
Assessing the PH Assumption

So far, we’ve been considering the following Cox PH model:

λ(t,Z) = λ0(t) exp(βZ) = λ0(t) exp
(

∑

βjZj

)

where βj is the parameter for the the j-th covariate (Zj).

Important features of this model:

(1) the baseline hazard depends on t, but not on the covariates

Z1, ..., Zp

(2) the hazard ratio, i.e., exp(βZ), depends on the covariates

Z = (Z1, ..., Zp), but not on time t.

Assumption (2) is what led us to call this a proportional hazards

model. That’s because we could take the ratio of the hazards for

two individuals with covariates Zi and Zi′ , and write it as a

constant in terms of the covariates.
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Proportional Hazards Assumption

Hazard Ratio:

λ(t,Zi)

λ(t,Zi′)
=

λ0(t) exp(βZi)

λ0(t) exp(βZi′)

=
exp(βZi)

exp(βZi′)

= exp[β(Zi − Zi′)]

= exp[
∑

βj(Zij − Zi′j)] = θ

In the last formula, Zij is the value of the j-th covariate for the

i-th individual. For example, Z42 might be the value of gender (0

or 1) for the the 4-th person.
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We can also write the hazard for the i-th person as a constant

times the hazard for the i′-th person:

λ(t,Zi) = θ λ(t,Zi′)

Thus, the HR between two types of individuals is constant (i.e.,

=θ) over time. These are mathematical ways of stating the

proportional hazards assumption.
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There are several options for checking the assumption of

proportional hazards:

I. Graphical

(a) Plots of survival estimates for two subgroups

(b) Plots of log[− log(Ŝ)] vs log(t) for two subgroups

(c) Plots of weighted Schoenfeld residuals vs time

(d) Plots of observed survival probabilities versus expected

under PH model (see Kleinbaum, ch.4)

II. Use of goodness of fit tests - we can construct a

goodness-of-fit test based on comparing the observed survival

probability (from sts list) with the expected (from stcox)

under the assumption of proportional hazards - see Kleinbaum

ch.4

III. Including interaction terms between a covariate and t

(time-dependent covariates)
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How do we interpret the above?

Kleinbaum (and other texts) suggest a strategy of assuming that

PH holds unless there is very strong evidence to counter this

assumption:

• estimated survival curves are fairly separated, then cross

• estimated log cumulative hazard curves cross, or look very

unparallel over time

• weighted Schoenfeld residuals clearly increase or decrease over

time (you could fit a OLS regression line and see if the slope is

significant)

• test for time × covariate interaction term is significant (this

relates to time-dependent covariates)
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If PH doesn’t exactly hold for a particular covariate but we fit the

PH model anyway, then what we are getting is sort of an average

HR, averaged over the event times.

In most cases, this is not such a bad estimate. Allison claims that

too much emphasis is put on testing the PH assumption, and not

enough to other important aspects of the model.
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Implications of proportional hazards

Consider a PH model with a single covariate, Z:

λ(t; Z) = λ0(t)e
βZ

What does this imply for the relation between the survivorship

functions at various values of Z?

Under PH,

log[− log[S(t; Z)]] = log[− log[S0(t)]] + βZ
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In general, we have the following relationship:

Λi(t) =

∫ t

0

λi(u)du

=

∫ t

0

λ0(u) exp(βZi)du

= exp(βZi)

∫ t

0

λ0(u)du

= exp(βZi) Λ0(t)

This means that the ratio of the cumulative hazards is the same as

the ratio of hazard rates:

Λi(t)

Λ0(t)
= exp(βZi) = exp(β1Z1i + · · · + βpZpi)

8



Using the above relationship, we can show that:

βZi = log

(

Λi(t)

Λ0(t)

)

= log Λi(t) − log Λ0(t)

= log[− log Si(t)] − log[− log S0(t)]

so log[− log Si(t)] = log[− log S0(t)] + βZi

Thus, to assess if the hazards are actually proportional to each

other over time

• calculate Kaplan Meier Curves for various levels of Z

• compute log[− log(Ŝ(t; Z))] (i.e., log cumulative hazard)

• plot vs log-time to see if they are parallel (lines or curves)

Note: If Z is continuous, break into categories.
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Question: Why not just compare the underlying hazard

rates to see if they are proportional?

