
Parametric Survival Analysis

So far, we have focused primarily on nonparametric and

semi-parametric approaches to survival analysis, with heavy

emphasis on the Cox proportional hazards model:

λ(t,Z) = λ0(t) exp(βZ)

We used the following estimating approach:

• We estimated λ0(t) nonparametrically, using the Kaplan-Meier

estimator, or using the Kalbfleisch/Prentice estimator under

the PH assumption

• We estimated β by assuming a linear model between the log

HR and covariates, under the PH model

Both estimates were based on maximum likelihood theory.

Reading: for parametric models see Collett.
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There are several reasons why we should consider some alternative

approaches based on parametric models:

• The assumption of proportional hazards might not be

appropriate (based on major departures)

• If a parametric model actually holds, then we would probably

gain efficiency

• We may want to handle non-standard situations like

– interval censoring

– incorporating population mortality

• We may want to make some connections with other familiar

approaches (e.g. use of the Poisson likelihood)

• We may want to obtain some estimates for use in designing a

future survival study.
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A simple start: Exponential Regression

• Observed data: (Xi, δi,Zi) for individual i,

Zi = (Zi1, Zi2, ..., Zip) represents a set of p covariates.

• Right censoring: Assume that Xi = min(Ti, Ui)

• Survival distribution: Assume Ti follows an exponential

distribution with a parameter λ that depends on Zi, say

λi = Ψ(Zi). Then we can write:

Ti ∼ exponential(Ψ(Zi))
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First, let’s review some facts about the exponential distribution

(from our first survival lecture):

f(t) = λe−λt for t ≥ 0

S(t) = P (T ≥ t) =

∫ ∞

t

f(u)du = e−λt

F (t) = P (T < t) = 1− e−λt

λ(t) =
f(t)

S(t)
= λ constant hazard!

Λ(t) =

∫ t

0

λ(u) du =

∫ t

0

λ du = λt
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Now, we say that λ is a constant over time t, but we want to let it

depend on the covariate values, so we are setting

λi = Ψ(Zi)

The hazard rate would therefore be the same for any two

individuals with the same covariate values.

Although there are many possible choices for Ψ, one simple and

natural choice is:

Ψ(Zi) = exp[β0 + Zi1β1 + Zi2β2 + ...+ Zipβp]

WHY?

• ensures a positive hazard

• for an individual with Z = 0, the hazard is eβ0 .

The model is called exponential regression because of the

natural generalization from regular linear regression
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Exponential regression for the 2-sample case:

• Assume we have only a single covariate Z = Z,

i.e., (p = 1).

Hazard Rate:

Ψ(Zi) = exp(β0 + Ziβ1)

• Define:
Zi = 0 if individual i is in group 0

Zi = 1 if individual i is in group 1

• What is the hazard for group 0?

• What is the hazard for group 1?

• What is the hazard ratio of group 1 to group 0?

• What is the interpretation of β1?
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Likelihood for Exponential Model

Under the assumption of right censored data, each person has one

of two possible contributions to the likelihood:

(a) they have an event at Xi (δi = 1) ⇒ contribution is

Li = S(Xi)︸ ︷︷ ︸ · λ(Xi)︸ ︷︷ ︸ = e−λXi λ

survive to Xi fail at Xi

(b) they are censored at Xi (δi = 0) ⇒ contribution is

Li = S(Xi)︸ ︷︷ ︸ = e−λXi

survive to Xi
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The likelihood is the product over all of the individuals:

L =
∏
i

Li

=
∏
i

(
λe−λXi

)δi︸ ︷︷ ︸ (
e−λXi

)(1−δi)︸ ︷︷ ︸
events censorings

=
∏
i

λδi
(
e−λXi

)
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Maximum Likelihood for Exponential

How do we use the likelihood?

