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1 The pre-history of type and cotype, as I remember it

At the end of the sixties, Pietsch [Pi] promoted the notion of p-summing
operators between Banach spaces, which extends to all values of p ∈ [1, +∞)
the study of some classes of operators introduced by Grothendieck [Gro], under
different names, for the special values p = 1, 2. In an important paper devoted
to p-summing operators, Lindenstrauss and PeÃlczyński [LP] gave a second
birth to what we know in Banach space theory as the Grothendieck theorem;
one formulation of it states that every operator from `1 to `2 is 1-summing;
another formulation is the famous Grothendieck’s inequality. Around 1969,
L. Schwartz introduced radonifying maps, a notion that turned out to be
closely related to p-summing maps. A special case of this notion deals with
the Wiener measure and with linear maps from a Hilbert space H to a Banach
space X, that transform the canonical cylindrical Gaussian measure of H into
a true Radon probability measure on X (see L. Gross [Gr1,Gr2] for another
viewpoint on this subject). L. Schwartz organized a seminar at the Ecole
Polytechnique in Paris ([Sem], 1969–70) about these topics. This is one of the
reasons why Paris, and especially the Ecole Polytechnique, became one of the
places where the subject of type and cotype was developed.

Type and cotype conditions appeared first in the framework of p-summing
operators, or more precisely in connection with the factorization through Lp,
p > 1, of operators with values in L1 (in this paper, operator means bounded
linear operator). In the spring of 1972 I saw the preprint of the paper [Ro]
by H. Rosenthal; this paper played an essential role for me; it contains sev-
eral ideas that I later used and developed in [Ma2]. Two of these ideas taken
from [Ro] are the factorization conditions and the notion of stable type p. By
Pietsch’s factorization theorem, which extends some factorization results due
to Grothendieck [Gro], every q-summing operator from C(K) to a Banach
space factors through the natural injection C(K) → Lq(K,µ), for some prob-
ability measure µ on K. Rosenthal dualizes this fact, and shows that given
T : X → L1 linear such that T ∗ is q-summing, then T factors through a mul-
tiplication operator Mf : Lp → L1 by a function f ∈ Lq (1/p + 1/q = 1; let us
simply write Lr for Lr(K, µ), 0 < r ≤ +∞); we have thus T = Mf ◦T1, where
T1 : X → Lp is bounded and linear. One can give direct conditions on T that
guarantee this factorization, with no need to further reference to q-summing
maps: if an operator T : X → L1 is such that

∫
(
∑

i

|T (xi)|p)1/p dµ ≤ C (
∑

i

‖xi‖p)1/p,

for some C and every finite sequence (xi) ⊂ X, then T factors as T = Mf ◦T1

for some f ∈ Lq. The proof of the factorization theorem is just an application
of the Hahn-Banach separation theorem, either directly as in [Ma1], or by
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going back to Pietsch’s factorization as in [Ro]. One gets in this way a function
f ∈ Lq such that ‖f‖q ≤ 1 and

∫ |T (x)/f |p dµ ≤ Cp ‖x‖p for every x ∈ X. The
above operator T1 is then defined by T1(x) = T (x)/f ∈ Lp for every x ∈ X.
Next, it is shown in [Ro] that a simple norm condition on X, that happens to
be true for X = Ls when 2 ≥ s > p > 1, easily implies the above factorization
condition, as soon as T : X → L1 is bounded (and linear). This condition on
a Banach space X is of the form

∫
‖∑

i

fi(t)xi‖ dt ≤ K (
∑

i

‖xi‖p)1/p,

where K is a constant depending only upon X, (fi) is a sequence of L1-
normalized p-stable variables, and (xi) an arbitrary sequence in X. This con-
dition was called stable type p in [Ma1,Ma2]; it was used in [Ro] (without this
name) for the injection of X ⊂ L1 to L1, and in the general case in [Ma2]. For
example, since a Hilbert space has type 2, we obtain in this way that every
bounded linear map from a Hilbert space to L1 factors through a multipli-
cation Mf : L2 → L1, a statement dual to one of the results of [Gro]: every
operator from a C(K)-space to a Hilbert space is 2-summing. By trace duality,
this yields that every operator from `1 to `2 is 2-summing; we may call this the
easy Grothendieck theorem. The same proof shows that every operator from a
C(K)-space, to a space X such that the dual X∗ has type 2, is 2-summing:
this result appeared for the first time in a paper by Dubinsky, PeÃlczyński and
Rosenthal [DPR].

It is obvious to generalize to operators from X to Lr the condition that gives
a factorization through a multiplication operator Lp → Lr (0 < r < p, see
[Ma1,Ma2]). In particular, some of the results obtained for 0 < r < 1 are
parallel to results obtained earlier by Nikǐsin [N1,N2]: since every Banach
space X has stable type 1 − ε for every ε > 0, every operator from X to Lr,
0 < r < 1, factors through L1−ε when 1− ε ≥ r.

A first relation between these topics and finite dimensional geometry comes
from the paper [Ro]; there, a delicate quantitative Lemma (Lemma 6 from
[Ro]) shows that when the injection from a subspace X ⊂ L1 to L1 does not
factor through any Lp, p > 1, then X must contain complemented almost iso-
metric copies of `n

1 for every n ≥ 1, proving thus that every reflexive subspace
of L1 embeds in some Lp, p > 1 (the main result of [Ro]). This Lemma was ex-
tended in [Ma2] to a general Banach space X as follows: when there exists an
operator T : X → Lp that does not factor through any Lp+ε, ε > 0, then the
injections `n

1 → `n
p , n ∈ N, uniformly factor through X. In particular, when

there exists an operator T : X → L1 that does not factor through any L1+ε,
ε > 0, then X contains uniformly isomorphic and complemented copies of `n

1 ,
for every n ≥ 1. This gives a new (bizarre) proof of Grothendieck’s theorem:
since `n

1 is not uniformly complemented in c0, the preceding statement implies
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that every bounded linear map from c0 to L1 factors through L1+ε, and it
reduces Grothendieck’s theorem to a much easier variant. It is a model for a
list of reduction results, for example this sort of extension of the Grothendieck
theorem: every operator from a cotype 2 space X to any Banach space, which
is 2-summing, is already 1-summing (see [Ma2]; as we have just said, when
X = L1, this is the information that one needs in order to pass from the easy
Grothendieck theorem to the real one). This line of results displayed inter-
esting connections between some simple finite dimensional phenomenons and
analytic facts about Banach spaces.

In the same years, Hoffman-Jørgensen [HJ1] proved general results about se-
ries of vector valued independent random variables, that are in the spirit of
Kahane’s inequalities for vector valued Rademacher series; he also defined
Rademacher type-p and showed connections to the law of large numbers in
[HJ2]. The notion of type 2 (with a different name) appeared first in [DPR],
and it was shown in this article that stable type 2 and Rademacher type 2 are
identical. The results from [HJ1] imply that stable type p and Rademacher
type p are closely related for every p ∈ (1, 2]: stable type p implies Rademacher
type p, and Rademacher type p implies stable type p−ε for every ε > 0. Later
on, it has been universally admitted that Rademacher type is easier to work
with, and the notion of stable type p essentially disappeared, except for p = 2,
because 2-stable type and cotype express interesting properties of Gaussian
probability measures on a Banach space. With Rademacher type p (we say
simply type p in what follows), several points are simplified; it is obvious that
type p implies type r for r ≤ p, and the opposite for cotype; the results for Lr

spaces are easier to formulate, and simple to prove using Khintchine’s inequal-
ity: Lr has type r and cotype 2 when 1 ≤ r ≤ 2 and type 2 and cotype r when
2 ≤ r < +∞. Clearly, Lr does not have type r + ε, ε > 0 when 1 ≤ r ≤ 2, and
does not have cotype r− ε when 2 ≤ r ≤ +∞. This suggested that one could
possibly read some geometrical information about X from the limit values of
p and q that give type p or cotype q for X.

The first attempts to relate type, cotype to the fact that X contains almost
isometric copies of some classical spaces concerned `n

∞ and `n
1 . The first re-

sult [MP1] gave the equivalence between non-trivial cotype for X and the fact
that X does not contain `n

∞ uniformly; today, the proof in [MP1] looks a bit
ridiculous by its complication. It was presented at the Conference at Oberwol-
fach, October 73; at the same meeting, James presented a much deeper result,
namely his solution of the “reflexive vs B-convex” problem (see below). This
was perhaps the beginning of what was later called “Local theory”. For the
relation between the absence of `n

1 s in a Banach space X and other properties
of this X, the first steps are due to Beck, Giesy and James, several years before
this story [Be,G1,J1]; Beck showed the relevance to the law of large numbers
in Banach spaces of the fact that X does not contain copies of `n

1 s. Beck and
Giesy defined B-convex Banach spaces as follows: the Banach space X is B-
convex if for some n > 1 and ε > 0, and for all norm one vectors (xi)

n
i=1 in X,
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at least one choice of signs gives ‖∑n
i=1±xi‖ ≤ n (1− ε). Giesy proved several

Banach space flavoured results about B-convexity, for example that X∗ and
X∗∗ are B-convex when X is B-convex. James [J1] also worked on this class,
which he called uniformly non `n

1 ; in this paper [J1], he conjectured that B-
convex spaces can be renormed to be uniformly convex, and must therefore
be reflexive (and he disproved this conjecture in 1973, as we have said above).

Shortly after the result for cotype and `n
∞, Pisier proved the type and `n

1

case [P1]; he developed the submultiplicativity method for the type constants,
which was important for the following paper [MP2]. Pisier’s result showed that
the class of B-convex spaces coincides with the class of spaces X that have
type p for some p > 1. Then Pisier and I started to work on the relations
between the limit values for the type or cotype of X, and the existence of
subspaces of X that look somewhat like `n

p . Our first approach to the results of
[MP2] was to strengthen the Dvoretzky-Rogers factorization [DR] for a Banach
space X, using information on the limits of type and cotype; it just happened
that the beautiful result of Krivine [Kr2] (see section 4) appeared during the
preparation of [MP2] and allowed us to prove a much more satisfactory result.
In the first version of [MP2], we proved that when X has type p− ε but not
p + ε for every ε > 0, then the injections `n

1 → `n
p factor almost isometrically

through a subspace of X for all n ≥ 1, which means that we can find norm
one vectors x1, . . . , xn in X such that

(
n∑

i=1

|ai|p)1/p ≤ (1 + ε) ‖
n∑

i=1

aixi‖ ≤ (1 + ε)
n∑

i=1

|ai|

for all scalars (ai); the second inequality is of course obvious. When p < 2,
this is a strengthening of the Dvoretzky-Rogers Lemma which says that the
above statement holds in every Banach space when p = 2. Krivine’s theorem
appeared shortly after the first version of [MP2] was written; fortunately,
Studia Math was so slow to publish at that time that we were able to modify
our article in the form which is known as Maurey-Pisier or Maurey-Pisier-
Krivine theorem. I will call it here MP+K theorem, to emphasize the fact
that these three persons did not work together on this particular paper.

