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SUMMARY 

Interim analysis of accumulating data in a clinical trial is now an established practice for ethical and 
scientific reasons. Repeatedly testing interim data can inflate false positive error rates if not handled 
appropriately. Group sequential methods are a commonly used frequentist approach to control this error 
rate. Motivated by experience of clinical trials, the alpha spending function is one way to implement group 
sequential boundaries that control the type I error rate while allowing flexibility in how many interim 
analyses are to be conducted and at what times. In this paper, we review the alpha spending function 
approach, and detail its applicability to a variety of commonly used statistical procedures, including survival 
and longitudinal methods. 

INTRODUCTION 

Clinical trials are the standard for evaluating new therapeutic strategies involving drugs, devices, 
biologics or procedures. Over two decades ago, the Greenberg Report’ established the rationale 
for interim analyses of accumulating data. This influential report, which was finalized in 1967, but 
not published until 1988, put forth the fundamental principle that clinical trials should not be 
conducted longer than necessary to establish treatment benefit for a defined time. In addition, the 
report stated that clinical trials should not establish harm, or cause a harmful trend, which would 
not likely be reversed. While this report firmly established the rationale for interim analyses, 
statistical methodology and decision processes needed to implement interim monitoring have 
been evolving to the present day. The decision process to terminate a trial earlier than planned is 
complex. Many factors must be taken into account,’. ’ such as baseline comparability, treatment 
compliance, outcome ascertainment, benefit to risk ratio, and public impact. Also important is 
the fact that repeatedly evaluating data, whether by common frequentist or other statistical 
methods, can increase the rate of falsely claiming treatment benefit or harm beyond acceptable or 
traditional levels. This has been widely recognized4-’ and has been addressed in the conduct of 
early clinical trials such as the Coronary Drug Project’ conducted in the late 1960’s and early 
1970s. In the decades since then, a great deal of effort has gone into the development of suitable 
statistical methods, based on the earlier efforts such as by Bross,’ Anscombe,’ and Armitage and 
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 colleague^.^*^ A brief review of many of these issues and methods is provided by DeMets," 
Fleming and DeMets,' I and Pocock." While these statistical methods are quite helpful, they 
should not be viewed as absolute decisions rules. One result of the Greenberg Report was to 
establish the need for independent data monitoring committees which review interim data and 
take into consideration the multiple factors before early termination is recommended. The past 
two decades suggest that these committees are invaluable in the clinical trial model. 

Two basic requirements must be met before any method for interim analysis can be applied. 
First, the primary question must be stated clearly in advance. For example, does the primary 
question concern hazard rates or 5 year mortality? Decisions about early termination will be 
different, depending on which question is being asked. Are we monitoring a surrogate as the 
primary outcome, but really are we interested in a secondary question which is the clinical event 
for which we have too small a study to be adequate? Is this a trial to establish therapeutic 
equivalence or therapeutic benefit? Are the criteria for establishing benefit to be the same as for 
establishing harm? These issues must be clearly understood or monitoring any trial will be 
difficult. Second, we must have a trial which is properly designed to answer the question(s) 
specified above. If the trial lacks power to detect a clinical difference of interest, monitoring the 
trial will also be difficult. That is, we will soon become aware that the trial is not likely to achieve 
its goals. Group sequential methods do not directly address the best way to resolve issues of this 
type. Conditional power or stochastic curtailment addresses this problem more directly (DeMets"). 

Among the more popular methods for interim analyses has been a frequentist approach 
referred to as 'group sequential boundaries' as proposed by Pocock.'' This method adjusts the 
critical values used at  interim tests of the null hypothesis such that the overall type I error rate is 
controlled at some prespecified level. Various adjustment strategies have been proposed, includ- 
ing those of Pocock,13 OBrien and Fleming14 and Pet0 and colleagues.'5 The basic algorithm 
for evaluating these group sequential boundaries can be derived from the earlier work of 
Armitage et aL4 An extension of this methodology was proposed by Lan and DeMets16 in order 
to achieve more flexibility. This approach was motivated by the early termination of the 
Beta-Blocker Heart Attack Trial (BHAT)", which utilized the O'Brien and Fleming group 
sequential boundary. We shall briefly summarize the initial group sequential boundary approach, 
the implementation in the BHAT study, and the rationale for establishing a more flexible 
implementation. We shall then summarize the flexible approach, referred to as the 'alpha 
spending approach', and the applications of that approach to various statistical procedures as 
well as some clinical trial examples. 