Here’s two simulated examples with hazards which are truly

proportional between the two groups:

Weibull-type hazard: U-shaped hazard:

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e
S i m u l a t e d  d a t a  w i t h  H R = 2  f o r  m e n  v s  w o m e n

G e n d e r W o m e n M e n

H A Z A R D

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e
S i m u l a t e d  d a t a  w i t h  H R = 2  f o r  m e n  v s  w o m e n

G e n d e r W o m e n M e n

H A Z A R D

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0
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Reason 1: It’s hard to eyeball these figures and see that

the hazard rates are proportional - it would be easier to

look for a constant shift between lines.

Reason 2: Estimated hazard rates tend to be more

unstable than the cumulative hazard rate
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Consider the nursing home example (where we think PH is

reasonable). If we group the data into intervals and calculate the

hazard rate using actuarial method, we get these plots:

200 day intervals: 100 day intervals:

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

0 . 0 0 5

0 . 0 0 6

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0
0 . 0 0 1
0 . 0 0 2
0 . 0 0 3
0 . 0 0 4
0 . 0 0 5
0 . 0 0 6
0 . 0 0 7
0 . 0 0 8
0 . 0 0 9

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
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50 day intervals: 25 day intervals:

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

0 . 0 1 2

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0
0 . 0 0 2
0 . 0 0 4
0 . 0 0 6
0 . 0 0 8
0 . 0 1 0
0 . 0 1 2
0 . 0 1 4

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0
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In contrast, the log cumulative hazard plots are easier to

interpret and tend to give more stable estimates

Stata has two commands which can be used to graphically assess

the proportional hazards assumption:

• stphplot: plots − log[− log(−(S(t))] curves for each category

of a nominal or ordinal independent variable versus log(time).

Optionally, these estimates can be adjusted for other covariates.

• stcoxkm: plots Kaplan-Meier observed survival curves and

compares them to the Cox predicted curves for the same

variable. (No need to run stcox prior to this command, it will

be done automatically)

For either command, you must have stset your data first.

You must specify by() with stcoxkm and you must specify either

by() or strata() with stphplot.
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Ex: Nursing Home - gender

. use nurshome

. stset los fail

. label define sexlab 1 "Males" 0 "Females"

. label val gender sexlab

. stphplot, by(gender) noneg title(Evaluation of PH Assumption)
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Evaluation of the PH assumption

We use the option noneg to plot the log[− log(S(t))] cuves rather

than the − log[− log(S(t))] curves that are the STATA default.
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Ex: Nursing Home - marital status

. label define marlab 1 "Married" 0 "Not married"

. label val married marlab

. stphplot, by(married) noneg title(Evaluation of PH Assumption)
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Evaluation of the PH assumption

This is equivalent to comparing plots of the log cumulative hazard,

log(Λ̂(t)), between the covariate levels, since

Λ(t) =

∫ t

0

λ(u; Z)du = − log[S(t)]
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Assessing proportionality with several covariates

If there is enough data and you only have a couple of covariates,

create a new covariate that takes a different value for every

combination of covariate values.

Example: Health status and gender for nursing home

. use nurshome

. gen hlthsex=1 if gender==0 & health==2

. replace hlthsex=2 if gender==1 & health==2

. replace hlthsex=3 if gender==0 & health==5

. replace hlthsex=4 if gender==1 & health==5

. label define hsfmt 1 "Healthier Women" 2 "Healthier Men"

> 3 "Sicker Women" 4 "Sicker Men"

. label val hlthsex hsfmt
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Log[-log(survival)] Plots for Health status*gender

. stphplot, by(hlthsex) noneg
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hlthsex = Sicker Women hlthsex = Sicker Men

If there are too many covariates (or not enough data) for this, then

there is a way to test proportionality for each variable, one at a

time, using the stratification option.
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What if proportional hazards fails?

