Session 7: Parametric survival analysis

To generate parametric survival analyses in SAS we use PROC LIFEREG. For exponential regression analysis of the nursing home data the syntax is as follows:

```sas
data nurshome;
  infile 'nurshome.dat';
  input los age rx gender married health fail;
  label los='Length of stay'
    rx='Treatment'
    married='Marriage status'
    health='Health index'
    fail='Censoring index';
  format married marfmt.;
run;

proc lifereg data=nurshome outest=expoutest;
  model los*fail(0)=gender/dist=exponential;
  title 'Exponential regression for the nursing home data';
  output out=expsurv xbeta=exp_xb;
run;
```

The output is as follows:

```
Exponential regression for the nursing home data

The LIFEREG Procedure

Model Information

Data Set                    WORK.NURSHOME
Dependent Variable               Log(los)    Length of stay
Censoring Variable                   fail    Censoring index
Censoring Value(s)                      0
Number of Observations               1591
  Noncensored Values                   1269
  Right Censored Values                 322
  Left Censored Values                    0
  Interval Censored Values                0
Name of Distribution          Exponential
Log Likelihood               -3320.476626

Algorithm converged.
```

Number of Observations Read 1591
Number of Observations Used 1591

Fit Statistics

-2 Log Likelihood 6640.953
AIC (smaller is better) 6644.953
AICC (smaller is better) 6644.961
BIC (smaller is better) 6655.697
Type III Analysis of Effects

Wald

<table>
<thead>
<tr>
<th>Effect</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>1</td>
<td>69.5062</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Error</th>
<th>95% Confidence Limits</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>5.8421</td>
<td>0.0333</td>
<td>5.7769 5.9074</td>
<td>30785.8</td>
<td><.0001</td>
</tr>
<tr>
<td>gender</td>
<td>1</td>
<td>-0.5162</td>
<td>0.0619</td>
<td>-0.6375 -0.3948</td>
<td>69.51</td>
<td><.0001</td>
</tr>
<tr>
<td>Scale</td>
<td>0</td>
<td>1.0000</td>
<td>0.0000</td>
<td>1.0000 1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weibull Shape</td>
<td>0</td>
<td>1.0000</td>
<td>0.0000</td>
<td>1.0000 1.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The LIFEREG Procedure

Lagrange Multiplier Statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>337.5980</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The estimate of the coefficient associated with gender is $\beta = -0.5162$ corresponding to a reduction in the hazard for discharge from the nursing home among men (HR=$\exp(-0.5162)=0.597$).

The weibull analysis of the same data set is done as follows:

```plaintext
proc lifereg data=nurshome outest=weiboutest;
model los*fail(0)=gender/dist=weibull;
title 'Weibull regression for the nursing home data';
output out=weibsurv xbeta=weib_xb;
run;
```

Producing the following output:

Weibull regression for the nursing home data

The LIFEREG Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.NURSHOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Log(los)</td>
</tr>
<tr>
<td>Censoring Variable</td>
<td>fail</td>
</tr>
<tr>
<td>Censoring Value(s)</td>
<td>0</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>1591</td>
</tr>
<tr>
<td>Noncensored Values</td>
<td>1269</td>
</tr>
<tr>
<td>Right Censored Values</td>
<td>322</td>
</tr>
<tr>
<td>Left Censored Values</td>
<td>0</td>
</tr>
<tr>
<td>Interval Censored Values</td>
<td>0</td>
</tr>
<tr>
<td>Name of Distribution</td>
<td>Weibull</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-3045.276811</td>
</tr>
</tbody>
</table>

Number of Observations Read 1591
Number of Observations Used 1591
Fit Statistics

-2 Log Likelihood 6090.554
AIC (smaller is better) 6096.554
AICC (smaller is better) 6096.569
BIC (smaller is better) 6112.670

Algorithm converged.