GROUP SEQUENTIAL BOUNDARIES 

The basic strategy of the group sequential boundary is to define a critical value at each interim 
analysis (Z,(k), k = 1,2, ... , K) such that the overall type I error rate will be maintained at 
a prespecified level. At each interim analysis, the accumulating standardized test statistic ( Z ( k ) ,  
k = 1,2, ... , K) is compared to the critical value where K is the maximum number of interim 
analyses planned for. The trial is continued if the magnitude of the test statistic is less than the 
critical value for that interim analysis. The method assumes that between conservative analyses, 
2n additional patients have been enrolled and evaluated, n in each treatment group. The 
procedure can be either a one-sided or two-sided test of hypothesis. Although we shall describe 
the methods from a two-sided symmetric point of view, an asymmetric group sequential proced- 
ure can also be implemented. Thus, we shall continue the trial if at the kth interim analysis, 

lZ(k)l < Z,(k)  for k = 1,2 ..., K - 1 
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and otherwise we should terminate the trial. If we continue the trial until Kth analysis, then we 
accept the null hypothesis if 

lZ(K)I < Z c ( K ) .  

We reject the null hypothesis, if at any of the interim analyses 

The test statistic Z(k) ,  which uses the cumulative data up to analysis k, can be written as 

Z(k) = {Z*(l) + ... + Z*(k)}/Jk 

where Z*(k) is the test statistic constructed form the kIh group data. If Z*(k) has a normal 
distribution with mean A and unit variance, Z(k) has a normal distribution with mean A,/k and 
unit variance. The distribution for Z(k),/k can be written as a recursive density function, 
evaluated by numerical integration as described by Armitage et aL4 and Pocock.13 Using this 
density function, we can compute the probability of exceeding the critical values at each interim 
analysis, given that we have not already exceeded one previously. Under the null hypothesis, 
A = 0 and the sum of these probabilities is the alpha level of the sequential test procedure. 
Under some non-zero A, we obtain the power of the procedure. 

Various sequences of critical values have been proposed. Pocock,13 in the first describing this 
particular group sequential structure, suggested that the critical value be constant for all analyses, 
that is, Z,(k) = Zp for all k = 1,2, ... , K. Later, O'Brien and Fleming14 suggested that the critical 
values should change over the K analyses according to Z,(k) = ZOBF ,/(K/k). The constants Zp 
and ZoBF are calculated using the recursive density function and iterative interpolation such that 
the desired type I error rate or alpha level is achieved under A = 0. Earlier, Pet0 and  colleague^'^ 
in a less formal structure suggested that a large critical value such as 3 5  be used for each interim 
analyses and then for the Kth or last analysis, the usual critical value be utilized (for example, 1.96 
for a two-sided c1 = 0.05). Since the interim critical value is so conservative, the sequential process 
will have approximately the same level as the last critical ialue provides. 

Examples of these three boundaries for interim analyses are given in Figure 1 for K = 5 and 
alpha = 0.05 (two-sided). In this case, the Pocock critical value for all interim analyses is 2.41. For 
O'Brien-Fleming, the constant is 244 so the critical values correspond to 2-04 , / ( 5 /k ) .  Note that 
for the final analysis, where K = 5, the critical value is 2.04 which is close to the nominal 0.05 
critical value of 1.96. 

These group sequential boundaries have been widely used over the past decade. Each has 
different early stopping properties and sample size implications. For example, the 
O'Brien-Fleming boundary will not require a significant increase in sample size over the fixed 
sample design since the final critical value is not substantially larger than the fixed sample critical 
value. For some of the reasons described below in the BHAT example," the OBrien and Fleming 
boundary has gained considerable appeal. 

THE BHAT EXPERIENCE 

The BHAT was a randomized, double-blind, placebo-controlled trial designed to test the effect of 
propranolol, a beta blocker drug, on total mortality. In multicentre recruitment, 3837 patients 
were randomized between propranolol or placebo. Using group sequential methods, this trial was 
stopped almost a year early. The design, results and early termination aspects have been 
published previously". The experience of using group sequential methods in this trial raised 
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Figure I. Two-sided 0.05 group sequential boundaries for Pocock, OBrien-Fleming. and Peto-Haybittle methods for 
five planned analyses 

important issues that led to the more flexible alpha spending function method described by Lan 
and DeMets.16 