Kwapień was visiting Paris in 1971 and 72, just before all this started, and he
played a significant role in the mathematical education of some of the young
French; he gave several seminar talks that had a serious impact on us; he
read and found the mistakes in several false “new proofs” that I had for the
Grothendieck theorem, and he was the first person who checked the eventually
correct proof of that I gave in [Ma2]. His result in [Kw] had a great influence
on the subject of type and cotype; it appeared actually before the definitions
of type and cotype were given, but it is nice to formulate it as follows: if X
has both type 2 and cotype 2, then X is isomorphic to a Hilbert space. This is
one of the first isomorphic characterizations of the Hilbert space. Some time
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later, I used in [Ma3] a small modification of Kwapień’s argument and showed
that every bounded linear operator from a subspace X0 of a type 2 space X
to a cotype 2 space Y factors through a Hilbert space, and extends to an
operator from the whole space X to Y . In particular, every cotype 2 subspace
X0 of a type 2 space X is Hilbertian and complemented in X. This was a
generalization of a well known result due to Kadec and PeÃlczyński [KP], that
Hilbertian subspaces of Lp, 2 ≤ p < +∞, are complemented.

Super-properties appeared in the work of James on super-reflexivity (see [J2]
and [J3], and section 2 below); ultraproduct methods [DK] give more insight
on super-properties: a property is a super-property when it passes to ultra-
powers. Super-reflexivity is obviously a super-property, and B-convexity is an-
other super-property; James showed that super-reflexive spaces are B-convex.
Deciding whether B-convex and super-reflexive spaces are the same class, as
was conjectured by James in [J1], remained a difficult problem for some time,
and was finally solved by James, who constructed a non-reflexive B-convex
space ([J4], improved in [J5]); before this, Brunel and Sucheston [BS1,BS2]
had tried to prove that B-convex spaces were reflexive, and a part of their
attempt introduced an important concept, that of spreading model, which will
be used here in sections 4 and 5. From this point on, there were two clearly
distinct settings: super-reflexive spaces are those that can be renormed to
be uniformly convex (Enflo [En]); they have martingale type p (the basis for
Pisier’s renorming theorem [P2]), and the class of B-convex or type-p spaces,
p > 1, is strictly larger. However, contrary to the general case, type and uni-
form convexity are strongly related for lattices (see Johnson [Jo], and [LT,
1.f]). In a lattice X with non-trivial cotype, it is possible to prove Khintchine-
type inequalities. Given (xi)

n
i=1 in X, these inequalities permit to replace the

estimate of a Rademacher average
∑n

i=1 εi(t)xi in L2(X) by an estimate of

the square function (
∑n

i=1 |xi|2)1/2 in X. This kind of “functional calculus”
for lattices was developed by Krivine in [Kr1], where he obtained interesting
formulations of the Grothendieck theorem, relating operators between lattices
and the square function (see also [LT, 1.f.14]).

Early signs of a tendency to move from abstract Banach spaces to the study
of C∗-algebras and operator spaces also came in this framework. N. Tomczak
[To] proved that the Schatten classes have the same type or cotype properties
than the Lp spaces. Pisier [P3] generalized Grothendieck’s theorem to C∗-
algebras; the result was revisited by Haagerup [Ha] and was the start for many
further exchanges between them. Several other factorization results related to
Grothendieck’s theorem were proved in those years, see [P8].

The first really striking application of cotype as a classification tool appears
in the results of Figiel, Lindenstrauss and Milman [FLM]. They showed that
Dvoretzky’s theorem takes a very strong form in cotype 2 spaces: if X has
cotype 2, there exists a constant c > 0 such that for every integer n, every n-
dimensional subspace of X contains a further subspace X0 such that dim X0 =
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m ≥ c n and d(X0, `
m
2 ) ≤ 2. This result makes use of a certain fundamental

formula

k = [η(τ) nM2
r /b2]

proved in [FLM, Theorem 2.6], relating the dimension k of (1 + τ)-spherical
sections of an n-dimensional normed space to some integral invariant Mr. This
formula appears already –with a different normalization– as equation (14) in
[Mi1]. It gives the spectacular consequence above when using cotype 2 in an
appropriate way; actually, [FLM] quantify the dimension of spherical sections
in terms of the cotype q property, for every q ≥ 2, and the previous result
for cotype 2 is a special case. Another approach to the problem of spherical
sections, the notion of volume ratio developed by Szarek and Tomczak [ST],
also singles out the special behaviour of cotype 2 spaces. This approach is
based on the work of Szarek [Sz], who introduced volume arguments in a new
proof of the results of Kašin [Kš] about `n

1 ; of course Szarek need not mention
cotype 2 when working with the explicit norm of `n

1 ! The fact that cotype 2
spaces have a uniformly bounded volume ratio was proved later by Bourgain
and Milman [BMi], and this motivated the introduction of weak cotype 2 by
Milman and Pisier ([MP], see also Chapter 10 of Pisier’s book [P9]).

Type is a nice tool for estimating the behaviour of the entropy of a convex hull;
a simple observation of mine, written in [P5], was used in entropy problems by
Carl [Ca]. This observation states that in a Banach space X with type p > 1,
every point x from the convex hull of a subset A of the unit ball BX can be
approximated by a convex combination of n points of A, with an error of order
n−1/q (with q conjugate to p). Lemma 9 below is in the spirit of this result.

Type and cotype have some simple stability properties; for example, the dual
of a type p space has cotype q for the conjugate exponent, but the converse
is false as shown by the pair (`1, `∞). The two young and ignorant authors of
[MP2] left open a nice intriguing conjecture: is it possible to dualize cotype
when we have some non-trivial type? It is clear that what is needed is the
boundedness of the Rademacher projection on L2(X). Spaces such that the
Rademacher projection is bounded were called K-convex in [MP2] (was it
because K was the first available letter after J for J-convex, a notion due
to James and named by Brunel and Sucheston [BS2], or to acknowledge the
importance of Kwapień’s work on Rademacher averages?) It was conjectured
in [MP2] that every space with type r > 1 should be K-convex, which would
imply that the dual X∗ of a space X with cotype q and some non-trivial
type should be of type p, with 1/p + 1/q = 1. Six years later, Pisier proved
what I consider the most beautiful result in this area, making use of Kato’s
theorem on holomorphic semi-groups (see [P6] and section 6 of this article):
every B-convex space is K-convex.
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Although very beautiful, the preceding theorem is not the one that has been
most useful for local theory. The most useful is another result obtained earlier
by Pisier [P4], on the way to the general theorem above. This result asserts
that the K-convexity constant of X is bounded by C (1 + ln dX), where dX

is the distance from X to the Hilbert space of the appropriate dimension
(see Theorem 13 below). In particular, the K-convexity constant is bounded
by C (1 + ln n) for any n-dimensional normed space. The quantitative finite-
dimensional K-convexity, together with the notion of `-norm, leads to a power-
ful tool for geometric estimates (Theorem 3.11 in [P9]; this theorem appeared
first in [FT]). These results play an important role in the QS-theorem of Mil-
man ([Mi2], see also [P9]).

2 Super-properties

Several of the properties P that are defined for a Banach space X are expressed
in the following way: suppose that a number NP (E) is associated to every finite
dimensional normed space E, in such a way that NP (F ) tends to NP (E) when
the Banach-Mazur distance d(F, E) between F and E tends to 1; the most
common such dependence is when NP (F ) ≤ d(F,E) NP (E). We then say that
the Banach space X satisfies property P when NP (X) = supE NP (E) < +∞,
where the supremum is extended to all finite dimensional subspaces E of X.

Clearly, the fact that such a property P holds for X only depends upon the
family F(X) of all finite dimensional normed spaces F such that for every
ε > 0, there exists E ⊂ X for which d(F,E) < 1 + ε. After James [J2], we say
that Y is finitely representable in X when F(Y ) ⊂ F(X); for instance, Lp is
finitely representable in `p, and it is known that X∗∗ is finitely representable
in X for every Banach space X (local reflexivity). A property P of Banach
spaces is called super-property if we know that whenever a Banach space X
has P , then every Banach space Y finitely representable in X has P . Clearly,
every property P expressed by NP (X) < +∞ as above is a super-property.
Super-properties were defined by James in [J2].

Type and cotype are such properties. Let us recall a few definitions and facts
that are developed in [JL]. Let (εi)

+∞
i=1 denote the sequence of Rademacher

functions on [0, 1], or any independent sequence of centered Bernoulli random
variables. Let p ∈ [1, +∞). We say that X has type p when there exists a
constant T such that

( 1∫

0

‖
n∑

i=1

εi(t) xi‖2 dt
)1/2 ≤ T (

n∑

i=1

‖xi‖p)1/p,

for every n ≥ 1 and every sequence (xi)
n
i=1 ⊂ X; we denote by Tp(X) the

smallest constant T with this property; obviously, every normed space X has
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type 1 with T1(X) = 1. On the other hand, it follows from Khintchine’s
inequalities that no non-zero normed space has type p when p > 2. Saying
that X has type p is obviously equivalent to the fact that the family of finite
dimensional subspaces E of X satisfies supE Tp(E) < +∞, thus having type p
is a super-property. We say that X has cotype q when there exists a constant
Cq(X) such that

(
n∑

i=1

‖xi‖q)1/q ≤ Cq(X)
( 1∫

0

‖
n∑

i=1

εi(t) xi‖2 dt
)1/2

for every n ≥ 1 and every sequence (xi)
n
i=1 ⊂ X; again, this is equivalent to the

fact that supE Cq(E) < +∞, and cotype is therefore another super-property.
In both definitions of type and cotype, the choice of the L2 norm for the
Rademacher averages is irrelevant (except for the exact value of the constants);
this follows from Kahane’s inequalities (see [Ka, Chapter II, Th. 4]), which
state that for every q < ∞, there exists a constant Kq such that

( 1∫

0

‖
n∑

i=1

εi(t) xi‖q dt
)1/q ≤ Kq

1∫

0

‖
n∑

i=1

εi(t) xi‖ dt

for every n ≥ 1 and every family (xi)
n
i=1 of vectors in a Banach space.