• first take the log

• then take the partial derivative with respect to β

• then set to zero and solve for β̂

• this gives us the maximum likelihood estimators
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The log-likelihood is:

logL = log

[∏
i

λδi
(
e−λXi

)]

=
∑
i

[δi log(λ)− λXi]

=
∑
i

[δi log(λ)]−
∑
i

λXi

For the case of exponential regression, we now substitute the

hazard λ = Ψ(Zi) in the above log-likelihood:

logL =
∑
i

[δi log(Ψ(Zi))]−
∑
i

Ψ(Zi)Xi (1)

10



General Form of Log-likelihood for Right Censored Data

In general, whenever we have right censored data, the likelihood

and corresponding log likelihood will have the following forms:

L =
∏
i

[λi(Xi)]
δi Si(Xi)

logL =
∑
i

[δi log (λi(Xi))]−
∑
i

Λi(Xi)

where
• λi(Xi) is the hazard for the individual i who fails at Xi

• Λi(Xi) is the cumulative hazard for an individual at their

failure or censoring time

For example, see the derivation of the likelihood for a Cox model

on p.11-18 of Lecture 4 notes. We started with the likelihood

above, then substituted the specific forms for λ(Xi) under the PH

assumption.
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Consider our model for the hazard rate:

λ = Ψ(Zi) = exp[β0 + Zi1β1 + Zi2β2 + ...+ Zipβp]

We can write this using vector notation, as follows:

Let Zi = (1, Zi1, ...Zip)
T

and β = (β0, β1, ...βp)

(Since β0 is the intercept (i.e., the log hazard rate for the baseline

group), we put a “1” as the first term in the vector Zi.)

Then, we can write the hazard as:

Ψ(Zi) = exp[βZi]

Now we can substitute Ψ(Zi) = exp[βZi] in the log-likelihood shown in

(1):

logL =

n∑
i=1

δi(βZi)−
n∑

i=1

Xi exp(βZi)
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Score Equations

Taking the derivative with respect to β0, the score equation is:

∂ logL
∂β0

=

n∑
i=1

[δi −Xi exp(βZi)]

For βk, k = 1, ...p, the equations are:

∂ logL
∂βk

=
n∑

i=1

[δiZik −XiZik exp(βZi)]

=

n∑
i=1

Zik[δi −Xi exp(βZi)]

To find the MLE’s, we set the above equations to 0 and solve

(simultaneously). The equations above imply that the MLE’s are

obtained by setting the weighted number of failures (
∑

i Zikδi)

equal to the weighted cumulative hazard (
∑

i ZikΛ(Xi)).
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To find the variance of the MLE’s, we need to take the second

derivatives:

− ∂2 logL
∂βk∂βj

=
n∑

i=1

ZikZijXi exp(βZi)

Some algebra (see Cox and Oakes section 6.2) reveals that

V ar(β̂) = I(β)−1 =
[
Z(I−Π)ZT

]−1

where

• Z = (Z1, . . . ,Zn) is a (p+ 1)× n matrix

(p covariates plus the “1” for the intercept β0)

• Π = diag(π1, . . . , πn) (this means that Π is a diagonal matrix,

with the terms π1, . . . , πn on the diagonal)
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• πi is the probability that the i-th person is censored, so

(1− πi) is the probability that they failed.

• Note: The information I(β) (inverse of the variance) is

proportional to the number of failures, not the sample size.

This will be important when we talk about study design.
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The Single Sample Problem (Zi = 1 for everyone):

First, what is the MLE of β0?

We set ∂ logL
∂β0

=
∑n

i=1[δi −Xi exp(β0Zi)] equal to 0 and solve:

⇒
n∑

i=1

δi =
n∑

i=1

[Xi exp(β0)]

d = exp(β0)
n∑

i=1

Xi

exp(β̂0) =
d∑n

i=1 Xi

λ̂ =
d

t

where d is the total number of deaths (or events), and t =
∑

Xi is

the total person-time contributed by all individuals.
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If d/t is the MLE for λ, what does this imply about the

MLE of β0?

Using the previous formula V ar(β̂) =
[
Z(I−Π)ZT

]−1
,

what is the variance of β̂0?:

With some matrix algebra, you can show that it is:

V ar(β̂0) =
1∑n

i=1(1− πi)
=

1

d
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What about λ̂ = eβ̂0?

