
Survival Analysis: Introduction

Survival Analysis typically focuses on time to event data. In the
most general sense, it consists of techniques for positive-valued
random variables, such as

• time to death

• time to onset (or relapse) of a disease

• length of stay in a hospital

• duration of a strike

• money paid by health insurance

• viral load measurements

• time to finishing a doctoral dissertation!
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Kinds of survival studies include:

• clinical trials

• prospective cohort studies

• retrospective cohort studies

Typically, survival data are not fully observed, but rather are
censored.
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In this course, we will:

• describe survival data

• compare survival of several groups

• explain survival with covariates

• design studies with survival endpoints
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Some useful references:

• Collett: Modelling Survival Data in Medical Research

• Cox and Oakes: Analysis of Survival Data

• Kleinbaum: Survival Analysis: A self-learning text

• Klein & Moeschberger: Survival Analysis: Techniques for
censored and truncated data

• Cantor: Extending SAS Survival Analysis Techniques for
Medical Research

• Allison: Survival Analysis Using the SAS System
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Some Definitions and notation

Failure time random variables are always non-negative. That
is, if we denote the failure time by T , then T ≥ 0.

T can either be discrete (taking a finite set of values, e.g.
a1, a2, . . . , an) or continuous (defined on (0,∞)).

A random variable X is called a censored failure time random
variable if X = min(T,U), where U is a non-negative censoring
variable.
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In order to define a failure time random variable, we need:

(1) an unambiguous time origin
(e.g. randomization to clinical trial, purchase of car)

(2) a time scale
(e.g. real time (days, years), mileage of a car)

(3) definition of the event
(e.g. death, need a new car transmission)
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Illustration of survival data
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The illustration of survival data on the previous page shows several
features which are typically encountered in analysis of survival
data:

• individuals do not all enter the study at the same time

• when the study ends, some individuals still haven’t had the
event yet

• other individuals drop out or get lost in the middle of the
study, and all we know about them is the last time they were
still “free” of the event

The first feature is referred to as “staggered entry”

The last two features relate to “censoring” of the failure time
events.
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Types of censoring:

• Right-censoring :

only the r.v. Xi = min(Ti, Ui) is observed due to

– loss to follow-up

– drop-out

– study termination

We call this right-censoring because the true unobserved event
is to the right of our censoring time; i.e., all we know is that
the event has not happened at the end of follow-up.
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In addition to observing Xi, we also get to see the failure
indicator:

δi =





1 if Ti ≤ Ui

0 if Ti > Ui

Some software packages instead assume we have a
censoring indicator:

ci =





0 if Ti ≤ Ui

1 if Ti > Ui

Right-censoring is the most common type of censoring
assumption we will deal with in survival analysis.
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• Left-censoring

Can only observe Yi = max(Ti, Ui) and the failure indicators:

εi =





1 if Ui ≤ Ti

0 if Ui > Ti

e.g. In studies of time to HIV seroconversion, some of the
enrolled subjects have already seroconverted at entry into the
study - they are left-censored.
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• Interval-censoring

Observe (Li, Ri) where Ti ∈ (Li, Ri)

ex #1: Time to prostate cancer, observe longitudinal PSA
measurements

ex #2: Time to undetectable viral load in AIDS studies, based
on measurements of viral load taken at each clinic visit
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Independent versus informative censoring

• We say censoring is independent (non-informative) if Ui is
independent of Ti.

– ex.1 If Ui is the planned end of the study (say, 2 years after
the study opens), then it is usually independent of the event
times

– ex.2 If Ui is the time that a patient drops out of the study
because they’ve gotten much sicker and/or had to
discontinue taking the study treatment, then Ui and Ti are
probably not independent
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An individual censored at U should be representative
of all subjects who survive to U .

This means that censoring at U could depend on prognostic
characteristics measured at baseline, but that among all those
with the same baseline characteristics, the probability of
censoring prior to or at time U should be the same.

• Censoring is considered informative if the distribution of Ui

contains any information about the parameters characterizing
the distribution of Ti.
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Suppose we have a sample of observations on n people:

(T1, U1), (T2, U2), ..., (Tn, Un)

There are three main types of censoring times:

• Type I: All the Ui’s are the same
e.g. animal studies, all animals sacrificed after 2 years

• Type II: Ui = T(r), the time of the rth failure.
e.g. animal studies, stop when 4/6 have tumors

• Random: the Ui’s are random variables, δi’s are failure
indicators:

δi =





1 if Ti ≤ Ui

0 if Ti > Ui
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Some example datasets:

Example A. Duration of nursing home stay
(Morris et al., Case Studies in Biometry, Ch 12)

The National Center for Health Services Research studied 36
for-profit nursing homes to assess the effects of different
financial incentives on length of stay. “Treated” nursing homes
received higher per diems for Medicaid patients, and bonuses for
improving a patient’s health and sending them home.

