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Introduction

The purpose of this lab is to program and test an LQR optimisation algorithm taught

in the module used to design a vibration-control scheme of a simple structure.

Vibration Control LQR design

Consider the structure shown in Figure 1 which is subjected to a disturbance force f(t)

applied at time t = 0. A linear actuator connected between masses M0 and M1 can

produce an equal and opposite force u(t) on the masses M0 and M1, respectively.
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Figure 1: Three-storey structure
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1. Obtain a state-space model of the system in the form

ẋ(t) = Ax(t) +Bu(t) + Ff(t)

where x(t) represents the state-vector

x′(t) =
(
x0(t) x1(t) x2(t) x3(t) ẋ0(t) ẋ1(t) ẋ2(t) ẋ3(t)

)
consisting of the displacements xi(t) (relative to the equilibrium) and the

velocities ẋi(t) of the four masses Mi.

2. Find also the corresponding C and D matrices of the output equation

y(t) = Cx(t) +Du(t)

if the two measurements are: (i) The acceleration of mass M1, and (ii) The

relative displacement x1(t)− x0(t).

3. Investigate the damping of the poles of the system for the following values of the

parameters: Base: M0 = 5 Kg, c0 = 100 N/m/s, k0 = 16000 N/m; First floor:

M1 = 1.72 kg, c1 = 0.078 N/m/s, k1 = 2600 N/m; Second floor: M2 = 1.48

kg, c2 = 0.078 N/m/s, k2 = 2600 N/m; Third floor: M3 = 2.34 kg, c3 = 0.078

N/m/s, k3 = 2600 N/m. Obtain also (using Matlab) (i) the time-response of the

system when f(t) is a unit impulse (and u(t) = 0), (ii) The magnitude Bode plots

between f(t) and the two outputs. In each case explain the main characteristics

of the response from the model equations.

4. We will use a slightly more general LQR problem from the one defined and solved

in the course. We consider the same system as before:

x′ = Ax+Bu, x(0) = x0 ∈ Rn

and cost function (to be minimized):

J [u, x0] =

∫ ∞
0

(x′(t)Qx(t) + 2x′(t)Nu(t)x+ u′(t)Ru(t)) dt

=

∫ ∞
0

(
x′(t) u′(t)

)( Q N

N ′ R

)(
x(t)

u(t)

)
dt

Let Q = Q′ ≥ 0 and R = R′ > 0. Show that:(
Q N

N ′ R

)
≥ 0

if and only if Q−NR−1N ′ ≥ 0. (Hint: Use Sylvester’s law of inertia).
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5. Show that

x′Qx+ 2x′Nu+ u′Ru = (u+R−1N ′x)′R(u+R−1N ′x) + x′(Q−NR−1N ′)x

and hence that the cost function can be redefined as:

J [u, x0] =

∫ ∞
0

(
x′(t)(Q−NR−1N ′)x(t) + ũ′(t)Rũ(t)

)
dt

where the system’s dynamics are now:

x′(t) = (A−BR−1N ′)x(t) +Bũ(t), x(0) = x0 ∈ Rn, ũ(t) = u(t) +R−1N ′x(t)

Show further that under the assumptions that: (A−BR−1B′N ′, B) is controllable

(equivalently (A,B) is controllable) and (A−BR−1N ′, Q−NRN ′) is observable,

the optimal solution is given as: ũ(t) = −R−1B′Px(t) where P is the (positive-

definite) stabilizing solution of the ARE:

P (A−BR−1N ′) + (A−BR−1N ′)P − PBR−1B′P +Q−NR−1N ′ = 0

Conclude that Implementing ũ on the redefined system is equivalent to

implementing the control

u(t) = ũ−R−1N ′x(t) = −R−1(B′P +N ′)x(t)

in the original system.

6. It is proposed to implement an LQR state-feedback active vibration control

scheme of the form u(t) = −Kx(t). The performance index which should be

minimized is

J [u] =
1

2

∫ ∞
0

(
|ẍ1(t)|2 + ρ1|x1(t)− x0(t)|2 + ρ2u

2(t)
)
dt

where ρ1 and ρ2 are non-negative scalar parameters. By finding appropriate

matrices Q, R and N , show that this performance index can be put into standard

form:

J [u] =
1

2

∫ ∞
0

(
x′(t)Qx(t) + 2x′(t)Nu(t) +Ru2(t)

)
dt

and state what is the optimal control u?(t).

7. Using Matlab, find the optimal control u?(t) for ρ1 = 0 ρ2 = 1. Find also the

closed-loop “A” matrix of the system, verify that it is asymptotically stable and

calculate the damping factor of its eigenvalues. Show also that the solution of

the Algebraic Riccati Equation associated with the optimal control is positive

semi-definite.

3



8. With ρ1 = 0, investigate the time and frequency-domain closed-loop responses of

the system for different values of ρ2. Do the results vary as you expect? What

happens when ρ2 is set to a large positive number?

9. By varying ρ1 and ρ2 try to obtain the “best” possible design, subject to the

constraint that the peak force of the actuator does not exceed 20 N.

G.Halikias, 8-12-2018
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