By the delta method,

V ar(λ̂) = λ̂2 V ar(β̂0)

= ?
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The Two-Sample Problem:

Zi Subjects Events Follow-up

Group 0: Zi = 0 n0 d0 t0 =
∑n0

i=1 Xi

Group 1: Zi = 1 n1 d1 t1 =
∑n1

i=1 Xi
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The log-likelihood:

logL =

n∑
i=1

δi(β0 + β1Zi)−
n∑

i=1

Xi exp(β0 + β1Zi)

so
∂ logL
∂β0

=

n∑
i=1

[δi −Xi exp(β0 + β1Zi)]

= (d0 + d1)− (t0e
β0 + t1e

β0+β1)

∂ logL
∂β1

=

n∑
i=1

Zi[δi −Xi exp(β0 + β1Zi)]

= d1 − t1e
β0+β1
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This implies: λ̂1 = eβ̂0+β̂1 =?

λ̂0 = eβ̂0 =?

β̂0 = ?

β̂1 = ?
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Important Result:

The maximum likelihood estimates (MLE’s) of the

hazard rates under the exponential model are the

number of events divided by the person-years of

follow-up!

(this result will be relied on heavily when we discuss study design)
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Exponential Regression: Means and Medians

Mean Survival Time

For the exponential distribution, E(T ) = 1/λ.

• Control Group:

T 0 = 1/λ̂0 = 1/ exp(β̂0)

• Treatment Group:

T 1 = 1/λ̂1 = 1/ exp(β̂0 + β̂1)
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Median Survival Time

This is the value M at which S(t) = e−λt = 0.5, so

M = median = − log(0.5)
λ

• Control Group:

M̂0 =
− log(0.5)

λ̂0

=
− log(0.5)

exp(β̂0)

• Treatment Group:

M̂1 =
− log(0.5)

λ̂1

=
− log(0.5)

exp(β̂0 + β̂1)
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Exponential Regression:

Variance Estimates and Test Statistics

We can also calculate the variances of the MLE’s as simple

functions of the number of failures:

var(β̂0) =
1

d0

var(β̂1) =
1

d0
+

1

d1
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So our test statistics are formed as:

For testing Ho : β0 = 0:

χ2
w =

(
β̂0

)2

var(β̂0)

=
[log(d0/t0)]

2

1/d0

For testing Ho : β1 = 0:

χ2
w =

(
β̂1

)2

var(β̂1)

=

[
log(d1/t1

d0/t0
)
]2

1
d0

+ 1
d1

How would we form confidence intervals for the hazard

ratio?
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The Likelihood Ratio Test Statistic:

(An alternative to the Wald test)

A likelihood ratio test is based on 2 times the log of the ratio of the

likelihoods under the null and alternative. We reject H0 if 2

log(LR) > χ2
1,0.05, where

LR =
L(H1)

L(H0)
=

L(λ̂0, λ̂1)

L(λ̂)
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For a sample of n independent exponential random variables with

parameter λ, the Likelihood is:

L =

n∏
i=1

[λδi exp(−λxi)]

= λd exp(−λ
∑

xi)

= λd exp(−λnx̄)

where d is the number of deaths or failures. The log-likelihood is

ℓ = d log(λ)− λnx̄

and the MLE is

λ̂ = d/(nx̄)

28



2-Sample Case: LR test calculations

Data:

Group 0: d0 failures among the n0 females

mean failure time is x̄0 = (
∑n0

i Xi)/n0

Group 1: d1 failures among the n1 males

mean failure time is x̄1 = (
∑n1

i Xi)/n1

Under the alternative hypothesis:

L = λd1
1 exp(−λ1n1x̄1)× λd0

0 exp(−λ0n0x̄0)

log(L) = d1 log(λ1)− λ1n1x̄1 + d0 log(λ0)− λ0n0x̄0

29



The MLE’s are:

λ̂1 = d1/(n1x̄1) for males

λ̂0 = d0/(n0x̄0) for females

Under the null hypothesis:

L = λd1+d0 exp[−λ(n1x̄1 + n0x̄0)]

log(L) = (d1 + d0) log(λ)− λ[n1x̄1 + n0x̄0]

The corresponding MLE is

λ̂ = (d1 + d0)/[n1x̄1 + n0x̄0]
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A likelihood ratio test can be constructed by taking twice the

difference of the log-likelihoods under the alternative and the null

hypotheses:

−2

[
(d0 + d1) log

(
d0 + d1
t0 + t1

)
− d1 log[d1/t1]− d0 log[d0/t0]

]
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Nursing home example:

For the females:

