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Preface

If you toss a fair coin many times, you would expect the coin to land
heads as often as tails. The goal of this book is to make this intuition
precise. As the number of tosses increases, the proportion of heads
approaches 1/2, but in what way, how quickly, and what deviations
should we expect? Heads or Tails is an introduction to probability
theory; in particular, it is an introduction to the study of convergence
properties of sequences of observations. In this book, I will present
an area of mathematics that has both utility and beauty.

Probability theory is the branch of mathematics concerned with
the study of random phenomena. A random phenomenon is an ex-
periment with an outcome that depends on chance, either because
the exact conditions for its outcome are not known or because the
randomness of the experiment actually exists. However, we will not
discuss the sources of randomness in random phenomena; instead,
we will start with a mathematical model of probability. Heads or
Tails presents an introduction to the mathematical models of these
phenomena and to the rigorous deduction of the laws we expect the
outcomes of sequences of independent experiments to follow.

While writing this book, I kept the following three points in mind.

1. A freshman- or sophomore-level analysis course is all that
is needed to understand the material in this book. In particular,
a knowledge of measure theory is not necessary. This book is aimed

vii



viii Preface

toward undergraduate students in math, science, and engineering pro-
grams, as well as teachers and all people with a basic knowledge of
upper-level mathematics.

2. The level of rigor is that of most mathematics textbooks. The
definitions and statements are precise and the proofs are complete.

3. Our discussion will essentially be limited to studying the
game of Heads or Tails with a possibly unfair coin: we will study
the laws that describe the result of sequences of identical, indepen-
dent experiments with two possible outcomes. Although this choice
may appear too restrictive, the simple game of Heads or Tails actually
harbors much of the complexity of the general study of probability.
This opinion is evident in Borel’s statement that “The game of Heads
or Tails, which seems so simple, is characterized by great generality
and leads, when studied in detail, to the most sophisticated mathe-
matics.”!

This book is an invitation to probability theory. Some of the
concepts and theorems that it contains are difficult because “elemen-
tary” is not a synonym for “easy”. The reader should not expect to
find strategies for winning the lottery or for maximizing returns from
slot machines. On the contrary, the mathematics that we will study
shows that the best strategy for such games of chance is abstinence.

Following the excellent suggestion of Pierre Damphousse, the
founder and editor of the series in which the French edition of this
book appears, I included precise historical background and biograph-
ical sketches. A brief bibliography is also included.

To conclude this Preface, I would like to thank the people who
helped me pursue mathematical knowledge; the list of colleagues and
students who should be thanked is too long to include here. In par-
ticular, however, I would like to acknowledge Jean Blanchard and
Jean-Pierre Conze, who sparked my interest in mathematics, as well
as my friends and colleagues Pierre Damphousse, Marc Peigné, and
Elisabeth Rouy, who helped me while writing this short work.

Emmanuel Lesigne

Tours, February 2001

1Emile Borel, Principes et formules classiques du Calcul des Probabilités,
Chapitre V: Jeu de pile ou face; 1924.
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Prerequisites and
Overview

Throughout this book, R is the set of real numbers, Z is the set of
all integers, N is the set of nonnegative integers, and N* is the set of
positive integers.

The prerequisite knowledge used in this book is generally covered
in the first two years of college:

e Elementary set theory: sets, product sets, functions;
e Combinatorics: countability, combinations;

e Real numbers: sequences, limits, comparison of sequences
(the meaning of the symbols ~, o, and O is reviewed in
Chapter 6);

e Real functions of a real variable: limits and continuity, clas-
sical functions, integration of a continuous function over a
real interval, Riemann sums.

In probability theory, a limit theorem is a theorem about conver-
gence that relates to the outcome of a sequence of trials of a proba-
bilistic experiment. Chapters 5 through 13 are each centered around
a type of limit theorem.

Heads or Tuails is composed of three parts. In the first part,
consisting of Chapters 1 through 4, we provide the mathematical

1



2 Prerequisites and Overview

model used to describe a finite probabilistic experiment (that is, a
probabilistic experiment with a finite number of possible outcomes);
in the first and third sections of Chapter 11, we extend this discussion
to infinite sequences of probabilistic experiments. In the second part,
consisting of Chapters 5 through 10, we discuss theorems concerned
with the probabilities associated to finite experiments. Two main
results contained in these chapters are the weak law of large numbers
and the central limit theorem. In addition, we discuss the large and
moderate deviations estimates, which add precision to the weak law
of large numbers and the central limit theorem, as well as the arcsine
law and the local limit theorem. In the third part, consisting of
Chapters 11 through 14, we model infinite probabilistic experiments.
Here we provide various forms of the strong law of large numbers, a
proof of the law of the iterated logarithm, and some results about the
recurrence of random walks.

Starting with Chapter 5, each chapter opens with an introduction
to the material of that chapter. A summary of this book can be
obtained by assembling these introductions.

When combined with a presentation of countability, continuous
and discrete probability distributions, and conditional probability,
Chapters 1 through 7 would be appropriate for a first course in prob-
ability.
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Chapter 1

Modeling a Probabilistic
Experiment

1.1. Elementary Experiments

We will start by presenting the mathematical model that describes
a probabilistic experiment having a finite number d of possible out-
comes. Each outcome is represented by a variable w?, and the sample
space is the set Q = {wh w?, ..., wd} of all possible outcomes. To
each outcome w' we associate a probability p;. Each probability p; is

. d
a nonnegative real number and > ._, p; = L.

It is important to note that we assume that the probability of
each outcome is given a priori. The work consisting of determining
these probabilities from observations belongs to the study of statis-
tics, a branch of mathematics that is related to but distinct from
probability theory. The study of statistics uses tools and results that
are presented in this book, but we will not deal with statistics directly.

Let us return to our model in order to introduce some vocabulary.
A subset of € is called an event and the probability of an event is the
sum of the probabilities of the outcomes belonging to that event. In
symbols, if A C 2 is an event, then its probability P(A) is defined by

P(A):= )" p;.

wleA

ODI



4 1. Modeling a Probabilistic Experiment

In particular, we have that P({w'}) = p;, which we will write simply
as P(w') = p;.

We let x, be the characteristic function of A; that is, x, is the
function mapping 2 to {0,1} that takes the value 1 on A and the
value 0 on its complement A¢. Thus

d
P(A) = Z Pix . (W)

In summary, our mathematical model is defined by a pair (92, P)
where € is a finite set and P is a function from the set of subsets of
Q to the interval [0,1] satisfying the following two conditions:

(1) P(Q) = 1.

(2) If A and B are disjoint subsets of €2, then P(AU B) =
P(A) + P(DB).

A pair (£, P) satisfying these conditions is called a finite probability
space and the function P is called a probability. It is easy to check
the following properties of P:

(1) P(0)=0.
(2) If A C Q, then P(A°) =1— P(A).
(3) If A,B C Q, then P(AUB) = P(A) + P(B) — P(AN B).

In the special case where all the outcomes are equally likely, we
say that the space 2 has a uniform probability. In this case, it is easy
to calculate the probability of an event: this probability is simply
the number of elements in the event divided by d, the number of
elements of 2. This situation is described by the well-known rule that
“the probability of an event is the ratio of the number of favorable
outcomes to the total number of possible outcomes”.

Here are a few examples.

Example. The flip of a fair coin is described by a set 2 of two
elements and a probability giving the same value to each of the two
outcomes. If we let 1 represent the outcome heads and 0 represent
the outcome tails, then 2 = {0,1} and P(0) = P(1) = &. We say
that the space {0, 1} is equipped with the uniform probability (%, %)



1.2. Sequences of Elementary Experiments 5

Example. More generally, the model describing a probabilistic ex-
periment with two possible outcomes, which we call success and fail-
ure, is determined by a real parameter p between 0 and 1 that rep-
resents the probability of success. Writing 1 for the outcome success
and 0 for the outcome failure, we have that Q = {0,1}, P(0) =1—p
and P(1) = p. We say that the space {0,1} is equipped with the
probability (1 — p, p).

Example. The drawing of a number in a lottery (where the numbers
range from, say, 1 to 49) is modeled by the pair (2, P), where 2 =
{1,2,3,...,49} and P is the uniform probability on §2 (in this case,
P(w) = 45 for each w € Q). If we only care about the parity of the
number drawn, the relevant model would be a space 2 of two elements

equipped with the probability (%, %)

Example. Even simple experiments can yield enormous probabil-
ity spaces. For example, the space Q2 needed to describe the draw-
ing of a bridge hand, that is a choice of 13 cards out of 52, has
635,013, 559,600 elements (this is the binomial coefficient (i’;), see
Chapter 4). If the deck is randomly shuffled before the cards are
distributed, this space will have a uniform probability.

As in every branch of mathematics, there are a few notations that
are specific to probability theory. If X is a function from €2 to a set
E and if F is a subset of E we write the inverse image of F' by X as
(X € F). In symbols, we have

(XeF)={weQ: X(w)e F}.

Here we treat X as an element of the set £ and X (w) as the value of
this element at the outcome w. The probability of the event (X € F)
is written as P(X € F)).

1.2. Sequences of Elementary Experiments

In this book, we will mostly deal with sequences of identical and
independent experiments. We will only consider finite sequences of
experiments in the first part of the book, and we will start studying
infinite sequences in Chapter 11.



6 1. Modeling a Probabilistic Experiment

We thus consider a composite experiment that consists of repeat-
ing an elementary experiment n times. We will suppose that the
elementary experiment has two possible outcomes: success, denoted
by the digit 1, and failure, denoted by the digit 0. Our model will in-
corporate the fact that these n elementary experiments are identical
and independent. Let p be the probability of success and ¢ =1 —p
be the probability of failure. An outcome of the composite experi-
ment is represented by a sequence of n zeros and ones. The space
Q, which we will write as €2, is the set of ordered n-tuples of ze-
ros and ones; that is, , = {0,1}". We denote the elements of €,
by w = (wy,ws,...,w,), where each w; equals 0 or 1. Finally, the
probability on the space €2, is denoted by P,,. The fact that all the
elementary experiments in the sequence are identical is conveyed by
the rule

for each i between 1 and n

P,(w; =0) =q and Pp(w; =1) = p.

The fact that the outcome of the (i + 1)-st trial is independent of the
results of the ¢ previous trials is conveyed by the rule

for each (ey,ea,...,¢;) € {0, l}i,
Py(witr =1 and (w1,wa,...,w;) = (e1,e2,...,€))
= Pn(le = 1) X P,n((wl,wg, . ,wi) = (61,62,. . .,61',)).

Inducting on n implies that these two rules uniquely define the prob-
ability P,. In fact, if we let S, (w) be the number of successes for each
outcome w of the composite experiment, then the probability P, is
given by

Pn(u,) _ pSn(w)qn—Sn(w).
We say that the space €, = {0,1}" is equipped with the product
probability P, = (q,p)®™.

If the probability of success equals the probability of failure, then
the space €, is equipped with a uniform probability. This agrees with
what intuition suggests: in the experiment that consists of tossing a
fair coin n times and recording the successive results, all the outcomes
have equal probability. In this case, the probability of an event is
simply equal to its cardinality divided by 2".
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Chapter 2

Random Variables

Let (€2, P) be a finite probability space. A function defined from 2
to R is called a random wvariable. Random variables are traditionally
denoted by capital letters; for example,

X:Q-R
wr X(w).

The probability distribution of the random variable X is given by the
probabilities of the events corresponding to the values of X. If the
random variable X takes the values x1,xs,...x, then the events
(X = ;) for i from 1 to k form a partition of 2 and the distribution
of X is given by the pairs (z;, P(X = x;)) for i ranging from 1 to k.

The expected value E[X] of a random variable X is given by the
formula

k
EX] =Y zP(X =z,).
i=1

The concept of expected value as well as its name (expectatio, in
Latin) were introduced by Christiaan Huygens in an analysis of bets
in games of chance.

le. Huygens, De ratiociniis in aleae ludo, 1657.

\II



8 2. Random Variables

This number E[X] represents the average, under the probability
P, of the values taken by the random variable X. The following
properties follow easily from the definition of expected value.

e If X is a constant function, then F[X] = X; in particular,
E[E[X]] = E[X] for any random variable X.

e If X >0, then E[X] > 0.

o |[E[X]| < E[IX]].

e The function E acts linearly on the real vector space of
random variables on Q (that is, if X and X’ are two random

variables and A is a real number, then E[X + X'] = F[X] +
E[X'] and EAX] = AE[X]).

To verify the last statement, note that a random variable X can
be represented in several ways as a linear combination of characteristic
functions of events. If X = 3" y;x 4, 1s such a representation, then
E[X] =) uiP(A).

This remark also provides a proof of the formula for the expected
value of a function of a random variable. If X is a random variable and
if f is a real function defined on the image A of X, then f(X) := foX
is a random variable and

(2.1) E[f(X)] =) f(x)P(X =x).

zEA
The following two inequalities are simple to prove and very useful.

Proposition 2.1 (Markov’s inequality). Let X be a random variable
taking only nonnegative values. Then, for each a > 0,

P(X >a) < ~E—[X~]

Proof. Let z;,z9,...,7, be the values taken by X. These are non-
negative real numbers, so

P(X>a)= Y P(X=z)< Y %P(X = z,) < - E[X].
9T >a T >a



2. Random Variables 9

Corollary 2.2 (Bienaymé?-Chebyshev? inequality). Let X be a ran-
dom wvariable. Then, for each a > 0,
1

P(!‘X_E[X]l za) S 2

S E[(X - X))
This follows from Proposition 2.1 by applying Markov’s inequality
to the random variable (X — E[X])?.

The value E[(X — E[X])?] is called the variance of the random
variable X and is denoted by var(X). By expanding the square and
using the linearity of the expected value function, we see that

var(X) = E [(X — E[X))?] = E[X?] - (E[X))".

The square root of the variance of X is called the standard deviation
of X. The standard deviation measures the average deviation of the
values of the random variable from the expected value.

We conclude with a remark about notation: the expected value
associated with a probability P, is naturally denoted by E,,.

2Mm. Bienaymé, Considérations a 'appui de la découverte de Laplace sur la loi
de probabilité dans la méthode des moidres carrés, Journal de Mathématiques pures
et appliquées, vol. 12, pp. 158-176, 1867.

3p. L. Chebyshev, Des valeurs moyennes, Journal de Mathématiques pures et
appliquées, vol. 12, pp. 177-184, 1867.
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Chapter 3

Independence

We will introduce the concept of independence first for a family of
events and then for a family of random variables. As above, we con-
sider a finite probability space (€2, P).

In intuitive terms, we say that two events are independent if the
result of one does not affect the result of the other. We can make this
rigorous in the following way. Two sets A and B of 2 are independent
events if P(AN B) = P(A) x P(B). Except in the trivial case where
P(B) = 0, we can write this as P(AN B)/P(B) = P(A)/P(Q).

Example. The model that describes the outcome of two independent
and identical trials of an elementary experiment with probability of
success p and probability of failure ¢ =1—p is

Q= {(Ov 0)7 (07 1), (150)7 (lv 1)} = {(wth) twi=0or 1}’

P(0,0) =¢? P(0,1) = P(1,0) =pg, P(1,1)=p"

The model for the outcome of two experiments (each having two pos-
sible outcomes) that are independent but not necessarily identical
and for which the probability of success are respectively denoted p;
and pq, is given by the same space ) as above but equipped with the
probability

P(0,0) = (1-p1)(1 —p2),  P(0,1) = (1—p1)p2,

P(1,0) =p1(1 = p2),  P(1,1) = pips.



12 3. Independence

The reader should verify the elementary fact that the probability P
is uniquely determined by the values of P(w; = 1) for ¢ = 1,2 and the
condition that the events (w; = 1) and (ws = 1) are independent.

A family of events {A1, Aa, ..., Ar} is called a family of indepen-
dent events if

P(AilﬂAizﬂ--cﬂAu):P(Ail)><P(Ai2)><--~><P(A,-,)

for all integers i1,%2,...,7; such that 1 < i) < ig < -+ < 4 < k.
There are a few important observations to make about families of
independent events.

e Events A1, As, ..., Ay satisfying P (ﬂle Ai) = Hle P(4;)
are not necessarily independent. (In particular, this is clear
if one of the events is empty.)

e The events in a family of pairwise independent events are not
necessarily mutually independent. Here is the simplest illus-
tration of this fact, due to Bernstein. Consider two tosses
of fair coin, with success corresponding to heads and fail-
ure corresponding to tails. We examine the following three
events: A; := (w; = 1), that is, in the first toss the coin
lands heads; A; := (wg = 1), that is, in the second toss
the coin lands heads; and Az := (w; = wy), that is, the
results of the two tosses are the same. Then each pair of
these events is a pair of independent events. However, the
events A1, Az, and As are not mutually independent, since
P(A10A20A3) = i and P(Al) = P(AQ) :P(A3) = %

The concept of independence for random variables is a natural

extension of the concept of independent events. Let { X1, Xo, ..., X}

be a family of random variables defined on (Q, P). These variables

are independent if the events (X1 = 1), (X2 = z2),...,( Xk = xx)

are independent for all real z1,xs,...,2,. The reader should verify

the following statements.

e The random variables X1, Xs, ..., X} are independent if and
only if the events (X7 € By), (X2 € Ba),..., (X, € By) are
independent for all subsets By, Bs, ..., By of R.
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e The property of independence does not depend on the order
of the random variables, and a subset of a family of inde-
pendent random variables is also a family of independent
events.

e The random variables X, X5, ..., X} are independent if and
only if the events (X; = z; and --- and X;_; =z;_;) and
(X; = z;) are independent for all j between 2 and k and
for all z1,x2,...,z;. (If this is the case, we say that the
random variable X; is independent of the random vector
(Xl,XQ, . ,Xj_l).)

o A given family of subsets of € forms a family of independent
events if and only if their characteristic functions form a
family of independent random variables.

Remark. In the penultimate assertion above, we wrote the event
(X1 =21)N (X2 = x2) as (X1 = x1 and X3 = z). This use of the
conjuction “and” to correspond to the intersection of sets is natural,
and we will use this throughout the rest of the book.

The following two propositions will be very useful.

Proposition 3.1. Suppose that (X;):cr is a finite family of inde-
pendent random variables and that J and K are subsets of I. If
JNK =0,Y is a real function defined on (X;)ics, and Z is a real
function defined on (X;);ck, then Y and Z are independent random
variables.

Proof. Let f and g be real functions defined respectively on R’ and
RX. Suppose that ¥ = f((Xj)jeJ) and Z = g((Xk)keK), and let
a,b € R. Let A be the (finite) set of (x;);es such that f((z;)jes) =a
and (X;(w));c; = (x;)jes for some w € Q. Let B be the set of
(zk)kex such that g((zx)kex) = b and (Xk(w))rex = (Tr)rex for
some w € ). Then

Y=o=|J NE=2). Z=b= | K=z
(z;)EAjET (¢x)EB kEK

and

(Y =aand Z =b) = U () (Xi=u).

(z;)€A, (zr)EB i€JUK
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Since this is the union of pairwise disjoint events,

P(Y =aand Z = b) = > P(ﬂ (X,-:xi)>.

(z;)€A, (zx)€EB  \EJUK
By the independence of the random variables X, we obtain

(z;)€A, (zx)€B i€JUK

=( X IIPx=2))( 3 I PXe=m)
(z;)eAjET (zx)EB KkEK
=P(Y =a)P(Z =b).

This proves that the variables Y and Z are independent. O
Proposition 3.2. If X and Y are independent random wvariables,
then

E[XY] = E[X] x E[Y]
and

var(X +Y) = var(X) + var(Y).

Proof. Let A be the (finite) set of values taken by X, and let B be
the (finite) set of values taken by Y. Then
EXY]= Y  abP(X=aandY =b),
(a,b)EAXB

and the condition of independence implies that

E[XY]= Y abP(X =a)P(Y =b)

a€AbeB
=Y aP(X =a) ) _bP(Y =b) = E[X] x E[Y].
a€A beB

Using this formula, we see that
var(X +Y) = E[(X +Y)?] - (E[X +Y])
= (E[X?] + E [Y?] +2E[XY]) — (E[X])* + E[Y]? + 2E[X]E[Y])
=E[X?] - EX)?+ E[Y?] - E[Y]? = var(X) + var(Y).
0



http://dx.doi.org/10.1090/stml/028/05

Chapter 4

The Binomial
Distribution

The rest of this book will be focused on the following problem. Let S,
be the number of successful outcomes in a sequence of n identical and
independent random trials, each having two possible outcomes. What
can we say about the behavior of the sequence (S,) as n approaches
infinity?

Let p be the probability of success for each of the elementary
experiments, and consider the probability space (2, P,) described
in Section 1.2. Let the function S, defined on 2, = {0,1}" be the
random variable defined by S,(w) = Y i w;.

Before proceeding, we must review the concept of the binomial
coefficients (:) If k and n are two integers such that 0 < k < n, then

(¥) is the number of k-element subsets of an n-element set. These

numbers satisfy the recurrence relation of Pascal’s triangle

(3):(?):1; (Zii):(:)+<kil) for 0< k <.

They are given by the formula

(+) = memmn
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and they appear in Newton’s binomial theorem

(2.1 oy =3 ()t

k=0

Proposition 4.1. The random variable S,, only takes integer values
between 0 and n and

n —
Palsn =) = ()t -t
for every k between 0 and p.

We say that the random variable S, follows a binomial distribu-
tion with parameters n and p.

Proof. Let ¢ =1 — p. For each w € Q,,
Pn(w) — pSn(u))qn-Sn(w)'

The event (S, = k) includes exactly the outcomes w with probability
p*q" . Therefore, the probability of this event equals its cardinality
multiplied by pF¢®~F. Since the event’s cardinality is the number
of ways to obtain k successes among the outcomes of n trials, the
cardinality is (}). a

A random variable X follows the Bernoulli distribution with pa-
rameter p if it only takes the values 0 and 1 and if P(X = 1) = p.
This is the same as the binomial distribution with parameters 1 and
p. The following proposition, which follows easily from the results of
the previous chapter, shows how the binomial distribution with pa-
rameters n and p relates to the Bernoulli distribution with parameter
p.

Proposition 4.2. If X, X5,..., X, are independent random vari-
ables following a Bernoulli distribution with parameter p, then their
sum X, + Xo + -+ + X, is a random variable following a binomial
distribution with parameters n and p.

Proposition 4.3. E[S,] = np and var(S,) = np(1l — p).
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Proof of Proposition 4.3. Proposition 4.1 implies that
_ n
E[S,)=) k F(1—p)nk
ESEDY < k)z) (1-p)
k=0
and, by using formula (2.1), that

" n
var(Sy,) = k—ESn2<>k1~ n—k,
(Sn) kzzo( [SnD)* ()P (1 =)
From these, the formulas given in Proposition 4.3 follow easily from
Newton’s binomial theorem. (Starting with the binomial formula
(4.1), use the formulas obtained by differentiating twice with respect
to the variable a.)

Note that Proposition 4.3 also follows immediately from Propo-
sitions 4.2 and 3.2. Indeed, if X is a random variable following a
Bernoulli distribution with parameter p, then E[X] = p and var(X) =

p(1—p). O
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Chapter 5

The Weak Law of Large
Numbers

The probability of success for a random experiment is usually ob-
tained experimentally from the frequency of success in a sequence
of (identical and independent) repetitions of that experiment. How-
ever, in our mathematical model the probability of success is given
a priori. The law of large numbers reconciles these two notions of
probability. In fact, it shows that for a large number of trials, it is
very probable that the frequency of success is close to the theoretical
probability. This is the first justification for our mathematical model
of probability.

Consider the situation studied in the preceding section in which
Q,, = {0,1}™ is the space of outcomes for n trials of the experiment.
Supposing that these trials are identical and independent, the space
2, is equipped with the product probability P, = (1—p, p)®", where
p is a parameter between 0 and 1 that represents the theoretic proba-
bility of success (see Section 1.2). As before, we let S, be the random
variable that counts the number of successes

Sp(w) =wi +wa + -+ + wy, where w = (w1,wa,...,wp) € Q.