It is easy to show that when X has type or cotype, then the same holds for the
space L2(X) of X-valued square integrable functions. This fact is used below
in section 5 and section 6.

3 Ultrapowers and some operator lemmas

In the next section about Krivine’s theorem, we use a classical fact for op-
erators on a complex Banach space X: if λ is a boundary point of the spec-
trum Sp(T ) of T ∈ L(X), then λ is an approximate eigenvalue for T , which
means that there exists a sequence (xn) ⊂ X of norm one vectors such that
limn (T (xn)−λxn) = 0. We shall need a slightly less classical fact about com-
muting operators, which is very easy to obtain using the notion of ultrapower
(Lemma 1 below). We shall first recall a few facts about ultrapower techniques.
These techniques became popular in Banach space theory after the paper by
Dacunha-Castelle and Krivine [DK]; approximately at the same time, similar
objects were introduced for C∗-algebras [Ja]. The limit spaces used by James
[J2] in his study of super-reflexivity, the spreading models of Brunel-Sucheston
[BS1], belong to the same family of tools which make possible to construct an
abstract space from different pieces taken at different places.
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Suppose that U is a non-trivial ultrafilter on N. If X is a Banach space, we
consider in X∞ := `∞(X) the closed subspace KU of all sequences y = (yn) ∈
X∞ such that limn→U ‖yn‖ = 0, and we let XU be the quotient space X∞/KU .
Let πU denote the quotient map from X∞ to XU . If x = (xn) and ξ = πU(x),
then ‖ξ‖ = limn→U ‖xn‖. We have a canonical isometry iX,U from X to XU
that sends x ∈ X to the class of the constant sequence x = (xn) where xn = x
for every n. Using this isometric embedding we shall consider that X ⊂ XU .

The crucial fact is here: suppose that η1, . . . , η` ∈ XU are represented by
sequences yj = (yj,n)n≥0 ∈ X∞, for j = 1, . . . , `, and that we have a finite
number of inequality relations

(R) ai < ‖xi +
∑̀

j=1

bi,j ηj‖ < ci, i = 1, . . . , k,

where ai, ci ∈ R, xi ∈ X, (bi,j) is a matrix of scalars. Let us say that a property
depending upon n ∈ N is true when n is U-large if the set A ⊂ N of those n
for which the property holds belongs to U ; then we can say that when n is
U -large, we have in X

(Rn) ai < ‖xi +
∑̀

j=1

bi,j yj,n‖ < ci, i = 1, . . . , k.

This implies that XU is finitely representable in X (and slightly more: if E
is any finite dimensional subspace of XU , we can find a (1 + ε)-isomorphism
T from E into X such that T (x) = x for every x ∈ E ∩ X). We see that
F belongs to F(X) if and only if F is isometric to a subspace of XU . Every
super-property of X passes to XU , for example type or cotype.

Suppose now that T is a bounded linear operator on X. We define T∞ on X∞
in the obvious way,

T∞(x) = (T (xn)),

whenever x = (xn) ∈ X∞. It is clear that KU is stable under T∞, so that T∞
induces a bounded linear map TU on XU . It is easy to check that T → TU is
an isometric homomorphism of unital Banach algebras from L(X) to L(XU).

Using the above principle (R) ⇒ (Rn), we see that if x = (xn) ∈ X∞ and
if ξ = π(x) ∈ XU , then this vector ξ satisfies TU(ξ) = λξ if and only if
limn→U (T (xn)− λxn) = 0; in particular, if X is complex, for every boundary
point λ of the spectrum of T we can find a sequence (xn) ⊂ X of norm one
vectors such that limn (T (xn) − λxn) = 0, which shows that the eigenspace
ker(TU − λI) is not trivial.
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Lemma 1 Suppose that X is a complex Banach space, and that S, T are com-
muting bounded linear operators on X. If (xn) ⊂ X is a sequence of norm one
vectors such that T (xn)− λxn tends to 0, we can find µ ∈ C and a norm one
vector x ∈ X such that T (x) ∼ λx and S(x) ∼ µx.

PROOF. We know that Xλ = ker(TU − λI) is not {0}, and SU commutes
with TU , therefore Xλ is stable under SU . If µ is a boundary point of the
spectrum of the restriction of SU to Xλ, we can find a norm one vector ξ in
Xλ such that SU(ξ) ∼ µξ. Bringing back ξ to X — using (R) ⇒ (Rn), with
η1 = ξ, η2 = TU(ξ) and η3 = SU(ξ) — we obtain for every ε > 0 a norm one
vector x ∈ X such that ‖T (x)− λx‖ < ε and ‖S(x)− µx‖ < ε.

Let X be a complex Banach space, and let T be an into isomorphism from X
into X, with ‖x‖ ≤ C ‖T (x)‖ for every x ∈ X. For every integer n ≥ 1, we
may define Kn as the smallest constant for which

‖x‖ ≤ Kn ‖T n(x)‖

for every x ∈ X. It is clear that Km+n ≤ Km Kn, so that r = limn K1/n
n exists

by a standard lemma. Also, Kn ≤ Cn and Kn ‖T n(x)‖ ≤ Kn ‖T‖n‖x‖ yield
that 0 < ‖T‖−1 ≤ r ≤ C.

Lemma 2 There exists λ ∈ C with |λ| = r and a sequence (xn) of norm one
vectors in X such that limn (T (xn)− λ−1xn) = 0.

PROOF. We introduce an operator S of which r will be the spectral radius;
this S acts as a sort of inverse for TU . For every x ∈ X, let N(x) denote
the supremum of k such that x belongs to the range of T k (this value N(x)
may be +∞). Let Z0 be the subspace of XU consisting of all ξ that have a
representative x = (xn) such that limU N(xn) = +∞. It is obvious that Z0

is stable under TU ; let Z be the closure in XU of Z0, and let TZ denote the
restriction of TU to Z.

When ξ ∈ Z0, we see that ξ = TZ(η) for some (unique) η: indeed, if x = (xn)
belongs to the class of ξ and limU N(xn) = +∞, we have that N(xn) ≥ 1
when n is U -large, which means that A = {n : N(xn) ≥ 1} ∈ U ; hence for
every n ∈ A we have xn = T (yn) for some yn ∈ X; if we let yn = 0 for n /∈ A,
then y = (yn) satisfies limn→U N(yn) = +∞ (because N(yn) ≥ N(xn) − 1);
if η = π(y), then η belongs to Z and TZ(η) = ξ; clearly ‖η‖ ≤ C ‖ξ‖. This
shows that TZ is invertible in L(Z).

Let S = T−1
Z . It is quite clear that ‖Sn‖ ≤ Kn, so that the spectral radius

ρ(S) = limk ‖Sk‖1/k of S satisfies ρ(S) ≤ r; we shall see that r = ρ(S). Let us
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fix k ≥ 2 and ε > 0. For n large, we know that Knk > (r − ε)nk, thus we can
find a vector xn ∈ X such that ‖xn‖ > (r − ε)nk‖T nk(xn)‖. Let h be a large
integer, but small compared to n, say h− 1 <

√
n ≤ h for example. If we had

‖T jk(xn)‖ ≤ (r − 2ε)k ‖T jk+k(xn)‖ = (r − 2ε)k ‖T k(T jk(xn))‖

for every j = h, . . . , n− 1, it would follow that

(r − ε)nk‖T nk(xn)‖ < ‖xn‖ ≤ Chk (r − 2ε)nk−hk ‖T nk(xn)‖,

which is impossible when n is large. For every n ≥ n0, and for some j such
that

√
n ≤ j < n, we may thus find a vector yn = α T jk(xn) such that

1 = ‖yn‖ > (r − 2ε)k ‖T k(yn)‖, and this vector satisfies N(yn) ≥ k
√

n. If
y = (yn) and η = π(y) we get η ∈ Z and ‖Sk(η)‖ > (r − 2ε)k ‖η‖. It follows
that the spectral radius of S is larger than r − 2ε, hence equal to r.

Let λ ∈ Sp(S) be such that |λ| = r. It follows from the “boundary of the
spectrum lemma” that we can find a norm one vector ξ ∈ Z such that S(ξ) ∼
λ ξ, or TZ(ξ) ∼ λ−1ξ; bringing back ξ to X in the usual way gives a norm one
vector x for which T (x) ∼ λ−1x, as was to be proved.

4 Krivine’s theorem

See [MS, Chapter 12] or [BLi, Chapter 12] for a more precise presentation of the
results of this section. I prefer here to tell a pleasant story, rather than being
too technical. Roughly speaking, Krivine’s theorem says that every Banach
space X contains (1 + ε)-isomorphs of `n

p , for some p ∈ [1, +∞] and every
n ≥ 1, or in other words it says that some `p (or c0, when p = +∞) is
finitely representable in X. More precise statements tell us that, given a basic
sequence in X, or simply a sequence (xn) with no Cauchy subsequence, there
exists p ∈ [1, +∞] such that for every n ≥ 1 and ε > 0, we can find blocks of
the given sequence that are (1+ ε)-equivalent to the unit vector basis of `n

p . It
is sometimes useful to be more specific, and to predict what values of p can be
realized, starting from some norm invariants of the sequence (xn). This will
be the case in the next section about type, cotype and the MP+K theorem.

The proofs of Krivine’s theorem are usually divided into two steps: the first
step replaces the given sequence by one that has some minimal regularity; this
step uses only subsequences, or just differences of two vectors from the original
sequence (as opposed to the second step, that requires clever long blockings).
The argument is due to Brunel and Sucheston: given a sequence with no
Cauchy subsequence, and using Ramsey’s theorem, we may find a subsequence

12



which is asymptotically invariant under spreading, see [BS1], and also [Go];
alternatively, this can be achieved by general abstract arguments involving
iterated ultrapowers, usual in model theory where a somewhat parent notion
of indiscernible sequence is defined. Given a Banach space X and a space Y
of scalar sequences, we say that Y is a spreading model for X if there exists a
normalized sequence (xn) ⊂ X, with no Cauchy subsequence, such that

‖
k∑

j=1

aj ej‖Y = lim ‖
k∑

j=1

aj xnj
‖X

for every k ≥ 1 and all scalars (aj)
k
j=1; the limit is taken when n1 → ∞ and

n1 < n2 < . . . < nk, and (ej) denotes the standard unit vector basis for the
space of scalar sequences.