The BHAT had an independent Data and Safety Monitoring Board (DSMB) which was 
scheduled to meet seven times during the course of the trial to evaluate interim mortality and 
safety results. The study adopted the group sequential boundaries published by OBrien and 
Fleming. In fact, only a prepublished copy of the paper was available to the study team. 
Statisticians in the late 1970's believed that the group sequential methods were also applicable to 
the logrank test for comparison of two survival patterns. This belief was later justified by Gail 
et ~ 1 . ' ~  and Tsiatis.*' Two principal reasons influenced the decision to adopt the OBrien 
and Fleming boundaries. First, the boundaries would not cause the sample size to be increased 
beyond what was already planned for. Second, the boundaries are conservative in that early 
results must be extreme before early termination would be suggested. Early patients in a trial are 
not always representative of the later patients, number of events are small and randomization 
may not yet achieve balance are some of the considerations. The OBrien-Fleming boundaries for 
seven interim analyses are shown in Figure 2. The results for the logrank test are also shown as 
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Figure 2. Group sequential OBrien-Fleming 0.05 boundaries with BHAT results for the logrank test comparing total 
mortality in six of seven planned analyses 

the trial progressed. As indicated, on the 5th interim analysis the logrank test approached but did 
not exceed the critical value. On the 6th interim analysis, the logrank statistic was 2-82 and 
exceeded the critical value of 2.23. 

The BHAT was stopped following the 6th interim analysis, but not until considerable dis- 
cussion by the DSMB had taken place and several other calculations had been made.18 The 
decision to stop any trial is always a complex matter and many factors other than the size of 
a summary test statistic must be taken into account. For BHAT, one consideration was: how long 
should propranolol be given to a post heart attack patient? It seemed clear that this drug was 
effective for 3 years but stopping early would not address the question regarding treatment effect 
for 5 years or more. After considerable discussion, the DSMB felt that the results had to be made 
public and thus the trial was terminated. While the O’Brien-Fleming group sequential bound- 
aries had not been the only factor in the decision process, they had been a useful guide. 

After the trial was over, the statistical process utilized in the BHAT was examined, and to some 
extent, criticized, because of the assumptions in the group sequential process had not been met 
exactly. For example, the DSMB met at intervals dictated by calendar schedules and those 
meetings did not coincide with equal number of events between analyses. Furthermore, it was 
speculated whether the DSMB could have met in between the 5th and 6th analyses, or perhaps 
might have decided to meet again in a month following the 6th meeting to resolve some other 
issues. That is, if the DSMB had decided not to stick to the seven scheduled analyses, how would 
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the group sequential boundaries be used? This discussion lead to further research in two areas. 
First, simulation studies by DeMets and Gail” indicated that unequal increments in information 
had some impact on the overall type I error but the impact was usually small for the 
O’Brien-Fleming boundary. The other research effort was to develop a more flexible group 
sequential procedure that would not require the total number nor the exact time of the interim 
analyses to be specified in advance. 

THE ALPHA SPENDING FUNCTION 

Based on the BHAT experience, Lan and DeMets developed a procedure referred to as the alpha 
spending function. The original group sequential boundaries are determined by critical values 
chosen such that the sum of probabilities of exceeding those values during the course of the trial 
are exactly alpha, the type I error rate, under the null hypothesis. The total alpha is distributed, or 
‘spent’, over the K interim analyses. The alpha spending function is a way of describing the rate at 
which the total alpha is spent as a continuous function of information fraction and thus induces 
a corresponding boundary. Earlier work by Slud and WeiZZ had proposed distributing the alpha 
over a fixed number of analyses but did not describe it as a continuous function of information 
and thus did not achieve the flexibility or structure of this approach. 

Specifically, let the trial be completed in calender time t between [0, TI,  where T is the 
scheduled end of the trial. During the interval [0, T I ,  let t* denote the fraction of information that 
has been observed at calendar time t. That is, t* equals information observed at t divided by the 
total information expected at the scheduled termination. If we denote the information available at 
the kth interim analysis at calendar time t k  to be ik ,  k = 1,2, ... , K, and the total information as I, 
the information fraction can be expressed as t: = ik/l.  For comparison of means, f *  = n / N ,  the 
number of patients observed divided by the target sample size. For survival analyses, this 
information fraction can be approximated by d / D ,  the number of observed deaths divided by the 
expected number of deaths. We shall discuss this more later on. Lan and DeMets specified an 
alpha spending function a* ( [ )  such that a(0) = 0 and a(1) = a. Boundary values Z,(k), corres- 
ponding to the a-spending function a(t*) can be determined successively so that 

