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TABLES OF THE NUMBER OF PATIENTS REQUIRED I N  
CLINICAL TRIALS USING THE LOGRANK TEST 
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SUMMARY 
The logrank test is commonly used in the analysis of clinical trials in chronic diseases such as cancer. Existing 
tables for the number of patients required in such trials are based on the direct comparison of two proportions. 
This paper presents tables of numbers required in clinical trials using the logrank test and describes their use. 
The numbers required are considerably smaller than those in existing tables when the event-free proportions 
are small, but otherwise comparable. 
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INTRODUCTION 

The logrank test is now commonly used in the analysis of clinical trials data where outcome 
becomes manifest after a prolonged time interval.’ The test is particularly well established in the 
analysis of results from trials of cancer treatments. 

Recently, several authors have pointed out the inadequacy of the numbers of patients entered 
into many cancer trials and the consequent lack of sensitivity to small treatment differences.2. 
Consideration of the number of patients required is important in planning a trial. There are several 
published tables of the numbers needed in comparative experiments or trials?. These entail the 
assumption that analysis consists of a direct comparison of two proportions, e.g. the survival 
proportions in two treatment groups. This paper presents more extensive tables of numbers 
required in trials in which the logrank test constitutes the principal method of analysis. 

Before describing the tables and their use, we elaborate the nature of the trials and explain several 
technical terms. The trials consist of patients who are entered, treated and then followed up. 
Principal interest during follow-up concerns the occurrence or non-occurrence of a particular 
‘event’ which in many cancer trials is death but could also be local recurrence, metastatic spread or 
some other clinical observation. Some patients may be withdrawn from follow-up. This does not (or 
should not) mean that the investigator has consciously decided not to keep track of a patient but 
that despite efforts the patient’s follow-up is in some sense incomplete. There are two primary 
reasons for this. Either the investigator may lose touch with the patient (perhaps because the 
patient has gone abroad) or some intervening event prevents gathering the necessary information. 
An example of such an intervening event is a patient who dies in a car accident soon after treatment 
when death from malignant disease is the event of interest. These concepts appear later in the paper. 
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ASSUMPTIONS UNDERLYING THE CALCULATIONS 

The tables give two quantities: the number of events needed to be observed and the number of 
patients needed to be entered. The number of events results from a formula which approximates 
the exact number required (see Appendix I).  The formula assumes 1 : 1 randomization, i.e. equal 
numbers entered in the two treatment groups. A comparison of the results obtained from the 
formula with those obtained from Monte Carlo simulations appears in Appendix 11. This 
comparison assures that the approximation is reasonably accurate and shows that it provides a 
slight over-estimate of the number of events, which, in practical terms, is an error in the right 
direction. The number of patients needed can be estimated directly as that required to observe the 
necessary number of events. The exact form of dependence of the number of accrued events on the 
patient entry will be determined by the rate of acceptance of patients into the trial, the rate of 
occurrence of the events and the timing of the definitive analysis of the resulk6 

The tables entail an assumption that analysis occurs at a fixed time T after the lust patient has 
entered the study; information on patient follow-up extending beyond T is excluded. This 
assumption commonly (though not universally) accords with practice and is thereby partly 
motivated. The consequent analysis does not utilize all available information and hence the 
required number of patients is over-estimated. Only when the great majority of the relevant 
information has been gathered, however, is it proper to conduct a definitive analysis. This implies 
choice of a minimum follow-up time T beyond which the rate of occurrence of events is low. Such a 
choice of T ensures that any over-estimation of the required numbers of patients is slight. 

The assumption has the positive consequence that the number of required patients is 
independent of the rates of entry of patients and occurrence of events and depends only on the 
proportions of event-free patients in the two treatment groups after minimum follow-up time T. 
Thus, tabulation of the numbers required becomes feasible. The calculations are described in 
Appendix I. 

One other aspect of a trial which can affect the numbers required is the proportion of patients 
who are withdrawn (see introduction for the definition of this term). The numbers in the tables 
assume no withdrawals. Since some withdrawals almost always happen, the investigator must 
make some allowance for this. For example, if he anticipates x per cent of patients to withdraw and 
n is the required number of patients in the table, then he should actually aim to enter loon/( 100 -x) 
patients. 