The second part of this first step, also due to Brunel and Sucheston, is to
observe that the differences (e2j+1 − e2j) are suppression-unconditional in Y
(see below for a definition); further, the differences are bounded away from
zero because the sequence (xn) had no Cauchy subsequence; this implies that
we can find 2-unconditional finite sequences (zi)

k
i=1 in X, with k as large as we

wish, whose vectors zi are differences zi = xn2i
− xn2i−1

of two suitable vectors
from the given sequence (xn). The spreading model Y is finitely representable
in X, in a special way: any finite sequence (yk) of blocks of the basis in Y
can be sent to blocks from the sequence (xn) in X. We shall therefore present
the rest of the proof of Krivine’s theorem assuming that we start from this
situation, replacing the original space X by a spreading model X ′, which is
(block) finitely representable in X and has a nice basis. The real thing is to
prove Krivine’s theorem for X ′.

Let X be a Banach space with a basis (en)n≥0; we say that this basis is a
suppression-unconditional basis when for every x ∈ X, the norm does not
increase if we replace one of the non-zero coordinates of x by 0; this yields
that the basis is unconditional, with unconditionality constant ≤ 2 (in the
real case). Let X be a Banach space with a suppression-unconditional basis
(en)n≥0; we say that the norm is invariant under spreading if for every integer
k ≥ 0 and all n0 < n1 < . . . < nk,

‖
k∑

j=0

aj enj
‖ = ‖

k∑

j=0

aj ej‖

for all scalars (aj). Let x =
∑k

j=0 aj ej be a vector with finite support in X;

we say that y is a copy of x if y =
∑k

j=0 aj enj
for some n0 < n1 < . . . < nk. If

x =
∑

ajej and y =
∑

bjej, we write x < y when all non-zero coordinates of
x appear before those of y, that is max{j : aj 6= 0} < min{j : bj 6= 0}. We say
that x1, . . . , xn are successive vectors if x1 < x2 < . . . < xn.

13



After the preliminary work has been done, the heart of Krivine’s result is the
following Theorem 3. The arguments of Brunel-Sucheston imply that for every
Banach space X, we can find a space X0 with a suppression-unconditional
basis, invariant under spreading, such that X0 is finitely representable in X; if
X0 contains `k

p, then X will also. We shall therefore assume that X is a Banach
space with a suppression-unconditional basis (en)n≥0, and a norm invariant
under spreading. For every integer n ≥ 1, let Rn be the smallest constant and
Sn be the largest constant such that for every x ∈ X, we have

Sn ‖x‖ ≤ ‖
n∑

i=1

xi‖ ≤ Rn ‖x‖

whenever x1 < x2 < . . . < xn are successive copies of x.

Theorem 3 Let X be a Banach space with a suppression-unconditional basis
(en)n≥0, and a norm invariant under spreading; suppose that p ≥ 1 is defined
by the equation

(a) : 21/p = lim sup
n

(R2n)1/n or (b) : 21/p = lim inf
n

(S2n)1/n.

For every k ≥ 1 and ε > 0 it is possible to find k successive blocks x1 < . . . < xk

in X that are (1 + ε)-equivalent to the unit vector basis of `k
p, and that are

copies of some norm one vector x ∈ X.

PROOF. Let I be the set of rational numbers r such that 0 ≤ r < 1, let
(fr)r∈I be the standard unit vector basis for R(I), and let us define a norm on
the linear span Y0 of (fr)r∈I as follows: if r0 < r1 < . . . < rk, let

‖
k∑

j=0

aj frj
‖Y = ‖

k∑

j=0

aj ej‖X

for all scalar coefficients (aj). If Y0 is real, we complexify it in any reasonable
way, for example

‖x + iy‖ = sup
θ
‖ sin(θ) x + cos(θ) y‖,

which preserves invariance under spreading and unconditionality. Let Y be
the completion of Y0; it is clear that (fr) is a suppression-unconditional basis
for Y , invariant under spreading in the new context. We say that y′ ∈ Y
is a copy of y =

∑
r∈I ar fr if y′ =

∑
r∈I ar fφ(r) for some increasing map φ

from I into itself. What we mean by successive copies of a given vector in
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Y is clear. It is also clear that Y is finitely representable in X, and a finite-
dimensional subspace of Y generated by successive copies of some vector in
Y can be approximated by a subspace of X, generated by successive copies of
some vector in X.

We can now relate the behaviour of sums of copies of vectors in X to the
properties of some linear operators defined on this space Y . Indeed, we may
define a doubling operator D on Y by the formula

∀y ∈ Y, D(y) =
∑

0≤r<1/2

y(2r) fr +
∑

1/2≤r<1

y(2r − 1) fr,

or D(y)(r) = y(2r mod 1), considering y as a function I → C. For every
y ∈ Y0, the vector D(y) is the sum of two copies y1 < y2 of y, hence ‖y‖ ≤
‖D(y)‖ ≤ 2 ‖y‖. It is clear that the constant R2n for the initial space X is
equal to the norm of Dn, therefore in case (a), we see that 21/p is the spectral
radius of D. We may thus find λ ∈ C with |λ| = 21/p and a norm one vector
z ∈ Y0 such that D(z) ∼ λz. In case (b), the constant S2n appears to be
the reciprocal of the constant Kn associated to the into isomorphism D (see

before Lemma 2), therefore if 21/p = limn S
1/n
2n , we know by Lemma 2 that

we can again find λ ∈ C with |λ| = 21/p and a norm one vector z ∈ Y0 such
that D(z) ∼ λz. Using unconditionality, we get D(|z|) ∼ |λ| |z|. In both cases
(a) and (b) we found a norm one vector y = α|z| ∈ Y0 (with 1/2 ≤ α ≤ 2)
such that D(y) ∼ 21/p y. Reproducing y in X gives a norm one vector x ∈ X
such that, when x1 < x2 are copies of x, then x1 + x2 is very close to some
copy x′ of 21/p x. I like to call such a vector x a Krivine vector. Suppose that
x1 < x2 < . . . < xk are copies of this vector x. If n ≥ 1 is given and if
D(y)− 21/p y has norm smaller than some εn > 0, we deduce that

(K) ‖
k∑

j=1

ajxj‖p ∼
k∑

j=1

ap
j ,

provided all coefficients are of the form aj = 2−kj/p, for some integer kj such
that 0 ≤ kj ≤ n, and

∑
j ap

j = 1 (if K = max kj, replace each ajxj by 2K−kj

copies of 2−K/p x; this gives 2K copies of 2−K/p x, which we may group two by
two again, obtaining after K steps a single copy of the vector x).

This is not quite enough, and we also introduce an operator T on Y which
reproduces three times every vector y ∈ Y ,

T (y) =
∑

0≤r<1/3

y(3r) fr +
∑

1/3≤r<2/3

y(3r − 1) fr +
∑

2/3≤r<1

y(3r − 2) fr.

It is clear that DT = TD is the operator that replaces every vector x by six
copies of x; the commutation property and Lemma 1 enable us to find a norm
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one vector z such that D(z) ∼ 21/pz and T (z) ∼ µz; then T (|z|) ∼ |µ| |z|,
so that we may assume that z and µ are real and ≥ 0. Some simple lattice
arguments (involving comparisons of the norms of sums of respectively 2h, 3i

and 2j copies of z when 2h < 3i < 2j) show that necessarily µ = 31/p.

If D(z)− 21/p z and T (z)− 31/p z are small enough, and if z1 < z2 < . . . < zk

are copies of this vector z, we may try to extend relation (K) to coefficients
(aj) such that aj = 2`j3mj for some `j,mj ∈ Z; since these values are dense
in [0,∞), we are in a good position. However, dealing with the error terms is
painful, and we may instead pass to the ultrapower YU , which is still a lattice,
with a linear ordering defined in this way: we say that ξ < η if ξ and η have
representatives (xn) and (yn) with xn < yn for every n, and we say that η is a
copy of ξ if ξ and η have representatives (xn) and (yn) such that yn is a copy of
xn for every n; in YU we can find a norm one vector η such that DU(η) = 21/pη
and TU(η) = 31/pη; to get this, we take for η the class of a normalized sequence
(zn) in Y with D(zn)− 21/pzn → 0 and T (zn)− 31/pzn → 0. In this framework
where we have equalities, it is easy to prove that when η1, . . . , ηk are successive
copies of this vector η and when the coefficients (aj) satisfy aj = 2`j3mj , with
`j,mj ∈ Z, then ‖∑k

j=1 ajηj‖p =
∑k

j=1 ap
j ; next, we extend this by density to

all non-negative scalars. Going back to X, and using the special form of the
vectors η1, . . . , ηk, we can find successive copies x1, . . . , xk of some norm one
vector x in X such that

(K ′) (1 + ε)−p/2
k∑

j=1

ap
j ≤ ‖

k∑

j=1

ajxj‖p ≤ (1 + ε)p/2
k∑

j=1

ap
j ,

for all non-negative scalars (aj). Everything would be fine if the basis in X was
1-unconditional, but it is not so: what we get so far is a sequence x1, . . . , xk

which is 2(1+ ε)-equivalent to the `k
p-basis in the real case, and 4(1+ ε) in the

complex case, for every k ≥ 2: if v =
∑

ajxj, the `p-norm of the coefficients is
dominated by (‖v+‖p +‖v−‖p)1/p ≤ 21/p ‖v‖, using first (K ′) then suppression
unconditionality; in the other direction use ‖v‖ ≤ 21−1/p (‖v+‖p + ‖v−‖p)1/p.

Suppose p < ∞ for simplicity; if k = m2 and if we form new blocks y1, . . . , ym

in X of the form yi = m−1/p ∑m
j=1 (−1)jxm(i−1)+j, then (y1, . . . , ym) is still a

sequence of successive copies of some y ∈ X, hence invariant under spreading,
5-equivalent to the `m

p basis (say), but the unconditional constant is improved
to something arbitrarily close to 1 as m grows (in the complex case, a similar
trick using a primitive root of unity does the required job). We build a limit

space X1 from the sequence ([y
(m)
1 , . . . , y(m)

m ])m, by setting

‖
n∑

j=1

aj ej‖X1
= lim

m→U
‖

n∧m∑

j=1

aj y
(m)
j ‖

for every n ≥ 1 and all scalars (aj). This space X1 is finitely representable in
X, with a 1-unconditional basis, invariant under spreading, and 5-equivalent
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to the `p basis. In X1 we have clearly 21/p = lim supn(R2n)1/n. Applying the
above construction to X1 gives new blocks x1, . . . , xk that satisfy (K ′) in X1:
this finishes the proof, since the basis in X1 is 1-unconditional.