(1) 

where {Z(l), ..., Z(k)} represent the test statistics from the interim analyses 1 ,  ..., k. The 
specification of a@*) will define a boundary of critical values for interim test statistics and we can 
specify functions which approximate O’Brien-Fleming or Pocock boundaries as follows: 

Po{IZ(l)l 2 Zc(l), orIZ(2)l 2 2,(2),or ..., orIZ(k)l 2 Z,(k)} = a(t:) 

al ( t*)  = 2 - 2O(Z,,,/Jt*) 

az(t*) = a h (  1 + (e - l)t*) 

O’Brien-Fleming 

Pocock 

where O denotes the standard normal cumulative distribution function. The shape of the alpha 
spending function is shown in Figure 3 for both of these boundaries. Other general spending 
functions’6*z3.24 are 

a3(t*)  = a t*’ for 0 > 0 

and 

a4(t*) = a[(1 - e-Y‘*)/(l - e-Y)], for y # 0. 

The increment a([:) - a([:- ,) represents the additional amount of alpha or type I error probabil- 
ity that can be used at the kth analysis at calender time t k .  In general, to solve for the boundary 



INTERIM ANALYSIS: THE ALPHA SPENDING FUNCTION APPROACH 1341 

Spending Functions 
Alpha 

0 .2 .4 .6 .8 1 

Information Fraction 

Figure 3. One-sided 0.025 alpha spending functions for Pocock and O'Brien-Fleming type boundaries 

values Z,(k), we need to obtain the multivariate distribution of Z(1) ,  Z (2 ) ,  ... , Z(k) .  In the cases 
to be discussed, the distribution is asymptotically multivariate normal with covariance structure 
Z = ( g l k )  where 

blk  = cov(z(h Z(k))  

= J ( t : / t f )  = , / ( i f / & )  1 < k 

where if and ik are the amount of information available at the Ith and kth data monitoring, 
r e s p e c t i ~ e l y . ~ ~ - ~ ~  Note that at the kth data monitoring, if and ik are observable and b l k  is known 
even if I (total information) is unknown. However, if I is not known during interim analysis, we 
must estimate I by f and  t t  by t; = ik / f so  that we can estimate a(t;) by a([?). If these increments 
have an independent distributional structure, which is often the case, then derivation of the values 
of the Z,(k) from the chosen form of a(t*)  is relatively straightforward using equation (I) and the 
methods of Armitage et aL4 In some clinical trial settings, the information fraction t* can only be 
estimated approximately at the kth analysis. The procedure described here can be modified to 
handle this situation.26 If the sequentially computed statistics do not have an independent 
increment structure, then the derivation of the Z, (k )  involves a more complicated numerical 
integration, and sometimes is estimated by simulation. 

One of the features of the alpha spending function method is that neither the number of interim 
analyses nor the calender times (or information fractions) need to be specified in advance.25 Only 
the spending function must be determined. The process does require that the information fraction 
be known, or at least approximated. Any properly designed trial will have estimated the total 
information, I ,  such as the target sample size or total number of deaths. This information 
fractions is implied in the group sequential procedures described previously since those methods 
assume equal increments in the number of subject (2n)  at each analysis. For example, 
t* = k / K  = 2nk/2nK. Thus, this alpha spending function is not requiring something that was not 
required in earlier group sequential methods. 

The group sequential procedures described by Pocock and OBrien-Fleming were defined in 
terms of comparing means or proportions. Kim and DeMets2' describe methods for designing 
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trials using these outcomes with the alpha spending function. Kim and Tsiatis” and Kimz9 
describe the design of survival studies with this approach. 

The flexibility of this procedure has proven to be quite useful in several AIDS and cardiovascu- 
lar trials. For example, the Cardiac Arrhythmia Suppression Trial (CAST) used a spending 
function that was similar to the O’Brien-Fleming boundary but not as conservative early on. As 
described,”. ’l the CAST was terminated early due to unexpected harmful effects of arrhythmia 
suppressing drugs. In fact, the trial had less than 10 per cent of the total expected events when this 
decision was reached. The flexibility of the alpha spending function allowed the DSMB to review 
data at unequal increments of events and to review data at unscheduled times. Other examples of 
this are provided by recent NIH trials conducted in AIDS.” 

