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Preface

This text originated from the lecture notes I gave teaching the
honours undergraduate-level real analysis sequence at the Univer-
sity of California, Los Angeles, in 2003. Among the undergradu-
ates here, real analysis was viewed as being one of the most dif-
ficult courses to learn, not only because of the abstract concepts
being introduced for the first time (e.g., topology, limits, mea-
surability, etc.), but also because of the level of rigour and proof
demanded of the course. Because of this perception of difficulty,
one often was faced with the difficult choice of either reducing
the level of rigour in the course in order to make it easier, or to
maintain strict standards and face the prospect of many under-
graduates, even many of the bright and enthusiastic ones, struggle
with the course material.

Faced with this dilemma, I tried a somewhat unusual approach
to the subject. Typically, an introductory sequence in real analy-
sis assumes that the students are already familiar with the real
numbers, with mathematical induction, with elementary calculus,
and with the basics of set theory, and then quickly launches into
the heart of the subject, for instance beginning with the concept
of a limit. Normally, students entering this sequence do indeed
have a fair bit of exposure to these prerequisite topics, however in
most cases the material was not covered in a thorough manner;
for instance, very few students were able to actually define a real
number, or even an integer, properly, even though they could visu-
alize these numbers intuitively and manipulate them algebraically.
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This seemed to me to be a missed opportunity. Real analysis is
one of the first subjects (together with linear algebra and abstract
algebra) that a student encounters, in which one truly has to grap-
ple with the subtleties of a truly rigourous mathematical proof.
As such, the course offers an excellent chance to go back to the
foundations of mathematics - and in particular, the construction
of the real numbers - and do it properly and thoroughly.

Thus the course was structured as follows. In the first week,
I described some well-known “paradoxes” in analysis, in which
standard laws of the subject (e.g., interchange of limits and sums,
or sums and integrals) were applied in a non-rigourous way to
give nonsensical results such as 0 = 1. This motivated the need
to go back to the very beginning of the subject, even to the very
definition of the natural numbers, and check all the foundations
from scratch. For instance, one of the first homework assignments
was to check (using only the Peano axioms) that addition was as-
sociative for natural numbers (i.e., that (a +b) +c=a+ (b+¢)
for all natural numbers a, b, c: see Exercise 2.2.1). Thus even in
the first week, the students had to write rigourous proofs using
mathematical induction. After we had derived all the basic prop-
erties of the natural numbers, we then moved on to the integers
(initially defined as formal differences of natural numbers); once
the students had verified all the basic properties of the integers,
we moved on to the rationals (initially defined as formal quotients
of integers); and then from there we moved on (via formal lim-
its of Cauchy sequences) to the reals. Around the same time, we
covered the basics of set theory, for instance demonstrating the un-
countability of the reals. Only then (after about ten lectures) did
we begin what one normally considers the heart of undergraduate
real analysis - limits, continuity, differentiability, and so forth.

The response to this format was quite interesting. In the first
few weeks, the students found the material very easy on a concep-
tual level - as we were dealing only with the basic properties of the
standard number systems - but very challenging on an intellectual
level, as one was analyzing these number systems from a founda-
tional viewpoint for the first time, in order to rigourously derive
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the more advanced facts about these number systems from the
more primitive ones. One student told me how difficult it was to
explain to his friends in the non-honours real analysis sequence (a)
why he was still learning how to show why all rational numbers
are either positive, negative, or zero (Exercise 4.2.4), while the
non-honours sequence was already distinguishing absolutely con-
vergent and conditionally convergent series, and (b) why, despite
this, he thought his homework was significantly harder than that
of his friends. Another student commented to me, quite wryly,
that while she could obviously see why one could always divide
one positive integer ¢ into natural number n to give a quotient
a and a remainder r less than ¢ (Exercise 2.3.5), she still had,
to her frustration, much difficulty writing down a proof of this
fact. (I told her that later in the course she would have to prove
statements for which it would not be as obvious to see that the
statements were true; she did not seem to be particularly consoled
by this.) Nevertheless, these students greatly enjoyed the home-
work, as when they did perservere and obtain a rigourous proof of
an intuitive fact, it solidifed the link in their minds between the
abstract manipulations of formal mathematics and their informal
intuition of mathematics (and of the real world), often in a very
satisfying way. By the time they were assigned the task of giv-
ing the infamous “epsilon and delta” proofs in real analysis, they
had already had so much experience with formalizing intuition,
and in discerning the subtleties of mathematical logic (such as the
distinction between the “for all” quantifier and the “there exists”
quantifier), that the transition to these proofs was fairly smooth,
and we were able to cover material both thoroughly and rapidly.
By the tenth week, we had caught up with the non-honours class,
and the students were verifying the change of variables formula
for Riemann-Stieltjes integrals, and showing that piecewise con-
tinuous functions were Riemann integrable. By the the conclusion
of the sequence in the twentieth week, we had covered (both in
lecture and in homework) the convergence theory of Taylor and
Fourier series, the inverse and implicit function theorem for contin-
uously differentiable functions of several variables, and established
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the dominated convergence theorem for the Lebesgue integral.

In order to cover this much material, many of the key foun-
dational results were left to the student to prove as homework;
indeed, this was an essential aspect of the course, as it ensured
the students truly appreciated the concepts as they were being in-
troduced. This format has been retained in this text; the majority
of the exercises consist of proving lemmas, propositions and theo-
rems in the main text. Indeed, I would strongly recommend that
one do as many of these exercises as possible - and this includes
those exercises proving “obvious” statements - if one wishes to use
this text to learn real analysis; this is not a subject whose sub-
tleties are easily appreciated just from passive reading. Most of
the chapter sections have a number of exercises, which are listed
at the end of the section.

To the expert mathematician, the pace of this book may seem
somewhat slow, especially in early chapters, as there is a heavy
emphasis on rigour (except for those discussions explicitly marked
“Informal”), and justifying many steps that would ordinarily be
quickly passed over as being self-evident. The first few chapters
develop (in painful detail) many of the “obvious” properties of the
standard number systems, for instance that the sum of two posi-
tive real numbers is again positive (Exercise 5.4.1), or that given
any two distinct real numbers, one can find rational number be-
tween them (Exercise 5.4.4). In these foundational chapters, there
is also an emphasis on non-circularity - not using later, more ad-
vanced results to prove earlier, more primitive ones. In particular,
the usual laws of algebra are not used until they are derived (and
they have to be derived separately for the natural numbers, inte-
gers, rationals, and reals). The reason for this is that it allows the
students to learn the art of abstract reasoning, deducing true facts
from a limited set of assumptions, in the friendly and intuitive set-
ting of number systems; the payoff for this practice comes later,
when one has to utilize the same type of reasoning techniques to
grapple with more advanced concepts (e.g., the Lebesgue integral).

The text here evolved from my lecture notes on the subject,
and thus is very much oriented towards a pedagogical perspective;
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much of the key material is contained inside exercises, and in many
cases I have chosen to give a lengthy and tedious, but instructive,
proof instead of a slick abstract proof. In more advanced text-
books, the student will see shorter and more conceptually coherent
treatments of this material, and with more emphasis on intuition
than on rigour; however, I feel it is important to know how to to
analysis rigourously and “by hand” first, in order to truly appreci-
ate the more modern, intuitive and abstract approach to analysis
that one uses at the graduate level and beyond.

Some of the material in this textbook is somewhat periph-
eral to the main theme and may be omitted for reasons of time
constraints. For instance, as set theory is not as fundamental to
analysis as are the number systems, the chapters on set theory
(Chapters 3, 8) can be covered more quickly and with substan-
tially less rigour, or be given as reading assignments. Similarly for
the appendices on logic and the decimal system. The chapter on
Fourier series is also not needed elsewhere in the text and can be
omitted.

I am deeply indebted to my students, who over the progression
of the real analysis sequence found many corrections and sugges-
tions to the notes, which have been incorporated here. I am also
very grateful to the anonymous referees who made several correc-
tions and suggested many important improvements to the text.

Terence Tao



Chapter 1

Introduction

1.1 What is analysis?

This text is an honours-level undergraduate introduction to real
analysis: the analysis of the real numbers, sequences and series of
real numbers, and real-valued functions. This is related to, but
is distinct from, complex analysis, which concerns the analysis of
the complex numbers and complex functions, harmonic analysis,
which concerns the analysis of harmonics (waves) such as sine
waves, and how they synthesize other functions via the Fourier
transform, functional analysis, which focuses much more heavily
on functions (and how they form things like vector spaces), and so
forth. Analysis is the rigourous study of such objects, with a fo-
cus on trying to pin down precisely and accurately the qualitative
and quantitative behavior of these objects. Real analysis is the
theoretical foundation which underlies calculus, which is the col-
lection of computational algorithms which one uses to manipulate
functions.

In this text we will be studying many objects which will be fa-
miliar to you from freshman calculus: numbers, sequences, series,
limits, functions, definite integrals, derivatives, and so forth. You
already have a great deal of experience knowing how to compute
with these objects; however here we will be focused more on the
underlying theory for these objects. We will be concerned with
questions such as the following:
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1. What is a real number? Is there a largest real number?
After 0, what is the “next” real number (i.e., what is the
smallest positive real number)? Can you cut a real number
into pieces infinitely many times? Why does a number such
as 2 have a square root, while a number such as -2 does
not? If there are infinitely many reals and infinitely many
rationals, how come there are “more” real numbers than
rational numbers?

2. How do you take the limit of a sequence of real numbers?
Which sequences have limits and which ones don’t? If you
can stop a sequence from escaping to infinity, does this mean
that it must eventually settle down and converge? Can you
add infinitely many real numbers together and still get a
finite real number? Can you add infinitely many rational
numbers together and end up with a non-rational number?
If you rearrange the elements of an infinite sum, is the sum
still the same?

3. What is a function? What does it mean for a function to be
continuous? differentiable? integrable? bounded? can you
add infinitely many functions together? What about taking
limits of sequences of functions? Can you differentiate an
infinite series of functions? What about integrating? If a
function f(x) takes the value of f(0) = 3 when z = 0 and
f(1) = 5 when z = 1, does it have to take every intermediate
value between 3 and 5 when z goes between 0 and 17 Why?

You may already know how to answer some of these questions
from your calculus classes, but most likely these sorts of issues
were only of secondary importance to those courses; the emphasis
was on getting you to perform computations, such as computing
the integral of zsin(z?) from z = 0 to z = 1. But now that you
are comfortable with these objects and already know how to do all
the computations, we will go back to the theory and try to really
understand what is going on.
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1.2 Why do analysis?

It is a fair question to ask, “why bother?”, when it comes to
analysis. There is a certain philosophical satisfaction in know-
ing why things work, but a pragmatic person may argue that one
only needs to know how things work to do real-life problems. The
calculus training you receive in introductory classes is certainly
adequate for you to begin solving many problems in physics, chem-
istry, biology, economics, computer science, finance, engineering,
or whatever else you end up doing - and you can certainly use
things like the chain rule, L’Hopital’s rule, or integration by parts
without knowing why these rules work, or whether there are any
exceptions to these rules. However, one can get into trouble if one
applies rules without knowing where they came from and what
the limits of their applicability are. Let me give some examples
in which several of these familiar rules, if applied blindly without
knowledge of the underlying analysis, can lead to disaster.

Example 1.2.1 (Division by zero). This is a very familiar one
to you: the cancellation law ac = bc = a = b does not work
when ¢ = 0. For instance, the identity 1 x 0 = 2 x 0 is true, but
if one blindly cancels the 0 then one obtains 1 = 2, which is false.
In this case it was obvious that one was dividing by zero; but in
other cases it can be more hidden.

Example 1.2.2 (Divergent series). You have probably seen geo-
metric series such as the infinite sum

1 1 1 1
=14t ot o —F....
S + 9 + 1 + 3 + 16 +
You have probably seen the following trick to sum this series: if
we call the above sum S, then if we multiply both sides by 2, we

obtain

1 1 1
285 =24+14-4+-+-+...=2
S + +2+4+8+ +S

and hence § = 2, so the series sums to 2. However, if you apply
the same trick to the series

S=1+2+44+8+16+...
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one gets nonsensical results:

28§=24+4484+16+...=5-1 = S§S=-1.
So the same reasoning that shows that 1 + % + i +...=2also
gives that 1 +2+4 48+ ... = —1. Why is it that we trust the

first equation but not the second? A similar example arises with
the series
S=1-14+1-14+1-1+...;

we can write
S=1-(1-141-1+...)=1-S
and hence that S = 1/2; or instead we can write
S=1-1)+(1-1)+(1-1)4...=0+0+...
and hence that S = 0; or instead we can write
S=14+(-14+1)+(-14+1)+...=14+0+0+...

and hence that S = 1. Which one is correct? (See Exercise 7.2.1
for an answer.)

Example 1.2.3 (Divergent sequences). Here is a slight variation
of the previous example. Let z be a real number, and let L be the
limit
L= lim z".
n—oo

Changing variables n = m + 1, we have

L= lim "' = lim zxz™=2z lim z™.
m+1—00 m+1—00 m+1—00

But if m + 1 — oo, then m — oo, thus

lim z" = lim z = lim z" = L,
m+1—00 m—00 n—00

and thus
L = L.
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At this point we could cancel the L’s and conclude that £ = 1
for an arbitrary real number z, which is absurd. But since we are
already aware of the division by zero problem, we could be a little
smarter and conclude instead that either z = 1, or L = 0. In
particular we seem to have shown that

lim z" =0 for all z # 1.

n—oo

But this conclusion is absurd if we apply it to certain values of
z, for instance by specializing to the case £ = 2 we could con-
clude that the sequence 1,2,4,8,... converges to zero, and by
specializing to the case £ = —1 we conclude that the sequence
1,—1,1,—1,... also converges to zero. These conclusions appear
to be absurd; what is the problem with the above argument? (See
Exercise 6.2.4 for an answer.)

Example 1.2.4 (Limiting values of functions). Start with the
expression lim,_, sin(z), make the change of variable x = y + 7
and recal that sin(y + 7) = —sin(y) to obtain

xli)rgo sin(z) = y+l71r§00 sin(y + m) = yllgolo(_ sin(y)) = — yli>nolo sin(y).

Since limy_, o0 sin(z) = limy_,, sin(y) we thus have

lim sin(z) = — lim sin(z)
T—00 T—>00
and hence

whﬂrgo sin(z) = 0.

If we then make the change of variables z = 7/2 — z and recall
that sin(m/2 — 2) = cos(z) we conclude that

lim cos(z) = 0.
T—00

Squaring both of these limits and adding we see that

lim (sin®(z) + cos?(z)) = 0% + 02 = 0.

T—00

On the other hand, we have sin?(z) + cos?(z) = 1 for all z. Thus
we have shown that 1 = 0! What is the difficulty here?
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Example 1.2.5 (Interchanging sums). Consider the following
fact of arithmetic. Consider any matrix of numbers, e.g.

1 2 3
4 5 6
789

and compute the sums of all the rows and the sums of all the
columns, and then total all the row sums and total all the column
sums. In both cases you will get the same number - the total sum
of all the entries in the matrix:

1 2 3 6
4 5 6 15
7 8 9 24

12 15 18 45

To put it another way, if you want to add all the entries in a
m X n matrix together, it doesn’t matter whether you sum the rows
first or sum the columns first, you end up with the same answer.
(Before the invention of computers, accountants and book-keepers
would use this fact to guard against making errors when balancing
their books.) In series notation, this fact would be expressed as

i=1 j=1 j=1i=1

if a;; denoted the entry in the it" row and j** column of the matrix.
Now one might think that this rule should extend easily to
infinite series:
o o0 o
D) I
i=1 j=1 j

j=11:=1

Indeed, if you use infinite series a lot in your work, you will find
yourself having to switch summations like this fairly often. An-
other way of saying this fact is that in an infinite matrix, the
sum of the row-totals should equal the sum of the column-totals.
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However, despite the reasonableness of this statement, it is actu-
ally false! Here is a counterexample:

1 0 0 O
-1 1 0 0
0 -1 1 0
0 0 -1 1
0 0 0 -1

If you sum up all the rows, and then add up all the row totals,
you get 1; but if you sum up all the columns, and add up all the
column totals, you get 0! So, does this mean that summations
for infinite series should not be swapped, and that any argument
using such a swapping should be distrusted? (See Theorem 8.2.2
for an answer.)

Example 1.2.6 (Interchanging integrals). The interchanging of
integrals is a trick which occurs just as commonly as integrating by
sums in mathematics. Suppose one wants to compute the volume
under a surface z = f(z,y) (let us ignore the limits of integration
for the moment). One can do it by slicing parallel to the z-axis:
for each fixed value of y, we can compute an area [ f(z,y) dz, and
then we integrate the area in the y variable to obtain the volume

V= / / f(z,y)dzdy.

Or we could slice parallel to the y-axis to obtain an area [ f(z,y) dy,
and then integrate in the z-axis to obtain

V= / / f(@,y)dydz.

This seems to suggest that one should always be able to swap
integral signs:

[ [ 1) dsay= [ [ 1(5.9) dyas
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And indeed, people swap integral signs all the time, because some-
times one variable is easier to integrate in first than the other.
However, just as infinite sums sometimes cannot be swapped, in-
tegrals are also sometimes dangerous to swap. An example is with
the integrand e™*¥ —zye~*Y. Suppose we believe that we can swap
the integrals:

oo prl 1 poo
/ / (™ —zye™™) dy dx = / / (e™ — zye™™) dzx dy.
o Jo 0o Jo

Since .
/O (7 — mye™) dy = ye V=) = 7,

the left-hand side is [j° e ¥ dz = —e *|§° = 1. But since
o0
/0 (e ™ —zye ™) dz =ze “Y|3=5° =0,

the right-hand side is fol 0 dxz = 0. Clearly 1 # 0, so there is an
error somewhere; but you won’t find one anywhere except in the
step where we interchanged the integrals. So how do we know
when to trust the interchange of integrals? (See Theorem 21.5.1
for a partial answer.)

Example 1.2.7 (Interchanging limits). Suppose we start with
the plausible looking statement

z? z?

lim lim ——— = lim lim ———. .
e -

But we have

z? z?

lim = =1
y—0z2 +y?2 22402 7

so the left-hand side of (1.1) is 1; on the other hand, we have
2 2
T 0
1' = =
750 5% + y? 0242 0
so the right-hand side of (1.1) is 0. Since 1 is clearly not equal
to zero, this suggests that interchange of limits is untrustworthy.

But are there any other circumstances in which the interchange
of limits is legitimate? (See Exercise 15.1.9 for a partial answer.)
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Example 1.2.8 (Interchanging limits, again). Start with the plau-
sible looking statement
lim lim z" = lim lim z"
r—1— n—o0 n—00 x—1~

where the notation £ — 1~ means that z is approaching 1 from
the left. When z is to the left of 1, then lim,,_,, ™ = 0, and hence
the left-hand side is zero. But we also have lim,_,;- z™ = 1 for
all n, and so the right-hand side limit is 1. Does this demonstrate

that this type of limit interchange is always untrustworthy? (See
Proposition 16.3.3 for an answer.)

Example 1.2.9 (Interchanging limits and integrals). For any real
number y, we have

e 1 ™ m
— _dx = t — )| =_ (=) =
/ 14+ ($ o y)g €T arc an(w y)lszoo ( 2) Q

Taking limits as y — 0o, we should obtain

° 1 o 1
/ lim ———— dz = lim — 5 dr=m.

e 1 @y T | T ()
But for every z, we have limy_,q, W = 0. So we seem to
have concluded that 0 = w. What was the problem with the
above argument? Should one abandon the (very useful) technique
of interchanging limits and integrals? (See Theorem 16.6.1 for a
partial answer.)

Example 1.2.10 (Interchanging limits and derivatives). Observe
that if ¢ > 0, then

d z3 _ 322(e? + 2?) — 22*
dr \e2+z2) (€2 + 22)?

and in particular that

d z3 B
dr \ &2 + 22 la=0 = 0.
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Taking limits as € — 0, one might then expect that

d z3 B
dz \0+a2) =0 =0

But the right-hand side is %m = 1. Does this mean that it is al-
ways illegitimate to interchange limits and derivatives? (see The-
orem 16.7.1 for an answer.)

Example 1.2.11 (Interchanging derivatives). Let! f(z,y) := %
A common maneuvre in analysis is to interchange two partia
derivatives, thus one expects

2 2
00=51
0z dy Oyor

(0,0).

But from the quotient rule we have

of _
B_y(x’ y) -

2 4

3zy” 2wy
$2+y2 ($2+y2)2

and in particular

af 0 0
—(z,0) == ——=0.
oy (2,0) zz ozt
Thus 9
o°f
——(0,0) =0.
Bxay( )
On the other hand, from the quotient rule again we have
of (5,y) = y3 222>
oz Y = 2+y? (22 +y?)?
and hence of 3
Y 0
—_— O, = — — — =
5 O Y) Y
'One might object that this function is not defined at (z,y) = (0, 0), but
if we set f(0,0) := (0,0) then this function becomes continuous and differ-

entiable for all (z,y), and in fact both partial derivatives gﬁ, %5 are also
continuous and differentiable for all (z,y)!
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Thus
o*f
ozxdy
Since 1 # 0, we thus seem to have shown that interchange of deriv-
atives is untrustworthy. But are there any other circumstances in
which the interchange of derivatives is legitimate? (See Theorem
19.5.4 and Exercise 19.5.1 for some answers.)

(0,0) = 1.

Example 1.2.12 (L’Hépital’s rule). We are all familiar with the

beautifully simple L’Hopital’s rule
!

tim £ — i £@)

235 g@) om0 ¢ (@)

?

but one can still get led to incorrect conclusions if one applies it
incorrectly. For instance, applying it to f(z) := z, g(z) =1 + =,
and z( := 0 we would obtain

) T
lim = lim - =1,
=01+ x z—01

but this is the incorrect answer, since lim, . H—Lx = % = 0.

Of course, all that is going on here is that L’Hopital’s rule is
only applicable when both f(z) and g(z) go to zero as z — =y,
a condition which was violated in the above example. But even
when f(z) and g(z) do go to zero as z — =z there is still a
possibility for an incorrect conclusion. For instance, consider the
limit 5 . .

lim & sin(1/z )

z—0 T
Both numerator and denominator go to zero as x — 0, so it seems
pretty safe to apply L’Hopital’s rule, to obtain

2 4 - 4y _ g2 4
lim & sin(1/z*) ~ lim 2zsin(1/z*) — 4z~ * cos(1/z*)

z—0 x z—0 1

= lim 2z sin(1/z*) — lim 4272 cos(1/z*).
z—0 z—0

The first limit converges to zero by the squeeze test (since 2z sin(1/z%)
is bounded above by 2|z| and below by —2|z|, both of which go to
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zero at 0). But the second limit is divergent (because z~ 2 goes to

infinity as x — 0, and cos(1/z*) does not go to zero). So the limit

. 2z sin(1/2*)—42~2 cos(1/x?)
limg o 228n(1/s") 1o~ cos(1/

diverges. One might then conclude
using L’Hopital’s rule that lim,_,q 2?sin(1/z%) also diverges; how-
ever we can clearly rewrite this limit as lim,_,q z sin(1/z*), which
goes to zero when x — 0 by the squeeze test again. This does not
show that L’Hoépital’s rule is untrustworthy (indeed, it is quite
rigourous; see Section 10.4), but it still requires some care when

applied.

Example 1.2.13 (Limits and lengths). When you learn about
integration and how it relates to the area under a curve, you were
probably presented with some picture in which the area under the
curve was approximated by a bunch of rectangles, whose area was
given by a Riemann sum, and then one somehow “took limits” to
replace that Riemann sum with an integral, which then presum-
ably matched the actual area under the curve. Perhaps a little
later, you learnt how to compute the length of a curve by a simi-
lar method - approximate the curve by a bunch of line segments,
compute the length of all the line segments, then take limits again
to see what you get.

However, it should come as no surprise by now that this ap-
proach also can lead to nonsense if used incorrectly. Consider
the right-angled triangle with vertices (0,0), (1,0), and (0, 1), and
suppose we wanted to compute the length of the hypotenuse of
this triangle. Pythagoras’ theorem tells us that this hypotenuse
has length /2, but suppose for some reason that we did not know
about Pythagoras’ theorem, and wanted to compute the length
using calculus methods. Well, one way to do so is to approximate
the hypotenuse by horizontal and vertical edges. Pick a large
number N, and approximate the hypotenuse by a “staircase” con-
sisting of NV horizontal edges of equal length, alternating with N
vertical edges of equal length. Clearly these edges all have length
1/N, so the total length of the staircase is 2N/N = 2. If one takes
limits as N goes to infinity, the staircase clearly approaches the
hypotenuse, and so in the limit we should get the length of the
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hypotenuse. However, as N — oo, the limit of 2N/N is 2, not v/2,
so we have an incorrect value for the length of the hypotenuse.
How did this happen?

The analysis you learn in this text will help you resolve these
questions, and will let you know when these rules (and others) are
justified, and when they are illegal, thus separating the useful ap-
plications of these rules from the nonsense. Thus they can prevent
you from making mistakes, and can help you place these rules in a
wider context. Moreover, as you learn analysis you will develop an
“analytical way of thinking”, which will help you whenever you
come into contact with any new rules of mathematics, or when
dealing with situations which are not quite covered by the stan-
dard rules (e.g., what if your functions are complex-valued instead
of real-valued? What if you are working on the sphere instead of
the plane? What if your functions are not continuous, but are
instead things like square waves and delta functions? What if
your functions, or limits of integration, or limits of summation,
are occasionally infinite?). You will develop a sense of why a rule
in mathematics (e.g., the chain rule) works, how to adapt it to
new situations, and what its limitations (if any) are; this will al-
low you to apply the mathematics you have already learnt more
confidently and correctly.



Chapter 2

Starting at the beginning: the natural
numbers

In this text, we will want to go over much of the material you have
learnt in high school and in elementary calculus classes, but to do
so as rigourously as possible. To do so we will have to begin at the
very basics - indeed, we will go back to the concept of numbers and
what their properties are. Of course, you have dealt with numbers
for over ten years and you know very well how to manipulate the
rules of algebra to simplify any expression involving numbers, but
we will now turn to a more fundamental issue, which is why the
rules of algebra work... for instance, why is it true that a(b + c)
is equal to ab + ac for any three numbers a,b,c? This is not an
arbitrary choice of rule; it can be proven from more primitive,
and more fundamental, properties of the number system. This
will teach you a new skill - how to prove complicated properties
from simpler ones. You will find that even though a statement
may be “obvious”, it may not be easy to prove; the material here
will give you plenty of practice in doing so, and in the process
will lead you to think about why an obvious statement really is
obvious. One skill in particular that you will pick up here is the
use of mathematical induction, which is a basic tool in proving
things in many areas of mathematics.

So in the first few chapters we will re-acquaint you with various
number systems that are used in real analysis. In increasing order
of sophistication, they are the natural numbers N; the integers
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Z; the rationals Q, and the real numbers R. (There are other
number systems such as the complexr numbers C, but we will not
study them until Section 17.6.) The natural numbers {0,1,2,...}
are the most primitive of the number systems, but they are used
to build the integers, which in turn are used to build the rationals,
which in turn build the real numbers. Thus to begin at the very
beginning, we must look at the natural numbers. We will consider
the following question: how does one actually define the natural
numbers? (This is a very different question as to how to use the
natural numbers, which is something you of course know how to
do very well. Tt’s like the difference between knowing how to use,
say, a computer, versus knowing how to build that computer.)

This question is more difficult to answer than it looks. The
basic problem is that you have used the natural numbers for so
long that they are embedded deeply into your mathematical think-
ing, and you can make various implicit assumptions about these
numbers (e.g., that a + b is always equal to b + a) without even
thinking; it is difficult to let go for a moment and try to inspect
this number system as if it is the first time you have seen it. So
in what follows I will have to ask you to perform a rather diffi-
cult task: try to set aside, for the moment, everything you know
about the natural numbers; forget that you know how to count,
to add, to multiply, to manipulate the rules of algebra, etc. We
will try to introduce these concepts one at a time and try to iden-
tify explicitly what our assumptions are as we go along - and not
allow ourselves to use more “advanced” tricks - such as the rules
of algebra - until we have actually proven them. This may seem
like an irritating constraint, especially as we will spend a lot of
time proving statements which are “obvious”, but it is necessary
to do this suspension of known facts to avoid circularity (e.g., us-
ing an advanced fact to prove a more elementary fact, and then
later using the elementary fact to prove the advanced fact). Also,
it is an excellent exercise for really affirming the foundations of
your mathematical knowledge, and practicing your proofs and ab-
stract thinking here will be invaluable when we move on to more
advanced concepts, such as real numbers, then functions, then se-
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quences and series, then differentials and integrals, and so forth.
In short, the results here may seem trivial, but the journey is much
more important than the destination, for now. (Once the number
systems are constructed properly, we can resume using the laws
of algebra etc. without having to rederive them each time.)

We will also forget that we know the decimal system, which
of course is an extremely convenient way to manipulate numbers,
but it is not something which is fundamental to what numbers are.
(For instance, one could use an octal or binary system instead of
the decimal system, or even the Roman numeral system, and still
get exactly the same set of numbers.) Besides, if one tries to fully
explain what the decimal number system is, it isn’t as natural
as you might think. Why is 00423 the same number as 423, but
32400 isn’t the same number as 3247 How come 123.4444 ... is
a real number, but ...444.321 isn’t? And why do we have to
do all this carrying of digits when adding or multiplying? Why is
0.999... the same number as 17 What is the smallest positive real
number? Isn’t it just 0.00...001? So to set aside these problems,
we will not try to assume any knowledge of the decimal system
(though we will of course still refer to numbers by their familiar
names such as 1,2,3, etc. instead of using other notation such as
LILIIT or 04+, (04+)+4+, ((04+)++)++ (see below) so as not to
be needlessly artificial). For completeness, we review the decimal
system in an Appendix (§13).

2.1 The Peano axioms

We now present one standard way to define the natural num-
bers, in terms of the Peano axioms, which were first laid out by
Guiseppe Peano (1858-1932). This is not the only way to define
the natural numbers. For instance, another approach is to talk
about the cardinality of finite sets, for instance one could take a
set of five elements and define 5 to be the number of elements in
that set. We shall discuss this alternate approach in Section 3.6.
However, we shall stick with the Peano axiomatic approach for
now.
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How are we to define what the natural numbers are? Infor-
mally, we could say

Definition 2.1.1. (Informal) A natural number is any element of
the set
N:={0,1,2,3,4,...},

which is the set of all the numbers created by starting with at
0 and then counting forward indefinitely. We call N the set of
natural numbers.

Remark 2.1.2. In some texts the natural numbers start at 1 in-
stead of 0, but this is a matter of notational convention more than
anything else. In this text we shall refer to the set {1,2,3,...} as
the positive integers Z™ rather than the natural numbers. Natural
numbers are sometimes also known as whole numbers.

In a sense, this definition solves the problem of what the nat-
ural numbers are: a natural number is any element of the set!
N. However, it is not really that satisfactory, because it begs the
question of what N is. This definition of “start at 0 and count
indefinitely” seems like an intuitive enough definition of N, but it
is not entirely acceptable, because it leaves many questions unan-
swered. For instance: how do we know we can keep counting
indefinitely, without cycling back to 07 Also, how do you perform
operations such as addition, multiplication, or exponentiation?

We can answer the latter question first: we can define compli-
cated operations in terms of simpler operations. Exponentiation
is nothing more than repeated multiplication: 5% is nothing more
than three fives multiplied together. Multiplication is nothing
more than repeated addition; 5 x 3 is nothing more than three
fives added together. (Subtraction and division will not be cov-
ered here, because they are not operations which are well-suited
to the natural numbers; they will have to wait for the integers

!Strictly speaking, there is another problem with this informal definition:
we have not yet defined what a “set” is, or what “element of” is. Thus for the
rest of this chapter we shall avoid mention of sets and their elements as much
as possible, except in informal discussion.
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and rationals, respectively.) And addition? It is nothing more
than the repeated operation of counting forward, or increment-
ing. If you add three to five, what you are doing is incrementing
five three times. On the other hand, incrementing seems to be a
pretty fundamental operation, not reducible to any simpler oper-
ation; indeed, it is the first operation one learns on numbers, even
before learning to add.

Thus, to define the natural numbers, we will use two funda-
mental concepts: the zero number 0, and the increment operation.
In deference to modern computer languages, we will use n++ to
denote the increment or successor of n, thus for instance 34+ = 4,
(3++)++ = 5, etc. This is slightly different usage from that in
computer languages such as C, where n++ actually redefines the
value of n to be its successor; however in mathematics we try not
to define a variable more than once in any given setting, as it can
often lead to confusion; many of the statements which were true
for the old value of the variable can now become false, and vice
versa.

So, it seems like we want to say that N consists of 0 and
everything which can be obtained from 0 by incrementing: N
should consist of the objects

0, 0++, (04++)++, ((04++)++)++, ete.

If we start writing down what this means about the natural num-
bers, we thus see that we should have the following axioms con-
cerning 0 and the increment operation ++:

Axiom 2.1. 0 is a natural number.

Axiom 2.2. Ifn is a natural number, then n+4+ is also a natural
number.