The random variable S,, follows a binomial distribution with param-
eters n and p.

19
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The empirical (or experimental) probability of success is S—n" For
large n, we expect this frequency to be close to p. The following the-
orem says that this is very likely to be true. The result appeared for
the first time in a posthumously published work by Jacob Bernoulli.!

Theorem 5.1 (weak law of large numbers). For each € > 0,

Sn

w
n

— P

> 6> —0
as napproaches infinity, and this convergence is uniform in p.

This was named the weak law of large numbers by Siméon Denis
Poisson,? who generalized Bernoulli’s result to cases where the prob-
ability of success varies from trial to trial. (We will discuss this result
later; see Theorem 11.12.)

Proof. The variance of the random variable S,, is var(S,,)=np(1—p).
By the Bienaymé-Chebyshev inequality (Corollary 2.2),

1 p(1—p) 1
=
(ne)? var(Sn) nez = 4ne?’

P, (|Sn — np| > ne) <
which proves the theorem. (]

In the case of tossing a fair coin (p = 1/2), the weak law of large
numbers says that the proportion of sequences of 0’s and 1’s of length
n in which the frequency of 1’s differs from 1/2 by less than € tends
to 1 as n approaches infinity.

Bernoulli’s weak law of large numbers has a nice application to
the problem of uniformly approximating a continuous function on
an interval of R by a polynomial. The Weierstrass approximation
theorem states that, for any real function f defined and continuous
on a closed and bounded interval [a, b] of R and for every € > 0, there
exists a real polynomial function g such that

sup [f(z) —g(z) <e.
<z<b

a

13, Bernoulli, Ars conjectandsi, 1713.

S. D. Poisson, Recherches sur la probabilité des jugements en matiére crim-
inelle et en matiére civile, Paris, 1837.
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Serge Bernstein® gave a proof of this result using the weak law of
large numbers. His method has the advantage that it gives an explicit
formula for the approximating polynomials.

Proposition 5.2 (Bernstein polynomials). Let f be a real function
that is defined and continuous on the interval [0,1]. Then

s =30 (1)1 (5) et - oyt

k=0

sup — 0

0<z<1

as n approaches infinity.

This theorem implies that the polynomials approximating f on
an arbitrary interval [a, b] are given by

"\ /n k z—a\" (b—z\"7*
=3 (o) (o) (55) (=2)
k=0
Proof. Fix an € > 0. Since f is uniformly continuous, there exists
an 7 > 0 such that

0<zy<landfz—yl <n=|[f(z) - f(y) <e

Now, consider the probability space ({,,P,) as previously defined
and the random variable f(5=

n

the expected value of this random variable; indeed,

NRETE -
- kg (Z) f(%) PH(1 - p) k.

By the law of large numbers, there exists an integer ng, independent
of the parameter p, such that

pn(S

= ~p‘ > 77> <€
n
for every n > ng. We have

£ [r(2)] -1

3g. Bernstein, Démonstration du théoréme de Weierstrass fondée sur le calcul
des probabilités, Soobsch. Charkovskovo Mat. Obsch., vol. 13, pp. 1-2, 1912.

). Bernstein’s polynomials appear as

?

> (1(5) - 1) Patsu =p

k=0
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and the triangle inequality implies that an upper bound for this ex-

pression is
f (%) - f(p)

>
+ 5 ([ (5)]+1rwr) pis. =

| £—p|<n
| %=p|>n

< Y BSi=R+ Y 2 sup |f@)|Pu(Sy = K

0<z<1
£_p|<n £ _p|>n
Sn Sn
= €P, ( ————p} 577) +2 sup |f(z)|Pn (’—— —p] >77).
n 0<z<1 n
Thus for every n > ny,
Sn
E, [f (*)] —f(P)l <e+2¢ sup |f(z)|
n 0<z<1

This proves that |E, [f (22)] — f(p)| can be made arbitrarily small,
uniformly with respect to p, by picking a large enough n. 0O
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Chapter 6

The Large Deviations
Estimate

Many of the results we will discuss are refinements of the weak law
of large numbers. We will now present the first of these refinements,
which establishes that the rate of convergence in this law is exponen-
tial.

By using the Bienaymé-Chebyshev inequality in the proof of the
weak law of large numbers, we obtained the estimate

Pn<§—p|2e>sp(—1%p—).
n ne

As Serge Bernstein® remarked, this upper bound can be greatly im-
proved for large values of n.

For every € € (0,1 — p), we define

l1-p—c¢

p+Ee
h = In=—+(1-p—¢)l
L

This function appears in the statement of the following theorem.

Ig. Bernstein, Sur une modification de l’inégalité de Tchebychev, Ann. Sc.
Instit. Sav. Ukraine, Sect. Math I, 1924.

23
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Theorem 6.1 (large deviations estimate). For every € € (0,1 — p)
andn >1, hy(e) >0 and

P, (ﬁ >p+ e) < e,
n

This theorem immediately yields the following two results.

(1) f 0 < € < p, then h_(€) := hy(—e¢) is well defined and
positive, and

P, (& <p- e) < e nh-(9),
n

(This follows by applying the theorem after interchanging
success and failure. In this case, S, is replaced by n — S,
and p is replaced by 1 —p.)

(2) If 0 < e < min(p,1 — p), then

Sn

P
n

p| > 6) < e—nh+(e) _}_e—nh*(e)’

which approaches 0 exponentially as n approaches infinity.
Proof. Fix a t > 0. We have
P, (% >p+ 6) =P, (et(s"‘"p_”e) > 1) ,
and Markov’s inequality implies that
Py (% 2p+ e) < En [e“S"*""””)]
_ eént(p+e)En [ets"]
= 3 (3)a-nr
By Newton’s binomial formula, then
P, <& > p+ e) < e*nt(zﬂre)(l —ptpet)t = e~ n(t(p+e)—In(1—p+pe))
n

Since this is true for every t > 0, we obtain

Sy
P, (— 2p+e) <e ™,
n
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where h = sup,o(t(p + €) — In(1 — p + pe')). To complete the proof,
we only need to prove that
p+e€ 1—-p—ce
+(1—p—¢)ln T,
This follows from an analysis of the behavior of the function ¢ : ¢ —
t(p+€) — In(1 — p + pe?) on [0, +0c). We leave it to the reader to
check that g(0) = 0 and ¢'(0) = € > 0. Together, these imply that
the supremum of g is strictly positive. The derivative of g vanishes
at the point t = In (pta=p), ¢ is maximized at this point, and its

p(l—p—e) ?
value is in fact hy (e). d

h=(p+e)ln > 0.

It is easy to illustrate the large deviations estimate with numerical
applications. Here are a few.

(1) If a fair coin is tossed 100 times, the probability that the
number of heads is at least 60 is less than .14. Here (p,n,¢) =
(.5,100,.1).

(2) If a fair coin is tossed 1000 times, the probability that the
number of heads is at least 600 is less than 2-107°. Here
(p,n,€) = (.5,1000, .1).

(3) If a fair coin is tossed 1000 times, the probability that the

number of heads is at least 540 is less than .05. Here (p,n,€) =
(.5,1000,.04).

It is useful to understand the behavior of the exponent h (¢) as €
approaches zero. A second order expansion of the logarithm function
immediately yields the following result.

Proposition 6.2. As ¢ approaches 0,

62

h+(€) = m + 0(63).

We conclude this chapter with the following proposition, which
says that the large deviations estimate given by Theorem 6.1 is opti-
mal in the sense that the exponent cannot be improved.

Proposition 6.3. For alle € (0,1 —p),

(6.1) lim ~In (Pn (% >p+ e>> = —h,(e).

n—oo 1
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To prove this proposition, we will use Stirling’s result that the
sequence (n'(”+1/2)e"n!)n>l converges to a positive number c¢. We

will prove this result in a more precise form in the following chapter
(see Proposition 7.2).

Before proving Proposition 6.3, let us take a moment to review
asymptotic notation used for comparing sequences. Let (u,) and (vy,)
be two real sequences. We write u,, = O(vy,) if there exists a constant
k > 0 such that |u,| < kv, for every n; if this is the case, we say that
Up is of order at most v,. We write u, = o(v,) if for every ¢ > 0
there exists an ng > 1 such that |u,| < ev, for each n > ng; if this
is the case, we say that u, is negligible compared to v,. Finally, we
write up ~ v, if u, — v, = o(|v,|) (for sequences that do not vanish,
this is equivalent to saying the quotient u, /v, tends to 1 as n tends
to infinity); if this is the case, we say that the two sequences are
aymptotically equal. Using this notation, we can rewrite Stirling’s
formula as n! ~ cnt1/2¢—",

Proof of Proposition 6.3. For each n > 1, the large deviations
estimate can be written as

(6.2) %m (Po (S > n(p+€))) < —hy (o).

We need to find a lower bound. Let K, := 1+ [n(p + €)] be the least
integer greater than n(p + €). It is clear that

and we will show that

(6.3) lim S In (P, (Sn = kn) ) = —hy(e).

n—oo n
This will imply that

|

hnnllo%f - In (P, (S, > n(p+e))) > —hi(e),

which, with (6.2), yields the desired result.
The sequences (ky) and (n — k,) approach infinity with n and

n!

P =k = p i

(1—p)"~*n.
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By applying Stirling’s formula to the three factorial sequences, we
obtain

(6.4) Py (Sp = kn) ~ % %kn(n k) <%’)kn (%%)n_kn .

Since these two sequences that approach zero as m approaches
infinity are asymptotically equal, so are their logarithms. Let us first
analyze the behavior of the logarithm of the right hand side. Since
kn~n(p+e)and n—k, ~n(l —p—e¢),

n 1

kn(n — kn) /10
1 1 n
im—In{-,/—— |} =0.
lmnn<c kn(n—kn)> 0
In addition,

kn In (%f) =n(p+e€)ln (ﬁ) +n(p+e)ln (n(i:- €)>

=+ ) (2).

n

hence,

and the fact that k, — n(p + €) is bounded implies that

lim%ln ((%f)k) =(p+en (#) .

By the same method we can show that

1im%ln ((”—;E%Y_h> —(1-p—eln (%) .

We deduce (6.3) from (6.4) and the last three limit calculations. This
proves the theorem. O
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Chapter 7

The Central Limit
Theorem

7.1. Statement of the Theorem

Obtained through the successive work of Abraham de Moivre,! Pierre
Simon Laplace,? and Carl Friedrich Gauss,® the central limit theorem
plays a central role in probability theory. The theorem is fascinating
because of the extremely wide range of applications, and it establishes
the universal role of the normal (or Gaussian) distribution, the famous
bell curve. In view of the goals of this book, we will limit our study
to sequences of identically distributed independent random variables,
each taking only two values.

Let us now return to the previously introduced setting. The space
Q, = {0,1} is equipped with the product probability P, = (p,1-p)®™
and Sp(w) = w1 + w2 + -+ + wp, where w = (w1,ws,...,wy). In
addition, we suppose that 0 < p < 1, which eliminates the two trivial
cases from our analysis.

The weak law of large numbers gave us a restriction on the fluc-
tuations of S, around its average value np: if n is large enough,

1A. de Moivre, The Doctrine of Chances, London, 1718.
2p. s. Laplace, Théorie analytique des probabilités, Paris, 1812.

3¢. F. Gauss, Theoria combinationis observationum erroribus minimus obnoz-
iae, 1821.

29
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fluctuations of order n are very improbable. In addition, we know
that the expected value of (S, —np)? equals np(1 —p). This suggests
that likely deviations of S,, from its average have order /n. The cen-
tral limit theorem confirms this intuition and gives quantitative (but
asymptotic) information about these deviations. Here is the precise
statement of the central limit theorem.

Theorem 7.1 (central limit theorem). Let a and b be two elements
of RU {+00} U {—00} such that a < b. Then

Sn 1P L e (—a?
(7.1) Pn<aﬁm§b>—>\/2_ﬂt/Gexp( z%/2) dz

as n approaches infinity.

Before proving the central limit theorem, we will make a few
remarks about the theorem and present some of its applications.

7.2. Remarks

1 ,—x2%/2

The graph of the function = — ordd is the Gaussian curve.

In the proof of the theorem, we will need the fact that

L[ e
—_— e T /% dr=1.
\/ﬂ/—oo

(This shows that the function z — ﬁe‘ﬁ/ 2

on R; however, we will not elaborate on this viewpoint.)
—22/2

is a probability density

The integral of the function z — e cannot be expressed in
terms of classical functions, so integrals of the form # f: e~ /2 dg
cannot written in a simpler way. Nevertheless, the numerical values
of such functions can be calculated with good precision. Tables of
these values can be found in many books because they play such an
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important role in the numerous applications of the central limit theo-
rem in statistics and probability. In addition, mathematical software,
such as Mathematica® and Maple®), can be used to compute these
values.

The function ® : y — \/% fy+°° e=*"/2 dz, which measures the

area of the tail of the Gaussian curve, decreases very quickly as y
increases in (0, 400).

For example,
®(1) ~ 0.1587, &(2) ~ 0.0228, and ®(4) ~3.2-107°.
For each y > 0,

1 (_2 _ 2 1 a2
4ey/2_e(y+1)/2)<q>y< V2,
Vam(y+1) <o)< V2my

so as y approaches +oo,

1
V2my

y) ~ o=e V2
The verification of these statements is left to the reader as a little
exercise in analysis.

The central limit theorem can be strengthened by a result about
uniform convergence: the convergence in (7.1) is uniform in a and
b. A classical result of elementary analysis justifies our assertion:
every sequence of real monotonic functions on R taking values in
[0,1] that converges to a continuous function with image containing
(0,1) converges uniformly.

By using the expression for the binomial distribution, we can
rewrite the central limit theorem in the following way: if y € R and
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if k(n) is the integer part of np + y/np(l — p), then

k) n 1 Y 2
el —p) — — e /2 dx
Z%(J)p( p) =]

as n approaches infinity. This follows from that fact that

8 (o) 1 s TR,

Jj=0

We could also write
k k

n 7 1_ n-—j ~ L/ n;(;lip) e—$2/2 dQ?
)y (j)p (1-p) =/ ,

=0

which, by making the change of variable t = np + z/np(1 — p), is
equivalent to

(t — np)?

) (IRIEEE T | o ()

j=0

We can illustrate this result by showing the similarity between the bell

curve and histograms representing the binomial distribution: it suf-
2

fices to plot the function taking the value ——2—— exp (— m)

V/2mnp(1—p) 2np(1-p)

for each real t and the function taking the value (7)p’(1 —p)"~ for
each integer j between 1 and n on the same axes. The following figure
shows these two functions where the parameters take values n = 20
and p = .6.

This graph suggests that

(o~ e ()

This will be confirmed by the de Moivre-Laplace theorem, which
will be stated and proved later in this chapter as a step towards
proving the central limit theorem.
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7.3. Applications

Here are a few examples of the applications of the central limit theo-
rem. We will give a theoretical application to the law of large numbers
as well as more practical examples of its applications in estimating
probabilities, calculating confidence intervals, and performing statis-
tical tests.

The weak law of large numbers is an immediate consequence of
the central limit theorem. Fix € > 0 and § > 0. There exists an a > 0
such that ®(a) < § and /" > g for large enough n. Then, for

v/p(1-p)

such an integer n,

Sp —np ev/n
h (x/np(l—p) - V(1 —p)) ’

S0
Sn
— P
n

A

)

Sp —np Sp —np
P, | ——— < - P,| —— > .
<\/np<1—p)< a>+ ( np(l—p>>“>

By the central limit theorem,
P, _Sh—mp <—al|-®)
np(1 —p)

’pn (ﬁ_:ﬁp__ > a) — ®(a)
np(1 — p)

for large enough n. From the choice of a and the above inequalities,
we conclude that g
P, (

= —P} > 6) <45
n
for large n. We have thus shown that
Pn<§g’"pi26) —0
n

as n approaches infinity.

IN

<0

and

<0
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After examining this argument, it is evident that we can actu-
ally prove a stronger result: for every real sequence (u,) such that

P, (un 5

—"—p’Ze)—>O.
n

: u
lim, e 7% =0,

We will present other consequences of the central limit theorem over
the course of this book. In particular, in Chapter 10 we will explain
the meaning of the assertion that “the sequence (S,,) is almost surely
not bounded”, and we will prove this assertion.

Now we will explain some more practical applications of the cen-
tral limit theorem. These applications are based on estimating prob-
abilities of the form

P, (np+v/na < S, < np+ /nb)
by the value
b
1 VPU=r)  _a2/9
—_— e T/ dx.
s /#

However, the statement of the central limit theorem does not say
how good of an approximation this is. There are theoretical results,
such as the Berry—Esseen inequality, that give explicit upper bounds
for the error in the approximation. These theorems are addressed in
more advanced texts about probability theory, and we will not discuss
them further here. In general, the approximation given by the central
limit theorem is considered to be acceptable whenever np(1 — p) >
18. This statement deserves to be studied more closely, which is
certainly possible with modern methods of calculus. A discussion of
this statement appears in William Feller’s book.*

In the previous chapter, we determined an upper bound for the
probability that the number of heads would be at least 60 after tossing
a fair coin 100 times. The central limit theorem provides an estimate
for this probability: here p = .5, so

Si00 — 50
P10o(S100 > 60) = Pioo (—1305“ > 2) ~ ®(2) ~ .02.

4w, Feller, Introduction to Probability Theory and its Applications, volume 1,
chap. VIL3.
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In the same way, we can estimate the probability that the number of
heads is at least 540 after 1000 coin tosses:

S1000 — 500 8 )
P, S > 540) = P >
1000(S1000 > ) 1000 ( 5v10 VT,

8
~® [ — | = .006.
(\/10)

Now, here is an example which involves two concepts from sta-
tistics: confidence intervals and hypothesis tests. (However, we will
not give precise definitions for these concepts.)

Between 1871 and 1900, 1,359, 670 boys and 1, 285, 086 girls were
born in Switzerland. Are these numbers compatible with the hypoth-
esis that the genders of newborns are independent random character-
istics and that the two genders appear with equal probability?

Set n = 1,359,670 + 1,285,086 = 2,644,756 and suppose that
n trials were performed. Without the intention of appearing sexist,
we will call the birth of a boy success and the birth of a girl failure.
Supposing for the moment that the n trials are independent and the
probability of success is 1/2, we will determine a number C such that
the probability that the number of successes is greater than C is less
than 107°.

Since ®(4.5) < 1075 and

Pu($,2C)~ @ (2C _ ”)
7
by the central limit theorem, we can choose C' > %(n +4.5y/n). This
yields C' =1, 326, 037.

The number of successes (or male births) is actually much higher
than this number. If our hypothesis about the distribution of births
were true, the figures observed in Switzerland would be highly im-
probable. Therefore, it is reasonable to reject the hypothesis. We
conclude that our demographic figures contradict the assumption that
the gender of newborns is an independent random characteristic with
uniform probability distribution.

Remark. One might be bothered by the use of the central limit
theorem, a purely asymptotic result, in this example; however, this



36 7. The Central Limit Theorem

is how the theorem is used in practice. Nonetheless, we note that
the large deviations estimate provides a similar result for this last
example: in this case, we write the estimation as

(S, > C) < exp (—nh+ (% _ %)) ,

which yields
P.(S,>C)<5-107°
for n = 2,644,756 and C = 1, 326,037.

7.4. Proof of the Theorem

The proof is composed of several steps. The first step, which is also
the most important ingredient of the proof, is Stirling’s formula. This
formula provides a sequence that is asymptotically equal to the se-
quence (n!) and thus allows us to estimate the binomial coefficients
(Z) for large n, k, and n — k. The proof will continue with the
estimation of the probability that S, is within a certain interval
[np + ay/p(1 — p)v/n,np + by/p(1 — p)y/n]. To do this, we will es-
timate P, (S, = k) for large n and integer k within the given interval
with help from the de Moivre-Laplace theorem (in Chapter 9, we will
discuss the local limit theorem, which is a generalized form of this
theorem). At the last step, we will attain the central limit theorem
by using Riemann sums.

The proof that we provide uses only elementary tools of real anal-
ysis. Another proof uses the Fourier transform of measures, which is
called the characteristic function in probability theory (this is distinct
from the characteristic function introduced in Chapter 1). Although
this Fourier analysis method can be used to prove the central limit
theorem in much more general settings than the one we are studying,
we will not present it here because it is not elementary.

Proposition 7.2 (Stirling’s formula). For each integer n > 0, set
n! = V2™t 2e (1 + ¢,,).

There exists a real constant A such that |e,| < £.
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Proof. First, we will show that there exists a ¢; € R such that

1 1
ln(n!):cl+<n+—>lnn—n+0(—).
2 n

This estimate is based on a comparison of the series with general term
Inn to the logarithmic integral. We write

n+1/2 n k+1/2
(7.2) ln(n!):/ Intdt+» lnk~/ Int dt | .
1/2 = k—1/2

On one hand,

n+1/2 nt1/2 1 1
lntdt:[tlnt~t]1/2 =(n+=-)ln{n+-|-—n+c
/2 2 2

for some constant co. The Taylor series for the logarithm function
about 1 yields

1 1 1 1
ln<n+ 5) :ln(n)—}—ln(l—{-%) :1n(n)+%+o<ﬁ)’

which yields

(7.3) / Int dt = <n+—> ln(n)—n+03+0<~)
1/2 2 n

for a constant cs.
On the other hand,

k+1/2
lnk—/ Int dt =1Ink — [tInt - t]; 712
k—1/2

1 1 1 1
1 1 1 1

The Taylor series expansion of the logarithm function allows us to
write this as

k+1/2 1 1 1 1
Ink — lntdt:0<~>~k[(—~——~—+0<—>>
k—1/2 k2 2k 8k2 k3
1 1 1
(rmmaro())])
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which shows that there exists a constant ¢4 € R such that

k+1/2
lnk—/ Int dt
k—1/2

Cq
<5

Thus <ln k- |, :fll/ 22 Int dt) is the general term of an absolutely con-

vergent series. Let
400 k+1/2
cg = lnk—/ Int dt].

Now, note that

Jio k+1/2 Jio 1
lnk—/ Int dt| < cy 3
k=n+1 k—1/2 k=n+1 k
= 1 C4
<ea D, k1) n’
k=n+1

which proves that

n

k+1/2 1
7.4 lnk—/ Intdt | =c —0—0(—).
(7.4) > 1o 5 -

k=1

From (7.2), (7.3), and (7.4), we obtain

In(n!) = <n+ %) In(n) —n+4+c3+c5+0 (%) )

which completes our first step. By writing d := e%7°  we have
obtained

n! = dn™2e (1 + ¢,),
where €, = O (%)
To complete our proof, we must show that d = v/27. To do this,
we will use Wallis integrals, which are defined for each n € N by

3
I, = / sin™ ¢ dt.
0

Integration by parts yields

™

x

2 2
I, = / sin" "'t -sint dt = / (n—1)sin™ 2t cost-cost dt
0 0
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for each n > 2. Thus
i 2 2
In=(n- 1)/ sin® ™t (1 —sin®t) dt,
0
which yields the recurrence
nl, = (n—1)I,_2.

Since Ip = 5 and I; = 1, for each n > 1, we can write

I = (2n—1)(2n—3)---1I _ @)
T o) @en—2)---2 07 22(pl)22
and
(2n)(2n —2)---2 227 (n!)?
Lp1 = 1= P
2n+1)(2n—-1)---3 (2n+1)!
Now, note that the recurrence relation yields
I
lim —/— =1.
n—00 Lp_2
Since I,,_o > I,,_1 > I,, this implies that
lim —/— =1,
n—00 Ip_1
which can be written as
2(2 1
L (@O en T

n—00 24n(pl)4 2

From the first step of our proof, we know that n! ~ dn"t1/2¢™" as
n approaches infinity. By replacing the factorials in the above limit
with the expressions given by Stirling’s formula, we conclude that
d? = 2r. This completes the proof. O

Proposition 7.3 (de Moivre-Laplace theorem). For each0 < k < n,
set

n k n—k __ 1 ex _ (k B TLp)2
(k)p S B V2rp(1—p)n P ( 2np(1 —P)> (L4 &n(k))

Then, for each a > 0,

lim max |0n (k)| = 0.

n—0 k:|k—np|<ay/n
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Proof. Fix a real number a > 0 and let I,, be the set of integers
between np — ay/n and np + av/n. Let (spk)n>0.ker, and (t,)n > 0
be two families of real numbers. We will write s, = O, (t,) if there
exists a real constant C' such that |s, x| < Ct, for every n > 0 and
k € I, (The subscript u of O indicates that the estimate is uniform
in k.)