Type III Analysis of Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>1</td>
<td>44.4042</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF Estimate</th>
<th>Error</th>
<th>95% Confidence Limits</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.7564</td>
<td>0.0542</td>
<td>5.6502 5.8627 11280.0</td>
<td>11280.0</td>
<td><.0001</td>
</tr>
<tr>
<td>gender</td>
<td>-0.6735</td>
<td>0.1011</td>
<td>-0.8716 -0.4754 44.40</td>
<td>44.40</td>
<td><.0001</td>
</tr>
<tr>
<td>Scale</td>
<td>1.6275</td>
<td>0.0378</td>
<td>1.5871 1.6681 1.7032</td>
<td>1.7032</td>
<td></td>
</tr>
<tr>
<td>Weibull Shape</td>
<td>0.6144</td>
<td>0.0143</td>
<td>0.5871 0.6430 0.6144</td>
<td>0.6144</td>
<td></td>
</tr>
</tbody>
</table>

Note that the Weibull shape parameter is 0.6144 with 95% confidence interval (0.5871-0.6430), suggesting that the distribution is not exponential (i.e., that with 95% confidence the shape parameter is below 1.0).

To check the model we overlay the exponential and Weibull estimated survival probabilities with those produced by the Kaplan-Meier analysis below:

```sas
*Run a Kaplan-Meier analysis and produce the estimated survival;
proc lifetest data=nurshome outsurv=kmsurv;
  time los*fail(0);
  strata gender;
  title 'Kaplan Meier analysis of the nursing home data';
run;
```

As SAS cannot produce estimated survival probabilities from PROC LIFEREG (!) we run a macro provided by Paul Allison (you can find a version of this at http://www.ssc.upenn.edu/~allison/PREDICT.SAS).
The macro is as follows:

```sas
%macro predict (outest=, out=_last_,xbeta=,time=)
;educated******************************************************************************
MACRO PREDICT produces predicted survival probabilities for specified
survival times, based on models fitted by LIFEREG. When fitting the
model with LIFEREG, you must request the OUTEST data set on the
PROC statement. You must also request an OUTPUT data set with the
XBETA= keyword.

PREDICT has four parameters:

OUTEST is the name of the data set produced with the OUTEST option.
OUT is the name of the data set produced by the OUTPUT statement.
    Default is the last created data set.
XBETA is the name of the variable specified with the XBETA= keyword.
TIME is the specified survival time that is to be evaluated.

Example: To get 5-year survival probabilities for every individual
in the sample (assuming that actual survival times are measured in
years);

%predict(outest=a, out=b, xbeta=lp, time=5).

Author:  Paul D. Allison, Univ. of Pennsylvania
        allison@ssc.upenn.edu
educated******************************************************************************
data _pred_
   _p_=1;
set &outest  point=_p_
set &out;
lp=&xbeta;
t=&time;
gamma=1/_scale_;  
alpha=exp(-lp*gamma);
prob=0;
_dist_=upcase(_dist_);
if _dist_='WEIBULL' or _dist_='EXPONENTIAL' or _dist_='EXPONENT' then 
   prob=exp(-alpha**gamma);
if _dist_='LOGNORMAL' or _dist_='LNORMAL' then prob=1-probnorm((log(t)-lp)/_scale_);
if _dist_='LLOGISTIC' or _dist_='LLOGISTC' then prob=1/(1+alpha*t**gamma);
if _dist_='GAMMA' then do;
   d=_shape1_;  
k=1/(d*d);
   u=(t*exp(-lp))**gamma;
   prob=1-probgam(k*u**d,k);
   if d lt 0 then prob=1-prob;
end;
drop lp gamma alpha _dist_ _scale_ intercept
   _shape1_ _model_ _name_ _type_ _status_ _prob_ _lnlike_ d k u;
run;
proc print data=_pred_
run;
%mend predict;
```