Study included 1601 patients admitted between May 1, 1981 and
April 30, 1982.
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Variables include:
LOS - Length of stay of a resident (in days)
AGE - Age of a resident
RX - Nursing home assignment (1:bonuses, 0:no bonuses)
GENDER - Gender (1:male, 0:female)
MARRIED - (1: married, 0:not married)
HEALTH - health status (2:second best, 5:worst)
FAIL - Failure/Censoring indicator (1:discharged,0:censored)

First few lines of data:
37 86 1 0 0 2 0
61 77 1 0 0 4 0
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Example B. Fecundability
Women who had recently given birth were asked to recall how long
it took them to become pregnant, and whether or not they smoked
during that time. The outcome of interest is time to pregnancy (in
menstrual cycles).

Cycle Smokers Non-smokers

1 29 198

2 16 107

3 17 55

4 4 38

5 3 18

6 9 22

7 4 7

8 5 9

9 1 5

10 1 3

11 1 6

12 3 6

12+ 7 12
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Example C: MAC Prevention Clinical Trial

ACTG 196 was a randomized clinical trial to study the effects of
combination regimens on prevention of MAC (mycobacterium
avium complex), one of the most common OIs in AIDS patients.

The treatment regimens were:

• clarithromycin (new)

• rifabutin (standard)

• clarithromycin plus rifabutin
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Other characteristics of trial:

• Patients enrolled between April 1993 and February 1994

• Follow-up ended August 1995

• In February 1994, rifabutin dosage was reduced from 3
pills/day (450mg) to 2 pills/day (300mg) due to concern over
uveitisa

The main intent-to-treat analysis compared the 3 treatment arms
without adjusting for this change in dosage.

aUveitis is an adverse experience resulting in inflammation of the uveal tract

in the eyes (about 3-4% of patients reported uveitis).
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Example D: Time to first tuberculosis (TB) episode

These data come from a longitudinal surveillance study of Kenyan
children. The data have multiple lines per patient that correspond
to multiple visits to the clinic. Data gathered at each visit are:

PATID - Patient identification
timetotb - Time from entry in the study until TB
first tb - Whether this is the first TB episode
cd4 - Absolute CD4-positive lymphocyte count
cd4per - CD4 percent
orphan - Orphaned status
onARV - Is the patient currently receiving antiretroviral (ARV)
therapy? age - Age (in years) at each visit

The difference of these data is that the explanatory variables (e.g.,
ARV therapy, CD4 count, percent and so on) change over time.
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First few lines of data:
patid onARV timetotb cd4 cd4per orphan first_tb age

136AM-2 1 0 . . . 0 .

136AM-2 1 10.42857 . . . 0 .

139WB-8 0 0 32 2 0 1 10.31

165WB-3 0 0 4 1 1 0 8.69

165WB-3 1 1.714286 4 1 1 0 8.72

165WB-3 1 3.714286 4 1 1 0 8.76

165WB-3 1 5.714286 4 1 1 0 8.8

165WB-3 1 8.714286 4 1 1 0 8.86

165WB-3 1 9.714286 4 1 1 0 8.88

165WB-3 1 10.71429 4 1 1 0 8.9

165WB-3 1 11.71429 4 1 1 1 8.91

. . . . . . . .

. . . . . . . .

. . . . . . . .
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More Definitions and Notation

There are several equivalent ways to characterize the probability
distribution of a survival random variable. Some of these are
familiar; others are special to survival analysis. We will focus on
the following terms:

• The density function f(t)

• The survivor function S(t)

• The hazard function λ(t)

• The cumulative hazard function Λ(t)
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• Density function (or Probability Mass Function) for
discrete r.v.’s
Suppose that T takes values in a1, a2, . . . , an.

f(t) = Pr(T = t)

=





fj if t = aj , j = 1, 2, . . . , n

0 if t 6= aj , j = 1, 2, . . . , n

• Density Function for continuous r.v.’s

f(t) = lim
∆t→0

1
∆t

Pr(t ≤ T ≤ t + ∆t)
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• Survivorship Function: S(t) = P (T ≥ t).