Stirling’s formula implies that

(7.5)

1 n (E )k( n (1- )>n k 1+¢€,
VeV km—k) \&P) \n=kV V) AT e0+enr)
If k € I,, then

(7.6)

(np + avm) (1 —p) + avn) = k(n—F)

= = avn)(n(1—p) - avn)’

From this we conclude that

(T7) k(nn— k) - np(ll- p) (1 +0u (n‘1/2)> '
and thus
(7.8) k(n"_ 5= m (1 + 0, (n—1/2>).

Now, by using the Taylor series In(1+t) = t— % +O0(t%), equation
(7.7), and the facts that 5" = 0,(n""/2) and &2 = 0, (n"1/?),
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we can write

n () (0 -9) )
;kln< k_knp>+(n—k)ln< k)

;,1 _ ! ; -3/2 -3/2
= —5(k—np)? <k+ k>+k0( ) k)O( )
2 1 —1/2
= - - —————— + Oy(n .
(k= np) s+ Ou(n™)
Therefore,

(79) (Z@k<nﬁku~pﬂn%

— np)? B
= exp (—%) (1+Ou <n 1/2)).

Finally, since

we have that

(7.10) i +€kl)zr1:’f — = (1 +0, (%)) .

By combining the estimates (7.8), (7.9), and (7.10) in the identity
(7.5), we obtain

(Z)pk(l —p 7t

1 (k —np) —1/2
= == (g ) (170 (7))

O

We will use the following lemmas to deduce the central limit
theorem from the de Moivre-Laplace theorem.
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Lemma 7.4. Let [a,b] be an interval of R, and let f be a function
defined on R that is zero outside of [a,b] and continuous on [a,b].
Then

h—0,h>0

+o00 b
lim h Y f(t+kh) :/ f(z) dx
k=—occ a
uniformly in t € R.

Proof. Note that the sum appearing in the statement of this lemma
is nearly a Riemann sum for f(z). The result follows easily from the
uniform continuity of the function f on the interval [a,b]. Fix € > 0
and choose h small enough so that

|f(z) — f(y)] <e whenever z,y € [a,b] and |z — y| < h.
Letting
{k€Z|a<t+kh<b}={i,i+1,i+2,...,5}

and
M = sup |f(z)],

a<lz<b

we have that

b
Ry f(t+kh)—/ (@) dz

k:t+khe(a,b]
Jj—1 t+(k+1)h
<hAM+Y hf(t+kh)—/ f(z) dz| + 2hM
P t+kh

< 3hM + (j —i)he < 3hM + (b—a)e.
O

The following lemma is well known; we leave its proof as an ex-
ercise for the reader.

Lemma 7.5.

1 +o00 ~z2/2 p )
— & X = 1.
V2T J—so
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Proof of the Central Limit Theorem. We start with the case in
which a and b are two real numbers. Let K, be the interval

[ay/np(1 — p), by/np(1 — p)]

We have
n

P, (S8, —npeK,)= Zxxn(k —np) - Pa(S, = k)

- > [ 4

exp (~%) a +6n<k>>},

where lim,,_,o, maxy, |0, (k)| = 0 by Proposition 7.3, since k — np is
always in K. It follows that

(7.11) Py (Sn —np € K)

~ V2mp(l-p)n o { “2np(1-p))’
where lim,, .o, 6, = 0. When n is large enough, the expression (7.11)

equals the expression obtained by replacing > ,_, by > kez - This
expression is equivalent to

(7.12)
1

1
V2r \/p(1—p)n
k B np
A\ 2\ Vo Vi-p) )]

By setting b = (np(1 — p))~*/? and f(z) = \/%e_f/z, we see that

this expression has the form of the one in Lemma 7.4. Therefore,

the expression (7.12) approaches ﬁ f: e~ /2 dx as n approaches
infinity.
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This proves the theorem for real a and b. Lemma 7.5 allows us
to treat the case where a = —oo by proving that

(713)  Pu(Su - np < by/mpli —p)) — = / ==/ g

as n approaches infinity for all real b. The case where b = +o00 is
treated similarly.

Let b € R and € > 0. Fix ¢ > max(0, b) such that

o0 2
e /2 dr <.

vl

Then -\/lz_; f:oo e /2 dy < ¢, and Lemma 7.5 implies that
1 2
— [ e /2 dr>1-2e
\/27T /—c
We can write
1 b
P, (Sn —np < b\/ np(l _p)) - F 6¥I2/2 dz| < An"‘Bn"‘Ca
T J-
where
A, =P, (Sn —np < —cy/np(l —p)) ,
_ b
B, = |P, [—e<—2n2 ) = L [ emetrzgy |
np(1 —p) V21 J e

1 ¢ 2
C:= ——/ e % /2 dr.
V2T J o

We have that
OSAn <1-P, (_C\/np(l_p) SSn—NPSC\/HP(l‘“p)),

and, as in the first part of the proof,
lim P, (fc\/np(l —p) < S, —np<cynp(l— p))
n—oo
1 2
— —z°/2
= —= e dr > 1 — 2e.
Vo /,C

This shows that A, < 2e¢ for large enough n. Similarly, lim, ., B, =
0, and C < € by our choice of ¢. This proves (7.13). O
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Chapter 8

The Moderate
Deviations Estimate

We will continue using the notation introduced in the previous chap-
ters. Thus S,, denotes the number of successes observed in a sequence
of n independent trials of a probabilistic experiment with success p.
The empirical probability of success is S, /n. The estimation of large
deviations tells us the size of the probability that the empirical prob-
ability deviates from p as n tends to infinity. In addition, the central
limit theorem tells us that if (a,) is a real sequence that approaches
infinity with n, then the probability that the empirical probability
deviates from p by about a,//n approaches 0 as n approaches infin-
ity. Under certain hypotheses about the sequence (a,), the moderate
deviations estimate will provide more detail about this convergence.
To obtain our estimate, we will use a generalization of the central
limit theorem to a form with wvariable bounds. In Chapter 12 we will
use the moderate deviations estimate to establish the famous law of
the iterated logarithm.

What kind of estimate can we hope for? The central limit theorem
tells us that as n approaches infinity,

P (3 - p2 VI ) ~ #(a)
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The moderate deviations estimate asserts that this remains true when
a is allowed to approach infinity with n at a slow enough rate. Recall
that if lim,,_, o, a,, = +00, then

1 [P 2 1 az
@(an):E e da;wamexp -5 )

The following theorem first appeared in an article by Harald
Cramér.!

Theorem 8.1 (moderate deviations estimate). Suppose that (a,)
is a sequence of real numbers such that lim, ., a, = +oo and
lim,, o0 ann ™6 =0 . Then

Note that the theorem’s conclusion does not hold if the sequence
(an) approaches infinity too quickly. For example (taking a, =

v/1), the sequences (®(1/n) and (Pn (Sn—" —p> \/M)) are not

equivalent. In fact,

1 1
lim—In® = —=
1mn n®(y/n) 5

but if p < %, then v/p(1 —p) <1 —p and

lim © In P, (—57;—" -p>/p(1 *p)) = —hy ( p(1 —p))

n

by Proposition 6.3.

We will prove Theorem 8.1 by using a refinement of the tech-
niques we used to prove the central limit theorem. The first step is
to optimize the proof of the de Moivre-Laplace theorem (Proposition
7.3). This theorem gives a sequence that is asymptotically equal to
P, (S, = k) as n tends to infinity, where k, = np + O(y/n). The
careful reader will realize that the theorem’s proof can be extended to
the case where k,, = np + 0o(n?/3). This extension of the de Moivre-
Laplace theorem is the goal of the following proposition.

1y, Cramér, Sur un nouveau théoréme-limite de la théorie des probabilités,
Acualités Scientifiques et Industrielles, vol. 736, pp. 5-23, Hermann, Paris, 1938.
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Proposition 8.2. For 0 <k <n, set

n k n—k 1 ( (k - np)Z )
1-—- =——————exp| ———< | -1+ ,(k)).
<k>p (1=r) 27p(1 — p)n P\ 2mp(1-p) ( (k)
Then for every positive real sequence (c,) approaching zero,

lim max |6, (k)| = 0.
n—00 k:|k—np|<cp,n?/3
Proof. Let J," be the set of integers k such that |k — np| < can?/3.
For each k € J,,, formula (7.6) becomes
n
(np + cun?/3)(n(1 ~ p) + c,n?/3)
n
< "
~ k(n—k)

n
< .
= (np — ean®/3)(n(1 = p) — cun?/3)

We deduce that

k(nn— B np(ll— ) (140 (ean™7)).

and thus

(8.1)

n

1
= 1+ 0, (can™13)).
Now, since, k‘k"p = Oy(c,n~1/3) and %?_"Tp = Oyu(c,n~1/3), the
Taylor series for the logarithm function yields

n(()" (0-9) )

= _%(k —np)? (E + m) + kO, (2n™Y) + (n —k)Oy (cin™1)
1
= ~§(k:*np)2 20 =p) + Oy (c)
Hence,
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Finally, as in the proof of Proposition 7.3,

1+e, 1
8.3 =({14+0,|— .
(53 mranaa - (o)
By combining the estimates (8.1), (8.2), and (8.3) in the identity
(7.5), we obtain

(Z)p’“(l —p)F

1 (k _ np)2 > /
=———————exp | < ) - (1 + 0, (),
V2mp(1 = p)n ( 2np(1 - p) ( (en))
where ¢/, := max (c,n"/3,c3,n71). a

By following the steps we used to obtain the central limit theorem
from the de Moivre-Laplace theorem, we will obtain a version of the
central limit theorem with variable bounds from Proposition 8.2.

Proposition 8.3. Let (k,) and (£y,) be two integer sequences such
that k, < ¥y, and ky,, £, =np+o (n2/3) as n approaches infinity. Set
. kn—np ln—np Then

= kaT g p .
a v/ np(l—-p) am v/ np(1-p)

bn
2
e /2 dg

1
™ Jay

as n approaches infinity.

If the sequences (a,) and (b,) converge respectively to a and b
such that a < b, this theorem becomes the central limit theorem.

Proof. Set h(n) := \/ﬁ. We will only consider integers n that
are large enough so that 0 < k, < ¢, <n. Write

n i —np)?
P8y = ) = M e (—“—ﬂ) (14 6,))

Vor 2np(1 —p)
and
n lh—1 n 2
P (ky < Sp < £y) = E(—?;) exp (‘ Z(Zp(l f)p)> (1+6n(5))
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The hypotheses on the sequences (k) and (¢,,) along with Proposition
8.2 imply that the sequence (0, (j))n>1 converges uniformly to zero
when k, < j < ¥¢,. Therefore, we just need to show that

(8.4) h(n) Z exp ( 221)_ np)p)) ~ /{:n e~ /2 dg.

This follows easily by considering the Riemann sum of e
Set

—r2/2.
J—mnp

np(l—p)
Then a,, = z(ky) and b, = z(£,). We can rewrite formula (8.4) as

(85)  h(n) Zil exp (-%‘7)2) _ /ab" o—%/2 gy

bn 2
=0 / e /2 dx .

Suppose for the moment that a,, > 0. By noting that

h(n) exp <—§(]—;L1—)2> < /rjjﬂ) e~ /2 dz < h(n) exp <_ﬂé)f>

7)

z(j) =

for k, < j < {,, we obtain

lp—1 b
0 < h(n) Z efz(j)2/2 _/ 6~m2/2 dz < h(n) (e—ai/2 _ e—bi/Q) '
j=kn On

We also know that

bn 2 1 b 2 1 2 2
/ e /2 dr > B—/ e /% dy = W (e‘an/Q—e’b"m).

Now, h(n) = o(b; ') since b, = o(n'/%). Thus, the last two inequali-
ties yield (8.5).

We have proved the theorem in the case where a, > 0. By
symmetry, the case where b, < 0 is proven identically. In the case
where a, < 0 < b,, we can use the same argument by separating
the comparison of the integral with the discrete sum into three parts:
one part for each of the intervals R* and R~ and one part for the
potential term at zero. We leave the details to the reader. i
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Proof of the Moderate Deviations Estimate. Since the limit of
an/nl/ 6 as n approaches infinity is 0, (a,) approaches infinity less
quickly than (n'/®) does. Consider a real sequence (d,) such that
d, = o(a,) and d,, > v/2Ina, (for example, we could choose d,, =
Ina, or d, = ,/a,). For each n, let k, be the least integer that is
greater than or equal to np + \/np(l — p)a,, and let ¢, be the least

integer that is greater than or equal to np + \/np(1 — p)(an + dy).
We have

Sy an
Pn(n p>+/p(1 p)\/ﬁ> Py, (S 2 kn),
SO
P, (% -p> \/p(l—p)%) =P, (k, < Sp <ly,)+P,(Sp>10,).

From the fact that a, = o(n'/®), we deduce that k,,f, = np +

0 (n%?), so the hypotheses of Proposition 8.3 are satisfied. Setting
. kn—np £n—np

= R and b, = —2="P_ yield:
U= npi-p) Ve-p) VEP

bn
! e T2 gy

Pn(anSn<€n)N —
Vor Ja

b

SO
P (k <§,<? ) ~ _1 /bn e—z2/2 dz 1 on e—w2/2 dx.
meme " \/_2/ an \Y% 2 an

To finish the proof, we just need to show that

bn 2 1 a?
(8.6) / e /2 dr ~ — exp (——ﬂ> ,
an an, 2

’

a, 2
(8.7) / e /2 dz =0 <i exp <—a—">) ,
an Qn 2

and
1 a?
. n (On = 4n) = —_— - .
(8.8) P, (Sn > ¥y) o(anexp< 2 >)
We have

b +oo 2

n 2 1 2 1 a

/ e~/ dp < — xe_z/zdarz—exp(— ”),
an an Ja, an
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and, since b, > a, + d,,

This proves (8.6).
The fact that 0 < a/, —a, < (np(1—p))~1/2 directly implies that

’

a, 2
/ e 12 gy < _ exp <_a_n> ,
an np(]' .-p) 2

which in turn implies (8.7) because a, = o(y/n).

The last estimate (8.8) follows from the large deviations estimate
(Theorem 6.1). We have

Pa(Sn 2 ) < exp (b (V=717 ) )

Now, hi(e) = sz_p) + O (€®) when e is close to 0, so

b2 b3 b2

since b, = o(n'/%). Finally,

€Xp (”%) < exp (—(a—”%d—”)z)
ol £l

Now, exp (—%) < i by the choice of d,, and (8.8) follows. O
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Chapter 9

The Local Limit
Theorem

We will use the notation introduced in the previous chapters; in par-
ticular, S, is the number of successes observed in a sequence of n
independent trials of an experiment with probability of success p.
For each k between 0 and n, we know that

n

Pa(Sn = k) = (k>pk(1 —pk

The weak law of large numbers and the central limit theorem describe
the behavior of the sequence (S,) and the size of the fluctuations
around the average value np. We will return to these questions with
the strong law of large numbers and the law of the iterated logarithm.

In this chapter, we will study the size of P, (S, = k) as n ap-
proaches infinity. We will describe two estimates, each uniform in k,
that are two forms of the local limit theorem. Consider the random
variable M, := 25, —n based on the sequence of random coin tosses.
This sequence (M,,) describes, for example, the fortune held by a
player who receives 1 at each outcome of success and loses 1 at each
outcome of failure. (The sequence (M,,) will be studied further in the
chapters about the arcsine law and the recurrence of random walks.)

The first form of the local limit theorem is useful for estimating
the probability that M,, takes a given value close to its average value

53
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(2p — 1)n. The second form is useful for estimating the probability
that M, takes a fixed value.

Theorem 9.1 (local limit theorem, first form).

uniformly in k € Z.

Theorem 9.2 (local limit theorem, second form).

P, (M, =k)

V2(5%5)" B (o) )

uniformly in k € Z such that n + k is even.

Note that these two statements are equivalent for the centered
case (that is, when p = %) On the other hand, if p # %, then
24/p(1 —p) < 1 and the second theorem says that the probability
that M, is in a fixed finite subset of Z decreases exponentially as n

approaches infinity. We can write this as the following corollary.

Corollary 9.3. Let K be a fized finite subset of Z that contains at
least one even number and one odd number. Then
1
lim = In (P, (M, € K)) = In (2 (1 —p)) .
n—oo N
Proof of Theorem 9.1. Fix a real ¢ such that % <t< % Proposi-
tion 8.2 implies that
1 k — np)?
L () s,
21p(1 — p)n 2np(1 —p)
where

li 0,(k)| = 0.
A e 1on()]

Since the exponential term is at most 1, we have

1 (k — np)? _
= P (i) o (7).
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where the estimate o(n~'/2) is uniform in k when k — np < nt.

On the other hand, we can apply the moderate deviations esti-
mate (Theorem 8.1) to the sequence a,, = n'~% to obtain

D=

S nt~

ty =
Pn(Sn>np+n)—Pn<n P> \/ﬁ)

oo ().

This implies the considerably weaker estimate

P, (Sn >np+ nt) =0 (n_l/Z) .
Thus
P,(S,.=k)=o0 (n'1/2) ,

where the estimate o(n~'/2) is uniform in k when k —np > n’. Since

t> %, then
_(k-mp)®\ _
exP( 2np(1—1v))w M

unformly in k when k — np > nt. This implies that

1 (k — np)? -
2mp(l — p)n P <—2np(1 fp)) =0 <n 1/2) ’

where the estimate o(n~'/2) is uniform in k when k — np > n'. Thus
1 k — np)?
P, (Sn=k) = ——————=exp <—ﬂ> +o (n—1/2) ,
V21p(1l — p)n 2np(1 - p)
where the estimate o(n~1/2) is uniform in k& when k — np > nt.
We obtain the same estimate when k satisfies k — np < —n'’.

By combining these two estimates with (9.1), we obtain the result
stated in Theorem 9.1. O

Proof of Theorem 9.2. When p = 1/2, Theorem 9.1 implies that

(D33 (o (5 0-3)) <)

uniformly in k € Z.
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For an arbitrary parameter p in the interval (0,1), we can write

Po(Sn=k) = \/gpk(l—p)"‘kf% (eXP (% (k - %>2> + o(l)>

uniformly in k € Z.
Replacing k by %E yields the desired result. O

Remark. The transition from one form of the local limit theorem to
the other, in the special case of variables with a binomial distribution,
is deceptive. Like all the other limit theorems presented in this book,
these local limit theorems extend to the much more general setting of
sums of arbitrary, independent, identically distributed random vari-
ables. The two versions of the local limit theorem coincide in the
case of centered variables. The first form of the local limit theorem,
like the central limit theorem, can be proved using Fourier analysis.
The first form implies the second form, but via a much less trivial
argument than the one we use here: a method developed by Cramér
connects the study of noncentered random variables to the study of
centered random variables, and it establishes the transition from the
first form of the local limit theorem to the second form.

Proof of Corollary 9.3. If £ is a fixed even integer, Theorem 9.2
implies that

Pan (Mo = k) = %(ﬁp)m <2 pg{p)) (1+0(1)),

which implies that

o 10 (Pan (M = K) — In (2/p(1 — )

as n approaches infinity. Similarly,

1

Ml In (Pons1 (Many1 =k +1)) — In (2 p(1 - P))

as n approaches infinity. If the finite subset K of Z contains an even
integer kg, then

P2n (M2n S K) Z P2n (]\/IZn = kO)
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and

Py, (M2n S K)

g %(Z <£>k/2> E(}_z_‘_n_m)_quo(l)),

keK
When combined, these two inequalities imply that

% In (Pyr (M, € K)) — In (20/p(1 - 7))

as n approaches infinity. The behavior along the sequence of odd
integers is identical. O
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Chapter 10

The Arcsine Law

10.1. Introduction

Wally and Andre are playing the game of Heads or Tails. This game
consists of successive tosses of a fair coin; Wally gains one point when
the coin lands heads and Andre gains one point when the coin lands
tails. Since the coin is fair, we would expect Wally to be ahead about
half the time and Andre to be ahead about half the time in a long
enough game. However, this expectation is false: ties become more
rare as the game lasts longer, and in fact one of the two players will
probably be ahead most of the time!

For example, we will show that one of the two players will be
ahead more than 75% of the time with a probability greater than
2/3, and one of the players will be ahead more than 85% of the time
with a probability greater than 1/2. It is not even unlikely that one
of the players will be ahead more than 97% of the time, which occurs
with a probability greater than 1/5.

These results follow from Theorem 10.1, called the arcsine law,
which provides a precise asymptotic estimate of the probability that

Jally will be ahead a fixed proportion of the time. This law was
discovered by Paul Lévy.!

1p. Lévy, Sur certains processus stochastiques homogénes, Compositio Mathe-
matica, vol. 27, pp. 283-339, 1939.

59
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Here is a second surprising property of the game of Heads or
Tails. Over the course of n tosses, Wally and Andre will be tied Z,,
times. Naively, one might expect that the random variable Z,, would
increase proportionally with n. However, we will see that Z,, grows
much more slowly than that, at a rate of order \/n. This is the result
of Theorem 10.2, which we call the law of returns to the origin.

10.2. Statement of the Theorems

Our mathematical model is the same as in the previous chapters. We
set p = 1/2 to reflect the fact that the coin is fair; thus, the space
Q, = {0,1}" is equipped with the uniform probability P,. We set
Sp(w) =wy +wy + -+ - + wy, where w = (w1, wa, ..., wy), and

M, =25, —n
(by convention, we set My = Sy = 0).

If S, is the number of heads appearing in a sequence of n tosses,
then M, is the number of points by which Wally is ahead of Andre
at the end of the n tosses (if Wally is winning after the nth toss, M,
is positive; if Wally is losing after the nth toss, M, is negative). The

sequence (M,,) is called the simple random walk. For large n, the
arcsine law describes the behavior of the random variable

T, :=#{k : 0<k<nand My >0},

which is the number of tosses after which Wally is winning, and the
law of returns to zero describes the behavior of the random variable

U, :=#{k : 0 <k <nand My =0},
which is the number of instances where the two players are tied.

Theorem 10.1 (arcsine law). For each real o between 0 and 1,
P (T < 1) 1 /“‘ 1 d 2 in/a
n (T < na) — — = dr = —arcsin Vo

T™Jo r(l-z) 7r

as n approaches infinity.

Here is a numerical illustration of this law. Let W be the pro-
portion of game time during which Wally is ahead, and let p; be the
i

probability that W lies between {5 and i—fo—l. If the game lasts long
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enough, then pg = pg = .20 > p; = ps ~ .090 > py = py = .074 >
P3 =DPs = 067 > P4 =Ps =~ .064.

Theorem 10.2 (law of returns to the origin). For each o > 0,

P, (U, < a/n) — \/?/ e~ 2 gy
T Jo

as n approaches infinity.

This theorem tells us, for example, that if Wally and Andre toss
a coin 10,000 times, then they will be tied less than 68 times with
probability greater than 1/2. If their game consists of one hundred
times as many tosses, then the same is true for 680 ties instead of 68.

An immediate corollary of the law of returns to zero is that
limy, 00 Pp(Un, > me) = 0 for every € > 0. This implies that the
random variable T,, + U, = #{k : 0 < k <n and M > 0} satisfies
the same arcsine law as the random variable T,,.

Like the proof of central limit theorem, the proofs of these two
theorems consist of three steps: an explicit calculation of probabili-
ties, an approximation using Stirling’s formula, and an application of
Riemann sums.

We also note that numerous results similar to these two theorems
can be found in the literature on probability theory.