The proof above is due to Lemberg [Le], who was Krivine’s PhD student in
the years ’80. The fundamental facts are still the same as in the original paper
[Kr2], but the details in [Kr2] are harder to follow. Combining the arguments
of Brunel-Sucheston and the preceding Theorem, we obtain one of the usual
forms of Krivine’s theorem.

Corollary 4 Suppose that X is a real or complex Banach space, and (xn) a
bounded sequence in X with no Cauchy subsequence. For some p ∈ [1, +∞],
for every k ≥ 1 and ε > 0 it is possible to find k successive blocks of the given
sequence that are (1 + ε)-equivalent to the unit vector basis of `k

p.

Our next Corollary is expressed in a slightly unnatural way, but suitable for
the next section.

Corollary 5 Suppose r, s ≥ 1 are given. If for some κ > 0 and for every
n ≥ 2, a Banach space X contains a normalized suppression-unconditional
sequence y(n) = (y

(n)
1 , . . . , y(n)

n ) such that

‖∑

i∈C

y
(n)
i ‖ ≥ κ |C|1/r

for every subset C ⊂ {1, . . . , n}, or such that

‖∑

i∈C

y
(n)
i ‖ ≤ κ |C|1/s

for every subset C ⊂ {1, . . . , n}, then for some p ≤ r (or p ≥ s) and for every
k ≥ 1, ε > 0, it is possible when n ≥ N(k, ε) to form k successive blocks of the
given sequence y(n) that are (1 + ε)-equivalent to the unit vector basis of `k

p.

PROOF. We construct as we did before a limit space X ′ from the long
sequences as follows. Using Brunel-Sucheston principle, we may select from our
long sequences (y

(n)
i ) some (finite) subsequences z

(n)
1 , . . . , z

(n)
kn

that are almost
indiscernible, and have a length kn tending to ∞ with n; then we define a
norm on c00 (the space of finitely supported scalar sequences) by

‖
m∑

i=1

ciei‖X′ = lim
n→U

‖
m∧kn∑

i=1

ciz
(n)
i ‖
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where (ei)i≥0 denotes the unit vector basis of c00. Notice that when n is U -
large, the length kn exceeds m; this yields that (ei) is normalized in X ′. We
obtain a space X ′ with a normalized suppression-unconditional basis and a
norm invariant under spreading. In the first case, we get for every n ≥ 1

κn1/r ≤ ‖
n∑

i=1

ei‖X′ ≤ Rn ‖e1‖X′ = Rn,

and similarly in the second case we obtain that Sn ≤ κn1/s. We know from
Theorem 3 that we may get `k

p in X ′, with p such that 21/p = limn (R2n)1/n or

21/p = limn (S2n)1/n, thus p ≤ r in the first case and p ≥ s in the second.

5 Type, cotype and `n
ps. The MP+K theorem

Let X be a Banach space. We denote by pX the supremum of all p such that
X has type p, and by qX we denote the infimum of all q such that X has
cotype q. It is clear using Khintchine’s inequality that pX ≤ 2 ≤ qX , already
when X = R.

Theorem 6 Let X be an infinite dimensional Banach space; for every integer
k ≥ 1 and ε > 0, the space X contains (1 + ε)-isomorphs of `k

pX
and of `k

qX
.

For the type case and 1 < p < 2, there exists a quantitative estimate due to
Pisier [P7], see also [MS, Theorem 13.12]. The dimension k of a good isomorph
in X of `k

p is given there as a function of the stable type p constant STp(X)
of the normed space X.

PROOF. If pX = 2 we may use Dvoretzky’s theorem [D2]. Assume pX < 2
and choose r such that pX < r < 2. For each n ≥ 1, let ϕ(n) denote the
smallest constant such that

1∫

0

‖
n∑

i=1

εi(t)xi‖r dt ≤ ϕ(n)r
n∑

i=1

‖xi‖r

for every family x1, . . . , xn of n vectors in X. It is clear that ϕ is non-decreasing,
and tends to +∞ since X does not have type r. Suppose that x1, . . . , xn are
chosen in X so that

∑n
i=1 ‖xi‖r = 1 and

1∫

0

‖
n∑

i=1

εi(t)xi‖r dt >
1999

2000
ϕ(n)r.
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We shall use an exhaustion argument inspired by Nikǐsin’s paper [N2]. Let
(Bα)α∈I be a maximal family of disjoint subsets of {1, . . . , n} such that

1∫

0

‖∑

i∈Bα

εi(t)xi‖r dt <
1

2000

∑

i∈Bα

‖xi‖r.

If B denotes the union of these sets Bα, and m denotes the cardinality of I
(notice that m < n because |Bα| > 1), we get

1∫

0

‖∑

i∈B

εi(t)xi‖r dt =
∫
‖∑

α∈I

εα(s)(
∑

i∈Bα

εi(t)xi)‖r ds dt

≤ϕ(m)r
∑

α∈I

1∫

0

‖∑

i∈Bα

εi(t)xi‖r dt ≤ ϕ(m)r

2000

∑

α∈I

∑

i∈Bα

‖xi‖r

≤ ϕ(n)r

2000

n∑

i=1

‖xi‖r =
ϕ(n)r

2000
.

Let A denote the complement of B and for every j ≥ 0 let

Aj = {k ∈ A : 2−j−1 < ‖xk‖ ≤ 2−j}.

Observe that ‖xk‖ ≤ 1 for every k because
∑r

i=1 ‖xi‖r = 1, so that the sets
(Aj)j≥0 cover the set A. Let N = maxj |Aj| denote the maximal cardinality of
the sets (Aj)j≥0. Then

(

1∫

0

‖∑
i∈A

εi(t)xi‖r dt)1/r ≤
+∞∑

j=0

(

1∫

0

‖∑

i∈Aj

εi(t)xi‖r dt)1/r ≤ N
+∞∑

j=0

2−j = 2 N.

We obtain

(1999

2000

)1/r
ϕ(n) <

( 1∫

0

‖
n∑

i=1

εi(t)xi‖r dt
)1/r ≤ ϕ(n)

20001/r
+ 2 N

which shows that N is big when ϕ(n) is big. Let j0 be such that |Aj0| = N .
By maximality of B we obtain for every non-empty subset C of Aj0

1∫

0

‖∑

i∈C

εi(t)xi‖r dt ≥ 1

2000

∑

i∈C

‖xi‖r ≥ 2−(j0+1)r

2000
|C|.
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Replacing the vectors (xi)i∈Aj0
by normalized vectors (yi), we obtain a nor-

malized sequence (y1, y2, . . . , ym), as long as we wish, such that

(

1∫

0

‖∑

i∈C

εi(t) yi‖r dt)1/r ≥ κ |C|1/r

for every subset C of {1, . . . , m} (with κ = 1
2
2000−1/r). This inequality re-

mains true if we replace the Lr(X) norm by the norm of L1(X) and κ by
some κ′ > 0 (use Kahane’s inequalities). For every n ≥ 1, we may thus find an

unconditional normalized sequence in L1(X), of the form (εjy
(n)
j )n

j=1, with the
above property, and since r < 2 it implies that for some c = c(r, κ′) > 0, we

have ‖∑n
j=1 ajεjy

(n)
j ‖L1(X) ≥ c (

∑n
j=1 |aj|2)1/2 for all scalars. From Corollary 5

follows that for every integer m, we can, when n is large enough, get blocks
z1, . . . , zm ∈ L1(X) of (εjy

(n)
j )n

j=1 that are (1+ ε)-equivalent to the unit vector
basis of `m

p for some p ≤ r, and the `2-norm of the coefficients in each block
zi is bounded by c(r, κ′)−1. By Kahane’s inequalities again, all Ls(X) norms

are equivalent on the span of (εjy
(n)
j )n

j=1, hence the sequence (z1, . . . , zm) con-
sidered in L2(X) is uniformly equivalent to the unit vector basis of `m

p ; since
L2(X) has type s whenever X has type s, we have for every s < pX and for
some constants K,Ks

K−1m1/p ≤
1∫

0

‖
m∑

i=1

εi(t)zi‖L2(X) dt ≤ Ks m1/s

for every m ≥ 1. This yields that s ≤ p, for every s < pX , hence pX ≤ p.
Starting with a long enough sequence (zi)

m
i=1 and blocking again in the `p-

sense we may find three blocks b1, b2, b3 ∈ L1(X) of some sequence (εjyj),
supported on three disjoint intervals J1, J2, J3 and such that, letting ω = (εj)
and

bi(ω) =
∑

j∈Ji

aj εj yj, i = 1, 2, 3,

then the three functions b1, b2, b3 are (1 + ε)-equivalent to the unit vector
basis of `3

p in the norm of L1(X), and the coefficients satisfy
∑

j∈Ji
|aj|2 <

τ 2/12 for i = 1, 2, 3 and a small τ > 0 (use p < 2). For every fixed triple
(c1, c2, c3) of scalars, this implies by Azuma’s inequality (see [MS, 7.4]) a strong
concentration for the set of ω such that

‖c1 b1(ω) + c2 b2(ω) + c3 b3(ω)‖ ∼ (|c1|p + |c2|p + |c3|p)1/p,

and allows us to select a choice of ω = (εj) that works for all (ci)
3
i=1, by a

standard δ-net argument on the unit sphere of `3
p; this shows that for most of
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the choices ω of signs, the vectors b1(ω), b2(ω), b3(ω) in X form a nice copy of
the unit vector basis of `3

p. We may choose r close enough to pX so that `3
pX

is
almost isometric to `3

p, since pX ≤ p ≤ r, and this ends the proof in this case
k = 3. The reader will easily pass from 3 to an arbitrary integer k.