Thus for instance, from Axiom 2.1 and two applications of
Axiom 2.2, we see that (04++)++ is a natural number. Of course,
this notation will begin to get unwieldy, so we adopt a convention
to write these numbers in more familiar notation:
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Definition 2.1.3. We define 1 to be the number 04+, 2 to be
the number (04++)++, 3 to be the number ((04++)++)++, etc. (In
other words, 1 := 04+, 2 := 144, 3 := 24+, etc. In this text I
use “x :=y” to denote the statement that z is defined to equal y.)

Thus for instance, we have
Proposition 2.1.4. 3 is a natural number.

Proof. By Axiom 2.1, 0 is a natural number. By Axiom 2.2,
0++ = 1 is a natural number. By Axiom 2.2 again, 14+ = 2
is a natural number. By Axiom 2.2 again, 24+ = 3 is a natural
number. O

It may seem that this is enough to describe the natural num-

bers. However, we have not pinned down completely the behavior
of N:

Example 2.1.5. Consider a number system which consists of the
numbers 0,1,2,3, in which the increment operation wraps back
from 3 to 0. More precisely 04+ is equal to 1, 14+ is equal to
2, 24+ is equal to 3, but 3++ is equal to 0 (and also equal to 4,
by definition of 4). This type of thing actually happens in real
life, when one uses a computer to try to store a natural number:
if one starts at 0 and performs the increment operation repeat-
edly, eventually the computer will overflow its memory and the
number will wrap around back to 0 (though this may take quite a
large number of incrementation operations, such as 65, 536). Note
that this type of number system obeys Axiom 2.1 and Axiom 2.2,
even though it clearly does not correspond to what we intuitively
believe the natural numbers to be like.

To prevent this sort of “wrap-around issue” we will impose
another axiom:

Axiom 2.3. 0 is not the successor of any natural number; i.e.,
we have n4+ # 0 for every natural number n.

Now we can show that certain types of wrap-around do not
occur: for instance we can now rule out the type of behavior in
Example 2.1.5 using
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Proposition 2.1.6. 4 is not equal to 0.

Don’t laugh! Because of the way we have defined 4 - it is
the increment of the increment of the increment of the increment
of 0 - it is not necessarily true a priori that this number is not
the same as zero, even if it is “obvious”. (“a priori” is Latin for
“beforehand” - it refers to what one already knows or assumes
to be true before one begins a proof or argument. The opposite
is “a posteriori” - what one knows to be true after the proof or
argument is concluded). Note for instance that in Example 2.1.5,
4 was indeed equal to 0, and that in a standard two-byte computer
representation of a natural number, for instance, 65536 is equal to
0 (using our definition of 65536 as equal to 0 incremented sixty-five
thousand, five hundred and thirty-six times).

Proof. By definition, 4 = 3++. By Axioms 2.1 and 2.2, 3 is a
natural number. Thus by Axiom 2.3, 3++ # 0, i.e., 4 # 0. O

However, even with our new axiom, it is still possible that our
number system behaves in other pathological ways:

Example 2.1.7. Consider a number system consisting of five
numbers 0,1,2,3,4, in which the increment operation hits a “ceil-
ing” at 4. More precisely, suppose that 0++ = 1, 1++ = 2,
2+ =3, 3++ = 4, but 4++ = 4 (or in other words that 5 = 4,
and hence 6 = 4, 7 = 4, etc.). This does not contradict Ax-
ioms 2.1,2.2,2.3. Another number system with a similar problem
is one in which incrementation wraps around, but not to zero, e.g.
suppose that 44+ =1 (so that 5 = 1, then 6 = 2, etc.).

There are many ways to prohibit the above types of behavior
from happening, but one of the simplest is to assume the following
axiom:

Axiom 2.4. Different natural numbers must have different suc-
cessors; i.e., if n, m are natural numbers and n # m, then n++ #
m~+. Equivalently?, if ni++ = m+4+, then we must have n = m.

2This is an example of reformulating an implication using its contrapositive;
see Section 12.2 for more details.
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Thus, for instance, we have
Proposition 2.1.8. 6 is not equal to 2.

Proof. Suppose for contradiction that 6 = 2. Then 54++ = 1++,
so by Axiom 2.4 we have 5 = 1, so that 44++ = 0++. By Axiom
2.4 again we then have 4 = 0, which contradicts our previous
proposition. O

As one can see from this proposition, it now looks like we can
keep all of the natural numbers distinct from each other. There
is however still one more problem: while the axioms (particularly
Axioms 2.1 and 2.2) allow us to confirm that 0,1,2,3,... are dis-
tinct elements of N, there is the problem that there may be other
“rogue” elements in our number system which are not of this form:

Example 2.1.9. (Informal) Suppose that our number system N
consisted of the following collection of integers and half-integers:

N := {0,0.5,1,1.5,2,2.5,3,3.5,...}.

(This example is marked “informal” since we are using real num-
bers, which we’re not supposed to use yet.) One can check that
Axioms 2.1-2.4 are still satisfied for this set.

What we want is some axiom which says that the only numbers
in N are those which can be obtained from 0 and the increment
operation - in order to exclude elements such as 0.5. But it is
difficult to quantify what we mean by “can be obtained from”
without already using the natural numbers, which we are trying
to define. Fortunately, there is an ingenious solution to try to
capture this fact:

Axiom 2.5 (Principle of mathematical induction). Let P(n) be
any property pertaining to a natural number n. Suppose that P(0)
is true, and suppose that whenever P(n) is true, P(n++) is also
true. Then P(n) is true for every natural number n.
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Remark 2.1.10. We are a little vague on what “property” means
at this point, but some possible examples of P(n) might be “n
is even”; “n is equal to 3”; “n solves the equation (n + 1)? =
n? 4+ 2n +17; and so forth. Of course we haven’t defined many of
these concepts yet, but when we do, Axiom 2.5 will apply to these
properties. (A logical remark: Because this axiom refers not just
to wvariables, but also properties, it is of a different nature than
the other four axioms; indeed, Axiom 2.5 should technically be
called an aziom schema rather than an aziom - it is a template
for producing an (infinite) number of axioms, rather than being a
single axiom in its own right. To discuss this distinction further
is far beyond the scope of this text, though, and falls in the realm
of logic.)

The informal intuition behind this axiom is the following. Sup-
pose P(n) is such that P(0) is true, and such that whenever
P(n) is true, then P(n+4+) is true. Then since P(0) is true,
P(04++) = P(1) is true. Since P(1) is true, P(14++) = P(2) is
true. Repeating this indefinitely, we see that P(0), P(1), P(2),
P(3), etc. are all true - however this line of reasoning will never
let us conclude that P(0.5), for instance, is true. Thus Axiom
2.5 should not hold for number systems which contain “unneces-
sary” elements such as 0.5. (Indeed, one can give a “proof” of this
fact. Apply Axiom 2.5 to the property P(n) = n “is not a half-
integer”, i.e., an integer plus 0.5. Then P(0) is true, and if P(n)
is true, then P(n++) is true. Thus Axiom 2.5 asserts that P(n)
is true for all natural numbers 7, i.e., no natural number can be a
half-integer. In particular, 0.5 cannot be a natural number. This
“proof” is not quite genuine, because we have not defined such
notions as “integer”, “half-integer”, and “0.5” yet, but it should
give you some idea as to how the principle of induction is supposed
to prohibit any numbers other than the “true” natural numbers
from appearing in N.)

The principle of induction gives us a way to prove that a prop-
erty P(n) is true for every natural number n. Thus in the rest of
this text we will see many proofs which have a form like this:
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Proposition 2.1.11. A certain property P(n) is true for every
natural number n.

Proof. We use induction. We first verify the base case n = 0,
i.e., we prove P(0). (Insert proof of P(0) here). Now suppose
inductively that n is a natural number, and P(n) has already
been proven. We now prove P(n++). (Insert proof of P(n++),
assuming that P(n) is true, here). This closes the induction, and
thus P(n) is true for all numbers n. O

Of course we will not necessarily use the exact template, word-
ing, or order in the above type of proof, but the proofs using induc-
tion will generally be something like the above form. There are
also some other variants of induction which we shall encounter
later, such as backwards induction (Exercise 2.2.6), strong in-
duction (Proposition 2.2.14), and transfinite induction (Lemma
8.5.15).

Axioms 2.1-2.5 are known as the Peano azioms for the natural
numbers. They are all very plausible, and so we shall make

Assumption 2.6. (Informal) There exists a number system N,
whose elements we will call natural numbers, for which Azioms
2.1-2.5 are true.

We will make this assumption a bit more precise once we have
laid down our notation for sets and functions in the next chapter.

Remark 2.1.12. We will refer to this number system N as the
natural number system. One could of course consider the pos-
sibility that there is more than one natural number system, e.g.,
we could have the Hindu-Arabic number system {0, 1,2,3,...} and
the Roman number system {O, I, II,I1II,IV,V,VI,...}, and if we
really wanted to be annoying we could view these number systems
as different. But these number systems are clearly equivalent (the
technical term is “isomorphic”), because one can create a one-to-
one correspondence 0 <+ O, 1 < I, 2 <> II, etc. which maps
the zero of the Hindu-Arabic system with the zero of the Roman
system, and which is preserved by the increment operation (e.g.,
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if 2 corresponds to II, then 24+ will correspond to IT4++). For
a more precise statement of this type of equivalence, see Exer-
cise 3.5.13. Since all versions of the natural number system are
equivalent, there is no point in having distinct natural number
systems, and we will just use a single natural number system to
do mathematics.

We will not prove Assumption 2.6 (though we will eventually
include it in our axioms for set theory, see Axiom 3.7), and it will
be the only assumption we will ever make about our numbers.
A remarkable accomplishment of modern analysis is that just by
starting from these five very primitive axioms, and some additional
axioms from set theory, we can build all the other number systems,
create functions, and do all the algebra and calculus that we are
used to.

Remark 2.1.13. (Informal) One interesting feature about the
natural numbers is that while each individual natural number is
finite, the set of natural numbers is infinite; i.e., N is infinite
but consists of individually finite elements. (The whole is greater
than any of its parts.) There are no infinite natural numbers; one
can even prove this using Axiom 2.5, provided one is comfortable
with the notions of finite and infinite. (Clearly 0 is finite. Also,
if n is finite, then clearly n4++ is also finite. Hence by Axiom
2.5, all natural numbers are finite.) So the natural numbers can
approach infinity, but never actually reach it; infinity is not one
of the natural numbers. (There are other number systems which
admit “infinite” numbers, such as the cardinals, ordinals, and p-
adics, but they do not obey the principle of induction, and in any
event are beyond the scope of this text.)

Remark 2.1.14. Note that our definition of the natural num-
bers is aziomatic rather than constructive. We have not told you
what the natural numbers are (so we do not address such ques-
tions as what the numbers are made of, are they physical objects,
what do they measure, etc.) - we have only listed some things
you can do with them (in fact, the only operation we have defined
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on them right now is the increment one) and some of the prop-
erties that they have. This is how mathematics works - it treats
its objects abstractly, caring only about what properties the ob-
jects have, not what the objects are or what they mean. If one
wants to do mathematics, it does not matter whether a natural
number means a certain arrangement of beads on an abacus, or
a certain organization of bits in a computer’s memory, or some
more abstract concept with no physical substance; as long as you
can increment them, see if two of them are equal, and later on do
other arithmetic operations such as add and multiply, they qual-
ify as numbers for mathematical purposes (provided they obey the
requisite axioms, of course). It is possible to construct the natural
numbers from other mathematical objects - from sets, for instance
- but there are multiple ways to construct a working model of the
natural numbers, and it is pointless, at least from a mathemati-
cian’s standpoint, as to argue about which model is the “true” one
- as long as it obeys all the axioms and does all the right things,
that’s good enough to do maths.

Remark 2.1.15. Histocially, the realization that numbers could
be treated axiomatically is very recent, not much more than a
hundred years old. Before then, numbers were generally under-
stood to be inextricably connected to some external concept, such
as counting the cardinality of a set, measuring the length of a line
segment, or the mass of a physical object, etc. This worked reason-
ably well, until one was forced to move from one number system to
another; for instance, understanding numbers in terms of count-
ing beads, for instance, is great for conceptualizing the numbers 3
and 5, but doesn’t work so well for —3 or 1/3 or v/2 or 3+ 4i; thus
each great advance in the theory of numbers - negative numbers,
irrational numbers, complex numbers, even the number zero - led
to a great deal of unnecessary philosophical anguish. The great
discovery of the late nineteenth century was that numbers can be
understood abstractly via axioms, without necessarily needing a
conceptual model; of course a mathematician can use any of these
models when it is convenient, to aid his or her intuition and un-
derstanding, but they can also be just as easily discarded when
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they begin to get in the way.

One consequence of the axioms is that we can now define se-

quences recursively. Suppose we want to build a sequence ag, a1, as, . ..

by first defining ay to be some base value, e.g., ap := ¢, and then
letting a1 be some function of ag, a1 := fo(ag), as be some function
of a1, ag := fi(a1), and so forth - in general, we set a4+ := fr(an)
for some function f, from N to N. By using all the axioms to-
gether we will now conclude that this procedure will give a single
value to the sequence element a,, for each natural number n. More
precisely?:

Proposition 2.1.16 (Recursive definitions). Suppose for each
natural number n, we have some function f, : N — N from
the natural numbers to the natural numbers. Let ¢ be a natural
number. Then we can assign a unique natural number a, to each
natural number n, such that ag = ¢ and an = fn(ay) for each
natural number n.

Proof. (Informal) We use induction. We first observe that this
procedure gives a single value to ag, namely c. (None of the other
definitions an 4y = fn(an) will redefine the value of a9, because
of Axiom 2.3.) Now suppose inductively that the procedure gives
a single value to a,. Then it gives a single value to a,44, namely
ap+t = fn(an). (None of the other definitions G,y = fin(am)
will redefine the value of a,, 4, because of Axiom 2.4.) This com-
pletes the induction, and so a,, is defined for each natural number
n, with a single value assigned to each a,. O

Note how all of the axioms had to be used here. In a system
which had some sort of wrap-around, recursive definitions would
not work because some elements of the sequence would constantly
be redefined. For instance, in Example 2.1.5, in which 34+ = 0,
then there would be (at least) two conflicting definitions for ay,

3Strictly speaking, this proposition requires one to define the notion of a
function, which we shall do in the next chapter. However, this will not be
circular, as the concept of a function does not require the Peano axioms. The
proposition can be formalized in the language of set theory, see Exercise 3.5.12.



2.2. Addition 27

either ¢ or f3(az)). In a system which had superfluous elements
such as 0.5, the element ag 5 would never be defined.

Recursive definitions are very powerful; for instance, we can
use them to define addition and multiplication, to which we now
turn.

2.2 Addition

The natural number system is very sparse right now: we have only
one operation - increment - and a handful of axioms. But now we
can build up more complex operations, such as addition.

The way it works is the following. To add three to five should
be the same as incrementing five three times - this is one increment
more than adding two to five, which is one increment more than
adding one to five, which is one increment more than adding zero
to five, which should just give five. So we give a recursive definition
for addition as follows.

Definition 2.2.1 (Addition of natural numbers). Let m be a
natural number. To add zero to m, we define 0 + m := m. Now
suppose inductively that we have defined how to add n to m. Then
we can add n++ to m by defining (n++) +m = (n + m)++.

Thus 0+ mism, 1+ m = (0++) + m is m++; 2+ m =
(1++) +m = (m++)++; and so forth; for instance we have 2+3 =
(3++)++ = 4++ = 5. From our discussion of recursion in the
previous section we see that we have defined n + m for every
integer n (here we are specializing the previous general discussion
to the setting where a, = n +m and f,(a,) = ap++). Note that
this definition is asymmetric: 3 + 5 is incrementing 5 three times,
while 5 4+ 3 is incrementing 3 five times. Of course, they both
yield the same value of 8. More generally, it is a fact (which we
shall prove shortly) that a+b = b+ a for all natural numbers a, b,
although this is not immediately clear from the definition.

Notice that we can prove easily, using Axioms 2.1, 2.2, and
induction (Axiom 2.5), that the sum of two natural numbers is
again a natural number (why?).
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Right now we only have two facts about addition: that 0+m =
m, and that (n++)+m = (n+m)++. Remarkably, this turns out
to be enough to deduce everything else we know about addition.

We begin with some basic lemmas®.

Lemma 2.2.2. For any natural number n, n+ 0 = n.

Note that we cannot deduce this immediately from 0+m = m
because we do not know yet that a +b = b+ a.

Proof. We use induction. The base case 0 + 0 = 0 follows since
we know that 0 + m = m for every natural number m, and 0
is a natural number. Now suppose inductively that n 4+ 0 = n.
We wish to show that (n4++) + 0 = n++. But by definition of
addition, (n4++) + 0 is equal to (n + 0)4++, which is equal to n++
since n + 0 = n. This closes the induction. U

Lemma 2.2.3. For any natural numbers n and m, n+ (m++) =
(n+ m)++.

Again, we cannot deduce this yet from (n++)+m = (n+m)++
because we do not know yet that a +b= b+ a.

Proof. We induct on n (keeping m fixed). We first consider the
base case n = 0. In this case we have to prove 0 + (m++) = (0 +
m)++. But by definition of addition, 0 + (m++) = m++ and 0+
m = m, so both sides are equal to m++ and are thus equal to each
other. Now we assume inductively that n+ (m++) = (n +m)++;
we now have to show that (n4+)+ (m+4+) = ((n++)+m)++. The
left-hand side is (n + (m++))++ by definition of addition, which

“From a logical point of view, there is no difference between a lemma,
proposition, theorem, or corollary - they are all claims waiting to be proved.
However, we use these terms to suggest different levels of importance and
difficulty. A lemma is an easily proved claim which is helpful for proving
other propositions and theorems, but is usually not particularly interesting in
its own right. A proposition is a statement which is interesting in its own right,
while a theorem is a more important statement than a proposition which says
something definitive on the subject, and often takes more effort to prove than
a proposition or lemma. A corollary is a quick consequence of a proposition
or theorem that was proven recently.
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is equal to ((n+m)+4+)++ by the inductive hypothesis. Similarly,
we have (n++)+m = (n+m)++ by the definition of addition, and
so the right-hand side is also equal to ((n+m)4+)++. Thus both
sides are equal to each other, and we have closed the induction. [

As a particular corollary of Lemma 2.2.2 and Lemma 2.2.3 we
see that n++ =n + 1 (why?).
As promised earlier, we can now prove that a +b = b+ a.

Proposition 2.2.4 (Addition is commutative). For any natural
numbers n and m, n+m =m + n.

Proof. We shall use induction on n (keeping m fixed). First we do
the base case n = 0, i.e., we show 04+m = m+0. By the definition
of addition, 0 +m = m, while by Lemma 2.2.2, m + 0 = m. Thus
the base case is done. Now suppose inductively that n+m = m+n,
now we have to prove that (n++) 4+ m = m + (n++) to close the
induction. By the definition of addition, (n++)+m = (n+m)++.
By Lemma 2.2.3, m + (n4++) = (m + n)++, but this is equal to
(n + m)4+ by the inductive hypothesis n + m = m + n. Thus
(n++) + m = m + (n++) and we have closed the induction. O

Proposition 2.2.5 (Addition is associative). For any natural
numbers a,b,c, we have (a +b)+c=a+ (b+c).

Proof. See Exercise 2.2.1. O

Because of this associativity we can write sums such as a+b+c
without having to worry about which order the numbers are being
added together.

Now we develop a cancellation law.

Proposition 2.2.6 (Cancellation law). Let a, b, ¢ be natural num-
bers such that a + b= a+ c. Then we have b = c.

Note that we cannot use subtraction or negative numbers yet
to prove this Proposition, because we have not developed these
concepts yet. In fact, this cancellation law is crucial in letting
us define subtraction (and the integers) later on in these notes,
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because it allows for a sort of “virtual subtraction” even before
subtraction is officially defined.

Proof. We prove this by induction on a. First consider the base
case ¢ = 0. Then we have 0 + b = 0 + ¢, which by definition of
addition implies that b = ¢ as desired. Now suppose inductively
that we have the cancellation law for a (so that a+b = a+c implies
b = ¢); we now have to prove the cancellation law for a4++. In other
words, we assume that (a++) + b = (a++) + ¢ and need to show
that b = ¢. By the definition of addition, (a++) + b = (a + b)++
and (a++)+c¢ = (a+c¢)++ and so we have (a+b)++ = (a+¢)++-
By Axiom 2.4, we have a + b = a + c¢. Since we already have the
cancellation law for a, we thus have b = ¢ as desired. This closes
the induction. O

We now discuss how addition interacts with positivity.

Definition 2.2.7 (Positive natural numbers). A natural number
n is said to be positive iff it is not equal to 0. (“iff” is shorthand
for “if and only if”).

Proposition 2.2.8. If a is positive and b is a natural number,
then a + b is positive (and hence b + a is also, by Proposition

2.2.4).

Proof. We use induction on b. If b = 0, thena+b =a+0 =
a, which is positive, so this proves the base case. Now suppose
inductively that a + b is positive. Then a + (b++) = (a + b)++,
which cannot be zero by Axiom 2.3, and is hence positive. This
closes the induction. O

Corollary 2.2.9. Ifa and b are natural numbers such that a+b =
0, then a =0 and b= 0.

Proof. Suppose for contradiction that a ## 0 or b # 0. If a # 0
then a is positive, and hence a + b = 0 is positive by Proposition
2.2.8, contradiction. Similarly if b # 0 then b is positive, and again
a + b = 0 is positive by Proposition 2.2.8, contradiction. Thus a
and b must both be zero. ]
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Lemma 2.2.10. Let a be a positive number. Then there exists
exactly one natural number b such that b++ = a.

Proof. See Exercise 2.2.2. O

Once we have a notion of addition, we can begin defining a
notion of order.

Definition 2.2.11 (Ordering of the natural numbers). Let n and
m be natural numbers. We say that n is greater than or equal to
m, and write n > m or m < n, iff we have n = m + a for some
natural number a. We say that n is strictly greater than m, and
write n > m or m < n, iff n > m and n # m.

Thus for instance 8 > 5, because 8 = 5+ 3 and 8 # 5. Also
note that n4++ > n for any n; thus there is no largest natural
number n, because the next number n++ is always larger still.

Proposition 2.2.12 (Basic properties of order for natural num-
bers). Let a,b,c be natural numbers. Then

e (Order is reflezive) a > a.

(Order is transitive) If a > b and b > ¢, then a > c.

(Order is anti-symmetric) If a > b and b > a, then a = b.

(Addition preserves order) a > b if and only if a+c¢ > b+c.

a < b if and only if a++ < b.
e a < b if and only if b= a + d for some positive number d.

Proof. See Exercise 2.2.3. O

Proposition 2.2.13 (Trichotomy of order for natural numbers).
Let a and b be natural numbers. Then exactly one of the following
statements is true: a < b, a =0b, or a > b.
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Proof. This is only a sketch of the proof; the gaps will be filled in
Exercise 2.2.4.

First we show that we cannot have more than one of the state-
ments ¢ < b, a = b, a > b holding at the same time. If a < b
then a # b by definition, and if a > b then a # b by definition.
If a > b and a < b then by Proposition 2.2.12 we have a = b, a
contradiction. Thus no more than one of the statements is true.

Now we show that at least one of the statements is true. We
keep b fixed and induct on a. When a = 0 we have 0 < b for
all b (why?), so we have either 0 = b or 0 < b, which proves the
base case. Now suppose we have proven the Proposition for a, and
now we prove the proposition for a++. From the trichotomy for
a, there are three cases: a < b, a = b, and a > b. If ¢ > b, then
a++ > b (why?). If a = b, then a++ > b (why?). Now suppose
that @ < b. Then by Proposition 2.2.12, we have a++ < b. Thus
either a4+ = b or a++ < b, and in either case we are done. This
closes the induction. O

The properties of order allow one to obtain a stronger version
of the principle of induction:

Proposition 2.2.14 (Strong principle of induction). Let mg be
a natural number, and Let P(m) be a property pertaining to an
arbitrary natural number m. Suppose that for each m > mgy, we
have the following implication: if P(m') is true for all natural
numbers mg < m' < m, then P(m) is also true. (In particular,
this means that P(mg) is true, since in this case the hypothesis is
vacuous.) Then we can conclude that P(m) is true for all natural
numbers m > my.

Remark 2.2.15. In applications we usually use this principle
with mg =0 or mg = 1.

Proof. See Exercise 2.2.5. O

Ezercise 2.2.1. Prove Proposition 2.2.5. (Hint: fix two of the
variables and induct on the third.)

FEzercise 2.2.2. Prove Lemma 2.2.10. (Hint: use induction.)
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Ezercise 2.2.3. Prove Proposition 2.2.12. (Hint: you will need
many of the preceding propositions, corollaries, and lemmas.)

Ezercise 2.2.4. Justify the three statements marked (why?) in the
proof of Proposition 2.2.13.

Ezercise 2.2.5. Prove Proposition 2.2.14. (Hint: define Q(n) to
be the property that P(m) is true for all my < m < n; note that
Q(n) is vacuously true when n < my.)

FEzercise 2.2.6. Let n be a natural number, and let P(m) be a
property pertaining to the natural numbers such that whenever
P(m++) is true, then P(m) is true. Suppose that P(n) is also
true. Prove that P(m) is true for all natural numbers m < n; this
is known as the principle of backwards induction. (Hint: Apply
induction to the variable n.)

2.3 Multiplication

In the previous section we have proven all the basic facts that we
know to be true about addition and order. To save space and
to avoid belaboring the obvious, we will now allow ourselves to
use all the rules of algebra concerning addition and order that we
are familiar with, without further comment. Thus for instance
we may write things like a + b+ ¢ = ¢ + b + a without supplying
any further justification. Now we introduce multiplication. Just
as addition is the iterated increment operation, multiplication is
iterated addition:

Definition 2.3.1 (Multiplication of natural numbers). Let m be
a natural number. To multiply zero to m, we define 0 x m := 0.
Now suppose inductively that we have defined how to multiply n
to m. Then we can multiply n4++ to m by defining (n4++) x m :=
(n x m)+m.

Thus for instance 0xm =0, 1 xm = 0+m, 2xm = 0+m+m,
etc. By induction one can easily verify that the product of two
natural numbers is a natural number.
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Lemma 2.3.2 (Multiplication is commutative). Let n,m be nat-
ural numbers. Then n X m = m X n.

Proof. See Exercise 2.3.1. O

We will now abbreviate n x m as nm, and use the usual con-
vention that multiplication takes precedence over addition, thus
for instance ab + ¢ means (a X b) + ¢, not a x (b+¢). (We will
also use the usual notational conventions of precedence for the
other arithmetic operations when they are defined later, to save
on using parentheses all the time.)

Lemma 2.3.3 (Natural numbers have no zero divisors). Let n,m
be natural numbers. Then n x m = 0 if and only if at least one of
n, m s equal to zero. In particular, if n and m are both positive,
then nm is also positive.

Proof. See Exercise 2.3.2. O

Proposition 2.3.4 (Distributive law). For any natural numbers
a,b,c, we have a(b+ ¢) = ab+ ac and (b+ ¢)a = ba + ca.

Proof. Since multiplication is commutative we only need to show
the first identity a(b + ¢) = ab + ac. We keep a and b fixed,
and use induction on ¢. Let’s prove the base case ¢ = 0, i.e.,
a(b+ 0) = ab+ a0. The left-hand side is ab, while the right-hand
side is ab+ 0 = ab, so we are done with the base case. Now let us
suppose inductively that a(b+ c) = ab+ ac, and let us prove that
a(b+ (c++)) = ab+ a(c++). The left-hand side is a((b+ ¢)++) =
a(b+c) +a, while the right-hand side is ab+ac+a = a(b+c¢)+a by
the induction hypothesis, and so we can close the induction. [

Proposition 2.3.5 (Multiplication is associative). For any nat-
ural numbers a,b,c, we have (a X b) x c=a x (b X ¢).

Proof. See Exercise 2.3.3. O

Proposition 2.3.6 (Multiplication preserves order). If a,b are
natural numbers such that a < b, and c is positive, then ac < be.
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Proof. Since a < b, we have b = a + d for some positive d. Multi-
plying by ¢ and using the distributive law we obtain bc = ac + dc.
Since d is positive, and c is non-zero (hence positive), dc is posi-
tive, and hence ac < bc as desired. O

Corollary 2.3.7 (Cancellation law). Let a, b, ¢ be natural numbers
such that ac = bc and c is non-zero. Then a = b.

Remark 2.3.8. Just as Proposition 2.2.6 will allow for a “vir-
tual subtraction” which will eventually let us define genuine sub-
traction, this corollary provides a “virtual division” which will be
needed to define genuine division later on.

Proof. By the trichotomy of order (Proposition 2.2.13), we have
three cases: a < b, a = b, a > b. Suppose first that a < b, then by
Proposition 2.3.6 we have ac < bc, a contradiction. We can obtain
a similar contradiction when a > b. Thus the only possibility is
that a = b, as desired. ]

With these propositions it is easy to deduce all the familiar
rules of algebra involving addition and multiplication, see for in-
stance Exercise 2.3.4.

Now that we have the familiar operations of addition and mul-
tiplication, the more primitive notion of increment will begin to
fall by the wayside, and we will see it rarely from now on. In any
event we can always use addition to describe incrementation, since
n++=n+1.

Proposition 2.3.9 (Euclidean algorithm). Let n be a natural
number, and let q be a positive number. Then there exist natural
numbers m, r such that 0 <r < q and n =mq+r.

Remark 2.3.10. In other words, we can divide a natural number
n by a positive number ¢ to obtain a quotient m (which is another
natural number) and a remainder r (which is less than ¢). This
algorithm marks the beginning of number theory, which is a beau-
tiful and important subject but one which is beyond the scope of
this text.
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Proof. See Exercise 2.3.5. O

Just like one uses the increment operation to recursively define
addition, and addition to recursively define multiplication, one can
use multiplication to recursively define exponentiation:

Definition 2.3.11 (Exponentiation for natural numbers). Let m
be a natural number. To raise m to the power 0, we define m? :=
1. Now suppose recursively that m™ has been defined for some
natural number n, then we define m"™ := m" x m.

Examples 2.3.12. Thus for instance z! = z°

Xxr=1xzx=uz;
2?2 =z xz =2 xx; 23 =22 xz =z x 2 x z; and so forth. By
induction we see that this recursive definition defines z™ for all

natural numbers n.

We will not develop the theory of exponentiation too deeply
here, but instead wait until after we have defined the integers and
rational numbers; see in particular Proposition 4.3.10.

Ezercise 2.3.1. Prove Lemma 2.3.2. (Hint: modify the proofs of
Lemmas 2.2.2, 2.2.3 and Proposition 2.2.4).

Ezercise 2.3.2. Prove Lemma 2.3.3. (Hint: prove the second state-
ment first).

Ezercise 2.3.3. Prove Proposition 2.3.5. (Hint: modify the proof
of Proposition 2.2.5 and use the distributive law).

Ezercise 2.3.4. Prove the identity (a + b)? = a® + 2ab + b* for all
natural numbers a, b.

Ezercise 2.3.5. Prove Proposition 2.3.9. (Hint: Fix ¢ and induct
on n).



Chapter 3

Set theory

Modern analysis, like most of modern mathematics, is concerned
with numbers, sets, and geometry. We have already introduced
one type of number system, the natural numbers. We will intro-
duce the other number systems shortly, but for now we pause to
introduce the concepts and notation of set theory, as they will be
used increasingly heavily in later chapters. (We will not pursue a
rigourous description of Euclidean geometry in this text, prefer-
ring instead to describe that geometry in terms of the real number
system by means of the Cartesian co-ordinate system.)

While set theory is not the main focus of this text, almost
every other branch of mathematics relies on set theory as part of
its foundation, so it is important to get at least some grounding in
set theory before doing other advanced areas of mathematics. In
this chapter we present the more elementary aspects of axiomatic
set theory, leaving more advanced topics such as a discussion of
infinite sets and the axiom of choice to Chapter 8. A full treatment
of the finer subtleties of set theory (of which there are many!) is
unfortunately well beyond the scope of this text.

3.1 Fundamentals

In this section we shall set out some axioms for sets, just as we did
for the natural numbers. For pedagogical reasons, we will use a
somewhat overcomplete list of axioms for set theory, in the sense
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that some of the axioms can be used to deduce others, but there is
no real harm in doing this. We begin with an informal description
of what sets should be.

Definition 3.1.1. (Informal) We define a set A to be any un-
ordered collection of objects, e.g., {3,8,5,2} is a set. If z is
an object, we say that x is an element of A or x € A if z lies
in the collection; otherwise we say that z ¢ S. For instance,

3€{1,2,3,4,5} but 7 ¢ {1,2,3,4,5}.

This definition is intuitive enough, but it doesn’t answer a
number of questions, such as which collections of objects are con-
sidered to be sets, which sets are equal to other sets, and how one
defines operations on sets (e.g., unions, intersections, etc.). Also,
we have no axioms yet on what sets do, or what their elements
do. Obtaining these axioms and defining these operations will be
the purpose of the remainder of this section.

We first clarify one point: we consider sets themselves to be a
type of object.

Axiom 3.1 (Sets are objects). If A is a set, then A is also an
object. In particular, given two sets A and B, it is meaningful to
ask whether A is also an element of B.

Example 3.1.2. (Informal) The set {3,{3,4},4} is a set of three
distinct elements, one of which happens to itself be a set of two
elements. See Example 3.1.10 for a more formal version of this
example. However, not all objects are sets; for instance, we typ-
ically do not consider a natural number such as 3 to be a set.
(The more accurate statement is that natural numbers can be the
cardinalities of sets, rather than necessarily being sets themselves.
See Section 3.6.)