• n0 = 1173

• d0 = 902

• t0 = 310754

• x̄0 = 265

For the males:

• n1 = 418

• d1 = 367

• t1 = 75457

• x̄1 = 181

Plugging these values in, we get a LR test statistic of 64.20.
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Hand Calculations using events and follow-up:

By adding up “los” for males to get t1 and for females to get t0, I

obtained:

• d0 = 902 (females)

d1 = 367 (males)

• t0 = 310754 (female follow-up)

t1 = 75457 (male follow-up)

• This yields an estimated log HR:

β̂1 = log

[
d1/t1

d0/t0

]
= log

[
367/75457

902/310754

]
= log(1.6756) = 0.5162
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• The estimated standard error is:√
var(β̂1) =

√
1

d1
+

1

d0
=

√
1

902
+

1

367
= 0.06192

• So the Wald test becomes:

χ2
W =

β̂2
1

var(β̂1)
=

(0.51619)2

0.061915
= 69.51

• We can also calculate β̂0 = log(d0/t0) = −5.842,

along with its standard error se(β̂0) =
√
(1/d0) = 0.0333
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Exponential Regression in STATA
. use nurshome

. stset los fail

. streg gender, dist(exp) nohr

failure _d: fail

analysis time _t: los

Iteration 0: log likelihood = -3352.5765

Iteration 1: log likelihood = -3321.966

Iteration 2: log likelihood = -3320.4792

Iteration 3: log likelihood = -3320.4766

Iteration 4: log likelihood = -3320.4766

Exponential regression -- log relative-hazard form

No. of subjects = 1591 Number of obs = 1591

No. of failures = 1269

Time at risk = 386211

LR chi2(1) = 64.20

Log likelihood = -3320.4766 Prob > chi2 = 0.0000

-------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------|--------------------------------------------------------------

gender | .516186 .0619148 8.337 0.000 .3948352 .6375368

_cons |-5.842142 .0332964 -175.459 0.000 -5.907402 -5.776883

-------------------------------------------------------------------------

Since Z = 8.337, the chi-square test is Z2 = 69.51.
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The Weibull Regression Model

At the beginning of the course, we saw that the survivorship function for

a Weibull random variable is:

S(t) = exp[−λ(tκ)]

and the hazard function is:

λ(t) = κλ t(κ−1)

The Weibull regression model assumes that for someone with covariates

Zi, the survivorship function is

S(t;Zi) = exp[−Ψ(Zi)(t
κ)]

where Ψ(Zi) is defined as in exponential regression to be:

Ψ(Zi) = exp[β0 + Zi1β1 + Zi2β2 + ...Zipβp]

For the 2-sample problem, we have:

Ψ(Zi) = exp[β0 + Zi1β1]
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Weibull MLEs for the 2-sample problem:

Log-likelihood:

logL =

n∑
i=1

δi log
[
κ exp(β0 + β1Zi)X

κ−1
i

]
−

n∑
i=1

Xκ
i exp(β0 + β1Zi)

⇒ exp(β̂0) = d0/t0κ exp(β̂0 + β̂1) = d1/t1κ

where

tjκ =

nj∑
i=1

X κ̂
i among nj subjects

λ̂0(t) = κ̂ exp(β̂0) t
κ̂−1 λ̂1(t) = κ̂ exp(β̂0 + β̂1) t

κ̂−1

ĤR = λ̂1(t)/λ̂0(t) = exp(β̂1)

= exp

(
d1/t1κ

d0/t0κ

)
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Weibull Regression: Means and Medians

Mean Survival Time

For the Weibull distribution, E(T ) = λ(−1/κ)Γ[(1/κ) + 1].

• Control Group:

T 0 = λ̂
(−1/κ̂)
0 Γ[(1/κ̂) + 1]

• Treatment Group:

T 1 = λ̂
(−1/κ̂)
1 Γ[(1/κ̂) + 1]
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Median Survival Time

For the Weibull distribution, M = median =
[
− log(0.5)

λ

]1/κ
• Control Group:

M̂0 =

[
− log(0.5)

λ̂0

]1/κ̂

• Treatment Group:

M̂1 =

[
− log(0.5)

λ̂1

]1/κ̂

where λ̂0 = exp(β̂0) and λ̂1 = exp(β̂0 + β̂1).
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Note: the symbol Γ is the “gamma” function. If x is an integer, then

Γ(x) = (x− 1)!