I have commented out the print procedure at the end to obviate unnecessary printing in the version uploaded to the website.
The macro and subsequent steps required are as follows:

```sas
* Run Paul Alison’s macro PREDICT to predict survival function from LIFEREG;
* Put it in the default directory and run it;
%include 'allisons-predict-macro.sas';

proc print data=expsurv;
  title 'Generated data from exponential regression';
run;

proc print data=expoutest;run;
* Run Allison's macro:
OUTEST is the name of the data set produced with the OUTEST option, i.e., EXPOUTEST.
OUT is the name of the data set produced by the OUTPUT statement. Default is the last created data set. However, we explicitly put EXPSURV.
XBETA is the name of the variable specified with the XBETA= keyword. This is exp_xb here.
TIME is the specified survival time that is to be evaluated. We put LOS to get estimates for all LOS.;

%predict (outest=expoutest, out=expsurv, xbeta=exp_xb, time=los);

* Sort the data set for plotting;
proc sort data=_pred_ out=expsort;
  by gender los;
run;

And for Weibull,

proc print data=weibsurv;
  title 'Generated data from Weibull regression';
run;

proc print data=weiboutest;run;
* Run Allison's macro:
OUTEST is the name of the data set produced with the OUTEST option, i.e., WEIBOUTEST.
OUT is the name of the data set produced by the OUTPUT statement. Default is the last created data set. We put it in WEIBSURV.
XBETA is the name of the variable specified with the XBETA= keyword. This is WEIB_xb here.
TIME is the specified survival time that is to be evaluated. We put LOS to get estimates for all LOS.;

%predict (outest=weiboutest, out=weibsurv, xbeta=weib_xb, time=los);

* Sort the data set for plotting;
proc sort data=_pred_ out=weibsort;
  by gender los;
run;
```
Now merge all three data sets;

```plaintext
data kmweibexp;
  merge kmweibexp (keep=los gender survival) (rename=(survival=kmsurv))
    kmsurv   (keep=los gender survival rename=(survival=kmsurv))
    weibsort (keep=los gender prob rename=(prob=weibsurv))
    expsort  (keep=los gender prob rename=(prob=expsurv))
  by gender los;
*Add an observation to the exponential and Weibull survival
  estimates at LOS=0;
  if los=0 then do;
    weibsurv=1; expsurv=1;
  end;
  if gender=1 then do;
    kmsurv_1=kmsurv; expsurv_1=expsurv; weibsurv_1=weibsurv;
  end;
else
  if gender=0 then do;
    kmsurv_0=kmsurv; expsurv_0=expsurv; weibsurv_0=weibsurv;
  end;
  drop kmsurv expsurv weibsurv;
run;
```

```plaintext
proc print data=kmweibexp;
  title 'All three data sets';
run;
```

Notice that we add a 1.0 to the estimated survival probability at LOS=0 (because this is
generated by the Kaplan-Meier analysis but not PROC LIFEREG.

```plaintext
if los=0 then do;
  weibsurv=1; expsurv=1;
end;
```

Also notice that we merged

```plaintext
by gender los;
```

This is critical! The printed results are as follows:

```
Obs  gender  los  kmsurv_1  expsurv_1  weibsurv_1  kmsurv_0  expsurv_0  weibsurv_0
  1     0    0      .          .          .      1.00000      1.00000
  2     0    1      .          .          .       0.98380      0.99710
  3     0    1      .          .          .       0.98380      0.99710
  4     0    1      .          .          .       0.98380      0.99710
  5     0    1      .          .          .       0.98380      0.99710
   .     .      .          .          .          .          .          .          .
  1175   1    0  1.00000    1.00000    1.00000      .          .          .
  1176   1    1  0.99282    0.99515    0.95694      .          .          .
  1177   1    1  0.99282    0.99515    0.95694      .          .          .
  1178   1    1  0.99282    0.99515    0.95694      .          .          .
  1179   1    2  0.97608    0.99032    0.93483      .          .          .
  1183   1    2  0.97608    0.99032    0.93483      .          .          .
  1184   1    2  0.97608    0.99032    0.93483      .          .          .
   .     .      .          .          .          .          .          .          .
   .     .      .          .          .          .          .          .          .
   .     .      .          .          .          .          .          .          .
```