Remark 3.1.3. There is a special case of set theory, called “pure
set theory”, in which all objects are sets; for instance the number 0
might be identified with the empty set ) = {}, the number 1 might
be identified with {0} = {{}}, the number 2 might be identified
with {0,1} = {{},{{}}}, and so forth. From a logical point of
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view, pure set theory is a simpler theory, since one only has to
deal with sets and not with objects; however, from a conceptual
point of view it is often easier to deal with impure set theories
in which some objects are not considered to be sets. The two
types of theories are more or less equivalent for the purposes of
doing mathematics, and so we shall take an agnostic position as
to whether all objects are sets or not.

To summarize so far, among all the objects studied in mathe-
matics, some of the objects happen to be sets; and if x is an object
and A is a set, then either z € A is true or z € A is false. (If A is
not a set, we leave the statement x € A undefined; for instance,
we consider the statement 3 € 4 to neither be true or false, but
simply meaningless, since 4 is not a set.)

Next, we define the notion of equality: when are two sets con-
sidered to be equal? We do not consider the order of the ele-
ments inside a set to be important; thus we think of {3,8,5,2}
and {2,3,5,8} as the same set. On the other hand, {3,8,5,2}
and {3,8,5,2,1} are different sets, because the latter set contains
an element (1) that the former one does not. For similar reasons
{3,8,5,2} and {3,8,5} are different sets. We formalize this as a
definition:

Definition 3.1.4 (Equality of sets). Two sets A and B are equal,
A = B, iff every element of A is an element of B and vice versa.
To put it another way, A = B if and only if every element x of A
belongs also to B, and every element y of B belongs also to A.

Example 3.1.5. Thus, for instance, {1,2,3,4,5} and {3,4,2,1,5}
are the same set, since they contain exactly the same elements.
(The set {3,3,1,5,2,4,2} is also equal to {1,2,3,4,5}; the addi-
tional repetition of 3 and 2 is redundant as it does not further
change the status of 2 and 3 being elements of the set.)

One can easily verify that this notion of equality is reflexive,
symmetric, and transitive (Exercise 3.1.1). Observe that if x € A
and A = B, then z € B, by Definition 3.1.4. Thus the “is an
element of” relation € obeys the axiom of substitution (see Section
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12.7). Because of this, any new operation we define on sets will
also obey the axiom of substitution, as long as we can define that
operation purely in terms of the relation €. This is for instance the
case for the remaining definitions in this section. (On the other
hand, we cannot use the notion of the “first” or “last” element
in a set in a well-defined manner, because this would not respect
the axiom of substitution; for instance the sets {1,2,3,4,5} and
{3,4,2,1,5} are the same set, but have different first elements.)

Next, we turn to the issue of exactly which objects are sets
and which objects are not. The situation is analogous to how we
defined the natural numbers in the previous chapter; we started
with a single natural number, 0, and started building more num-
bers out of 0 using the increment operation. We will try something
similar here, starting with a single set, the empty set, and building
more sets out of the empty set by various operations. We begin
by postulating the existence of the empty set.

Axiom 3.2 (Empty set). There exists a set (), known as the empty
set, which contains no elements, i.e., for every object x we have

z&0.

The empty set is also denoted {}. Note that there can only
be one empty set; if there were two sets () and (' which were both
empty, then by Definition 3.1.4 they would be equal to each other
(why?).

If a set is not equal to the empty set, we call it non-empty. The
following statement is very simple, but worth stating nevertheless:

Lemma 3.1.6 (Single choice). Let A be a non-empty set. Then
there exists an object x such that © € A.

Proof. We prove by contradiction. Suppose there does not exist
any object z such that x € A. Then for all objects z, x ¢ A.
Also, by Axiom 3.2 we have z ¢ ). Thusz € A < =z € 0
(both statements are equally false), and so A = () by Definition
3.1.4. O

Remark 3.1.7. The above Lemma asserts that given any non-
empty set A, we are allowed to “choose” an element z of A which
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demonstrates this non-emptyness. Later on (in Lemma 3.5.12)
we will show that given any finite number of non-empty sets, say
Aq,..., Ay, it is possible to choose one element z1,...,z, from
each set Aq,..., A,; this is known as “finite choice”. However, in
order to choose elements from an infinite number of sets, we need
an additional axiom, the axiom of choice, which we will discuss in
Section 8.4.

Remark 3.1.8. Note that the empty set is not the same thing
as the natural number 0. One is a set; the other is a number.
However, it is true that the cardinality of the empty set is 0; see
Section 3.6.

If Axiom 3.2 was the only axiom that set theory had, then set
theory could be quite boring, as there might be just a single set
in existence, the empty set. We now make some further axioms
to enrich the class of sets we can make.

Axiom 3.3 (Singleton sets and pair sets). If a is an object, then
there exists a set {a} whose only element is a, i.e., for every object
y, y € {a} if and only if y = a; we refer to {a} as the singleton
set whose element is a. Furthermore, if a and b are objects, then
there exists a set {a,b} whose only elements are a and b; i.e., for
every object y, y € {a,b} if and only if y = a or y = b; we refer
to this set as the pair set formed by a and b.

Remarks 3.1.9. Just as there is only one empty set, there is
only one singleton set for each object a, thanks to Definition 3.1.4
(why?). Similarly, given any two objects a and b, there is only
one pair set formed by a and b. Also, Definition 3.1.4 also ensures
that {a,b} = {b,a} (why?) and {a,a} = {a} (why?). Thus the
singleton set axiom is in fact redundant, being a consequence of
the pair set axiom. Conversely, the pair set axiom will follow from
the singleton set axiom and the pairwise union axiom below (see
Lemma 3.1.12). One may wonder why we don’t go further and
create triplet axioms, quadruplet axioms, etc.; however there will
be no need for this once we introduce the pairwise union axiom
below.
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Examples 3.1.10. Since () is a set (and hence an object), so is
singleton set {(}}, i.e., the set whose only element is ), is a set (and
it is not the same set as @), {0} # @ (why?). So is the singleton set
{{0}} and the pair set {0, {0}} is also a set. These three sets are
all unequal to each other (Exercise 3.1.2).

As the above examples show, we now can create quite a few
sets; however, the sets we make are still fairly small (each set that
we can build consists of no more than two elements, so far). The
next axiom allows us to build somewhat larger sets than before.

Axiom 3.4 (Pairwise union). Given any two sets A, B, there
exists a set AU B, called the union AU B of A and B, whose
elements consists of all the elements which belong to A or B or
both. In other words, for any object x,

z€AUB < (z €A orzeB).

(Recall that “or” refers by default in mathematics to inclusive or:
“X orY is true” means that “either X is true, or'Y is true, or
both are true”.)

Example 3.1.11. Theset {1,2}U{2, 3} consists of those elements
which either lie on {1, 2} or in {2,3} or in both, or in other words
the elements of this set are simply 1, 2, and 3. Because of this,
we denote this set as {1,2} U{2,3} ={1,2,3}.

Note that if A, B, A" are sets, and A is equal to A’, then AUB is
equal to A'UB (why? One needs to use Axiom 3.4 and Definition
3.1.4). Similarly if B’ is a set which is equal to B, then AU B is
equal to AU B’. Thus the operation of union obeys the axiom of
substitution, and is thus well-defined on sets.

We now give some basic properties of unions.

Lemma 3.1.12. If a and b are objects, then {a,b} = {a} U {b}.
If A, B, C are sets, then the union operation is commutative (i.e.,
AUB = BUA) and associative (i.e., (AUB)UC = AU(BUC)).
Also, we have AUA=AUD=0UA = A.
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Proof. We prove just the associativity identity (AU B) U C =
AU (BUC), and leave the remaining claims to Exercise 3.1.3. By
Definition 3.1.4, we need to show that every element z of (AUB)U
C is an element of AU (B U C), and vice versa. So suppose first
that z is an element of (AUB)UC. By Axiom 3.4, this means that
at least one of x € AUB or z € C is true, so we divide into cases.
If z € C, then by Axiom 3.4 again x € B U C, and so by Axiom
3.4 again z € AU (B UC). Now suppose instead z € AU B, then
by Axiom 3.4 againz € Aorz € B. If x € Athenz € AU(BUC)
by Axiom 3.4, while if x € B then by two applications of Axiom
3.4 we have z € BUC and hence z € AU (BUC). Thus in all
cases we see that every element of (AUB)UC liesin AU (BUC).
A similar argument shows that every element of AU (B U C) lies
in (AUB)UC, and so (AUB)UC = AU(BUC) as desired. O

Because of the above lemma, we do not need to use parentheses
to denote multiple unions, thus for instance we can write AUBUC
instead of (AUB)UC or AU (BUC). Similarly for unions of four
sets, AUBUC U D, etc.

Remark 3.1.13. Note that while the operation of union has some
similarities with addition, the two operations are not identical. For
instance, {2} U {3} = {2,3} and 2 + 3 = 5, whereas {2} + {3} is
meaningless (addition pertains to numbers, not sets) and 2 U 3 is
also meaningless (union pertains to sets, not numbers).

This axiom allows us to define triplet sets, quadruplet sets, and
so forth: if a, b, c are three objects, we define {a, b, c} := {a}U{b}U
{c}; if a, b, ¢, d are four objects, then we define {a,b,c,d} := {a} U
{b}U{c}U{d}, and so forth. On the other hand, we are not yet in a
position to define sets consisting of n objects for any given natural
number n; this would require iterating the above construction
“n times”, but the concept of n-fold iteration has not yet been
rigourously defined. For similar reasons, we cannot yet define sets
consisting of infinitely many objects, because that would require
iterating the axiom of pairwise union infinitely often, and it is
not clear at this stage that one can do this rigourously. Later on,
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we will introduce other axioms of set theory which allow one to
construct arbitrarily large, and even infinite, sets.

Clearly, some sets seem to be larger than others. One way to
formalize this concept is through the notion of a subset.

Definition 3.1.14 (Subsets). Let A, B be sets. We say that A is
a subset of B, denoted A C B, iff every element of A is also an
element of B, i.e.

For any object x, z€ A = z€ B.

We say that A is a proper subset of B, denoted A C B,if AC B
and A # B.

Remark 3.1.15. Note that because these definitions involve only
the notions of equality and the “is an element of” relation, both
of which already obey the axiom of substitution, the notion of
subset also automatically obeys the axiom of substitution. Thus
for instance if A C B and A = A’, then A’ C B.

Examples 3.1.16. We have {1,2,4} C {1,2,3,4,5}, because
every element of {1,2,4} is also an element of {1,2,3,4,5}. In fact
we also have {1,2,4} C {1,2,3,4,5}, since the two sets {1,2,4}
and {1,2,3,4,5} are not equal. Given any set A, we always have
A C A (why?) and ) C A (why?).

The notion of subset in set theory is similar to the notion of
“less than or equal to” for numbers, as the following Proposition
demonstrates (for a more precise statement, see Definition 8.5.1):

Proposition 3.1.17 (Sets are partially ordered by set inclusion).
Let A,B,C be sets. If AC B and B C C then A C C. If instead
ACBand BC A, then A= B. Finally, if AC B and B C C
then A C C.

Proof. We shall just prove the first claim. Suppose that A C B
and B C C. To prove that A C C, we have to prove that every
element of A is an element of C. So, let us pick an arbitrary
element z of A. Then, since A C B, x must then be an element
of B. But then since B C C, z is an element of C. Thus every
element of A is indeed an element of C, as claimed. O
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Remark 3.1.18. There is a relationship between subsets and
unions; see for instance Exercise 3.1.7.

Remark 3.1.19. There is one important difference between the
subset relation C and the less than relation <. Given any two
distinct natural numbers n, m, we know that one of them is smaller
than the other (Proposition 2.2.13); however, given two distinct
sets, it is not in general true that one of them is a subset of the
other. For instance, take A := {2n : n € N} to be the set of even
natural numbers, and B := {2n + 1 : n € N} to be the set of odd
natural numbers. Then neither set is a subset of the other. This
is why we say that sets are only partially ordered, whereas the
natural numbers are totally ordered (see Definitions 8.5.1, 8.5.3).

Remark 3.1.20. We should also caution that the subset relation
C is not the same as the element relation €. The number 2 is
an element of {1,2,3}, thus 2 € {1,2,3}, but is not a subset of
{1,2,3}, 2 € {1,2,3}; indeed, 2 is not even a set. Conversely,
while {2} is a subset of {1,2,3}, {2} C {1,2,3}, it is not an
element, {2} ¢ {1,2,3}. The point is that the number 2 and the
set {2} are distinct objects. It is important to distinguish sets from
their elements, as they can have different properties. For instance,
it is possible to have an infinite set consisting of finite numbers
(the set N of natural numbers is one such example), and it is also
possible to have a finite set consisting of infinite objects (consider
for instance the set {N,Z, Q,R}, which has four elements, all of
which are infinite).

We now give an axiom which easily allows us to create subsets
out of larger sets.

Axiom 3.5 (Axiom of specification). Let A be a set, and for each
x € A, let P(z) be a property pertaining to = (i.e., P(x) is either
a true statement or a false statement). Then there exists a set,
called {z € A : P(z) is true} (or simply {x € A: P(z)} for short),
whose elements are precisely the elements x in A for which P(z)
is true. In other words, for any object vy,

ye{x € A: P(z) is true} < (y € A and P(y) is true.)
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This axiom is also known as the aziom of separation. Note that
{z € A: P(z) is true} is always a subset of A (why?), though it
could be as large as A or as small as the empty set. One can
verify that the axiom of substitution works for specification, thus
if A=A"then{z € A: P(z)} ={z € A" : P(z)} (why?).

Example 3.1.21. Let S := {1,2,3,4,5}. Then the set {n € S :
n < 4} is the set of those elements n in S for which n < 4 is true,
ie,{neS:n<4}={1,2,3}. Similarly, theset {n € S:n <7}
is the same as S itself, while {n € S : n < 1} is the empty set.

We sometimes write {x € A‘P(x)} instead of {z € A: P(x)};

this is useful when we are using the colon “:” to denote something
else, for instance to denote the range and domain of a function
f: X-=>Y).

We can use this axiom of specification to define some further
operations on sets, namely intersections and difference sets.

Definition 3.1.22 (Intersections). The intersection S1 N Sy of
two sets is defined to be the set

SlﬂSQZZ{.’EESl:.TESQ}.

In other words, S1 N S consists of all the elements which belong
to both S; and S,. Thus, for all objects x,

z€SINSy < z€S]and z € 5,.

Remark 3.1.23. Note that this definition is well-defined (i.e., it
obeys the axiom of substitution, see Section 12.7) because it is
defined in terms of more primitive operations which were already
known to obey the axiom of substitution. Similar remarks apply to
future definitions in this chapter and will usually not be mentioned
explicitly again.

Examples 3.1.24. We have {1,2,4} N{2,3,4} = {2,4}, {1,2} N
{3,4} =0, {2,3} UD ={2,3}, and {2,3} N0 = 0.
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Remark 3.1.25. By the way, one should be careful with the
English word “and”: rather confusingly, it can mean either union
or intersection, depending on context. For instance, if one talks
about a set of “boys and girls”, one means the union of a set of
boys with a set of girls, but if one talks about the set of people who
are single and male, then one means the intersection of the set of
single people with the set of male people. (Can you work out the
rule of grammar that determines when “and” means union and
when “and” means intersection?) Another problem is that “and”
is also used in English to denote addition, thus for instance one
could say that “2 and 3 is 5”, while also saying that “the elements
of {2} and the elements of {3} form the set {2,3}” and “the el-
ements in {2} and {3} form the set §”. This can certainly get
confusing! One reason we resort to mathematical symbols instead
of English words such as “and” is that mathematical symbols al-
ways have a precise and unambiguous meaning, whereas one must
often look very carefully at the context in order to work out what
an English word means.

Two sets A, B are said to be disjoint if AN B = (. Note
that this is not the same concept as being distinct, A # B. For
instance, the sets {1,2,3} and {2, 3,4} are distinct (there are el-
ements of one set which are not elements of the other) but not
disjoint (because their intersection is non-empty). Meanwhile, the
sets () and () are disjoint but not distinct (why?).

Definition 3.1.26 (Difference sets). Given two sets A and B, we
define the set A — B or A\B to be the set A with any elements of
B removed:

A-B:={zecA:z ¢ B}
for instance, {1,2,3,4}\{2,4,6} = {1,3}. In many cases B will
be a subset of A, but not necessarily.

We now give some basic properties of unions, intersections,
and difference sets.

Proposition 3.1.27 (Sets form a boolean algebra). Let A, B,C
be sets, and let X be a set containing A, B,C as subsets.
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(Minimal element) We have AUD = A and ANQ = 0.

(Mazimal element) We have AUX =X and ANX = A.

(Identity) We have ANA=A and AUA = A.

(Commutativity) We have AUB = BUA and ANB = BNA.

(Associativity) We have (AUB)UC = AU (BUC) and
(ANB)NC=ANn(BNC).

(Distributivity) We have AN (BUC) = (ANB)U(ANCQC)
and AU(BNC)=(AUB)N(AUC).

(Partition) We have AU (X\A) = X and AN (X\A) = 0.

(De Morgan laws) We have X\(AU B) = (X\A) N (X\B)
and X\(AN B) = (X\4) U(X\B).

Remark 3.1.28. The de Morgan laws are named after the lo-
gician Augustus De Morgan (1806-1871), who identified them as
one of the basic laws of set theory.

Proof. We will prove just one law, that AU B = BU A, and leave
the remainder as an exercise (Exercise 3.1.6). We have to show
that every element of AU B is an element of BU A and vice versa.
But if z € AU B, then by Axiom 3.4 we know that x belongs to
A or to B or both. In either case it is clear that x belongs to B
or A or to both, hence z € BU A. Similarly if x € BU A then
x € AU B, and so the two sets are equal. U

Remark 3.1.29. The reader may observe a certain symmetry in
the above laws between U and N, and between X and (. This is
an example of duality - two distinct properties or objects being
dual to each other. In this case, the duality is manifested by
the complementation relation A — X\A; the de Morgan laws
assert that this relation converts unions into intersections and vice
versa. (It also interchanges X and the empty set). The above laws
are collectively known as the laws of Boolean algebra, after the
mathematician George Boole (1815-1864), and are also applicable
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to a number of other objects other than sets; it plays a particularly
important role in logic.

We have now accumulated a number of axioms and results
about sets, but there are still many things we are not able to do
yet. One of the basic things we wish to do with a set is take each of
the objects of that set, and somehow transform each such object
into a new object; for instance we may wish to start with a set
of numbers, say {3,5,9}, and increment each one, creating a new
set {4,6,10}. This is not something we can do directly using only
the axioms we already have, so we need a new axiom:

Axiom 3.6 (Replacement). Let A be a set. For any object x €
A, and any object y, suppose we have a statement P(x,y) per-
taining to x and vy, such that for each x € A there is at most
one y for which P(z,y) is true. Then there exists a set {y :
P(z,y) is true for some x € A}, such that for any object z,

z €{y : P(z,y) is true for some z € A}
<= P(xz,z) is true for some x € A.

Example 3.1.30. Let A := {3,5,9}, and let P(z,y) be the state-
ment y = z++, i.e., y is the successor of z. Observe that for every
x € A, there is exactly one y for which P(z,y) is true - specifi-
cally, the successor of x. Thus the above axiom asserts that the
set {y : y = z++ for some z € {3,5,9}} exists; in this case, it is
clearly the same set as {4,6,10} (why?).

Example 3.1.31. Let A = {3,5,9}, and let P(z,y) be the state-
ment y = 1. Then again for every z € A, there is exactly one y
for which P(z,y) is true - specifically, the number 1. In this case
{y : y = 1 for some z € {3,5,9}} is just the singleton set {1};
we have replaced each element 3,5,9 of the original set A by the
same object, namely 1. Thus this rather silly example shows that
the set obtained by the above axiom can be “smaller” than the
original set.

We often abbreviate a set of the form {y : y = f(x) for some z €
A} as {f(z) : = € A} or {f(z)|z € A}. Thus for instance, if
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A = {3,5,9}, then {z++ : =z € A} is the set {4,6,10}. We
can of course combine the axiom of replacement with the ax-
iom of specification, thus for instance we can create sets such as
{f(z) : x € A; P(x) is true} by starting with the set A, using the
axiom of specification to create the set {x € A : P(z) is true},
and then applying the axiom of replacement to create {f(z) : z €
A; P(z) is true}. Thus for instance {n++ :n € {3,5,9};n < 6} =
{4,6}.

In many of our examples we have implicitly assumed that nat-
ural numbers are in fact objects. Let us formalize this as follows.

Axiom 3.7 (Infinity). There ezists a set N, whose elements are
called natural numbers, as well as an object 0 in N, and an object
n—++ assigned to every natural number n € N, such that the Peano
azioms (Aziom 2.1 - 2.5) hold.

This is the more formal version of Assumption 2.6. It is called
the axiom of infinity because it introduces the most basic example
of an infinite set, namely the set of natural numbers N. (We will
formalize what finite and infinite mean in Section 3.6). From the
axiom of infinity we see that numbers such as 3, 5, 7, etc. are
indeed objects in set theory, and so (from the pair set axiom and
pairwise union axiom) we can indeed legitimately construct sets
such as {3,5,9} as we have been doing in our examples.

One has to keep the concept of a set distinct from the elements
of that set; for instance, the set {n +3:n € N,0 <n <5} is not
the same thing as the expression or function n 4+ 3. We emphasize
this with an example:

Example 3.1.32. (Informal) This example requires the notion
of subtraction, which has not yet been formally introduced. The
following two sets are equal,

{N+3:neN,0<n<5}={8—n:neN,0<n<5} (3.1)

(see below), even though the expressions n+ 3 and 8 —n are never
equal to each other for any natural number n. Thus, it is a good
idea to remember to put those curly braces {} in when you talk
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about sets, lest you accidentally confuse a set with its elements.
One reason for this counter-intuitive situation is that the letter
n is being used in two different ways on the two different sides
of (3.1). To clarify the situation, let us rewrite the set {8 — n :
n € N,0 < n < 5} by replacing the letter n by the letter m, thus
giving {8 —m :m € N,0 < m < 5}. This is exactly the same set
as before (why?), so we can rewrite (3.1) as

{n+3:mneN,0<n<5}={8—m:meN,0<m <5}

Now it is easy to see (using (3.1.4)) why this identity is true: every
number of the form n + 3, where n is a natural number between
0 and 5, is also of the form 8 —m where m := 5 — n (note that m
is therefore also a natural number between 0 and 5); conversely,
every number of the form 8 — m, where n is a natural number
between 0 and 5, is also of the form n + 3, where n := 5 —m (note
that n is therefore a natural number between 0 and 5). Observe
how much more confusing the above explanation of (3.1) would
have been if we had not changed one of the n’s to an m first!

Ezercise 3.1.1. Show that the definition of equality in (3.1.4) is
reflexive, symmetric, and transitive.

Exercise 3.1.2. Using only Definition 3.1.4, Axiom 3.2, and Axiom
3.3, prove that the sets 0, {0}, {{0}}, and {0, {0}} are all distinct
(i.e., no two of them are equal to each other).

Ezercise 3.1.3. Prove the remaining claims in Lemma 3.1.12.

Ezercise 3.1.4. Prove the remaining claims in Proposition 3.1.17.
(Hint: one can use the first three claims to prove the fourth.)

Ezercise 3.1.5. Let A, B be sets. Show that the three statements
ACB, AUB = B, AN B = A are logically equivalent (any one
of them implies the other two).

Exercise 3.1.6. Prove the remaining claims in Proposition 3.1.27.

(Hint: one can use some of these claims to prove others. Some of
the claims have also appeared previously in Lemma 3.1.12).

Ezercise 3.1.7. Let A, B,C be sets. Show that AN B C A and
AN B C B. Furthermore, show that C' C A and C' C B if and
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only if C C AN B. In a similar spirit, show that A C AU B and
B C AU B, and furthermore that A C C and B C C if and only
if AUB C C.

Ezercise 3.1.8. Let A, B be sets. Prove the absorption laws AN
(AUB)=Aand AU(ANB) = A.

Ezercise 3.1.9. Let A, B, X be sets such that AU B = X and
ANB ={. Show that A = X\B and B = X\A.

FEzercise 3.1.10. Let A and B be sets. Show that the three sets
A\B, AN B, and B\A are disjoint, and that their union is AU B.

Ezercise 3.1.11. Show that the axiom of replacement implies the
axiom of specification.

3.2 Russell’s paradox (Optional)

Many of the axioms introduced in the previous section have a
similar flavor: they both allow us to form a set consisting of all the
elements which have a certain property. They are both plausible,
but one might think that they could be unified, for instance by
introducing the following axiom:

Axiom 3.8 (Universal specification). (Dangerous!) Suppose for
every object x we have a property P(x) pertaining to x (so that
for every x, P(x) is either a true statement or a false statement).
Then there ezists a set {z : P(z) is true} such that for every object
y?

y € {z : P(z) is true} <= P(y) is true.

This axiom is also known as the aziom of comprehension. It as-
serts that every property corresponds to a set; if we assumed that
axiom, we could talk about the set of all blue objects, the set of all
natural numbers, the set of all sets, and so forth. This axiom also
implies most of the axioms in the previous section (Exercise 3.2.1).
Unfortunately, this axiom cannot be introduced into set theory,
because it creates a logical contradiction known as Russell’s para-
doz, discovered by the philosopher and logician Bertrand Russell



3.2. Russell’s paradoz (Optional) 53

(1872-1970) in 1901. The paradox runs as follows. Let P(z) be
the statement

P(z) <= “zisaset, and z ¢ z'’;

i.e., P(x) is true only when z is a set which does not contain itself.
For instance, P({2,3,4}) is true, since the set {2,3,4} is not one
of the three elements 2, 3, 4 of {2,3,4}. On the other hand, if we
let S be the set of all sets (which would we know to exist from
the axiom of universal specification), then since S is itself a set,
it is an element of S, and so P(S) is true. Now use the axiom of
universal specification to create the set

Q:={z: P(z) is true} = {z : z is a set and = ¢ =},

i.e., the set of all sets which do not contain themselves. Now ask
the question: does () contain itself, i.e. is 2 € Q7 If Q did contain
itself, then by definition this means that P(Q) is true, i.e., Q is
a set and Q € Q. On the other hand, if {2 did not contain itself,
then P(€2) would be true, and hence Q € Q. Thus in either case
we have both Q € Q) and Q ¢ €2, which is absurd.

The problem with the above axiom is that it creates sets which
are far too “large” - for instance, we can use that axiom to talk
about the set of all objects (a so-called “universal set”). Since
sets are themselves objects (Axiom 3.1), this means that sets are
allowed to contain themselves, which is a somewhat silly state of
affairs. One way to informally resolve this issue is to think of
objects as being arranged in a hierarchy. At the bottom of the
hierarchy are the primitive objects - the objects that are not sets',
such as the natural number 37. Then on the next rung of the
hierarchy there are sets whose elements consist only of primitive
objects, such as {3,4, 7} or the empty set (§, let’s call these “primi-
tive sets” for now. Then there are sets whose elements consist only
of primitive objects and primitive sets, such as {3,4,7,{3,4,7}}.
Then we can form sets out of these objects, and so forth. The

In pure set theory, there will be no primitive objects, but there will be
one primitive set § on the next rung of the hierarchy.
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point is that at each stage of the hierarchy we only see sets whose
elements consist of objects at lower stages of the hierarchy, and so
at no stage do we ever construct a set which contains itself.

To actually formalize the above intuition of a hierarchy of ob-
jects is actually rather complicated, and we will not do so here.
Instead, we shall simply postulate an axiom which ensures that
absurdities such as Russell’s paradox do not appear.

Axiom 3.9 (Regularity). If A is a non-empty set, then there is
at least one element x of A which is either not a set, or is disjoint

from A.

The point of this axiom (which is also known as the aziom
of foundation) is that it is asserting that at least one of the el-
ements of A is so low on the hierarchy of objects that it does
not contain any of the other elements of A. For instance, if
A ={{3,4},{3,4,{3,4}}}, then the element {3,4} € A does not
contain any of the elements of A (neither 3 nor 4 lies in A), al-
though the element {3,4,{3,4}}, being somewhat higher in the
hierarchy, does contain an element of A, namely {3,4}. One par-
ticular consequence of this axiom is that sets are no longer allowed
to contain themselves (Exercise 3.2.2).

One can legitimately ask whether we really need this axiom
in our set theory, as it is certainly less intuitive than our other
axioms. For the purposes of doing analysis, it turns out in fact
that this axiom is never needed; all the sets we consider in analysis
are typically very low on the hierarchy of objects, for instance
being sets of primitive objects, or sets of sets of primitive objects,
or at worst sets of sets of sets of primitive objects. However it is
necessary to include this axiom in order to perform more advanced
set theory, and so we have included this axiom in the text (but in
an optional section) for sake of completeness.

Exzxercise 3.2.1. Show that the universal specification axiom, Ax-
iom 3.8, if assumed to be true, would imply Axioms 3.2, 3.3, 3.4,
3.5, and 3.6. (If we assume that all natural numbers are objects,
we also obtain Axiom 3.7). Thus, this axiom, if permitted, would
simplify the foundations of set theory tremendously (and can be
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viewed as one basis for an intuitive model of set theory known as
“naive set theory”). Unfortunately, as we have seen, Axiom 3.8 is
“too good to be true”!

Ezercise 3.2.2. Use the axiom of regularity (and the singleton set
axiom) to show that if A is a set, then A ¢ A. Furthermore, show
that if A and B are two sets, then either A ¢ B or B ¢ A (or
both).

Ezercise 3.2.3. Show (assuming the other axioms of set theory)
that the universal specification axiom, Axiom 3.8, is equivalent
to an axiom postulating the existence of a “universal set” €2 con-
sisting of all objects (i.e., for all objects z, we have z € ). In
other words, if Axiom 3.8 is true, then a universal set exists, and
conversely, if a universal set exists, then Axiom 3.8 is true. (This
may explain why Axiom 3.8 is called the axiom of universal spec-
ification). Note that if a universal set 2 existed, then we would
have €2 € © by Axiom 3.1, contradicting Exercise 3.2.2. Thus the
axiom of foundation specifically rules out the axiom of universal
specification.

3.3 Functions

In order to do analysis, it is not particularly useful to just have
the notion of a set; we also need the notion of a function from one
set to another. Informally, a function f : X — Y from one set
X to another set Y is an operation which assigns each element
(or “input”) z in X, a single element (or “output”) f(z) in Y; we
have already used this informal concept in the previous chapter
when we discussed the natural numbers. The formal definition is
as follows.

Definition 3.3.1 (Functions). Let X,Y be sets, and let P(z,y)
be a property pertaining to an object z € X and an object y € Y,
such that for every z € X, there is exactly one y € Y for which
P(z,y) is true (this is sometimes known as the vertical line test).
Then we define the function f : X — Y defined by P on the
domain X and range Y to be the object which, given any input
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z € X, assigns an output f(z) € Y, defined to be the unique
object f(x) for which P(z, f(z)) is true. Thus, for any z € X and
yey,

y= f(z) <= P(z,y) is true.

Functions are also referred to as maps or transformations, de-
pending on the context. (They are also sometimes called mor-
phisms, although to be more precise, a morphism refers to a more
general class of object, which may or may not correspond to actual
functions, depending on the context).

Example 3.3.2. Let X = N, Y = N, and let P(z,y) be the
property that y = z++. Then for each £ € N there is exactly one
y for which P(z,y) is true, namely y = z4++. Thus we can define
a function f : N — N associated to this property, so that f(z) =
z++ for all z; this is the increment function on N, which takes
a natural number as input and returns its increment as output.
Thus for instance f(4) = 5, f(2n +3) = 2n + 4 and so forth.
One might also hope to define a decrement function g : N —
N associated to the property P(z,y) defined by y++ = =z, i.e.,
g(z) would be the number whose increment is z. Unfortunately
this does not define a function, because when x = 0 there is no
natural number y whose increment is equal to z (Axiom 2.3). On
the other hand, we can legitimately define a decrement function
h : N\{0} — N associated to the property P(z,y) defined by
y++ = z, because when =z € N\{0} there is indeed exactly one
natural number y such that y++ = z, thanks to Lemma 2.2.10.
Thus for instance h(4) = 3 and h(2n + 3) = h(2n +2), but k(0) is
undefined since 0 is not in the domain N\{0}.

Example 3.3.3. (Informal) This example requires the real num-
bers R, which we will define in Chapter 5. One could try to define
a square root function Vi R — R by associating it to the property
P(z,y) defined by y? = z, i.e., we would want /z to be the num-
ber y such that y?> = z. Unfortunately there are two problems
which prohibit this definition from actually creating a function.
The first is that there exist real numbers z for which P(z,y) is
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never true, for instance if £ = —1 then there is no real number
y such that y?> = z. This problem however can be solved by re-
stricting the domain from R to the right half-line [0, +00). The
second problem is that even when z € [0,+00), it is possible for
there to be more than one y in the range R for which y? = z, for
instance if £ = 4 then both y = 2 and y = —2 obey the property
P(z,y), i.e., both +2 and —2 are square roots of 4. This problem
can however be solved by restricting the range of R to [0, +00).
Once one does this, then one can correctly define a square root
function / : [0,+00) — [0,+00) using the relation y? = z, thus
V/Z is the unique number y € [0, +00) such that y? = =.