10.3. The Reflection Principle

We will use a graphical representation of the sample space Q,, =
{0,1}"™. Any continuous curve in R? consisting of a finite union of
segments of the form [(,7), (i +1,7+1)] or [(¢,5), (e +1,7—1)], where
¢ and j integers, is called a path. Such a path has an origin (a,b) and
an endpoint (c,d), which are points on C with integer coordinates
satisfying @ < ¢ < ¢ for all (4,j) € C. The length of the path C
is ¢ — a (the Euclidean length of C is (¢ — a)v/2). To each element
w € ,, we associate a path U?;()l [(3, Mi(w)), (i + 1, M;41(w)] with
origin (0,0) and endpoint (n, M, (w)). It is clear that this represen-
tation of €,, which describes the lead of Wally over Andre during
the course of the game, is injective. Also, note that each path with
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origin (0,0) and an endpoint with z-coordinate n represents an ele-
ment of €2,. For example, the following graph represents the element
{11010000111} of ;.

.
-
|
.
|
|
|

«

If ¢ and d are two integers such that 0 < |d| < ¢, then the number
of paths with origin (0,0) and endpoint (c,d) is zero if ¢ + d is odd
and 2°P. (M, = d) = 2°P. (S. = (¢ + d)/2) = ((C+fi)/2) if c+d is even.
More generally, if a, b, ¢, and d are integers such that 0 < |d—b| < c—a
and ¢ —a +d — b is even, then the number of paths with origin (a,b)
and endpoint (¢, d) is ((c—aj—_dtib)/2)‘

The following proposition, which is equivalent to a result proved
by Désiré André,? will play an essential role in our analysis.

Proposition 10.3 (reflection principle). Let a,b > 0 and n > 0 be
integers. Then

P,(M,=b—a and My =—aforake|0,n])=P,(M,=b+a).

Proof. The case a = 0 is trivial, so suppose that a > 0. By using our
graphical representation of £, we can prove the theorem by proving
that the number of paths with origin (0, 0) and endpoint (n,b—a) that
cross the horizontal line y = —a is equal to the number of paths with
origin (0,0) and endpoint (n,a + b). By translating each path of the
first type up by a units, we see that this is equivalent to showing that
the number of paths with origin (0, a) and endpoint (n,b) crossing the
x-axis (which we will call paths of the first type) equals the number of
paths with origin (0, —a) and endpoint (n,b) (which we will call paths
of the second type). If C is a path of the first type, we let t(C) be the
smallest ¢ > 0 such that (¢,0) € C. The path C is a union of a path

2D. André, Solution directe du probléme résolu par M. Bertrand, Comptes Ren-
dus de I’Académie des Sciences, Paris, vol. 105, pp. 436-437, 1887. The paper is about
the ballot problem: for an election between two candidates, what is the probability that
the winning candidate is always ahead as the votes are counted?
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(4 with origin (0, 0) and endpoint (¢(C),0) and a path C with origin
(t(C),0) and endpoint (n,b). Then to each C, we associate the path
C’ that is the union of C with the reflection of C; across the z-axis.
The path C’ is a path of the second type and the correspondence
C < (' is a bijection between the sets of paths of each of the two

types.

We know the probability that the two players will be tied at the
end of 2n coin tosses:

2
Pon(Man, = 0) = Pon(Son = 1) = 2_2n(:).

In the next two corollaries, we will see that this equals the probability
of the event the same player remains ahead over the course of 2n
consecutive tosses and the probability of the event Andre is winning
at no point during the game.

Corollary 10.4.
PZn(Ml %07M2 #Oa"'a and Moy, #O)
= 2P2n(M1 >0,M; >0,..., and May, > 0)

and

2
Py (My >0,My > 0,..., and Ma, >0) = 2"(2”“)( ”)
n

Proof. The first identity is obvious by symmetry.

To prove the second identity, we will again use our graphical
representation of €,. We need to count the paths with origin (0, 0)
and length 2n that are contained in the upper half-plane (and that
do not return to the z-axis). We will thus need to sum, for £ =1 to
k = n, the number of paths with origin (1,1) and endpoint (2n,2k)
that do not touch the z-axis. There is only one path that connects
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the point (1,1) to the point (2n,2n), and this path does not return
to the z-axis. If 1 < k < n, the number of paths connecting the
point (1,1) to the point (2n,2k) that do not return to the z-axis
equals the number of paths connecting the point (1,1) to the point
(2n, 2k) minus the number of paths connecting the point (1, 1) to the
point (2n,2k) that do return to the z-axis. The number of paths
connecting the point (1,1) to the point (2n,2k) equals (ff,:l) By
the reflection principle, the number of paths connecting the point
(1,1) to the point (2n,2k) that return to the z-axis equals the number
of paths connecting the point (1, —1) to the point (2n,2k), which is
Cove)-

In conclusion, the number of paths with origin (0,0) and length
2n that are contained in the upper half-plane is

n—1
2n—1 2n —1
1 - .
() E)
This number simplifies to (**!), and it is easy to check that (* )

n n
%(2: ) This proves the corollary.

a i

Now we will compute the probability that Andre is ahead at no
point in the game.

Corollary 10.5.

2
Pon(My > 0,My >0,..., and Ma, 20)=2-2"<:>.

Proof. We want to show that
PZn(Ml Z O,AIQ Z 0,..., and Mgn Z 0)
= 2Py, (My; >0,M; > 0,..., and Ms, > 0).

The number of paths with origin (0,0) and length 2n that are
contained in the upper half-plane and that never return to the z-axis
equals the number of paths with origin (0,0) and length 2n — 1 that
are contained in the upper half-plane (including the z-axis). This is
true because there is a bijection between the sets of these two types
of paths: we associate a path of the second type to each path of the
first type by removing the initial segment and translating the path 1
unit left and 1 unit down.
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Note that Ms,_; is never zero. Then to each path with origin
(0,0) and length 2n — 1 that is contained in the upper half-plane (in-
cluding the z-axis), we can associate exactly two paths with origin
(0,0) and length 2n that are contained in the upper half-plane (in-
cluding the z-axis). To do this, we add a segment of length 1 and
slope 1 or —1 to the end of the path of length 2n — 1. Therefore, the
cardinality of the event (M; > 0, My > 0,..., and My, > 0) is twice
the cardinality of the event (M > 0, M3 > 0,..., and Ms, > 0). O

The reflection principle also allows us to calculate the probability
that Wally is ahead until the last toss in the game, which ties Wally
and Andre.

Corollary 10.6.

Pop(My > 0,..., My, _1 > 0 and My, =0) = .75127 (2:_ 12>.
Proof. We need to count the paths with origin (0,0) and endpoint
(2n,0) that are contained in the open upper half-plane (which does
not include the z-axis). In other words, we need to count the paths
with origin (1,1) and endpoint (2n — 1,1) that are contained in the
open upper half-plane. This number equals the number of paths
with origin (1,1) and endpoint (2n — 1, 1) minus the number of paths
with origin (1,1) and endpoint (2n — 1,1) that touch the z-axis at
some point. The number of paths with origin (1,1) and endpoint
(2n — 1,1) equals (2:__12). By the reflection principle, the number
of paths with origin (1,1) and endpoint (2n — 1,1) that touch the
z-axis equals the number of paths with origin (1,—1) and endpoint
(2n — 1,1); this number is (2::2). Finally, it is easy to check that

(2n—2) _ (277,—2) _ l(2n-2). 2 ]

n—1 n—2 n\n—1

Corollary 10.6 implies the following useful combinatorial identity.
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Lemma 10.7. Ifn and k are integers such that 0 < k < n, then

S (R
3L (0 ) = ()

Proof. We will count the number of paths with origin (0,0) and
endpoint (2n — k, k) in two different ways. On one hand, the number
of such paths is (2" k ) On the other hand, the number of such paths
equals the number of paths with origin (1, 1) and endpoint (2n — &, k)
plus the number of paths with origin (1, —1) and endpoint (2n—k, k).
First, the number of paths with origin (1,1) and endpoint (2n — k, k)
is (**~*'). Next, for every path with origin (1,—1) and endpoint
(2n — k, k), there exists a minimum integer 1 < j < n — k such that
the path passes through (27,0). The number of paths with origin
(1,—1) and endpoint (2n — k, k), therefore, is equal to the sum for j
from 1 to n — k of the product of the number of paths with origin
(0,0) and endpoint (27,0) that are contained in the lower half-plane
and the number of paths with origin (27,0) and endpoint (2n — k, k).
By Corollary 10.6, this implies that the number of paths with origin
(1,—1) and endpoint (2n — k, k) is

SGENC):

71=1

In particular,

Considering all of the information above, we see that this equals
(2”“]“) - (2”_k_1), which simplifies to (2”_nk"1).

n n—1
The second formula of Lemma 10.7 is obtained by considering the

special case where k = 0 and using the fact that (2") = 2(2" 1). (]

10.4. Proof of the Arcsine Law

To help us prove the arcsine law, we will define a new sequence of
random variables (7)) that are closely related to the variables T;,.
Let T be the number of integers k between 1 and n such that there
were more heads than tails in the first k& or k — 1 tosses of the coin.
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Using the graphical representation of 2, introduced in the beginning
of Section 10.3, we see that T, associates to each path of length n
and origin (0,0) the number of elementary segments of the path that
lie in the upper half-plane. More formally,

T, :=#{k:0<k <nand (Mg >0or My_, >0)}.
Every elementary segment has the form
[(2k — 1, May—1), (2k, Mok + 1))
or the form
[(2k — 2, Mop_1 £ 1), (2k — 1, Max._1)],

where Mok _1 is a nonzero integer. This segment is in the upper half-
plane if and only if Ms,_; > 0. Therefore,

Ty, = 2#{k :0 < k <n and My, > 0}.

Proposition 10.8. For each n > 0 and k between 0 and n,
—on 2K\ (2(n — k)

10.1 Py, (Ty, = 2k) = 272" :

(10.1) (T = 26) =270 (°F) (0 9)

Proof. We have
(T3, = 2n) = (My, > 0 for every k between 1 and 2n),

and the probability of this event is given by Corollary 10.5. We will
prove the general formula (10.1) by induction on n. The statement is
clearly true for n = 1. Fix an N > 1 and suppose that (10.1) is true
for every n between 1 and N — 1 and every k between 0 and n.

The probability of the event
(Tyn =0) = (M, <0 for every k between 1 and 2N)

is given by Corollary 10.5. If 0 < Ty, < 2N, then there exists a j
between 1 and N such that My; = 0. For each w € {1y, such that
0<T5,(w) < 2N, we set

t(w) :=min{j > 0: My;(w) = 0}.
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Now fix a k between 0 and N. Then

N
Py (Tyn =2k) =Y Pon (Tyy = 2k and t = 2j and M; > 0)
j=1
N
+Y Py (Tyy = 2k and t = 2j and M; < 0).
Jj=1

If j > k, then the event (T4, = 2k and t = 2j and M; > 0) is empty.
If j < k, the cardinality of this event equals the number of paths
with origin (0, 0) and endpoint (27, 0) that are contained in the open
upper half-plane between the origin and the endpoint multiplied by
the number of paths with origin (27,0) and length 2(N — j) in which
2(k — j) elementary segments are contained in the upper half-plane.
The number of paths with origin (0,0) and endpoint (2j7,0) that are
contained in the open upper half-plane between the origin and the
endpoint is given by Corollary 10.6; the number of such paths is
%(2]?:12). The number of paths with origin (27,0) and length 2(N — )
in which 2(k — j) elementary segments are contained in the upper
half-plane is given by the induction hypothesis; the number of such
paths is (Q(kk:j )) (2(16\7:15)). Therefore,

Py (T5y =2k and t = 25 and M; > 0)

L 25 =2\ (2(k =)\ [2(N — k)

~5 (1) ()0 2)
If j > N —k, then the event (T4, = 2k and t = 25 and M; < 0) is
empty. If j < N —k, the cardinality of this event equals the number of
paths with origin (0, 0) and endpoint (27, 0) that are contained in the
open lower half-plane between the origin and the endpoint multiplied
by the number of paths with origin (27, 0) and length 2(N —j) in which
2k elementary segments lie in the upper half-plane. The number
of paths with origin (0,0) and endpoint (27,0) that are contained
in the open lower half-plane between the origin and the endpoint is
given by Corollary 10.6; the number of such paths is %(2]7:12). The
number of paths with origin (25,0) and length 2(N — j) in which
2k elementary segments lie in the upper half-plane is given by the

induction hypothesis; the number of such paths is (Zlf) (2(16\77—;::)).
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Thus
Pon (Tyn = 2k and t = 2§ and M; < 0)

1 (25 -2\ (2k\ (2(N —j - k)
22N \j—1/)\k N—-j—k )
We complete the proof by using the second formula of Lemma 10.7:

ER O
i N_lk j22N (J]—_f) (2:) (2(1{7\[" Jj:kk >
GG
)
()

The result of the proposition follows by induction. O

Now we will show that the random variables T3, satisfy the arc-
sine law.

Proposition 10.9. For all a and b such that 0 < a <b< 1,

hm Py, (2na < T, < 2nb) /
Va(l —z)
Proof. First we analyze the case where 0 < a < b < 1. From Propo-

sition 10.8, a direct application of Stirling’s formula (Proposition 7.2)
yields that

1 1
Po, (T3, =2k) = —————=—=(1+¢(k))(1 + e(n — k)),
on (15 ) i —k)( (k) (1 +€( )
where limy_, €(k) = 0, for 0 < k < n. Thus
1 1
P (Thy, = 2k) = = ———— (1 + ¢(n, k),
o (Thy = 28) = sl 4l )
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where lim,,_, o €(n, k) = 0 uniformly when k is an integer in [na,nbl.
This implies that

Py, (2na < Ty, < 2nb) Z Py, (T, = 2k)

na<lk<nb

na<k<nb Vv T'L -

The last summation can be written as

1 & <k> 1
= Xw | 7 ) ——
nﬂkzo n %( _k

1-3)

which is a Riemann sum that approaches = f dr as n ap-
V& (1 z)

proaches infinity. This completes the first step of the proof.

\/ﬁ dzx converges for

Now, fix ¢ > 0. Since the integral fol

all small enough a > 0,

1 /¢ 1
- ——dr<ce
7r/0 Va(l —z)
and
1t 1
— dx < e.

1—a V(1 —2)
Fix such a number a. From the first step of the proof, we have that
1 l-a

= T — Po, (2na < Ty, <2n(l—a))|l <e
m

a z(1—2x
for large enough n. Now,
Py, (T3, < 2na) + Py, (2na < Ty, < 2n(1 —a))
+ Py, (T, > 2n(l —a)) =1

and 1 fol dx = 1. We deduce that

\/$(1
1/t 1
dﬂc+

1 1
;/0 \/ac(l—x l1-a /T 1-33

— Py, (T3, < 2na) — Py, (T3,, > 2n(l —a)) | <,
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for large enough n, so
P, (T3, < 2na) + P2y, (T3, > 2n(1 — a)) < 3e.
We have thus shown that there exists an a > 0 such that
Py, (T4, < 2na) < 3e

for large enough n. Since Py, (T3, < 2na) is an increasing function of
a that approaches 0 as a approaches 0 for each fixed n, we conclude
that lim,—¢ Pan, (T3, < 2na) = 0 uniformly in n.

Using the first step of the proof again, then

lim P, (T3, < 2nb)

no / m

for all b € (0,1). The same argument shows that if 0 < a < b < 1,
then

lim Py, (2na < Ty, < 2nb)

and
lim Py, (T3, < 2na) /
A o (T vzl -2)
and the proposition follows immediately. O

Proof of the Arcsine Law. To complete the proof of the arcsine
law (Theorem 10.1), we just need to compare the random variables
T, and T,,. Since

Ton, =T, —#{k:1 <k <n,Mgr_1 >0 and Ms =0},
it follows that
[Ton — To,| < #{k:1<k<nand My =0} = Up,.
We will prove the law of returns to the origin, which implies that

lim Py, (Usp > 2ne) =0
n—oo
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for every € > 0, in the next section. However, we can also give a
direct proof of this result. Since

ZX(Mzk 0)
= szn (M, = 0) = 2":2_% <2kk>7
k=1 k=1

Markov’s inequality implies that

1 < 2k
Py, (Ugp > 2n€) < — Y 272k
2n (Uan > ne) — 2ne Z (k)

k=1

EQn UQn EQn

for every € > 0. Now, it is easy to check that

lim 272 2k =0
k—oo k‘

by using Stirling’s formula, so Cesaro’s principle implies that

lim P, (Ugn > 271,6) =0.

Since the event (Ton < 2na) is contained in the union
(|Ton — T4,| > 2n€) U (T, < 2n(a+¢€)),
we have that
Py, (Toy, < 2na)
< P, (|Ton — Ty, | > 2n€) + Py (T, < 2n(a+€)).
On one hand,
Po, (|Ton — T3, > 2n€) < Poy, (Uzy > 2ne) — 0
as n — 0o. On the other hand, Proposition 10.9 implies that

lim Py, (T3, < 2n(a+€)

s / m
and

3:“3”/ m /\/ﬁ

therefore,

lim sup Poy, (Ton < 2na) <

@ 1
S .
n—oo _WA w/ﬂ?(l—ﬂf) *
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Since Ty, < T3,,, Proposition 10.9 directly implies that

lim inf Py, (To, < 2na) > =

oo / m

We conclude that

111’1’1 Py, (Tgn < 2710(

/m

To complete the proof, we only need to check that

hlIl P2n+1 (T2n+1 < (271 -+ 1

-l A

This follows easily from the fact that
Pypi1 (Tont1 < 2n+ Da) < Py, (Ton < (2n+ 1))
and
Poyi1 (Tont1 < (2n+ 1)a) > Popyo (Topio < (2n+ 1)a).

We have now proved the arcsine law. O

10.5. Proof of the Law of Returns to the Origin

We will explicitly determine the distribution of the random variable
Usy,. Tt is clear that this random variable only takes integer values
between 0 and n. Note that for each integer k between 0 and n, the
probability P, (U, = k) equals 272" multiplied by the number of
paths with origin (0, 0) and length 2n that touch the z-axis at exactly
k + 1 points.

Proposition 10.10. For each k between 0 and n,

Pon (Usgn = k) = —1—<2”* k)

22nvk n

Note that Py, (Us, = k) is a decreasing function of k.

Proof. We proved the formula Py, (Uz, = 0) = 272" (2:) in Corol-
lary 10.4. We will use induction on n to prove the general formula. If
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Uan(w) > 0, then there exists a minimal j > 1 such that My;(w) = 0.
We let t(w) be this integer j. Let k& > 0; then

Pop (Usp = k) =Y Ppy (t = j and Uz, = k).
j=1

If j > n—k+1, then the event (¢t = j and Us,, = k) is empty. If
7 < n—k+ 1, then the cardinality of this event equals the number
of paths with origin (0,0) and endpoint (27,0) that do not touch the
z-axis between the origin and endpoint multiplied by the number of
paths with origin (2j,0) and length 2n — 2j that touch the z-axis at
exactly k points. These numbers are given respectively by Corollary
10.6 and by the induction hypothesis. Thus, we obtain that

2,25 -2 2n -2 —k+1
#(t:jandUzn:k):-(? )2’f—1<" Ik )
J\Nj—1 n=J
This implies that
n—k+1 . .
1/25—2\(2n—-2j—-k+1
# U :k :2k T(. >< . >7
Uon =) ; j\j-1 n—j

and Lemma 10.7 allows us to conclude that

#(Ugn:m:zk(?”*k).
n
O

Proof of the Law of Returns to the Origin. Fix a real number
a > 0. We will use notation from our proof of the central limit theo-
rem: if (8"»k>n>0,0§k<a\/ﬁ and (t,,)n>0 are two families of real num-
bers, we write s, = O,(t,) if the absolute value of s,  is bounded
above by a multiple of ¢,,, uniformly in k.

Proposition 10.10 and Stirling’s formula provide an estimate of
Py, (Ugy, = k) when 0 < k < av/2n:

1 2n — k E\"
P frd = — _— _——
U == i ()

(ems) (o)
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Her;c’i (Uzn = k)
=i Vz (170 (7)) oo o (50 )
-0 (5~ ) + 0 ()]
and finally

== T () (0. (35))

This estimate, uniform in &, allows us to write

P, (Ugn < a\/ﬁ)
5 () o)

As in Lemma 7.4, viewing this as a Riemann sum yields

2 [¢ 1
lim Py, (Ugn < a\/2n) =4/ ;/ exp <—§1‘2) dx .
n-—000 0

Finally, note that Us, 41 = Us,, since My, 11 is never zero. Thus,
Popiq (U2n+1 < avn+ 1) =D, (Ugn < av22n + 1) R

and it easily follows that

lim (PQn (Ugn < aW) - P, (U2n < a\/%)) =

n—oo

We have thus shown that

2 [a3
lim P, (U, < ay/n) = \/j/ e~ /2 da.
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Chapter 11

The Strong Law of
Large Numbers

We will now present a new class of asymptotic properties of the game
of Heads or Tails that addresses infinite sequences of coin tosses and
uses the concept of almost sure events.

The weak law of large numbers tells us that the probability that
the empirical probability of success is close to the theoretical proba-
bility of success is large if we play our coin-tossing game long enough.
The strong law of large numbers tells us that the empirical probability
of success S, /n approaches the probability of success p as the number
of tosses n approaches infinity. To be rigorous, however, we need to
make this statement more precise. The problem is that there do exist
infinite sequences of heads and tails such that the proportion of heads
does not converge to p or even such that the proportion of heads does
not converge at all. However, we can exclude such sequences by re-
sorting to the concept of an almost sure event. The strong law of large
numbers tells us that the sequence (S, /n) almost surely converges to
p. This fundamental result is due to Borel.! Following Borel’s ideas,
we will also illustrate the strong law of large numbers by the concept
of normal numbers.

5o Borel, Sur les probabilités dénombrables et leurs applications arithmétiques,
Rendiconti del Circolo Math. di Palermo, vol. 26, pp. 247-271, 1909.

7
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This chapter is divided into five sections. In the first section, we
will define the concept of an almost sure event. In the second sec-
tion, we will prove the strong law of large numbers as a consequence
of the large deviations estimate. In the third and fourth sections,
we will discuss normal numbers. In the fifth section, which is essen-
tially independent of the third and fourth sections, we will present
the Borel-Cantelli lemmas and new approaches to the strong law of
large numbers.

The law of the iterated logarithm, which is the subject of the
next chapter, will provide an estimate of the rate of convergence in
the strong law of large numbers.

11.1. Almost Sure Events, Independent Events

The experiment we will consider is an infinite sequence of indepen-
dent trials of an elementary experiment having two possible outcomes
(which we call success and failure). Let a fixed parameter p between
0 and 1 be the probability of success; then 1 — p is the probability of
failure. The space that we consider is the set 2 of infinite sequences
of O’s and 1’s:
Q={w=(wn)n>1 : wp,=0o0r1foralln>1}

Fach w represents a possible outcome of the elementary experiment:
the nth coordinate w, equals 1 if the outcome of the nth trial is success
and 0 if the outcome is failure. We define S, (w) = w1 +wa + -+ wy
to represent the number of successes observed after n trials.

We will call any subset of 2 that can be defined by a condition
depending on only finitely many coordinates a finite type event; in
other words, the realization of such an event is determined after a fixed
and finite number of elementary trials. Using the notation introduced

in previous chapters, we can make the following formal definitions.

A subset A of Q is a finite type event if there exists an integer
n =mn(A) > 1 and a subset A" of Q,, such that

A={weQ : w™eA}, where w™ = (wy,wa,... ,wy).

The probability of the finite type event A is the number
P(A) := Ppay(A").
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Thus,

P(A) = Z pSn(w)qn—Sn(w).
wln) e A’

In the definition of a finite type event A, the number n(A) is
not uniquely determined by A (if n works in the definition, then
any number larger than n will work as well). For the definition of
the probability of A to make sense, the value given by the above
expression must be independent of the choice of n(A4). We leave it to
the reader to check this easy fact.

The set £ of finite type events contains 2 and ), and it is closed
under taking complements and under finite union and intersection.
Such a set of subsets of 2 is called a Boolean algebra of subsets of
Q. The probability P is a function from £ to the interval [0, 1] such
that P(Q) =1 and P(AU B) = P(A) + P(B) for every A and B in
£ satisfying AN B = 0.

