Values of <i>t</i>	# Failed	$\hat{S}(t^{+})$
1	1	11/12=0.917
2	3	8/12=0.667
3	1	7/12=0.583
5	1	6/12=0.500
6	1	5/12=0.417
7	1	4/12=0.333
8	1	3/12=0.250
16	1	2/12=0.167
17	1	1/12=0.083
34	1	0/12=0

(b) Median: survival time (t) such that $\hat{S}(t) \le 0.5 \Rightarrow \hat{S}(5) = 0.5$, so the estimated median survival time is 5

Lower quartile (25%) : the smallest time (*LQ*) such that , $\hat{S}(LQ) \le 0.75 \Rightarrow \hat{S}(2) = 0.667$, so the estimated 25%-ile survival time is 2

Upper quartile (75%) : the smallest time (UQ) such that ,

 $\hat{S}(UQ) \le 0.25 \Rightarrow \hat{S}(8) = 0.25$, so the estimated 75%-ile survival time is **8** A quick way to get the above information is by simply typing in STATA:

stsum

f analys	failure _d: f is time _t: n	ail nltime				
	 time at risk	incidence rate	no. of subjects	 25%	Survival time 50%	≘ 75%
total	103	.1165049	12	2	5	8

(c) There are two ways of saving the graph in STATA, either by going to the *File Menu* and selecting *Save Graph* (the easy way) or by adding the option saving(filename) in the graph command.

e.g sts graph, saving(kmnhl)

This will save the graph in the file *kmnhl.gph* (*gph* is the default extension for STATA graphs). To re-open it you either go to the directory where you saved the graph and double-click on it or you type the following command:

graph use kmnhl

(d) We assume that the probability of an event (relapse or death) is a binomial proportion. Thus the probability of relapse or death at time $t=6^+$ is p=x/n (p=7/12=0.583)

or

 $(1 - \hat{S}(6^+)) = 1 - 0.417 = 0.583$ and according to standard error of the binomial distribution we get :

$$se = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.583(0.417)}{12}} = 0.1423$$

(e)