Let us be more specific about the use of Azuma’s inequality. On the space
Ω = {−1, 1}n, we define for every c in the unit sphere of `3

p the function

fc(ω) = fc(ε1, . . . , εn) = ‖
3∑

i=1

ci (
∑

j∈Ji

ajεj yj)‖

and we consider the finite martingale

Mj(ε1, . . . , εj) =
∫

fc(ε1, . . . , εn) dεj+1 . . . dεn,

for j = 0, . . . , n. The differences (dj)
n
j=0 of this martingale satisfy |dj+1| =

|Mj+1−Mj| ≤ |aj+1|, hence S2 =
∑n

j=1 |dj|2 ≤ τ 2/4. Azuma’s inequality gives

P ({ω ∈ Ω : |fc(ω)−M0| ≥ t}) ≤ 2 exp(−t2/(4S2)) ≤ 2 exp(−t2/τ 2)

for every t > 0, where M0 = M0(c) is equal to the norm of c1b1 + c2b2 + c3b3

in L1(X), which is (1 + ε)-equivalent to the `3
p-norm of c, namely 1. If Λ is a

δ-net on the unit sphere of `3
p and if τ was so small that 2 |Λ| < exp(δ2/τ 2),

we may find ω such that
∣∣∣‖c1b1(ω) + c2b2(ω) + c3b3(ω)‖ −M0(c)

∣∣∣ ≤ δ

for every c ∈ Λ, from which the result follows.

Let us pass to the cotype case. If qX = 2 we may use Dvoretzky’s theorem.
Assume qX > 2. We choose s such that qX > s > 2. Let ψ(n) denote the
smallest constant such that

n∑

i=1

‖xi‖s ≤ ψ(n)s

1∫

0

‖
n∑

i=1

εi(t)xi‖s dt

for every family x1, . . . , xn of n vectors in X. It is clear that ψ is non-decreasing,
and tends to +∞ since X does not have cotype s. Suppose that x1, . . . , xn are
chosen in X so that

∑n
i=1 ‖xi‖s = 1 and

1 >
1999

2000
ψ(n)s

1∫

0

‖
n∑

i=1

εi(t)xi‖s dt.
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Let (Bα)α∈I be a maximal family of mutually disjoint non-empty subsets of
{1, . . . , n} such that

∑

i∈Bα

‖xi‖s ≤ 1

2000

1∫

0

‖∑

i∈Bα

εi(t)xi‖s dt.

If B denotes the union of these sets Bα, and m < n denotes the cardinality of
the index set I, we get

∑

i∈B

‖xi‖s =
∑

α∈I

∑

i∈Bα

‖xi‖s ≤ ∑

α∈I

1

2000

1∫

0

‖∑

i∈Bα

εi(t)xi‖s dt

≤ ψ(m)s

2000

∫
‖∑

α∈I

εα(s)(
∑

i∈Bα

εi(t)xi)‖s ds dt

≤ ψ(n)s

2000

1∫

0

‖
n∑

i=1

εi(t)xi‖s dt.

Let A denote the complement of B and for every j ≥ 0 let

Aj = {k ∈ A : 2−j−1 < ‖xk‖ ≤ 2−j}.

We have

∑

i∈A

‖xi‖s >
1998

2000
ψ(n)s

1∫

0

‖
n∑

i=1

εi(t)xi‖s dt.

Let j1 be the smallest j ≥ 0 such that Aj is not empty. If N = |Aj0| is the
largest cardinality of the sets Aj, then

N
+∞∑

j=j1

2−js ≥ 1998

2000
ψ(n)s 2−j1s−s

which shows that N is large when ψ(n) is large. By maximality of B,

∑

i∈C

‖xi‖s >
1

2000

1∫

0

‖∑

i∈C

εi(t)xi‖s dt

for every non-empty subset C ⊂ Aj0 . We change the (xi)i∈Aj0
to normalized

vectors, and go to a limit space X ′, finitely representable in X and containing
a normalized sequence (yi)i≥0 such that for some κ0,

κ0 |C|1/s ≥ (

1∫

0

‖∑

i∈C

εi(t)yi‖s dt)1/s
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for every finite subset C. But this sequence (yi)i≥0 can’t have any Cauchy
subsequence, or else the above property would be true with yi ∼ y, in other
words, true in a one dimensional setting; in this case, Khintchine’s inequality
tells us that the integral is larger than |C|1/2 > κ0 |C|1/s, which is impossible
when |C| is large. By Brunel-Sucheston, we can pass to differences (ym−yn) in
order to get a suppression-unconditional sequence invariant under spreading
(with a poor normalization). We have

(

1∫

0

‖∑

i∈C

εi(t)(y2i+1 − y2i)‖s dt)1/s ≤ 2κ0 |C|1/s

for every finite subset C, but we may now get rid of the signs (εi(t)) since
the sequence of differences is 2-unconditional. We obtain therefore in X ′ a
normalized suppression-unconditional sequence (xi) such that

‖∑

i∈C

xi‖ ≤ κ′ |C|1/s

for every finite subset C. We end by applying the second case of Corollary 5.

6 K-convexity and Pisier’s theorem

When X is a type p space, then the dual X∗ has cotype q for the conjugate
exponent (1/p+1/q = 1); this is very easy: if (x∗i )

n
i=1 is given in X∗, we can find

(xi)
n
i=1 ⊂ X such that

∑n
i=1 x∗i (xi) > (

∑n
i=1 ‖x∗i ‖q)1/q − ε and

∑n
i=1 ‖xi‖p = 1;

then, by orthogonality of the functions (εi)

(
n∑

i=1

‖x∗i ‖q)1/q − ε <
n∑

i=1

x∗i (xi) =

1∫

0

(
n∑

i=1

εi(t)x
∗
i )(

n∑

j=1

εj(t)xj) dt

≤
( 1∫

0

‖
n∑

j=1

εj(t)xj‖2 dt
)1/2( 1∫

0

‖
n∑

i=1

εi(t)x
∗
i ‖2 dt

)1/2

≤Tp(X)
( 1∫

0

‖
n∑

i=1

εi(t)x
∗
i ‖2 dt

)1/2
,

therefore Cq(X
∗) ≤ Tp(X). Obviously the converse is false since `1, dual of

c0, has cotype 2, while c0 has no non-trivial type. However, this does not
happen when X∗ has cotype q and non-trivial type: then, X has type p. This
fact was conjectured in [MP2] (although the authors had little evidence that
supported this conjecture at the time), and proved by Pisier six years later
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[P6]. Using local reflexivity, and since type and cotype are super-properties,
the preceding claim is equivalent to saying that when a Banach space Y has
non-trivial type and cotype q, then the dual Y ∗ has type p with 1/p + 1/q = 1.
This will follow from the easy Lemma 7 below and from the main result of
this section, Theorem 12.

Let us consider the group G = {1,−1} and let µ denote the invariant prob-
ability measure on Gm, that gives measure 2−m to every atom. On Gm, let
εi, i = 1, . . . , m denote the ith coordinate function, εi(g1, . . . , gm) = gi. If
α ⊂ {1, . . . , m} let wα =

∏
i∈α εi; using the standard convention, we get the

constant function 1 on Gm when α = ∅. Let |α| denote the cardinality of the
set α. This family of functions (wα) is the Walsh system; it is the family of
characters of the abelian group Gm. Every function f from Gm to a Banach
space X can be expressed as

∀ω ∈ Gm, f(ω) =
∑
α

wα(ω)xα,

for some family (xα) ⊂ X. Given a function f =
∑

α wαxα, the part of the
expansion corresponding to sets α with |α| = 1 is the Rademacher projection
RX(f) =

∑
|α|=1 wαxα of the function f (we have wα = εi when α = {i}).

Lemma 7 If the Rademacher projection RX is bounded on L2(G
m, µ,X) by

some constant K, uniformly in m ≥ 1, then the cotype q property of X dualizes
to the type p property of X∗, and

Tp(X
∗) ≤ K Cq(X) (1/p + 1/q = 1).

PROOF. Suppose that f ∈ L2(G
m, X); the Rademacher projection of f is

of the form RXf =
∑m

i=1 εixi, where xi =
∫

εi(ω)f(ω) dµ(ω). The cotype q
property and the boundedness of RX imply that the map f → (xi)

m
i=1 is

bounded from L2(G
m, X) to `m

q (X). It follows that the adjoint map is bounded
from `m

p (X∗) to L2(G
m, X∗), and this adjoint map is the map that sends (x∗i )

m
i=1

to
∑m

i=1 εix
∗
i . We get therefore

(

1∫

0

‖
m∑

i=1

εi(t)x
∗
i ‖2 dt)1/2 ≤ ‖RX‖Cq(X) (

m∑

i=1

‖x∗i ‖p)1/p.

Definition 8 We say that X is K-convex if there exists a constant K such
that for every m ≥ 1 and every function f ∈ L2(G

m, X), expressed as f =∑
α wαxα, we have

‖RXf‖L2 = ‖ ∑

|α|=1

wαxα‖L2 ≤ K ‖f‖L2 ,
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which means that ‖RX‖L(L2(X)) ≤ K. The smallest possible constant K is the
K-convexity constant of X. It is equal to the supremum of ‖RX‖, when the
number m of Rademacher functions tends to infinity.

When this supremum is finite, we may directly define RX on the infinite prod-
uct GN, and the K-convexity constant is the norm of RX on L2(G

N, X). It is
clear that K-convexity is a super-property, and it passes to the dual X∗ with
the same constant. It follows from Kahane’s inequality that the projection is
also bounded in Lq(X) for 2 ≤ q < +∞, and using duality we see that RX is
then bounded in Lp(X) for all p such that 1 < p < +∞.

It follows from Lemma 7 that the K-convexity constant of L1(G
m) tends to

infinity with m (because L1 has cotype 2 while its dual L∞ does not have type
2), but it is instructive to give a concrete estimate. Let ĝ = (ε̂1, . . . , ε̂m) ∈ Gm

be fixed; the function fĝ, equal to 2m at ĝ and to 0 elsewhere, has norm one
in L1(G

m), and its expansion is

fĝ =
∑
α

wα(ĝ) wα.

It follows that the function f from Gm to L1(G
m) defined by

f(g, g′) =
∑
α

wα(g) wα(g′)

has norm one in L2(G
m, L1(G

m)), but its Rademacher projection (Rf)(g) =
∑m

j=1 εj(g) εj has norm ≥
√

m/2 by Khintchine’s inequality. Observe that we

get KX ≥ c
√

log dim X, with X = L1(G
m). It is known that for any Banach

lattice X we have KX ≤ C
√

1 + log dim X (see [P4]), and the preceding
simple example shows that this result is precise for lattices. For general Banach
spaces, see Theorem 13 below.

