
Model Selection in Survival Analysis

Suppose we have a censored survival time that we want to model as

a function of a (possibly ) set of covariates. Two important

questions are:

• How to decide which covariates to use

• How to decide if the final model fits well

To address these topics, we’ll consider a new example:
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Survival of Atlantic Halibut - Smith et al

Survival Tow Diff Length Handling Total

Obs Time Censoring Duration in of Fish Time log(catch)

# (min) Indicator (min.) Depth (cm) (min.) ln(weight)

100 353.0 1 30 15 39 5 5.685

109 111.0 1 100 5 44 29 8.690

113 64.0 0 100 10 53 4 5.323

116 500.0 1 100 10 44 4 5.323

.

.

.
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Process of Model Selection

Collett (Section 3.6) has an excellent discussion of various

approaches for model selection. In practice, model selection

proceeds through a combination of

• knowledge of the science

• trial and error, common sense

• automatic variable selection procedures

– forward selection

– backward selection

– stepwise seletion

Many advocate the approach of first doing a univariate analysis to

“screen” out potentially significant variables for consideration in

the multivariate model (see Collett).

Let’s start with this approach!
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Univariate KM plots of Atlantic Halibut survival

(continuous variables have been dichotomized)
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Which covariates look like they might be important?
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Automatic Variable selection procedures

in Stata and SAS

Statistical Software:

• Stata: sw command before cox command

• SAS: selection= option on model statement of

proc phreg

Options:

(1) forward

(2) backward

(3) stepwise

(4) best subset (SAS only, using score option)

One drawback of these options is that they can only handle

variables one at a time. When might that be a disadvantage?
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Collett’s Model Selection Approach

Section 3.6.1

This approach assumes that all variables are considered to be on an

equal footing, and there is no a priori reason to include any specific

variables (like treatment).

Approach:

(1) Fit a univariate model for each covariate, and identify the predictors

significant at some level p1, say 0.20.

(2) Fit a multivariate model with all significant univariate predictors,

and use backward selection to eliminate non-significant variables at

some level p2, say 0.10.

(3) Starting with final step (2) model, consider each of the

non-significant variables from step (1) using forward selection, with

significance level p3, say 0.10.
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(4) Do final pruning of main-effects model (omit variables that are

non-significant, add any that are significant), using stepwise

regression with significance level p4. At this stage, you may also

consider adding interactions between any of the main effects

currently in the model, under the hierarchical principle.

Collett recommends using a likelihood ratio test for all variable

inclusion/exclusion decisions.
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Stata Command for Forward Selection:
Forward Selection =⇒ use pe(α) option, where α is the significance
level for entering a variable into the model.
. use halibut

. stset survtime censor

. sw cox survtime towdur depth length handling logcatch,

> dead(censor) pe(.05)

begin with empty model

p = 0.0000 < 0.0500 adding handling

p = 0.0000 < 0.0500 adding logcatch

p = 0.0010 < 0.0500 adding towdur

p = 0.0003 < 0.0500 adding length

Cox Regression -- entry time 0 Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324

---------------------------------------------------------------------------

survtime |

censor | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-----------------------------------------------------------------

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

logcatch | -.1846548 .051015 -3.620 0.000 .2846423 -.0846674

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

---------------------------------------------------------------------------
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Stata Command for Backward Selection:

Backward Selection =⇒ use pr(α) option, where α is the
significance level for a variable to remain in the model.

. sw cox survtime towdur depth length handling logcatch,

> dead(censor) pr(.05)

begin with full model

p = 0.1991 >= 0.0500 removing depth

Cox Regression -- entry time 0 Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324

--------------------------------------------------------------------------

survtime |

censor | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

logcatch | -.1846548 .051015 -3.620 0.000 -.2846423 -.0846674

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

--------------------------------------------------------------------------
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Stata Command for Stepwise Selection:

Stepwise Selection =⇒ use both pe(.) and pr(.) options, with
pr(.) > pe(.)