DESCRIPTION OF THE TABLES AND THEIR USE 

The form of the tables is similar to that of Tables 3A and 3B of Casagrande et ul.’ which, in turn, are 
based on Table 2.la of Cochran and  COX.^ To use these tables one must first ‘guess’ the proportion 
of patients event-free at the minimum follow-up interval in the less favourable of the two groups. 
When the event is death this proportion is simply the survival rate. Many clinical trials compare a 
‘new’ with a ‘standard’ treatment with the accompanying hope that the ‘new’ leads to improvement. 
Here, the less favourable group consists of those patients treated by the ‘standard’; previous 
experience usually provides a reasonable guess at the event-free rate. One must then specify the 
smallest improvement in event-free rate one wishes the trial to be able to detect reliably. At this 
point one chooses Table 1A or 1 B depending, respectively, on interest in a one- or two-tailed test of 
significance. Generally, one-tailed tests apply to trials of a standard with a new treatment when the 
new is more toxic or more expensive. Interest focuses on differences in response which are 
favourable to the new treatment group. This is particularly relevant to trials comparing a 
combination of treatments with one component of the combination (e.g. surgery and radiotherapy 
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vs. surgery alone). Two-tailed tests apply when there are no strong apriori grounds to favour one 
or the other of the treatments such as a comparison of two single drugs with similar toxicities. 

Now one turns to the appropriate table and looks along the row corresponding to the smallest 
improvement. Each cell in the table contains 6 numbers. The numbers in parentheses are the total 
number of events needed to be observed; the numbers without parentheses are the total numbers of 
patients required. The 3 sets of numbers of patients and events correspond to three combinations of 
significance levels and ‘power’. ‘Power’ is the chance of finding a significant difference if it exists. 
The three combinations are: test of significance at 5 per cent level, power 80 per cent; test of 
significance at 5 per cent level, power 90 per cent; and test of significance at 1 per cent level, power 95 
per cent. These are the same combinations as chosen by Casagrande et al.’ and Cochran and cox4 
and facilitate comparison between the different tables. We emphasize that the final choice of the 
number of patients entails a compromise between the expected rate of patient entry and the 
statistical ideal. Thus, if only 100 patients per annum are likely to be available it may be better to 
plan a study of 300 patients with a power of 80 per cent than a trial of 500 patients with a power of 
95 per cent. Although the latter trial is more sensitive to any differences between treatments, it may 
not be realistic to expect to maintain enthusiasm for the trial beyond 3 years. On the other hand, if 
expected patient entry rates are insufficient to provide adequate power, it may be better not to 
embark on the study. In the absence of obvious restrictions imposed by patient entry rates one 
might, as a general rule of thumb, recommend a power of 90 per cent at a significance level of 5 per 
cent for comparative studies of two treatments. 

Example 

Consider the planning of a trial of superficial bladder cancer. With the current method of treatment 
(resection of tumour at cystoscopy) the recurrence-free rate is 50 per cent at 2 years. One hopes to 
increase this to at least 70 per cent using intravesical chemotherapy immediately after surgery at the 
time of cystoscopy. Referring to Table 1A (one-tailed test), the appropriate cell indicates a sample 
size of 153, 21 1, or 386 patients according to the particular combination of power and level of 
significance. Allowance for a possible 20 per cent withdrawal rate increases these numbers to 190, 
264 and 482 respectively. Thus, between 250 and 300 patients seems a reasonable size for this trial. 
The relatively high incidence of this tumour (around 7000 new cases per annum in England and 
Wales) and the high level of interest among urological surgeons make this sample size a realistic 
goal for a trial. 

DISCUSSION 

The assumption that analysis excludes information beyond the minimum follow-up time may be 
unattractive, particularly when patient accrual is extended over several yeras. In such circum- 
stances, a large proportion (80 per cent of more) or the total events expected may have already 
occurred a short time after patient entry has closed. If so, an analysis at this juncture may be 
reasonable. For example, consider a trial in which patients are entered at a constant rate over 3 
years. Suppose that the average survival rate at 1 year after treatment is 50 per cent and that there is 
an exponential distribution of survival times up to 4 years beyond which time the death rate is 
negligible. The total proportion of deaths in the trial is 94 per cent. One year after patient entry 
closes the proportion of deaths is 79 per cent which is 84 per cent of the total deaths expected. There- 
fore an analysis at one year after the last patient has entered, but including information beyond 
one year’s follow-up is justified. 

To estimate the required number of patients under this policy, it would be wrong to enter the 
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table with event-free rates appropriate to the minimum follow-up time (in our example, 1 year). The 
number of patients needed would thereby be over-estimated, often seriously. Instead, as an 
approximate device, the table should be entered with event-free rates appropriate to the average 
follow-up time (in our example 2.5 years). The number of patients estimated in this way is 
approximate but adequate for practical purposes. 