In cases where x is not an integer, this function has to be evaluated

numerically. In homework and labs, I will supply this value to you.

The Weibull regression model is very easy to fit:

• In stata: Just specify dist(weibull) instead

of dist(exp) within the streg command

• In sas: use model option dist=weibull within the proc lifereg

procedure

Note: to get more information on these modeling procedures, use the

online help facilities. For example, in Stata, you can type:

.help streg
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Weibull in Stata:

. streg gender, dist(weibull) nohr

failure _d: fail

analysis time _t: los

Fitting constant-only model:

Iteration 0: log likelihood = -3352.5765

Iteration 1: log likelihood = -3074.978

Iteration 2: log likelihood = -3066.1526

Iteration 3: log likelihood = -3066.143

Iteration 4: log likelihood = -3066.143

Fitting full model:

Iteration 0: log likelihood = -3066.143

Iteration 1: log likelihood = -3045.8152

Iteration 2: log likelihood = -3045.2772

Iteration 3: log likelihood = -3045.2768

Iteration 4: log likelihood = -3045.2768
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Weibull regression -- log relative-hazard form

No. of subjects = 1591 Number of obs = 1591

No. of failures = 1269

Time at risk = 386211

LR chi2(1) = 41.73

Log likelihood = -3045.2768 Prob > chi2 = 0.0000

------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------

gender | .4138082 .0621021 6.663 0.000 .2920903 .5355261

_cons | -3.536982 .0891809 -39.661 0.000 -3.711773 -3.362191

---------+--------------------------------------------------------------

/ln_p | -.4870456 .0232089 -20.985 0.00 -.5325343 -.4415569

------------------------------------------------------------------------

p | .614439 .0142605 .5871152 .6430345

1/p | 1.627501 .0377726 1.555127 1.703243

------------------------------------------------------------------------
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Comparison of Exponential with Kaplan-Meier

We can see how well the Exponential model fits by comparing the

survival estimates for males and females under the exponential

model, i.e., P (T ≥ t) = e(−λ̂zt), to the Kaplan-Meier survival

estimates:

S
u
r
v
i
v
a
l

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0
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Comparison of Weibull with Kaplan-Meier

We can see how well the Weibull model fits by comparing the

survival estimates, P (T ≥ t) = e(−λ̂zt
κ̂), to the Kaplan-Meier

survival estimates.

S
u
r
v
i
v
a
l

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0

Which do you think fits best?
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Other useful plots for evaluating fit to exponential and

Weibull models

• − log(Ŝ(t)) vs t

• log[− log(Ŝ(t))] vs log(t)

Why are these useful?

If T is exponential, then S(t) = exp(−λt))

so log(S(t)) = −λt

and Λ(t) = λ t

a straight line in t with slope λ and intercept=0
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If T is Weibull, then S(t) = exp(−(λt)κ)

so log(S(t)) = −λtκ

then Λ(t) = λtκ

and log(− log(S(t))) = log(λ) + κ ∗ log(t)

a straight line in log(t) with slope κ and intercept log(λ).
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So we can calculate our estimated Λ(t) and plot it versus t, and if

it seems to form a straight line, then the exponential distribution is

probably appropriate for our dataset.

Plots for nursing home data: Λ̂(t) vs t
Ne
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Or we can plot log Λ̂(t) versus log(t), and if it seems to form a

straight line, then the Weibull distribution is probably appropriate

for our dataset.

Plots for nursing home data: log[−log(Ŝ(t))] vs log(t)
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Comparison of Methods

for the Two-sample problem:

Data:

Zi Subjects Events Follow-up

Group 0: Zi = 0 n0 d0 t0 =
∑n0

i=1 Xi

Group 1: Zi = 1 n1 d1 t1 =
∑n1

i=1 Xi

In General:

λz(t) = λ(t, Z = z) for z = 0 or 1.