. sw cox survtime towdur depth length handling logcatch,

> dead(censor) pr(0.10) pe(0.05)

begin with full model

p = 0.1991 >= 0.1000 removing depth

Cox Regression -- entry time 0 Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324

-------------------------------------------------------------------------

survtime |

censor | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

logcatch | -.1846548 .051015 -3.620 0.000 -.2846423 -.0846674

-------------------------------------------------------------------------

It is also possible to do forward stepwise regression by including

both pr(.) and pe(.) options with forward option
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Notes:

• When the halibut data was analyzed with the forward,

backward and stepwise options, the same final model was

reached. However, this will not always be the case.

• Variables can be forced into the model using the lockterm

option in Stata and the include option in SAS. Any variables

that you want to force inclusion of must be listed first in your

model statement.

• Stata uses the Wald test for both forward and backward

selection, although it has an option to use the likelihood ratio

test instead (lrtest). SAS uses the score test to decide what

variables to add and the Wald test for what variables to

remove.
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• If you fit a range of models manually, you can apply the AIC

criteria described by Collett:

minimize AIC = −2 log(L̂) + (α ∗ q)

where q is the number of unknown parameters in the model

and α is typically between 2 and 6 (they suggest α = 3).

The model is then chosen which minimizes the AIC (similar to

maximizing log-likelihood, but with a penalty for number of

variables in the model)
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Assessing overall model fit

How do we know if the model fits well?

• Always look at univariate plots (Kaplan-Meiers) Construct a

Kaplan-Meier survival plot for each of the important

predictors, like the ones shown at the beginning of these notes.

• Check proportionality assumption (this will be the topic of the

next lecture)

• Check residuals!

(a) generalized (Cox-Snell)

(b) martingale

(c) deviance

(d) Schoenfeld

(e) weighted Schoenfeld
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Residuals for survival data are slightly different than for other

types of models, due to the censoring. Before we start talking

about residuals, we need an important basic result:

Inverse CDF:

If Ti (the survival time for the i-th individual) has

survivorship function Si(t), then the transformed random

variable Si(Ti) (i.e., the survival function evaluated at the

actual survival time Ti) should be from a uniform

distribution on [0, 1], and hence − log[Si(Ti)] should be from

a unit exponential distribution
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More mathematically:

If Ti ∼ Si(t)

then Si(Ti) ∼ Uniform[0, 1]

and − log Si(Ti) ∼ Exponential(1)
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(a) Generalized (Cox-Snell) Residuals:

The implication of the last result is that if the model is correct, the

estimated cumulative hazard for each individual at the time of their

death or censoring should be like a censored sample from a unit

exponential. This quantity is called the generalized or Cox-Snell residual.

Here is how the generalized residual might be used. Suppose we fit a PH

model:

S(t; Z) = [S0(t)]
exp(βZ)

or, in terms of hazards:

λ(t; Z) = λ0(t) exp(βZ)

= λ0(t) exp(β1Z1 + β2Z2 + · · · + βkZk)

After fitting, we have:

• β̂1, . . . , β̂k

• Ŝ0(t)
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So, for each person with covariates Zi, we can get

Ŝ(t;Zi) = [Ŝ0(t)]
exp(βZi)

This gives a predicted survival probability at each time t in the

dataset (see notes from the previous lecture).

Then we can calculate

Λ̂i = − log[Ŝ(Ti; Zi)]

In other words, first we find the predicted survival

probability at the actual survival time for an individual,

then log-transform it.
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Example: Nursing home data

Say we have

• a single male

• with actual duration of stay of 941 days (Xi = 941)

We compute the entire distribution of survival probabilities for

single males, and obtain Ŝ(941) = 0.260.

− log[Ŝ(941, single male)] = − log(0.260) = 1.347

We repeat this for everyone in our dataset. These should be like a

censored sample from an exponential (1) distribution if the model

fits the data well.
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Based on the properties of a unit exponential model

• plotting − log(Ŝ(t)) vs t should yield a straight line

• plotting log[− log S(t)] vs log(t) should yield a straight line

through the origin with slope=1.