We will now give the main definition of the section.

A subset N of Q is a negligible event if for every € > 0 there exists
a countable set { Ay : k > 1} of finite type events such that

Nc|JAr and > P(4) <e

k>1 k>1

A subset of Q is an almost sure event if its complement is negligible.
If A is an almost sure event, we say that “w almost surely belongs to
A‘”

Remark. Since we will only consider finite type, negligible, and al-
most sure events, we will usually omit the qualifier “finite type.”

We will also use the property of invariance under shifting of the
probability P: if A is an event and k is a positive integer, then the
event {w € O : (wg,Wk4+1,Wkt2,-..) € A} has the same probability as
the event A.

Proposition 11.1. Fvery subset of Q) that is contained in a negligible
event is also negligible. Fvery countable union of negligible events is
negligible. If p is not 0 or 1, then every countable subset of  is
negligible.
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Proof. The first assertion follows immediately from the definition of
a negligible event.

To prove the second assertion, let {N,, : n > 1} be a countable
set of negligible events. Let N = |J,,~; N, and fix ¢ > 0. For each
n, there exists a countable set {A, ‘n k> 1} of finite type events
such that

Ny |JAnk and D P(Ang) <2
k>1 E>1

The set {4,k : n,k > 1} of events covers N and the sum of the
probabilities of these events is less than )" €27 = e. This proves
that N is a negligible event.

To prove the last assertion, suppose that p is not 0 or 1. First we
will prove that every singleton subset of 2 is a negligible event. If w
is a fixed element of €, then for n > 1 the singleton {w} is contained
in the event {w’ € Q : '™ = w(} that has probability less than
(max(p,1 — p))™. Since this upper bound becomes arbitrarily small
as n is made arbitrarily large, the singleton {w} is a negligible event.
Since every countable set is the countable union of singleton sets, then
every countable subset of {2 is negligible. tl

Let (A;);er be a family of events. The events A; are independent
if

k3 n
P (ﬂ Aik> =[P4,
k=1 k=1
for every finite set of distinct indices i1,149,...,1, € I. We leave it to

the reader to prove that the complementary events A{ are indepen-
dent if the events A; are.

Proposition 11.2. Events that are determined by coordinates with
disjoint sets of indices are independent.

We can rephrase this statement in the following way. Let (A;);cr
be a family of events. If for each i € I there is a finite subset E; of N
and a subset A’ of {0,1}¥ such that
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and
Ai={weQ : (Wn)ner, € Al},
then the events (A;);cr are independent.

It is easy to verify this proposition using the definition of proba-
bility, and we leave the proof to the reader.

We will now provide a few examples of negligible events. In these
examples, the parameter p does not equal 0 or 1.

Example. The set of sequences that are periodic after a certain point
is negligible. (This is a special case of the following example.)

Example. Let b be a word constructed from the alphabet {0, 1}; that
is, let b be a finite sequence of 0’s and 1’s. We claim that the set of
infinite sequences of 0’s and 1’s not including the word b is negligible.

Because the set of words is countable, this claim implies by Propo-
sition 11.1 that all possible words almost surely appear in the sequence
w.

Now let us prove the claim. We consider a word b of length j > 0.
For each m > 0, let A,, be the event including all w such that

(wmj+1awmj+27 e ~,W(m+l)j) # b.

We know that P(Ag) < 1, and the property of invariance under shift-
ing implies that all the events A,, have the same probability. In
addition, Proposition 11.2 implies that the events A,, are indepen-
dent. Therefore, P((,<,, Ar) = (P(Ap))™"'. The set of sequences
w such that -

(Wn+17wn+27 s awn+j) 7é b
for all n > 0 is contained in (), ,, Ax. Since the probability of this

event can be made arbitrarily small by choosing m to be arbitrarily
large, this set is negligible.

Example. The central limit theorem can be used to show that if
(an)n>1 is an unbounded sequence of real positive numbers, then

lim sup a,v/n

n—oo

Sn *
n

almost surely.



82 11. The Strong Law of Large Numbers

In Chapter 12 we will prove a much more precise version of this
theorem; we will now provide only a sketch of the proof.

Let m be a positive number and let (ny) be a strictly increasing
sequence of integers. The set of w such that

Sy,
lim sup a,v/n Sn(w) —pl<m
n

n—oo

is contained in the union over k of the finite type events

(ank\/ﬁ S —p‘ <m>.

Nk

Nk
The central limit theorem implies that these events have arbitrarily
small probability as long as ni and a,, are large enough. For each
€ > 0, we can choose a sequence (ny) satisfying

nk

p’<m> < E.
k

+00
Z P <ank Vg
k=1

We conclude that limsup,, a,v/n % - p| > m almost surely, and

applying Proposition 11.1 completes the proof.

11.2. Borel’s Strong Law of Large Numbers

Theorem 11.3 (Borel’s strong law of large numbers). Almost surely.

(11.1) lim lSn(u}) =p.

n—+oo M

Proof. Let R, = %Sn(w) — p. The sequence (R,(w))n>1 fails to
approach zero if and only if there is an m > 1 such that for each
n > 1 there exists a k > n satisfying |Ry(w)| > 1. In symbols, the
set of w not satisfying (11.1) is

UNUfwen: meis1h
m>1n>1k>n

We want to show that this set is a negligible event. By Proposition
11.1, it suffices to show that

N, = ngl {w € : |Ry(w)| > %}

is negligible for each m > 1.
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For each k > 1, let A, = {w €Q : |Ri(w)] > #} By the
large deviations estimate, there exists a constant ¢ = ¢(p,m) > 0
such that P(A.,x) < e *. Since the series 3, ., e °* converges,
for every € > 0 there exists an n > 1 such that fk>n P(Ami) < e
Because Ny, C |Jy~,, Am.k, this proves that each N,, is a negligible
event. - d

After discussing the concept of a random variable for infinite se-
quences of elementary experiments, we will state a generalization of
Borel’s strong law of large numbers (see Section 11.5). Nonetheless,
the theorem that we just proved already has a wide range of appli-
cations. This law of large numbers tells us, for example, that the
asymptotic proportion of either heads or tails in an infinite sequence
of tosses of a fair coin is 1/2. Moreover, it tells us that the asymp-
totic proportion of any outcome in an infinite sequence of trials is
the probability of that outcome for a single trial. Corollary 11.5 will
make this notion precise.

Proposition 11.4. Let (A,)n>1 be a sequence of equiprobable inde-
pendent random events with probability P(A). The asymptotic em-
pirical probability that these events will occur is almost surely P(A);
that is,

lim l#{k : 1<k<n and we A} = P(A)

n—+oo N
almost surely.

By setting A, := (w, = 1), we see that this proposition is a
generalization of Theorem 11.3. In fact, the proof of this proposition
will reveal that it is simply a different way of writing that theorem.
Proof. For cach w, we create a sequence p = (p,)n>1 of 0’s and 1’s

by setting p, = 1 if w € A,, and p,, = 0 otherwise. We need to prove
that

R
(11.2) Jim kz_lpk = P(p; = 1) = P(A)

almost surely.
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For each n and each (e, €2,...,€,) € {0,1}",let s := )", €; then
Ppr =€, 1 <k<n)=PA)°(1-PA)"".

The same calculations we used to show that % > n_, wi almost surely
converges to p can be applied to complete the proof that the conver-
gence (11.2) is almost sure. O

Corollary 11.5. Let A be a finite type event. For each integer n > 1
and each w € Q, let S(A,n,w) be the number of integers k between 1
and n such that (wg, Wg+t1,Wkt2,...) € A. Then

n—oo

lim %S(A,n,w) = P(A)

almost surely.

Proof. There exists a positive integer m such that the event A de-
pends only on coordinates with index not greater than m. Equiva-
lently, there exists an A’ C ., such that

A={w : (wi,wa,...,wy) € A'}.

For each integer j between 1 and m, consider the sequence (4;,)n>0
of events defined by

Ajni={w : (Wjtnm,Wjtnm+1,Wjtnm42,--.) € A}
= {w : (wj+nmawj+nm+1, cee awj+(n+1)m*1) € A/} .

For fixed j and varying n, the events A; ,, are independent and each
has probability P(A).

Let S(A, j,n,w) be the number of integers k between 0 and n — 1
such that w € A; . Proposition 11.4 implies that

1
lim ES(A,j,mw) = P(A)
almost surely. In addition,

1 1 o1
—S(A :AE ZS(A, X
nmS( ,nm,w) m nS( ,],’I’L,UJ)
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The corollary then follows from the inequality

1 1
—S(A <
(n+ l)mS( m, @) < nm +

kS(A, nm+ k,w)

L 54, (n+ 1)m,w),
nm

VAN

which holds for every k& from 0 to m. O

If b = (b1,b2,...,b;) is a word constructed from the alphabet
{0,1} and s := >°7_, b;, we say that pq?~* is the probability of the
word b.

The following result is a special case of Corollary 11.5.

Corollary 11.6. In the sequence w, every word b almost surely occurs
with asymptotic frequency equal to its probability.

11.3. Random Sequences Taking Several Values

We will slightly enlarge the setting of our study to provide illustrations
and applications of the law of large numbers: for the moment we will
consider sequences of elementary random experiments with several
possible outcomes. Since this extension is purely formal and will not
create any new complications, we can explain the new setting quickly.

Consider a probabilisitic experiment with d possible outcomes,
labeled from 1 to d. Let the probability of each outcome ¢ be p;; the
numbers p; are positive and their sum is 1. The probability space
naturally associated to the outcome of this elementary experiment is
Q; ={1,2,...,d} and the probability of a subset A of ; is P(A4) =
> ica Pi- The sample space for a sequence of n independent trials of
this experiment is the product set €2, = QF, which is equipped with
the probability P, given by

( (n)) Hp o ﬁp?{k : 1<k<n, Wk:i}’

i=1
where w(™ = (wi,wy, ..., wn) € Up.

The sample space for an infinite sequence of independent trials of
this elementary experiment is the set Q = Q)" of infinite sequences
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of elements of ;. As in the case where d = 2, we can define the
concepts of finite type, negligible, and almost sure events.

The propositions that we proved about sequences of experiments
with two possible outcomes generalize easily to the case of d possible
outcomes. In particular, the strong law of large numbers says that
for each ¢

lim l#{k :1<k<n and wg =i} =p;
n—+oo N

almost surely, and Corollary 11.5 remains true as stated.

11.4. Normal Numbers

We will now connect the properties of our coin-tossing game to the
statistical properties of decimal expansions of real numbers. In fact,
we will consider representations in an arbitrary base b, where b is
a positive integer. First we will review the concept of the base b
representation of a number and then we will define the concept of a
Lebesgue-negligible set.

Let b be a positive integer. Then each real number x can be
written uniquely as

+oo
T
T = Xo+ Z_Zl §7
where g € N, 27 € {0,1,2,...,b— 1} for ¢ > 1 and where the x;’s do
not all equal b — 1 after a certain point.?
We let |I] be the length of the real interval I. A subset E of the
real line R is Lebesgue negligible (or of measure zero) if for every € > 0
there exists a countable family (Ix)r>1 such that

E C UIk and Zukl<€.
E>1 k>1
If E is negligible, then we say that almost every real number belongs

to the complement of E.

Let Q be the set {0,1,...,b— 1}N* of sequences of integers be-
tween 0 and b — 1, and let w = (wp)n>1 be an element of Q. Let Q'

2The concept of the base b expansion of a number is discussed in many books;
for example, see Sections 2.1 and 12.1 of Elementary Number Theory and its Appli-
cations, 4th ed. by Kenneth H. Rosen (Addison-Wesley, 2000).
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be the subset containing sequences that do not constantly equal b— 1
after a certain point. We equip the finite set {0, 1,...,b— 1} with the
uniform probability pg = p1 = -+ = pp—1 = % We can define the
concept of a negligible subset of the set 2 by following the construc-
tion in Section 11.3. Since the complement of €' in  is countable,
it is a negligible subset of 2. We consider the function ® from ' to
the interval [0,1) defined by

+o00o

wi
q) = .
W =2_%
=1
Proposition 11.7. The function ® is a bijection and a subset A of

is negligible in Q if and only if its image ®(A) is Lebesgue negligible.

Before proving this proposition, we will use the following elemen-
tary lemma to define the measure |C| of a set C' that is a finite union
of real intervals.

Lemma 11.8. If C is a finite union of real intervals, then C can be
written as a finite union C = | J, I, where the I}, are pairwise disjoint
intervals. Although this representation of C is not unique, the sum
> i k| of the lengths of the intervals depends only on C.

We set [C] = >, |[Ix].

Proof of Proposition 11.7. The fact that the function ® is a bi-
jection is a well-known result in number theory.

Let n > 0 and (ay,as,...,a,) € Q. Setting o := > 1" | &, we
have that

1
d({we : wy=a;,1<i<n})= [a,a—i—b—n).
Therefore, the image under @ of a finite type event in § is a finite
union of b-adic intervals (which are intervals with boundaries of the
form ;- with a and j are integers). Moreover, note that
_ 1 1
P{we@ : wz‘:ai,ISZSn}):bTL: [a,a—kﬁ) .

From this we conclude that P(B) = |®(B)| for any finite type event.

This shows that the image of a negligible event under ® is Lebesgue
negligible.
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To prove the converse, we start by noting that any interval can be
approximated by a b-adic interval. For any real interval I and € > 0,
there exists a b-adic interval I’ closed on the left and open on the right
such that 7 C I’ and |I'| < |I| + €. Let E be a Lebesgue-negligible
subset of [0,1). By approximating intervals covering E by b-adic
intervals, we can show that for any e > 0 there exists a countable
family (I},) of b-adic intervals closed on the left and open on the right
such that £ C (JI} and Y |I}| < e. Set Ay = ®~1(If). For each
k, the set Ay is a finite type event and P(Ag) = |I;.|. (This fact is
easy to check by writing the interval I} as a finite union of pairwise
disjoint intervals of the form [a,a + b~7), where ¥’ a € N.) Noting
that @ 1(E) C [J Ak and > P(A4y) < ¢, we conclude that ®~1(F) is
negligible in . |

Following Borel, we say that a real number is normal in base b (or
b-normal) if every block of digits appears in the base b representation
of the number with an asymptotic frequency equal to b~*, where ¢ is
the length of the block. In other words, x = xg + Z;;of 7+ is normal

in base b if and only if

1 1
lm —#{i : 1 <i<m, (T;\Tig1,- . Tipe—1) = a} = —
n—oo N bl
for every £ > 0 and a = (ay,as,...,a7) € {0,1,...,b— 1}~

A real number is absolutely normal if it is normal in every base.

Corollary 11.5 and Proposition 11.7 imply that almost every real
number is normal in any given base b. Furthermore, we can show that
a countable union of Lebesgue-negligible subsets of R is Lebesgue neg-
ligible in the same way that we proved the corresponding result for
negligible subsets of Q. This implies that almost every real number
is absolutely normal, yet a simple example of an absolutely normal
number has never been found! Isn’t that troubling? Of course, ratio-
nal numbers are never normal because their representation is periodic
after a certain point. As for irrational numbers, we don’t even know
whether numbers such as v/2, In2, and 7 are normal! Such problems
seem to form an insurmountable obstacle for contemporary mathe-
matics.
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11.5. The Borel-Cantelli Lemmas

Cantelli® extended Borel’s work on the strong law of large numbers
to reach the lemmas that bear these names and that are critical in
making the law of large numbers more precise.

We can summarize the argument used to prove Theorem 11.3 in
the following way: the large deviations estimate implies the conver-
gence of a series of probabilities of events, which in turn implies that
a certain event is negligible. In fact, this principle is used through-
out probability theory, and we will give a precise statement of the
principle (Proposition 11.9) as well as several applications. For this
discussion we use the mathematical model described in Section 11.1.

If (An)n>1 is a sequence of subsets of 2, we let A, infinitely often
be theset (1,5, Uy>, Ak- Thusw is an element of the set A, infinitely
often if and only if w belongs to A, for infinitely many indices n.

Proposition 11.9 (first Borel-Cantelli lemma). Let (Ap)p>1 be a
sequence of events. Ifzn21 P(A,) converges, then A,, infinitely often
s a negligible event.

Proof. The set A, infinitely often is contained in J, ., Ax for each
n > 1. Since the series 3, ., P(A,) converges, the sum of the proba-
bilities of the Ay for k > n can be made arbitrarily small for large n.
The result then follows immediately from the definition of a negligible
event. O

We will now illustrate this result with three examples and a state-

ment of a more general law of large numbers (Theorem 11.12).

Example. Let (k,)n,>1 and (4,),>1 be two sequences of positive
numbers. For each n > 1, let A,, be the event consisting of outcomes
with ¢,, consecutive successes starting at the k,th trial; that is,

A, = {wEQ Wk, = W41 = = Wh 40, —1 :1}.

If Y, o1 pfn converges, then it is almost sure that only finitely many
events A, occur.

3F. P. Cantelli, Sulla probabilita come limite della frequenza, Rendiconti d. r.
Acad. d. Lincei, vol. 26, pp. 39-45, 1917.
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Example. If three games of Heads or Tails are played simultaneously
and independently, then it is almost sure that all the games will be
tied at the same time only finitely many times. (A game of Heads or
Tails is tied after toss n if there have been as many heads as tails at
the end of n tosses.) This follows immediately from the first Borel-
Cantelli lemma, and we leave the proof to the reader. This example
is connected to the recurrence of random walks, which is the topic of
Chapter 13.

Example. This example will use the concepts introduced in Section
11.4. First, here is a natural way to associate a real number to the
sequence of integers from its decimal expansion. If z is a real number,
let x = xg + Z;:lc x;107" be its decimal expansion and consider the
integer L, (z) = Y1, x;10" for each positive integer n.

Now, let (e,) be a sequence of real numbers such that ) e,
converges. For almost every real = (that is, for every number not in
some fixed Lebesgue-negligible set), there exists an n(z) € N such
that L,(z) > €,10""! for every n > n(x). This can be proved using
the fact that the event (L, < ¢,10""!) has probability of order ¢, in
the space () of decimal expansions.

The proof of the strong law of large numbers (Theorem 11.3)
relied on the fact that the set '%Sn -p| > % infinitely often is a
negligible event for any m > 0. The next proposition generalizes
this method. Before stating the proposition, however, we will extend
the concepts of a random variable, of independence, and of expected
value that we introduced in Chapters 2 and 3 and Section 11.1. As
before, we consider the space (2 of sequences of 0’s and 1’s and we fix
a parameter p representing the probability of 1.

A finite type random variable is a real function on €2 that depends
only on a finite number of coordinates. In other words, a function X
from €2 to R is a finite type random variable if it takes only a finite
number of values, and the set

X=z)={we : X(w) =21}
is a finite type event for each x € R. Every finite type random

variable can be written as a finite linear combination of characteristic
functions of finite type events.
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Remark. Since we will only consider finite type random variables,
we will simply use the phrase random variables to refer to finite type
random variables.

If X and Y are two random variables, then the functions X +Y,
XY, min(X,Y), and max(X,Y) are also random variables. If f is any
function from R to itself and X is a random variable, then f(X) :=
f o X is a random variable as well. For each n > 1, S, is a random
variable.

Note that a function X from {2 to R is a (finite type) random
variable if and only if there exists an integer n = n(X) and a random
variable X’ defined on the finite space 2,, such that

(11.3) X(w)=X' (w(”)) where W™ 1= (w1, wa,...,wn)

for every w € €.

Of course the integer n is not uniquely determined, and any in-
teger larger than n satisfies the above property if n does.

A family (X;);es of random variables is called a family of inde-
pendent random variables if the events (X; = z;) are independent for
any choice of real numbers z;. If (X;);c; is a finite family of random
variables, we can choose an integer n = n(X;) that satisfies (11.3) for
each i and conclude that the random variables (X;);c; are indepen-
dent if and only if the random variables (X/);c; defined on the finite
probability space (Q,, P,) are independent. Proposition 3.1 then im-
plies the following fact: if (X;);c; is a family of independent random
variables, J and K are disjoint subsets of the set I of indices, and Y
and Z are real functions respectively of (X;)ies and (X;)ick, then YV
and Z are independent random variables.

If X is a random variable, we let X (£2) be the set of values taken
by X. The expected value of X is defined by
E[X]:= > aP(X=ux).
TEX(Q)
Equation (11.3) allows us to write this as E[X] = E,, [X'].
The properties of expected value stated in Chapters 2 and 3 for

finite probability spaces also hold true for (finite type) random vari-
ables defined on .
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The following proposition generalizes the method that we used to
prove the strong law of large numbers.

Proposition 11.10. Let (X,,),>1 be a sequence of random variables.
If Z:g P(X, > €) converges for all € > 0, then lim, 400 Xn =0
almost surely.

Proof. Set A, := (X,, > €). Proposition 11.9 implies that for every
€ > 0 there almost surely exists an ng(w, €) > 0 such that | X, (w)| < e
for every n > ng(w,€). By considering a countable union of neg-
ligible events, we conclude that for every positive integer m there
almost surely exists ng(w, 1/m) > 0 such that | X,,(w)| < 1/m for all
n > ng(w,1/m). This implies that the sequence (X,,) almost surely
converges to zero. ]

When combined with Markov’s inequality, this proposition di-
rectly implies the following highly useful convergence criterion.

Corollary 11.11. Let (X,)n>0 be a sequence of random variables. If
Z::&E [|X,]] converges, then the sequence (X,) almost surely con-
verges to zero.

As an illustration of this criterion for almost sure convergence, we
will now give Cantelli’s proof of Borel’s strong law of large numbers.
After that, we will present a generalized form of the strong law of
large numbers.

For each positive integer n, let X, be the random variable defined
by X, (w) = w, — p, where w = (wy,ws,ws,...). The expected value
of each X, is 0, and the set {X,, : n > 1} is a family of independent
random variables (we say that (X,).>1 s a sequence of independent
random variables).

We have
4
S, 4 1 "
Ino_ - _E X,

1
== > EBIXX;XeX(].

1<i,5.k,0<n
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If ¢ does not equal j, k, or £, then X; is independent from X; X1 X/, so
E(X;X; X X¢) = E(X;)E(X;XxX,) = 0. This allows us to eliminate
many terms from the above expansion, which yields

e () |- | 3 pbee > e

1<i<n 1<i<j<n

Since | X;| < 1, it follows that E [Xﬂ <land F [XEX?} < 1. Thus

(%ﬁ_pﬂ g%(n+3n(n—l)):0<;12-),

which is the general term of a convergent series. Corollary 11.11 then

E

implies that the sequence ((ST" — p)4) almost surely converges to 0,

which is the conclusion of Borel’s strong law of large numbers.

The law of large numbers for the game of Heads or Tails, which
we have stated in several forms, is the archetype of a large class of
theorems in probability theory. The following theorem is a simple
example of a widely applicable law of large numbers. Theorems 5.1
and 11.3 are special cases of this theorem.

Theorem 11.12. Let (X,)n>1 be a sequence of pairwise indepen-
dent random wvariables such that E[X,] = 0 for each n and that
sup,, >, E[X2] is finite. Let R, = Y7 X;. Then

26>:0
R,

(11.5) lim —2 =0

n—4oo N

n

n—-+00 n

(11.4) lim P (

for each € > 0 and

almost surely.