Some investigators are more used to thinking of treatment differences in terms of median 
survival than survival rates. The following is meant to give a rough feeling for their relationship. 
Survival times are assumed exponentially distributed. A treatment which increases the median 
survival time by 50 per cent changes a survival rate of 50 per cent to 63 per cent, a rate of 25 per cent 
to 40 per cent or a rate of 10 per cent to 22 per cent. A treatment which doubles the median survival 
time increases the survival rate from 50 to 71 per cent, from 25 to 50 per cent or from 10 to 32 per 
cent. 

Table 1A and 1B are similar in form to those of Casagrande et al.’ and Cochran and Cox4 but 
differ in two notable ways. Firstly the values of the lower event-free rates are extended in our tables up 
to 90 per cent instead of stopping at 50 per cent. The extension is necessary because, whereas the 
numbers required in a direct comparison of proportions are symmetric around the 50 per cent 
point (i.e. one needs the same numbers for detecting a difference between proportions of 30 per cent 
and 40 per cent as between 70 per cent and 60 per cent), this is not true of the logrank test. Secondly 
the numbers in the tables are total numbers of patients (or events required in a trial) whereas 
Casagrande et a/.’ give numbers required in each group. We made this change to total numbers 
purposely because we believe this figure most directly interests investigators. 

For the greater part of our tables the numbers of patients required are similar to those given by 
Casagrande et al.’ although slightly smaller. This is of interest since the results from Appendix I1 
suggest that the numbers in Tables 1A and 1B are slight over-estimates. In one part of the table the 
differences are more important. When event-free rates are very low, namely under 25 per cent, then 
it appears that substantially smaller numbers of patients are required with use of the logrank test 
than one would have thought had one consulted the tables by Casagrande et al.’ or similar tables. 
For example, at a significance level of 5 per cent and power 90 per cent the number of patients 
required to detect an improvement from a baseline survival rate of 10 per cent to a new survival rate 
of 20 per cent is, from Table lA, 322. The equivalent number according to the tables of Casagrande 
et al.’ is 464, a figure about half as large again. This is not very surprising when one considers that 
the logrank test takes account of the order in which events occur and not just simply the occurrence 
or non-occurrence of events. Thus when only a small minority of patients remains event-free the 
gain in information using the logrank test is considerable. In view of the important difference, we 
recommend that the tables in this paper should be used when designing clinical trials that will 
employ the logrank test as the principal analytic method. 
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APPENDIX I 

Suppose that two treatments give rise to survival rates of PI and P 2 ,  respectively at some chosen 
time point. If the ratio of the hazards (i.e. risks of death) in the two groups does not change with 
time and is 0 : 1 then the quantities P I ,  P ,  and 0 are related by: 
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The total number of events d in both series, needed to be observed in a trial is: 

where z1 is the normal deviate corresponding to the particular significance level employed in the 
logrank test and z2 is the normal deviate corresponding to the required power. 

Formula ( 2 )  is derived by considering the expected value ( E )  and variance ( V )  of the logrank 
statistic when the true hazard ratio is 6. By arguing conditionally on the set of patients at risk before 
each event and letting +i denote the ratio of patients at risk in the two groups before event 
i(i = 1 , .  . . , d ) ,  then 

and 

Assuming 4i = 1 these reduce to 

and E = d f ( d  - l)/(O + 1 )  
v = 48/(d + 1)2. 

By treating the logrank statistic as a Normal variable with mean E and variance V one may then 
show that 

where, as mentioned earlier, z1 and z2 are normal deviates corresponding to the required 
significance level and power. Finally, taking the coefficient of z 2 ,  2 JO/(6+ l), as approximately 
equal to 1, we obtain Formula (2). 

As explained, this formula is an approximation and relies on the simplification that the ratio of 
the number of patients in each group at risk just before each death is equal to 1. In a trial with equal 
numbers of patients in each group this ratio will indeed be very near 1 at the start of treatment but 
will increasingly diverge from 1 as the time from treatment increases, if there is a difference in the 
survival rates. In addition, the true coefficient of z2 will increasingly diverge from unity as 6 differs 
from unity. The effect of such departures on the accuracy of formula (2)  is examined in Appendix 11. 
Unequal withdrawals from the two groups will also affect the accuracy of the approximation but 
this is not examined further in the present paper. Note that formula ( 2 )  relates the power of the test 
directly to the number of events and implies that power will be independent ofthe number ofpatients 
given that the number of events is kept fixed. This is verified separately in Appendix 11. 