To convince yourself of this, start with S(t) = e−λt and calculate

log[− log S(t)]. What do you get for the slope and intercept?

(Note: this does not necessarily mean that the underlying

distribution of the original survival times is exponential!)

21



Obtaining the generalized residuals from Stata

• Fit a Cox PH model with stcox and the mgale(newvar) option

• Use the predict command with the csnell option

• Define a survival dataset using the Cox-Snell residuals as the

“pseudo” failure times

• Calculate the estimated KM survival

• Take the log[− log(S(t))] based on the above

• Generate the log of the Cox-Snell residuals

• Graph log[− log S(t)] vs log(t)

. stcox towdur handling length logcatch, mgale(mg)

. predict csres, csnell

. stset csres censor

. sts list

. sts gen survcs=s

. gen lls=log(-log(survcs))

. gen loggenr=log(csres)

. graph lls loggenr
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Cox models estimated by partial likelihood.”
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(b) Martingale Residuals

(see Fleming and Harrington, p.164)

Martingale residuals are defined for the i-th individual as:

ri = δi − Λ̂(Ti)

Properties:

• ri’s have mean 0

• range of ri’s is between −∞ and 1

• approximately uncorrelated (in samples)

• Interpretation: - the residual ri can be viewed as the

difference between the observed number of deaths (0 or 1) for

subject i between time 0 and Ti, and the expected numbers

based on the fitted model.
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The martingale residuals can be obtained from Stata

using the mgale option shown previously.

Once the martingale residual is created, you can plot it versus the
predicted log HR (i.e., βZi), or any of the individual covariates.

. stcox towdur handling length logcatch, mgale(mg)

. predict betaz=xb

. graph mg betaz

. graph mg logcatch

. graph mg towdur

. graph mg handling

. graph mg length
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Martingale Residuals
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(c) Deviance Residuals One problem with the martingale residuals

is that they tend to be asymmetric.

A solution is to use deviance residuals. For person i, these are defined

as a function of the martingale residuals (ri):

D̂i = sign(r̂i)
√

−2[r̂i + δilog(δi − r̂i)]

In Stata, the deviance residuals are generated using the same approach
as the Cox-Snell residuals.

. stcox towdur handling length logcatch, mgale(mg)

. predict devres, deviance

and then they can be plotted versus the predicted log(HR) or the

individual covariates, as shown for the Martingale residuals.

Deviance residuals behave much like residuals from OLS regression (i.e.,

mean=0, s.d.=1). They are negative for observations with survival times

that are smaller than expected.
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Deviance Residuals
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(d) Schoenfeld Residuals

These are defined at each observed failure time as:

rs
ij = Zij(ti) − Z̄j(ti)

Notes:

• represent the difference between the observed covariate and the

average over the risk set at that time

• calculated for each covariate

• not defined for censored failure times.

• useful for assessing time trend or lack or proportionality, based

on plotting versus event time

• sum to zero, have expected value zero, and are uncorrelated (in

samples)
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In Stata, the Schoenfeld residuals are generated in the stcox

command itself, using the schoenf(newvar(s)) option:

. stcox towdur handling length logcatch, schoenf(towres handres lenres

logres)

. graph towres survtime
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Schoenfeld Residuals
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(e) Weighted Schoenfeld Residuals

These are actually used more often than the previous unweighted

version, because they are more like the typical OLS residuals (i.e.,

symmetric around 0).

They are defined as:

rw
ij = nV̂ rs

ij

where V̂ is the estimated variance of β̂. The weighted residuals can

be used in the same way as the unweighted ones to assess time

trends and lack of proportionality.

In Stata, use the command:

. stcox towdur length logcatch handling depth, scaledsch(towres2

> lenres2 logres2 handres2 depres2)

. graph logres2 survtime

for up to k regressors in the model.
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Weighted Schoenfeld Residuals
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