In other settings, the cumulative distribution function,
F (t) = P (T ≤ t), is of interest. In survival analysis, our
interest tends to focus on the survival function, S(t).

For a continuous random variable:

S(t) =
∫ ∞

t

f(u)du

For a discrete random variable:

S(t) =
∑

u≥t

f(u)

=
∑

aj≥t

f(aj) =
∑

aj≥t

fj
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Notes:

• From the definition of S(t) for a continuous variable,
S(t) = 1− F (t) as long as f(t) is absolutely continuous

• For a discrete variable, we have to decide what to do if an
event occurs exactly at time t; i.e., does that become part of
F (t) or S(t)?

• To get around this problem, several books define
S(t) = Pr(T > t), or else define F (t) = Pr(T < t)
(eg. Collett)

26



• Hazard Function λ(t)

Sometimes called an instantaneous failure rate, the force of
mortality, or the age-specific failure rate.

– Continuous random variables:

λ(t) = lim
∆t→0

1
∆t

Pr(t ≤ T < t + ∆t|T ≥ t)

= lim
∆t→0

1
∆t

Pr([t ≤ T < t + ∆t]
⋂

[T ≥ t])
Pr(T ≥ t)

= lim
∆t→0

1
∆t

Pr(t ≤ T < t + ∆t)
Pr(T ≥ t)

=
f(t)
S(t)
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– Discrete random variables:

λ(aj) ≡ λj = Pr(T = aj |T ≥ aj)

=
P (T = aj)
P (T ≥ aj)

=
f(aj)
S(aj)

=
f(t)∑

k:ak≥aj
f(ak)
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• Cumulative Hazard Function Λ(t)

– Continuous random variables:

Λ(t) =
∫ t

0

λ(u)du

– Discrete random variables:

Λ(t) =
∑

k:ak<t

λk

The cumulative hazard does not have a very intuitive
interpretation.

However, it turns out to be very useful for certain graphical
assessments:

• consistency with certain parametric models

• evaluation of proportional hazards assumption for Cox models
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Relationship between S(t) and λ(t)

We’ve already shown that, for a continuous r.v.

λ(t) =
f(t)
S(t)

For a left-continuous survivor function S(t), we can show:

f(t) = −S′(t) or S′(t) = − f(t)
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We can use this relationship to show that:

− d

dt
[log S(t)] = −

(
1

S(t)

)
S′(t)

= − −f(t)
S(t)

=
f(t)
S(t)

So another way to write λ(t) is as follows:

λ(t) = − d

dt
[log S(t)]
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Relationship between S(t) and Λ(t):

• Continuous case:

Λ(t) =
∫ t

0

λ(u)du

=
∫ t

0

f(u)
S(u)

du

=
∫ t

0

− d

du
log S(u)du

= − log S(t) + log S(0)

⇒ S(t) = e−Λ(t)
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• Discrete case:

Suppose that aj < t ≤ aj+1. Then

S(t) = P (T ≥ a1, T ≥ a2, . . . , T ≥ aj+1)

= P (T ≥ a1)P (T ≥ a2|T ≥ a1) · · ·P (T ≥ aj+1|T ≥ aj)

= (1− λ1)× · · · × (1− λj)

=
∏

k:ak<t

(1− λk)

Cox defines Λ(t) =
∑

k:ak<t log(1− λk) so that S(t) = e−Λ(t) in
the discrete case, as well.
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Measuring Central Tendency in Survival

• Mean survival - call this µ

µ =
∫ ∞

0

uf(u)du for continuous T

=
n∑

j=1

ajfj for discrete T

• Median survival - call this τ , is defined by

S(τ) = 0.5

Similarly, any other percentile could be defined.

In practice, we don’t usually hit the median survival at exactly
one of the failure times. In this case, the estimated median
survival is the smallest time τ such that

Ŝ(τ) ≤ 0.5
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Some hazard shapes seen in applications:

• increasing

e.g. aging after 65

• decreasing

e.g. survival after surgery

• bathtub

e.g. age-specific mortality

• constant

e.g. survival of patients with advanced chronic disease
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Estimating the survival or hazard function

We can estimate the survival (or hazard) function in two ways:

• by specifying a parametric model for λ(t) based on a particular
density function f(t)

• by developing an empirical estimate of the survival function
(i.e., non-parametric estimation)

If no censoring:
The empirical estimate of the survival function, S̃(t), is the
proportion of individuals with event times greater than t.