The hazard rate depends on the value of the covariate Z. In this

case, we are assuming that we only have a single covariate, and it is

binary (Z = 1 or Z = 0)
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Reading from Collett:

Section(s) Description

4.1.1, 4.1.2 Exponential properties

4.1.3 Weibull properties

4.3.1, 4.4.2 Exponential ML estimation

4.3.2 Weibull ML estimation

4.5 General Weibull regression

4.6 Model selection - Weibull regression

4.7 Weibull/AFT model connection

Ch.6 AFT - Other parametric models
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MODELS

Exponential Regression:

λz(t) = exp(β0 + β1Z)

⇒ λ0 = exp(β0)

λ1 = exp(β0 + β1)

HR = exp(β1)
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Weibull Regression:

λz(t) = κ exp(β0 + β1Z) tκ−1

⇒ λ0 = κ exp(β0) t
κ−1

λ1 = κ exp(β0 + β1) t
κ−1

HR = exp(β1)

Proportional Hazards Model:

λz(t) = λ0(t) exp(β1)

⇒ λ0 = λ0(t) KM?

λ1 = λ0(t) exp(β1)

HR = exp(β1)
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Remarks

• Exponential model is a special case of the Weibull model with

κ = 1 (note: Collett uses γ instead of κ)

• Exponential and Weibull models are both special cases of the

Cox PH model.

How can you show this?

• If either the exponential model or the Weibull model is valid,

then these models will tend to be more efficient than PH

(smaller s.e.’s of estimates). This is because they assume a

particular form for λ0(t), rather than estimating it at every

death time.
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For the Exponential model, the hazards are constant over time,

given the value of the covariate Zi:

Zi = 0 ⇒ λ̂0 = exp(β̂0)

Zi = 1 ⇒ λ̂0 = exp(β̂0 + β̂1)

For the Weibull model, we have to estimate the hazard as a

function of time, given the estimates of β0, β1 and κ:

Zi = 0 ⇒ λ̂0(t) = κ̂ exp(β̂0) t
κ̂−1

Zi = 1 ⇒ λ̂1(t) = κ̂ exp(β̂0 + β̂1) t
κ̂−1

However, the ratio of the hazards is still just exp(β̂1), since the

other terms cancel out.
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Here’s what the estimated hazards look like for the

nursing home data:

E x p o n e n t i a l  H a z a r d :  F e m a l e
E x p o n e n t i a l  H a z a r d :  M a l e
W e i b u l l  H a z a r d :  F e m a l e
W e i b u l l  H a z a r d :  M a l eH

a
z
a
r
d
 
R
a
t
e

0 . 0 0 0

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5

0 . 0 2 0

0 . 0 2 5

0 . 0 3 0

L e n g t h  o f  s t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
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Proportional Hazards Model:

To get the MLE’s for this model, we have to maximize the Cox

partial likelihood iteratively. There are not closed form expressions

like above.

L(β) =

n∏
i=1

[
eβZi∑

ℓ∈R(Xi)
eβZℓ

]δi

=
n∏

i=1

[
eβ0+β1Zi∑

ℓ∈R(Xi)
eβ0+β1Zℓ

]δi
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Comparison with Proportional Hazards Model

. stcox gender, nohr

failure _d: fail

analysis time _t: los

Iteration 0: log likelihood = -8556.5713

Iteration 1: log likelihood = -8537.8013

Iteration 2: log likelihood = -8537.5605

Iteration 3: log likelihood = -8537.5604

Refining estimates:

Iteration 0: log likelihood = -8537.5604

Cox regression -- Breslow method for ties

No. of subjects = 1591 Number of obs = 1591

No. of failures = 1269

Time at risk = 386211

LR chi2(1) = 38.02

Log likelihood = -8537.5604 Prob > chi2 = 0.0000

-----------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

gender | .3943588 .0621004 6.350 0.000 .2726441 .5160734

-----------------------------------------------------------------------

For the PH model, β̂1 = 0.394 and ĤR = e0.394 = 1.483.
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Comparison with the Logrank and Wilcoxon Tests

