Applied Survival Analysis - December 2010 Solutions to Lab 1: Empirical Survival Estimate

(a)

Values of t	\# Failed	$\hat{S}\left(t^{+}\right)$
1	1	$11 / 12=0.917$
2	3	$8 / 12=0.667$
3	1	$7 / 12=0.583$
5	1	$6 / 12=0.500$
6	1	$5 / 12=0.417$
7	1	$4 / 12=0.333$
8	1	$3 / 12=0.250$
16	1	$2 / 12=0.167$
17	1	$1 / 12=0.083$
34	1	$0 / 12=0$

(b) Median: survival time (t) such that $\hat{S}(t) \leq 0.5 \Rightarrow \hat{S}(5)=0.5$, so the estimated median survival time is $\mathbf{5}$

Lower quartile ($\mathbf{2 5 \%}$) : the smallest time ($L Q$) such that, $\hat{S}(L Q) \leq 0.75 \Rightarrow \hat{S}(2)=0.667$, so the estimated 25%-ile survival time is 2

Upper quartile ($\mathbf{7 5 \%}$) : the smallest time ($U Q$) such that, $\hat{S}(U Q) \leq 0.25 \Rightarrow \hat{S}(8)=0.25$, so the estimated 75%-ile survival time is $\mathbf{8}$ A quick way to get the above information is by simply typing in STATA:
stsum

(c) There are two ways of saving the graph in STATA, either by going to the File Menu and selecting Save Graph (the easy way) or by adding the option saving (filename) in the graph command.

```
e.g sts graph, saving(kmnhl)
```

This will save the graph in the file kmnhl.gph ($g p h$ is the default extension for STATA graphs). To re-open it you either go to the directory where you saved the graph and double-click on it or you type the following command:

graph use kmnhl

(d) We assume that the probability of an event (relapse or death) is a binomial proportion. Thus the probability of relapse or death at time $t=6^{+}$is $p=x / n$ ($p=7 / 12=0.583$)
or
$\left(1-\hat{S}\left(6^{+}\right)\right)=1-0.417=0.583$ and according to standard error of the binomial distribution we get :

$$
s e=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.583(0.417)}{12}}=0.1423
$$

(e)