Note that the random variables X, are pairwise independent if
they form a sequence of independent random variables (but, as we
noted in Chapter 3, not every sequence of pairwise independent vari-
ables is a sequence of independent variables).
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Proof. Let M := sup,s; E[X2]. If i and j are distinct, then
E[X;X;] = E[X;]E[X;] = 0. This implies that

2
A,
n
and (11.4) follows by the Bienaymé-Chebyshev inequality. The result
about almost sure convergence is more subtle. Equation (11.6) implies

- Ly e <

n= «
1=1

(11.6) E

that
Ro.\>2
>e|(f) | <
n
n>1
Consequently, by Corollary 11.11,
R,
lim =0

n-—-+o00o n2

almost surely. Let m be the integer part of /n. Then m? < n <
(m + 1)2. On one hand,

R,
lim m

n— 400 n

=0

almost surely, and on the other hand,

2
R, R\’ 1 u
Jol N i I X,
< n n ) J n? ,722:“
1 & 2 < nvm2h B _3/2
- Y B <t M=0(n)
i=m2+1

is the general term of a convergent series (with index n). Applying
Corollary 11.11 implies that
Rn R777,2

lim —— =0
n—+oc N n

almost surely. O

Proposition 11.13 (second Borel-Cantelli lemma). Let (4,)n>1 be
a sequence of independent events. If anl P(A,) diverges, then A,
infinitely often is an almost sure event.
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Under the strong hypothesis that the events A,, are independent,
the second Borel-Cantelli lemma provides two pieces of information:
first, it affirms the converse of the first Borel-Cantelli lemma; second,
it affirms that the event A, infinitely often is either negligible or
almost sure. This last fact is a special case of Kolmogorov’s 0-1 law,
which is discussed in more advanced texts.

Proof. The complement of the set A, infinitely often is the set
Uns1 Niesn A% To show that this set is a negligible event, we must
show that ﬂan Af is a negligible event for any fixed n. For each
m > n, let B, be the event By, = (), cpem Af- Then 5, A
C B,, and

(1= P(Ag))

< (-P(Ak) Aexp< ZPAk>

k=n

::1;

HP

-~
Il
3

3
M

since (Ap)n>1 is a sequence of independent events. This quantity can
be made arbitrarily small by choosing a large enough m, so ) k>n Aj
is a negligible event. O

Example. Consider the setting of the example immediately following
the statement and proof of the first Borel Cantelli lemma (Proposi-
tion 11.9). If the sequences (ky) and (¢,) satisfy k, + £, < kni1
for all n, then the events A,, are independent. If it is also true that
Yot pf diverges, then the event A,, infinitely often is almost sure.

Example. How can we randomly choose a real number between 0
and 1 following a uniform probability distribution? This is a subtle
question, and we would need to use the Lebesgue measure to answer
it carefully. Nonetheless, we can provide a partial answer using the
game of Heads or Tails. Fix the parameter p as 1/2. We associate
a real number U in the interval [0,1] to each sequence w € Q by
proceeding as in the previous section and set

+00w
k
k=1
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Now, how can we choose a sequence of independent real numbers?
Steinhaus suggested the following way. Consider an infinite family
(En)n>1 of pairwise disjoint infinite subsets of N* (for example, Ey
could be the set of even numbers, F3 the set of odd multiples of
3, E3 the set of multiples of 5 but not of 2 or 3, and so on). Let
E, ={a(n,1),a(n,2),a(n,3),...} and set

= Wa(nk)
Un = Z Qk, )
k=1

This provides a sequence (U,) of independent, uniformly distributed
random real numbers between 0 and 1. Let (e,) be a sequence of
positive real numbers. The first Borel-Cantelli lemma implies that if
Zn €, converges, then it is almost sure that U, > ¢, for large n. The
second Borel-Cantelli lemma implies that if Zn €, diverges, then it
is almost sure that U,, < €, for infinitely many n.

(Note that the random variables U are not finite type random
variables; however, to remain within the scope of this book, we will
not explain why the Borel-Cantelli lemmas can be applied in this
situation.)
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Chapter 12

The Law of the Iterated
Logarithm

12.1. Introduction

In this chapter, we will study the rate of convergence in the strong law
of large numbers. The setting is that of the preceding chapters: we
consider the game of Heads or Tails with a coin that may be unfair.
The probability of success (or heads) for each trial (one coin toss) is
p, and the number of successes in n independent trials is S,,. Borel’s
strong law of large numbers implies that the sequence (S, /n) almost
surely approaches p as n approaches infinity, and the central limit
theorem implies that S, — np is highly likely to have order at most
v/ for large n.

Khinchin’s law of the iterated logarithm adds considerable infor-
mation to the strong law of large numbers by providing a very precise
estimate of the size of the almost sure fluctuations of the sequence
(S, — np). It states that almost surely for any ¢ > 0,

there exist infinitely many n such that

S, —np > (1—€)/2p(1 —p)ninlnn,

and

for every large enough n, S, —np < (14 €)v/2p(1 — p)nInlnn.
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These statements involve the iterated logarithm function Inln, the
composition of the base e logarithm with itself, which is an excellent
example of a function that approaches infinity extremely slowly as n
increases (use your calculator to see for yourself!).

Like the central limit theorem, the law of the iterated logarithm
illustrates the fascinating fact that even complete randomness obeys
precise laws.

We will present the results leading up to the law of the iterated
logarithm in chronological order. We will prove the following results.

(1) Hausdorff’s estimate:' Almost surely, for any € > 0,
Sn —np = O (TLE+1/2)

as n — —+00.

(2) Hardy and Littlewood’s estimate:?
S, —np=0 (\/nlnn>

almost surely as n — +oc.

(3) Khinchin’s law of the iterated logarithm.?

Our mathematical model based on the pair (£, P) is the one
described in Section 11.1. We set

Xn(w) =Wwnp —P
and

R,(w) = Z Xi(w) = Sp(w) — np,
k=1

where w = (wp)n>1 € Q. Thus (X,,) is a sequence of independent,
identically distributed, finite type random variables with expected
value 0. Along with the large and moderate deviations estimates,
this is all we need to prove the results of this chapter.

1p. Hausdorff, Grundziige der Mengenlehre, Leipzig, 1913.

2G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approzrima-
tions, Acta Mathematica, vol. 37, pp. 155-339, 1914.

3A. Khinchin. Uber einen Satz der Wahrscheinlichkeitsrechnung, Fundamenta
Mathematicae, vol. 6, pp. 9-20, 1924.
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12.2. Hausdorff’s Estimate

Proposition 12.1. Almost surely, for any € > 0,
Sn—np=0 (n‘:H/Q)

as n — —+00.

Proof. We will use an extension of Cantelli’s method of proving the
strong law of law numbers, which we presented after Corollary 11.11.

If 41,49, ..., 4k are positive integers, then F [X;, X, --- X;,] < 1,
and if one of the ;s is distinct from the others, then £ [X;, X, ... X;, ]
equals 0.

Let k be a positive integer. Then
E [R¥*] = > E[X; Xi, ... Xy, ] < N(k,n),

1<is io,... ik <n
where N (k,n) is the number of functions from the set {1,2,...,2k} to
the set {1,2,...,n} that take each value at least twice. Let M (k) be
the number of partitions of {1,2,...,2k} into subsets each containing
at least two elements. If P is such a partition, then P contains at
most k elements, and the number of functions from {1,2,...,2k} to

{1,2,...,n} that are constant on each element of P is at most nk.
This implies that N(k,n) < n*M (k).

Let € > 0. Then
2k
E [(anRn) } < n2R kN (K, n) < no kM (k).

If we choose k > 512, then

Sr| ()| <o
n>1

By Corollary 11.11, then the sequence (n=¢"'/2R,) almost surely
approaches 0 as n approaches infinity.

For each ¢ > 0, there is a negligible event outside of which
n~¢"1/2R, converges to 0. To complete the proof of Proposition
12.1, we consider a countable family of values of €. Since a countable
union of negligible events is negligible, then for each € > 0, n=<~/2R,,
converges to 0 on the complement of a negligible event. ]
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12.3. Hardy and Littlewood’s Estimate

This result follows easily from the large deviations estimate.
Proposition 12.2.
Sp—np=0 (annn)

almost surely as n — +o00.

Proof. Theorem 6.1 implies that
1
P (Rn > \/nlnn> < exp <~nh+ ( _n_n>> ,
n

62
herle) = 2p(1 —p)

as € approaches 0. As n approaches infinity,

L [Inn ) Inn n 1
+ n | 2p(1-p)n °\n
and
1 1
o o () o) e

which is the general term of a convergent series since m > 2.
Thus

where

+0 (63)

ZP(Rn>\/m)<oo.

n>1

The first Borel-Cantelli lemma (Proposition 11.9) then implies
that, almost surely, R, < vnlnn for large n. U

12.4. Khinchin’s Law of the Iterated Logarithm

Theorem 12.3. Almost surely,

. Sn —np
lim sup =+1
n—oo /2p(1 —p)nlnlnn
and s
lim inf n P = -1

n—oo \/2p(1 — p)nlnlnn
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We will need the following two lemmas to prove this result. The
first follows from the large and moderate deviations estimates. The
second is a simple example of a maximal inequality; such inequalities,
which were first studied by Kolmogorov, play a fundamental role in
proving almost sure asymptotic results.

For each integer n > 1, we set
a(n) :=/2p(1 — p)nlnlnn.
Lemma 12.4. For all positive numbers a and § and large enough n,

(lnn)_“2(1+6) < P(R, > aa(n)) < (Inn)’“zuf‘s).

Lemma 12.5. Suppose that (Y,)n>1 is a sequence of independent

random variables with expected value 0 and variance o?.

LetT, =Y, +Yo+---+4+Y,. Then
4
! > < —. > —
P<1?1?§(nT’°—b>—3 P (T, > b—20/n)

for every b € R.

Proof of Lemma 12.4. Theorem 6.1 implies that

(12.1) P (R, > aa(n)) < exp <—nh+ (aaén))) ;

and, since the sequence (%) approaches zero, Proposition 6.2 im-
plies that

i <aa7§71)> N 2p(f2— p) (a(nn)>2 o <<$>3) '
e ) (aa(n))ﬁ ,Inlnn Inlnn\*?
(s o ()

nh.y <M) >a*(1 —d)Inlnn
n

for large enough n. Combining this with the inequality (12.1), we
conclude that

and

P (R, > aa(n)) < (Inn)~@ (1=

for large enough n.
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Theorem 8.1, which we can apply since VInlnn = o(nl/ﬁ), implies

that
P (R, > aa(n))=P (i —p> \/MCL\/?lnlnn)
n n
1

exp (—a2 Inln n)

V2rmav2Inlnn

1 2
=——— (lnn)" °
2a\/7r1nlnn( )

Since Vinlnn = o((In n)“2‘s), we conclude that
P (R, > aa(n)) > (In n)_a2(1+5)

for large enough n. d

Proof of Lemma 12.5. Since the random variables Y,, are indepen-
dent, var (T,, — T3) = (n — k)o? for every 1 < k < n. Then the
Bienaymé—Chebyshev inequality implies that

var (T, — Ty) n—=k

P(|T, — T <2 ) > 1 —
(| " Kl = Uﬁ)‘ 4o2n 4n

> o

Using elementary properties of probability, we can write

P(max Tk2b>
1<k<n

=Y P(T1<bTy<b,....Thoy <band Ty >b),
k=1

which is bounded above by
4 n
gZP(T1 <b,...,Ti1 < band T, > b) - P (|T,, — Tis| < 20/n).
k=1

Now, the random variable T;, — T} is independent of the random
variables Ty,T5,..., Ty for every k. Therefore, the above quantity
can be written as

4 n
gZP(T1 <by....Tyoy < b, T, > band |T, — Ti| < 20vn) .
k=1
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Because the event (71 < b,...,Ty—1 < b, T, > band T, > b— 20+/n)
contains (T} < b,...,Tx—1 < b, T} > b and |T,, — Tx| < 20+/n),
P ( max Ty > b)

1<k<n

4 n
S§ZP<T1<b,...,Tk_1<b,TkZbandTn2b_2U\/ﬁ)‘
k=1

Therefore

P<max Tkzb> < P (T, >b—20yn).

1<k<n

Q| >

O

We will now tackle the proof of the law of the iterated logarithm.
We just need to prove that

. Sn —np
lim sup ————

= +17
n—ooo  a(n)

since the calculation of the infimum limit follows by replacing S, by
n — S, and interchanging p with 1 — p.
The proof will be composed of two steps. For each n > 0, we will
show that
(i) The supremum limit is almost surely less than 1+ 7.
(ii) The supremum limit is almost surely greater than 1 — 7.
From these steps, we will reach the desired result by letting 7
approach 0: we associate an almost sure event to each 7, consider a

sequence of values 7 approaching 0, and use the fact that a countable
union of negligible events is negligible.

As an introduction to the proof, we will provide a simplified ar-
gument that yields a partial result. Fix a number v > 1 and let
ng = [v¥] be the integer part of v*. By Lemma 12.4,

P(R,, > (1+n)a(ng)) < (lnnk)_(l+")2(l_5)
for every ¢ > 0 and large enough k. Therefore

P (R, = (1+n)a(ng)) = 0 (k00700
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If 6 is chosen to be small enough that (14 7)%(1 — &) > 1, then

> P (Rn, > (1+n)a(ng)) < o,

k>0
and the first Borel-Cantelli lemma (Proposition 11.9) implies that

N

lim sup

<l+n
k—+4o00 a(nk)

almost surely.

We have thus proven step (i) for subsequences with exponential
growth. It will take some more work to prove the inequality in general.
We only need to consider a subsequence to prove step (ii); however,
this step will not be easy either because we will need to use the
second Borel-Cantelli lemma (Proposition 11.13), which requires a
hypothesis of independence.

Proof of the Law of the Iterated Logarithm. Fix n > 0. For
a real number v > 1 (to be chosen later) and for each k € N, set
ny := [y¥]. We will show that

(12.2) ZP ( max R, > (1+ n)a(nk)) < 0.

n<n
k>0 =Tt

Lemma 12.5 implies that

P(Imm an<y+mamw)

n<nk41

4
3
Since /nx11 = o (a(ng)) as k — +oo,

<_-P (Rnk_H > (1+n)a(ng) — 24/ nk+1p(1 — p)) .

1
2y/ngr1p(l —p) < 57704(7%)

for all large enough k. For such a k,

P (e Ro > (1 malm) ) < 5P (Ruw > (14 1/2ialm).

nN<Ng41

We know that a(ngy1) ~ /ya(ng), and we choose a +y that satisfies
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(1+n/2) > (1+n/4)\/7. Then, for large enough k, (1+7/2)a(ni) >
(1+n/4)a(nkgs+1), and therefore

4
P (e Rz (4 n)a(0) < 3P (R > (14 0/0)a(nss).
NSNEe41

Now, we apply Lemma 12.4 (using a = (1 —6)~! = (1+n/4)) to find
an upper bound for this expression. This yields

P ( max R, > (1+ n)a(nk)> < % (lnnkﬂ)*(H"M)

n<ngi1
for large enough k. Finally,

)*(1+ﬁ/4) )“(1+U/4) k7(1+n/4)7

(Inng41 ~ (In~y

which is the general term of a convergent series.
We have thus proven (12.2). Then the first Borel-Cantelli lemma
implies that
max R, < (1+n)a(ng)

n<ng41

and, in particular, we have almost surely that

max R, < (1+n)a(ng)

N <N<Nig41

for large enough k. This implies that, almost surely,
R, < (1+n)a(n)

for large enough n, which establishes (i).

To prove (ii), it suffices to show that there exists a subsequence
(nk) of the sequence of all integers such that (R,, > (1 — n)a(ng))
infinitely often is an almost sure event. We will choose a subsequence
satisfying ny = v*, where 7 is a large enough number (to be chosen
later). We will show that

(123 S P (Rvn ~ Ry > (1 - g) a (7")> =
n>1
and that

(12.4) almost surely, R n-1 > —ga (™) for large enough n.
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The random variable R,» — R, ~-1 has the same probability dis-
tribution as the random variable Ryn_n-1. Thus

P (R~ Ry 2 (1= Ba(y")
=P Ry 2 (1= F)a ("))

As n approaches infinity,

a(y" ="t [y-1

a(y") v
If we choose « such that (1 —n/2) /7 < (1 —n/4) v/~ —1, then
(1=n/2)a(y") <A =n/4)a(y"—7""")
for large enough n, and for such n,
P (R~ Rps = (1= a(r")
> P (Rppyns > (1= Da (3 —77)

Now, we use Lemma 12.4 (with a = (1+6)"! = (1 —n/4)) to find a
lower bound for this expression. This yields

n n_ n—1yy~l+n/4
P(fe e (1= 3)a ) (o)
for every large enough n. Since

(1n (7 =77 1) 7 ~ (i)

is the general term of a divergent series, this proves (12.3).

As n approaches infinity, a (y") ~ /Y« (7”‘1). If we choose ~
large enough so that /7 > 4, then na (y*) > 4a (y" ) for large
enough n. For such an n,

77 n —
(Byrs € —Ja (1) € (~Ryes 2 2a (7))
Now, applying the upper bound (i) established in the first part of this
proof to the sequence (—R,,) implies that, almost surely, —R,»-1 <
2a (y" 1) for large enough n. This proves (12.4).

v

Since (Rﬂ,n — anq) is a sequence of independent random vari-
ables and the sum in (12.3) diverges, the second Borel-Cantelli lemma
implies that, almost surely, there exist infinitely many positive inte-
gers n such that Ryn — Ryn-1 > (1—32)a(y"). Combined with
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(12.4), this implies that there almost surely exist infinitely many pos-
itive integers n such that R,» > (1 —n) a (y"). This establishes the
lower bound (ii). O
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Chapter 13

Recurrence of Random

Walks

13.1. Introduction and Definitions

In this chapter we discuss the recurrence of random walks in the
discrete space ZY with dimension N > 1. A random walk describes
the successive positions of a person who steps a random distance in
a random direction at each second. We suppose that each of these
random steps is independent of the previous steps and that all the
random steps follow the same probability distribution. Although we
can define a random walk in an arbitrary group, we will limit ourselves
to the case of the additive groups Z", and we will assume that the
length of each step is bounded.

Assuming that the walk consists of infinitely many steps, we ask
the following questions: Will the walk return to the starting point?
Will the walk reach every point in the space? Will the walk return
infinitely many times to the starting point?

We will see that the answers to these questions basically depend
on only two parameters: the average displacement at each step and
the dimension N of the space in which the walk takes place. We
will find the following results: if the expected length of each step is
not zero, then the walk almost surely goes to infinity; if the expected

109
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length of each step is zero, then the answers to the above questions
are affirmative if the walk is in a space of dimension at most two.

The mathematical model that we will use is the one we have
described in detail in the previous chapters, because the steps in a
random walk form a sequence of identical and independent elementary
random experiments.

The nearest neighbor random walk on Z is the walk composed
of fixed-length steps, each either forward or backward. Of course,
this is the same as our game of Heads or Tails: at each second, the
random walker tosses a coin to decide whether to take a step forward
or backward. Formally, we consider the space (2, P) described in
Section 11.1. For w = (wp)n>1 € Q = {0, 1}N* we set Yy, (w) = 2w, —1.
Then (Y,) is a sequence of independent random variables such that

The random walk is the sequence of random variables (M), > defined
by
M, =Y1+Y,+ ---+Y,.

The parameter p, a real number between 0 and 1, is the probability of
taking a step forward. The variable M,, is connected to other variables
that we have studied by the equality M,, = 25, —n =2R,+(2p—1)n.

More generally, a random walk on Z" composed of a finite num-
ber of possible steps can be described as follows: let (e1,es, ..., eq)
be a finite family of elements of Z" and (pi, pa, . ..,pq) be a family of
real positive numbers that sum to 1. (Each e; represents an allowed
step, and p; is the probability of taking the step represented by e;.)
Consider the probability space (£2, P) described in Section 11.3, and
let Y, (w) = e,, for each w = (w,) € @ = {1,2,...,d}¥". Then the
random walk is the sequence of random variables (M,,),>1 defined by

Mn:Y1+Y2++Yn

Before proceeding, we must give a precise definition of the concept
of recurrence. A random walk (M, ),>1 is called recurrent if the walk
almost surely returns to the origin infinitely many times; that is, a
random walk is recurrent if the set (M, = 0) infinitely often is an
almost sure event. A random walk is transient if the walk almost
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surely returns to the starting point only finitely many times; that is,
a random walk is transient if the set (M, = 0) infinitely often is a
negligible event.

We will also use the following definition: a random walk is cen-
tered if the expected length of a step is zero; that is, if E[Y,] :=
Z?:l pie; = 0.

The rest of this chapter is composed of three sections. In Sec-
tion 13.2, we will describe the properties of recurrence of the nearest
neighbor random walk on Z; since this walk is the same as the game
of Heads or Tails, we will be able to use the results of the preceding
chapters. In Section 13.3, we will study the properties of random
walks in a more general setting. In Section 13.4, we will describe the
properties of recurrence of random walks on Z".

13.2. Nearest Neighbor Random Walks on Z

Here the random variables Y,, take the values +1 and —1 with prob-
ability p and 1 — p respectively, and M,, = Y1 + Yo +--- + Y,. If
p > 1/2 (respectively, p < 1/2), the strong law of large numbers im-
plies that M,, almost surely approaches infinity (respectively, negative
infinity) as n approaches infinity. Thus the random walk is transient
if p#1/2.

If p = 1/2, the random walk is called the simple random walk
on 7Z. This is a centered random walk. We can show that the walk
is recurrent is several ways; this follows, for example, from the law
of returns to zero (Theorem 10.2) or from the law of the iterated
logarithm (Theorem 12.3). The law of the iterated logarithm implies
that limsup M,, = +o0o and liminf M,, = —oco almost surely. Since
the length of each step is 1, this implies that the random walk almost
surely reaches each point in Z infinitely many times.

Do these arguments generalize to other random walks? Only par-
tially. If the random walk is not centered, then the generalized law
of large numbers (Theorem 11.12) immediately implies that the walk
is transient. The question of recurrence, however, is more subtle.
For example, consider the random walk (M,,) on Z with probability
distribution P(Y,, = —3) = 2/5 and P(Y,, = 2) = 3/5. This is a



112 13. Recurrence of Random Walks

centered random walk, and the law of the iterated logarithm implies
that limsup M,, = +o00 and liminf M,, = —oo almost surely; how-
ever, we cannot conclude only from this information that the walk is
recurrent. The same discussion applies to any centered random walk
on ZY where N > 2.

13.3. General Results about Random Walks

The most striking general property of random walks is that every ran-
dom walk is either recurrent or transient. This all-or-nothing principle
is the aim of Theorem 13.1. The connection between the number of
times that the random walk returns to the starting point and the
number of times that the random walk reaches any given point is
stated in Proposition 13.4.

Theorem 13.1. Every random walk (My,)n>1 is either recurrent or
transient, and the following three statements are equivalent:

(i) The random walk is recurrent.

(ii) ligl P (there ezists k < n such that M} =0) = 1.
+oo

(iii) Y P (M, =0) = +oo.
n=1

It is easy to check that property (ii) implies that the random walk
almost surely returns at least once to the starting point. In fact, the
converse is also true: property (ii) is equivalent to the almost sure
return of the walk to the origin. However, we will not provide a proof
of this fact.

In addition, note the parallel between the implication (iii) = (ii)
and the second Borel-Cantelli lemma. However, the lemma cannot
be directly applied because the random variables M, are not inde-
pendent.

If m, s, and t are positive integers with s < ¢, let AT, be the
event consisting of random walks that return to the starting point at
least m times between steps s and t. In symbols,

we A, <= #{n : s<n<tand M,(w) =0} >m.

We will use the following two lemmas to prove Theorem 13.1.
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Lemma 13.2. P (A7) < (P (Al,))"™ for every m,t > 0.

Lemma 13.3. (P (A},))" < P (A7) for every m,t > 0.

Proof of Lemma 13.2. It is clear that P (Ai’?t) =0if m > t. The
lemma is trivial for m = 1, and we proceed by induction on m. To
simplify the exposition, we will only show the first induction step; the
general step is not difficult once the first step is understood. We will
thus prove that the lemma is true for m = 2. By considering the first
two returns to the origin, we can write the event A, as a finite union
of pairwise disjoint events. Thus

P(AY,)= ). P((M;#0,1<i<j)and (M;=0)
1<j<k<t
and (M; #0, j <i < k) and (M}, =0)),

SO

P(Al,)= > P((M;#0,1<i<j)and (M;=0)
1<j<k<t
and (M; — M; #0, j <i<k) and (M — M; =0)).
Since the event ((M; # 0,1 <14 < j)and (M; =0)) is independent
from the event ((M; — M; #0,j < i < k) and (M — M; =0)),
P(Al,)= Y. P((M;i#0,1<i<j)and (M;=0))
1<j<k<t
XP((ML“J\/IJ' #O,]<’L<k> and (Mk—Mj :0))

Then, by the property of invariance under shifting (see Section 11.1),

P((M; — M; #0, j <i<k)and (M — M; = 0))
=P((Mi—; #0, j <i<k)and (Mg_; =0)),

whence
(13.1)
P(A,)= 3 P((Mi#0,1<i<}j)and (M =0))

1<j<k<t

x P((M; #0,1<i<k—j)and (Mg_; =0)).
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We conclude that

P (A%) gz P((M; #0,1 < i< j) and (M; = 0))
j=1¢=1

x P((M; #0,1<i<¢) and (M, =0)).