. sts test gender

failure _d: fail

analysis time _t: los

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

gender | observed expected

-------+-------------------------

0 | 902 995.40

1 | 367 273.60

-------+-------------------------

Total | 1269 1269.00

chi2(1) = 41.08

Pr>chi2 = 0.0000
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. sts test gender, wilcoxon

failure _d: fail

analysis time _t: los

Wilcoxon (Breslow) test for equality of survivor functions

----------------------------------------------------------

| Events Sum of

gender | observed expected ranks

-------+--------------------------------------

0 | 902 995.40 -99257

1 | 367 273.60 99257

-------+--------------------------------------

Total | 1269 1269.00 0

chi2(1) = 41.47

Pr>chi2 = 0.0000
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Comparison of Hazard Ratios and Test Statistics

for effect of Gender

Wald

Model/Method λ0 λ1 HR log(HR) se(log HR) Statistic

Exponential 0.0029 0.0049 1.676 0.5162 0.0619 69.507

Weibull

t = 50 0.0040 0.0060 1.513 0.4138 0.0636 42.381

t = 100 0.0030 0.0046 1.513

t = 500 0.0016 0.0025 1.513

Logrank 41.085

Wilcoxon 41.468

Cox PH

Ties=Breslow 1.483 0.3944 0.0621 40.327

Ties=Discrete 1.487 0.3969 0.0623 40.565

Ties=Efron 1.486 0.3958 0.0621 40.616

Ties=Exact 1.486 0.3958 0.0621 40.617

Score (Discrete) 41.085
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Comparison of Mean and Median Survival Times by

Gender

Mean Survival Median Survival

Model/Method Female Male Female Male

Exponential 344.5 205.6 238.8 142.5

Weibull 461.6 235.4 174.2 88.8

Kaplan-Meier 318.6 200.7 144 70

Cox PH 131 72

(Kalbfleisch/Prentice)
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The Accelerated Failure Time Model

The general form of an accelerated failure time (AFT) model is:

log(Ti) = βAFTZi + σϵ

where

• log(Ti) is the log of a survival time

• βAFT is the vector of AFT model parameters corresponding to

the covariate vector Zi

• ϵ is a random “error” term

• σ is a scale factor

In other words, we can model the log-survival times as a

linear function of the covariates!

The streg command in stata (without the exponential or weibull

option) uses this “log-linear” model for fitting parametric models.
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By choosing different distributions for ϵ, we can obtain different

parametric distributions:

• Exponential

• Weibull

• Gamma

• Log-logistic

• Normal

• Lognormal

We can compare the predicted survival under any of these

parametric distributions to the KM estimated survival to see which

one seems to fit best.

Once we decide on a certain class of model (say, Gamma), we can

evaluate the contributions of covariates by finding the MLE’s, and

constructing Wald, Score, or LR tests of the covariate effects.
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We can motivate the AFT model by first demonstrating the

following two relationships:

1. For the Exponential Model:

If the failure times Ti = T (Zi) follow an exponential distribution,

i.e., Si(t) = e−λit with λi = exp(βZi), then

log(Ti) = −βZi + ϵ

where ϵ follows an extreme value distribution (which just means

that eϵ follows a unit exponential distribution).
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2. For the Weibull Model:

If the failure times Ti = T (Zi) follow a Weibull distribution, i.e.,

Si(t) = eλit
κ

with λi = exp(βZi), then

log(Ti) = −σβZi + σϵ

where ϵ again follows an extreme value distribution, and σ = 1/κ.

In other words, both the Exponential and Weibull model can be

written in the form of a log-linear model for the survival times, if

we choose the right distribution for ϵ.
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The log-linear form for the exponential can be derived by:

(1) Creating a new variable T0 = TZ × exp(βZi)

(2) Taking the log of TZ , yielding log(TZ) = log
(

T0

exp(βZi)

)
Step (1): For an exponential model, recall that:

Si(t) = Pr(TZ ≥ t) = e−λt, with λ = exp(βZi)

It follows that T0 ∼ exp(1):

S0(t) = Pr(T0 ≥ t) = Pr(TZ · exp(βZ) ≥ t)

= Pr(TZ ≥ t exp(−βZ))

= exp [−λ t exp(−βZ)]

= exp [− exp(βZ) t exp(−βZ)]

= exp(−t)
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Step (2): Now take the log of the survival time:

log(TZ) = log

(
T0

exp(βZi)

)
= log(T0)− log (exp(βZi))

= −βZi + log(T0)

= −βZi + ϵ

where ϵ = log(T0) follows the extreme value distribution.
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Relationship between Exponential and Weibull

If TZ has a Weibull distribution, i.e., S(t) = e−λtκ

with λ = exp(βZi), then you can show that the new variable

T ∗
Z = Tκ

Z

follows an exponential distribution with parameter exp(βZi).