This is critical! The printed results are as follows:
So we have created a data set sorted by gender and LOS and ready to plot. For the survival estimates generated by the exponential regression, this is done as follows:

```plaintext
* Overlay exponential and KM survival plots;
symbol1 i=join c=red;
symbol2 i=join c=blue;
symbol3 i=stepljs c=green;
symbol4 i=stepljs c=orange;
axis1 label=(h=2 a=90 'Estimated survival') minor=none;
axis2 label=(h=2 'Length of stay (days)') minor=none;
legend1 label=('') value=(h=1 'Exp. survival (females)' 'Exp. survival (males)'
                                   'KM survival (females)' 'KM survival (males)');

*KM and exponential plot;
proc gplot data=kmweibexp;
   plot expsurv_0*los=1 expsurv_1*los=2
        kmsurv_0*los=3 kmsurv_1*los=4/overlay vaxis=axis1 haxis=axis2
        legend=legend1;
title 'Overlaid KM and exponential survival estimates';
run;
```

We note the poor agreement of the KM and exponential analyses. Given that the KM analysis makes no assumptions about the distribution of the survival times, this disagreement bodes badly for the validity of the exponential regression model.
We can do this for the Weibull as well:

*KM and Weibull plot;
legend2 label=('') across=2 value=(h=1 'Weibull survival (females)'
'Weibull survival (males)'
'KM survival (females)'
'KM survival (males)');
proc gplot data=kmweibexp;
plot weibsurv_0*los=1 weibsurv_1*los=2
kmsurv_0*los=3 kmsurv_1*los=4/overlay vaxis=axis1 haxis=axis2
legend=legend2;
title 'Overlaid KM and Weibull survival estimates';
run;

Note that all we needed to change was the legend statement. The symbol definitions are carried over.

![Overlaid KM and Weibull survival estimates](image)

This is an improved fit but some issues remain.

Now let’s see what the Cox regression analysis looks like.

*Cox proportional hazards analysis;
proc phreg data=nurshome ;
model los*fail(0)=gender/ties=breslow;
output out=coxphsurv survival=coxphsurv;
run;
The output is as follows:

Overlaid KM and Weibull survival estimates

The PHREG Procedure

Model Information

Data Set WORK.NURSHOME
Dependent Variable los Length of stay
Censoring Variable fail Censoring index
Censoring Value(s) 0
Ties Handling BRESLOW

Number of Observations Read 1591
Number of Observations Used 1591

Summary of the Number of Event and Censored Values

Percent

Total Event Censored Censored
1591 1269 322 20.24

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 17113.143 17075.121
AIC 17113.143 17077.121
SBC 17113.143 17082.267

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 38.0216 1 <.0001
Score 40.8458 1 <.0001
Wald 40.4091 1 <.0001

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter	Estimate	Error	Chi-Square	Pr > ChiSq	Hazard Ratio
gender | 0.39473 | 0.06210 | 40.4091 | <.0001 | 1.484

The results are very much like the Weibull analysis.
Now, let’s merge the generated survival estimates from the Cox proportional hazards model.

```plaintext
proc sort data=coxphsurv out=coxphsort;
   by gender los;
run;

data kmweibexpcox;
   merge kmweibexp coxphsort(keep=gende los coxphsurv);
   by gender los;
   *Add an observation to the Cox PH survival estimates at LOS=0;
   if los=0 then coxphsurv=1;
   if gender=1 then coxphsurv_1=coxphsurv; else
   if gender=0 then coxphsurv_0=coxphsurv;
   drop coxphsurv;
run;

This is done as follows:

```plaintext
* Overlay Cox PH and KM survival plots;
symbol1 i=stepljs c=red;
symbol2 i=stepljs c=blue;
symbol3 i=stepljs c=green;
symbol4 i=stepljs c=orange;
axis1 label=(h=2 a=90 'Estimated survival') minor=none;
axis2 label=(h=2 'Length of stay (days)') minor=none;
legend1 label=('') value=(h=1 'KM survival (females)'
 'KM survival (males)'
 'Cox survival (females)'
 'Cox survival (males)');

*Cox and Weibull plot;
proc gplot data=kmweibexpcox;
 plot KMsurv_0*los=1 KMsurv_1*los=2
 coxphsurv_0*los=3 coxphsurv_1*los=4/overlay vaxis=axis1 haxis=axis2
 legend=legend1;
 title 'Overlaid Cox and KM survival estimates';
run;
```
The resulting plot is as follows:

![Overlaid Cox and KM survival estimates](image)

We see that the Cox proportional-hazards analysis produces a very good fit, which corresponds very well with the KM analysis.