One common way to define a function is simply to specify its
domain, its range, and how one generates the output f(z) from
each input; this is known as an explicit definition of a function.
For instance, the function f in Example 3.3.2 could be defined
explicitly by saying that f has domain and range equal to N,
and f(z) := z++ for all z € N. In other cases we only define a
function f by specifying what property P(z,y) links the input z
with the output f(z); this is an implicit definition of a function.
For instance, the square root function 1/z in Example 3.3.3 was
defined implicitly by the relation (1/z)? = z. Note that an implicit
definition is only valid if we know that for every input there is
exactly one output which obeys the implicit relation. In many
cases we omit specifying the domain and range of a function for
brevity, and thus for instance we could refer to the function f in
Example 3.3.2 as “the function f(z) := z++”, “the function z
z++”, “the function z4+”, or even the extremely abbreviated
“4++”. However, too much of this abbreviation can be dangerous;
sometimes it is important to know what the domain and range of
the function is.

We observe that functions obey the axiom of substitution: if
z = z', then f(z) = f(z') (why?). In other words, equal in-
puts imply equal outputs. On the other hand, unequal inputs do
not necessarily ensure unequal outputs, as the following example
shows:
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Example 3.3.4. Let X = N, Y = N, and let P(z,y) be the
property that y = 7. Then certainly for every z € N there is
exactly one y for which P(z,y) is true, namely the number 7. Thus
we can create a function f : N — N associated to this property;
it is simply the constant function which assigns the output of
f(x) = 7 to each input x € N. Thus it is certainly possible for
different inputs to generate the same output.

Remark 3.3.5. We are now using parentheses () to denote several
different things in mathematics; on one hand, we are using them to
clarify the order of operations (compare for instance 2+ (3 x 4) =
14 with (2 + 3) x 4 = 20), but on the other hand we also use
parentheses to enclose the argument f(z) of a function or of a
property such as P(z). However, the two usages of parentheses
usually are unambiguous from context. For instance, if a is a
number, then a(b+ ¢) denotes the expression a x (b + ¢), whereas
if f is a function, then f(b+ c) denotes the output of f when the
input is b + ¢. Sometimes the argument of a function is denoted
by subscripting instead of parentheses; for instance, a sequence of
natural numbers ag, a1, a2,as, ... is, strictly speaking, a function
from N to N, but is denoted by n — a, rather than n +— a(n).

Remark 3.3.6. Strictly speaking, functions are not sets, and sets
are not functions; it does not make sense to ask whether an object
z is an element of a function f, and it does not make sense to
apply a set A to an input z to create an output A(z). On the
other hand, it is possible to start with a function f : X — Y
and construct its graph {(z, f(z)) : x € X}, which describes the
function completely: see Section 3.5.

We now define some basic concepts and notions for functions.
The first notion is that of equality.

Definition 3.3.7 (Equality of functions). Two functions f : X —
Y, g : X — Y with the same domain and range are said to be
equal, f = g, if and only if f(z) = g(z) for all x € X. (If f(z)
and g(z) agree for some values of z, but not others, then we do
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not consider f and g to be equal?.)

Example 3.3.8. The functions x — z%2+2z+1 and z +— (7 +1)?
are equal on the domain R. The functions z — z and z — ||
are equal on the positive real axis, but are not equal on R; thus
the concept of equality of functions can depend on the choice of
domain.

Example 3.3.9. A rather boring example of a function is the
empty function f : ) — X from the empty set to an arbitrary
set X. Since the empty set has no elements, we do not need
to specify what f does to any input. Nevertheless, just as the
empty set is a set, the empty function is a function, albeit not
a particularly interesting one. Note that for each set X, there is
only one function from @ to X, since Definition 3.3.7 asserts that
all functions from () to X are equal (why?).

This notion of equality obeys the usual axioms (Exercise 3.3.1).
A fundamental operation available for functions is composition.

Definition 3.3.10 (Composition). Let f: X - Yandg:Y — Z
be two functions, such that the range of f is the same set as the
domain of g. We then define the composition go f : X — Z of the
two functions g and f to be the function defined explicitly by the
formula

(g0 f)(=) := g(f(2))-
If the range of f does not match the domain of g, we leave the
composition g o f undefined.

It is easy to check that composition obeys the axiom of sub-
stitution (Exercise 3.3.1).

Example 3.3.11. Let f : N — N be the function f(n) := 2n,
and let g : N — N be the function g(n) :=n + 3. Then go f is
the function

go f(n) =g(f(n)) = g(2n) = 2n +3,

Later on in this text, we shall introduce a weaker notion of equality, that of
two functions being equal almost everywhere. However, we will not encounter
this slightly different notion for a while yet.
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thus for instance g o f(1) =5, go f(2) =7, and so forth. Mean-
while, f o g is the function

fog(n) = flg(n) = F(n+3) = 2n+3) = 20 +6,
thus for instance f o g(1) =8, f o g(2) = 10, and so forth.

The above example shows that composition is not commuta-
tive: fog and gof are not necessarily the same function. However,
composition is still associative:

Lemma 3.3.12 (Composition is associative). Let f : X - Y, g:
Y - Z,and h: Z — W be functions. Then fo(goh) = (fog)oh.

Proof. Since g o h is a function from Y to W, fo(goh) is a
function from X to W. Similarly f o g is a function from X to Z,
and hence (f o g) o h is a function from X to W. Thus fo (goh)
and (f og)oh have the same domain and range. In order to check
that they are equal, we see from Definition 3.3.7 that we have to
verify that (fo(goh))(z) = ((fog)oh)(z) for all z € X. But by
Definition 3.3.10

(folgoh))(z)=f

as desired. O

Remark 3.3.13. Note that while g appears to the left of f in the
expression g o f, the function g o f applies the right-most function
f first, before applying g. This is often confusing at first; it arises
because we traditionally place a function f to the left of its input x
rather than to the right. (There are some alternate mathematical
notations in which the function is placed to the right of the input,
thus we would write zf instead of f(z), but this notation has
often proven to be more confusing than clarifying, and has not as
yet become particularly popular.)
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We now describe certain special types of functions: one-to-one
functions, onto functions, and invertible functions.

Definition 3.3.14 (One-to-one functions). A function f is one-
to-one (or injective) if different elements map to different elements:

z#1 = f(z)# (@)
Equivalently, a function is one-to-one if
fl@)=f") = =4

Example 3.3.15. (Informal) The function f : Z — Z defined
by f(n) := n? not one-to-one because the distinct elements —1,
1 map to the same element 1. On the other hand, if we restrict
this function to the natural numbers, defining the function g :
N — Z by g(n) := n?, then g is now a one-to-one function. Thus
the notion of a one-to-one function depends not just on what the
function does, but also what its domain is.

Remark 3.3.16. If a function f : X — Y is not one-to-one,
then one can find distinct z and z’ in the domain X such that
f(z) = f(z'), thus one can find two inputs which map to one
output. Because of this, we say that f is two-to-one instead of
one-to-one.

Definition 3.3.17 (Onto functions). A function f is onto (or sur-
jective) if f(X) =Y, i.e., every element in Y comes from applying
f to some element in X:

For every y € Y, there exists € X such that f(z) = y.

Example 3.3.18. (Informal) The function f : Z — Z defined
by f(n) := n? not onto because the negative numbers are not
in the image of f. However, if we restrict the range Z to the set
A = {n?: n € Z} of square numbers, then the function g : Z — A
defined by g(n) := n? is now onto. Thus the notion of an onto
function depends not just on what the function does, but also

what its range is.
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Remark 3.3.19. The concepts of injectivity and surjectivity are
in many ways dual to each other; see Exercises 3.3.2, 3.3.4, 3.3.5
for some evidence of this.

Definition 3.3.20 (Bijective functions). Functions f : X — Y
which are both one-to-one and onto are also called bijective or
invertible.

Example 3.3.21. Let f : {0,1,2} — {3,4} be the function
f(0) == 3, f(1) :== 3, f(2) := 4. This function is not bijec-
tive because if we set y = 3, then there is more than one z in
{0,1,2} such that f(z) =y (this is a failure of injectivity). Now
let g : {0,1} — {2,3,4} be the function ¢g(0) := 2, ¢g(1) := 3;
then ¢ is not bijective because if we set y = 4, then there is no
z for which g(z) = y (this is a failure of surjectivity). Now let
h :{0,1,2} — {3,4,5} be the function h(0) := 3, h(1) = 4,
h(2) := 5. Then h is bijective, because each of the elements 3, 4,
5 comes from exactly one element from 0, 1, 2.

Example 3.3.22. The function f : N — N\{0} defined by
f(n) := n++ is a bijection (in fact, this fact is simply restating
Axioms 2.2, 2.3, 2.4). On the other hand, the function g : N - N
defined by the same definition g(n) := n++ is not a bijection.
Thus the notion of a bijective function depends not just on what
the function does, but also what its range (and domain) are.

Remark 3.3.23. If a function z — f(x) is bijective, then we
sometimes call f a perfect matching or one-to-one correspondence
(not to be confused with the notion of a one-to-one function), and
denote the action of f using the notation = <> f(z) instead of
z — f(z). Thus for instance the function h in the above example
is the one-to-one correspondence 0 <+ 3, 1 <> 4, 2 <> 5.

Remark 3.3.24. A common error is to say that a function f :
X — Y is bijective iff “for every x in X, there is exactly one y
in Y such that y = f(z).” This is not what it means for f to be
bijective; it is what it means for f to be a function: each input
gives exactly one output. A function cannot map one element to
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two different elements, for instance one cannot have a function f
for which f(0) = 1 and also f(0) = 2. The functions f, g given in
the previous example are not bijective, but they are still functions,
since each input still gives exactly one output.

If f is bijective, then for every y € Y, there is exactly one x
such that f(z) = y (there is at least one because of surjectivity,
and at most one because of injectivity). This value of z is denoted
f1(y); thus f ! is a function from Y to X.

Ezercise 3.3.1. Show that the definition of equality in Definition
3.3.7 is reflexive, symmetric, and transitive. Also verify the sub-
stitution property: if f, f: X — Y and g, : Y — Z are functions
such that f = f and g = §, then fog= fo .

Ezercise 3.3.2. Let f: X - Y and g: Y — Z be functions. Show
that if f and g are both injective, then so is g o f; similarly, show
that if f and g are both surjective, then so is g o f.

Exercise 3.3.3. When is the empty function injective? surjective?
bijective?

Ezercise 3.3.4. In this section we give some cancellation laws for
composition. Let f: X - Y, f: X Y, g:Y — Z, and
G :Y — Z be functions. Show that if go f = go f and g is
injective, then f = f. Is the same statement true if g is not
injective? Show that if go f = go f and f is surjective, then
g = g. Is the same statement true if f is not surjective?

Exercise 3.3.5. Let f: X - Y and g: Y — Z be functions. Show
that if g o f is injective, then f must be injective. Is it true that
g must also be injective? Show that if g o f is surjective, then g
must be surjective. Is it true that f must also be surjective?
Exercise 3.3.6. Let f : X — Y be a bijective function, and
let f~' :' Y — X be its inverse. Verify the cancellation laws
Y f(z)) =z forall z € X and f(f~(y)) =y forally € Y.
Conclude that f~! is also invertible, and has f as its inverse (thus
(fH =1

Ezxercise 3.3.7. Let f : X — Y and g : Y — Z be functions.
Show that if f and g are bijective, then so is g o f, and we have
(gof) t=f"tog™
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Ezercise 3.3.8. If X is a subset of Y, let tx_,y : X — Y be the
inclusion map from X to Y, defined by mapping x — z for all
z € X, ie., tx5y(z) := z for all z € X. The map tx_x is in
particular called the identity map on X.

e Show that if X CY C Z then 1y sz 0txy = tx_27.

e Show that if f : A — B is any function, then f = foig_,4 =
tpsBo f.

e Show that, if f : A — B is a bijective function, then f o
fl=ipspand flof =144

e Show that if X and Y are disjoint sets, and f : X — Z and
g : Y — Z are functions, then there is a unique function A :
XUY — Z such that hovx_,xuy = f and howy ,xuy = g.

3.4 Images and inverse images

We know that a function f: X — Y from a set X to a set Y can
take individual elements z € X to elements f(z) € Y. Functions
can also take subsets in X to subsets in Y:

Definition 3.4.1 (Images of sets). If f : X — Y is a function
from X to Y, and S is a set in X, we define f(S) to be the set

f(8) = {f(z): 2 €S}

this set is a subset of Y, and is sometimes called the image of S
under the map f. We sometimes call f(S) the forward image of
S to distinguish it from the concept of the inverse image f~1(S)
of S, which is defined below.

Note that the set f(S) is well-defined thanks to the axiom
of replacement (Axiom 3.6). One can also define f(S) using the
axiom of specification (Axiom 3.5) instead of replacement, but we
leave this as a challenge to the reader.
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Example 3.4.2. If f : N — N is the map f(z) = 2z, then the
forward image of {1,2,3} is {2,4,6}:
f({1,2,3}) ={2,4,6}.

More informally, to compute f(S), we take every element z of S,
and apply f to each element individually, and then put all the
resulting objects together to form a new set.

In the above example, the image had the same size as the
original set. But sometimes the image can be smaller, because f
is not one-to-one (see Definition 3.3.14):

Example 3.4.3. (Informal) Let Z be the set of integers (which
we will define rigourously in the next section) and let f : Z — Z
be the map f(z) = z2, then

f({-1,0,1,2}) = {0,1,4}.
Note that f is not one-to-one because f(—1) = f(1).

Note that
zeS = f(x) € f(S)

but in general
flz) € f(S) # x €S

for instance in the above informal example, f(—2) isin f({—1,0,1,2}),
but —2 is not in {—1,0,1,2}. The correct statement is

y € f(S) < y = f(z) for some z € S
(why?).

Definition 3.4.4 (Inverse images). If U is a subset of Y, we define
the set f~1(U) to be the set

fHUU)={zeX: f(z) €U}

In other words, f~1(U) consists of all the stuff in X which maps
into U:
flz) €U <= z e fYU).

We call f~1(U) the inverse image of U.
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Example 3.4.5. If f : N — N is the map f(z) = 2z, then
F({1,2,3}) = {2,4,6}, but f~1({1,2,3}) = {1}. Thus the forward
image of {1,2,3} and the backwards image of {1,2,3} are quite
different sets. Also note that

FOFH{1,2,3)) # {1,2,3}
(why?).

Example 3.4.6. (Informal) If f : Z — Z is the map f(z) = =2,
then

f1({0,1,4}) = {-2,-1,0,1,2}.

Note that f does not have to be invertible in order for f1(U)
to make sense. Also note that images and inverse images do not
quite invert each other, for instance we have

fﬁl(f({_la 0,1, 2})) 7é {_1’0’ L, 2}
(why?).

Note that we have now defined f~! in two slightly different
ways, but this is not an issue because both definitions are equiv-
alent (Exercise 3.4.1).

As remarked earlier, functions are not sets. However, we do
consider functions to be a type of object, and in particular we
should be able to consider sets of functions. In particular, we
should be able to consider the set of all functions from a set X
to a set Y. To do this we need to introduce another axiom to set
theory:

Axiom 3.10 (Power set axiom). Let X andY be sets. Then there
exists a set, denoted Y, which consists of all the functions from
X toY, thus

feYX < (f is a function with domain X and range Y).

Example 3.4.7. Let X = {4,7} and Y = {0,1}. Then the set
YX consists of four functions: the function that maps 4 — 0 and
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7 +— 0; the function that maps 4 — 0 and 7 — 1; the function
that maps 4 — 1 and 7 — 0; and the function that maps 4 — 1
and 7 — 1. The reason we use the notation Y to denote this set
is that if Y has n elements and X has m elements, then one can
show that Y has n™ elements; see Proposition 3.6.13(f).

One consequence of this axiom is

Lemma 3.4.8. Let X be a set. Then the set
{Y :Y is a subset of X}

is a set.

Proof. See Exercise 3.4.6. O

Remark 3.4.9. The set {Y : Y is a subset of X} is known as
the power set of X and is denoted 2X. For instance, if a,b,c are
distinct objects, we have

glabel — {@, {a}, {b},{c},{a, b}, {a,c},{b,c},{a,b,c}}.

Note that while {a,b,c} has 3 elements, 2{®5¢} hag 23 = § ele-
ments. This gives a hint as to why we refer to the power set of X
as 2X; we return to this issue in Chapter 8.

For sake of completeness, let us now add one further axiom to
our set theory, in which we enhance the axiom of pairwise union
to allow unions of much larger collections of sets.

Axiom 3.11 (Union). Let A be a set, all of whose elements are
themselves sets. Then there exists a set | J A whose elements are
precisely those objects which are elements of the elements of A,
thus for all objects x

xEUA <= (z €8 for some S € A).

Example 3.4.10. If A = {{2,3},{3,4},{4,5}}, then JA =
{2,3,4,5} (why?).
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The axiom of union, combined with the axiom of pair set,
implies the axiom of pairwise union (Exercise 3.4.8). Another
important consequence of this axiom is that if one has some set
1, and for every element o € I we have some set A,, then we can

form the union set |J,c; Ao by defining

UAa ::U{Aa:aEI},

acl

which is a set thanks to the axiom of replacement and the axiom
of union. Thus for instance, if I = {1,2,3}, 41 := {2,3}, Ay :=
{3,4}, and A3 := {4,5}, then U cq1 03 Ao = {2,3,4,5}. More
generally, we see that for any object y,

Yy € UAO‘ < (y € A, for some a € I). (3.2)
acl

In situations like this, we often refer to I as an indez set, and the
elements « of this index set as labels; the sets A, are then called
a family of sets, and are indexed by the labels o € A. Note that
if I was empty, then |J,.; Ao would automatically also be empty
(why?).

We can similarly form intersections of families of sets, as long
as the index set is non-empty. More specifically, given any non-
empty set I, and given an assignment of a set A, to each a € I, we
can define the intersection [, ; Ao by first choosing some element
B of I (which we can do since I is non-empty), and setting

acl

(NAa:={z€As:zecA,foralacT} (3.3)
a€cl

which is a set by the axiom of specification. This definition may
look like it depends on the choice of 3, but it does not (Exercise
3.4.9). Observe that for any object v,

y€[)Aa < (y€Anforall acl) (3.4)
acl

(compare with (3.2)).
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Remark 3.4.11. The axioms of set theory that we have intro-
duced (Axioms 3.1-3.11, excluding the dangerous axiom Axiom
3.8) are known as the® Zermelo-Fraenkel azioms of set theory.
There is one further axiom we will eventually need, the famous
aziom of choice (see Section 8.4), giving rise to the Zermelo-
Fraenkel-Choice (ZFC) azioms of set theory, but we will not need
this axiom for some time.

Ezercise 3.4.1. Let f : X — Y be a bijective function, and let
f~1:Y — X be its inverse. Let V be any subset of Y. Prove that
the forward image of V under f ! is the same set as the inverse
image of V under f; thus the fact that both sets are denoted by
f1(V) will not lead to any inconsistency.

Exercise 3.4.2. Let f : X — Y be a function from one set X to
another set Y, let S be a subset of X, and let U be a subset of
Y. What, in general, can one say about f(f(S)) and S? What
about f(f~1(U)) and U?

Exzxercise 3.4.3. Let A, B be two subsets of a set X, and let f :
X — Y be a function. Show that f(AN B) C f(A) N f(B), that
fANS(B) C f(A\B), f(AUB) = f(A)U f(B). For the first two
statements, is it true that the C relation can be improved to =7

Ezercise 3.4.4. Let f : X — Y be a function from one set X to
another set Y, and let U,V be subsets of Y. Show that f~1(U U
V)=f HU)Uf 1(V), that fH(UNV) = fHU)Nf V), and
that f~H(U\V) = f~HU)\fH(V).

Exercise 3.4.5. Let f : X — Y be a function from one set X to
another set Y. Show that f(f~!(S)) = S for every S C Y if and
only if f is surjective. Show that f~(f(S)) = S for every S C X
if and only if f is injective.

Ezercise 3.4.6. Prove Lemma 3.4.8. (Hint: Start with the set
{0,1}* and apply the replacement axiom, replacing each function

f with f=1({1}).) This statement has a converse; see Exercise
3.5.11.

3These axioms are formulated slightly differently in other texts, but all the
formulations can be shown to be equivalent to each other.
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Ezercise 3.4.7. Let X,Y be sets. Define a partial function from
X to Y to be any function f : X' — Y’ whose domain X' is a
subset of X, and whose range Y is a subset of Y. Show that the
collection of all partial functions from X to Y is itself a set. (Hint:
use Exercise 3.4.6, the power set axiom, the replacement axiom,
and the union axiom.)

Ezxercise 3.4.8. Show that Axiom 3.4 can be deduced from Axiom
3.3 and Axiom 3.11.

Exercise 3.4.9. Show that if 8 and ' are two elements of a set I,
and to each o € I we assign a set A,, then

{redg:zcAyforallael} ={z € Ag :z € A, forall a € I},

and so the definition of (,.; An defined in (3.3) does not depend
on 3. Also explain why (3.4) is true.

Ezercise 3.4.10. Suppose that I and J are two sets, and for all
a € TUJ let A, be a set. Show that (Uyer4a) U (Uges 4a) =
Uaecrus Aa- If I and J are non-empty, show that ((),c; Aa) N
(Naes Aa) = Naerus Ao

Ezercise 3.4.11. Let X be a set, let I be a non-empty set, and for
all @ € I let A, be a subset of X. Show that

X\ U Ao = n(X\Aa)

acl acl

and
X\ ﬂ A = U(X\Aa)'
acl acl
This should be compared with de Morgan’s laws in Proposition
3.1.27 (although one cannot derive the above identities directly
from de Morgan’s laws, as I could be infinite).

3.5 Cartesian products

In addition to the basic operations of union, intersection, and dif-
ferencing, another fundamental operation on sets is that of Carte-
sian product.
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Definition 3.5.1 (Ordered pair). If z and y are any objects (pos-
sibly equal), we define the ordered pair (z,y) to be a new object,
consisting of z as its first component and y as its second compo-
nent. Two ordered pairs (z,y) and (z,7") are considered equal if
and only if both their components match, i.e.

(z,y) = (¢',y) < (z=412"and y =1/). (3.5)

This obeys the usual axioms of equality (Exercise 3.5.3). Thus for
instance, the pair (3,5) is equal to the pair (2 + 1,3 + 2), but is
distinct from the pairs (5, 3), (3,3), and (2,5). (This is in contrast
to sets, where {3,5} and {5, 3} are equal).

Remark 3.5.2. Strictly speaking, this definition is partly an ax-
iom, because we have simply postulated that given any two objects
z and y, that an object of the form (z,y) exists. However, it is
possible to define an ordered pair using the axioms of set theory
in such a way that we do not need any further postulates (see
Exercise 3.5.1).

Remark 3.5.3. We have now “overloaded” the parenthesis sym-
bols () once again; they now are not only used to denote grouping
of operators and arguments of functions, but also to enclose or-
dered pairs. This is usually not a problem in practice as one can
still determine what usage the symbols () were intended for from
context.

Definition 3.5.4 (Cartesian product). If X and Y are sets, then
we define the Cartesian product X X Y to be the collection of
ordered pairs, whose first component lies in X and second com-
ponent lies in Y, thus

XxY={(z,y):zeX,yeY}
or equivalently

a€(XxY) < (a=(z,y) forsome z € X andy €Y).
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Remark 3.5.5. We shall simply assume that our notion of or-
dered pair is such that whenever X and Y are sets, the Cartesian
product X x Y is also a set. This is however not a problem in
practice; see Exercise 3.5.1.

Example 3.5.6. If X := {1,2} and Y := {3,4,5}, then
X X Y = {(]‘7 3)7 (174)7 (1’5)’ (2’ 3)7 (2’ 4)7 (27 5)}

and
Y x X ={(3,1),(4,1),(5,1),(3,2),(4,2),(5,2)}.

Thus, strictly speaking, X XY and Y x X are different sets, al-
though they are very similar. For instance, they always have the
same number of elements (Exercise 3.6.5).

Let f: X XY — Z be a function whose domain X XY is a
Cartesian product of two other sets X and Y. Then f can either be
thought of as a function of one variable, mapping the single input
of an ordered pair (z,y) in X XY to an output f(z,y) in Z, or as
a function of two variables, mapping an input € X and another
input y € Y to a single output f(z,y) in Z. While the two notions
are technically different, we will not bother to distinguish the two,
and think of f simultaneously as a function of one variable with
domain X x Y and as a function of two variables with domains X
and Y. Thus for instance the addition operation + on the natural
numbers can now be re-interpreted as a function + : N x N — N,
defined by (z,y) — = + y.

One can of course generalize the concept of ordered pairs to
ordered triples, ordered quadruples, etc:

Definition 3.5.7 (Ordered n-tuple and n-fold Cartesian prod-
uct). Let n be a natural number. An ordered n-tuple (z;)i1<i<n
(also denoted (z1,...,z,)) is a collection of objects z;, one for
every natural number i between 1 and n; we refer to z; as the '
component of the ordered n-tuple. Two ordered n-tuples (z;)1<i<n
and (y;)1<i<n are said to be equal iff z; = y; for all 1 <4 < n. If
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(Xi)1<i<n is an ordered n-tuple of sets, we define their Cartesian
product [],«,<, Xi (also denoted [];; X; or X; X ... x X;,) by

H X; = {(mi)lgign tx; € X foralll <i < n}
1<i<n

Again, this definition simply postulates that an ordered n-
tuple and a Cartesian product always exist when needed, but using
the axioms of set theory one can explicitly construct these objects
(Exercise 3.5.2).

Remark 3.5.8. One can show that [[,.;.,, X; is indeed a set,
by starting with the power set axiom to consider the set of all
functions ¢ — z; from the domain {1 < ¢ < n} to the range
Ui<i<n Xi, and then using the axiom of specification to restrict
to those functions ¢ — z; for which z; € X; for all 1 < 7 < n.
One can generalize this definition to infinite Cartesian products,
see Definition 8.4.1.

Example 3.5.9. Let a1, b1, az, b2, as, bs be objects, and let X1 :=
{a1,b1}, X9 := {ag, b2}, and X3 := {a3,b3}. Then we have

X1 X XQ X X3 :{(al,ag,ag), (al,ag,bg), (al,bz,a3), (al,bg,bg),
(b1, a2,a3), (b1, a2,b3), (b1, ba,a3), (b1, b2,b3)}
(Xl X Xg) X X3 =
{((a1,a2),a3),((a1,a2),bs), ((a1,b2), a3), ((a1, b2), b3),
((b1,a2),a3),((b1,a2),bs), ((b1,b2),a3), ((b1,b2),b3) }
X1 X (X2 X X3)
{(a1, (a2, a3)),(a1, (a2, b3)), (a1, (b2, a3)), (a1, (b2, b3)),
(b1, (a2, a3)),(b1, (a2, b3)), (b1, (b2,a3)), (b1, (b2, b3)) }

Thus, strictly speaking, the sets X x X9 x X3, (X1 X X3) x X3, and
X1 x (X9 x X3) are distinct. However, they are clearly very related
to each other (for instance, there are obvious bijections between
any two of the three sets), and it is common in practice to neglect
the minor distinctions between these sets and pretend that they
are in fact equal. Thus a function f : X7 X X3 X X3 — Y can be



74 3. Set theory

thought of as a function of one variable (z1, z2, z3) € X1 x X9 x X3,
or as a function of three variables ;1 € X, zo € Xo, z3 € X3,
or as a function of two variables z1 € X1, (z2,23) € X3, and so
forth; we will not bother to distinguish between these different
perspectives.

Remark 3.5.10. An ordered n-tuple z1, - . . , ,, of objects is some-
times also called an ordered sequence of n elements, or a finite
sequence for short. In Chapter 5 we shall also introduce the very
useful concept of an infinite sequence.

Example 3.5.11. If z is an object, then (z) is a 1-tuple, which
we shall identify with z itself (even though the two are, strictly
speaking, not the same object). Then if X; is any set, then the
Cartesian product [[,,.; X; is just X; (why?). Also, the empty
Cartesian product [],<;<o Xi gives, not the empty set {}, but
rather the singleton set {()} whose only element is the (empty)
0-tuple ().

If n is a natural number, we often write X™ as shorthand
for the n-fold Cartesian product X" := [[;;<, X. Thus X' is
essentially the same set as X (if we ignore the distinction between
an object z and the 1-tuple (x)), while X? is the Cartesian product
X x X. The set X is a singleton set {()} (why?).

We can now generalize the single choice lemma (Lemma 3.1.6)
to allow for multiple (but finite) number of choices.

Lemma 3.5.12 (Finite choice). Let n > 1 be a natural number,
and for each mnatural number 1 < i < n, let X; be a non-empty
set. Then there exists an n-tuple (z;)1<i<n such that z; € X; for
all 1 <4 < n. In other words, if each X; is non-empty, then the
set [11<i<p Xi s also non-empty.

Proof. We induct on n (starting with the base case n = 1; the
claim is also vacuously true with n = 0 but is not particularly
interesting in that case). When n = 1 the claim follows from
Lemma 3.1.6 (why?). Now suppose inductively that the claim has
already been proven for some n; we will now prove it for n-++.



3.5. Cartesian products 75

Let X1,..., X4+ be a collection of non-empty sets. By induction
hypothesis, we can find an n-tuple (z;)1<;<n such that z; € X; for
all 1 <4 < n. Also, since X, is non-empty, by Lemma 3.1.6 we
may find an object a such that a € X,4+. If we thus define the
n++-tuple (y;)1<i<n4t+ by setting y; := z; when 1 < i < n and
y; := a when ¢ = n++ it is clear that y; € X; for all 1 <1 < n+4+,
thus closing the induction. U

Remark 3.5.13. It is intuitively plausible that this lemma should
be extended to allow for an infinite number of choices, but this
cannot be done automatically; it requires an additional axiom, the
aziom of choice. See Section 8.4.

Ezercise 3.5.1. Suppose we define the ordered pair (z,y) for any
objects z and y by the formula (z,y) := {{z}, {z,y}} (thus using
several applications of Axiom 3.3). Thus for instance (1,2) is the
set {{1},{1,2}}, (2,1) is the set {{2},{2,1}}, and (1,1) is the
set {{1}}. Show that such a definition indeed obeys the property
(3.5), and also whenever X and Y are sets, the Cartesian product
X x Y is also a set. Thus this definition can be validly used as
a definition of an ordered pair. For an additional challenge, show
that the alternate definition (z,y) := {z, {z,y}} also verifies (3.5)
and is thus also an acceptable definition of ordered pair. (For this
latter task one needs the axiom of regularity, and in particular
Exercise 3.2.2.)

Ezercise 3.5.2. Suppose we define an ordered n-tuple to be a sur-
jective function z : {i € N : 1 <4 < n} — X whose range is
some arbitrary set X (so different ordered n-tuples are allowed
to have different ranges); we then write z; for z(z), and also
write  as (2;)1<i<n. Using this definition, verify that we have
(mi)lfign = (yz)lgzgn if and only if Ty = Y; for all 1 < 1 < n.
Also, show that if (X;)1<i<n are an ordered n-tuple of sets, then
the Cartesian product, as defined in Definition 3.5.7, is indeed a
set. (Hint: use Exercise 3.4.7 and the axiom of specification.)

Ezercise 3.5.3. Show that the definitions of equality for ordered

pair and ordered n-tuple obey the reflexivity, symmetry, and tran-
sitivity axioms.
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Ezercise 3.5.4. Let A, B,C be sets. Show that A x (BUC) =
(AxB)U(AxC), that Ax (BNC)=(AxB)N(AxC), and
that A x (B\C) = (A x B)\(4 x C). (One can of course prove
similar identities in which the roles of the left and right factors of
the Cartesian product are reversed.)

Ezercise 3.5.5. Let A, B,C, D be sets. Show that (A x B) N (C x
D)= (ANC)x(BND). Is it true that (Ax B)U(C x D) = (AU
C) x (BUD)? Is it true that (A x B)\(C x D) = (A\C) x (B\D)?
Exzercise 3.5.6. Let A, B,C, D be non-empty sets. Show that A x
BCCxDifand only if AC C and B C D, and that A x B =
C x D if and only if A = C and B = D. What happens if the
hypotheses that the A, B,C, D are all non-empty are removed?

Ezercise 3.5.7. Let X,Y be sets, and let mxxy_x : X XY = X
and Txxyy : XXY — Y be the maps defined by nx xyx(z,y) :=
z and Tx xyy(Z,y) := y. Show that for any functions f : Z — X
and g : Z — Y, there exists a unique function h : Z — X XY such
that mxxyxoh = f and mxxy—y oh = ¢g. (Compare this to the
last part of Exercise 3.3.8, and to Exercise 3.1.7.) This function
h is known as the direct sum of f and g and is denoted h = f @ g.

Ezercise 3.5.8. Let X1,...,X, be sets. Show that the Cartesian
product [[7 | X; is empty if and only if at least one of the X is
empty.