Based on the previous page, we can therefore write:

log(T ∗) = −βZ+ ϵ

(where ϵ has an extreme value distribution.)
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But since log(T ∗) = log(Tκ) = κ× log(T ), we can write:

log(T ) = log(T ∗)/κ

= (1/κ) (−βZi + ϵ)

= −σβZi + σϵ

where σ = 1/κ.
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This motivates the following general definition of the

Accelerated Failure Time Model by:

log(Ti) = βAFTZi + σϵ

where ϵ is a random “error” term, σ is a scale factor, Y is the log of

a survival random variable, and

βAFT = −σβe

where βe came from the hazard λ = exp(βZ).
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The defining feature of an AFT model is:

S(t;Z) = Si(t) = S0(ϕ t)

That is, the effect of covariates is to accelerate (stretch) or

decelerate (shrink) the time-scale.

Effect of AFT on hazard:

λi(t) = ϕ λ0(ϕt)

71



One way to interpret the AFT model is via its effect on median

survival times. If Si(t) = 0.5, then S0(ϕt) = 0.5. This means:

Mi = ϕM0

Interpretation:

• For ϕ < 1, there is an acceleration of the endpoint

(if M0 = 2yrs in control and ϕ = 0.5, then Mi = 1yr.

• For ϕ > 1, there is a stretching or delay in endpoint

• In general, the lifetime of individual i is ϕ times what they

would have experienced in the reference group

Since ϕ must be positive and a function of the covariates, we model

ϕ = exp(βZi).
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When does Proportional hazards = AFT?

According to the proportional hazards model:

S(t) = S0(t)
exp(βZi)

and according to the accelerated failure time model:

S(t) = S0(t exp(βZi))

Say Ti ∼ Weibull(λ, κ). Then λ(t) = λκt(κ−1)
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Under the AFT model:

λi(t) = ϕ λ0(ϕt)

= eβZi λ0(e
βZit)

= eβZi λ0κ
(
eβZit

)(κ−1)

=
(
eβZi

)κ
λ0κt

(κ−1)

=
(
eβZi

)κ
λ0(t)

But this looks just like the PH model:

λi(t) = exp(β∗Zi) λ0(t)

It turns out that the Weibull distribution (and exponential, since

this is just a special case of a Weibull with κ = 1) is the only one

for which the accelerated failure time and proportional hazards

models coincide.
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Special cases of AFT models

• Exponential regression: σ = 1, ϵ following the extreme value

distribution.

• Weibull regression: σ arbitrary, ϵ following the extreme value

distribution.

• Lognormal regression: σ arbitrary, ϵ following the normal

distribution.
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Examples in stata: Using the streg command, one has the

following options of distributions for the log-survival times:

. streg trt, dist(lognormal)

• exponential

• weibull

• gompertz

• lognormal

• loglogistic

• gamma
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. streg gender, dist(exponential) nohr

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | .516186 .0619148 8.337 0.000 .3948352 .6375368

------------------------------------------------------------------------------

. streg gender, dist(weibull) nohr

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | .4138082 .0621021 6.663 0.000 .2920903 .5355261

1/p | 1.627501 .0377726 1.555127 1.703243

------------------------------------------------------------------------------

. streg gender, dist(lognormal)

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | -.6743434 .1127352 -5.982 0.000 -.8953002 -.4533866

_cons | 4.957636 .0588939 84.179 0.000 4.842206 5.073066

sigma | 1.94718 .040584 1.86924 2.028371

------------------------------------------------------------------------------
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. streg gender, dist(gamma)

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | -.6508469 .1147116 -5.674 0.000 -.8756774 -.4260163

_cons | 4.788114 .1020906 46.901 0.000 4.58802 4.988208

sigma | 1.97998 .0429379 1.897586 2.065951

------------------------------------------------------------------------------

This gives a good idea of the sensitivity of the test of gender to the

choice of model. It is also easy to get predicted survival curves

under any of the parametric models using the following:

. streg gender, dist(gamma)

. stcurv, survival

The options hazard and cumhaz can also be substituted for

survival above to obtain plots.
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