Once the number of events, d, has been estimated the total number of patients required in the 
trial can be estimated by 

(3) 

The equivalent of formula ( 2 )  when the ratio of patients in the two groups is 4: 1 rather than 1 : 1 

n = 2 4 ( 2  -PI - P 2 )  

assuming equal numbers in the two treatment groups. 

is 
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This formula provides a basis for approximating the numbers required when randomization is, say, 
2 : 1.’ Having calculated the total number of events required from (4) the total number of patients 
required is 

Formula (2) corresponds to a formula (No. 22) given by Lachin’ which arose as an ap- 
proximation for the special case where event times have a negative exponential distribution. 
Other formulae for this special case are given by George and D e w 6  The use of one such formula, 
d = 4(z, + ~ ~ ) ~ / ( l n t r ) ’ ,  in the more general context of the logrank test is justified by Schoenfeld.’ His 
method gives estimates which are similar but slightly smaller than those derived from formula (2). 

APPENDIX I1 

To check the formula (2) relating the number of events to the power of the logrank test, Monte 
Carlo simulations were carried out. A set of 1000 clinical trials with equal numbers of patients in 
each group, a given total number of events d and a constant hazard-ratio 8 between the groups were 
generated for 5 values of d and 4 values of 8. The results appear in Table 11. They indicate quite 
good agreement between the power predicted by formula ( 2 )  and the Monte Carlo estimates. In  
general the power is slightly under-estimated by the formula, the discrepancy increasing as the 
hazard-ratio departs further from unity. However, these differences are of little practical 
consequence and, as stated in the test, are in the preferred direction of slightly overestimating the 
number required. 

Formula (2) relates the power to the total number ofeuents observed, but not to the total number 
of patients entered. Thus the formula predicts that when the number of events remains constant, 
while the number of patients entered varies, the power of the logrank test remains unchanged. 

Table 11. Power of logrank test estimated by Monte-Carlo simulation (n = 1o00) compared with 
the power predicted by formula (2) 

Hazard-ratio (0) 
Total number Total number 1.33 1.5 2.0 3.0 
of events, d of patients Source 

Sig. level (a) Sig. level (a) Sig. level (a) Sig. level (a) 
0.05 0.01 0.05 0.01 0.05 0-01 0.05 0.01 

20 40 Monte Carlo 0.088 0.029 0.147 0.046 0-362 0.148 0.659 0.419 
(2) 0.092 0.026 0.143 0.046 0-320 0.139 0.609 0.367 

50 100 Monte Carlo 0.171 0.054 0.293 0.115 0-678 0.442 0.972 0.895 
(2) 0.169 0.058 0.293 0.123 0.654 0.413 0.942 0.831 

100 200 Monte Carlo 0.301 0.129 0.523 0.303 0.929 0.796 0.999 0.992 
(2) 0.293 0.123 0.516 0.282 0.915 0.775 0.999 0.992 

200 400 Monte Carlo 0.522 0.288 0.808 0.609 0.996 0.983 - - 

0.517 0.283 0.807 0.600 0.997 0.984 - ~ 

Monte Carlo 0.890 0.746 0.993 0.981 - ~ ~ 500 lo00 - 
0-886 0.723 0.994 0.971 - - - 

(2) 

(2) ~ 
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Table 111. Power of logrank test estimated by Monte-Carlo simulation ( n  = 1OOO) 
for varying number of patients entered 

Hazard-ratio 
Total number Total number 1.33 1.5 2.0 3-0 

of events, d of patients - 

Sig. level (a) Sig. level (a) Sig. level (a) Sig. level (z) 
0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 

20 22 0.114 0.032 0.167 0.050 0.341 0.161 0.675 0.419 
40 0.088 0.029 0.147 0.046 0.362 0.148 0,659 0.419 

400 0.080 0.028 0.11 1 0.046 0.285 0.161 0.589 0.394 

50 56 0.190 0.061 0.283 0.11 1 0.656 0.427 0.975 0,907 
100 0.171 0.054 0.293 0.115 0.678 0.442 0.972 0.895 

lo00 0.190 0.073 0.301 0.135 0.697 0.462 0.970 0.903 

100 110 0.304 0.119 0.543 0.284 0.922 0.811 1,OOO 0.998 
200 0.301 0.129 0.523 0-303 0.929 0.796 0.999 0.992 

2000 0.299 0.139 0.522 0.291 0.917 0.798 0.999 0.993 

Results of further Monte Carlo simulations to verify this appear in Table 111. There is no obvious 
trend in power, thus confirming the use of formula (2). 
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