Session 3: The PHREG procedure

We will first learn how to manipulate SAS data libraries. These are catalogs of data sets in the SAS format.

Consider the statement

```
libname datalib 'data';
```

This defines the library datalib, which is located in the subdirectory \data of the default directory.

In this library it is located the data set mac, which is already in SAS format. We will create a new data set mac, reading from this data set and only including a small subset of the variables in the original data set.

The data step statements are as follows:

```
data newmac;
    set datalib.mac (keep=patid macstat mactime rif clari cd4 karnof);
    label patid='Patient ID'
        macstat='Status of MAC infection'
        mactime='Time until MAC infection'
        rif='Rifabutin monotherapy'
        clari='Clarithromycin monotherapy'
        karnof='Karnofsky score'
        cd4='CD4+ count';
run;
```

Now consider the new statements. The statement that makes SAS read from a data set already created is the set statement, i.e.,

set datalib.mac

Notice also, how the library information is conveyed. We put the library information before the data name in the library, followed by a period. Thus, the *new dataset* newmac will read from the SAS data set mac that is located in the library datalib.

We also do not want to read all the variables from the original dataset, so we include a keep statement along with the set command.

set datalib.mac (keep=patid macstat mactime rif clari cd4 karnof);

Alternatively, the keep statement could have been added as a command after the set statement as follows:

```
data newmac;
   set datalib.mac;
   keep patid macstat mactime rif clari cd4 karnof;
   label patid='Patient ID'
      macstat='Status of MAC infection'
      mactime='Time until MAC infection'
      rif='Rifabutin monotherapy'
      clari='Clarithromycin monotherapy'
      karnof='Karnofsky score'
      cd4='CD4+ count';
run;
```

Notice that there is no longer an equal sign ("=") or parentheses accompanying the keep statement. We will get the following comments in the log file

```
28
    data newmac;
29
         set datalib.mac (keep=patid macstat mactime rif clari cd4 karnof);
30
         label patid='Patient ID'
31
               macstat='Status of MAC infection'
32
               mactime='Time until MAC infection'
33
               rif='Rifabutin monotherapy'
34
               clari='Clarithromycin monotherapy'
               karnof='Karnofsky score
35
36
                cd4='CD4+ count';
37
    run;
NOTE: There were 1177 observations read from the data set DATALIB.MAC.
NOTE: The data set WORK.NEWMAC has 1177 observations and 7 variables.
NOTE: DATA statement used:
                          0.03 seconds
     real time
      cpu time
                          0.03 seconds
```

To print the data set we write

```
options ls=80;
proc print data=newmac label;
    title 'The new mac data set';
run;
```

The output is as follows:

				The new mac			88
				a		Wednesday,	December 10, 2003
					Time until		
	Patient	Karnofsky	CD4+	MAC	MAC	Rifabutin	Clarithromycin
Obs	ID	score	count	infection	infection	monotherapy	monotherapy
1	1	90	8	1	560	1	0
2	2	90	30	0	651	1	0
3	3	100	80	0	26	1	0
4	4	80	58	0	622	0	1
5	5	90	59	0	643	0	1
б	6	90	18	0	171	0	1
7	7	90	20	1	174	0	0
8	8	90	30	1	449	1	0
9	9	80	30	1	377	0	0
10	10	60	20	0	58	1	0

Notice the option statement that limits the width of the output to a line size of 80 columns

options ls=80;

Now let's carry out a proportional hazards regression with variables rif, clari, karnof and cd4. The SAS statements are as follows:

```
proc phreg data=newmac;
    model mactime*macstat(0)=rif clari karnof cd4;
    title 'PH regression analysis of the MAC data set';
run;
```

Notice the model statement of the PHREG procedure

```
model mactime*macstat(0)=rif clari karnof cd4;
```

First comes the time variable, linked with the status (censoring/failure indicator) by an asterisk ("*"). Then the explanatory variables follow in the same manner as all regression procedures. The output is as follows:

PH regress	ion analysis of t			105						
		07:27 Wed	dnesday, December	10, 2003						
	The PHREG Proced									
	THE PARES PLOCED	lure								
	Model Informati	on								
	nouci informati									
Data Set	WORK . NEWMAC									
Dependent Variable	mactime	Time ur	ntil MAC infection							
Censoring Variable	macstat	Status	of MAC infection							
Censoring Value(s)	0									
Ties Handling	BRESLOW									
5										
Summary of the	Number of Event	and Censo	ored Values							
			Percent							
Total	Event Cens	ored (Censored							
1177	121	1056	89.72							
	Convergence Status									
	convergence aca	icus								
Convergence	criterion (GCONV=	=1E-8) sat	isfied.							
	Model Fit Statist	ics								
	Without		With							
Criterion	Covariates	Covar	iates							
-2 LOG L	1541.064		7.325							
AIC	1541.064		5.325							
SBC 1541.064 1496.508										
Testing G	lobal Null Hypoth	nesis: BET	ГА=0							
Weat	Ch. Company	DE	Dra b Childra							
Test	Chi-Square	DF	Pr > ChiSq							
Likelihood Ratio	63.7399	4	<.0001							
Score	56.1915	4	<.0001							
Wald	55.5623	4	<.0001							
Walu	55.5025	т	<.0001							
Analysis	of Maximum Likeli	hood Est	imates							
11101/010										

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	
rif	1	0.88034	0.23711	13.7846	0.0002	
clari	1	0.25302	0.25835	0.9592	0.3274	
karnof	1	-0.03685	0.01067	11.9405	0.0005	
cd4	1	-0.01836	0.00368	24.8254	<.0001	
	Alla	lysis of Maxim Hazard	Ium Dikerinoo	a potimates		
	Variable	Ratio	Variable Label			
	rif	2.412	Rifabutin	monotherapy		
	clari	1.288	Clarithrom	cin monotherapy		
	karnof	0.964	Karnofsky score			
	cd4	0.982	CD4+ count			

First we obtain information about the convergence of the model, as well as information about the significance of the whole model (i.e., likelihood ratio tests, AIC, BIC factors that we use to compare between models and so on).

Wald tests (chi-square) and hazard ratios are given for all variables.