With censoring:
If there are censored observations, then S̃(t) is not a good estimate
of the true S(t), so other non-parametric methods must be used to
account for censoring (life-table methods, Kaplan-Meier estimator)
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Some Parametric Survival Distributions

• The Exponential distribution (1 parameter)

f(t) = λe−λt for t ≥ 0

S(t) =
∫ ∞

t

f(u)du = e−λt

λ(t) =
f(t)
S(t)

= λ constant hazard!

Λ(t) =
∫ t

0

λ(u) du

=
∫ t

0

λ du = λt
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Check: Does S(t) = e−Λ(t) ?

median: solve 0.5 = S(τ) = e−λτ :

⇒ τ =
− log(0.5)

λ

mean: ∫ ∞

0

uλe−λudu =
1
λ
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• The Weibull distribution (2 parameters)
Generalizes exponential:

S(t) = e−λtκ

f(t) =
−d

dt
S(t) = κλtκ−1e−λtκ

λ(t) = κλtκ−1

Λ(t) =
∫ t

0

λ(u)du = λtκ

λ - the scale parameter
κ - the shape parameter
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The Weibull distribution is convenient because of simple forms.
It includes several hazard shapes:

κ = 1 → constant hazard

0 < κ < 1 → decreasing hazard

κ > 1 → increasing hazard
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• Rayleigh distribution
Another 2-parameter generalization of exponential:

λ(t) = λ0 + λ1t

• compound exponential T ∼ exp(λ), λ ∼ g

f(t) =
∫ ∞

0

λe−λtg(λ)dλ

• log-normal, log-logistic:
Possible distributions for T obtained by specifying for log T

any convenient family of distributions, e.g.

log T ∼ normal (non-monotone hazard)

log T ∼ logistic

• inverse Gaussian
First passage time of Brownian motion to linear boundary.
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Why use one versus another?

• technical convenience for estimation and inference

• explicit simple forms for f(t), S(t), and λ(t).

• qualitative shape of hazard function

One can usually distinguish between a one-parameter model (like
the exponential) and two-parameter (like Weibull or log-Normal) in
terms of the adequacy of fit to a dataset.

Without a lot of data, it may be hard to distinguish between the
fits of various 2-parameter models (i.e., Weibull vs log-normal)
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Preview of Coming Attractions

Next class we will discuss the most famous non-parametric
approach for estimating the survival distribution, called the
Kaplan-Meier estimator.

To motivate the derivation of this estimator, we will first consider a
set of survival times where there is no censoring.

The following are times to relapse (weeks) for 21 leukemia
patients receiving control treatment (Table 1.1 of Cox & Oakes):

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

How would we estimate S(10), the probability that an individual
survives to time 10 or later?

What about S̃(8)? Is it 12
21 or 8

21?
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Let’s construct a table of S̃(t):

Values of t Ŝ(t)

t ≤ 1 21/21=1.000

1 < t ≤ 2 19/21=0.905

2 < t ≤ 3 17/21=0.809

3 < t ≤ 4

4 < t ≤ 5

5 < t ≤ 8

8 < t ≤ 11

11 < t ≤ 12

12 < t ≤ 15

15 < t ≤ 17

17 < t ≤ 22

22 < t ≤ 23

44



Empirical Survival Function:
When there is no censoring, the general formula is:

S̃(t) =
# individuals with T ≥ t

total sample size

In most software packages, the survival function is evaluated just
after time t, i.e., at t+. In this case, we only count the individuals
with T > t.
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Example for leukemia data (control arm):
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Stata Commands for Survival Estimation
.use leukem

.stset remiss status if trt==0 (to keep only untreated patients)

(21 observations deleted)

. sts list

failure _d: status

analysis time _t: remiss

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

----------------------------------------------------------------------

1 21 2 0 0.9048 0.0641 0.6700 0.9753

2 19 2 0 0.8095 0.0857 0.5689 0.9239

3 17 1 0 0.7619 0.0929 0.5194 0.8933

4 16 2 0 0.6667 0.1029 0.4254 0.8250

5 14 2 0 0.5714 0.1080 0.3380 0.7492

8 12 4 0 0.3810 0.1060 0.1831 0.5778

11 8 2 0 0.2857 0.0986 0.1166 0.4818

12 6 2 0 0.1905 0.0857 0.0595 0.3774

15 4 1 0 0.1429 0.0764 0.0357 0.3212

17 3 1 0 0.0952 0.0641 0.0163 0.2612

22 2 1 0 0.0476 0.0465 0.0033 0.1970

23 1 1 0 0.0000 . . .

----------------------------------------------------------------------

.sts graph

47


