Uniqueness of translation invariant measures

joint work by The Class

Let G be an abelian group equiped with a σ -algebra $S \subseteq \mathcal{P}(G)$ such that¹ for all $g \in G$ the map $\lambda_g : G \to G : h \to g + h$ is measurable. Suppose μ and ν are two σ -finite measures on S which are **left invariant**, that is $\mu(\lambda_g(E)) = \mu(E)$ for all $g \in G$ and $E \in S$, and similarly for ν . Then there exists c > 0 such that $\nu = c\mu$.

Proof By σ -finiteness, there exists $B \in S$ such that $\nu(B)$ and $\mu(B)$ are both nonzero and finite. Let $c = \frac{\nu(B)}{\mu(B)}$. Replacing μ by the measure $\mu'(E) = c\mu(E)$, we may assume that $\mu(B) = \nu(B)$ and we will show that $\mu = \nu$.

Claim Given any pair E, F of sets in \mathcal{S} , we claim that

$$\int \chi_E(x-y)\chi_F(x)d\mu(x) = \int \chi_E(x)\chi_F(y+x)d\mu(x) \quad \text{for all } y \in G$$

Proof of the Claim Observe first that if $f: G \to [0, +\infty]$ is measurable, then

$$\int_G f(x+g)d\mu(x) = \int_G f(x)d\mu(x) \quad \text{for all } g \in G$$

and similarly for ν . Indeed, if $f = \chi_E$, note that $f(x+g) = \chi_{E_g}(x)$, where $E_g = \lambda_g^{-1}(E)$, because $f(x+g) = f(\lambda_g(x)) = 1$ iff $\lambda_g(x) \in E$ iff $x \in \lambda_g^{-1}(E)$. But $\mu(E_g) = \mu(E)$ and thus

$$\int f(x+g)d\mu(x) = \int \chi_{E_g}(x)d\mu(x) = \mu(E_g) = \mu(E) = \int fd\mu.$$

By linearity of the integral the equality is valid whenever f is a nonnegative measurable simple function. For general f let s_n be an increasing sequence of nonnegative measurable simple functions such that $s_n \to f$ pointwise, observe that $s_n \circ \lambda_g \to f \circ \lambda_g$ and apply the monotone convergence theorem.

If $y \in G$, applying this to the function f_y given by $f_y(x) = \chi_E(x)\chi_F(x+y)$ gives

$$\int \chi_E(x-y)\chi_F(x)d\mu(x) = \int f_y(x-y)d\mu(x) = \int f_y(x)d\mu(x) = \int \chi_E(x)\chi_F(y+x)d\mu(x)$$

which proves the Claim.

It follows that

$$\int \left(\int \chi_E(x-y)\chi_F(x)d\mu(x))\right)d\nu(y) = \int \left(\int \chi_E(x)\chi_F(y+x)d\mu(x)\right)d\nu(y).$$

¹haar, 5 feb09

Since the integrands are both non-negative and $S \otimes S$ measurable functions on $\times G$, using Tonelli's Theorem, we get

$$\int \left(\int \chi_E(x-y)\chi_F(x)d\nu(y)\right) d\mu(x) = \int \left(\int \chi_E(x)\chi_F(y+x)d\nu(y)\right) d\mu(x).$$

Now we calculate

$$\begin{split} \int \left(\int \chi_E(x) \chi_F(y+x) d\nu(y) \right) d\mu(x) &= \int \left(\chi_E(x) \int \chi_{\lambda_{-x}(F)}(y) d\nu(y) \right) d\mu(x) \\ &= \int \chi_E(x) \nu(\lambda_{-x}(F)) d\mu(x) = \int \chi_E(x) \nu(F) d\mu(x) \\ &= \mu(E) \nu(F) \end{split}$$

(since $\nu(\lambda_{-x}(F)) = \nu(F)$) and

$$\begin{split} \int \left(\int \chi_E(x-y)\chi_F(x)d\nu(y) \right) d\mu(x) &= \int \left(\chi_F(x) \int \chi_{-E}(y-x)d\nu(y) \right) d\mu(x) \\ &= \int \left(\chi_F(x) \int \chi_{\lambda_x(-E)}(y)d\nu(y) \right) d\mu(x) \\ &= \int \chi_F(x)\nu(\lambda_x(-E))d\mu(x) = \int \chi_F(x)\nu(-E)d\mu(x) \\ &= \nu(-E)\mu(F) \end{split}$$

and so

$$\mu(E)\nu(F) = \nu(-E)\mu(F) \quad \text{for all } E, F \in \mathcal{S}.$$
(1)

Set F = B in (1) to obtain

$$\mu(E)\nu(B) = \nu(-E)\mu(B) = \nu(-E)\nu(B)$$

and so $\mu(E) = \nu(-E)$ for all $E \in \mathcal{S}$

since $0 < \nu(B) < +\infty$. Applying the last equality to B we obtain $\mu(B) = \nu(-B)$ and now (1) for E = B gives

$$\mu(B)\nu(F) = \nu(-B)\mu(F)$$

and so finally

$$\nu(F) = \mu(F)$$
 for all $F \in \mathcal{S}$.

Remarks [A.K.] Note that we have actually shown that $\mu(E) = \mu(-E)$ for all $E \in S$: thus any translation invariant measure is automatically reflection invariant. This is not true in general for non-abelian groups.

For the case $G = \mathbb{R}^n$, $S = \mathcal{B}_G$, the above shows that any translation invariant Borel measure on \mathbb{R}^n is a multiple of Lebesgue measure.

It is known that any (not necessarily abelian) locally compact (Hausdorff) group G admits a (left-) translation invariant regular Borel measure μ , called **Haar measure**. The proof is non-trivial.

Any other left translation invariant regular Borel measure on G is a positive multiple of Haar measure. The proof in the non-abelian case also uses Tonelli's theorem.