• do a stratified analysis

• include a time-varying covariate to allow changing hazard

ratios over time

• include interactions with time

The second two options relate to time-dependent covariates, which

is getting beyond the scope of this course.

We will focus on the first alternative, and then the second two

options will be briefly described.
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Stratified Analyses

Suppose:

• we are happy with the proportionality assumption on Z1

• proportionality simply does not hold between various levels of a

second variable Z2.

If Z2 is discrete (with a levels) and there is enough data, fit the

following stratified model:

λ(t; Z1, Z2) = λZ2
(t)eβZ1

For example, a new treatment might lead to a 50% decrease in

hazard of death versus the standard treatment, but the hazard for

standard treatment might be different for each hospital.

A stratified model can be useful both for primary analysis

and for checking the PH assumption.
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Assessing PH Assumption for Several Covariates

Suppose we have several covariates (Z = Z1, Z2, ... Zp), and we

want to know if the following PH model holds:

λ(t;Z) = λ0(t) eβ1Z1+...+βpZp

To start, we fit a model which stratifies by Zk:

λ(t;Z) = λ0Zk
(t) eβ1Z1+...+βk−1Zk−1+βk+1Zk+1+...+βpZp

Since we can estimate the survival function for any subgroup, we

can use this to estimate the baseline survival function, S0Zk
(t), for

each level of Zk.

Then we compute − log S(t) for each level of Zk, controlling for the

other covariates in the model, and graphically check whether the

log cumulative hazards are parallel across strata levels.
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Ex: PH assumption for gender (nursing home data):

• include married and health as covariates in a Cox PH model,

but stratify by gender.

• calculate the baseline survival function for each level of the

variable gender (i.e., males and females)

• plot the log-cumulative hazards for males and females and

evaluate whether the lines (curves) are parallel

In the above example, we make the PH assumption for married

and health, but not for gender.

This is like getting a KM survival estimate for each gender without

assuming PH, but is more flexible since we can control for other

covariates.

We would repeat the stratification for each variable for which we

wanted to check the PH assumption.
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STATA Code for Assesing PH within Stratified Model

. use nurshome

. stset los fail

. label define sexlab 1 "Males" 0 "Females"

. label val gender sexlab

. stphplot, by(gender) adjust(married health) noneg

> title(Log-log Survival versus log-time by Gender)
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Log[-log(survival)] Plots for Gender

Controlling for Marital and Health Status
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Loglog Survival versus logtime by Gender
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Models with Time-dependent Interactions

Consider a PH model with two covariates Z1 and Z2. The standard

PH model assumes

λ(t; Z) = λ0(t) eβ1Z1+β2Z2

However, if the log-hazards are not really parallel between the

groups defined by Z2, then you can add an interaction with time:

λ(t; Z) = λ0(t) eβ1Z1+β2Z2+β3Z2∗t

A test of the coefficient β3 would be a test of the proportional

hazards assumption for Z2.

If β3 is positive, then the hazard ratio would be increasing over

time; if negative, then decreasing over time.

Changes in covariate status sometimes occur naturally during a

study (ex. patient gets a kidney transplant), and are handled by

introducing time-dependent covariates.
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Assessing PH Assumption for a Covariate

By Comparing Cox PH Survival to KM Survival

Use the stcoxkm command, either for a single covariate,

. use nurshome

. stset los fail

. stcoxkm, by(gender)
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... or for a newly generated covariate (like hlthsex) which

represents combined levels of more than one covariate.

. stcoxkm if gender==1, by(hlthsex) title(Comparison of KM and PH plots for males)

. stcoxkm if gender==0, by(hlthsex) title(Comparison of KM and PH plots for females)
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