One immediate concern about the alpha spending function procedure is that it could be abused 
by changing the frequency of the analyses as the results came closer to the boundary. Work by 
Lan and DeMets” suggest that if a Pocock-type or OBrien-Fleming-type continuous spending 
function is adopted, the impact on the overall alpha is very small, even if the frequency is more 
than doubled when interim results show a strong trend. This is true in general for continuous 
spending functions without sharp gradients following analysis times. Proschan et ~ 1 . ’ ~  considered 
the worst-case a inflation, and showed that the a level can be doubled if one tries their best to 
abuse the use of a spending function. However, they also indicated that with the most commonly 
used spending functions, the most calculated attempts to select interim analyses times based on 
current trends did not inflate the a level more than could reasonably occur by accident. 

Central to the use of the alpha spending function is the information fraction.’6-22*26 As 
discussed earlier, when number of patients are equal for the two treatment groups for all interim 
analyses, the information fraction is implicit in the group sequential boundary methods and is 
estimated by n / N ,  the ratio of the observed to the total sample size. More generally,’’ if nk + mk 
represent the combined sample size in each treatment group at tk. with a target of M + N ,  then for 
comparing two means with common variance, the information fractions is 

- I  - 1  

since the variance terms cancel. 
The same process can be followed for the logrank statistic and a general class of rank tests for 

comparing survival curves. The information fraction t* at calendar time t is approximately the 
expected number of events at time t, divided by the expected number of events I = D at the close 
of the study (calendar time T).’6 We usually estimate the expected number of deaths at calendar 
time t by the observed deaths d. Lan et al.” and Wu and Lan” discuss the information fraction 
as well as surrogates for information fraction in detail. 

In recent years, researchers have turned their attention to applying group sequential proced- 
ures in general and the alpha spending function approach in particular to longitudinal studies. 
Both Wu and L a d 8  and Lee and DeMetsj’ address the sequential analysis using the linear 
random-effects model suggested by Laird and Ware.40 As described by Lee and DeMets, the 
typical longitudinal clinical trial adds patients over time and more observations within each 
patient. If we are to evaluate the rate of change between two treatment groups, we essentially 
compute the slope for each subject and obtain a weighted average over subjects in each treatment 
group. These two weighted average slopes are compared using the covariance structure described 
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by Laird and Ware. In general, Lee and D e M e t ~ ~ ~  show that this sequence of test statistics has 
a multivariate normal distribution with a complex, but structured, covariance structure. Later, 
 other^^^*'^*^' showed that if the information fraction can be defined in terms of Fisher informa- 
tion (that is, inverse of the variance), such that the increments in the test statistics are independent, 
the alpha spending function as described by Lan and DeMets" can be applied directly. 

For sequential testing of slopes, the total information will not generally be known exactly. We 
can either estimate the total information, and thus be able to estimate the information fraction, or 
we can use elapsed fraction of calendar time and use the information to compute the correlation 
between successive test statistics.26*35* 3 7  W u and Lan" consider an even more general case 
which includes non-linear random effects models and other functions of the model such as area 
under the curve. Lee and DeMets4' also develop the distribution of a general class of sequentially 
computed rank statistics. 

and Su and L a ~ h i n ~ ~ )  develop group sequential procedures for 
marginal regression models of repeated measurement data. Both papers argue that the alpha 
spending function cannot be used since the independent increment structure does not hold and 
the information fraction is not known. While the details may be more complex than in the simpler 
independent increment structure, the alpha spending function can in fact be used. The multivari- 
ate integration involves the correlation of sequential test statistics and the increments in alpha as 
described above. In addition, information fraction may be estimated by a surrogate such as the 
number of current observations divided by the expected number determined in the sample size or 
design." 

Confidence intervals for an unknown parameter 0 following early stopping can be computed 
using the same ordering of the sample space described by Tsiatis et a process developed by 
Kim and D e M e t ~ ~ ~ . ~ ~  for the alpha spending function procedures. The method can be briefly 
summarized as follows. A 1 - y lower confidence limit is the smallest value of 8 for which an event 
at least as extreme as the one observed has a probability of at least y. A similar statement can be 
made for the upper limit. For example, if the first time the Z-value exits the boundary at t: with 
the observed statistic Z'(k) 2 Z,(k), the upper 8" and lower OL confidence limits are 

0" = sup{e:P,{z( i )  2 Zc(l),or ..., orZ(k - 1) > Z,(k - l),orZ(k) 2 ~ ' ( k ) }  G 1 - y } }  

Two recent papers (Wei et 

and 

BL = inf (0: Po { Z( 1) 2 Z,( I), or ... ,or Z(k - 1) 2 Z,(k - l), or Z(k) 2 Z'(k)} 2 y }  } .  