Ezercise 3.5.9. Suppose that I and J are two sets, and for all
a € Ilet A, be a set, and for all 3 € J let Bg be a set. Show

that Show that (Uyes Aa) N (Unes Bs) = Ua,)erxs (Aa N Bg)-
Ezercise 3.5.10. If f : X — Y is a function, define the graph of f
to be the subset of X x Y defined by {(z, f(z)) : z € X}. Show
that two functions f : X — Y, f : X = Y are equal if and only if
they have the same graph. Conversely, if G is any subset of X XY
with the property that for each z € X, theset {y € Y : (z,y) € G}
has exactly one element (or in other words, G obeys the vertical
line test), show that there is exactly one function f : X — YV
whose graph is equal to G.

Ezxercise 3.5.11. Show that Axiom 3.10 can in fact be deduced
from Lemma 3.4.8 and the other axioms of set theory, and thus
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Lemma 3.4.8 can be used as an alternate formulation of the power
set axiom. (Hint: for any two sets X and Y, use Lemma 3.4.8 and
the axiom of specification to construct the set of all subsets of
X xY which obey the vertical line test. Then use Exercise 3.5.10
and the axiom of replacement.)

Ezercise 3.5.12. The purpose of this exercise is to prove a rigourous
version of Proposition 2.1.16. Let f : N x N — N be a function,
and let ¢ be a natural number. Show that there exists a function
a : N — N such that

a(0) =c

and
a(n++) = f(n,a(n)) for all n € N,

and furthermore that this function is unique. (Hint: first show
inductively, by a modification of the proof of Lemma 3.5.12, that
for every natural number N € N, there exists a unique func-
tion ay : {n € N : n < N} — N such that ay(0) = ¢ and
ay(n++) = f(n,a(n)) for all n € N such that n < N.) For an
additional challenge, prove this result without using any proper-
ties of the natural numbers other than the Peano axioms directly
(in particular, without using the ordering of the natural numbers,
and without appealing to Proposition 2.1.16). (Hint: first show
inductively, using only the Peano axioms and basic set theory,
that for every natural number N € N, there exists a unique pair
Ap, By of subsets of N which obeys the following properties: (a)
AvNBy =0, (b) AyUBNy =N, (c) 0 € Ay, (d) N++ € By, (e)
Whenever n € By, we have n++ € By. (f) Whenever n € Ay
and n # N, we have n++ € Apx. Once one obtains these sets,
use Ay as a substitute for {n € N : n < N} in the previous
argument. )

Ezercise 3.5.13. The purpose of this exercise is to show that there
is essentially only one version of the natural number system in set
theory (cf. the discussion in Remark 2.1.12). Suppose we have
a set N’ of “alternative natural numbers”, an “alternative zero”
0’, and an “alternative increment operation” which takes any al-
ternative natural number n’ € N’ and returns another alternative
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natural number n'++' € N, such that the Peano Axioms (Axioms
2.1-2.5) all hold with the natural numbers, zero, and increment re-
placed by their alternative counterparts. Show that there exists a
bijection f : N — N’ from the natural numbers to the alternative
natural numbers such that f(0) = 0/, and such that for any n € N
and n' € N', we have f(n) = n' if and only if f(n++) = n'++'.
(Hint: use Exercise 3.5.12.)

3.6 Cardinality of sets

In the previous chapter we defined the natural numbers axiomati-
cally, assuming that they were equipped with a 0 and an increment
operation, and assuming five axioms on these numbers. Philosoph-
ically, this is quite different from one of our main conceptualiza-
tions of natural numbers - that of cardinality, or measuring how
many elements there are in a set. Indeed, the Peano axiom ap-
proach treats natural numbers more like ordinals than cardinals.
(The cardinals are One, Two, Three, ..., and are used to count
how many things there are in a set. The ordinals are First, Sec-
ond, Third, ..., and are used to order a sequence of objects. There
is a subtle difference between the two, especially when compar-
ing infinite cardinals with infinite ordinals, but this is beyond the
scope of this text). We paid a lot of attention to what number
came nezt after a given number n - which is an operation which
is quite natural for ordinals, but less so for cardinals - but did not
address the issue of whether these numbers could be used to count
sets. The purpose of this section is to correct this issue by noting
that the natural numbers can be used to count the cardinality of
sets, as long as the set is finite.

The first thing is to work out when two sets have the same
size: it seems clear that the sets {1,2,3} and {4,5,6} have the
same size, but that both have a different size from {8,9}. One
way to define this is to say that two sets have the same size if they
have the same number of elements, but we have not yet defined
what the “number of elements” in a set is. Besides, this runs into
problems when a set is infinite.
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The right way to define the concept of “two sets having the
same size” is not immediately obvious, but can be worked out
with some thought. One intuitive reason why the sets {1,2, 3} and
{4, 5,6} have the same size is that one can match the elements of
the first set with the elements in the second set in a one-to-one
correspondence: 1 <> 4, 2 <+ 5, 3 <> 6. (Indeed, this is how we
first learn to count a set: we correspond the set we are trying to
count with another set, such as a set of fingers on your hand).
We will use this intuitive understanding as our rigourous basis for
“having the same size”.

Definition 3.6.1 (Equal cardinality). We say that two sets X
and Y have equal cardinality iff there exists a bijection f : X — Y
from X to Y.

Example 3.6.2. The sets {0,1,2} and {3,4,5} have equal car-
dinality, since we can find a bijection between the two sets. Note
that we do not yet know whether {0,1,2} and {3,4} have equal
cardinality; we know that one of the functions f from {0, 1,2} to
{3,4} is not a bijection, but we have not proven yet that there
might still be some other bijection from one set to the other. (It
turns out that they do not have equal cardinality, but we will
prove this a little later). Note that this definition makes sense
regardless of whether X is finite or infinite (in fact, we haven’t
even defined what finite means yet).

Note that two sets having equal cardinality does not preclude
one set containing the other. For instance, if X is the set of natural
numbers and Y is the set of even natural numbers, then the map
f : X — Y defined by f(n) := 2n is a bijection from X to Y
(why?), and so X and Y have equal cardinality, despite Y being
a subset of X and seeming intuitively as if it should only have
“half” of the elements of X.

The notion of having equal cardinality is an equivalence rela-
tion:

Proposition 3.6.3. Let X, Y, Z be sets. Then X has equal
cardinality with X. If X has equal cardinality with Y, then Y has
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equal cardinality with X. If X has equal cardinality with Y and'Y
has equal cardinality with Z, then X has equal cardinality with Z.

Proof. See Exercise 3.6.1. O

Let n» be a natural number. Now we want to say when a set
X has n elements. Certainly we want the set { € N :1 <3 <
n} = {1,2,...,n} to have n elements. (This is true even when
n = 0; the set {i € N : 1 <4 < 0} is just the empty set). Using
our notion of equal cardinality, we thus define:

Definition 3.6.4. Let n be a natural number. A set X is said to
have cardinality n, iff it has equal cardinality with {7 € N : 1 <
i < n}. We also say that X has n elements iff it has cardinality
n.

Remark 3.6.5. One can use the set {i € N : i < n} instead
of {i € N:1 < i < n}, since these two sets clearly have equal
cardinality (why? What is the bijection?).

Example 3.6.6. Let a, b, c,d be distinct objects. Then {a, b, c,d}
has the same cardinality as {t € N : i < 4} = {0,1,2,3} or
{i e N:1<i<4} ={1,23,4} and thus has cardinality 4.
Similarly, the set {a} has cardinality 1.

There might be one problem with this definition: a set might
have two different cardinalities. But this is not possible:

Proposition 3.6.7 (Uniqueness of cardinality). Let X be a set
with some cardinality n. Then X cannot have any other cardinal-
ity, i.e., X cannot have cardinality m for any m # n.

Before we prove this proposition, we need a lemma.

Lemma 3.6.8. Suppose that n > 1, and X has cardinality n.
Then X is non-empty, and if = is any element of X, then the
set X — {z} (i.e., X with the element x removed) has cardinality
n — 1.
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Proof. If X is empty then it clearly cannot have the same car-
dinality as the non-empty set {i € N : 1 < i < n}, as there
is no bijection from the empty set to a non-empty set (why?).
Now let  be an element of X. Since X has the same cardinal-
ity as { € N : 1 < i < N}, we thus have a bijection f from
X to{i € N:1 <4 < n}. In particular, f(z) is a natural
number between 1 and n. Now define the function g : X — {z} to
{i € N:1 < i< n—1} by the following rule: for any y € X —{z},
we define g(y) := f(y) if f(y) < f(z), and define g(y) := f(y) — 1
if f(y) > f(z). (Note that f(y) cannot equal f(x) since y # x
and f is a bijection.) It is easy to check that this map is also
a bijection (why?), and so X — {z} has equal cardinality with
{i e N:1<4i<n-—1}. In particular X — {z} has cardinality
n — 1, as desired. O

Now we prove the proposition.

Proof of Proposition 3.6.7. We induct on n. First suppose that
n = 0. Then X must be empty, and so X cannot have any non-zero
cardinality. Now suppose that the Proposition is already proven
for some n; we now prove it for n++. Let X have cardinality n—++;
and suppose that X also has some other cardinality m # n-4+.
By Proposition 3.6.3, X is non-empty, and if x is any element
of X, then X — {z} has cardinality n and also has cardinality
m—1, by Lemma 3.6.8. By induction hypothesis, this means that
n = m — 1, which implies that m = n++, contradiction. This
closes the induction. O

Thus, for instance, we now know, thanks to Propositions 3.6.3
and 3.6.7, that the sets {0,1,2} and {3,4} do not have equal
cardinality, since the first set has cardinality 3 and the second set
has cardinality 2.

Definition 3.6.9 (Finite sets). A set is finite iff it has cardinality
n for some natural number n; otherwise, the set is called infinite.
If X is a finite set, we use #(X) to denote the cardinality of X.
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Example 3.6.10. The sets {0,1,2} and {3,4} are finite, as is
the empty set (0 is a natural number), and #({0,1,2}) = 3,

#({354}) =2, and #(@) =0.
Now we give an example of an infinite set.
Theorem 3.6.11. The set of natural numbers N is infinite.

Proof. Suppose for contradiction that the set of natural numbers
N was finite, so it had some cardinality #(N) = n. Then there is
a bijection f from {i € N:1 < i <n} to N. One can show that
the sequence f(1),f(2),...,f(n) is bounded, or more precisely
that there exists a natural number M such that f(i) < M for all
1 < < n (Exercise 3.6.3). But then the natural number M + 1
is not equal to any of the f(i), contradicting the hypothesis that
f is a bijection. O

Remark 3.6.12. One can also use similar arguments to show
that any unbounded set is infinite; for instance the rationals Q
and the reals R (which we will construct in later chapters) are
infinite. However, it is possible for some sets to be “more” infinite
than others; see Section 8.3.

Now we relate cardinality with the arithmetic of natural num-
bers.

Proposition 3.6.13 (Cardinal arithmetic).

(a) Let X be a finite set, and let x be an object which is not an
element of X. Then X U {z} is finite and #(X U {z}) =
#(X) + 1.

(b) Let X andY be finite sets. Then X UY is finite and #(X U
Y) < #(X) + #(Y). If in addition X and Y are disjoint
(ie, XNY =0), then #(X UY) = #(X) + #(Y).

(c) Let X be a finite set, and let Y be a subset of X. ThenY
is finite, and #(Y) < #(X). If in addition Y # X (i.e., Y
is a proper subset of X ), then we have #(Y) < #(X).



3.6. Cardinality of sets 83

(d) If X is a finite set, and f : X — Y is a function, then f(X)
is a finite set with #(f(X)) < #(X). If in addition f is
one-to-one, then #(f(X)) = #(X).

(e) Let X and Y be finite sets. Then Cartesian product X XY
is finite and #(X xY) = #(X) x #(Y).

(f) Let X and Y be finite sets. Then the set YX (defined in
Aziom 3.10) is finite and #(YX) = #(Y)#(X),

Proof. See Exercise 3.6.4. O

Remark 3.6.14. Proposition 3.6.13 suggests that there is an-
other way to define the arithmetic operations of natural numbers;
not defined recursively as in Definitions 2.2.1, 2.3.1, 2.3.11, but
instead using the notions of union, Cartesian product, and power
set. This is the basis of cardinal arithmetic, which is an alternative
foundation to arithmetic than the Peano arithmetic we have devel-
oped here; we will not develop this arithmetic in this text, but we
give some examples of how one would work with this arithmetic
in Exercises 3.6.5, 3.6.6.

This concludes our discussion of finite sets. We shall discuss
infinite sets in Chapter 8, once we have constructed a few more
examples of infinite sets (such as the integers, rationals and reals).

Ezercise 3.6.1. Prove Proposition 3.6.3.

Ezercise 3.6.2. Show that a set X has cardinality 0 if and only if
X is the empty set.

Ezercise 3.6.3. Let n be a natural number, and let f : {i € N :
1 <i<n} — N be a function. Show that there exists a natural
number M such that f(i) < M for all 1 <4 < n. (Hint: induct on
n. You may also want to peek at Lemma 5.1.14.) This exercise
shows that finite subsets of the natural numbers are bounded.

Ezercise 3.6.4. Prove Proposition 3.6.13.

Exzercise 3.6.5. Let A and B be sets. Show that Ax B and Bx A
have equal cardinality by constructing an explicit bijection be-
tween the two sets. Then use Proposition 3.6.13 to conclude an
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alternate proof of Lemma 2.3.2. (We remark that many other
results in that section could also be proven by similar methods.)

Ezercise 3.6.6. Let A, B, C be sets. Show that the sets (A%)¢ and
APB*C have equal cardinality by constructing an explicit bijection
between the two sets. If B and C are disjoint, show that A® x A“
and ABYC also have equal cardinality. Then use Proposition 3.6.13
to conclude that for any natural numbers a, b, ¢, that (a®)¢ = a’°
and a® x a¢ = abte.

Ezercise 3.6.7. Let A and B be sets. Let us say that A has lesser
or equal cardinality to B if there exists an injection f : A — B
from A to B. Show that if A and B are finite sets, then A has
lesser or equal cardinality to B if and only if #(A) < #(B).

Ezercise 3.6.8. Let A and B be sets such that there exists an
injection f : A — B from A to B (i.e., A has lesser or equal
cardinality to B). Show that there then exists a surjection g :
B — A from B to A. (The converse to this statement requires
the axiom of choice; see Exercise 8.4.3.)

FEzxercise 3.6.9. Let A and B be finite sets. Show that A U B and
AN B are also finite sets, and that #(A) + #(B) = #(AUB) +
#(ANB).



Chapter 4

Integers and rationals

4.1 The integers

In Chapter 2 we built up most of the basic properties of the nat-
ural number system, but are reaching the limits of what one can
do with just addition and multiplication. We would now like to
introduce a new operation, that of subtraction, but to do that
properly we will have to pass from the natural number system to
a larger number system, that of the integers.

Informally, the integers are what you can get by subtracting
two natural numbers; for instance, 3 — 5 should be an integer, as
should 6 — 2. This is not a complete definition of the integers, be-
cause (a) it doesn’t say when two differences are equal (for instance
we should know why 3—5 is equal to 2—4, but is not equal to 1—6),
and (b) it doesn’t say how to do arithmetic on these differences
(how does one add 3—5 to 6—27). Furthermore, (c) this definition
is circular because it requires a notion of subtraction, which we
can only adequately define once the integers are constructed. For-
tunately, because of our prior experience with integers we know
what the answers to these questions should be. To answer (a), we
know from our advanced knowledge in algebra that a —b=c—d
happens exactly when a+d = c+b, so we can characterize equality
of differences using only the concept of addition. Similarly, to an-
swer (b) we know from algebra that (a—b)+(c—d) = (a+c¢)—(b+d)
and that (a—b)(c—d) = (ac+bd)—(ad+bc). So we will take advan-
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tage of our foreknowledge by building all this into the definition
of the integers, as we shall do shortly.

We still have to resolve (c). To get around this problem we will
use the following work-around: we will temporarily write integers
not as a difference a — b, but instead use a new notation a—=b
to define integers, where the —— is a meaningless place-holder
(similar to the comma in the Cartesian co-ordinate notation (z,y)
for points in the plane). Later when we define subtraction we will
see that a—>b is in fact equal to @ — b, and so we can discard
the notation —; it is only needed right now to avoid circularity.
(These devices are similar to the scaffolding used to construct a
building; they are temporarily essential to make sure the building
is built correctly, but once the building is completed they are
thrown away and never used again). This may seem unnecessarily
complicated in order to define something that we already are very
familiar with, but we will use this device again to construct the
rationals, and knowing these kinds of constructions will be very
helpful in later chapters.

Definition 4.1.1 (Integers). An integer is an expression' of the
form a—>b, where a and b are natural numbers. Two integers are
considered to be equal, a—b = ¢c—d, if and only if a4+ d = ¢+ .
We let Z denote the set of all integers.

Thus for instance 3—5 is an integer, and is equal to 2—4,
because 3 +4 = 2 4+ 5. On the other hand, 3—5 is not equal to
2—3 because 3 + 3 # 2 + 5. (This notation is strange looking,
and has a few deficiencies; for instance, 3 is not yet an integer,
because it is not of the form a—>b! We will rectify these problems
later.)

In the language of set theory, what we are doing here is starting with the
space N x N of ordered pairs (a,b) of natural numbers. Then we place an
equivalence relation ~ on these pairs by declaring (a,b) ~ (c,d) iff a+d = c+b.
The set-theoretic interpretation of the symbol a—b is that it is the space of all
pairs equivalent to (a,b): a—b:= {(c,d) € N x N : (a,b) ~ (¢,d)}. However,
this interpretation plays no role on how we manipulate the integers and we
will not refer to it again. A similar set-theoretic interpretation can be given
to the construction of the rational numbers later in this chapter, or the real
numbers in the next chapter.
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We have to check that this is a legitimate notion of equal-
ity. We need to verify the reflexivity, symmetry, transitivity, and
substitution axioms (see Section 12.7). We leave reflexivity and
symmetry to Exercise 4.1.1 and instead verify the transitivity ax-
iom. Suppose we know that a—b = ¢c—d and c—d = e—f.
Then we have a +d = c+ b and ¢+ f = d + e. Adding the two
equations together we obtain a+d+c+ f = c+b+d+e. By Propo-
sition 2.2.6 we can cancel the ¢ and d, obtaining a+ f = b+e, i.e.,
a—>b = e—f. Thus the cancellation law was needed to make
sure that our notion of equality is sound. As for the substitu-
tion axiom, we cannot verify it at this stage because we have not
yet defined any operations on the integers. However, when we
do define our basic operations on the integers, such as addition,
multiplication, and order, we will have to verify the substitution
axiom at that time in order to ensure that the definition is valid.
(We will only need to do this for the basic operations; more ad-
vanced operations on the integers, such as exponentiation, will
be defined in terms of the basic ones, and so we do not need to
re-verify the substitution axiom for the advanced operations.)

Now we define two basic arithmetic operations on integers:
addition and multiplication.

Definition 4.1.2. The sum of two integers, (a—7b) + (c—d), is
defined by the formula

(@—=0b) + (¢—d) := (a + ¢)—(b + d).
The product of two integers, (a—1b) x (c—d), is defined by
(a—1>) x (c—d) := (ac + bd)—(ad + bc).

Thus for instance, (3—5) + (1—4) is equal to (4—9). There
is however one thing we have to check before we can accept these
definitions - we have to check that if we replace one of the integers
by an equal integer, that the sum or product does not change. For
instance, (3—5) is equal to (2—4), so (3—5) + (1—4) ought
to have the same value as (2—4) + (1—4), otherwise this would
not give a consistent definition of addition. Fortunately, this is
the case:
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Lemma 4.1.3 (Addition and multiplication are well-defined). Let
a,b,a',b',c,d be natural numbers. If (a—b) = (a'—1V'), then
(a—0b) + (c—d) = (a'—V) + (c—d) and (a—>b) x (c—d) =
(a'—Vb') x (¢—d), and also (c—d)+ (a—>b) = (c—d) + (a'—1V')
and (c—d) x (a—b) = (c—d) x (a'—V). Thus addition and
multiplication are well-defined operations (equal inputs give equal
outputs).

Proof. To prove that (a—b) + (c—d) = (a'—0b') + (c—d), we
evaluate both sides as (a + ¢)— (b + d) and (a’ + ¢)—(b' + d).
Thus we need to show that a + ¢+ b +d =a'+c+b+d. But
since (a—>b) = (a’—7U'), we have a + b = o’ + b, and so by
adding ¢ 4+ d to both sides we obtain the claim. Now we show
that (a—0b) X (c—d) = (a'—1b') x (¢c—d). Both sides evaluate
to (ac+ bd)—(ad + bc) and (a’c + b'd)—(a’'d + b'c), so we have
to show that ac + bd + a'd + b'c = a'c + b/d + ad + bc. But the
left-hand side factors as c¢(a+b') +d(a’ +b), while the right factors
as c(a’ + b) + d(a + V). Since a + b = o’ + b, the two sides are
equal. The other two identities are proven similarly. O

The integers n—0 behave in the same way as the natural
numbers 7n; indeed one can check that (n—0) + (m—0) = (n +
m)—0 and (n—0) x (m—0) = nm—0. Furthermore, (n—0)
is equal to (m—0) if and only if n = m. (The mathematical
term for this is that there is an isomorphism between the natural
numbers n and those integers of the form n—~0). Thus we may
identify the natural numbers with integers by setting n = n—0;
this does not affect our definitions of addition or multiplication
or equality since they are consistent with each other. Thus for
instance the natural number 3 is now considered to be the same
as the integer 3—0: 3 = 3—0. In particular 0 is equal to 0—0
and 1 is equal to 1—0. Of course, if we set n equal to n—0, then
it will also be equal to any other integer which is equal to n—0,
for instance 3 is equal not only to 3—0, but also to 4—1, 5—2,
etc.

We can now define incrementation on the integers by defining
z++ = x + 1 for any integer z; this is of course consistent with
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our definition of the increment operation for natural numbers.

However, this is no longer an important operation for us, as it has

been now superceded by the more general notion of addition.
Now we consider some other basic operations on the integers.

Definition 4.1.4 (Negation of integers). If (a—b) is an integer,
we define the negation —(a—>b) to be the integer (b—a). In
particular if n = n—0 is a positive natural number, we can define
its negation —n = 0—mn.

For instance —(3—>5) = (5—3). One can check this definition
is well-defined (Exercise 4.1.2).

We can now show that the integers correspond exactly to what
we expect.

Lemma 4.1.5 (Trichotomy of integers). Let = be an integer. Then
exactly one of the following three statements is true: (a) x is zero;
(b) x is equal to a positive natural number n; or (c) x is the
negation —n of a positive natural number n.

Proof. We first show that at least one of (a), (b), (c) is true. By
definition, z = a—7> for some natural numbers a, b. We have three
cases: @ > b, a =0, 0r a <b. If a > bthen a = b+ ¢ for some
positive natural number ¢, which means that a—b = ¢—0 = ¢,
which is (b). If @ = b, then a—b = a—a = 0—0 = 0, which
is (a). If a < b, then b > a, so that b—a = n for some natural
number n by the previous reasoning, and thus a—»b = —n, which
is (c).

Now we show that no more than one of (a), (b), (c) can hold
at a time. By definition, a positive natural number is non-zero,
so (a) and (b) cannot simultaneously be true. If (a) and (c) were
simultaneously true, then 0 = —n for some positive natural n;
thus (0—0) = (0—mn), so that 0 +n = 0 + 0, so that n = 0,
a contradiction. If (b) and (c) were simultaneously true, then
n = —m for some positive n,m, so that (n—0) = (0—m), so
that n + m = 0 4+ 0, which contradicts Proposition 2.2.8. Thus
exactly one of (a), (b), (c) is true for any integer z. O
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If n is a positive natural number, we call —n a negative integer.
Thus every integer is positive, zero, or negative, but not more than
one of these at a time.

One could well ask why we don’t use Lemma 4.1.5 to define
the integers; i.e., why didn’t we just say an integer is anything
which is either a positive natural number, zero, or the negative of
a natural number. The reason is that if we did so, the rules for
adding and multiplying integers would split into many different
cases (e.g., negative times positive equals positive; negative plus
positive is either negative, positive, or zero, depending on which
term is larger, etc.) and to verify all the properties ends up being
much messier than doing it this way.

We now summarize the algebraic properties of the integers.

Proposition 4.1.6 (Laws of algebra for integers). Let z,y,z be
integers. Then we have

rt+y=y+z
(z+y)+z=z+(y+2)
z+0=0+z=12x
z+ (—z)=(-2)+z2=0
TY = Yz
(zy)z = z(y2)
rl=1z =2
z(y+2) =zy+22
(y + 2)x = yz + 2.

Remark 4.1.7. The above set of nine identities have a name;
they are asserting that the integers form a commutative ring. (If
one deleted the identity zy = yz, then they would only assert
that the integers form a ring). Note that some of these identities
were already proven for the natural numbers, but this does not
automatically mean that they also hold for the integers because
the integers are a larger set than the natural numbers. On the
other hand, this Proposition supercedes many of the propositions
derived earlier for natural numbers.
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Proof. There are two ways to prove these identities. One is to use
Lemma 4.1.5 and split into a lot of cases depending on whether
x,1, z are zero, positive, or negative. This becomes very messy. A
shorter way is to write x = (a—0b), y = (c—d), and z = (e—f)
for some natural numbers a,b,c,d, e, f, and expand these identi-
ties in terms of a,b,c,d, e, f and use the algebra of the natural
numbers. This allows each identity to be proven in a few lines.
We shall just prove the longest one, namely (zy)z = z(yz):

(zy)z = ((a—">b)(c—d)) (e—f)

(ac + bd)—(ad + bc)) (e—f)

(ace + bde + adf + bef)—(acf + bdf + ade + bee)) ;
a—1>) ((c—d)(e—))

a—1b) ((ce + df)—(cf + de))

(ace + adf + bef + bde)— (acf + ade + bed + bdf )

(
(
(
z(yz) = (
= (
= (

and so one can see that (zy)z and z(yz) are equal. The other
identities are proven in a similar fashion; see Exercise 4.1.4. [

We now define the operation of subtraction x—vy of two integers
by the formula

z—y:=1z+(—y).

We do not need to verify the substitution axiom for this operation,
since we have defined subtraction in terms of two other operations
on integers, namely addition and negation, and we have already
verified that those operations are well-defined.
One can easily check now that if ¢ and b are natural numbers,
then
a—b=a+—b=(a—0)+ (0—b) = a—b,

and so a—0 is just the same thing as a — b. Because of this we
can now discard the — notation, and use the familiar operation
of subtraction instead. (As remarked before, we could not use
subtraction immediately because it would be circular.)

We can now generalize Lemma 2.3.3 and Corollary 2.3.7 from
the natural numbers to the integers:
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Proposition 4.1.8 (Integers have no zero divisors). Let a and b
be integers such that ab = 0. Then either a =0 or b =0 (or both).

Proof. See Exercise 4.1.5. O

Corollary 4.1.9 (Cancellation law for integers). If a, b, ¢ are
integers such that ac = bc and c is non-zero, then a = b.

Proof. See Exercise 4.1.6. O

We now extend the notion of order, which was defined on the
natural numbers, to the integers by repeating the definition ver-
batim:

Definition 4.1.10 (Ordering of the integers). Let n and m be
integers. We say that n is greater than or equal to m, and write
n > m or m < n, iff we have n = m + a for some natural number
a. We say that n is strictly greater than m, and write n > m or
m < n, iff n > m and n # m.

Thus for instance 5 > —3, because 5 = —3 + 8 and 5 # —3.
Clearly this definition is consistent with the notion of order on the
natural numbers, since we are using the same definition.

Using the laws of algebra in Proposition 4.1.6 it is not hard to
show the following properties of order:

Lemma 4.1.11 (Properties of order). Let a,b,c be integers.

e a > b if and only if a — b is a positive natural number.

(Addition preserves order) If a > b, then a + ¢ > b+ c.

(Positive multiplication preserves order) If a > b and c is
positive, then ac > bc.

(Negation reverses order) If a > b, then —a < —b.

(Order is transitive) If a > b and b > ¢, then a > c.

(Order trichotomy) Ezactly one of the statements a > b,
a <b, ora=>b is true.
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Proof. See Exercise 4.1.7. O

Exercise 4.1.1. Verify that the definition of equality on the integers
is both reflexive and symmetric.

Ezercise 4.1.2. Show that the definition of negation on the inte-
gers is well-defined in the sense that if (a—b) = (a'—10b'), then
—(a—>b) = —(a’'—1V) (so equal integers have equal negations).
Ezercise 4.1.3. Show that (—1) x a = —a for every integer a.

Exercise 4.1.4. Prove the remaining identities in Proposition 4.1.6.
(Hint: one can save some work by using some identities to prove
others. For instance, once you know that zy = yz, you get for
free that 1 = 1z, and once you also prove z(y + 2) = zy + zz,
you automatically get (y + z)z = yx + zz for free.)

Ezercise 4.1.5. Prove Proposition 4.1.8. (Hint: while this Proposi-
tion is not quite the same as Lemma 2.3.3, it is certainly legitimate
to use Lemma 2.3.3 in the course of proving Proposition 4.1.8.)

Ezercise 4.1.6. Prove Corollary 4.1.9. (Hint: There are two ways
to do this. One is to use Proposition 4.1.8 to conclude that ¢ — b
must be zero. Another way is to combine Corollary 2.3.7 with
Lemma 4.1.5.)

Ezercise 4.1.7. Prove Lemma 4.1.11. (Hint: use the first part of
this Lemma to prove all the others.)

Ezercise 4.1.8. Show that the principle of induction (Axiom V)
does not apply directly to the integers. More precisely, give an
example of a property P(n) pertaining to an integer n such that
P(0) is true, and that P(n) implies P(n++) for all integers n, but
that P(n) is not true for all integers n. Thus induction is not as
useful a tool for dealing with the integers as it is with the natural
numbers. (The situation becomes even worse with the rational
and real numbers, which we shall define shortly.)

4.2 The rationals

We have now constructed the integers, with the operations of ad-
dition, subtraction, multiplication, and order and verified all the
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expected algebraic and order-theoretic properties. Now we will
make a similar construction to build the rationals, adding divi-
sion to our mix of operations.

Just like the integers were constructed by subtracting two nat-
ural numbers, the rationals can be constructed by dividing two
integers, though of course we have to make the usual caveat that
the denominator should? be non-zero. Of course, just as two dif-
ferences a —b and c—d can be equal if a+d = c+b, we know (from
more advanced knowledge) that two quotients a/b and ¢/d can be
equal if ad = bc. Thus, in analogy with the integers, we create a
new meaningless symbol // (which will eventually be superceded
by division), and define

Definition 4.2.1. A rational number is an expression of the form
a//b, where a and b are integers and b is non-zero; a//0 is not
considered to be a rational number. Two rational numbers are
considered to be equal, a//b = ¢//d, if and only if ad = ¢b. The
set of all rational numbers is denoted Q.

Thus for instance 3//4 =6//8 = —3// — 4, but 3//4 # 4//3.
This is a valid definition of equality (Exercise 4.2.1). Now we
need a notion of addition, multiplication, and negation. Again,
we will take advantage of our pre-existing knowledge, which tells
us that a/b+ ¢/d should equal (ad + bc)/(bd) and that a/b * c/d
should equal ac/bd, while —(a/b) equals (—a)/b. Motivated by
this foreknowledge, we define

Definition 4.2.2. If a//b and ¢//d are rational numbers, we de-
fine their sum

(a//b) + (¢//d) := (ad + bc)//(bd)

their product
(a//b) * (c//d) := (ac)//(bd)

2There is no reasonable way we can divide by zero, since one cannot have
both the identities (a/b)*b = a and c*0 = 0 hold simultaneously if b is allowed
to be zero. However, we can eventually get a reasonable notion of dividing
by a quantity which approaches zero - think of L’Hopital’s rule (see Section
10.4), which suffices for doing things like defining differentiation.
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and the negation
—(a//b) == (=a)//b.

Note that if b and d are non-zero, then bd is also non-zero,
by Proposition 4.1.8, so the sum or product of a rational number
remains a rational number.

Lemma 4.2.3. The sum, product, and negation operations on
rational numbers are well-defined, in the sense that if one replaces
a//b with another rational number o'/ /b which is equal to a//b,
then the output of the above operations remains unchanged, and
similarly for c//d.

Proof. We just verify this for addition; we leave the remaining
claims to Exercise 4.2.2. Suppose a//b = a'//V, so that b and
b’ are non-zero and ab’ = a'b. We now show that a//b+ ¢//d =
a'/ /v +¢//d. By definition, the left-hand side is (ad+bc)//bd and
the right-hand side is (a’'d + b'c)//b'd, so we have to show that

(ad + be)b'd = (a'd + b'c)bd,
which expands to

ab'd® + bb'cd = a'bd* + bt/ cd.
But since ab’ = a'b, the claim follows. Similarly if one replaces
c//d by c//d. O

We note that the rational numbers a//1 behave in a manner
identical to the integers a:

(a//1) + (b//1) = (a +b)//1;
(a//1) x (b//1) = (ab//1);
—(a//1) = (=a)//1.

Also, a//1 and b//1 are only equal when a and b are equal. Be-
cause of this, we will identify a with a//1 for each integer a:
a = a//1; the above identities then guarantee that the arithmetic
of the integers is consistent with the arithmetic of the rationals.
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Thus just as we embedded the natural numbers inside the integers,
we embed the integers inside the rational numbers. In particular,
all natural numbers are rational numbers, for instance 0 is equal
to 0//1 and 1 is equal to 1//1.