Let us describe the semi-group approach: on the multiplicative group G =
{1,−1} we consider for −1 ≤ c ≤ 1 the probability measure µ(1)

c defined by

µ(1)
c =

1 + c

2
δ1 +

1− c

2
δ−1,

where δg denotes the unit mass at g ∈ G. Using δ−1 ∗ ε1 = −ε1 we get that

µ(1)
c ∗ ε1 = c ε1. Also µ

(1)
b ∗ µ(1)

c = µ
(1)
bc . On Gm we consider the m-fold tensor

product µc = µ(m)
c of m copies of µ(1)

c . We see that µc ∗ wα = c|α|wα and
µb ∗ µc = µbc. Given a function f ∈ L2(G

m, X), expressed as
∑

α wαxα, we see
that µc ∗ f =

∑
α c|α|wαxα. Since µc is a probability measure, convolution with

µc is a norm 1 operator on L2(G
m, X), for every real or complex Banach space

X and every c ∈ [−1, 1].
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In order to pass to the classical semi-group setting, we shall perform the
following change of variable. For t ≥ 0, let νt = µe−t . We get that νt∗νs = νs+t.
Given a function f =

∑
α wαxα ∈ L2(G

m, X) we set

(W ) Ttf = νt ∗ f =
∑
α

e−|α|t wαxα

and we call (Tt)t≥0 the Walsh semi-group. We noticed that each Tt is a contrac-
tion on L2(G

m, X). Let Pi, i = 1, . . . , m denote the projection on L2(G
m, X)

defined by

(Pif)(ε1, . . . , εm) =
∫

f(ε1, . . . , εi−1, ε, εi+1, . . . , εm) dε.

It is clear that Pi is a norm one projection, and PiPj = PjPi for all i, j =
1, . . . , m. Let Qi = I − Pi. We have Piεi = 0, Piεj = εj for j 6= i. For every
α ⊂ {1, . . . , m} let Pα =

∏
i∈α Pi. We see by checking the action on every wα

that

Tt =
m∏

i=1

(Pi + e−t Qi) =
m∏

i=1

((1− e−t)Pi + e−t I).

It follows, by expanding the last product, that Tt is a convex combination of
commuting norm one projections of the form Pα.

For the next lemma it is natural to quantify the type-p property of a Banach
space X in a way close to the definition of B-convex Banach space. We let
N(X) denote the smallest integer n ≥ 1 such that

1∫

0

‖
n∑

i=1

εi(t)xi‖ dt ≤ n/16

for every family x1, . . . , xn of vectors in X such that ‖xi‖ ≤ 1 for each i.
Of course, if X has type p > 1, then we have N(X) ≤ (16 Tp(X))q, where
q < +∞ is the number conjugate to p > 1. We let N(X) = +∞ when X is
not B-convex.

Lemma 9 Suppose that X is a B-convex Banach space, and assume that M
is a convex combination of contractive commuting projections on X. Then

‖Mn+1 −Mn‖ ≤ 1/4

when n ≥ max(N(X), 256).
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PROOF. Let

M =
∑
α

cα Pα

where cα ≥ 0,
∑

α cα = 1, and where the (Pα)s are commuting projections on
X, such that ‖Pα‖ ≤ 1; we get in particular that ‖M‖ ≤ 1. Let ξ be a random
variable on some probability space Ω, with values in the space of operators
on X and with P (ξ = Pα) = cα for every α. Then Eξ = M , and if ξ1, ξ2 are
two independent copies of ξ, then Eξ1ξ2 = M2. Let ξ1, . . . , ξn be independent
copies of ξ, with n ≥ max(N(X), 256). Suppose that x ∈ X, ‖x‖ = 1 and
let us consider, for a fixed choice ε of εi = ±1, the random variable Zε on Ω
defined by Zε(ω) = ‖∑n

i=1 εiξi(ω)x‖.

Let B = {i : εi = 1} and C = {i : εi = −1}, k = |B| and ` = |C|. Assume
that k ≤ `. Then, letting ξB denote the (random) operator equal to

∏
j∈B ξj,

and noting that ‖ξB(ω)‖ ≤ 1 for every ω,

‖
n∑

i=1

εiξix‖ ≥ ‖ξB(
n∑

i=1

εiξix)‖ = ‖∑

i∈B

ξBx− ∑

i∈C

ξBξix‖.

Taking expectation on Ω,

E ‖
n∑

i=1

εiξix‖≥‖
∑

i∈B

E ξBx− ∑

i∈C

E ξBξix‖

= ‖kMkx− `Mk+1x‖ ≥ ` ‖Mkx−Mk+1x‖ − |`− k|
≥ n

2
‖Mnx−Mn+1x‖ − |`− k|.

(if ` ≤ k, we replace ξB by ξC). On the other hand we get, taking the expec-
tation E ′ over all signs, noting that |`− k| = |∑n

i=1 εi| and since n ≥ N(X)

n

2
‖Mnx−Mn+1x‖ − √n ≤ EE ′ ‖

n∑

i=1

εiξix‖ ≤ n/16.

so that, using n ≥ 256

‖Mnx−Mn+1x‖ ≤ 1/8 + 2n−1/2 ≤ 1/4.

Remark 10 Suppose that X is a type-p Banach space, with p > 1 and type-p
constant Tp. Assume that M is a convex combination of contractive commuting
projections on X. Then

‖x + M(x)‖ ≥ (4Tp)
−q‖x‖
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for every x ∈ X (q is the exponent conjugate to p). It follows that I + M is
invertible and that ‖(I + M)−1‖ ≤ (4Tp)

q.

It is well known to experts that the uniform invertibility of I + Tt is precisely
what is needed in Kato’s theorem for proving that a semi-group (Tt)t≥0 is
holomorphic. The proof of the remark is a slight modification of the proof of
the preceding lemma. Suppose that ‖x‖ = 1 and ‖x + Mx‖ < ε. It follows
that ‖Mkx + Mk+1x‖ < ε for every k ≥ 0 since ‖M‖ ≤ 1, and ‖Mkx‖ ≥
‖x‖ − kε = 1− kε by the triangle inequality. Taking expectations as before,

E ‖
n∑

i=1

εiξix‖ ≥ ‖nMkx‖ − `ε ≥ n(1− kε)− `ε ≥ n− (n + 1)2ε/2.

Taking the expectation E ′ over all signs

n− n2ε ≤ EE ′ ‖
n∑

i=1

εiξix‖ ≤ Tp n1/p.

If we choose n such that 1/4 < nε ≤ 1/2, then n/2 ≤ Tp n1/p, thus 4n ≤ (4Tp)
q

since q ≥ 2 and ε ≥ (4Tp)
−q.

If we want to see why things can go wrong when X contains `n
1 s, we may modify

the example showing that the K-convexity constant of L1(G
m) is large. We

shall only sketch the idea. Let us consider the function f0 from [0, 1]m to the
space of measures on [0, 1]m such that f0(x) is the Dirac mass at x for every
x ∈ [0, 1]m (this function is not Bochner measurable; a genuine example should
correct this fact). If Pi is defined for every g ∈ L2([0, 1]m, X) by

(Pig)(x1, . . . , xm) =

1∫

0

g(x1, . . . , xi−1, y, xi+1, . . . , xm) dy

for i = 1, . . . , m, then the (Pi) are commuting norm one projections. For
every α ⊂ {1, . . . , m}, the vector value (Pαf0)(x) is the Lebesgue measure on
some |α|-dimensional unit cube. When x varies, these probability measures are
pairwise disjoint, and this is the source of all the problems. The corresponding
semi-group St =

∏m
i=1((1 − e−t)Pi + e−t I) behaves very badly. In particular,

the inequality ‖I − St‖ ≥ 2 (1 − e−mt) shows that the hypothesis for Kato’s
theorem is not satisfied uniformly in m in this example, where X = M (the
space of measures).

We are ready to begin the proof that B-convexity implies K-convexity, using
the Walsh semi-group (Tt)t≥0 defined by relation (W ). Recall that each opera-
tor Tt is a convex combination of commuting norm one projections on L2(X).
If X is B-convex, then L2(X) is also B-convex; it follows from Lemma 9 that

‖Tnt − T(n+1)t‖ ≤ 1/4
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for every t > 0, when n ≥ max(N(L2(X)), 256). For the rest of the paper we
assume that X is a complex Banach space.

We strongly recommend reading [MS, chapter 14] (and appendix IV about
Kato’s theorem for semi-groups). For the lazy reader who does not want to hear
about general semi-groups, we shall sketch a proof of Kato’s theorem in the
simplified setting which is needed here. We consider m Rademacher functions
ε1, . . . , εm and the corresponding 2m Walsh functions (wα) that are defined by
the formula wα =

∏
i∈α εi, where α ranges over the 2m subsets of {1, . . . ,m};

next we fix 2m vectors (yα) in X, and we let E be the 2m-dimensional complex
subspace of L2(G

m, X) generated by the algebraic basis (wαyα). Our operators
(Tt)t≥0 act diagonally on this basis of E, since Tt(wαyα) = e−t|α| wαyα for every
α. Defining the complex extension Tz of Tt on E is straightforward: we simply
say that Tz acts on E by Tz(wαyα) = e−z|α| wαyα for every α, but of course the
problem is to find bounds for the norm of Tz, independent of the particular
subspace E ⊂ L2(X). We see that Tt = e−tA, where A is represented in
the basis (wα yα) by a diagonal matrix with entries in {0, 1, . . . , m}, namely
A(wα yα) = |α|wα yα. The Rademacher projection corresponds to the matrix
B obtained by replacing in A all diagonal entries 6= 1 by zero entries.

For the proof of Theorem 12 below, we shall keep m and the 2m-dimensional
subspace E ⊂ L2(G

m, X) fixed. Our aim is to find a bound for the norm of
the matrix B, acting on this subspace E by B(wαyα) = wαyα if |α| = 1 and
B(wαyα) = 0 otherwise; we are looking for a bound K independent of m and
of the particular subspace E. From the nature of the problem it is clear that
such a bound K will be a bound for the norm of the Rademacher projection
RX acting on L2(G

N, X), that is to say a bound for the K-convexity constant
of X.

