∞m=1{X ≤ c + 1

m
} we get that P{X ≤ c} = 1.

Now we have that E(|Xn − X|) = E(|Xn − X|1{|Xn−X|≤ε}) + E(|Xn − X|1{|Xn−X|>ε}) ≤
ε + 2c(P{|Xn − X| > ε}), hence choosing n large we can make E(|Xn − X|) arbitrarily
small, so Xn tends to X in L1.
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Solutions to selected problems of Chapter 18

18.8 Note that ϕYn(u) = Πn
i=1ϕXi

(u
n
) = Πn

i=1e
− |u|

n = e−|u|, hence Yn is also Cauchy with
α = 0 and β = 1 which is independent of n, hence trivially Yn converges in distribution
to a Cauchy distributed r.v. with α = 0 and β = 1. However Yn does not converge to
any r.v. in probability. To see this, suppose there exists Y s.t. P (|Yn − Y | > ε) → 0.
Note that P (|Yn − Ym| > ε) ≤ P (|Yn − Y | > ε

2
) + P (|Ym − Y | > ε

2
). If we let m = 2n,

|Yn − Ym| = 1
2
| 1
n

∑n
i=1 Xi − 1

n

∑2n
i=n+1 Xi| which is equal in distribution to 1

2
|U −W | where

U and W are independent Cauchy r.v.’s with α = 0 and β = 1. Hence P (|Yn − Ym| > ε
2
)

does not depend on n and does not converge to 0 if we let m = 2n and n →∞ which is a
contradiction since we assumed the right hand side converges to 0.

18.16 Define fm as the following sequence of functions:

fm(x) =


x2 if |x| ≤ N − 1

m
(N − 1

m
)x− (N − 1

m
)N if x ≥ N − 1

m
−(N − 1

m
)x + (N − 1

m
)N if x ≤ −N + 1

m
0 otherwise

Note that each fm is continuous and bounded. Also fm(x) ↑ 1(−N,N)(x)x2 for every x ∈ R.
Hence ∫ N

−N

x2F (dx) = lim
m→∞

∫ ∞

−∞
fm(x)F (dx)

by monotone convergence theorem. Now∫ ∞

−∞
fm(x)F (dx) = lim

n→∞

∫ ∞

−∞
fm(x)Fn(dx)

by weak convergence. Since
∫∞
−∞ fm(x)Fn(dx) ≤

∫ N

−N
x2Fn(dx) it follows that∫ N

−N

x2F (dx) ≤ lim
m→∞

lim sup
n→∞

∫ N

−N

x2Fn(dx) = lim sup
n→∞

∫ N

−N

x2Fn(dx)

as desired.

18.17 Following the hint, suppose there exists a continuity point y of F such that

lim
n→∞

Fn(y) 6= F (y)

Then there exist ε > 0 and a subsequence (nk)k≥1 s.t. Fnk
(y) − F (y) < −ε for all k, or

Fnk
(y)− F (y) > ε for all k. Suppose Fnk

(y)− F (y) < −ε for all k, observe that for x ≤ y,
Fnk

(x)− F (x) ≤ Fnk
(y)− F (x) = Fnk

(y)− F (y) + (F (y)− F (x)) < −ε + (F (y)− F (x)).
Since f is continuous at y there exists an interval [y1, y) s.t. |(F (y) − F (x))| < ε

2
, hence

Fnk
(x) − F (x) < − ε

2
for all x ∈ [y1, y). Now suppose Fnk

(y) − F (y) > ε, then for x ≥ y,
Fnk

(x) − F (x) ≥ Fnk
(y) − F (x) = Fnk

(y) − F (y) + (F (y) − F (x)) > ε + (F (y) − F (x)).
19



Now we can find an interval (y, y1] s.t. |(F (y)−F (x))| < ε
2

which gives Fnk
(x)−F (x) > ε

2

for all x ∈ (y, y1]. Note that both cases would yield∫ ∞

−infty

|Fnk
(x)− F (x)|rdx > |y1 − y| ε

2

which is a contradiction to the assumption

lim
n→∞

∫ ∞

−infty

|Fn(x)− F (x)|rdx = 0.

Therefore Xn converges to X in distribution.
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Solutions to selected problems of Chapter 19

19.1 Note that ϕXn(u) = eiuµn−
u2σ2

n
2 → eiuµ−u2σ2

2 . By Lévy’s continuity theorem it follows
that Xn ⇒ X where X is N(µ, σ2).

19.3 Note that ϕXn+Yn(u) = ϕXn(u)ϕYn(u) → ϕX(u)ϕY (u) = ϕX+Y (u). Therefore Xn +
Yn ⇒ X + Y
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Solutions to selected problems of Chapter 20

20.1 a. First observe that E(S2
n) =

∑n
i=1

∑n
j=1 E(XiXj) =

∑n
i=1 X2

i since E(XiXj) = 0

for i 6= j. Now P ( |Sn|
n
≥ ε) ≤ E(S2

n)
ε2n2 =

nE(X2
i )

ε2n2 ≤ c
nε2

as desired.

b. From part (a) it is clear that 1
n
Sn converges to 0 in probability. Also E(( 1

n
Sn)2) =

E(X2
i

n
→ 0 since E(X2

i ) ≤ ∞, so 1
n
Sn converges to 0 in L2 as well.

20.5 Note that Zn ⇒ Z implies that ϕZn(u) → ϕZ(u) uniformly on compact subset of R.
(See Remark 19.1). For any u, we can pick n > N s.t. u√

n
< M , supx∈[−M,M ] |ϕZn(x) −

ϕZ(x)| < ε and |varphiZ( u√
n
)− ϕZ(0)| < ε. This gives us

|ϕZn(
u√
n

)− ϕZ(0)| = |ϕZn(
u√
n

)− ϕZ(
u√
n

)|+ |ϕZ(
u√
n

)− ϕZ(0)| ≤ 2ε

So ϕZn√
n
(u) = ϕZn( u√

n
) converges to ϕZ(0) = 1 for every u. Therefore Zn√

n
⇒ 0 by continuity

theorem. We also have by the strong law of large numbers that Zn√
n
→ E(Xj) − ν. This

implies E(Xj)− ν = 0, hence the assertion follows by strong law of large numbers.
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