Observe that a rational number a//b is equal to 0 = 0//1 if
and only if a x 1 = b x 0, i.e., if the numerator a is equal to 0.
Thus if ¢ and b are non-zero then so is a//b.

We now define a new operation on the rationals: reciprocal. If
xz = a//b is a non-zero rational (so that a,b # 0) then we define
the reciprocal ! of z to be the rational number z~! := b//a. Tt
is easy to check that this operation is consistent with our notion
of equality: if two rational numbers a//b, a'//b' are equal, then
their reciprocals are also equal. (In contrast, an operation such as
“numerator” is not well-defined: the rationals 3//4 and 6//8 are
equal, but have unequal numerators, so we have to be careful when
referring to such terms as “the numerator of z”.) We however
leave the reciprocal of 0 undefined.

We now summarize the algebraic properties of the rationals.

Proposition 4.2.4 (Laws of algebra for rationals). Let z,y,z be
rationals. Then the following laws of algebra hold:

rt+y=y+z
(z+y)+z=z+(y+2)
z+0=0+z=12x
z+(—z)=(-z)+z=0
Ty = yz
(zy)z = z(yz)
rl=1lr ==
z(y +2) =zy+22
(y + 2)x = yz + 2.

If x is non-zero, we also have
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Remark 4.2.5. The above set of ten identities have a name; they
are asserting that the rationals Q form a field. This is better than
being a commutative ring because of the tenth identity zz—! =
z 'z = 1. Note that this Proposition supercedes Proposition
4.1.6.

Proof. To prove this identity, one writes x = a//b, y = ¢//d,
z = e//f for some integers a,c,e and non-zero integers b,d, f,
and verifies each identity in turn using the algebra of the integers.
We shall just prove the longest one, namely (z+y)+2z = z+(y+2):

a//b) + (c//d)) + (e//[)
= ((ad +bc)//bd) + (e//f)
= (adf + bef + bde)/ /bdf;
z+ (y +2) = (a//b) + ((c//d) + (e//[))
= (a//b) + ((cf +de)//df) = (adf + bef + bde)//bdf

(z+y)+2z=((
(

and so one can see that (z +y) + z and = + (y + z) are equal.
The other identities are proven in a similar fashion and are left to
Exercise 4.2.4. O

We can now define the quotient x/y of two rational numbers
x and y, provided that y is non-zero, by the formula

z/y =z xy L.

Thus, for instance

(3//4)/(5//6) = (3//4) x (6//5) = (18//20) = (9//10).

Using this formula, it is easy to see that a/b = a//b for every
integer a and every non-zero integer b. Thus we can now discard
the // notation, and use the more customary a/b instead of a//b.
The above field axioms allow us to use all the normal rules of
algebra; we will now proceed to do so without further comment.
In the previous section we organized the integers into positive,
zero, and negative numbers. We now do the same for the rationals.
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Definition 4.2.6. A rational number z is said to be positive iff
we have z = a/b for some positive integers a and b. It is said to
be negative iff we have z = —y for some positive rational y (i.e.,
z = (—a)/b for some positive integers a and b).

Thus for instance, every positive integer is a positive rational
number, and every negative integer is a negative rational number,
so our new definition is consistent with our old one.

Lemma 4.2.7 (Trichotomy of rationals). Let z be a rational num-
ber. Then exactly one of the following three statements is true:
(a) x is equal to 0. (b) x is a positive rational number. (c) z is a
negative rational number.

Proof. See Exercise 4.2.4. O

Definition 4.2.8 (Ordering of the rationals). Let z and y be
rational numbers. We say that x > y iff x —y is a positive rational
number, and z < y iff z — y is a negative rational number. We
write z > y iff either x > y or x = y, and similarly define z < y.

Proposition 4.2.9 (Basic properties of order on the rationals).
Let x,y, z be rational numbers. Then the following properties hold.

(a) (Order trichotomy) Ezactly one of the three statements © =
Yy, ¢ <y, orx >y is true.

(b) (Order is anti-symmetric) One has x < y if and only if
y>x.

(c) (Order is transitive) If x <y and y < z, then z < z.
(d) (Addition preserves order) If x <y, then z + z < y + z.

(e) (Positive multiplication preserves order) If © < y and z is
positive, then z < yz.

Proof. See Exercise 4.2.5. O
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Remark 4.2.10. The above five properties in Proposition 4.2.9,
combined with the field axioms in Proposition 4.2.4, have a name:
they assert that the rationals Q form an ordered field. It is impor-
tant to keep in mind that Proposition 4.2.9(e) only works when z
is positive, see Exercise 4.2.6.

Ezercise 4.2.1. Show that the definition of equality for the ratio-
nal numbers is reflexive, symmetric, and transitive. (Hint: for
transitivity, use Corollary 2.3.7.)

Exercise 4.2.2. Prove the remaining components of Lemma 4.2.3.

Ezercise 4.2.3. Prove the remaining components of Proposition
4.2.4. (Hint: as with Proposition 4.1.6, you can save some work
by using some identities to prove others.)

Ezercise 4.2.4. Prove Lemma 4.2.7. (Note that, as in Proposition
2.2.13, you have to prove two different things: firstly, that at least
one of (a), (b), (c) is true; and secondly, that at most one of (a),
(b), (c) is true).

Ezercise 4.2.5. Prove Proposition 4.2.9.

Ezercise 4.2.6. Show that if z, y, z are real numbers such that
x < y and z is negative, then zz > yz.

4.3 Absolute value and exponentiation

We have already introduced the four basic arithmetic operations
of addition, subtraction, multiplication, and division on the ra-
tionals. (Recall that subtraction and division came from the
more primitive notions of negation and reciprocal by the formulae
z—y:=z+ (—y) and z/y := z x y~1.) We also have a notion
of order <, and have organized the rationals into the positive ra-
tionals, the negative rationals, and zero. In short, we have shown
that the rationals Q form an ordered field.

One can now use these basic operations to construct more
operations. There are many such operations we can construct,
but we shall just introduce two particularly useful ones: absolute
value and exponentiation.
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Definition 4.3.1 (Absolute value). If z is a rational number, the
absolute value |z| of x is defined as follows. If x is positive, then
|z| := z. If z is negative, then |z| := —z. If z is zero, then |z| := 0.

Definition 4.3.2 (Distance). Let z and y be real numbers. The
quantity |z — y| is called the distance between z and y and is
sometimes denoted d(z,y), thus d(z,y) := |z — y|. For instance,
d(3,5) = 2.

Proposition 4.3.3 (Basic properties of absolute value and dis-
tance). Let x,y,z be rational numbers.

(a) (Non-degeneracy of absolute value) We have |z| > 0. Also,
|z| = 0 if and only if  is 0.

(b) (Triangle inequality for absolute value) We have |z + y| <
|z + [yl

(¢) We have the inequalities —y < z <y if and only if y > |z|.
In particular, we have —|z| < z < |z|.

(d) (Multiplicativity of absolute value) We have |zy| = |z| |y|.
In particular, | — z| = |z|.

(e) (Non-degeneracy of distance) We have d(z,y) > 0. Also,
d(z,y) =0 if and only if x = y.

(f) (Symmetry of distance) d(z,y) = d(y,x)
(9) (Triangle inequality for distance) d(z,z) < d(z,y) + d(y, z).

Proof. See Exercise 4.3.1. O

Absolute value is useful for measuring how “close” two num-
bers are. Let us make a somewhat artificial definition:

Definition 4.3.4 (e-closeness). Let ¢ > 0, and z,y be rational
numbers. We say that y is e-close to z iff we have d(y,z) < e.
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Remark 4.3.5. This definition is not standard in mathematics
textbooks; we will use it as “scaffolding” to construct the more
important notions of limits (and of Cauchy sequences) later on,
and once we have those more advanced notions we will discard the
notion of e-close.

Examples 4.3.6. The numbers 0.99 and 1.01 are 0.1-close, but
they are not 0.01 close, because d(0.99,1.01) =]0.99—1.01] = 0.02
is larger than 0.01. The numbers 2 and 2 are e-close for every
positive €.

We do not bother defining a notion of e-close when ¢ is zero or
negative, because if € is zero then = and y are only e-close when
they are equal, and when ¢ is negative then z and y are never e-
close. (In any event it is a long-standing tradition in analysis that
the Greek letters €, ¢ should only denote positive (and probably
small) numbers).

Some basic properties of e-closeness are the following.

Proposition 4.3.7. Let x,y, z,w be rational numbers.

(a) If x =y, then x is e-close to y for every € > 0. Conversely,
if © is e-close to y for every € > 0, then we have x = y.

(b) Lete > 0. If z is e-close to y, then y is e-close to x.

(¢c) Let €,6 > 0. If z is e-close to y, and y is d-close to z, then
z and z are (e + §)-close.

(d) Lete,é > 0. If x and y are e-close, and z and w are §-close,
then © 4+ z and y+w are (¢ + 9§)-close, and x — z and y — w
are also (¢ + 0)-close.

(e) Let € > 0. If x and y are e-close, they are also €'-close for
every g > €.

(f) Lete > 0. Ify and z are both e-close to x, and w is between
yand z (i.e, y <w < zorz < w<y) then w is also
e-close to x.
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(9) Let € > 0. If z and y are e-close, and z is non-zero, then
xz and yz are €|z|-close.

(h) Lete, 6 > 0. If z and y are e-close, and z and w are §-close,
then xz and yw are (e|z| + §|z| + €d)-close.

Proof. We only prove the most difficult one, (h); we leave (a)-(g)
to Exercise 4.3.2. Let ¢, > 0, and suppose that = and y are
e-close. If we write a := y — x, then we have y = x + a and that
|a| < e. Similarly, if z and w are d-close, and we define b := w — z,
then w = z+ b and |b| < §.

Since y =z + a and w = z + b, we have

yw = (z+ a)(z +b) = zz + az + zb + ab.
Thus
lyw — 22| = |az+bx+ab| < |az|+|bz|+|ab| = |a||z|+|b]|z|+ |a|[b]|.
Since |a| < € and |b] < §, we thus have
lyw — zz| < e|z| + d|z| + €6
and thus that yw and zz are (¢|z| + é|z| + €d)-close. O

Remark 4.3.8. One should compare statements (a)-(c) of this
Proposition with the reflexive, symmetric, and transitive axioms
of equality. It is often useful to think of the notion of “e-close” as
an approximate substitute for that of equality in analysis.

Now we recursively define exponentiation for natural number
exponents, extending the previous definition in Definition 2.3.11.

Definition 4.3.9 (Exponentiation to a natural number). Let z
be a rational number. To raise z to the power 0, we define 20 :=
Now suppose inductively that ™ has been defined for some natural
number n, then we define "1 := 2" x z.

Proposition 4.3.10 (Properties of exponentiation, I). Let x,y be
rational numbers, and let n,m be natural numbers.
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(a) We have z"z™ = z"t™ (™)™ = "™ and (zy)" = z"y".
(b) We have z™ =0 if and only if z = 0.

(¢c) Ifz >y >0, then 2™ > y™ > 0. Ifz >y > 0, then
" >y > 0.

(d) We have |z"| = |z|™.
Proof. See Exercise 4.3.3. O
Now we define exponentiation for negative integer exponents.

Definition 4.3.11 (Exponentiation to a negative number). Let
z be a non-zero rational number. Then for any negative integer
—n, we define z7" :=1/z"™.

Thus for instance 3 = 1/23 = 1/(z x  x ). We now have
z" defined for any integer n, whether n is positive, negative, or
zero. Exponentiation with integer exponents has the following
properties (which supercede Proposition 4.3.10):

Proposition 4.3.12 (Properties of exponentiation, II). Let z,y
be non-zero rational numbers, and let n,m be integers.

(a) We have z"z™ = "™ (z")™ = z™™, and (zy)" = z"y".

(b) If x > y > 0, then z™ > y™ > 0 if n is positive, and 0 <
" < y" if n is negative.

(c) If £,y >0, n #0, and =" = y", then z = y.
(d) We have |z"™| = |z|™.
Proof. See Exercise 4.3.4. O

Ezercise 4.3.1. Prove Proposition 4.3.3. (Hint: While all of these
claims can be proven by dividing into cases, such as when z is
positive, negative, or zero, several parts of the proposition can be
proven without such tedious dividing into cases, for instance by
using earlier parts of the proposition to prove later ones.)
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Exzercise 4.3.2. Prove the remaining claims in Proposition 4.3.7.
Ezercise 4.3.3. Prove Proposition 4.3.10. (Hint: use induction.)

Ezercise 4.3.4. Prove Proposition 4.3.12. (Hint: induction is not
suitable here. Instead, use Proposition 4.3.10).

Ezercise 4.3.5. Prove that 2V > N for all positive integers N.
(Hint: use induction).

4.4 Gaps in the rational numbers

Imagine that we arrange the rationals on a line, arranging x to the
right of y if z > y. (This is a non-rigourous arrangement, since
we have not yet defined the concept of a line, but this discussion
is only intended to motivate the more rigourous propositions be-
low.) Inside the rationals we have the integers, which are thus
also arranged on the line. Now we work out how the rationals are
arranged with respect to the integers.

Proposition 4.4.1 (Interspersing of integers by rationals). Let
z be a rational number. Then there exists an integer n such that
n <z < n+1. In fact, this integer is unique (i.e., for each = there
is only one n for which n <z < n+1). In particular, there exists
a natural number N such that N > z (i.e., there is no such thing
as a rational number which is larger than all the natural numbers).

Remark 4.4.2. The integer n for which n < x < n + 1 is some-
times referred to as the integer part of  and is sometimes denoted
n=|z].

Proof. See Exercise 4.4.1. O

Also, between every two rational numbers there is at least one
additional rational:

Proposition 4.4.3 (Interspersing of rationals by rationals). Given
any two rationals x and y such that T < y, there exists a third ra-
tional z such that z < z < y.



4.4. Gaps in the rational numbers 105

Proof. We set z := (z + y)/2. Since z < y, and 1/2 = 1//2 is
positive, we have from Proposition 4.2.9 that /2 < y/2. If we add
y/2 to both sides using Proposition 4.2.9 we obtain z/2 + y/2 <
y/2 +y/2, ie., z < y. If we instead add z/2 to both sides we
obtain z/2 + /2 < y/2 4+ /2, ie.,, z < z. Thus z < z < y as
desired. O

Despite the rationals having this denseness property, they are
still incomplete; there are still an infinite number of “gaps” or
“holes” between the rationals, although this denseness property
does ensure that these holes are in some sense infinitely small.
For instance, we will now show that the rational numbers do not
contain any square root of two.

Proposition 4.4.4. There does not exist any rational number x
for which z? = 2.

Proof. We only give a sketch of a proof; the gaps will be filled in
Exercise 4.4.3. Suppose for contradiction that we had a rational
number z for which 22 = 2. Clearly z is not zero. We may assume
that z is positive, for if  were negative then we could just replace
z by —z (since 22 = (—x)%). Thus z = p/q for some positive
integers p, ¢, so (p/q)? = 2, which we can rearrange as p*> = 2¢°.
Define a natural number p to be even if p = 2k for some natural
number k, and odd if p = 2k+1 for some natural number k. Every
natural number is either even or odd, but not both (why?). If p
is odd, then p? is also odd (why?), which contradicts p? = 2¢°.
Thus p is even, i.e., p = 2k for some natural number k. Since p is
positive, k& must also be positive. Inserting p = 2k into p? = 2¢>
we obtain 4k% = 2¢?, so that ¢ = 2k2.

To summarize, we started with a pair (p, q) of positive integers
such that p? = 2¢?, and ended up with a pair (g, k) of positive
integers such that ¢> = 2k%. Since p? = 2¢?, we have ¢ < p
(why?). If we rewrite p’ := ¢ and ¢’ := k, we thus can pass from
one solution (p,q) to the equation p? = 2¢? to a new solution
(p',4q') to the same equation which has a smaller value of p. But
then we can repeat this procedure again and again, obtaining a
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sequence (p”,q"), (»™,¢"), etc. of solutions to p? = 2¢°, each

one with a smaller value of p than the previous, and each one
consisting of positive integers. But this contradicts the principle
of infinite descent (see Exercise 4.4.2). This contradiction shows
that we could not have had a rational = for which 22 = 2. U

On the other hand, we can get rational numbers which are
arbitrarily close to a square root of 2:

Proposition 4.4.5. For every rational number € > 0, there exists
a non-negative rational number z such that x? < 2 < (z + €)2.

Proof. Let € > 0 be rational. Suppose for contradiction that there
is no non-negative rational number z for which z? < 2 < (z +¢)2.
This means that whenever z is non-negative and z? < 2, we must
also have (z + €)? < 2 (note that (z + £)? cannot equal 2, by
Proposition 4.4.4). Since 0> < 2, we thus have €2 < 2, which
then implies (2¢)? < 2, and indeed a simple induction shows that
(ne)? < 2 for every natural number n. (Note that ne is non-
negative for every natural number n - why?) But, by Proposition
4.4.1 we can find an integer n such that n > 2/¢, which implies
that ne > 2, which implies that (ne)?2 > 4 > 2, contradicting the
claim that (ne)? < 2 for all natural numbers n. This contradiction
gives the proof. O

Example 4.4.6. If ¢ = 0.001, we can take z = 1.414, since
z? = 1.999396 and (z + €)? = 2.002225.

Proposition 4.4.5 indicates that, while the set Q of rationals
do not actually have V2 as a member, we can get as close as we
wish to v/2. For instance, the sequence of rationals

1.4,1.41,1.414,1.4142,1.41421, . ..
seem to get closer and closer to v/2, as their squares indicate:

1.96,1.9881,1.99396, 1.99996164, 1.9999899241, ...

3We will use the decimal system for defining terminating decimals, for
instance 1.414 is defined to equal the rational number 1414/1000. We defer
the formal discussion on the decimal system to an Appendix (§13).
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Thus it seems that we can create a square root of 2 by taking a
“limit” of a sequence of rationals. This is how we shall construct
the real numbers in the next chapter. (There is another way to
do so, using something called “Dedekind cuts”, which we will not
pursue here. One can also proceed using infinite decimal expan-
sions, but there are some sticky issues when doing so, e.g., one
has to make 0.999... equal to 1.000..., and this approach, de-
spite being the most familiar, is actually more complicated than
other approaches; see the Appendix §13.)

Ezercise 4.4.1. Prove Proposition 4.4.1. (Hint: use Proposition
2.3.9).

Exzxercise 4.4.2. A definition: a sequence ag, a1, a2, - - . of numbers
(natural numbers, integers, rationals, or reals) is said to be in
infinite descent if we have a, > an4+1 for all natural numbers n
(i.e., ag > ay > ax > )

(a) Prove the principle of infinite descent: that it is not possible
to have a sequence of natural numbers which is in infinite
descent. (Hint: Assume for contradiction that you can find
a sequence of natural numbers which is in infinite descent.
Since all the a,, are natural numbers, you know that a, > 0
for all n. Now use induction to show in fact that a, > k for
all k € N and all n € N, and obtain a contradiction.)

(b) Does the principle of infinite descent work if the sequence
ai1,a9,as,. .. is allowed to take integer values instead of nat-
ural number values? What about if it is allowed to take
positive rational values instead of natural numbers? Ex-
plain.

Ezercise 4.4.3. Fill in the gaps marked (why?) in the proof of
Proposition 4.4.4.



Chapter 12

Appendix: the basics of mathematical logic

The purpose of this appendix is to give a quick introduction to
mathematical logic, which is the language one uses to conduct
rigourous mathematical proofs. Knowing how mathematical logic
works is also very helpful for understanding the mathematical way
of thinking, which once mastered allows you to approach math-
ematical concepts and problems in a clear and confident way -
including many of the proof-type questions in this text.

Writing logically is a very useful skill. It is somewhat related
to, but not the same as, writing clearly, or efficiently, or convinc-
ingly, or informatively; ideally one would want to do all of these
at once, but sometimes one has to make compromises (though
with practice you’ll be able to achieve more of your writing ob-
jectives concurrently). Thus a logical argument may sometimes
look unwieldy, excessively complicated, or otherwise appear un-
convincing. The big advantage of writing logically, however, is
that one can be absolutely sure that your conclusion will be cor-
rect, as long as all your hypotheses were correct and your steps
were logical; using other styles of writing one can be reasonably
convinced that something is true, but there is a difference between
being convinced and being sure.

Being logical is not the only desirable trait in writing, and in
fact sometimes it gets in the way; mathematicians for instance
often resort to short informal arguments which are not logically
rigourous when they want to convince other mathematicians of a
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statement without doing through all of the long details, and the
same is true of course for non-mathematicians as well. So saying
that a statement or argument is “not logical” is not necessarily
a bad thing; there are often many situations when one has good
reasons to not be emphatic about being logical. However, one
should be aware of the distinction between logical reasoning and
more informal means of argument, and not try to pass off an
illogical argument as being logically rigourous. In particular, if an
exercise is asking for a proof, then it is expecting you to be logical
in your answer.

Logic is a skill that needs to be learnt like any other, but this
skill is also innate to all of you - indeed, you probably use the
laws of logic unconsciously in your everyday speech and in your
own internal (non-mathematical) reasoning. However, it does take
a bit of training and practice to recognize this innate skill and
to apply it to abstract situations such as those encountered in
mathematical proofs. Because logic is innate, the laws of logic
that you learn should make sense - if you find yourself having
to memorize one of the principles or laws of logic here, without
feeling a mental “click” or comprehending why that law should
work, then you will probably not be able to use that law of logic
correctly and effectively in practice. So, please don’t study this
appendix the way you might cram before a final - that is going to
be useless. Instead, put away your highlighter pen, and read
and understand this appendix rather than merely studying it!

12.1 Mathematical statements

Any mathematical argument proceeds in a sequence of mathe-
matical statements. These are precise statements concerning vari-
ous mathematical objects (numbers, vectors, functions, etc.) and
relations between them (addition, equality, differentiation, etc.).
These objects can either be constants or variables; more on this
later. Statements! are either true or false.

'More precisely, statements with no free variables are either true or false.
We shall discuss free variables later on in this appendix.
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Example 12.1.1. 2+ 2 = 4 is a true statement; 2+ 2 =5 is a
false statement.

Not every combination of mathematical symbols is a state-
ment. For instance,

=24 44=—=2

is not a statement; we sometimes call it ill-formed or ill-defined.
The statements in the previous example are well-formed or well-
defined. Thus well-formed statements can be either true or false;
ill-formed statements are considered to be neither true nor false
(in fact, they are usually not considered statements at all). A
more subtle example of an ill-formed statement is

0/0=1;

division by zero is undefined, and so the above statement is ill-
formed. A logical argument should not contain any ill-formed
statements, thus for instance if an argument uses a statement such
as z/y = z, it needs to first ensure that y is not equal to zero.
Many purported proofs of “0=1" or other false statements rely on
overlooking this “statements must be well-formed” criterion.
Many of you have probably written ill-formed or otherwise in-
accurate statements in your mathematical work, while intending
to mean some other, well-formed and accurate statement. To a
certain extent this is permissible - it is similar to misspelling some
words in a sentence, or using a slightly inaccurate or ungrammati-
cal word in place of a correct one (“She ran good” instead of “She
ran well”). In many cases, the reader (or grader) can detect this
mis-step and correct for it. However, it looks unprofessional and
suggests that you may not know what you are talking about. And
if indeed you actually do not know what you are talking about,
and are applying mathematical or logical rules blindly, then writ-
ing an ill-formed statement can quickly confuse you into writing
more and more nonsense - usually of the sort which receives no
credit in grading. So it is important, especially when just learning
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a subject, to take care in keeping statements well-formed and pre-
cise. Once you have more skill and confidence, of course you can
afford once again to speak loosely, because you will know what
you are doing and won’t be in as much danger of veering off into
nonsense.

One of the basic axioms of mathematical logic is that every
well-formed statement is either true or false, but not both (though
if there are free variables, the truth of a statement may depend on
the values of these variables. More on this later). Furthermore,
the truth or falsity of a statement is intrinsic to the statement,
and does not depend on the opinion of the person viewing the
statement (as long as all the definitions and notations are agreed
upon, of course). So to prove that a statement is true; it suffices
to show that it is not false; to show that a statement is false, it
suffices to show that it is not true; this is the principle underlying
the powerful technique of proof by contradiction. This axiom is
viable as long as one is working with precise concepts, for which
the truth or falsity can be determined (at least in principle) in an
objective and consistent manner. However, if one is working in
very non-mathematical situations, then this axiom becomes much
more dubious, and so it can be a mistake to apply mathematical
logic to non-mathematical situations. (For instance, a statement
such as “this rock weighs 52 pounds” is reasonably precise and
objective, and so it is fairly safe to use mathematical reasoning to
manipulate it, whereas statements such as “this rock is heavy”,
“this piece of music is beautiful” or “God exists” are much more
problematic. So while mathematical logic is a very useful and
powerful tool, it still does have some limitations of applicability.)
One can still attempt to apply logic (or principles similar to logic)
in these cases (for instance, by creating a mathematical model of a
real-life phenomenon), but this is now science or philosophy, not
mathematics, and we will not discuss it further here.

Remark 12.1.2. There are other models of logic which attempts
to deal with statements that are not definitely true or definitely
false, such as modal logics, intuitionist logics, or fuzzy logics, but
these are definitely in the realm of logic and philosophy and thus
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well beyond the scope of this text.

Being true is different from being useful or efficient. For in-
stance, the statement
2=2

is true but unlikely to be very useful. The statement
4<4

is also true, but not very efficient (the statement 4 = 4 is more
precise). It may also be that a statement may be false yet still be
useful, for instance

m=22/7

is false, but is still useful as a first approximation. In mathe-
matical reasoning, we only concern ourselves with truth rather
than usefulness or efficiency; the reason is that truth is objective
(everybody can agree on it) and we can deduce true statements
from precise rules, whereas usefulness and efficiency are to some
extent matters of opinion, and do not follow precise rules. Also,
even if some of the individual steps in an argument may not seem
very useful or efficient, it is still possible (indeed, quite common)
for the final conclusion to be quite non-trivial (i.e., not obviously
true) and useful.

Statements are different from ezpressions. Statements are true
or false; expressions are a sequence of mathematical sequence
which produces some mathematical object (a number, matrix,
function, set, etc.) as its value. For instance

24+3%5

is an expression, not a statement; it produces a number as its
value. Meanwhile,
243x5=17

is a statement, not an expression. Thus it does not make any
sense to ask whether 24 3% 5 is true or false. As with statements,
expressions can be well-defined or ill-defined; 2+ 3/0, for instance,



356 12. Appendiz: the basics of mathematical logic

is ill-defined. More subtle examples of ill-defined expressions arise
when, for instance, attempting to add a vector to a matrix, or
evaluating a function outside of its domain, e.g., sin=!(2).

One can make statements out of expressions by using relations
such as =, <, >, €, C, etc. or by using properties (such as “is
prime”, “is continuous”, “is invertible”, etc.) For instance, “30+5
is prime” is a statement, as is “30 + 5 < 42 — 7”. Note that
mathematical statements are allowed to contain English words.

One can make a compound statement from more primitive
statements by using logical connectives such as and, or, not, if-
then, if-and-only-if, and so forth. We give some examples below,
in decreasing order of intuitiveness.

Conjunction. If X is a statement and Y is a statement, the
statement “X and Y” is true if X and Y are both true, and is false
otherwise. For instance, “2+ 2 =4 and 3 4+ 3 = 6” is true, while
“242 =4 and 34+ 3 = 5” is not. Another example: “242 = 4 and
24+ 2 = 4" is true, even if it is a bit redundant; logic is concerned
with truth, not efficiency.

Due to the expressiveness of the English language, one can
reword the statement “X and Y” in many ways, e.g., “X and also
Y”, or “Both X and Y are true”, etc. Interestingly, the statement
“X, but Y” is logically the same statement as “X and Y”, but
they have different connotations (both statements affirm that X
and Y are both true, but the first version suggests that X and
Y are in contrast to each other, while the second version suggests
that X and Y support each other). Again, logic is about truth,
not about connotations or suggestions.

Disjunction. If X is a statement and Y is a statement, the
statement “X or Y” is true if either X or Y is true, or both. For
instance, “24+2 =4 or 3+ 3 = 5” is true, but “2+2 = 5 or
3+3=5"isnot. Also “2+2 =4 o0or 3+ 3 = 6” is true (even
if it is a bit inefficient; it would be a stronger statement to say
“24+2 =4 and 3+ 3 = 6”). Thus by default, the word “or” in
mathematical logic defaults to inclusive or. The reason we do this
is that with inclusive or, to verify “X or Y”, it suffices to verify
that just one of X or Y is true; we don’t need to show that the
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other one is false. So we know, for instance, that “2 + 2 = 4 or
2353 4+ 5931 = 7284” is true without having to look at the second
equation. As in the previous discussion, the statement “2+2 =4
or 2+ 2 =4” is true, even if it is highly inefficient.

If one really does want to use exclusive or, use a statement
such as “Either X or Y is true, but not both” or “Exactly one of
X or Y is true”. Exclusive or does come up in mathematics, but
nowhere near as often as inclusive or.

Negation. The statement “X is not true” or “X is false”, or
“It is not the case that X7, is called the negation of X, and is
true if and only if X is false, and is false if and only if X is true.
For instance, the statement “It is not the case that 2+2 =5" is a
true statement. Of course we could abbreviate this statement to
“24+2#5.

Negations convert “and” into “or”. For instance, the negation
of “Jane Doe has black hair and Jane Doe has blue eyes” is “Jane
Doe doesn’t have black hair or doesn’t have blue eyes”, not “Jane
Doe doesn’t have black hair and doesn’t have blue eyes” (can
you see why?). Similarly, if z is an integer, the negation of “z is
even and non-negative” is “z is odd or negative”, not “z is odd
and negative” (Note how it is important here that or is inclusive
rather than exclusive). Or the negation of “z > 2 and =z < 6”
(ie, “2<z<6”)is “c <2o0rz>6", not “c<2andz >6 or
“2<x>06.7.

Similarly, negations convert “or” into “and”. The negation of
“John Doe has brown hair or black hair” is “John Doe does not
have brown hair and does not have black hair”, or equivalently
“John Doe has neither brown nor black hair”. If z is a real number,
the negation of “z > 1lorz < —1”7is “c < 1 and z > —1” (i.e.,
-l<z<1).

It is quite possible that a negation of a statement will produce
a statement which could not possibly be true. For instance, if z is
an integer, the negation of “x is either even or odd” is “z is neither
even nor odd”, which cannot possibly be true. Remember, though,
that even if a statement is false, it is still a statement, and it is
definitely possible to arrive at a true statement using an argument
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which at times involves false statements. (Proofs by contradiction,
for instance, fall into this category. Another example is proof by
dividing into cases. If one divides into three mutually exclusive
cases, Case 1, Case 2, and Case 3, then at any given time two of
the cases will be false and only one will be true, however this does
not necessarily mean that the proof as a whole is incorrect or that
the conclusion is false.)

Negations are sometimes unintuitive to work with, especially
if there are multiple negations; a statement such as “It is not the
case that either x is not odd, or z is not larger than or equal to
3, but not both” is not particularly pleasant to use. Fortunately,
one rarely has to work with more than one or two negations at a
time, since often negations cancel each other. For instance, the
negation of “X is not true” is just “X is true”, or more succinctly
just “X”. Of course one should be careful when negating more
complicated expressions because of the switching of “and” and
“or”, and similar issues.

If and only if (iff). If X is a statement, and Y is a statement,
we say that “X is true if and only if Y is true”, whenever X is
true, Y has to be also, and whenever Y is true, X has to be also
(i.e., X and Y are “equally true”). Other ways of saying the same
thing are “X and Y are logically equivalent statements”, or “X
is true iff Y is true”, or “X <« Y”. Thus for instance, if = is a
real number, then the statement “r = 3 if and only if 22 = 6”
is true: this means that whenever z = 3 is true, then 2z = 6 is
true, and whenever 2z = 6 is true, then z = 3 is true. On the
other hand, the statement “z = 3 if and only if z2 = 9” is false;
while it is true that whenever z = 3 is true, 22 = 9 is also true,
it is not the case that whenever 22 = 9 is true, that z = 3 is also
automatically true (think of what happens when z = —3).

Statements that are equally true, are also equally false: if X
and Y are logically equivalent, and X is false, then Y has to be
false also (because if Y were true, then X would also have to be
true). Conversely, any two statements which are equally false will
also be logically equivalent. Thus for instance 2 + 2 = 5 if and
only if 4 + 4 = 10.
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Sometimes it is of interest to show that more than two state-
ments are logically equivalent; for instance, one might want to
assert that three statements X, Y, and Z are all logically equiv-
alent. This means whenever one of the statements is true, then
all of the statements are true; and it also means that if one of the
statements is false, then all of the statements are false. This may
seem like a lot of logical implications to prove, but in practice,
once one demonstrates enough logical implications between X, Y,
and Z, one can often conclude all the others and conclude that
they are all logicallly equivalent. See for instance Exercises 12.1.5,
12.1.6.

Ezercise 12.1.1. What is the negation of the statement “either X
is true, or Y is true, but not both”?

Ezercise 12.1.2. What is the negation of the statement “X is true
if and only if Y is true”? (There may be multiple ways to phrase
this negation).

Ezercise 12.1.3. Suppose that you have shown that whenever X is
true, then Y is true, and whenever X is false, then Y is false. Have
you now demonstrated that X and Y are logically equivalent?
Explain.