By using a decomposition similar to the one used in the beginning of
this calculation, we also have that

t
P(A},) =Y P((Mi#0,1<i<j)and (M; =0)),
j=1

and thus P (A2,) < (P (AL,))". 0

Proof of Lemma 13.3. We prove this lemma by induction on m.
As for Lemma 13.2, we will only study the case of m = 2.

We can write equation (13.1) as

P(Aly) = ) {P((Mi £0,1<i<j)and (M, =0))

1<j<k<2t
x P((M; #0,1<i<k—j)and (My_; =0))],

which implies that

t Jj+t
(A1) 2> Y P((M;#0,1<i<j)and (M; =0))
=50

x P((M; #0,1<i<k—j)and (Mg_; = 0)).

By setting £ = k — j, this becomes
t
P(Aly) > ZP((Mz #0,1<i<j) and (M; =0))
j=1

x Y P((M; #0,1<i<¢) and (M =0)),
=1

which simplifies to

P (A32) > (P (A1)
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Proof of Theorem 13.1. If the series 3, -, P (M,, = 0) converges,
then the set (M, = 0) infinitely often is a negligible event by the first
Borel-Cantelli lemma; thus the random walk is transient, so it is not
recurrent. This proves the implication (i)=-(iii).

Next we will prove the implication (iii)=-(ii). Since the sequence

(P (A%’n))n21 is increasing and bounded by 1, we can set

p= lim P(Ain) .

n—00

Then condition (ii) is simply p = 1. Since expected value is a linear

function,
n
E: Xy, OJ g
k=1

iP(Mk =0)=F
k=1

S P(My=0)=E[#{j : 1<j<nand M; =0}]

_ Z 5(P(aL,) - P (4%)) - ]Z:P(A{,n).

Then Lemma 13.2 implies that

Y PM=0)<Y (P(AL)) <
k=1

Jj=1 J
and thus

Y P(My=0)=+c0=>p=1.

This proves that (iii)=-(ii).

To complete the proof, we just need to prove that (ii)=(i). Let
m be a positive integer, and let A7’ be the set of w such that the
sequence (M (w)),,~, contains at least m zeros. For each ¢t > 0,

Al O AT'me-
Then by Lemma 13.3,
P (A7) > (P (A1))"
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Suppose that condition (ii) is satisfied. Then lim¢ oo P (A],) = 1,
so the set AT', contains events of probability arbitrarily close to 1.
Therefore AT", is an almost sure event.

The set of w such that the sequence (M,(w)), -, contains infin-
itely many zeros is the intersection of the sets A{’foo‘as m ranges over
N. Since the countable intersection of almost sure events is an almost
sure event (Proposition 11.1), we conclude that the sequence (M), >1
almost surely contains infinitely many zeros. Thus the random walk

is recurrent.

We have now established the equivalence between the conditions
(i), (ii), and (iii). Thus the random walk is either recurrent or tran-
sient, according to whether ) P(M,, = 0) diverges or converges. 0O

Now we will study the number of times that a random walk
reaches other points in the space. Let S be the semigroup gener-
ated by the set E := {e1,ea,...,eq} of allowed steps in the random
walk (we suppose that the all the probabilities p; are positive). Thus
S is the set of elements of Z" that can be written as a finite sum of
(not necessarily distinct) elements of E. Note that S is exactly the
set of points attainable by the random walk.

Proposition 13.4. If the random walk is recurrent, then S is a group
and the random walk almost surely reaches every point in S infinitely
many times.

If the random walk is transient, then every point of S is almost
surely only reached finitely many times; in other words, it is almost
sure that lim,_,o | My| = +00.

Here | - | is any given norm on the space R"V. In the statement of
the following lemma, we use the L-infinity norm |(z1,x2,...,2n)| =
max {|z1], |x2], ..., |zN|}.

We will use the following lemma in our proof of the proposition.

Lemma 13.5. The random walk (M,,) on ZV satisfies

+00 o
S P(M,=z)<1+Y P(M,=0)
n=1

n=1
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for every x € ZN and

+oo

Y P(IMy] <m) < @m+1)N <1+ZP )

n=1

for every m > 0.

Proof. By decomposing the event (M,, = z) into a union of pairwise
disjoint events based on the first time that the random walk reaches
the point x, we obtain

P (M, =)
:iP((Mi#x,1§i<k) and (My, = z) and (M,, — My =0)).
k=1

Then, by using the independence of the successive steps of the random
walk and the invariance of probability under shifting as we did in the
proof of Lemma 13.2, we obtain

P (M, =z)
:ZP((M,- £2,1<i<k)and (My=2z)) - P(Mp_r=0),
k=1

which implies that

+oo
Z P (M, =z)
n=1
+00 +o00
=Y P((M;#z,1<i<k)and (My=1x)) P(M, 4 =0)
k=1n=k
+o0
=Y P((M; #2,1<i<k)and (M =z)) ZP
k=1
where My = 0. Since the events ((M; # z,1 <14 < k) and (M}, = z))
are pairwise disjoint as k varies, the sum of their probabilities is at
most 1. This proves the first stated inequality. The second follows
immediately from the fact that

P(IMy|<m)= > = P(M,=ux),

2€ZN [z|<m



118 13. Recurrence of Random Walks

and that the cardinality of {x € ZV, |z| < m} is (2m + 1)¥ for every
positive integer m. O

Proof of Proposition 13.4. Suppose that the random walk (M,,)
is transient. Theorem 13.1 implies that the series >~ ., P (M, = 0)
converges, and the above lemma implies that 3 o, P (|M,| < m)
converges from any m > 0. Then the first Borel-Cantelli lemma
implies the second assertion of the proposition.

Now, suppose that the random walk (M,,) is recurrent.

Let z € S, and fix a k > 0 such that P (M =z) > 0. There
almost surely exists an n > k such that M,, = 0. Since an almost
sure event and a (finite type) event with positive probability cannot be
disjoint, there exists an w € {2 such that My(w) = z and M, (w) = 0,
where k < n. Consequently, —x € S. Since S is a semigroup by
definition, then S is a group.

Now we need to show that if the random walk visits a point x with
positive probability, then the random walk will almost surely return
to z infinitely many times. The proof goes as follows. The random
walk almost surely returns to zero infinitely many times. Each time
the walk returns to zero, the situation is the same as if a new walk,
independent of the previous one, were starting. This provides an in-
finite sequence of identical and independent experiments, where each
one has a positive probability of reaching the point z. This implies
that the random walk almost surely reaches the point z infinitely
many times. We will now formalize this proof.

The previous theorem implies that lim;—, o, P (A%,t) = 1. Then

Lemma 13.3 implies that lim;_, oo P (AT,;) = 1 for any m > 0, and
thus, by monotonicity,

lim P (A7) =1.

t—+o0

If m, s, and t are positive integers, then A7, D A’ln;’ %, 80

lim P (A7) =1.

t—+oo
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Let z € S and € > 0. Fix k > 1 such that P (M} = z) > 0 and set
0 :=1-P (M =) < 1. Define a sequence (n;);>0 by the recurrence

ng=1 mn;—-n;_1>k and P (A;]_l,n]__k> >1-27e

For j > 1, let B; be the event the random walk returns to the origin at
least once between steps nj_1 and n; — k and does not visit x between
steps nj_1 and ny; that is,

Bj = A}lj,l,nj—k n (Mn # x,nj_l S n S ’fL]') .

Let J and K be two positive integers such that 0 < J < K. We will
find an upper bound for the probability of the event the random walk
does not reach the point x between steps ny_1 and ng. First,

P(M, #z,n5-1 <n<ng)

K

<P U (A}lrl:nj—k)c +P
j=J

B,

1D~

and
K c K
(| (A;jflynj_k) <Y 2e< o
j=J j=J

Let ¢; be a positive integer allowed to vary between n;_; and n; — k.
If the event B; occurs, then there is a unique integer £; such that

(Mg #0,mn;_1 <£<{;), My =0 and My # .
This implies that
K

Pl B

j=J

< Y

£y, K

(4%, m) 0 (Me, = 0) 1 (M, s £ 2)

I D=
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Since the random movement Mj, +x — M;, is independent of the
previous movements in the random walk,

K

PO ((Ahimn) 0 (Me, =0) 0 (M, # )

=7

_ p<?‘f (AL o) PO, =00 (M #2)
j=J

n <A’}LK—1~1K—1> /ﬁ (AIKK = 0)) x P (AIZK+/€ - ]\/‘{éi\' # .’E) ’

and the property of invariance under shifting implies that
P (M vk — Moy # ) = P (Mg #2) = 0.

We thus obtain the inequality

S P (A] ((A;Fl,lﬂ)cm (Mg, = 0) N (Mg, 15 # m))
j=J

<i Y Pl ((A;H,l]_l)cm(ng:om(MMHez)) :

which implies, by recurrence, that

Z P ﬁ ((Ai],l,zjq)c N (Mg, =0) N (Mg, # JJ))

Tyl K j=J
S §K—J+1 )

Combining the above inequalities yields
P(M, #z,n5-1 <n<ng)< ol=Je 4 gE-JI+L

For each J > 0, fix K = K(J) > 0 such that 65=/+1 < 21=J¢,
The set E of w such that M, (w) equals x for only finitely many n is
contained in the union

U (M #2051 <n < ngs)
J>0
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and
ZP(M" *x,nj_1<n §nK(J)) < 4e
J>0

This proves that E is a negligible event.

We have thus proven that the random walk almost surely reaches
the point x infinitely many times for any point x € S. Since the set S
is countable, we conclude that the random walk almost surely reaches
every point in S. This proves the first assertion of the proposition. [

13.4. Recurrence of Random Walks on ZV

Proposition 13.6. A random walk on Z is recurrent if and only if
it is centered.

Proof. The generalized law of large numbers (Theorem 11.12) im-

plies that

M,
lim — = E[Y]]
n—+oo N
almost surely. If the walk is not centered, then lim, o0 |My,| = o0,

so the walk is transient.

Now suppose that the walk is centered, and exclude the trivial
case of all the random variables Y,, being identically equal to 0. For
random variable Y;, taking only two values, we can use a variety of
arguments to establish the proposition. For example, the de Moivre—
Laplace theorem (Theorem 7.3) implies that

1
P(Mz, =0)~ —
( 2n ) \/ﬁ
to within a constant multiple, which implies that the series with gen-
eral term P (M, = 0) diverges. Theorem 13.1 then completes the
proof. Another argument is based on the law of the iterated loga-
rithm, which implies that
limsup M,, = +00 and liminf M,, = —o0
n—+oo n—-+o0o
almost surely. It is impossible that lim,, 4 |M,| = 400 since each
step in the random walk has bounded length, so Theorem 13.1 and
Proposition 13.4 together imply that the random walk is recurrent.
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We will now give a clever argument! using the weak law of large
numbers that applies to any centered random walk on Z.

Lemma 13.5 implies that

+o00 1 +00
1 P (M, =0)> P(|M,| <m),
+ PO =0) 2 g 3P (M < m)
SO
“+0oo 1 ma
1 P (M, =0)> P (M, <m),
PO =02 5y 5PV < m)
and
+o0 1 ma n
1 P(M,=0)> P{|M,| < -
+; ( ) 2m+1712::1 (l | a)

for any positive integer a. Now, the generalized weak law of large
numbers (Equation (11.4) of Theorem 11.12) implies that
MlPOMMSE):L
n-—+00 a

SO
ma

1 n a
i P(Mn<~):<
ml»riloo2m+1§:—:l | I’a 2

Finally, this implies that

+o0
1+ Y P(M,=0)>
n=1

[NRS]

Since a is an arbitrary integer, this means that the series with general
term P (M,, = 0) diverges, and thus the random walk is recurrent. [

We will now study random walks in dimension N > 1. Let Y,, =
(YL, Y2,...)Y,N) € ZV be the steps of this walk and let > ,_, Y =
M, = (M}, M2, ..., MY) be the walk itself.

If the random walk is not centered, there exists an i between 1
and N such that E [Yg] # 0; then the strong law of large numbers
implies that lim,, 4 [M}ll = 400 almost surely. Thus the walk is
transient.

k. L. Chung and D. Ornstein, On the recurrence of sums of random variables,
Bulletin of the American Mathematical Society, vol. 103, pp. 20-32, 1962.
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The question of what centered random walks are recurrent was
resolved in the middle of the twentieth century.? Whether a centered
random walk is recurrent depends on its dimension, which is the di-
mension of the subspace of RY generated by the set {e1,ea,...,€e4}
of possible steps. Every centered random walk in dimension at most
2 is recurrent; on the other hand, every random walk in dimension
greater than 2 is transient.

We proved the result for the one-dimensional case in the previous
proposition. The proofs of the above results in their full generality
requires the tools of Fourier analysis, so we will limit our study to
nearest neighbor random walks.

In the space ZY, each point has 2N nearest neighbors. Let
(b1,bs,...,bn) be the standard basis for RY. The nearest neighbor
random walk on Z" is defined by d = 2N and

(61,627 see aed) = (b17 _blab21 —b27 .. '7bN7 _'bN)

This walk is centered if and only if py; 1 = po; for every i between
1 and n. We suppose that ps,—; and po; are nonzero for every i,
which ensures that the dimension of the walk is N. In the special
case where each p; equals 1/2N, we say that this walk is the simple
random walk in dimension N. Simple random walks were studied in
the foundational work of George Pélya.>

Proposition 13.7. Suppose (My)n,>1 is a nearest neighbor random
walk in the space ZV . Using the notation introduced above, then

P(My,_1=0)=0

and
N
(2n)! k
P (M, =0) = E H(in—l P2i)"
TN )
ki kot +hn=n (kytkat - k1)

where each k; is a positive integer.

Proposition 13.8. Fvery centered nearest neighbor random walk on
72 is recurrent.

2K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of
random variables, Memoirs of the American Mathematical Society, No. 6, 1951.

3G. Pélya, Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die
Irrfahrt im Strassennetz, Mathematische Annalen, vol. 84, pp. 149-160, 1921.
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Proposition 13.9. Every nearest neighbor random walk on ZN for
N > 3 is transient.

Proof of Proposition 13.7. If w is an element of {2 that satisfies
M, (w) = 0, then there exist integers ki, ka,...,kn such that the
finite sequence (Y1 (w), Ya(w), ..., Ym(w)) takes the value b; exactly k;
times and the value —b; exactly k; times for 1 < ¢ < N. For such
an w to exist, m must be even; setting m = 2n, we would then have
ki+ky+--+ky=mn.

Let (E1, F1, Eo, Fs, ..., ENn, Fn) be a partition of the set of inte-
gers between 1 and 2n such that #E; = #F; = k; for each 7 between 1
and N. By independence, the event the indices j in E; are those sat-
isfying Y; = b; and the indices j in F; are those satisfying Y; = —b;
has probability Hijil(p%—l p2:)i.

For fixed (k1,ka,...,kn), there are exactly

(irlz) . (Zn,;kl) . (2(nk_2k1)) . (2(77.—]1:;)——1;:2) L. (z(n—kl—kz;m—k]v,l))

2n
k1

Ey, (Z"k_1 k‘) is the number of ways of choosing F; given a choice of

such partitions. This is because (;") is the number of ways of choosing

Ey, (2(n,;k1)) is the number of ways of choosing F, given a choice of
E; and Fy, and so forth. It is easy to check that the product of these
binomial coefficients simplifies to
(2n)!
(kylko! - kn!)2’

Hence the event the sequence (Y1 (w),Ya(w),...,Ya(w)) takes the
value b; exactly k; times and the value —b; exactly k; times for 1 <
¢ < N has probability

(2n)! N "
(kulka! - ky1)2 IIl(p%—l p2i)"™,
i=

and the stated result follows immediately. [

For two-dimensional random walks, we can give another explicit
formula for the probability of returning to zero based on classical
results about Legendre polynomials. Since the properties of these
polynomials are discussed in detail in other mathematical texts, we
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will limit ourselves to briefly presenting the formula we will use. For
each n € N| let

(2n)!
(2nnt)?
We will use the following definition, known as Rodrigues’ formula.
For each n € N, the Legendre polynomial of degree n, written L,,, is
the nth derivative of the polynomial (z2 — 1)™:

In =

n

d n
Lp(z)= — (22 =1)".
Proposition 13.10. Let n € N. For every nonzero real y,
L L y—i—l = 2"n! 5" Gkgn—ry2F ™.
"\2 Yy ‘k—O .

Note that all the coefficients in this expansion are positive.

Proof. We will just outline the proof, leaving the calculations as an
exercise for the reader.

The binomial theorem yields

o

k=0

By differentiating this term by term and letting m be the integer part
of n/2, we see that

2(n — k))! e
(13.2) —nZ k'n_ )(n)_)%)!m 2k,

1/2

The Taylor series for u — (1 —u)~!/? about zero is

+o0
=2 g
n=0

By setting u = 2tz —t2, a simple calculation using (13.2) implies that
the Taylor series for t — (1 — 2zt + t2)~/2 about zero is

1
13.3 = L,(x)t".
( ) V1 —2xt +t2 7;02"1@! ()



126 13. Recurrence of Random Walks

Let y #0and z = L (y + %) Then

1
1—2xt+1t%=(1—-9yt) (1——t>,
y

+oo
TmTE (ZM ) (Z”t> '

By comparing the expansion of this product to (13.3), we obtain

2"71' n
Z GG —ky*F .

SO

O

Now we will study the centered nearest neighbor random walk in
dimension N = 2. Its probability distribution is determined by the
parameter p; because ps = p; and p3 = py = % —p1- Weset p:=p;
and q := ps.

Proposition 13.11. The random walk (My)n>1 satisfies

P (M2n = 0) = gn nggnAk(4p - I)Qk
k=0

for every n.

Proof. Proposition 13.7 yields

- 2n)! 2k 2(n—k
P(AIQnZO):Zmp g
k=0

and the two formulas
(pZ + I)n — Z <Z>p2k$nk

and
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show that P (Ms, = 0) is the coefficient of z™ in the polynomial
Q(z) = 2*"gn(p” + 2)"(¢* + 2)™.

In the case where p = g(= 1), we immediately conclude that

)16*" =g2.

Now suppose that p # ¢q. Then Q(z) = 22"g,,(p*¢®>+ (p*+¢?)z+2*)",
and

2n

P (M, =0) = 22"%(
n

P (M, =0) = %Q(")(O).

By rewriting the trinomial p?¢% + (p? + ¢?)z + 22, we can rewrite Q(x)

as
2 2\ 2n 2 2\ 2 "
p°—q 2z+p*+gq
=22"g, = - -1
o ! < 2 ) << P -q ) )

The change of variables ' = gﬁ%z;;‘f allows us to apply the defini-

tion of Legendre polynomials, and we obtain

2 2\ " 2 2
Q(n)(o) — 22ngn (p —4q ) L <p +q ) .
2 n

p2_q2

Since ¢ = % — p, we can also write this as

oy —og2m, (=I\" (1(, 1)
@0 =20 (L) 1 (5 (0-14 1) )

Finally, Proposition 13.10 implies that

Q™ (0) = nlgn > grgn—r(4p — 1)**.
k=0

a

Now we can prove that centered random walks in two dimensions
are recurrent. We will use the formula for the probability of the simple
random walk (p = 1/4) returning to the origin to show that the simple
random walk is recurrent. Since the probability of returning when
p # 1/4 is higher than when p = 1/4, this implies that all centered
random walks in two dimensions are recurrent.
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Proof of Proposition 13.8. By Proposition 13.11,

2n)1)?

P(Man=0) > g2 = .

Note that g, is the probability that a simple one-dimensional random
walk returns to the origin after 2n steps. This quantity is estimated
by Stirling’s formula: g, ~ 1/4/nm, so the series with general term
g2 diverges. Thus

+oo
> P(My, =0) = o,
n=1
and the walk is recurrent by Theorem 13.1. g

Proof of Proposition 13.9. Let (M,,) be a centered nearest neigh-
bor random walk in N dimensions, where N > 3. We will show that

P (Ma, =0) =0 (n'N/2) .
This implies that ), P (M, = 0) converges, and thus that the walk

is transient.

We will provide the argument for N = 3 as it is easy to extend this
proof to higher dimensions. We will need the following two estimates:

1 22n
(13.4) for every n € N, EDE < G’
and
(13.5)
) 1 22n
there is a ¢ > 0 such that <ec for every n € N*.

(i = “n(zn)]

The inequality (13.4) follows easily from the fact that (1+41)?" >
(Zn). The inequality (13.5) follows from Stirling’s formula, which

n
implies that 5%2&)*,')2 ~ \/% as n approaches infinity.

Let the parameters of the centered random walk in three dimen-
sions be p = p; = p2, ¢ = p3s = p4, and r = ps = pg. These parameters
satisfy p,q,r >0 and p+q+r = % and

(2n)!
(il51k")2

2 25 2k
potqret.

P(My=0)= >

i+j+k=n
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Let

I(p):=3%ieN : 0<i<nand p~j~ <P ,

-~ 2n 2
2n)! o
A= 2 (igj!k)!)szzqzjr% ’
i+j+k:‘—"n,i¢[(p)

and

. (2n)! 5 o5 2k

i+itk=nicl(p),j€l(q)keI(r)
By inequality (13.4),

(2n)!22n 2i 25, 2k

A< Z YN TN T AT 2 A
] | |
it+j+k=n,i¢I(p) (20)!(2)!(2k)"

which can be written as

2n)122" = 1 , L
A< Z LT’)_p2 'q2],,_2(n—1,—])'

0<i<n,igI(p) (20)! Z ]Z::() 2)2(n —1-7))

By the binomial theorem,
n—i 1

Z: (29)2(n =i - 7))

2j p2(n—i=j) < 2(n—1)
17T S @yt

and thus

(13.6) A< (2277)(2;))2”(2(q+7-))2("—“.
0Si<magl(p) V.

When i ¢ I(p), we have that |2 —2p| > p. Therefore this
upper bound for A is a probability controlled by the large deviations
estimate: letting S!, be a random variable following the binomial
distribution with parameters n and 2p, the upper bound (13.6) implies

that
).

By Theorem 6.1, this quantity approaches zero exponentially as n
approaches infinity: there exists a constant d > 0 such that A < e™"4.
The sums of (—l%pziq“r?k for j # I(q) or k ¢ I(r) can be dealt
with in the same way, so we are just left with estimating B.

/!

Agp<‘2p~%
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In the sum defining B, the indices i, j, and k satisfy ¢ > np,
j > ng, and k > nr. By (13.5), we have

c22’ 2% c2%k s
B < 21 2],,“2]6’
P! Vi V@) Ve

i+j+k=n

SO
e (2n)! i ;
< Jrr 2 G e et

By an easy generalization of Newton’s binomial theorem,

2 L o) (20)7 (2r)¥ = (2p+ 29+ 2" = 1

151k
i+ +k'=2n
hence,
3
B ———.
N \/ZW”?’/2
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Chapter 14

Epilogue

14.1. A Few More General Results

Throughout the majority of this book, we dealt only with sequences
of independent random variables taking two values. We extended
the range of our study in Chapter 11 by introducing the concept
of sequences of finite type random variables and in Chapter 13 by
studying sequences of multidimensional random variables.

The limit theorems we stated extend to sums of independent,
identically distributed random variables taking values in R. Here are
some typical results about these general sums. Proofs of these results
can be found in Breiman’s book, which is cited in the bibliography.