The control of the complex extension of the semi-group begins with a standard
exercise in functions of one complex variable. Consider η = v + iπ, v > 0, and
the two conjugate rays R = R+η and R = R+η, symmetric with respect to
the real axis, contained in the half plane <z > 0. Let ξ = π + iu, with |u| < v,
and consider the holomorphic function f(z) = e−ξz. Then for every real a ≥ 0,
we have

e−ξa =
1

2iπ

∫

Γ

e−ξz(z − a)−1 dz

where Γ is essentially the path given by these two rays, except for a little
detour to avoid z = 0 (this is needed in the case a = 0; see the figure in [MS,
appendix IV]). We have

| e−ξz | ≤ e−π(1−|u|/v)<z
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for every z in the convex cone limited by R and R, therefore the integral is
convergent since |u| < v. It is a standard exercise to show that the integral
over Γ is indeed equal to e−ξa (approximate

∫
Γ by the integral over a bounded

closed contour that uses part of the two rays and part of a large circle centered
at 0, and apply Cauchy’s formula).

In our (finite-dimensional) vector situation, the generator A of the semi-group
is expressed by a diagonal matrix with non-negative real diagonal, so that the
next equation is by no means harder to prove than the scalar case,

e−ξA =
1

2iπ

∫

Γ

e−ξz(zI − A)−1 dz.

This can be done not only for ξ = π+iu, |u| < v, but as well for any ξ = α+iβ
with α > 0 and π |β| < v α, in other words for every ξ in a sector of angle θ
around the positive real axis, where π tan θ = v. The above formula, extended
to these values of ξ, defines the complex extension of the semi-group. It is clear
(and standard) that we can bound the complex extension of the semi-group,
acting on the fixed finite-dimensional subspace E, if we have a suitable bound
for the norm of the resolvent (zI −A)−1 on the two rays R and R (again, this
norm is understood as norm of an operator from E to E).

Lemma 11 Let E ⊂ L2(G
m, X) be as above. Assume that X is a B-convex

Banach space, let n ≥ max(N(L2(X)), 256) and let v be such that 0 < v ≤ 1/n.
For every complex number z belonging to the ray R = R+(v + iπ) or to the
conjugate ray R, we have

‖(zI − A)−1‖ ≤ 36 π n/|=z|.

PROOF. Let λ = v ± iπ, and suppose that ε > 0 is chosen in such a way
that ‖(A − λI)−1‖ > 1/ε; we can find a norm one vector x ∈ E such that
‖Ax − λx‖ < ε. The function ϕ(t) = Tt(x) = e−tA x satisfies the differential
equation ϕ′(t) = −Aϕ(t) = −Tt(Ax). Since Tt is a contraction semi-group,
we deduce that for every t > 0

‖ϕ′(t) + λϕ(t)‖ = ‖Tt(Ax− λx)‖ ≤ ε.

If we write this as ϕ′(t)+λϕ(t) = g(t) with ‖g(t)‖ ≤ ε and solve the differential
equation, we get

ϕ(t) = e−λt(x +

t∫

0

eλs g(s) ds),
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which implies that ‖ϕ(t) − e−λt x‖ ≤ εt. Let n ≥ max(N(L2(X)), 256). By
Lemma 9, we know that for every s > 0, we have ‖T(n+1)s− Tns‖ ≤ 1/4, since
Ts is a convex combination of commuting norm one projections. We shall use
this fact with s = 1; when s = 1, we get ‖ϕ(n + 1) − ϕ(n)‖ ≤ 1/4 and
e−λs = e−λ = − e−v since eiπ = −1. We have

1/3 < e−1 < e−vn(1 + e−v) = ‖ e−λ(n+1) x− e−λn x‖.

By the triangle inequality,

1/3 < ‖ e−λ(n+1) x− e−λn x‖
≤‖ϕ(n + 1)− e−λ(n+1) x‖+ ‖ϕ(n)− e−λn x‖+ 1/4,

hence

1/12 ≤ ‖ϕ(n + 1)− e−λ(n+1) x‖+ ‖ϕ(n)− e−λn x‖ ≤ (2n + 1)ε ≤ 3n ε.

It follows that ‖(A − λI)−1‖ ≤ 36 n. We may apply the same proof to the
generator As = s−1A, for every s > 0; obviously, this As also generates a semi-
group consisting of convex combinations of commuting contractive projections,
and this implies as above that

‖(λI − As)
−1‖ ≤ 36 n or ‖(sλI − A)−1‖ ≤ 36 n/s

hence

‖(zI − A)−1‖ ≤ 36 π n/|=z|

when z belongs to the rays R = R+(v + iπ) or R.

Theorem 12 Let X be a B-convex Banach space. Then the Rademacher pro-
jection RX is bounded on L2(G

N, X), and

‖RX‖ ≤ eκ max(N(L2(X)), 256)

for some universal constant κ.

PROOF. Let us consider again the 2m-dimensional subspace E of L2(G
m, X).

We may deduce from Lemma 11 that the semi-group (Tt) acting on E has a
nicely bounded complex extension to the sector mentioned before, but since
we are mainly interested in the Rademacher projection we are going to take
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a shortcut. Let N = max(N(L2(X)), 256) and v = 1/N ; consider the path Γ
consisting of the ray R = R+ (v + iπ) and its conjugate R. Provided that the
integral makes sense,

1

2iπ

∫

Γ

ϕ(z) (zI − A)−1 dz

represents, when ϕ is holomorphic on C, the diagonal matrix where each
diagonal entry k of A is replaced by ϕ(k). Recall that the diagonal entries of
A are integers. In order to get the matrix B of the Rademacher projection,
we naturally introduce ϕ1(z) = sin(πz)/(1− z) that kills all entries 6= 1 in A.
We need to multiply this ϕ1 by a suitable exponential that guarantees that
the integral converges and that the Cauchy formula applies to the unbounded
contour Γ. Let us consider the matrix

C =
1

2iπ

∫

Γ

sin(πz)

π(1− z)
e−π2z/v (zI − A)−1 dz.

The sin function eliminates the problem at 0. Also, one can check that the
integral is absolutely convergent. It is easy to see that this matrix C is a
multiple of the Rademacher projection B, namely C = e−π2/v B and using the
bound from Lemma 11 we can show that

‖C‖ ≤ κ1N,

where κ1 is an universal constant. It follows that ‖B‖ ≤ κ1N eπ2N ≤ eκ N .

Let us detail the preceding computation. We have N = max(N(L2(X)), 256)
and v = 1/N , thus 0 < v < 1/2. Let z0 = v ± iπ. If z = s z0, s > 0, then
| sin(πz)| ≤ eπ2s and | cos(πz)| ≤ eπ2s, therefore | sin(πz) e−π2z/v | ≤ 1. We also
have |1− z| ≥ πs and |1− z| ≥ 1− sv ≥ 1/2 when 0 < s < 1. Next, we use

| sin(πz)| ≤ π|z| max
0<u<1

| cos(uπz)| ≤ πs |z0| eπ2s

for 0 < s < 1, so that

‖C‖≤ 1

π

1∫

0

2πs|z0|
π

36N

s
|z0| ds +

1

π

∞∫

1

1

π2s

36 N

s
|z0| ds

≤ 72 N |z0|2
π

+
36 N |z0|

π3
≤ 500 N.
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We finish with another result of Pisier, that has been very useful for local
theory. We did not try to optimize the constant, but to give an argument as
simple as possible (essentially identical to Pisier’s proof).

Theorem 13 Let dX denote the Banach-Mazur distance from X to the Hilbert
space of the same dimension. Then the norm of the Rademacher projection in
L2(X) is bounded by 4 ln dX when dX ≥ e (and by dX in any case).

PROOF. The proof is comparatively simple. Let f =
∑

α wαxα be a function
from Gm to X. Assume that ‖f‖L2(X) = 1. For z ∈ C, let

P (z) =
∑
α

z|α|wαxα.

This defines a holomorphic function (a polynomial) from C to L2(X). The
Rademacher projection RX(f) of f is the derivative P ′(0) of P at z = 0.
When X = H is a Hilbert space, we get by orthogonality, for every z in the
closed unit disc D in C

‖P (z)‖2
L2(H) =

∑
α

|z|2|α|‖xα‖2 ≤ ∑
α

‖xα‖2 = ‖f‖2
L2(H),

thus ‖P (z)‖ ≤ 1 for every z ∈ D in this case. If the distance from X to some
Hilbert space is ≤ d, then clearly ‖P (z)‖ ≤ d, therefore ‖P (z)‖ ≤ dX for every
z ∈ D. On the other hand, we have seen that ‖P (x)‖L2(X) ≤ ‖f‖L2(X) = 1
when x is real and |x| ≤ 1, because P (x) = µx ∗ f in that case, with µx a
probability measure. For convenience, we transfer the problem to the closed
strip S = {z : |=z| ≤ 1}: the mapping ϕ(z) = tanh(πz/4) maps S to the
closed unit disc, and sends the line =z = 0 to the segment −1 ≤ x ≤ 1.
The L2(X)-valued function q(z) = P (ϕ(z)) is bounded on S, holomorphic
on the open strip S0, bounded by dX on S and by 1 on the line =z = 0.
The result follows then from q′(0) = πP ′(0)/4 and from the following lemma.
When dX ≥ e we get |P ′(0)| = 4 π−1 |g′(0)| ≤ 4 π−1 e ln dX < 4 ln dX .

Lemma 14 Let g be a bounded and continuous function, defined on the closed
strip S = {z : |=z| ≤ 1}, holomorphic on the open strip S0, with values in a
Banach space Y ; assume that g is bounded by C ≥ e on S and bounded by 1
on the line =z = 0. Then |g′(0)| ≤ e ln C.

PROOF. Let g1(z) = (g(z) − g(−z))/2; then g1 obeys the same bounds as
does g, and g′1(0) = g′(0); furthermore, g1(0) = 0. Let 0 < θ ≤ 1. Since g1 is
bounded, |g1| ≤ 1 on the line =z = 0 and |g1| ≤ C on the line =z = 1, the
three lines Lemma implies that |g1| is bounded by 11−θCθ = Cθ on the line
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=z = θ; the same argument applies to the line =z = −θ; now k(z) = g1(z)/z
(with k(0) = g′1(0)) is bounded on the strip S, and bounded by θ−1Cθ on the
two lines =z = ±θ, therefore |g′(0)| = |g′1(0)| = |k(0)| ≤ θ−1Cθ. The optimal
choice of θ in (0, 1] is θ = (ln C)−1, which is licit because ln C ≥ 1.
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[Ma1] B. Maurey, Théorèmes de factorisation pour les applications linéaires à
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