Ezercise 12.1.4. Suppose that you have shown that whenever X
is true, then Y is true, and whenever Y is false, then X is false.
Have you now demonstrated that X is true if and only if YV is
true? Explain.

Ezercise 12.1.5. Suppose you know that X is true if and only if
Y is true, and you know that Y is true if and only if Z is true.
Is this enough to show that X,Y,Z are all logically equivalent?
Explain.

Ezercise 12.1.6. Suppose you know that whenever X is true, then
Y is true; that whenever Y is true, then Z is true; and whenever
Z is true, then X is true. Is this enough to show that X,Y, Z are
all logically equivalent? Explain.
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12.2 Implication

Now we come to the least intuitive of the commonly used logical
connectives - implication. If X is a statement, and Y is a state-
ment, then “if X, then Y” is the implication from X to Y it is
also written “when X is true, Y is true”, or “X implies Y” or
“Y is true when X is” or “X is true only if Y is true” (this last
one takes a bit of mental effort to see). What this statement “if
X, then Y” means depends on whether X is true or false. If X is
true, then “if X, then Y” is true when Y is true, and false when Y
is false. If however X is false, then “if X, then Y” is always true,
regardless of whether Y is true or false! To put it another way,
when X is true, the statement “if X, then Y” implies that Y is
true. But when X is false, the statement “if X, then Y” offers no
information about whether Y is true or not; the statement is true,
but vacuous (i.e., does not convey any new information beyond
the fact that the hypothesis is false).

Examples 12.2.1. If z is an integer, then the statement “If x = 2,
then z? = 4” is true, regardless of whether z is actually equal to
2 or not (though this statement is only likely to be useful when
z is equal to 2). This statement does not assert that = is equal
to 2, and does not assert that z2 is equal to 4, but it does assert
that when and if z is equal to 2, then z? is equal to 4. If z is not
equal to 2, the statement is still true but offers no conclusion on
z or z2.

Some special cases of the above implication: the implication
“If 2 = 2, then 22 = 4” is true (true implies true). The implication
“TIf3 = 2, then 32 = 4” is true (false implies false). The implication
“If —2 = 2, then (—2)2 = 4” is true (false implies true). The latter
two implications are considered vacuous - they do not offer any
new information since their hypothesis is false. (Nevertheless, it
is still possible to employ vacuous implications to good effect in
a proof - a vacously true statement is still true. We shall see one
such example shortly).

As we see, the falsity of the hypothesis does not destroy the
truth of an implication, in fact it is just the opposite! (When
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a hypothesis is false, the implication is automatically true.) The
only way to disprove an implication is to show that the hypothesis
is true while the conclusion is false. Thus “If 2 + 2 = 4, then
4+ 4 = 2" is a false implication. (True does not imply false.)

One can also think of the statement “if X, then Y” as “Y is
at least as true as X” - if X is true, then Y also has to be true,
but if X is false, Y could be as false as X, but it could also be
true. This should be compared with “X if and only if Y”, which
asserts that X and Y are equally true.

Vacuously true implications are often used in ordinary speech,
sometimes without knowing that the implication is vacuous. A
somewhat frivolous example is “If wishes were wings, then pigs
would fly”. (The statement “hell freezes over” is also a popular
choice for a false hypothesis.) A more serious one is “If John had
left work at 5pm, then he would be here by now.” This kind
of statement is often used in a situation in which the conclusion
and hypothesis are both false; but the implication is still true
regardless. This statement, by the way, can be used to illustrate
the technique of proof by contradiction: if you believe that “If
John had left work at 5pm, then he would be here by now”, and
you also know that “John is not here by now”, then you can
conclude that “John did not leave work at 5pm”, because John
leaving work at 5pm would lead to a contradiction. Note how a
vacuous implication can be used to derive a useful truth.

To summarize, implications are sometimes vacuous, but this
is not actually a problem in logic, since these implications are
still true, and vacuous implications can still be useful in logical
arguments. In particular, one can safely use statements like “If
X, then Y” without necessarily having to worry about whether the
hypothesis X is actually true or not (i.e., whether the implication
is vacuous or not).

Implications can also be true even when there is no causal
link between the hypothesis and conclusion. The statement “If
14+ 1 = 2, then Washington D.C. is the capital of the United
States” is true (true implies true), although rather odd; the state-
ment “If 2 + 2 = 3, then New York is the capital of the United
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States” is similarly true (false implies false). Of course, such a
statement may be unstable (the capital of the United States may
one day change, while 1 + 1 will always remain equal to 2) but
it is true, at least for the moment. While it is possible to use
acausal implications in a logical argument, it is not recommended
as it can cause unneeded confusion. (Thus, for instance, while
it is true that a false statement can be used to imply any other
statement, true or false, doing so arbitrarily would probably not
be helpful to the reader.)

To prove an implication “If X, then Y”, the usual way to do
this is to first assume that X is true, and use this (together with
whatever other facts and hypotheses you have) to deduce Y. This
is still a valid procedure even if X later turns out to be false;
the implication does not guarantee anything about the truth of
X, and only guarantees the truth of Y conditionally on X first
being true. For instance, the following is a valid proof of a true
Proposition, even though both hypothesis and conclusion of the
Proposition are false:

Proposition 12.2.2. If2+ 2 =15, then 4 =10 — 4.

Proof. Assume 2 + 2 = 5. Multiplying both sides by 2, we obtain
4 4+ 4 = 10. Subtracting 4 from both sides, we obtain 4 = 10 — 4
as desired. O

On the other hand, a common error is to prove an implication
by first assuming the conclusion and then arriving at the hypoth-
esis. For instance, the following Proposition is correct, but the
proof is not:

Proposition 12.2.3. Suppose that 2x + 3 = 7. Show that x = 2.
Proof. (Incorrect) z =2;s02r =4;s02x+3=1T. O

When doing proofs, it is important that you are able to dis-
tinguish the hypothesis from the conclusion; there is a danger of
getting hopelessly confused if this distinction is not clear.

Here is a short proof which uses implications which are possibly
vacuous.
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Theorem 12.2.4. Suppose that n is an integer. Then n(n + 1)
1§ an even integer.

Proof. Since n is an integer, n is even or odd. If n is even, then
n(n+1) is also even, since any multiple of an even number is even.
If n is odd, then n + 1 is even, which again implies that n(n + 1)
is even. Thus in either case n(n+1) is even, and we are done. [

Note that this proof relied on two implications: “if n is even,
then n(n+1) is even”, and “if n is odd, then n(n+1) is even”. Since
n cannot be both odd and even, at least one of these implications
has a false hypothesis and is therefore vacuous. Nevertheless, both
these implications are true, and one needs both of them in order
to prove the theorem, because we don’t know in advance whether
n is even or odd. And even if we did, it might not be worth the
trouble to check it. For instance, as a special case of this Theorem
we immediately know

Corollary 12.2.5. Let n = (253 + 142) x 123 — (423 + 198)3*2 +
538 — 213. Then n(n + 1) is an even integer.

In this particular case, one can work out exactly which parity
n is - even or odd - and then use only one of the two implications
in above the Theorem, discarding the vacuous one. This may
seem like it is more efficient, but it is a false economy, because
one then has to determine what parity n is, and this requires a
bit of effort - more effort than it would take if we had just left
both implications, including the vacuous one, in the argument.
So, somewhat paradoxically, the inclusion of vacuous, false, or
otherwise “useless” statements in an argument can actually save
you effort in the long run! (I’'m not suggesting, of course, that you
ought to pack your proofs with lots of time-wasting and irrelevant
statements; all I'm saying here is that you need not be unduly
concerned that some hypotheses in your argument might not be
correct, as long as your argument is still structured to give the
correct conclusion regardless of whether those hypotheses were
true or false.)
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The statement “If X, then Y” is not the same as “If Y, then
X7; for instance, while “If z = 2, then z? = 4” is true, “If 2% = 4,
then £ = 2” can be false if z is equal to —2. These two statements
are called converses of each other; thus the converse of a true
implication is not necessarily another true implication. We use
the statement “X if and only if Y” to denote the statement that
“If X, then Y; and if Y, then X”. Thus for instance, we can say
that z = 2 if and only if 2z = 4, because if x = 2 then 2z = 4,
while if 22 = 4 then z = 2. One way of thinking about an if-and-
only-if statement is to view “X if and only if Y” as saying that
X is just as true as Y; if one is true then so is the other, and if
one is false, then so is the other. For instance, the statement “If
3 = 2, then 6 = 4” is true, since both hypothesis and conclusion
are false. (Under this view, “If X, then Y” can be viewed as a
statement that Y is at least as true as X.) Thus one could say
“X and Y are equally true” instead of “X if and only if Y.

Similarly, the statement “If X is true, then Y is true” is NOT
the same as “If X is false, then Y is false”. Saying that “if z = 2,
then 22 = 4” does not imply that “if z # 2, then z? # 47, and
indeed we have x = —2 as a counterexample in this case. If-then
statements are not the same as if-and-only-if statements. (If we
knew that “X is true if and only if Y is true”, then we would also
know that “X is false if and only if Y is false”.) The statement “If
X is false, then Y is false” is sometimes called the inverse of “If
X is true, then Y is true”; thus the inverse of a true implication
is not necessarily a true implication.

If you know that “If X is true, then Y is true”, then it is also
true that “If Y is false, then X is false” (because if Y is false, then
X can’t be true, since that would imply Y is true, a contradiction.)
For instance, if we knew that “If z = 2, then 22 = 47, then we
also know that “If z2 # 4, then z # 2”. Or if we knew “If John
had left work at 5pm, he would be here by now”, then we also
know “If John isn’t here now, then he could not have left work
at 5pm”. The statement “If Y is false, then X is false” is known
as the contrapositive of “If X, then Y” and both statements are
equally true.
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In particular, if you know that X implies something which is
known to be false, then X itself must be false. This is the idea
behind proof by contradiction or reductio ad absurdum: to show
something must be false, assume first that it is true, and show
that this implies something which you know to be false (e.g., that
a statement is simultaneously true and not true). For instance:

Proposition 12.2.6. Let = be a positive number such that sin(z) =
1. Then z > /2.

Proof. Suppose for contradiction that z < 7/2. Since z is positive,
we thus have 0 < z < /2. Since sin(z) is increasing for 0 < z <
7/2, and sin(0) = 0 and sin(7/2) = 1, we thus have 0 < sin(z) <
1. But this contradicts the hypothesis that sin(z) = 1. Hence
x> /2. O

Note that one feature of proof by contradiction is that at some
point in the proof you assume a hypothesis (in this case, that
x < 7/2) which later turns out to be false. Note however that this
does not alter the fact that the argument remains valid, and that
the conclusion is true; this is because the ultimate conclusion does
not rely on that hypothesis being true (indeed, it relies instead on
it being false!).

Proof by contradiction is particularly useful for showing “nega-
tive” statements - that X is false, that a is not equal to b, that kind
of thing. But the line between positive and negative statements
is sort of blurry (is the statement x > 2 a positive or negative
statement? What about its negation, that z < 27?) so this is not
a hard and fast rule.

Logicians often use special symbols to denote logical connec-
tives; for instance “X implies Y” can be written “X — Y7,
“X is not true” can be written “~ X7, “1X”, or “-X”, “X and
Y” can be written “X AY” or “X&Y”, and so forth. But for
general-purpose mathematics, these symbols are not often used;
English words are often more readable, and don’t take up much
more space. Also, using these symbols tends to blur the line
between expressions and statements; it’s not as easy to parse
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“r =3)A(y=5) = (z+y=28) as “f z = 3 and
y = 5, then £ +y = 8”. So in general I would not recommend
using these symbols (except possibly for = , which is a very
intuitive symbol).

12.3 The structure of proofs

To prove a statement, one often starts by assuming the hypothesis
and working one’s way toward a conclusion; this is the direct ap-
proach to proving a statement. Such a proof might look something
like the following;:

Proposition 12.3.1. A implies B.

Proof. Assume A is true. Since A is true, C is true. Since C is
true, D is true. Since D is true, B is true, as desired. ]

An example of such a direct approach is
Proposition 12.3.2. If z = w, then sin(z/2) + 1 = 2.

Proof. Let x = w. Since z = m, we have z/2 = =w/2. Since
z/2 = ©/2, we have sin(z/2) = 1. Since sin(z/2) = 1, we have
sin(z/2) +1 = 2. O

Note what we did here was started at the hypothesis and
moved steadily from there toward a conclusion. It is also pos-
sible to work backwards from the conclusion and seeing what it
would take to imply it. For instance, a typical proof of Proposition
12.3.1 of this sort might look like the following:

Proof. To show B, it would suffice to show D. Since C implies D,
we just need to show C. But C follows from A. O

As an example of this, we give another proof of Proposition
12.3.2:

Proof. To show sin(z/2) + 1 = 2, it would suffice to show that
sin(z/2) = 1. Since z/2 = 7/2 would imply sin(z/2) = 1, we just
need to show that /2 = w/2. But this follows since z = 7. [
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Logically speaking, the above two proofs of Proposition 12.3.2
are the same, just arranged differently. Note how this proof style
is different from the (incorrect) approach of starting with the con-
clusion and seeing what it would imply (as in Proposition 12.2.3);
instead, we start with the conclusion and see what would imply
it.

Another example of a proof written in this backwards style is
the following:

Proposition 12.3.3. Let 0 < r < 1 be a real number. Then the
series y oo, nr™ is convergent.

Proof. To show this series is convergent, it suffices by the ratio
test to show that the ratio

T”+1(n+1)| n+1
=r
rn n

converges to something less than 1 as n — co. Since r is already
less than 1, it will be enough to show that "T‘"l converges to 1.
But since ”T“ =1+ %, it suffices to show that % — 0. But this is
clear since n — oo. U

One could also do any combination of moving forwards from
the hypothesis and backwards from the conclusion. For instance,
the following would be a valid proof of Proposition 12.3.1:

Proof. To show B, it would suffice to show D. So now let us show
D. Since we have A by hypothesis, we have C. Since C implies
D, we thus have D as desired. U

Again, from a logical point of view this is exactly the same
proof as before. Thus there are many ways to write the same
proof down; how you do so is up to you, but certain ways of writing
proofs are more readable and natural than others, and different
arrangements tend to emphasize different parts of the argument.
(Of course, when you are just starting out doing mathematical
proofs, you're generally happy to get some proof of a result, and
don’t care so much about getting the “best” arrangement of that
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proof; but the point here is that a proof can take many different
forms.)

The above proofs were pretty simple because there was just
one hypothesis and one conclusion. When there are multiple hy-
potheses and conclusions, and the proof splits into cases, then
proofs can get more complicated. For instance a proof might look
as tortuous as this:

Proposition 12.3.4. Suppose that A and B are true. Then C
and D are true.

Proof. Since A is true, F is true. From F and B we know that F
is true. Also, in light of A, to show D it suffices to show G. There
are now two cases: H and I. If H is true, then from F' and H we
obtain C, and from A and H we obtain G. If instead I is true,
then from I we have G, and from I and G we obtain C. Thus in
both cases we obtain both C and G, and hence C and D. O

Incidentally, the above proof could be rearranged into a much
tidier manner, but you at least get the idea of how complicated a
proof could become. To show an implication there are several ways
to proceed: you can work forward from the hypothesis; you can
work backward from the conclusion; or you can divide into cases
in the hope to split the problem into several easier sub-problems.
Another is to argue by contradiction, for instance you can have
an argument of the form

Proposition 12.3.5. Suppose that A is true. Then B is false.

Proof. Suppose for contradiction that B is true. This would imply
that C is true. But since A is true, this implies that D is true;
which contradicts C. Thus B must be false. O

As you can see, there are several things to try when attempting
a proof. With experience, it will become clearer which approaches
are likely to work easily, which ones will probably work but require
much effort, and which ones are probably going to fail. In many
cases there is really only one obvious way to proceed. Of course,
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there may definitely be multiple ways to approach a problem, so
if you see more than one way to begin a problem, you can just
try whichever one looks the easiest, but be prepared to switch to
another approach if it begins to look hopeless.

Also, it helps when doing a proof to keep track of which state-
ments are known (either as hypotheses, or deduced from the hy-
potheses, or coming from other theorems and results), and which
statements are desired (either the conclusion, or something which
would imply the conclusion, or some intermediate claim or lemma,
which will be useful in eventually obtaining the conclusion). Mix-
ing the two up is almost always a bad idea, and can lead to one
getting hopelessly lost in a proof.

12.4 Variables and quantifiers

One can get quite far in logic just by starting with primitive state-
ments (such as “2+2 = 4” or “John has black hair”), then forming
compound statements using logical connectives, and then using
various laws of logic to pass from one’s hypotheses to one’s con-
clusions; this is known as propositional logic or Boolean logic. (It
is possible to list a dozen or so such laws of propositional logic,
which are sufficient to do everything one wants to do, but I have
deliberately chosen not to do so here, because you might then be
tempted to memorize that list, and that is NOT how one should
learn how to do logic, unless one happens to be a computer or
some other non-thinking device. However, if you really are cu-
rious as to what the formal laws of logic are, look up “laws of
propositional logic” or something similar in the library or on the
internet.)

However, to do mathematics, this level of logic is insufficient,
because it does not incorporate the fundamental concept of vari-
ables - those familiar symbols such as  or n which denote various
quantities which are unknown, or set to some value, or assumed
to obey some property. Indeed we have already sneaked in some
of these variables in order to illustrate some of the concepts in
propositional logic (mainly because it gets boring after a while to
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talk endlessly about variable-free statements such as 2+ 2 =4 or
“Jane has black hair”). Mathematical logic is thus the same as
propositional logic but with the additional ingredient of variables
added.

A wvariable is a symbol, such as n or x, which denotes a certain
type of mathematical object - an integer, a vector, a matrix, that
kind of thing. In almost all circumstances, the type of object that
the variable is should be declared, otherwise it will be difficult
to make well-formed statements using it. (There are a very few
number of true statements one can make about variables which
can be of absolutely any type. For instance, given a variable = of
any type whatsoever, it is true that x = x, and if we also know
that £ = y, then we can conclude that y = . But one cannot
say, for instance, that x + y = y + x, until we know what type
of objects z and y are and whether they support the operation of
addition; for instance, the above statement is ill-formed if z is a
matrix and y is a vector. Thus if one actually wants to do some
useful mathematics, then every variable should have an explicit
type.)

One can form expressions and statements involving variables,
for instance, if z is a real variable (i.e., a variable which is a real
number), = + 3 is an expression, and z + 3 = 5 is a statement.
But now the truth of a statement may depend on the value of the
variables involved; for instance the statement x + 3 = 5 is true if
x is equal to 2, but is false if z is not equal to 2. Thus the truth
of a statement involving a variable may depend on the context of
the statement - in this case, it depends on what z is supposed to
be. (This is a modification of the rule for propositional logic, in
which all statements have a definite truth value.)

Sometimes we do not set a variable to be anything (other than
specifying its type). Thus, we could consider the statement z+3 =
5 where z is an unspecified real number. In such a case we call
this variable a free variable; thus we are considering £ +3 = 5 with
z a free variable. Statements with free variables might not have
a definite truth value, as they depend on an unspecified variable.
For instance, we have already remarked that  + 3 = 5 does not
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have a definite truth value if z is a free real variable, though of
course for each given value of = the statement is either true or
false. On the other hand, the statement (z +1)? = 22 + 2z + 1 is
true for every real number z, and so we can regard this as a true
statement even when z is a free variable.

At other times, we set a variable to equal a fixed value, by using
a statement such as “Let z = 2” or “Set z equal to 2”. In that
case, the variable is known as a bound variable, and statements
involving only bound variables and no free variables do have a
definite truth value. For instance, if we set £ = 342, then the
statement “z+135 = 477" now has a definite truth value, whereas
if z is a free real variable then “x+135 = 477” could be either true
or false, depending on what z is. Thus, as we have said before,
the truth of a statement such as “x + 135 = 477” depends on the
context - whether z is free or bound, and if it is bound, what it is
bound to.

One can also turn a free variable into a bound variable by
using the quantifiers “for all” or “for some”. For instance, the
statement

(z+1)?=2+22+1

is a statement with one free variable x, and need not have a definite
truth value, but the statement

(z 4+ 1)? = 2° 4 2z + 1 for all real numbers =

is a statement with one bound variable z, and now has a definite
truth value (in this case, the statement is true). Similarly, the
statement

z+3=5

has one free variable, and does not have a definite truth value, but
the statement

z + 3 =5 for some real number z
is true, since it is true for z = 2. On the other hand, the statement

z 4+ 3 =5 for all real numbers z
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is false, because there are some (indeed, there are many) real
numbers z for which z + 3 is not equal to 5.

Universal quantifiers. Let P(z) be some statement depend-
ing on a free variable z. The statement “P(z) is true for all z of
type T” means that given any z of type T, the statement P(z) is
true regardless of what the exact value of x is. In other words, the
statement is the same as saying “if z is of type T, then P(z) is
true”. Thus the usual way to prove such a statement is to let z be
a free variable of type T' (by saying something like “Let = be any
object of type T”), and then proving P(z) for that object. The
statement becomes false if one can produce even a single coun-
terexample, i.e., an element = which lies in 7" but for which P(z)
is false. For instance, the statement “z? is greater than z for all
positive 2”7 can be shown to be false by producing a single ex-
ample, such as z = 1 or z = 1/2, where z? is not greater than
T.

On the other hand, producing a single example where P(z) is
true will not show that P(z) is true for all z. For instance, just
because the equation x + 3 = 5 has a solution when =z = 2 does
not imply that x + 3 = 5 for all real numbers z; it only shows
that  + 3 = 5 is true for some real number z. (This is the source
of the often-quoted, though somewhat inaccurate, slogan “One
cannot prove a statement just by giving an example”. The more
precise statement is that one cannot prove a “for all” statement by
examples, though one can certainly prove “for some” statements
this way, and one can also disprove “for all” statements by a single
counterexample.)

It occasionally happens that there are in fact no variables z of
type T. In that case the statement “P(zx) is true for all z of type
T” is vacuously true - it is true but has no content, similar to a
vacuous implication. For instance, the statement

6<2zr<4forall3 <z <2

is true, and easily proven, but is vacuous. (Such a vacuously true
statement can still be useful in an argument, this doesn’t happen
very often.)
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One can use phrases such as “For every” or “For each” instead
of “For all”, e.g., one can rephrase “(z + 1)2 = z? + 2z + 1 for
all real numbers z” as “For each real number z, (z + 1)? is equal
to z2 + 2z + 17. For the purposes of logic these rephrasings are
equivalent. The symbol V can be used instead of “For all”, thus
for instance “Vx € X : P(z) is true” or “P(z) is true Vz € X” is
synonymous with “P(z) is true for all z € X”.

Existential quantifiers The statement “P(x) is true for some
x of type T” means that there exists at least one x of type T for
which P(z) is true, although it may be that there is more than
one such z. (One would use a quantifier such as “for exactly
one z” instead of “for some 2” if one wanted both existence and
uniqueness of such an z). To prove such a statement it suffices to
provide a single example of such an z. For instance, to show that

2% + 22 — 8 = 0 for some real number z

all one needs to do is find a single real number z for which z? +
2x—8 = 0, for instance z = 2 will do. (One could also use z = —4,
but one doesn’t need to use both.) Note that one has the free-
dom to select = to be anything you want when proving a for-some
statement; this is in contrast to proving a for-all statement, where
you have to let z be arbitrary. (One can compare the two state-
ments by thinking of two games between you and an opponent.
In the first game, the opponent gets to pick what z is, and then
you have to prove P(z); if you can always win this game, then
you have proven that P(z) is true for all z. In the second game,
you get to choose what z is, and then you prove P(z); if you can
win this game, you have proven that P(x) is true for some z.)

Usually, saying something is true for all x is much stronger
than just saying it is true for some x. There is one exception
though, if the condition on z is impossible to satisfy, then the
for-all statement is vacuously true, but the for-some statement is
false. For instance

6<2z<4forall3 <z <2

is true, but
6 <2z <4forsome3d <z <2



374 12. Appendiz: the basics of mathematical logic

is false.

One can use phrases such as “For at least one” or “There
exists ...such that” instead of “For some”. For instance, one
can rephrase “z? + 2z — 8 for some real number z” as “There
exists a real number z such that 22 4+ 2z — 8”. The symbol 3 can
be used instead of “There exists ...such that”, thus for instance
“Jr € X : P(z) is true” is synonymous with “P(z) is true for
some z € X”.

12.5 Nested quantifiers

One can nest two or more quantifiers together. For instance, con-
sider the statement

For every positive number z, there exists a positive number y such that y? = z.

What does this statement mean? It means that for each posi-
tive number z, the statement

There exists a positive number y such that y? = =

is true. In other words, one can find a positive square root of z
for each positive number z. So the statement is saying that every
positive number has a positive square root.

To continue the gaming metaphor, suppose you play a game
where your opponent first picks a positive number z, and then you
pick a positive number y. You win the game if 42 = z. If you can
always win the game regardless of what your opponent does, then
you have proven that for every positive z, there exists a positive
y such that y? = z.

Negating a universal statement produces an existential state-
ment. The negation of “All swans are white” is not “All swans
are not white”, but rather “There is some swan which is not
white”. Similarly, the negation of “For every 0 < z < 7/2, we
have cos(z) > 0” is “For some 0 < x < 7/2, we have cos(z) < 0,
NOT “For every 0 < z < 7/2, we have cos(z) < 0”.

Negating an existential statement produces a universal state-
ment. The negation of “There exists a black swan” is not “There
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exists a swan which is not black”, but rather “All swans are
not black”. Similarly, the negation of “There exists a real num-
ber z such that 22 + z + 1 = 07 is “For every real number z,
z2 4+ z+1# 0", NOT “There exists a real number z such that
2?2+ 2+ 1 # 07. (The situation here is very similar to how “and”
and “or” behave with respect to negations.)

If you know that a statement P(z) is true for all z, then you
can set z to be anything you want, and P(x) will be true for that
value of x; this is what “for all” means. Thus for instance if you
know that

(z +1)% = 2% + 2z + 1 for all real numbers z,
then you can conclude for instance that
(r+1)? =72+ 27 +1,
or for instance that
(cos(y) + 1)? = cos(y)? + 2 cos(y) + 1 for all real numbers y

(because if y is real, then cos(y) is also real), and so forth. Thus
universal statements are very versatile in their applicability - you
can get P(z) to hold for whatever = you wish. Existential state-
ments, by contrast, are more limited; if you know that

2% + 22 — 8 = 0 for some real number z

then you cannot simply substitute in any real number you wish,
e.g., 7, and conclude that 72 + 27 — 8 = 0. However, you can of
course still conclude that z2 + 2z — 8 = 0 for some real number z,
it’s just that you don’t get to pick which z it is. (To continue the
gaming metaphor, you can make P(z) hold, but your opponent
gets to pick z for you, you don’t get to choose for yourself.)

Remark 12.5.1. In the history of logic, quantifiers were formally
studied thousands of years before Boolean logic was. Indeed, Aris-
totlean logic, developed of course by Aristotle and his school, deals
with objects, their properties, and quantifiers such as “for all”
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and “for some”. A typical line of reasoning (or syllogism) in Aris-
totlean logic goes like this: “All men are mortal. Socrates is a
man. Hence, Socrates is mortal”. Aristotlean logic is a subset of
mathematical logic, but is not as expressive because it lacks the
concept of logical connectives such as and, or, or if-then (although
“not” is allowed), and also lacks the concept of a binary relation
such as = or <.)

Swapping the order of two quantifiers may or may not make
a difference to the truth of a statement. Swapping two “for all”
quantifiers is harmless: a statement such as

For all real numbers a, and for all real numbers b, we have (a+b)? = a®+2ab+b?
is logically equivalent to the statement
For all real numbers b, and for all real numbers a, we have (a+b)? = a®+2ab+b?

(why? The reason has nothing to do with whether the identity
(a+b)? = a®+2ab+b? is actually true or not). Similarly, swapping
two “there exists” quantifiers has no effect:

There exists a real number a, and there exists a real number b, we have a>+b* = 0
is logically equivalent to
There exists a real number b, and there exists a real number a, we have a’+b* = 0.

However, swapping a “for all” with a “there exists” makes a
lot of difference. Consider the following two statements:

For every integer n, there exists an integer m which is larger than n.
(12.1)

There exists an integer m such that for every integer n,m is larger than n.
(12.2)

Statement 12.1 is obviously true: if your opponent hands you
an integer n, you can always find an integer m which is larger than
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n. But Statement 12.2 is false: if you choose m first, then you
cannot ensure that m is larger than every integer n; your opponent
can easily pick a number n bigger than n to defeat that. The
crucial difference between the two statements is that in Statement
12.1, the integer n was chosen first, and integer m could then be
chosen in a manner depending on n; but in Statement 12.2, one
was forced to choose m first, without knowing in advance what n
is going to be. In short, the reason why the order of quantifiers is
important is that the inner variables may possibly depend on the
outer variables, but not vice versa.

Exercise 12.5.1. What do each of the following statements mean,
and which of them are true? Can you find gaming metaphors for
each of these statements?

e For every positive number z, and every positive number y,
we have 3% = x.

e There exists a positive number z such that for every positive
number y, we have y? = .

e There exists a positive number z, and there exists a positive
number y, such that 3% = z.

e For every positive number y, there exists a positive number
z such that y? = z.

e There exists a positive number y such that for every positive
number z, we have y% = z.

12.6 Some examples of proofs and quantifiers

Here we give some simple examples of proofs involving the “for all”
and “there exists” quantifiers. The results themselves are simple,
but you should pay attention instead to how the quantifiers are
arranged and how the proofs are structured.

Proposition 12.6.1. For every ¢ > 0 there exists a § > 0 such
that 20 < e.
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Proof. Let € > 0 be arbitrary. We have to show that there exists a
¢ > 0 such that 2§ < e. We only need to pick one such §; choosing
d := ¢/3 will work, since one then has 2§ = 2¢/3 < . O

Notice how € has to be arbitrary, because we are proving some-
thing for every €; on the other hand, § can be chosen as you wish,
because you only need to show that there exists a § which does
what you want. Note also that § can depend on ¢, because the é-
quantifier is nested inside the e-quantifier. If the quantifiers were
reversed, i.e., if you were asked to prove “There exists a § > 0
such that for every € > 0, 2§ < €”, then you would have to select
¢ first before being given €. In this case it is impossible to prove
the statement, because it is false (why?).

Normally, when one has to prove a “There exists...” statement,
e.g., “Prove that there exists an € > 0 such that X is true”, one
proceeds by selecting € carefully, and then showing that X is true
for that €. However, this sometimes requires a lot of foresight,
and it is legitimate to defer the selection of ¢ until later in the
argument, when it becomes clearer what properties € needs to
satisfy. The only thing to watch out for is to make sure that ¢
does not depend on any of the bound variables nested inside X.
For instance:

”

Proposition 12.6.2. There exists an € > 0 such that sin(x) >
z/2 for all0 < z < e.

Proof. We pick € > 0 to be chosen later, and let 0 < z < e.
Since the derivative of sin(z) is cos(z), we see from the mean-
value theorem we have

sin(z) _ sin(z) — sin(0)

. o = cosv)
for some 0 < y < z. Thus in order to ensure that sin(z) > z/2,
it would suffice to ensure that cos(y) > 1/2. To do this, it would
suffice to ensure that 0 < y < w/3 (since the cosine function
takes the value of 1 at 0, takes the value of 1/2 at 7/3, and is
decreasing in between). Since 0 < y < z and 0 < z < ¢, we
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see that 0 < y < e. Thus if we pick ¢ := 7/3, then we have
0 <y < /3 as desired, and so we can ensure that sin(z) > z/2
forall0 <z <e. U

Note that the value of ¢ that we picked at the end did not
depend on the nested variables z and y. This makes the above
argument legitimate. Indeed, we can rearrange it so that we don’t
have to postpone anything;:

Proof. We choose € := 7/3; clearly ¢ > 0. Now we have to show
that for all0 < z < 7/3, we have sin(z) > z/2. Solet 0 < z < 7/3
be arbitrary. By the mean-value theorem we have

sin(z)  sin(z) — sin(0)

r z—0 = cos(y)
for some 0 < y < z. Since 0 <y < zand 0 < z < 7/3, we
have 0 < y < /3. Thus cos(y) > cos(n/3) = 1/2, since cos is
decreasing on the interval [0,7/3]. Thus we have sin(z)/z > 1/2
and hence sin(z) > /2 as desired. O

If we had chosen ¢ to depend on z and y then the argument
would not be valid, because ¢ is the outer variable and z,y are
nested inside it.

12.7 Equality

As mentioned before, one can create statements by starting with
expressions (such as 2 x 3 4+ 5) and then asking whether an ex-
pression obeys a certain property, or whether two expressions are
related by some sort of relation (=, <, €, etc.). There are many
relations, but the most important one is equality, and it is worth
spending a little time reviewing this concept.

Equality is a relation linking two objects z,y of the same type
T (e.g., two integers, or two matrices, or two vectors, etc.). Given
two such objects = and y, the statement x = y may or may not be
true; it depends on the value of z and y and also on how equality is
defined for the class of objects under consideration. For instance,
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for the real numbers the two numbers 0.9999... and 1 are equal.
In modular arithmetic with modulus 10 (in which numbers are
considered equal to their remainders modulo 10), the numbers 12
and 2 are considered equal, 12 = 2, even though this is not the
case in ordinary arithmetic.