Let (X,,)n>1 be a sequence of independent, identically distributed
real random variables (that are finite type random variables and,
therefore, bounded). Let m be the expected value of these random
variables, and let o be their standard deviation: m = E[X,,] and
0= E[(X,—m)? = E[X2] —m? Let S, =3 1_, X.

The Law of Large Numbers. In various forms, the law of large

numbers asserts that the sequence (%Sn) converges to m. We have

that

for every € >0, lim P (

n—oo

Sn
——m’Ze)m»O
n
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(3-s)] o

(convergence in quadratic mean);

(convergence in probability);

lim F

n—od

.S
lim == — m almost surely
n—oo N

(pointwise convergence). We proved these results in Chapter 11.

Large Deviations. The large deviations estimate asserts the exis-
tence of a positive function h, depending on the distribution of X,
such that

P (§ﬁ >m+ 6> < e ™) for every € > 0.
n

The proof of this result, which is not hard, is based on the inequality

P (% >mt > < Elexp (#(S, — n(m +<)))] for every t > 0.

Central Limit Theorem. From now on we will assume that the
standard deviation o is nonzero.

The central limit theorem states that

Sp —nm . 1 b
P n n—00 2
(a< “odn <b> —»————m/a exp (—z°/2) dz

uniformly in @ and b satisfying —co < a < b < 400.

Following the work of Paul Lévy and Harald Cramér, the fun-
damental tool in the proof of this result for the general case is the
Fourier transform of probability measures.

Local Limit Theorem, First Form. Suppose that the random
variables X, are centered, which means that m = 0. Let G be the
additive subgroup of R generated by the set of values taken by the
random variables X,,. The statement of the local limit theorem de-
pends on whether or not G is dense in R. Here we will only consider
the first case. Thus, suppose that G is dense in R, which means that
the set of values taken by the random variable X, is not contained in
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a set of the form aZ with a € R. Then, for all real a and b such that

a<b,

P(a< S, <b)~%#§(b—a),

as n — OQ.

Local Limit Theorem, Second Form. Now suppose that the ran-
dom variables X, are not centered, which means that m # 0, and that
the group G generated by the values taken by the random variables
is dense in R. In addition, suppose that the random variables X,
take both positive and negative values (that is, P(X, > 0) > 0 and
P(X,, <0) > 0). Consider the Laplace transform L defined on R by
L(t) := E[e!Xn].

The function L attains its minimum at a unique nonzero point tg.
Then 0 < L(tg) < 1, and we set

1

= E [X2etoXn] |
70 = Ty © Kne ]

A version of the local limit theorem states that, for all real a and b
such that a < b,

n b
Pla< S, <b)~ (i(\;o_%aml/%/ e~ t0% do

as n — Q.

Arcsine Law. In the general case, the arcsine law has the same
form as in the very special case of the game of Heads or Tails that
we described in Chapter 10. However, this similarity is deceptive, be-
cause the arguments used to prove the general result are much harder
than the combinatorial arguments that we used. (These general ar-
guments use the Donsker invariance principle, which is a profound
strengthening of the central limit theorem. This principle describes
the convergence of the sequence (S,), suitably normalized, to Brow-
nian motion.)

The arcsine law states that
e 2 .
P(#{k : 0<k<mnand Sk >km} >na) “=> = arcsin va
T

for every a between 0 and 1.
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Law of the Iterated Logarithm. The law of the iterated logarithm
states that

. S, —nm
limsup ———==o¢

n—oo 4/2nlnlnn)

almost surely.

Local Limit Theorem, Multidimensional Case. These results
extend to multidimensional random variables, that is, to variables
taking values in RY. The statements are very similar to those in the
one-dimensional case, with the most difference appearing in the local
limit theorem. Here we will describe the first form of the local limit
theorem.

Let (X,,) be a sequence of identical, independently distributed
(finite type) random variables taking values in RY. We write X,, =
(X1,n, X2m, .-, XnNn). Suppose that these random variables are cen-
tered, which means that the expected value of each component (X ,,)
is zero.

In addition, let S, = >°;_; Xi and let I' be the N by N sym-
metric matrix with coefficients v; ; given by

Yi,j = Ccov (Xi,n;Xj,n) =F [Xi,n . Xj,n] .

The matrix I' is positive (as a symmetric matrix). It is invertible if
and only if X,, does not take all its values in a proper subspace of
RY. In this nondegenerate case, the local limit theorem states that
for all real numbers a1, by, as,bs,...,an,b, such that a; < b;,

<S eHa“ ) (2nm)~ N/2d tFH

as n — oQ.

The most significant part of the above expression is the exponent
of n. Note that we get the general term of a convergent series if and
only if N > 3. This yields what we proved in a special case in Chapter
13: centered random walks are recurrent in dimensions one and two
and transient in any higher dimension.



14.2. Closing Remarks 135

14.2. Closing Remarks

Some of the mathematical laws described in this book can be verified
experimentally. In particular, this is the case for the weak law of
large numbers, the central limit theorem, and the arcsine law. But
how can we carry out such experiments? It would be tedious to flip
a real coin the large number of times needed to verify these laws.
But we can make a computer play Heads or Tails: there are com-
puter programs that simulate choosing random numbers to produce
sequences of pseudorandom variables. These pseudorandom number
generators and their uses are presented in the books by Donald Knuth
and Nicolas Bouleau that are cited in the bibliography.

We have reached the end of this book. Of course, this book was
only one step toward learning what probability theory has to offer.
To go further, one must adopt the formalism of measure theory. Since
the fundamental work of Andrey Kolmogorov,
been the basis of probability theory. Once this formalism has been
adopted, the concept of a random variable can be extended and the
content of this book can be generalized. For example, here are some
extensions of the concepts and settings found in this book.

measure theory has

e The limit theorems presented in this book extend to the
general case of independent, identically distributed random
variables.

e There are many other useful theorems: Kolmogorov’s 0-1
law, the rate of convergence of the central limit theorem,
the convergence to Brownian motion, renewal theory, the
almost sure central limit theorem, etc.

e These theorems extend past the case of sequences of inde-
pendent, identically distributed random variables: by re-
placing the hypothesis of independence with a condition of
weak dependence or with a martingale condition, we can
often get the same law as for the condition of strict inde-
pendence.

1A. Kolmogorov, Grundbegriffe de Wahrscheinlichkeitsrechnung, Berlin, 1933.
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e The theory of Markov chains, which plays a fundamental
role in applications of probability theory, is another setting
in which limit theorems are developed and used.

e The study of the game of Heads or Tails and of the random
walks associated to it is a first step toward the study of
Brownian motion, which is the continuous-time analogue of
discrete-time simple random walks.

e Limit theorems are at the heart of the mathematical theory
of statistics and, in particular, of the theories of estimation
and of statistical tests.

These extensions and applications are described in many books
on probability theory.

In conclusion, we note that probability theory (and particularly
the theory of convergence theorems) is still an area of productive re-
search today. Because of the work of mathematicians from around the
world, this theory is always gaining new discoveries—new concepts,
results, and refinements.
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The biographies are ordered by date of birth; their location in this sec-
tion is indicated by the number following each name. We present the
following authors, who are cited throughout the book: Bernoulli (5),
Bernstein (26), Bienaymé (14), Boole (16), Borel (22), Cantelli (23),
Cesaro (20), Cramér (31), Fourier (10), Gauss (11), Hardy (25), Haus-
dorff (21), Huygens (3), Khinchin (32), Kolmogorov (33), Laplace (8),
Lebesgue (24), Legendre (9), Lévy (28), Littlewood (27), Markov (19),
de Moivre (6), Newton (4), Pascal (2), Poisson (12), Pélya (30), Rie-
mann (18), Rodrigues (13), Steinhaus (29), Stirling (7), Chebyshev
(17), Wallis (1), Weierstrass (15).

1. WaLLIS, JOHN [Ashford (England), 1616 — Oxford, 1703]: Wallis
studied religion and mathematics at Emmanuel College in Cambridge.
He was ordained a priest in 1640 and became a professor at Oxford
in 1649. His mathematical work set the foundations for Newton’s
development of infinitesimal calculus. He was the first to correctly
define negative and fractional exponents. The integrals that bear his
name today appear in his work on the area of the circle. He developed
an analytic approach for the study of conic sections. See page 38.

2. PascaL, BLAISE [Clermont-Ferrand (France), 1623 — Paris, 1662]:
Early encounters with the greatest intellectuals of his time helped
Pascal develop into a precocious mathematical genius. He wrote his
Essay pour les coniques in 1640, and in 1642 he developed the first
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model for a calculating machine, a precursor to modern calculators.
He also created experiments to study the nature of the vacuum, and
in 1642 he discovered the triangle that bears his name. He exhib-
ited great literary and philosophical gifts as well: Les Pensées and
Les Provinciales are two masterpieces of French literature. A prob-
lem posed by his friend the Chevalier de Méré initiated his study of
probability, and he developed the premises of probability theory in
his correspondence with Fermat. See page 15.

3. HuYGENS, CHRISTIAAN [The Hague (Netherlands), 1629 — The
Hague, 1695]: An astronomer, physician, and engineer, Huygens dis-
covered the rings of Saturn, studied pendulums and falling bodies,
and invented the spiral spring used in watches. He was the first to
state a theory about the wave properties of light. His mathematical
work is also important, especially his work on curves. In this area,
he created the theory of envelopes of families of lines and the theory
of evolutes and studied the tractriz and the catenary in detail. His
exchanges with Pascal and Fermat contributed to the foundation of
probability theory, and he wrote the first treatise on the subject (De
ratiocingis in ludo aleae). In Paris in 1666, he was one of the founders
of the Academy of Sciences. See page 7.

4. NEWTON, IsAAC [Woolsthorpe (England), 1642 — Kensington,
1727): A precocious scientist, Newton made his main mathematical
discovery before his twenty-fifth birthday. In parallel with Leibnitz,
he founded differential and integral calculus. His research on func-
tions and curves, and especially on cubics and conic sections, is also
very important. His results in these subjects were published years
after their discovery: Philosophiae naturalibus principia mathemat-
ica was published in 1687. Of course, his research in physics is also
fundamental: in optics, he described the nature of white light; in me-
chanics, he stated the laws of universal gravitation. See pages 16, 17,
24.

5. BERNOULLI, JACOB [Basel (Switzerland), 1654 — Basel, 1705):
Along with his younger brother, nephews, and great-nephews, Jacob
Bernoulli was a member of a large family of mathematicians. After
traveling across Europe to meet the eminent mathematicians of his
time, he became a professor at the University of Basel in 1687. He was



Biographies 139

particularly interested in infinitesimal calculus and its application to
the study of curves. He introduced mathematical rigor in the study
of convergence and provided the first proof of the weak law of large
numbers for the game of heads or tails. His name is attached to
differential equations, a curve (the lemniscate), polynomials, and a
law of probability. See pages 16, 17, 20.

6. DE MOIVRE, ABRAHAM [Vitry-le-Francois (France), 1667 — London
(England), 1754]: Born in France, de Moivre moved to London at
the age of eighteen. There he met Newton and quickly became a
famous mathematician. His main works are in probability theory.
He characterized the independence of two events by the fact that the
probability of both events occurring is the product of the probabilities
of each occurring. He discovered Stirling’s formula and attained from
it the limit form of the binomial law described in this book. He
developed the use of polar coordinates to describe complex numbers
(and the theorem in this area which bears his name). In addition, he
studied applications of mathematics to finance and demography. See
pages 29, 32, 36, 39, 41, 46, 121.

7. STIRLING, JAMES [Garden (Scotland), 1692 — Edinburgh, 1770):
After studying at Oxford, Stirling taught in Venice between 1715 and
1725 and in London after 1725. He achieved several results about
algebraic curves (for example, that a polynomial of degree n is deter-
mined by n(n+3)/2 points) and about asymptotic series, in particular
the one for In(n!). See pages 26, 27, 36, 40, 61, 69, 74, 128.

8. LAPLACE, PIERRE-SIMON [Beaumont-en-Auge (France), 1749 -
Paris, 1827]: A mathematician and physicist, Laplace helped found
IEcole Polytechnique of Paris. He made considerable contributions to
astronomy and the theory of gravitation; in particular, he studied the
origin and the stability of the solar system. His main mathematical
work was in the theory of differential equations and partial deriva-
tives and in probability theory. He developed the use of continuous
densities in probability theory and helped create statistical methods.
The monumental treatise Théorie analytique des probabilités, written
in 1812, was an important influence on the mathematics for the re-
mainder of the century. Laplace also played an important public role
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during the First Empire and the Restoration. See pages 29, 32, 36,
39, 41. 46, 121, 133.

9. LEGENDRE, ADRIEN-MARIE [Toulouse (France), 1752 — Paris,
1833]: Legendre was the student of the Abbé Marie at the College
Magzarin in Paris and then a professor at I'Ecole Militaire from 1775
to 1780. In 1782, he won a prize from the Berlin Academy for his cal-
culations on the trajectory of projectiles that took air resistance into
account. He started teaching at I'Ecole Normale Supérieure in 1795.
After working on mechanics, he made fundamental contributions to
number theory (see Hardy and Wright, An Introduction to the Theory
of Numbers). In addition, he reworked Euclid’s Flements into a more
modern text. The English translation of his work replaced Euclid’s
text as the geometry textbook used in American schools of the time.
Being a man of great honesty, he acknowledged that Abel’s and Ja-
cobi’s work on elliptic functions was better than his own. His pension
was revoked because he opposed political pressure on the scientific
world, and he finished his life in misery and loneliness. See pages
124, 125, 127.

10. FOURIER, JEAN-BAPTISTE JOSEPH [Auxerre (France), 1768 -
Paris, 1830): “Fourier is a product of the French Revolution, and his
life is a sort of film of French history from 1770 to 1830" (Jean-Pierre
Kahane, Series de Fourier, Cassini, 1998). From a modest back-
ground that prevented him from pursuing the military career that he
coveted, Fourier participated in the Revolution and became a student
at I'Ecole Normale Supérieure when it opened in 1794. The following
year, he taught probability theory at I'Ecole Polytechnique, which
had just opened. He participated in Napoleon’'s Egyptian campaign
and held political positions under the Consulate and the Empire. His
most important mathematical work deals with solutions to differential
equations describing the propagation of heat through a solid. In this
work, Fourier introduced the decomposition of a periodic function as
the sum of trigonometric functions. Since then, Fourier analysis has
become an important branch of mathematics. See pages 36, 56.

11. Gauss, CARL FRIEDRICH [Brunswick (Germany), 1777-Gottingen,
1855]: Ome of the greatest mathematicians of all time and a scholar
whose stature is comparable to Newton's, Gauss was the father of
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modern mathematics in Germany. In addition to doing fundamen-
tal work on astronomy and physics, he made significant contributions
to almost every branch of mathematics. He gave the first complete
proof of the fundamental theorem of algebra. His principal books,
Disquisitiones arithmeticae and Disquisitiones generales circa super-
ficies curvas are about number theory and differential geometry. See
pages 29, 30, 31.

12. PoIssoN, SIMEON DENIS [Pithiviers (France), 1781 — Sceaux
(France), 1840]: A graduate of I'Ecole Polytechnique, where he was
noticed by Lagrange and Laplace, Poisson is considered to be one of
the founders of mathematical physics. Having mastered contempo-
rary techniques in mathematical analysis, he applied these to various
problems, including fluid mechanics, movement of planets, elasticity,
theory of heat, electrostatics, and probability. He showed that, under
certain conditions, the binomial distribution can be approximated by
the Poisson distribution: P(S, = k) = e~ "?(np)¥/k! (see Chapter
4). He received both academic and political honors: a professor at
I'Ecole Polytechnique from 1806 and later at the Faculté des Sciences,
he was admitted to the Academy of Sciences in 1812, and he was made
a baron by Louis XVIII. See page 20.

13. RODRIGUES, BENJAMIN OLINDE [Bordeaux (France), 1794 —
Paris, 1851]: A graduate of I'Ecole Normale Supérieure, Rodrigues
made important contributions to geometry; in particular, he studied
the composition of successive rotations of the plane and the theory of
surfaces. His formula describing Legendre polynomials generalizes to
other families of orthogonal polynomials. See page 125.

14. BIENAYME, IRENEE-JULES [Paris (France), 1796 — Paris, 1878]:
A statistician and an inspector general in the Administration of Fi-
nances, Bienaymé applied probability theory to financial calculations
and was admitted to the Academy of Sciences in 1852. See pages 9,
20, 23, 94, 102.

15. WEIERSTRASS, KARL THEODOR WILHELM [Ostenfelde (West-
phalia, now Germany), 1815 — Berlin (Germany), 1897]: The influ-
ence of Weierstrass, a great teacher, was considerable. He introduced
modern language and rigor to mathematical analysis. His early works
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are on elliptic integrals and abelian functions. He studied the con-
struction of the real numbers, developed the definition of uniform con-
vergence, and proved his famous theorem of approximation by poly-
nomials. He constructed new functions of a real or complex variable
as sums of infinite series or products. In linear algebra, he founded
the modern theory of determinants. See pages 20, 21.

16. BOOLE, GEORGE |[Lincoln (England), 1815 — Cork (Ireland),
1864]: The son of a British shopkeeper, Boole was largely self-taught.
At twenty, he read works by Laplace and Lagrange and studied differ-
ential equations. In 1849, he became a professor at Queens College,
Cork. He is the founder of logic as a branch of mathematics inde-
pendent of philosophy, and he discovered a connection between his
formal theory of logic and probability theory. See page 79.

17. CHEBYSHEV, PAFNUTY LvovicH [Okatovo (Russia), 1821 — Saint
Petersburg, 1894]: Chebyshev’s thesis, which he defended in 1846,
was on probability theory. He became a professor at the University
of Saint Petersburg in 1847, where he principally studied number the-
ory. He made important contributions to the study of the distribution
of prime numbers in the integers; in particular, he proved Bertrand’s
Postulate: for every integer n > 2, there exists a prime number be-
tween n and 2n. He also contributed to approximation theory by
studying the polynomials that bear his name today. See pages 9, 20,
23, 94, 102.

18. RIEMANN, GEORG FRIEDRICH BERNHARD [Breselenz (Hanover,
now Germany), 1826 — Selasca (Italy), 1866]: A mathematical ge-
nius who made lasting contributions, Riemann studied in Berlin and
Gottingen, where he defended his thesis on the foundations of complex
analysis in 1851. His work in analysis and number theory is funda-
mental, and his conjecture, called the Riemann hypothesis, is the most
famous problem of twenty-first century mathematics. He was the first
to define integrals for noncontinuous functions. His work in geometry
founded an important part of modern mathematics and theoretical
physics, particularly topology and relativity. See pages 1, 36, 42, 49,
61, 75.

19. MARKOV, ANDREI ANDREYEVICH [Riazin (Russia), 1856 — Pet-
rograd (now Saint Petersburg), 1922]: The student of Chebyshev,
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Markov worked on number theory and analysis before tackling prob-
ability theory. He invented the concept of Markov chains, which are
sequences of random variables subject to a condition that general-
izes independence. This concept gained fundamental importance in
the applications of probability. He is considered to have founded the
theory of stochastic processes. See pages 8, 24, 72, 136.

20. CEeSARO, ERNESTO [Naples (Ttaly), 1859 — Torre Annunziata,
1906]: An Italian mathematician with diverse interests, Cesaro was
a professor at the University of Naples. He studied the connection
between arithmetic and probability: he proved that the probability
that two random integers are relatively prime is 6/72 (try to prove it
yourself!). In the field of convergence of entire series, he introduced
the concept of convergence that bears his name today. See page 72.

21. HAUSDORFF, FELIX [Breslau (Germany; now Wroclaw, Poland),
1868 — Bonn (Germany), 1942]: A German mathematician who taught
at the Universities of Leipzig, Greisswald, and Bonn, Hausdorff made
significant contributions to set theory, functional analysis, topology,
and measure theory. His name is attached to the axioms of a topo-
logical space, to a concept of the dimension of a subset of a metric
space, and to a concept of measure. He met a tragic end: threatened
with being moved to a Nazi internment camp for Jews, he committed
suicide with his wife and sister-in-law. See pages 98, 99.

22. BOREL, EMILE [Saint Affrique (France), 1871 — Paris, 1956]: A
graduate of 1’Ecole Normale Supérieure, Borel was one of the founders
of measure theory, which allowed Lebesgue to found the modern the-
ory of integration. He initiated the study of probability based on
measure theory that is used universally today. With the help of many
collaborators, he was the editor of Traité du Calcul des Probabilités
et ses applications (Gauthier-Villars, Paris, 1920s), and important
work on probability theory and its applications. He made significant
contributions to the theory of real functions and the summation of
numerical series, and he is one of the founders of game theory. He also
wrote on philosophy, pedagogy, political economics, and the history
of science. As a deputy, a minister during the Third Republic, and
an opposer of the Vichy regime, Borel also participated in important
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political activities. See pages viii, 77, 78, 82, 83, 88, 89, 90, 93, 94,
97, 100, 104, 105, 106, 112, 115, 118.

23. CANTELLI, FRANCESCO [Palermo (Italy), 1875 — Rome, 1966]:
An Italian mathematician, Cantelli taught at the School of Econom-
ics and Commerce in Rome. He worked on probability theory and
statistics. He participated actively in the debate about the mathe-
matical foundations of probability between the Bayesian and frequen-
tist points of view. See pages 78, 89, 90, 92, 94, 96, 99, 100, 104, 105,
106, 112, 115, 118.

24. LEBESGUE, HENRI [Beauvais (France), 1875 — Paris, 1941]: At
I’Ecole Normale Supérieure, Lebesgue was taught by Borel. In his
thesis, (Intégrale, longueur, aire, defended in 1901), he founded the
modern theory of integration, which allowed Kolmogorov to create
rigorous axioms of probability. Lebesgue’s contributions to the the-
ory of trigonometric series (for example, under what conditions is a
periodic function a sum of Fourier series?) are also important. Teach-
ing at Nancy, Rennes, Poitiers, and at the College de France starting
in 1912, Lebesgue is recognized for his pedagogical influence. See
pages 86, 87, 88, 90.

25. HARDY, GODFREY HAROLD [Cranleigh (England), 1877 — Cam-
bridge, 1947]: A professor at Cambridge, Hardy favored analytic num-
ber theory, that is, the theory of applying real and complex analysis
to number theory. His collaboration with Littlewood produced many
significant contributions to analytic number theory. An advocate of
pure mathematics, he wrote several mathematical texts as well as an
interesting autobiography, A Mathematician’s Apology (Cambridge,
1940). See pages 98, 100.

26. BERNSTEIN, SERGEI NATANOVICH [Odessa (Ukraine), 1880 —
Moscow (Russia), 1968]: Bernstein first taught at the Universities
of Kharkov and of Paris, and then at the University of Leningrad
(Saint Petersburg) until 1941. He worked on probability theory as
well as on differential equations and functional analysis. See pages
12, 21, 23.

27. LiTTLEWOOD, JOHN EDENSOR [Rochester (England), 1885 —
Cambridge, 1977]: A professor at Cambridge, Littlewood mainly
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worked on analytic number theory and trigonometric series. His col-
laboration with Hardy was particularly fruitful. See pages 98, 100.

28. LEVY, PAUL [Paris (France), 1886 - Paris, 1971]: From a family of
mathematicians, Lévy was a student and subsequently a professor at
I'Ecole Polytechnique. He was a major player in French mathematics
of the twentieth century. He work on functional analysis and the the-
ory of differential equations, but he is best known for his formidable
contributions to probability theory. He systematized the use of the
characteristic function (that is, the Fourier transform of a probability
measure) in the study of convergences like the central limit theorem
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to play cards. Beyond the introductory ideas, there are many
wonderful results that are unfamiliar to the layman, but which are
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In this book, Lesigne has made these limit theorems accessible by
stating everything in terms of a game of tossing of a coin:
heads or tails. In this way, the analysis becomes much clearer,
helping establish the reader’s intuition about probability.
Moreover, very little generality is lost, as many situations can
be modelled from combinations of coin tosses.
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