Confidence intervals obtained by this process will have coverage closer to 1 - y than naive 
confidence intervals using 8 f Zy12 SE(8). 

As an alternative to computing confidence intervals following early termination, Jennison and 
T ~ r n b u I l ~ ' ~ ~ ~  have advocated the calculation of repeated confidence intervals. This is achieved 
by inverting a sequenJial test to oktain the appropriate coefficient Zz/2 in the general form for the 
confidence interval, 8 f Z,*,,SE(8). This can be achieved when the sequential test is based on an 
alpha spending function. If we compute the interim analyses at the t:, obtaining corresponding 
critical values Z,(k) ,  then the repeated confidence intervals are of the form 

& * Zc(k)SE(8,) 

where & is the estimate for the parameter 8 at the kth analysis. 
Kim and D e M e t ~ ~ ~  as well as Li and Geller49 have considered the spacing of planned interim 

analyses for the alpha spending function method. Our experience suggests that two early analyses 
when less than 50 per cent of the information is available should be sufficient (for example, 10,25, 
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50 per cent) to determine if major problems or unanticipated early benefits are observed. 
Following those two early analyses, equal spacing in information fraction of two or three 
additional analyses is adequate in the design. As data accumulate, the spending function gives 
flexibility to depart from the design plan with little effect on power as indicated earlier. The 
boundaries generated by the alpha spending function are very similar to those rejection bound- 
aries generated by Whitehead” although the scale on which the latter are presented is for 
non-standardized statistic versus the corresponding variance. 

RULES OR GUIDELINES 

As early as the Coronary Drug Project,’ where more crude versions of group sequential 
boundaries were used, statisticians realized that a trial may be stopped without a boundary being 
crossed or continued after the boundary for the primary outcome has been crossed. That is, 
consideration of early termination is more complicated than simple boundary crossing or lack of 
it. A Data Monitoring Committee must integrate the other multiple factors along with the 
primary outcome before a final decision can be reached.2*3*11* 18*30*3’ F or example, a sequential 
boundary for a primary outcome such as delaying onset of AIDS or quality of life may have been 
crossed while another outcome such as mortality show a negative effect. In this case, it may be 
prudent to continue the trial to fully evaluate the therapeutic value. Trials such as the Coronary 
Drug Project were stopped for a safety or adverse event profile without any significance in 
primary outcomes. Trials may also be stopped due to external information before boundaries are 
reached. Obviously, significance cannot be claimed in these situations. Thus, these sequential 
boundaries are not absolute rules. Some consideration has been given to the statistical implica- 
tions of this b e h a ~ i o r . ’ ~ ~  5 1 * 5 2  

If the primary test statistic crosses the sequential boundary at the kth analysis, from a theoret- 
ical point of view we can reject H o  no matter what happens in the future monitoring, since the 
sample path has already fallen into the rejection region However, clinicians and even 
statisticians may feel uncomfortable with this theoretically correct argument. What appears to be 
the process adopted in practice is that a new and smaller rejection region, R’, is vaguely being 
determined, where R’ is a subset of R. This does not increase the probability of a type I error in 
fact, it decreases it. 

There are several possible strategies for altering the rejection region R into a smaller subspace 
R‘. Lan et ~ 1 . ’ ~  proposed that if a boundary Z,(k)  was crossed and the desire of the DMC is to 
continue to a new boundary or rejection region, we should ‘retrieve’ the probability as unspent in 
the past and reallocate this to the future. Specifically, we suggested that the boundary values 
Zc(l), 
Thus, 

, Z c ( k )  be replaced by co before constructing future boundary values. 

p{z(ti!+ 2 &(it+ d )  = a*(@+ 

In this way, the trial does not pay too much of a price for a sequential boundary if the DMC 
overrules it. 

CONCLUSION 

Over the past decade, statisticians involved in the data monitoring of clinical trials have utilized 
the alpha spending function. In several instances, the flexibility provided by this approach has 
removed an awkward situation that would have existed if classical group sequential procedures 
had been used. The approach can be applied to the comparison of means, proportions, survival 
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curves, mean rates change or slopes, and general random effects models and rank statistics. 
Repeated confidence intervals and estimation are available within the same framework. Thus, this 
approach is quite general and provides both academic and industry sponsored trials with 
a convenient way to monitor accumulating results, typically reviewed in the context of a Data 
Monitoring Board. While not all aspects are completely refined, the basic experience suggests that 
the alpha spending function is a practical and useful data monitoring 
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