How equality is defined depends on the class T' of objects under
consideration, and to some extent is just a matter of definition.
However, for the purposes of logic we require that equality obeys
the following four azioms of equality:

e (Reflexive axiom). Given any object x, we have z = x.

e (Symmetry axiom). Given any two objects x and y of the
same type, if x = y, then y = z.

e (Transitive axiom). Given any three objects z, vy, z of the
same type, if z =y and y = z, then z = 2.

e (Substitution axiom). Given any two objects z and y of the
same type, if £ = y, then f(z) = f(y) for all functions or
operations f. Similarly, for any property P(z) depending on
z, if z =y, then P(z) and P(y) are equivalent statements.

The first three axioms are clear, together, they assert that
equality is an equivalence relation. To illustrate the substitution
we give some examples.

Example 12.7.1. Let x and y be real numbers. If x = y, then
2z = 2y, and sin(z) = sin(y). Furthermore, z + z = y + z for any
real number z.

Example 12.7.2. Let n and m be integers. If n isodd and n = m,
then m must also be odd. If we have a third integer k, and we
know that n > k and n = m, then we also know that m > k.

Example 12.7.3. Let z,y, 2 be real numbers. If we know that
z = sin(y) and y = 22, then (by the substitution axiom) we have
sin(y) = sin(z?), and hence (by the transitive axiom) we have
z = sin(2?).
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Thus, from the point of view of logic, we can define equality on
a however we please, so long as it obeys the reflexive, symmetry,
and transitive axioms, and it is consistent with all other opera-
tions on the class of objects under discussion in the sense that
the substitution axiom was true for all of those operations. For
instance, if we decided one day to modify the integers so that 12
was now equal to 2, one could only do so if one also made sure that
2 was now equal to 12, and that f(2) = f(12) for any operation f
on these modified integers. For instance, we now need 2 4+ 5 to be
equal to 12 + 5. (In this case, pursuing this line of reasoning will
eventually lead to modular arithmetic with modulus 10.)

Exercise 12.7.1. Suppose you have four real numbers a, b, ¢, d and
you know that a = b and ¢ = d. Use the above four axioms to
deduce that a +d =b+c.



Chapter 13

Appendix: the decimal system

In Chapters 2, 4, 5 we painstakingly constructed the basic number
systems of mathematics: the natural numbers, integers, rationals,
and reals. Natural numbers were simply postulated to exist, and
to obey five axioms; the integers then came via (formal) differences
of the natural numbers; the rationals then came from (formal)
quotients of the integers, and the reals then came from (formal)
limits of the rationals.

This is all very well and good, but it does seem somewhat
alien to one’s prior experience with these numbers. In particular,
very little use was made of the decimal system, in which the digits
0,1,2,3,4,5,6,7,8,9 are combined to represent these numbers.
Indeed, except for a number of examples which were not essential
to the main construction, the only decimals we really used were
the numbers 0, 1, and 2, and the latter two can be rewritten as
0++ and (04+)++.

The basic reason for this is that the decimal system itself is
not essential to mathematics. It is very convenient for computa-
tions, and we have grown accustomed to it thanks to a thousand
years of use, but in the history of mathematics it is actually a
comparatively recent invention. Numbers have been around for
about ten thousand years (starting from scratch marks on cave
walls), but the modern Hindi-Arabic base 10 system for repre-
senting numbers only dates from the 11th century or so. Some
early civilizations relied on other bases; for instance the Babyloni-
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ans used a base 60 system (which still survives in our time system
of hours, minutes, and seconds, and in our angular system of de-
grees, minutes, and seconds). And the ancient Greeks were able
to do quite advanced mathematics, despite the fact that the most
advanced number representation system available to them was the
Roman numeral system [, 11, II1,IV,..., which was horrendous
for computations of even two-digit numbers. And of course mod-
ern computing relies on binary, hexadecimal, or byte-based (base
256) arithmetic instead of decimal, while analog computers such
as the slide rule do not really rely on any number representation
system at all. In fact, now that computers can do the menial
work of number-crunching, there is very little use for decimals in
modern mathematics. Indeed, we rarely use any numbers other
than one-digit numbers or one-digit fractions (as well as e, 7, 1)
explicitly in modern mathematical work; any more complicated
numbers usually get called more generic names such as n.

Nevertheless, the subject of decimals does deserve an appen-
dix, because it is so integral to the way we use mathematics in our
everyday life, and also because we do want to use such notation as
3.14159. .. to refer to real numbers, as opposed to the far clunkier
“LIM,,_soay, where a1 = 3.1, a9 := 3.14,a3 := 3.141,...7.

We begin by reviewing how the decimal system works for the
positive integers, and then continue on to the reals. Note that
in this discussion we shall freely use all the results from earlier
chapters.

13.1 The decimal representation of natural numbers

In this section we will avoid the usual convention of abbreviating
a X b as ab, since this would mean that decimals such as 34 might
be misconstrued as 3 x 4.

Definition 13.1.1 (Digits). A digit is any one of the ten symbols
0,1,2,3,...,9. We equate these digits with natural numbers by
the formulae 0 = 0, 1 = 0++, 2 = 14+, ete. all the way up to
9 = 844. We also define the number ten by the formula ten :=
9-++. (We cannot use the decimal notation 10 to denote ten yet,
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because that presumes knowledge of the decimal system and would
be circular.)

Definition 13.1.2 (Positive integer decimals). A positive inte-
ger decimal is any string anan,_1...ao of digits, where n > 0 is
a natural number, and the first digit a, is non-zero. Thus, for
instance, 3049 is a positive integer decimal, but 0493 or 0 is not.
We equate each positive integer decimal with a positive integer by
the formula

n
anlp_1-..09 = E a; X ten®.
i=0

Remark 13.1.3. Note in particular that this definition implies
that
10 = 0 x ten® + 1 x ten! = ten

and thus we can write ten as the more familiar 10. Also, a single
digit integer decimal is exactly equal to that digit itself, e.g., the
decimal 3 by the above definition is equal to

3=3xten’ =3

so there is no possibility of confusion between a single digit, and
a single digit decimal. (This is a subtle distinction, and not one
which is worth losing much sleep over.)

Now we show that this decimal system indeed represents the
positive integers. It is clear from the definition that every posi-
tive decimal representation gives a positive integer, since the sum
consists entirely of natural numbers, and the last term a,ten” is
non-zero by definition.

Theorem 13.1.4 (Uniqueness and existence of decimal represen-
tations). Ewvery positive integer m is equal to exactly one positive
integer decimal (which is known as the decimal representation of

Proof. We shall use the principle of strong induction (Proposition
2.2.14, with mg := 1). For any positive integer m, let P(m) denote
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the statement “m is equal to exactly one positive integer decimal”.
Suppose we already know P(m') is true for all positive integers
m' < m; we now wish to prove P(m).

First observe that either m > tenorm € {1,2,3,4,5,6,7,8,9}.
(This is easily proved by ordinary induction.) Suppose first that
m € {1,2,3,4,5,6,7,8,9}. Then m clearly is equal to a positive
integer decimal consisting of a single digit, and there is only one
single-digit decimal which is equal to m. Furthermore, no decimal
consisting of two or more digits can equal m, since if a, ...aq is
such a decimal (with n > 0) we have

n
Qp...00 = E a; X ten® > a, X ten® > ten > m.
i=0

Now suppose that m > ten. Then by the Euclidean algorithm
(Proposition 2.3.9) we can write

m=sXten+r

where s is a positive integer, and r € {0,1,2,3,4,5,6,7,8,9}.
Since
s<sXten<agXten+r=m

we can use the strong induction hypothesis and conclude that P(s)
is true. In particular, s has a decimal representation

P
s=bp...b0:2bz- X ten'.
i=0

Multiplying by ten, we see that

P
s X ten = Zbi x ten't! = by ... b0,
i=0

and then adding r we see that

P
m:sxten—i—?“:Zbi xtenz"'l—l—r:bp...bor.
=0
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Thus m has at least one decimal representation. Now we need to
show that m has at most one decimal representation. Suppose for
contradiction that we have at least two different representations

M=ap...a0 =Gy ...a).
First observe by the previous computation that
ap . ..ag = (an ...a1) X ten + ag

and
!

28

ro..ap = (aly...a}) x ten + aj

and so after some algebra we obtain
ap—ay = (ap...a1 —aly ...a}) x ten.

The right-hand side is a multiple of ten, while the left-hand side
lies strictly between —ten and +ten. Thus both sides must be
equal to 0. This means that ap = aj and ay,...a1 = a,...al.
But by the previous arguments, we know that a,, ...a; is a smaller
integer than a, ...ag. Thus by the strong induction hypothesis,
the number a, ...ap has only one decimal representation, which
means that n’ must equal n and a, must equal a; for all i =

1,...,n. Thus the decimals a,...ap and a],...q{ are in fact
identical, contradicting the assumption that they were different.
O

Once one has decimal representation, one can then derive the
usual laws of long addition and long multiplication to connect the
decimal representation of z +y or z X y to that of z or y (Exercise
13.1.1).

Once one has decimal representation of positive integers, one
can of course represent negative integers decimally as well by using
the — sign. Finally, we let 0 be a decimal as well. This gives
decimal representations of all integers. Every rational is then the
ratio of two decimals, e.g., 335/113 or —1/2 (with the denominator
required to be non-zero, of course), though of course there may
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be more than one way to represent a rational as such a ratio, e.g.,
6/4 =3/2.

Since ten = 10, we will now use 10 instead of ten throughout,
as is customary.

Ezercise 13.1.1. The purpose of this exercise is to demonstrate
that the procedure of long addition taught to you in elementary
school is actually valid. Let A = a,...a9 and B = by, ...by be
positive integer decimals. Let us adopt the convention that a; = 0
when 7 > n, and b; = 0 when 7 > m; for instance, if A = 372, then
ay=2,a1 =7, a2 =3, a3 =0, ag =0, and so forth. Define the
numbers ¢y, ¢1, ... and €y, €1, - . . recursively by the following long
addition algorithm.

e We set g9 := 0.

e Now suppose that ¢; has already been defined for some ¢ > 0.
If a; + b; + ¢; < 10, we set ¢; := a; + b; + €; and €41 := O;
otherwise, if a; + b; + ¢; > 10, we set ¢; := a; + b; + ¢; — 10
and €;4+1 = 1. (The number g;4; is the “carry digit” from
the it decimal place to the (i + 1)** decimal place.)

Prove that the numbers cg, ¢1, - .. are all digits, and that there
exists an [ such that ¢; # 0 and ¢; = 0 for all 4 > [. Then show
that ¢j¢j_1 ... c1cg is the decimal representation of A + B.

Note that one could in fact use this algorithm to define addi-
tion, but it would look extremely complicated, and to prove even
such simple facts as (a +b) + ¢ = a+ (b+ ¢) would be rather diffi-
cult. This is one of the reasons why we have avoided the decimal
system in our construction of the natural numbers. The proce-
dure for long multiplication (or long subtraction, or long division)
is even worse to lay out rigourously; we will not do so here.

13.2 The decimal representation of real numbers

We need a new symbol: the decimal point “.”.
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Definition 13.2.1 (Real decimals). A real decimal is any se-
quence of digits, and a decimal point, arranged as

ta,...a0.a_1a_2...

which is finite to the left of the decimal point (so n is a natural
number), but infinite to the right of the decimal point, where +
is either + or —, and ay, ...ap is a natural number decimal (i.e.,
either a positive integer decimal, or 0). This decimal is equated
to the real number

N
t+a,...a0.a_1a_2... = £1 X Z a; X 10°.

1=—00

The series is always convergent (Exercise 13.2.1). Next, we
show that every real number has at least one decimal representa-
tion:

Theorem 13.2.2 (Existence of decimal representations). Every
real number = has at least one decimal representation *a, ...ap.06_1a_2 . ...

Proof. We first note that z = 0 has the decimal representation
0.000.... Also, once we find a decimal representation for =, we
automatically get a decimal representation for —x by changing the
sign £. Thus it suffices to prove the theorem for real numbers z
(by Proposition 5.4.4).

Let n > 0 be any natural number. From the Archimedean
property (Corollary 5.4.13) we know that there is a natural num-
ber M such that M x 107" > z. Since 0 x 107" < z, we thus see
that there must exist a natural number s,, such that s, x10™" < z
and s,++ x 107" > z. (If no such natural number existed, one
could use induction to conclude that s x 107" < z for all nat-
ural numbers s, contradicting the Archimedean property, Corol-
lary 5.4.13.)

Now consider the sequence sg, s1, S2,.... Since we have

Sp X 107" <z < (s, +1) x 107"
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we thus have
(10 x s,) x 10~ < 1 < (10 x s, + 10) x 10~
On the other hand, we have
1 X 1070 < g < (5,41 + 1) x 107D
and hence we have
10 X sy, < Sp+1+ 1 and sp1 <10 X s, + 10.
From these two inequalities we see that we have
10 X s, < Spyp1 <10 X 8, +9
and hence we can find a digit a,41 such that
Sp41 = 10 X s, + ap,
and hence
a1 X 1070 = g x 107" 4+ @y g x 107D,
From this identity and induction, we can obtain the formula
n
$p X 10" =50+ a;x 107",
i=0

Now we take limits of both sides (using Exercise 13.2.1) to obtain

o0
lim s, x 107" = 59 + Zai x 107°.

e i=0
On the other hand, we have
z—107"<s, x10" <z
for all n, so by the squeeze test (Corollary 6.3.14) we have

lim s, x 107" = z.
n—0o0
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Thus we have

o0
T = Sy —I—Zai X ].07Z
i=0
Since sg already has a positive integer decimal representation by

Theorem 1, we thus see that x has a decimal representation as
desired. O

There is however one slight flaw with the decimal system: it is
possible for one real number to have two decimal representations.

Proposition 13.2.3 (Failure of uniqueness of decimal represen-
tations). The number 1 has two different decimal representations:
1.000... and 0.999....

Proof. The representation 1 = 1.000... is clear. Now let’s com-
pute 0.999.... By definition, this is the limit of the Cauchy se-
quence

0.9,0.99,0.999,0.9999,....

But this sequence has 1 as a formal limit by Proposition 5.2.8. [

It turns out that these are the only two decimal representations
of 1 (Exercise 13.2.2). In fact, as it turns out, all real numbers
have either one or two decimal representations - two if the real is
a terminating decimal, and one otherwise (Exercise 13.2.3).

Ezercise 13.2.1. If a,, ...ap.a_1a_o ... is a real decimal, show that

the series Zfi oo @i X 10° is absolutely convergent.

Exercise 13.2.2. Show that the only decimal representations 1 =
+a,...ap.a_1a_9...0of 1 are 1 =1.000... and 1 = 0.999....

Exzercise 13.2.3. A real number z is said to be a terminating dec-
imal if we have x = n/10™™ for some integers n, m. Show that if
z is a terminating decimal, then z has exactly two decimal rep-
resentations, while if x is not at terminating decimal, then = has
exactly one decimal representation.

Exercise 13.2.4. Rewrite the proof of Corollary 8.3.4 using the
decimal system.
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for rationals, 100
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absolutely integrable, 620
absorption laws, 52
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addition
long, 387
of cardinals, 82
of functions, 253
of complex numbers, 119
of integers, 87, 88
of natural numbers, 27
of rationals, 94, 95
of reals, 119-121
(countably) additive measure,
580, 596
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infinite, 288
of sequences: see limit point
of sequences
of sets: 246, 404, 438
alternating series test, 193
ambient space, 408
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and: see conjunction
antiderivative, 343
approximation to the identity,
468, 472, 527
Archimedian property, 132
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arctangent: see trigonomet-
ric functions
Aristotlean logic, 375
associativity
of composition, 60
of addition in C, 499
of addition in N, 29
of addition in vector spaces,
538
of multiplication in N, 34
of scalar multiplication, 538
see also: ring, field, laws
of algebra
asymptotic discontinuity, 269
Axiom(s)
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of comprehension: see Ax-
iom of universal spec-
ification
of countable choice, 230
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of foundation: see Axiom
of regularity
of induction: see princi-
ple of mathematical
induction
of infinity, 50
of natural numbers: see
Peano axioms
of pairwise union, 42
of power set, 66
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of separation, 45

INDEX

of set theory, 38,40-42,45,49-
50,54,66

of singleton sets and pair
sets, 41

of specification, 45

of symmetry, 380

of substitution, 57, 380

of the empty set, 40

of transitivity, 380

of universal specification,
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of union, 67

ball, 402
Banach-Tarski paradox, 576,
594
base of the natural logarithm:
see e
basis
standard basis of row vec-
tors, 539
bijection, 62
binomial formula, 189
Bolzano-Weierstrass theorem,
174
Boolean algebra, 47, 580, 595
Boolean logic, 369
Borel property, 579, 599
Borel-Cantelli lemma, 618
bound variable, 180, 371, 396
boundary (point), 403, 437
bounded
from above and below, 270
function, 270, 454
interval, 245
sequence, 114, 151



INDEX

sequence away from zero,
124, 128
set, 249, 415

C, C% Ct, C?, C*, 560
cancellation law
of addition in N, 29
of multiplication in N, 34
of multiplication in Z, 92
of multiplication in R, 127
Cantor’s theorem, 224
cardinality
arithmetic, 82
of finite sets, 80
uniqueness of, 80
Cartesian product, 71
infinite, 229
Cauchy criterion, 197
Cauchy sequence, 112, 146, 411
Cauchy-Schwarz inequality, 401,
520
chain: see totally ordered set
chain rule, 295
in higher dimensions, 556,
559
change of variables formula,
348-350
character, 522
characteristic function, 606
choice
single, 40
finite, 74
countable, 230
arbitrary, 229
closed
box, 584
interval, 244
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set, 405, 438
Clairaut’s theorem: see inter-
changing derivatives
with derivatives
closure, 246, 404, 438
cluster point: see limit point
cocountable topology, 440
coefficient, 477
cofinite topology, 440
column vector, 538
common refinement, 313
commutativity
of addition in C, 499
of addition in N, 29
of addition in vector spaces,
538
of convolution, 470, 526
of multiplication in N, 34
see also: ring, field, laws
of algebra
compactness, 415, 439
compact support, 469
comparison principle (or test)
for finite series, 181
for infinite series, 196
for sequences, 167
completeness
of the space of continu-
ous functions, 457
of metric spaces, 412
of the reals, 168
completion of a metric space,
414
complex numbers C, 499
complex conjugation, 501
composition of functions, 59
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conjunction (and), 256
connectedness, 309, 433
connected component, 435
constant
function, 58, 314
sequence, 171
continuity, 262, 422, 438
and compactness, 429
and connectedness, 434
and convergence, 256, 423
continuum, 243
hypothesis, 227
contraction, 562
mapping theorem, 563
contrapositive, 364
convergence
in L2, 521
of a function at a point,
255, 444
of sequences, 148, 396, 437
of series, 190
pointwise: see pointwise
convergence
uniform: see uniform con-
vergence
converse, 364
convolution, 470, 491, 526
Corollary, 28
coset, 591
cosine: see trigonometric func-
tions
cotangent: see trigonometric
functions
countability, 208
of the integers, 212
of the rationals, 214
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cover, 582
see also: open cover
critical point, 576

de Moivre identities, 511
de Morgan laws, 47
decimal
negative integer, 386
non-uniqueness of repre-
sentation, 390
point, 387
positive integer, 384
real, 388
degree, 468
denumerable: see countable
dense, 468
derivative, 290
directional, 548
in higher dimensions, 546,
548, 550, 555
partial, 550
matrix, 555
total, 546, 548
uniqueness, 547
difference rule, 294
difference set, 47
differential matrix: see deriv-
ative matrix
differentiability
at a point, 290
continuous, 560
directional, 548
in higher dimensions, 546
infinite, 481
k-fold, 481, 560
digit, 383
dilation, 540
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diophantine, 619
Dirac delta function, 469
direct sum
of functions, 76, 425
discontinuity: see singularity
discrete metric, 395
disjoint sets, 47
disjunction (or), 356
inclusive vs. exclusive, 356
distance
in Q, 100
in R, 146, 391
distributive law
for natural numbers, 34
for complex numbers, 500
see also: laws of algebra
divergence
of series, 3, 190
of sequences, 4
see also: convergence
divisibility, 238
division
by zero, 3
formal (//), 94
of functions, 253
of rationals, 97
domain, 55
dominate: see majorize
dominated convergence: see
Lebesgue dominated
convergence theorem
doubly infinite, 245
dummy variable: see bound
variable

e, 494
Egoroff’s theorem, 620
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empty
Cartesian product, 64
function, 59
sequence, 64
series, 185
set, 38, 580, 583
equality, 379
for functions, 58
for sets, 39
of cardinality, 79
equivalence
of sequences, 177, 283
relation, 380
error-correcting codes, 394
FEuclidean algorithm, 35
Euclidean metric, 393
Euclidean space, 393
Euler’s formula, 507, 510
Euler’s number: see e
exponential function, 493, 504
exponentiation
of cardinals, 82
with base and exponent
in N, 36
with base in Q and expo-
nent in Z, 102,103
with base in R and expo-
nent in Z, 140,141
with base in R and ex-
ponent in Q, 143
with base in R and ex-
ponent in R, 177
expression, 355
extended real number system
R*, 138, 155

extremum: see maximum, min-
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imum
exterior (point), 403, 437

factorial, 189
family, 68
Fatou’s lemma, 617
Fejér kernel, 528
field, 97
ordered, 99
finite intersection property, 418
finite set, 81
fixed point theorem, 277, 563
forward image: see image
Fourier
coefficients, 524
inversion formula, 524
series, 524
series for arbitrary peri-
ods, 535
theorem, 530
transform, 524
fractional part, 516
free variable, 370
frequency, 523
Fubini’s theorem, 628
for finite series, 188
for infinite series, 217
see also: interchanging in-
tegrals/sums with in-
tegrals/sums
function, 55
implicit definition, 57
fundamental theorems of cal-
culus, 340, 343

geometric series, 196, 197
formula, 197, 200, 463
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geodesic, 395

gradient, 554

graph, 58, 76, 252, 571

greatest lower bound: see least
upper bound

hairy ball theorem, 563
half-infinite, 245
half-open, 244
half-space, 595
harmonic series, 199
Hausdorff space, 437, 439
Hausdorff maximality princi-
ple, 241
Heine-Borel theorem, 416
for the real line, 249
Hermitian, 519
homogeneity, 520, 539
hypersurface, 572

identity map (or operator), 64,
540
if: see implication
iff (if and only if), 30
ill-defined, 353
image
of sets, 64
inverse image, 65
imaginary, 501
implication (if), 360
implicit differentiation, 573
implicit function theorem, 572
improper integral, 320
inclusion map, 64
inconsistent, 506
index of summation: see dummy
variable
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index set, 68
indicator function: see char-
acteristic function
induced
metric, 393, 408
topology, 408, 438
induction: see Principle of math-
ematical induction
infinite
interval, 245
set, 80
infimum: see supremum
injection: see one-to-one func-
tion
inner product, 518
integer part, 104, 133, 516
integers Z
definition 86
identification with ratio-
nals, 95
interspersing with ratio-
nals, 104
integral test, 334
integration
by parts, 345-347, 488
laws, 317, 323
piecewise constant, 315,
317
Riemann: see Riemann in-
tegral
interchanging
derivatives with derivatives,
10, 560
finite sums with finite sums,
187, 188
integrals with integrals, 7,
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limits with derivatives, 9,
464

limits with integrals, 9,
462

limits with length, 12
limits with limits, 8, 9,
453
limits with sums, 620
sums with derivatives, 466,
479
sums with integrals, 463,
479, 615, 616
sums with sums, 6, 217
interior (point), 403, 437
intermediate value theorem,
275, 434
intersection
pairwise, 46
interval, 244
intrinsic, 415
inverse
function theorem, 303, 567
image, 65
in logic, 364
of functions, 63
invertible function: see bijec-
tion
local, 566
involution, 501
irrationality, 138
existence of, 105, 138
of /2, 105
need for, 109
isolated point, 248
isometry, 408
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jump discontinuity, 269

I, 12,1, L', L?, L, 393-
395, 520, 621
equivalence of in finite di-
mensions, 398
see also: absolutely inte-
grable
see also: supremum as norm
L’Hépital’s rule, 11, 305, 306
label, 68
laws of algebra
for complex numbers, 500
for integers, 90
for rationals, 96
for reals, 123
laws of arithmetic:
of algebra
laws of exponentiation, 102,
103, 141, 144, 178, 494
least upper bound, 135
least upper bound prop-
erty, 136, 159
see also supremum
Lebesgue dominated conver-
gence theorem, 622
Lebesgue integral
of absolutely integrable func-
tions, 621
of nonnegative functions,
612
of simple functions, 607
upper and lower, 623
vs. the Riemann integral,
626
Lebesgue measurable, 594

see laws
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Lebesgue measure, 581
motivation of, 579-581
Lebesgue monotone convergence

theorem, 613
Leibnitz rule, 294, 558
Lemma, 28
length of interval, 310
limit

at infinity, 288

formal (LIM), 119, 414
laws, 151, 257, 503

left and right, 267

limiting values of functions,

5, 255, 444

of sequences, 149
pointwise, 447

uniform, see uniform limit
uniqueness of, 148, 257,

399, 445
limit inferior, see limit supe-
rior

limit point
of sequences, 161, 411
of sets, 248
limit superior, 163
linear combination, 539
linearity
approximate, 545
of convolution, 471, 527
of finite series, 186
of limits, 151
of infinite series, 194
of inner product, 519
of integration, 318, 609,
612
of transformations, 539
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Lipschitz constant, 300

Lipschitz continuous, 300

logarithm (natural), 495
power series of, 464, 495

logical connective, 356

lower bound: see upper bound

majorize, 319, 611
manifold, 576
map: see function
matrix, 540
identification with linear
transformations, 541-
544
maximum, 233
local, 297
global, 298
of functions, 253, 272
principle, 272, 430
mean value theorem, 299
measurability
for functions, 601, 603
for sets, 590
motivation of, 579
see also: Lebesgue mea-
sure, outer measure
meta-proof, 141
metric, 392
ball: see ball
on C, 503
on R, 393
space, 392
see also: distance
minimum, 233
local, 297
local, 298
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of a set of natural num-
bers, 210
of functions, 253, 272
minorize: see majorize
monomial, 522
monotone (increasing or de-
creasing)
convergence: see Lebesgue
monotone convergence
theorem
function, 277, 338
measure, 580, 584
sequence, 160
morphism: see function
moving bump example, 449,
617
multiplication
of cardinals, 82
of complex numbers, 500
of functions, 253
of integers, 87
of matrices, 540
of natural numbers, 33
of rationals, 94,95
of reals, 121

Natural numbers N
are infinite, 80
axioms: see Peano axioms
identification with integers,
88
informal definition, 17
in set theory: see Axiom
of infinity
uniqueness of, 77
negation
in logic, 357
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of extended reals, 155
of complex numbers, 499
of integers, 89
of rationals, 95
of reals, 122
negative: see negation, posi-
tive
neighbourhood, 437
Newton’s approximation, 293,
548
non-constructive, 230
non-degenerate, 520

nowhere differentiable function,

467, 512

objects, 38
primitive, 53
one-to-one function, 61

one-to-one correspondence: see

bijection
onto, 61
open
box, 582
cover, 416
interval, 244
set, 405
or: see disjunction
order ideal, 238
order topology, 440
ordered pair, 71
construction of, 75
ordered n-tuple, 72
ordering
lexicographical, 239
of cardinals, 227
of orderings, 240
of partitions, 312

INDEX

of sets, 233

of the extended reals, 155

of the integers, 92

of the natural numbers,

31

of the rationals, 98

of the reals, 130
orthogonality, 520
orthonormal, 523
oscillatory discontinuity, 269
outer measure, 583

non-additivity of, 591, 593

pair set, 41
partial function, 70
partially ordered set, 45, 232
partial sum, 190
Parseval identity, 535
see also: Plancherel for-
mula
partition, 310
path-connected, 435
Peano axioms, 18-21, 23
perfect matching: see bijec-
tion
periodic, 515
extension, 516
piecewise
constant, 314
constant Riemann-Stieltjes
integral, 337
continuous, 332
Plancherel formula (or theo-
rem), 524, 532
pointwise convergence, 447
of series, 459
topology of, 458



INDEX

polar representation, 511
polynomial, 267, 468
and convolution, 471
approximation by, 468, 470
positive
complex number, 502, 506
integer, 90
inner product, 519
measure, 580, 584
natural number, 30
rational, 98
real, 129
power series, 479
formal, 477
multiplication of, 490
uniqueness of, 484
power set, 67
pre-image: see inverse image
principle of infinite descent,
107
principle of mathematical in-
duction, 21
backwards induction, 33
strong induction, 32, 234
transfinite, 237
product rule, see Leibnitz rule
product topology, 458
projection, 540
proof
by contradiction, 354, 365
abstract examples, 366-369,
377-379
proper subset, 44
property, 356
Proposition, 28
propositional logic, 369
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Pythagoras’ theorem, 520

quantifier, 371

existential (for some), 373

negation of, 374

nested, 374

universal (for all), 372
Quotient: see division
Quotient rule, 295, 559

radius of convergence, 478
range, 55
ratio test, 206
rational numbers Q
definition, 94
identification with reals,
122
interspersing with ratio-
nals, 104
interspersing with reals,
133
real analytic, 481
real numbers R
are uncountable: see un-
countability of the re-
als
definition, 118
real part, 501
real-valued, 459
rearrangement
of absolutely convergent
series, 202
of divergent series, 203,
222
of finite series, 185
of non-negative series, 200
reciprocal
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of complex numbers, 502 mean square: see L2

of rationals, 96 test, 204

of reals, 126 row vector, 537
recursive definitions, 26,77 Russell’s paradox, 52

reductio ad absurdum: see proof
by contradiction

relation, 256

relative topology: see induced

scalar multiplication, 537
of functions, 253
Schréder-Bernstein theorem,

topol 227
blop(;)' 08y o sequence, 110
removable discontinuity: see finite, 74

removable singularity
removable singularity, 260, 269 finite, 179, 182
restriction of functions, 251 formal infinite, 189
Riemann hypothesis, 200 laws, 194, 220
Riemann integrability, 320 of functions, 459
closure properties, 323-326
failure of, 335
of bounded continuous func-
tions, 331
of continuous functions on
compacta, 330
of monotone functions, 333

series

on arbitrary sets, 220
on countable sets, 216
vs. sum, 180
set
axioms: see axioms of set
theory

informal definition, 38
of piecewise continuous bounded signum function, 259

functions, 332 simple function, 605
of uniformly continuous func-  gjne: see trigonometric func-
tions, 329 tions
Riemann integral 320 singleton set, 41
upper and lower, 319 singularity, 270
Riemann sums (upper and lower),  space, 392
321 statement, 352
Riemann zeta function, 199 sub-additive measure, 580, 584
Riemann-Stieltjes integral, 339 subset, 44
ring, 90 subsequence, 173, 410
commutative, 90, 500 substitution
Rolle’s theorem, 299 see also: rearrangement,

root, 141 185
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subtraction
formal (——), 86
of functions, 253
of integers, 91
sum rule, 294
summation by parts, 487
SUp norm: see supremum as
norm
support, 469
supremum (and infimum)
as metric, 395
as norm, 395, 460
of a set of extended reals,
156, 157
of a set of reals, 137, 139
of sequences of reals, 158
square root, 56
square wave, 516, 522
Squeeze test
for sequences, 167
Stone-Weierstrass theorem, 475,
526
strict upper bound, 235
surjection: see onto

taxicab metric, 394

tangent: see trigonometric func-
tion

Taylor series, 483

Taylor’s formula: see Taylor
series

telescoping series, 195

ten, 383

Theorem, 28

topological space, 436

totally bounded, 420

totally ordered set, 45, 233
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transformation: see function
translation, 540
invariance, 581, 584, 595
transpose, 538
triangle inequality
in Euclidean space, 401
in inner product spaces,
520
in metric spaces, 392
in C, 502
in R, 100
for finite series, 181, 186
for integrals, 621
trichotomy of order
of extended reals, 156
for natural numbers, 31
for integers, 92
for rationals, 98
for reals, 130
trigonometric functions, 507,
511
and Fourier series, 533
trigonometric polynomi-
als, 522
power series, 508, 512
trivial topology, 439
two-to-one function, 61

uncountability, 208
of the reals, 225
undecidable, 228
uniform continuity, 282, 430
uniform convergence, 450
and anti-derivatives, 465
and derivatives, 454
and integrals, 462
and limits, 453
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and radius of convergence,
479
as a metric, 456, 517
of series, 459
uniform limit, 450
of bounded functions, 454
of continuous functions, 453
and Riemann integration,
462
union, 67
pairwise, 42
universal set, 53
upper bound,
of a set of reals, 134
of a partially ordered set,
235
see also: least upper bound

variable, 370

vector space, 538

vertical line test, 55, 76, 572
volume, 582

Weierstrass approximation the-
orem, 468, 473-474,
525

Weierstrass example: see nowhere

differentiable function
Weierstrass M-test, 460
well-defined, 353
well-ordered sets, 234
well ordering principle
for natural numbers, 210
for arbitrary sets, 241

Zermelo-Fraenkel (-Choice) ax-

INDEX

ioms, 69
see also axioms of set the-
ory
zero test
for sequences, 168
for series, 191
Zorn’s lemma, 237



